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S 412 96, Göteborg, Sweden

Editor: Francis Bach

Abstract

In this paper we establish that the Lovász ϑ function on a graph can be restated as a kernel learning

problem. We introduce the notion of SVM−ϑ graphs, on which Lovász ϑ function can be ap-

proximated well by a Support vector machine (SVM). We show that Erdös-Rényi random G(n, p)

graphs are SVM−ϑ graphs for
log4 n

n
≤ p < 1. Even if we embed a large clique of size Θ

(√
np

1−p

)

in a G(n, p) graph the resultant graph still remains a SVM−ϑ graph. This immediately suggests

an SVM based algorithm for recovering a large planted clique in random graphs. Associated with

the ϑ function is the notion of orthogonal labellings. We introduce common orthogonal labellings

which extends the idea of orthogonal labellings to multiple graphs. This allows us to propose

a Multiple Kernel learning (MKL) based solution which is capable of identifying a large common

dense subgraph in multiple graphs. Both in the planted clique case and common subgraph detection

problem the proposed solutions beat the state of the art by an order of magnitude.

Keywords: orthogonal labellings of graphs, planted cliques, random graphs, common dense sub-

graph

1. Introduction

In a general graph many problems, such as computing the size of the largest clique or determin-

ing the chromatic number, are NP hard (Garey and Johnson, 1979). The ϑ function, introduced by

Lovász (1979), is an extremely powerful tool for approximating such quantities in polynomial time.

In some cases one can compute ϑ on large graphs efficiently, for example by exploiting symmetry

(Bachoc et al., 2012), but in general efficient computation of ϑ function on large graphs remains

a challenge. Evaluating the ϑ function on a graph requires solving a Semidefinite Program (SDP).
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Using interior point methods one can solve SDPs, albeit with a high computational complexity of

O(n6) (Boyd and Vandenberghe, 2004). Indeed numerical experiments show that computing ϑ on

graphs consisting of more than 5000 vertices, using off the shelf SDP solvers, is impractical. Con-

sider the problem of finding a large planted clique in a random graph. One could use an algorithm

based on ϑ function computation (Feige and Krauthgamer, 2000) to recover such a clique. Unfortu-

nately one cannot apply this algorithm to large graphs, say graphs of size more than 20,000 vertices,

due to high computational complexity of computing ϑ.

In this paper we establish that the ϑ function is equivalent to solving a kernel learning problem in

the one class SVM setting. This surprising connection opens up lot of opportunities between graph

theory and machine learning. Instead of trying to compute ϑ function exactly we show that by

judicious choice of a kernel function, one can compute an upper-bound on the ϑ function by solving

an SVM. We show that on random graphs this upper bound serves as a constant factor approximation

to the ϑ function. We study how this bound can be exploited to identify large dense subgraphs in

large graphs. In particular we study the problem of finding a common dense subgraph in multiple

graphs (Pardalos and Rebennack, 2010), a computationally challenging problem for large graphs.

We also study the problem of finding a hidden planted clique in a random graph. This is again an

instance of computationally challenging problem (Jerrum, 1992).

1.1 The Importance of Studying Dense Subgraphs

Finding dense subgraphs in large graphs is an important problem, which has many applications in

a variety of disciplines. In Computational Biology, mining for large dense subgraphs has important

consequences for function discovery (Hu et al., 2005). Many other problems in Computational Bi-

ology can be posed as that of finding dense subgraphs (see, e.g., Spirin and Mirny, 2003; Jiang and

Pei, 2009; Takahashi et al., 1987). In E-commerce one could find isolated submarkets, important

for advertising, by finding dense subgraphs (Lang and Andersen, 2007). Many problems in social

network analysis can also be posed as dense subgraph discovery problem (Newman et al., 2006).

Dense subgraph discovery can also be useful in designing more secure systems (Applebaum et al.,

2010). Recently a very interesting suggestion was made in Arora et al. (2010) where understanding

the complexity of financial derivatives was linked to finding dense subgraphs. A comprehensive re-

view of applications of dense subgraphs is beyond the scope of this paper and we refer the interested

reader to the survey by Lee et al. (2010).

In this paper we target two difficult versions of dense subgraph recovery problem. The prob-

lem of planted clique in a random graph is an instance of dense subgraph discovery in a random

graph. This problem is extensively studied by the Algorithms community. Though the focus of the

study is mainly theoretical it also has practical implications in several disciplines including Machine

Learning. To cite an example recently the problem of correlation detection was formulated as that

of finding a planted clique in a large random graph (Devroye et al., 2011). Inspired by several ap-

plications in Computational Biology (see, e.g., Podolyan and Karypis, 2009), we study the problem

of finding a large common dense subgraph in multiple graphs.

1.2 Contributions

In this paper we make several contributions. Lovász (1979) introduced the notion of orthogonal

labellings and used it to define the ϑ function. We show that for any orthogonal labelling one can

define a Kernel matrix, K. Using this matrix K, one can compute an upper-bound on the Lovász ϑ
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function by solving a SVM. Furthermore we show that

min
K∈K (G)

ω(K) = ϑ(G),

where ω(K) is the optimal SVM objective function. Finding a common dense region in multiple

graphs is known to be computationally difficult problem. One of the main contribution of this paper

is to show how the connection of ϑ to SVMs can be exploited to find a dense subgraph in multiple

graphs. We extend the idea of orthogonal labelling to multiple graphs by introducing the notion

of common orthogonal labelling. This allows us to use a formulation based on multiple kernel

learning for this problem. The proposed method beats existing methods by an order of magnitude.

Our results on the well-known benchmark DIMACS data set show that the proposed method can

identify dense graphs in large variety of settings, while state of the art method fails. An important

contribution of this paper is to introduce SVM− ϑ graphs, on which Lovász ϑ function can be

well approximated by SVM. It is interesting to note that G(n, p) graphs are SVM − ϑ graphs.

In many approximation algorithms, the ϑ function needs to be computed on G(n, p) graphs. An

immediate consequence of our result is that one does not need to solve an SDP to compute the ϑ

function but can potentially use an SVM to approximate it. An extremely difficult instance of dense

subgraph recovery problem is to pose the question of finding a hidden clique in a random graph.

State of the art approaches are not practical for large graphs as they use Lovász ϑ function (Feige

and Krauthgamer, 2000). Another key contribution of this paper is show that one can find a planted

clique by solving an SVM. In particular, we show that in a G(n,1− p) graph even if we embed a

clique of size k = Θ
(√

n(1− p)/p
)
, the resultant graph is a SVM−ϑ graph. Furthermore, even

if embed a sparse random subgraph in a large random graph, the resultant graph turns out to be

SVM− ϑ graph. In both cases one can prove that the SVM solution can be used to recover the

planted subgraph.

1.2.1 STRUCTURE OF THE PAPER

In Section 2 we review the definition of orthogonal labeling and establish a connection between

Lovász ϑ function and a kernel learning problem on one class problem. We extend the notion

of orthogonal labellings for single graphs to include multiple graphs. We introduce the notion of

common orthogonal labeling to multiple graphs in Section 3. This leads to a MKL based formulation

which is capable of finding a common dense region. Next we present one of the major contributions

of this paper. In Section 4 we establish that there exists graphs on which the Lovász ϑ function

can be well approximated by an SVM. Furthermore we show that the the graph associated with

the planted clique problem also satisfies this property. In Section 5 we empirically evaluate the

performance of the proposed algorithms on large variety of graphs.

1.2.2 NOTATION

We represent vectors using lower case bold letters a,b, . . ., etc., and matrices using upper case bold

letters A,B, . . . etc.; with ai referring to ith element of a, and similarly Ai j referring to (i, j)th entry

of matrix A. We use notation [n] to denote the set {1,2, . . . ,n}. For a vector in R
d , we denote the

Euclidean norm by ‖.‖ and the infinity norm by ‖.‖∞. The inequality a ≥ 0 is true if it the inequality

holds element-wise. Let S d−1 = {u ∈R
d−1 |‖u‖2 = 1} denote a (d−1) dimensional sphere. Let Sn

denote the set of n× n square symmetric matrices and S+
n denote n× n square symmetric positive

semidefinite matrices. For any matrix A ∈ R
n×n, we denote the eigenvalues λ1(A) ≥ . . . ≥ λn(A),
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and ‖A‖ =
√

λ1(A⊤A). diag(r) will denote a diagonal matrix with diagonal entries defined by

components of r.

Support vector machines (SVMs) have emerged as a powerful tool for binary classification

problems (Vapnik, 1995). SVMs are posed as a Convex Quadratic program (CQP) and can be

solved in linear time (Hush et al., 2006). In this paper we will extensively use a variation of the

SVM formulation, known as the one-class SVM (Schölkopf et al., 2001), and written as

ω(K) = max
αi≥0,i=1,...,n

f (α;K)

(

= 2
n

∑
i=1

αi −
n

∑
i, j=1

αiα jKi j

)

, (1)

where K ∈ S+
n is called the kernel matrix. This formulation can be solved in O(n2) time (Hush et al.,

2006). In the sequel, for the sake of brevity we will denote (1) as SVM formulation.

Let G = (V,E) be a graph of order n with vertex set V = [n] and edge set E ⊆V ×V . Let A ∈ Sn

denote the adjacency matrix of G where Ai j = 1 if edge (i, j) ∈ E, and 0 otherwise. Let Ḡ denote

the complement graph of G. The adjacency matrix of Ḡ is Ā = ee⊤− I−A, where e = [1,1, . . . ,1]⊤

is a vector of length n containing all 1’s, and I denotes the identity matrix. We denote the indicator

vector for some set S ⊆V as eS which is one for all i ∈ S and zero in other co-ordinates.

Let Ni(G) = { j : (i, j) ∈ E} denote the neighbourhood of node i ∈ V ; di(G) = |Ni(G)| denote

the degree of node i; and γ(G) = |E|/
(|V |

2

)
denote the density of graph G. Let GS = (S,ES) denote

the subgraph induced by S ⊆ V in graph G. An independent set in G (a clique in Ḡ) is a subset

of vertices S ⊆ V for which no (every) pair of vertices has an edge in G (in Ḡ). Our notations are

standard, see Bollobás (1998).

An event An holds with high probability if P(An) tends to 1 as n goes to ∞. The notations

O,o,Ω,Θ will denote the standard measures defined in asymptotic analysis (see, e.g., Cormen et al.,

2009, Chapter 3).

2. Lovász theta Function and Kernel Learning

Consider the problem of embedding a graph G = (V,E) on an unit sphere Sd−1. The study of this

problem was initiated by Lovász (1979) who introduced the idea of orthogonal labelling:

Definition 1 (Lovász, 1979) An orthogonal labelling of graph G = (V,E) with |V |= n, is a matrix

U = [u1, . . . ,un] ∈ R
d×n such that u⊤

i u j = 0 whenever (i, j) 6∈ E and ui ∈ S d−1 ∀ i ∈ [n].

Let Lab(G) denote the set of orthogonal labellings of graph G, given by:

Lab(G) := {U = [u1, . . . ,un] |ui ∈ S d−1, u⊤
i u j = 0 ∀ (i, j) 6∈ E}.

Using Lab(G), Lovász (1979) defined ϑ(G) as follows:

ϑ(G) = min
U∈Lab(G)

min
c∈S d−1

max
i

(
c⊤ui

)−2
.

In the sequel we will sometimes denote ϑ(G) by ϑ when the argument is clear from the context.

There exist several other equivalent definitions of ϑ function, for a comprehensive discussion see

monograph by Knuth (1994).
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It can be shown that ϑ serves as an upper-bound on the size of maximum independent set,

ALPHA(G),1 of a graph G (Lovász, 1979). Indeed for any graph G,

ALPHA(G)≤ ϑ(G).

Computing ALPHA(G) is a classic NP-hard problem (Garey and Johnson, 1979), which is further-

more known to be very hard even to approximate (Håstad, 1999). However ϑ(G), which can be

computed in polynomial time by solving an SDP, gives a polynomial time computable upper-bound

on ALPHA(G). Since then Lovász ϑ function has been extensively used in solving a variety of

algorithmic problems (see, e.g., Coja-Oghlan and Taraz, 2004; Krivelevich, 2002; Karger et al.,

1998).

2.1 The Relationship between SVMs and ϑ(G)

In this subsection we establish that the ϑ(G) function can be re-stated as a Kernel learning problem.

An interesting characterization of ϑ function involving convex quadratic program (CQP) was given

by Luz and Schrijver (2006), which we describe below:

Theorem 2 (Luz and Schrijver, 2006) For a graph G = (V,E) having n vertices, let C ∈ R
n×n be

an n×n matrix with Ci j = 0 whenever (i, j) 6∈ E. Then,

ϑ(G) = min
C

v(G,C), where

v(G,C) = max
x≥0

2x⊤e−x⊤
(

C

−λn(C)
+ I

)

x

︸ ︷︷ ︸

gG(x)

.

Proof See Luz and Schrijver (2006).

The above theorem can also be understood from a Kernel learning perspective in the SVM setting.

Observe that for every feasible choice of C, there exists an orthogonal labelling, U where U⊤U =
I+ C

−λn(C) . Taking a cue from this observation we state and prove the following theorem from first

principles.

Theorem 3 For an undirected graph G = (V,E), with |V |= n, let

K (G) := {K ∈ S+
n | Kii = 1, i ∈ [n],Ki j = 0,(i, j) 6∈ E}.

Then,

ϑ(G) = min
K∈K (G)

ω(K).

Proof We begin by noting that any K ∈ K (G) is positive semidefinite and hence there exists U ∈
R

d×n such that K = U⊤U. Note that Ki j = u⊤
i u j where ui is a column of U. Hence by inspection

it is clear that the columns of U define an orthogonal labelling on G, that is, bU ∈ Lab(G). Using

a similar argument we can show that for any U ∈ Lab(G), the matrix K = U⊤U, is an element

of K (G). The set of valid kernel matrices K (G) is thus equivalent to Lab(G). Note that if U

1. Usually in Algorithms literature, the size of the largest independent set in a graph G is denoted by α(G). We have

chosen to denote it by ALPHA(G) to avoid conflict with the notation αi for Support vectors.
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is a labelling then U = Udiag(ε) is also an orthogonal labelling for any ε⊤ = [ε1, . . . ,εn] where

εi ∈ {1,−1}∀ i ∈ [n]. It thus suffices to consider only those labellings for which c⊤ui ≥ 0∀ i ∈ [n]
holds. For a fixed c, one can rewrite

max
i

1

(c⊤ui)2
=

(

min
t

t2 s.t.
1

c⊤ui

≤ t ∀ i ∈ [n]

)

.

Setting w = 2tc yields the following relation

min
c∈S d−1

max
i

1

(c⊤ui)2
=

(

min
w∈Rd

‖w‖2

4
s.t. w⊤ui ≥ 2 ∀ i ∈ [n]

)

.

This establishes that given an orthogonal labelling U, the minimization of c is obtained by solving

a convex quadratic program (CQP) which is equivalent to solving a SVM. Application of strong

duality immediately leads to the claim

min
c∈S d−1

max
i

1

(c⊤ui)2
= ω(K)

where K = U⊤U and ω(K) is defined in (1). As there is a correspondence between each element of

Lab(G) and K minimization of ω(K) over K is equivalent to computing the ϑ(G) function.

Theorem 3 establishes a connection between ϑ(G) and ω(K), two well studied formulations in

Graph theory and Machine Learning. As a consequence this immediately opens up the possibility of

applying large-scale Kernel learning algorithms (see, e.g., Hu et al., 2011) for computing ϑ function.

In this paper we do not explore this direction further, leaving it for future study, but instead focus

on another important consequence of Theorem 3. The theorem establishes that if we choose not to

optimize over all possible labellings but instead fix an orthogonal labelling and then, one can easily

compute an upper-bound on ALPHA(G) by solving an SVM. See that for any graph G

ALPHA(G)≤ ϑ(G)≤ ω(K) ∀ K ∈ K (G).

As SVMs have linear time complexity (Hush et al., 2006) this could be an efficient alternative for

computing upper-bounds on size of the maximum independent set for any chosen labelling.

In Theorem 2, if we fix C = A, the adjacency matrix, we obtain a very interesting orthogonal

labelling, which we will refer to as LS labelling as it was first introduced by Luz and Schrijver

(2006). In Q graphs, introduced by Luz (1995), the LS labelling recovers ALPHA(G) by solving a

CQP. The CQP is obtained by setting C = A in Theorem 2.

Definition 4 (Luz, 1995) A graph G, with adjacency matrix A, is called a Q graph whenever

ALPHA(G) = v(G,A) where v(G,A) is defined in Theorem 2.

Indeed, on a Q graph, computation of the ϑ function reduces to computing the minimum eigenvalue

and solving a CQP, which in general has a complexity of O(n3). By Theorem 3, one can now state

that on Q graphs evaluating the ϑ function is equal to solving an SVM, a special case of CQP, which

can be solved in O(n2) time (Hush et al., 2006). Keeping computational advantages in mind it is

interesting to characterize Q graphs.
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Theorem 5 (Luz, 1995) For a simple unweighted graph G = (V,E), let A denote the adjacency

matrix , S be the largest independent set, v(G,A) and gG(x) be defined as in Theorem 2. The graph

G is a Q graph iff

−λn(A)≤ min
i∈V\S

|Ni(G)∩S|.

Furthermore v(G,A) = gG(eS), where eS is the indicator vector on S.

Proof See Theorem 4 in Luz (1995).

In Section 4 we will use this characterization to show that random graphs with planted cliques are

not Q graphs.

Inspired by the computational simplicity of the LS labelling, we study it more closely. As a

labelling is completely defined by the associated kernel matrix, we refer to the following matrix

K =
A

ρ
+ I where ρ ≥−λn(A) (2)

as the LS labelling. The KKT conditions for ω(K) in (1) are given by

αi +
1

ρ ∑
(i, j)∈E

Ai jα j = 1+µi, µiαi = 0, µi ≥ 0. (3)

Direct algebra yields

ω(K) =
n

∑
i=1

α∗
i (4)

when α∗ satisfies the KKT conditions.

2.2 On Regular Graphs

Before ending this section we would like to discuss the case of regular graphs. A graph is said to

be d−regular if all nodes haves the same degree d. For such graphs one can compute an upper-

bound, popularly known as Hoffman bound, on ALPHA(G) via the minimum eigenvalue of G.

More specifically,

Theorem 6 (Hoffman and Howes, 1970) For a d-regular graph, G, on n vertices and adjacency

matrix A,

ALPHA(G)≤ n

1− d
λn

where λn is the smallest eigenvalue of A.

Computation of this bound involves solving an eigenvalue problem, a significantly cheaper option

than computing the ϑ function. However ϑ yields a tighter bound than the Hoffman bound. It was

indeed proved (Lovász, 1979) that

ϑ(G)≤ n

1− d
λn

.

It is interesting to note that ω(K) equals the Hoffman bound on d-regular graphs. To this end we

have,
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Lemma 7 Let G = (V,E), be a d−regular graph with adjacency matrix A, and |V |= n. Then,

ω(K) =
n

1+ d
ρ

where K and ρ are defined by (2).

This was also derived in Luz (1995) as Corollary 1. To make the paper self-contained we give a

short proof.

Proof For any d-regular graph the largest eigenvalue is d and the corresponding eigenvector is e. It

is easy to verify that αi =
1

1+ d
ρ

satisfies KKT conditions (3) and hence by (4) the lemma is proved.

The lemma holds for any ρ ≥−λn and consequently, for regular graphs, ω(K) equals the Hoffman

bound whenever ρ =−λn.

Before we discuss the applicability of the results obtained here to random graphs we study the

interesting problem of finding a dense common subgraph in multiple graphs.

3. Finding Large Dense Regions in Multiple Graphs

The problem of finding a dense subgraph in a single graph is a computationally challenging problem

(Pardalos and Rebennack, 2010). In this section we attempt an even more difficult version of the

problem, namely that of finding a common large dense region in multiple graphs. Most methods

which apply to single graphs (Lee et al., 2010) do not extend to the case of multiple graphs. An

interesting method was proposed by Jiang and Pei (2009), which uses an enumerative strategy for

finding a common dense subgraph in multiple graphs. This section presents one of the main con-

tributions of this paper. It introduces the notion of common orthogonal labelling and proposes a

Multiple Kernel Learning (MKL) (Lanckriet et al., 2004) inspired formulation. Later on we will

see experimentally how this formulation achieves an order of magnitude scalability when compared

with Jiang and Pei (2009).

3.1 Dense Common Subgraph Detection

Jiang and Pei (2009) studied the problem of finding all possible common subgraphs in graphs

G(1), . . . ,G(m) for a given choice of parameters γ(1), . . . ,γ(m); such that the subgraphs have density

at least γ(l) in graph G(l) for all l ∈ {1, . . . ,m} respectively. The maximal quasiclique size depends

on the choice of parameters γ(1), . . . ,γ(m). In fact, if the parameters are not chosen properly the

algorithm may fail to return any solution at all. A different choice of parameters requires solving

the problem again. As a consequence one might have to run several iterations of the algorithm with

different parameter choices before obtaining a desired subgraph.

The approach is essentially enumerative in nature, and consequently, the space and time com-

plexity of the algorithm is exponential in the size of the largest possible clique, rendering it im-

practical for finding large dense regions. For example, finding subgraphs of size 60 requires 11.5
hours (see Figure 17 in Jiang and Pei, 2009). Clearly this algorithm is not suitable for finding large

subgraphs.

In practice one might wish to quickly find a single subset of vertices which is large (some

fraction of the overall graph) and which induces a dense subgraph in each of the original graphs
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G(l) ∈ G without fine tuning of parameters; or multiple runs of the algorithm. In other words, one

would like to have a subgraph finding algorithm which is parameter-less. To this extent, we define

the problem formally as follows:

Definition 8 (Problem definition) Let G := {G(1), . . . ,G(m)} be a set of simple, undirected graphs

G(l) = (V,E(l)) defined on vertex set V = {1, . . . ,n}. Find a common subgraph which is dense in all

the graphs.

The remainder of this section is organized as follows: we develop the notion of common or-

thogonal labelling and establish the connection to MKL formulation in Section 3.1.1. Section 3.1.2

presents our algorithm for recovery of large common dense subgraph from multiple graphs.

3.1.1 COMMON ORTHOGONAL LABELLING AND MKL FORMULATION

We begin by defining common orthogonal labelling below:

Definition 9 Given set of simple undirected graphs G on a common vertex set V = {1, . . . ,n}, the

common orthogonal labelling u1, . . . ,un is given by ui ∈ S d−1 such that u⊤
i u j = 0 if (i, j) /∈E(l) ∀l =

{1, . . . ,m}.
Let K (G) denote the set of common orthogonal labellings of G so that

K (G) =
{

K : K ∈ Sn
+, Ki j = 0 i f (i, j) /∈ E(l) ∀1 ≤ l ≤ m

}
.

The common orthogonal labellings of G is related to the union graph G∪ = (V,E∪) constructed

from G as follows: an edge (i, j) is present in the union graph G∪ if it is present in at least one

of the original graphs G(l) ∈ G, and absent otherwise, that is, (i, j) /∈ E∪ iff (i, j) /∈ E(l)∀l . By

construction, we see

K (G) = K (G∪).

Let ϒ(G) denote the size of the maximum common independent set, that is, subset of vertices CS⊆V

of maximum possible cardinality for which the subgraph G
(l)
CS induced by CS in graph G(l) is an

independent set for all G(l) ∈ G. It is immediate that ϒ(G) is equal to the size of the maximum

independent set in the union graph ALPHA(G∪). Following the arguments in Theorem 3, one can

show

ALPHA(G∪) = ϒ(G)≤ ϑ(G∪)≤ ω(K) ∀ K ∈ K (G). (5)

As noted in the previous section, the optimization problem in (5) is a SDP, which cannot be solved

for large graphs. Let K(l) = A(l)

ρ(l) + I and ρ(l) ≥−λn(A
(l)) be the LS labelling for graph G(l). In the

remainder of this section, we use the notation K := {K(1), . . . ,K(m)} to denote the set of orthogonal

labellings corresponding to the graphs G.

We consider the set of convex combinations of the labellings of the original graphs K such that

conv(K) :=
{

K : K =
m

∑
l=1

δ(l)K(l) withδ(l) ≥ 0,
m

∑
l=1

δ(l) = 1
}
.

Note that K
(l)
i j is zero whenever edge (i, j) is absent in G∪ for all graphs G(l) and consequently Ki j =

0. Thus K ∈ conv(K) is a common orthogonal labelling and the following is immediate

conv(K)⊆ K (G).
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Instead of solving the original problem, we consider the following problem

ψ(K) = min
K∈conv(K)

ω(K). (6)

An immediate advantage of this formulation over the SDP formulation is that it could be solved

efficiently by standard MKL solvers (Rakotomamonjy et al., 2008; Aflalo et al., 2011). The quantity,

ψ(K) also defines an upper bound on the size of the maximum common independent set. More

precisely

ϒ(G)≤ min
K∈K (G)

ω(K)≤ ψ(K).

Rewriting (6), we get

ψ(K) = min
K∈conv(K)

ω(K) = min
δ(l)≥0,∑δ(l)=1

ω
(

∑
l

δ(l)K(l)
)

= min
δ(l)≥0,∑δ(l)=1

max
α≥0

∑
l

δ(l) f (α;K(l))

= max
α≥0

min
δ(l)≥0,∑δ(l)=1

∑
l

δ(l) f (α;K(l)).

The optimization problem is linear in δ and strictly feasible in both δ and α. One can interchange

minδ maxα to maxα minδ, Sion (1958) yielding the last equality. For any vector, x = [x1, . . . ,xd]
⊤,

min
0≤δi≤1,∑d

i=1 δi=1
δ⊤x = min(x1, . . . ,xd) = max

t,xi≥t
t.

An alternative re-statement of (6) is

ψ(K) = max
t∈R,αi≥0

t s.t. f (α;K(l))≥ t ∀ 1 ≤ l ≤ m. (7)

The Lagrange dual of (7) is given by

L(t,α,λ,δ) = t +
m

∑
l=1

λl

(
f (α;K(l))− t

)
+

n

∑
i=1

δiαi,

where λ ∈ R
m
+ and δ ∈ R

n
+ denote the dual variables. The KKT conditions yield

2
m

∑
l=1

λ∗
l

(
1−α∗

i −
1

ρ(l) ∑
j

A
(l)
i j α∗

j

)
+δ∗i = 0, δ∗i α∗

i = 0, δ∗i ,α
∗
i ≥ 0∀ i ∈ [n], and (8)

λ∗
l ( f (α∗;K(l))− t∗) = 0, ∑

l

λ∗
l = 1, λ∗

l ≥ 0∀ l ∈ [m]. (9)

The above optimization can be readily solved by state of the art MKL solvers. The obvious question

that arises is when, or precisely, for which sets of graphs does solving (6) yield good approximation

to the original problem of computing ϒ(G).

In order to address this, we begin by defining the family of Common Quadratically-stable (CQ )

sets of graphs.
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LOVÁSZ ϑ FUNCTION, SVMS, AND FINDING DENSE SUBGRAPHS

Definition 10 A set of graphs G= {G(1), . . . ,G(m) : G(i) = (V,E(i))} having a common vertex set V

is Common Quadratically-stable if the optimal value ψ(K) in (6) is equal to the size of the maximum

common independent set ϒ(G), that is,

ϒ(G) = ψ(K), (10)

where K is the set of LS labellings of graphs G.

Remark 11 We use the notation G ∈ CQ to denote that the set of graphs G satisfies (10), that is, it

is Common Quadratically-stable.

Let Y ⊆ V denote the maximum common independent set in G; with indicator vector eY . We now

characterize CQ family (of sets of graphs having a common vertex set) in the following result.

Theorem 12 Given set of graphs G = {G(1), . . . ,G(m)} having common vertex set V and LS la-

bellings K(l) = A(l)

ρ(l) + I and ρ(l) ≥−λn(A
(l)) ∀ l ∈ [m]; the optimal value ψ(K) in (6) is equal to the

size of the maximum common independent set Y , that is, the set G is Common Quadratically-stable

(G ∈ CQ ) if there exists non-empty GQ ⊆G such that

ρ(l) ≤ min
i/∈CS

|Ni(G
(l))∩Y | ∀G(l) ∈GQ. (11)

Proof Let L := |GQ| denote the number of graphs which satisfy the property

ρ(l) ≤ min
i/∈Y

|Ni(G
(l))∩Y | ∀G(l) ∈GQ.

We consider primal solution α∗ = eY and dual solution given by

λ∗
l =

{
1
L

if l : G(l) ∈GQ

0 otherwise
, and δ∗i =

{ 0 if i ∈ Y

∑l 2λ∗
l (1−

|Ni(G
(l))∩Y |

ρ(l) ) otherwise
.

This solution satisfies the KKT conditions in (8) and (9). Further, the optimization in (7) is convex;

and the KKT conditions are sufficient for optimality. The optimal value is given by t∗ = ∑n
i=1 α∗

i

where α∗ = eY yielding ψ(K) = ϒ(G).

Recall as in (5) that minK∈K (G) ω(K) is equivalent to computing Lovász ϑ function of G∪. There-

fore, one can easily solve it whenever G∪ is a Q graph by solving ω(K∪) where K∪ = A∪
ρ + I and

ρ ≥−λn(A
∪) whenever ρ ≤ mini/∈Y |Ni(G

∪)∩Y |. It is of interest to find when G∪ is not a Q graph

yet G is Complex Quadratically-stable (G ∈ CQ ). One can easily see by construction of G∪ that

min
i/∈Y

|Ni(G
(l))∩Y | ≤ min

i/∈Y
|Ni(G

∪)∩Y | ∀G(l) ∈G.

However, the relationship between minimum eigenvalue ρ(l) =−λn(A
(l)) of original graphs G(l) ∈

G, and minimum eigenvalue ρ∪ =−λn(A
∪) of union graph G∪ is not clear, that is, ρ∪ can be greater

or less than ρ(l) (see, e.g., Brouwer and Haemers, 2012, 3.1-3.2). We illustrate this in the following

example.

Example 1 Consider the graphs G(1) and G(2) shown in Figure 1. The maximum common inde-

pendent set is Y = {a,b,d,e} and mini/∈Y |Ni ∩Y | = 2. One can show that G ∈ CQ since ρ(1) ≤
mini/∈Y |Ni ∩Y |, while the union graph G∪ is not a Q graph. Therefore, one can compute ϒ(G)
by solving the MKL optimization in (7) even though the maximum independent set problem in G∪

cannot be solved using QP. Thus, the MKL formulation is advantageous whenever that there exists

some graph G(l) ∈G which satisfies (11), even though G∪ is not a Q graph.
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a b c d e

f g

h

i j

(a) G(1) (ρ = 2)

a b c d e

f g

h

i j

(b) G(2) (ρ = 2.3429)

a b c d e

f g

h

i j

(c) G∪ (ρ = 2.5810)

Graph(s) ρ mini/∈Y |Ni ∩Y | ω(K) ψ(K)

G∪ 2.5810 2 4.3189 -

G - - - 4.0

Figure 1: Example of CQ set of graphs. Here G = {G(1),G(2)} and maximum common in-

dependent set is Y = {a,b,d,e} (highlighted in blue). The graph G(1) satisfies ρ ≤
mini/∈Y |Ni ∩Y | in (11); while G(2) and G∪ do not. Hence G ∈ CQ , while union graph

G∪ is not a Q graph. The MKL optimization yields ψ(K) = 4 which is equal to size of

maximum common independent set Y = {a,b,d,e}.

3.1.2 SUBGRAPH DETECTION BASED ON MULTIPLE GRAPHS

In the remainder of this section, we relate the optimal solution (support vectors) of ω(K) and the

density of related induced subgraph for the single graph case; which we later extend to multiple

graphs. We first recall an interesting property of optimal solution α∗ which maximizes f (α;K) in

(1) when G is a Q graph.

Remark 13 (Luz, 1995) Let G = (V,E) be a Q graph having unique maximum independent set

S ⊆V . Then, the optimal solution α∗ which maximizes objective f (α;K) in (1) is given by α∗ = eS,

that is,

α∗
i =

{

1 if i ∈ S

0 otherwise
.

The above claim follows from observing that α∗ satisfies the Karush-Kuhn-Tucker (KKT) condi-

tions, which is sufficient for optimality. The key idea here is that choosing the vertices having

support vectors with high numerical values yields a subgraph with low density (or more precisely,

independent set with zero density for Q graphs). We extend this notion to general graphs by relating

the density of the induced subgraph obtained by choosing vertices having “high” support through

the KKT conditions.

We now consider a general graph G = (V,E) with adjacency matrix A, and let α∗ be the optimal

solution of (1) when K = A
ρ + I with ρ ≥ −λn(A). We wish to relate the density of the subgraph

GSc
induced by the “high” support vectors Sc := {i : α∗

i ≥ c} for some threshold c ∈ (0,1).
Let ᾱ∗

i (S) denote the average of the support vectors α∗
j over the neighbourhood Ni(GS) of node

i in subgraph GS induced by S ⊆V in graph G; and ᾱ∗
S be the minimum ᾱ∗

i (S) over all i ∈ S, that is,

ᾱ∗
i (S) =

∑ j∈S Ai jα
∗
i

di(GS)
, and ᾱ∗

S = min
i∈S

ᾱ∗
i (S). (12)
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With the above notation, one can show the following:

Lemma 14 Let G = (V,E) be a simple graph with at least one edge. Let α∗ be the optimal solution

of (1) where K = (A
ρ + I) denotes the LS labelling of G and ρ ≥−λn(A). The set Sc = {i : α∗

i > c}
with cardinality nc induces a subgraph GSc

with density γ(GSc
) where

γ(GSc
)≤ ρ(1− c)

ᾱ∗
Sc
(nc −1)

≤ ρ(1− c)

c(nc −1)
.

Proof The Karush-Kuhn Tucker (KKT) conditions for (1) are given in (3). Using definition in (12),

one can obtain

ᾱ∗
Sc ∑

i∈Sc

di(GSc
)≤ ∑

i∈Sc

ᾱ∗
i (Sc)di(GSc

) = ∑
i, j∈Sc

Ai jα
∗
j ≤ ρ(nc − ∑

i∈Sc

α∗
i )≤ ρnc(1− c).

Observing that ∑i∈Sc
di(GSc

) = 2|ESc
|, and dividing by

(
nc

2

)
yields the desired result, that is,

γ(GSc
)≤ ρ(1− c)

ᾱ∗
Sc
(nc −1)

≤ ρ(1− c)

c(nc −1)
(∵ ᾱ∗

Sc
≥ c by defn. in (12)).

This result provides an upper bound on the density γ(GSc
) of the subgraph induced by set Sc in graph

G for general c. Two special cases of interest are the set of non-zero support vectors SV = {i : α∗
i >

0} and the set of support vectors with support one S1 := {i : α∗
i = 1} respectively.

Setting c = 0, one can show the set of (non-zero) support vectors SV = {i : α∗
i > 0} with car-

dinality nSV = |SV | induces a subgraph GSV having density γ(GSV ) at most ρ/ᾱ∗
SV (nSV −1), that

is,

γ(GSV )≤
ρ

ᾱ∗
SV (nSV −1)

.

This provides a simple procedure for finding a sparse subgraph by selection the subgraph GSV

induced by the set of non-zero support vectors SV . It also gives an upper bound on density.

Setting c arbitrarily close to 1, one can show the set S1 = {i : α∗
i = 1} of support vectors having

support 1 is an independent set in G. An extreme case is when G is a Q graph and all support

vectors are 1 over the maximum independent set and 0 otherwise.

We now consider the problem of common dense subgraph recovery from multiple graphs based

on the MKL formulation in (7). Let (α∗, t∗) be the optimal solution of (7). One can partition the set

G into two sets: active graphs GA ⊆G for which the constraint in (7) is tight, that is,

f (α∗,K(l)) = t∗ ∀ G(l) ∈Ga,

and inactive graphs Gi :=G\Ga, where the constraint is not tight. Consequently, the analysis in the

single graph case based on selection of support vector above certain threshold cannot be directly

extended to multiple graph case. In the remainder, we address this using a two step procedure.

Let SV := {i : α∗
i > 0} and Sc := {i : α∗

i > c} denote the set of support vectors, and the set of

support vectors having “high” support respectively for some appropriate choice of c ∈ [0,1). Let
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ᾱ
(l)
i (S) denote the average of the support vectors α∗

j over the neighbourhood Ni(G
(l)
S ) of node i in

subgraph G
(l)
S induced by S ⊆V in graph G(l); and ᾱ∗

S be the minimum ᾱ∗
i (S) over all i ∈ S, that is,

ᾱ
(l)
i (S) =

∑ j∈S Ai jα
∗
i

di(G
(l)
S )

, and, ᾱ
(l)
S = min

i∈S
ᾱ
(l)
i (S).

Notice that since ᾱ
(l)
S is minimum (over all vertices in the set S) of average value of support vectors

in the neighbourhood Ni(S) for a vertex i ∈ S, it is equal or greater than the minimum support vector

mini∈S α∗
i in S. Let αmin = mini∈SV α∗

i denote the minimum non-zero support vector. We define the

sets T (l) ⊆V and T ⊆V as

T (l) := T (l)(SV ) =
{

i ∈ SV : 1−αl −di(G
(l)
SV )ᾱ

(l)
SV/ρ(l) > 0

}
, T = ∩m

l=1T (l). (13)

Then, one can show the following

Lemma 15 Given set of graphs G = {G(l) : G(l) = (V,E(l))∀ l ∈ [m]} defined on common vertex

set V with LS labelling K where K(l) = A(l)

ρ(l) + I and ρ(l) ≥ −λn(A
(l)). Let (α∗, t∗) be the optimal

solution of (7), and T be defined as in (13). The set T with cardinality nT = |T | induces a subgraph

G
(l)
T in graph G(l) ∈G having density at most γ(G

(l)
T ) given by

γ(G
(l)
T )≤ (1−αmin)ρ

(l)

ᾱ
(l)
SV (nT −1)

∀G(l) ∈G.

Proof The KKT conditions in (8) and (9) yield λ∗
l = 0 for G(l) ∈Gi. Further,

0 =
n

∑
i=1

α∗
i

(

2
m

∑
l=1

λ∗
l

(
1−α∗

i −
1

ρ(l) ∑
j

A
(l)
i j α∗

j

)
+δ∗i

)

= ∑
l:G(l)∈Ga

λ∗
l ∑

i

α∗
i

(
1−α∗

i −
1

ρ(l) ∑
j

A
(l)
i j α∗

j

)
(∵ α∗

i δ∗i = 0∀i)

= ∑
l:G(l)∈Ga

λ∗
l (t

∗−∑
i

α∗
i ) = t∗−∑

i

α∗
i (∵ ∑

l

λ∗
l = 1).

This yields t∗ = ∑i α∗
i , that is, the objective is equal to sum of the support vectors. We can rewrite

feasibility condition f (α∗;K(l))≥ t∗ for all graphs G(l) ∈G :

0 ≤ ∑
i∈SV

α∗
i (2−α∗

i −∑
j 6=i

A
(l)
i j α∗

j)− t∗ = ∑
i∈SV

α∗
i (1−α∗

i −∑
j 6=i

A
(l)
i j α∗

j)

= ∑
i∈T

α∗
i

(
1−α∗

i −
di(G

(l)
SV )

ρ(l)
ᾱ
(l)
SV

)

︸ ︷︷ ︸

>0

+∑
i/∈T

α∗
i

(
1−α∗

i −
di(G

(l)
SV )

ρ(l)
ᾱ
(l)
SV

)

︸ ︷︷ ︸

<0

≤ ∑
i∈T

α∗
i

(
1−α∗

i −
di(G

(l)
SV )

ρ(l)
ᾱ
(l)
SV

)
≤ ∑

i∈T

α∗
i

(
1−α∗

i −
di(G

(l)
T )

ρ(l)
ᾱ
(l)
SV

)

≤ ∑
i∈T

α∗
i

(
1−αmin −

di(G
(l)
T )

ρ(l)
ᾱ
(l)
SV

)
≤ ∑

i∈T

(
1−αmin −

di(G
(l)
T )

ρ(l)
ᾱ
(l)
SV

)

≤ nT (1−αmin)−
ᾱ
(l)
SV

ρ(l) ∑
i∈T

di(G
(l)
T ) = nT (1−αmin)−

ᾱ
(l)
SV

ρ(l)
γ(G

(l)
T )nT (nT −1).
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Algorithm 1 T =CSS(G(1), . . . ,G(M))

Get α∗ using MKL solver to solve eqn. (7)

T = ∩m
l=1T (l) {eqn. (13)}

Return T

Dividing by
(

nT

2

)
and rewriting, we get

γ(G
(l)
T )≤ (1−αmin)ρ

(l)

ᾱ
(l)
SV (nT −1)

,

which completes the proof.

The above result allows us to build a parameter-less common sparse subgraph (CSS) algorithm

shown in Algorithm 1 having following advantages: it provides a theoretical bound on subgraph

density; and, it requires no parameters from the user beyond the set of graphs G.

The size of the induced subgraph nT is important in the overall quality of the solution. Ideally,

one would like nT to be some large fraction of the overall number of nodes N, typically nT/N ≤ 1/2.

However, if nT is very large, that is, nT/N ≃ 1, the density of the induced subgraph is close to the

average graph density. More generally, one might be interested in a trade-off between the subgraph

size nT and subgraph density γ(G
(l)
T ). Analogous to the simple graph case, we can improve the

subgraph density is obtained by choosing smaller region nodes Tc := {i ∈ T : α∗
i > c} ⊆ T . We

discuss this further in Section 5.2.

4. SVM−ϑ Graphs: Graphs Where ϑ(G) Can Be Approximated by SVM

Computing the Lovász function and related relaxations involves solving a semidefinite program.

Off the shelf SDP solvers are computationally very demanding and do not scale to graphs of more

than 5000 vertices. In this section we study Erdös-Rényi graphs, parametrized as G(n, p) where p

is probability of an edge and n is the number of vertices. As noted in Section 2, one can evaluate

the ϑ function in O(n3) on Q graphs. Further, we have equality ALPHA(G) = ϑ(G) = ω(K) for Q

graphs, where K is a LS labelling. It is well known that in G(n,1/2) graph, with high probability,

ALPHA(G) = Θ(logn) whereas ϑ(G) = Θ(
√

n) (Juhász, 1982; Coja-Oghlan, 2005). This immedi-

ately establishes a negative result that G(n,1/2) graphs are not Q graphs. In the following we will

show that despite the above negative result one can still obtain constant factor approximation to ϑ

function on random graphs by solving a SVM problem. We begin by introducing a class of graphs,

called SVM−ϑ graphs, where the gap between ϑ and ω(K) for K defined by (2) is not too large.

Subsequently we show that G(n, p) graphs and G(n, p) graphs with planted cliques are SVM−ϑ

graphs. This results immediately show that one can identify planted cliques or planted subgraphs.

Furthermore we prove a concentration result on ω(K) for G(n, p) graphs.

Definition 16 A family of graphs G = {G = (V,E)} is said to be SVM−ϑ graph family if there

exist a constant γ, such that for any graph G ∈ G with |V | ≥ n0, the following holds:

ω(K)≤ γϑ(G),

where ω(K) is defined in (1) and K is defined on G by (2).
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Such classes of graphs are interesting because of two reasons. Firstly on these class of graphs one

can approximate the Lovász function well without resorting to solving a SDP, and secondly the

ϑ function in turn can be used in the design and analysis of approximation algorithms. We will

demonstrate examples of such families of random graphs: the Erdös–Rényi random graph G(n, p)
and a planted variation. Here the relaxation ω(K) could be used in place of ϑ(G), resulting in

algorithms with the same quality guarantees but with faster running time—in particular, this will

allow the algorithms to be scaled to large graphs.

4.1 G(n, p) Graphs Are SVM−ϑ Graphs

In this section we show that G(n, p) graphs are indeed SVM−ϑ. We begin with some preliminaries.

4.1.1 PRELIMINARIES

The following lemma is well known (see Boyd and Vandenberghe, 2004, Section 9.1.2):

Lemma 17 A function g : C ⊂R
d →R is said to be strongly concave over C if there exists t > 0 such

that ∇2g(x)�−tI ∀ x ∈C. For such functions one can show that if p∗ = g(x∗) = maxx∈C g(x)<
∞ then

∀x ∈C :
t

2
‖x−x∗‖2 ≤ p∗−g(x) ≤ 1

2t
‖∇g(x)‖2.

The classical Erdös-Rényi random graph G(n, p) has n vertices and each edge (i, j) is present

independently with probability p. (In the closely related the G(n,M) model, a graph is chosen uni-

formly at random from the collection of all graphs which have n nodes and M edges, or, equivalently,

a set of M edges is chosen uniformly at random without replacement from the set of all possible
(

n
2

)
edges. With M =

(
n
2

)
p, the two models are essentially equivalent.) For many types of random

distributions, G(n, p) is considered a paradigm choice for input instances and hence both the combi-

natorial structure and the algorithmic theory of G(n, p) are of fundamental interest (Bollobás, 2001;

Janson et al., 2000; Frieze and McDiarmid, 1997). We list a few well known facts about G(n, p)
that will be used repeatedly.

Remark 18 For G(n, p) for any 0 ≤ p < 1,

• With probability 1−O(1/n), the degree of each vertex is in the range np±√
np logn.

• With probability 1 − e−nc

for some c > 0, the maximum eigenvalue is np(1 + o(1)). The

the minimum eigenvalue is in the range [−2
√

np(1− p),2
√

np(1− p)] (Füredi and Komlós,

1981),

• With high probability, ϑ(G(n, p)) = Θ(
√

n(1−p)
p

) [Coja-Oghlan, 2005; Juhász, 1982].

4.1.2 G(n, p) GRAPHS ARE SVM−ϑ

We are now ready to state our main result.

Theorem 19 Let G = G(n, p), with p(1− p) = Ω(n−1 log4 n). For every constant δ > 0,

ω(K)≤ (1+O(1))ϑ(G)

holds with probability 1−O(1/n), whenever K is defined in (2) with ρ = (1+δ)2
√

np(1− p).
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Proof By Remark 18 for all choices of δ > 0, the minimum eigenvalue of 1
ρ A+ I is, almost surely,

greater than 0 which implies that f (α,K) (see (1)) is strongly concave. As A is random we begin

by analyzing the KKT conditions (3) for E(A), the expectation of A. For G(n, p) graph E(A) =

p(ee⊤−I). For the given choice of ρ, the matrix K̃ = E(A)
ρ +I is positive definite. More importantly

f (α,K̃) is again strongly concave and attains maximum at a KKT point. By direct verification

α̂ = β̂e where β̂ = ρ
(n−1)p+ρ

satisfies the KKT conditions. More precisely

α̂+
1

ρ
E(A)α̂ = e. (14)

Thus α̂ is the optimal for the expected case with the optimal value, f̄ , given by

f̄ = max
α≥0

f (α,K̃) = 2
n

∑
i=1

α̂i − α̂⊤
(
E(A)

ρ
+ I

)

α̂ = nβ̂. (15)

By choice of ρ, for any p in the regime np ≥ 1 one notes that

β̂ =
ρ

(n−1)p+ρ
=

ρ

np
(1+o(1)) = 2(1+δ)

√

1− p

np
. (16)

The last equality holds by neglecting the o(1) term. Using the fact about degrees of vertices in

G(n, p), in the regime of interest,

a⊤i e = (n−1)p+∆i with |∆i| ≤
√

np logn, (17)

where a⊤i is the i th row of the adjacency matrix A. It is interesting to note that α̂ is an approximate

KKT point for (3). Indeed, for all i ∈ V , application of (17) and (16) alongwith the choice of ρ as

given in the statement of theorem we obtain

∣
∣
∣
∣
∣
α̂i +

1

ρ ∑
j

Ai jα̂ j −1

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

β̂

ρ
∆i

∣
∣
∣
∣
∣
≤
√

logn

np
. (18)

We would like to exploit this property to approximate the ω(K) for a random graph. To this end

note that

f (α̂;K) = α̂⊤e+
n

∑
i=1

α̂i

(

1− α̂i −
a⊤i e

ρ

)

= f̄ − β̂2

ρ

n

∑
i=1

∆i,

which on application of (18) and (16) yield

| f (α̂;K)− f̄ | ≤ β̂
n

∑
i=1

∣
∣
∣
∣
∣

β̂

ρ
∆i

∣
∣
∣
∣
∣
≤ nβ̂

√

logn

np
=

(

2(1+δ)

√

(1− p)

p

)√

logn

p
. (19)

As noted before the function f (α;K) is strongly concave with ∇2
α f (α;K)�− δ

1+δI for all feasible

α. Recalling a useful result from convex optimization, see Lemma 17, we obtain

ω(K)− f (α̂;K)≤ 1

2

(

1+
1

δ

)

‖∇ f (α̂;K)‖2. (20)

3511



JETHAVA, MARTINSSON, BHATTACHARYYA AND DUBHASHI

Observing that ∇ f (α;K) = 2(e−α− A
ρ α) and using the relation between ‖ ·‖∞ and ‖.‖ along with

(18) and (17) gives ‖∇ f (α̂;K)‖ ≤ √
n‖∇ f (α̂;K)‖∞ ≤ 2

√
logn

p
. Plugging this estimate in (20) and

using equation (15) along with (19) we obtain

ω(K)≤ nβ̂+

(

1+
1

δ

)(
logn

p

)

+2(1+δ)

√

1− p

p

√

logn

p

= 2(1+δ)

√

n(1− p)

p
+O

(
logn

p

)

.

The second inequality is true because δ is constant. One notes that

for any p(1− p)≥ (logn)2

n
,

(
logn

p

)

≤
√

n(1− p)

p
(21)

holds. The result follows by dividing the first inequality by p2 and taking square roots. By choice

of p as stated in the theorem and for large enough n, one obtains

ω(K)≤ (1+O(1))

√

n(1− p)

p

and the theorem follows from Remark 18.

In the next section we show that when a large independent set is hidden in a random graph one can

still view it as a SVM−ϑ graph. This property can be very useful in detecting planted cliques in

dense graphs.

4.2 Finding Planted Cliques in Random Graphs

Finding large cliques or independent sets is a computationally difficult problem even in random

graphs. While it is known that the size of the largest clique or independent set in G(n,1/2) is 2 logn

with high probability, there is no known efficient algorithm to find a clique of size significantly larger

than logn - even a cryptographic application was suggested based on this (see the discussion and

references in the introduction of Feige and Krauthgamer, 2000). Motivated by this, the following

problem was introduced (Jerrum, 1992; Kucera, 1995).

Definition 20 (Hidden Planted Clique) A random G(n,q) graph is chosen first and then a clique

of size k is introduced in the first 1, . . . ,k vertices. The problem is to identify the clique.

The case of q = 1
2

is extensively studied in the literature. Kucera (1995) observed that if k =
Ω(

√
n logn), then the hidden clique can be easily discovered by examining the high degree vertices.

Alon et al. (1998) and Feige and Krauthgamer (2000) showed that if k = Ω(
√

n), then the hidden

clique can be discovered in polynomial time. No efficient algorithm is known to discover the hidden

clique if k = o(
√

n).

We consider the (equivalent) complement model Ḡ(n,1 − p,k) where an independent set is

planted on the first k vertices and apply the SVM based approach. We show that
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Theorem 21 For p(1− p) = Ω(n−1 log4 n), the graph G = Ḡ(n, 1− p, k) is a Q graph almost

surely if k = Ω
(

n2/3 p−1/3 ln1/3 n
)

.

Proof See Appendix B.1

The result shows that the SVM based formulation yields an integral solution for k ≥ c ·n2/3 ln1/3 n.

More precisely the optimal α for a given G has the property that αi = 1 whenever i ∈ {1, . . . ,k} oth-

erwise αi = 0 whenever k is in the stated regime. Unfortunately this is interesting but not very

competitive with state of the art. For p = 1
2

in the regime, k = Ω(
√

n logn), already the highest

degree vertices form a clique in the complement G(n,1/2,k) (Kucera, 1995). However, we show

next that in the regime k = Θ

(√
n(1−p)

p

)

, the graph Ḡ(n,1− p,k) is a SVM−ϑ graph. More-

over, we can identify the hidden independent set with high probability. In contrast to Feige and

Krauthgamer (2000), our algorithm does not involve a SDP and hence will scale to large problems.

In Feige and Krauthgamer (2000) the case of p = 1/2 was studied and it was conjectured that the re-

sults could possibly be extended for a general p ≤ 1
2
. In this paper we establish that for large planted

clique Ḡ(n,1− p,k) is indeed a SVM−ϑ graph. Moreover the proof motivates an algorithm capable

of recovering the clique.

To begin the investigation we will need to compute the ϑ function for Ḡ(n,1− p,k). For p= 1/2,

it was shown that the ϑ function is k (Feige and Krauthgamer, 2000). For a general p the ϑ function

is also the same as k. To this end we present the following theorem.

Theorem 22 Let G = Ḡ(n,1− p,k) where p satisfies p(1− p) = Ω(n−1 log4 n). If

k ≥ 2

√

(1− p)

p
n(1+o(1)),

then, with high probability, ϑ(G) = k.

Proof See Appendix B.2.

We study the planted clique problem where k is in the above regime. Indeed for such a choice of

k, the graph Ḡ(n,1− p,k) is a SVM−ϑ graph. One of the main contribution of this paper is the

following theorem.

Theorem 23 Let p(1− p)=Ω(n−1 log4 n) and δ> 0 be a given constant. For any G= Ḡ(n,1− p,k)

and k = 2t

√
n(1−p)

p
, for large enough constant t ≥ 1 with K as in (2) and

ρ =
(

2
√

np(1− p)+ kp
)

(1+δ),

the following holds:

ω(K)≤
(

1+
1

t
(1+δ)+δ

)

ϑ(G)+o(1), (22)

with probability at least 1−O(1/n).

Note that we need a stronger regime for p in the above theorem when compared to Theorem 19.

This is necessary in view of the conditions in Theorem 21 and Theorem 22.

As a preliminary, we need a bound on the minimum eigenvalue of Ḡ(n,1− p,k):
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Lemma 24 With high probability, the minimum eigenvalue of Ḡ(n,1− p,k) is bounded in absolute

value by 2
√

np(1− p)+ kp.

Proof We write the adjacency matrix A of Ḡ(n, p,k) as A′ =A+E where A′ is the adjacency matrix

of G(n,1− p) and observe that E is zero except for a k× k block where it is the adjacency matrix

of G(k,1− p). Using the Weyl perturbation inequality (Horn and Johnson, 1990), we deduce that

λn(A)≥ λn(A
′)−λ1(E). By Remark 18 we see that with high probability λn(A

′)≥−2
√

np(1− p)
and λ1(E) = kp

Proof (of Theorem 23) The proof is analogous to that of Theorem 19. Let A be the adjacency matrix

of G. By definition of ρ and by Lemma 24 we see that ρ = (1+δ)|λn(A)|. For any δ > 0, we see

that the minimum eigenvalue of 1
ρ A+ I is almost surely strictly greater than 0. As a consequence

the function f (α,K) (see (1)) is strongly concave for any instance of G. We begin by analysing the

KKT conditions, which are necessary and sufficient for optimising strongly concave problems. The

KKT conditions in (3) specialises to the graph G as follows

αi +
1
ρ ∑n

j=k+1 Ai jα j = 1+µi, µiαi = 0, µi ≥ 0 ∀1 ≤ i ≤ k; and

αi +
1
ρ ∑n

j=1 Ai jα j = 1+µi, µiαi = 0, µi ≥ 0 ∀k+1 ≤ i ≤ n.
(23)

Let us analyse the average case. By the conditions of the theorem, the expectation of A is defined

as follows

E(A)i j =

{
0 whenever 1 ≤ i, j ≤ k and i = j,
p otherwise.

By direct verification the matrix K̃ = E(A)
ρ + I is seen to be positive definite. More importantly

f (α,K̃) is again strongly concave and attains maximum at a KKT point. A KKT point for the

problem

max
α≥0

f (α,K̃)

is given by α̂ = [β1e⊤k β2e⊤(n−k)] where β1 and β2 satisfies

β1 +
(n− k)p

ρ
β2 = 1, and, β2 +

k

ρ
pβ1 +

(n− k−1)

ρ
pβ2 = 1;

which leads to

β1 =
1

1+ np
ρ (1− r)

, and, β2 =
1

1
1−r

+ np
ρ

.

For k and ρ as given, the value of r is defined as

r =
k

ρ
p =

t

(1+ t)(1+δ)
, 1− r ≈ 1

t +1
.

For small δ, the second approximation holds. Further noting that k = o(n) allows us to write

β1 =
(t +1)2

(t +1)2 + 1
2

√
np

1−p
1

1+δ

and β2 =
(t +1)

(t +1)+ 1
2

√
np

1−p
1

1+δ

. (24)
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By construction α̂ is the optimal solution for the expected case and the optimal value, f̄ is given by

f̄ = kβ1 +(n− k)β2 ≤ o(k)+2
n(t +1)(1+δ)

√
np

1−p

=

(

1+δ+
1

t
(1+δ)+o(1)

)

k. (25)

As β1 < 1, the first term is o(k). The second inequality follows by noting that second term can

be upper-bounded by neglecting (t + 1)2 in the denominator of β2. The last equality follows from

definition of k. Now as in the case of G(n, p) graphs, we can indeed show that α̂ is an approximate

KKT solution for a random graph G.

Let deg(i,T ) = number of edges from i to T where T ⊂V . Since deg( j,S)∼ Bin(k, p) for any

j ∈ S̄(=V\S) random variable, we can deduce that

|deg( j,S)− kp| ≤
√

kp logk with probability at least 1−O(1/k)

by application of Chernoff bound. Similarly the following is true for any j ∈V

|deg( j, S̄)− (n− k)p| ≤
√

(n− k)p log(n− k)

with high probability. Using in α̂ in (23) we obtain

∀i ∈ S |β1 +
deg(i,S̄)

ρ β2 −1| ≤
√

(n− k)p log(n− k)

ρ
β2, and

∀i ∈ S̄ |β2 +
deg(i,S)

ρ β1 +
deg(i,S̄)

ρ −1| ≤
√

kp logk

ρ
β1 +

√

(n− k)p log(n− k)

ρ
β2.

Plugging in the values of β1 and β2, see (24), gives us the following claim.

Lemma 25 Let β1 and β2 be defined in (24). The vector ᾱ⊤ = [β1e⊤k β2e⊤n−k] satisfies the following

relationship with ε = O
(√

logn
np

)

.

1 ≤ i ≤ k |α̂i +
1

ρ

n

∑
j=k+1

Ai jα̂ j −1| ≤ ε, and

k+1 ≤ i ≤ n |α̂i +
1

ρ

n

∑
j=1

Ai jα̂ j −1| ≤ ε.

Proof By direct verification.

The above lemma establishes that α̂ is an ε-approximate KKT point. Indeed

| f (α̂;K)− f̄ | ≤ (kβ1 +(n− k)β2)ε = O(kε) = O

(

1√
p

√

(1− p)

p

√

logn

)

. (26)

The first equality follows by using Lemma 25, and the second equality follows from (25). The last

equality follows from definition of k and ε. Again using the strong concavity condition ∇2
α f (α;K)�

− δ
1+δI for all feasible α and using Lemma 17, we obtain

ω(K)− f (α̂;K)≤ 1

2

(

1+
1

δ

)

‖∇ f (α̂;K)‖2. (27)
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Algorithm 2 Input: A(Ḡ(n,1− p,k)),k Output: S ⊂ {1, . . . ,n}, |S|= k

α∗ = Use SVM solver to solve (1) with K as defined in Theorem 23

Return S = {i j| j = 1, . . . ,k α∗
i1
≥ α∗

i2
. . .≥ α∗

in
}

Recalling that ∇ f (α;K) = 2(e−α− A
ρ α) and using the relation between ‖ · ‖∞ and 2 norm along

with Lemma 25 gives ‖∇ f (α̂;K)‖ ≤ √
n‖∇ f (α̂;K)‖∞ ≤ O(

√
logn

p
). Plugging this estimate in (27)

and using equation (26) we obtain

ω(K)≤ f̂ +O

(
logn

p

)

+O

(

1√
p

√

(1− p)

p

√

logn

)

.

For the given choice of p one can use (21) to write

ω(K)≤
(

1+
1

t
(1+δ)+δ+o(1)

)

k.

By Theorem 22, ϑ(Ḡ(n,1− p,k) = k holds with high probability, proving (22).

The above theorem establishes that α̂ is a very good approximation for the optimal solution with

high probability.

We note that α̂i, for any vertex i in the independent set S = {1, . . . ,k}, is (t +1) times larger

than any other α̂ j /∈ S. Since α∗ is very close to α̂ one might expect to see the same property in α∗.

This motivates Algorithm 2 for finding planted clique in a random graph.

It is expected that with high probability the largest k values in the optimal solution would cor-

respond to nodes in the independent set. In a later section we will present empirical results which

show that the algorithm is extremely successful in recovering the clique. The runtime of this al-

gorithm is dependent on the availability of an efficient SVM solver. Current SVM solvers have

complexity less than O(n2), hence the proposed procedure is indeed scalable to large graphs. In

contrast the best known algorithm for solving Lovász ϑ has a runtime complexity of O(n5 logn)
(Chan et al., 2009). The algorithm in Feige and Krauthgamer (2000) is based on computation of the

ϑ function and hence will not scale well to large graphs.

4.3 Finding Planted Subgraphs in Random Graphs

The above results show that the SVM procedure can recover a planted independent set in a sparse

random graph, which is later exploited to solve the planted clique problem in a dense graph. More-

over we have also established that on random graphs the SVM objective function is tightly concen-

trated. This points to a more general question that of identifying a planted subgraph, which is much

sparser than the original graph.

Let G(n, p, p′,k) be a graph which has a planted G(k, p′) graph on the first k vertices of a random

G(n, p) graph. We consider the problem of recovering the planted subgraph.

An interesting property of ϑ function is that deletion of edges always results in an increases of

the ϑ function. As a consequence for any k

ϑ(Ḡ(n,1− p,k))≥ ϑ(G(n, p, p′,k))≥ ϑ(G(n, p))

3516
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whenever p′ < p. By Remark 18 and by Theorem 22 we have ϑ(Ḡ(n,1− p,k)) and ϑ(G(n, p))

are both Θ

(√
n(1−p)

p

)

whenever k = Θ

(√
n(1−p)

p

)

. Indeed one can show that the graph with a

planted subgraph is also a SVM−ϑ graph. More formally

Theorem 26 Let G = G(n, p, p′,k) with p(1− p) = Ω(n−1 log4 n) and p′ < p. If

k = 2t

(√

n(1− p)

p

1−2p′

1− p′
p

)

,

then the graph G satisfies

ω(K)≤
(

1+
1

t
(1+δ)

)

ϑ(G),

with probability at least 1−O(1/n) where K as in (2) and ρ =
(

2
√

np(1− p)+ k(p− p′)
)

(1+δ)

for any constant δ > 0.

The proof can be constructed as in Theorem 23 so we do not repeat it here. Instead we make

some observations which would help to construct a formal proof by repeating the arguments in

Theorem 23. One would need to compute an upper-bound on λn(A) where A is the adjacency

matrix of G(n, p, p′,k). We write A′ = A+E where A′ is the adjacency matrix of G(n, p) graph.

The matrix E is defined as follows. Set all entries of E to be 0 except the first k× k submatrix. On

that block set

Ei j = 1 with probability s = p−p′

1−2p′ whenever Ai j = 0 for 1 ≤ i, j ≤ k,

otherwise Ei j = 0. By such a choice we see that E is the adjacency matrix of G(k,s) on the first

k× k block and 0 everywhere else. To check if P(A′
i j = 1) = p we note that all entries, except in

the leading k × k submatrix, are Ber(p) distributed. In the leading k × k submatrix we note that

A′
i j = 1 is the union of two mutually exclusive events, namely Ai j = 1,Ei j = 0 or Ai j = 0,Ei j = 1.

Substituting the value of s confirms

P(A′
i j = 1) = P(Ai j = 1)P(Ei j = 0)+P(Ai j = 0)P(Ei j = 1) = p′(1− s)+(1− p′)s = p.

Now by Weyl Perturbation (Horn and Johnson, 1990) we can write

λn(A)≥ λn(A
′)−λ1(E),

which leads to |λn(A)| ≤ 2
√

np(1− p) + k
p−p′

1−2p′ . This explains the choice of ρ. As before the

expected case analysis leads to the following equation

β1 +
kp′

ρ
β1 +

(n− k)p

ρ
β2 = 1 and β2 +

kp

ρ
β1 +

(n− k−1)p

ρ
β2 = 1.

The theorem follows by retracing the steps in the proof of Theorem 23. As in the planted clique

case the Algorithm 2 recovers the planted subgraph. The proofs in this section suggest that ω(K)
maybe concentrated. Before we close the section we would like to show that indeed this is the case.
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4.4 Concentration of ω(K)

The SVM objective function, computed on the random graphs in the previous sections, is also

highly concentrated. Using the celebrated Talagrand’s inequality (Talagrand, 1995), one can prove

the following theorem

Theorem 27 Let ω(K) be defined as in (1). Let G and ρ satisfy either of

• G = G(n, p), ρ = (1+δ)2
√

np(1− p)

• G = Ḡ(n, 1− p, k), ρ = (1+δ)(2
√

np(1− p)+ kp) where k = 2t

√
n(1−p)

p
,

where p(1− p) = Ω(n−1 log2 n). Then there exists a constant M such that

|ω(K))−M| ≤ O

√

ln3 n

np3(1− p)

with probability 1−O( 1
n
) whenever K is defined in (2).

Before we begin the proof we collect some results. Let ω(K) = f (α∗,K), see (1). For any graph G

satisfying the conditions of the theorem we can establish that

Lemma 28 For α∗ be defined as above we have ‖α∗‖= O
(√

logn
p

)

with probability 1− 1
O(n)

Proof For G(n, p) case, application of Lemma 17 allows us to rewrite (20)

1

2

δ

1+δ
‖α̂−α∗‖2 ≤ ω(K)− f (α̂;K)≤ 1

2

(

1+
1

δ

)

‖∇ f (α̂;K)‖2 ≤ O

(√

logn

p

)

where α̂ satisfies (14). Note that this holds with probability at least 1− 1
O(n) This yields the re-

sult ‖α̂ − α∗‖ ≤ O
(√

logn
p

)

and the lemma follows by noting that ‖α̂‖ = O(1). Similarly for

G = G(n,1− p,k), application of Lemma 17 to (27) yields the lemma.

We employ the following version of Talagrand’s inequality

Theorem 29 (Dubhashi and Panconesi, 2009) Let x = (x1, . . . , xd) where x1, . . . , xd are indepen-

dent random variables with xi ∈Ωi. Let f : Ω= (Ω1× . . .×Ωd)→R be a function with the property

that if for each x in the domain of f , there exists a vector c = c(x) such that ‖c‖ ≤ B and

f (x)≤ f (y)+ ∑
xi 6=yi

ci, ∀ y ∈ Ω,

then for any s > 0:

Pr[| f (x)−M|> Bs]≤ 4e−s2/4,

where M denotes the median of f .

Proof See Theorem 11.2 in Dubhashi and Panconesi (2009).

The application of the above theorem establishes the result
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Lemma 30 Let A be the adjacency matrix of G, as defined in Theorem 27. Let α∗ denote the

solution to the optimization problem

v(A) = max
α≥0

2eT α−αT

(

I +
A

ρ

)

α (28)

for some constant ρ. Then for any b > 0, there exists a constant M such that

Pr

[

|v(A)−M|>
√

2b2s

ρ

]

≤ 4e−s2/4 +Pr [‖α∗‖> b] (29)

for any s > 0.

Proof Let β∗ be the optimal solution of

f (A) := max
β≥0,‖β‖≤b

2eT β−βT

(

I +
A

ρ

)

β.

Since (28) can be seen as a relaxation of this, it follows that if α∗ is feasible, that is, ‖α∗‖ ≤ b, then

v(A) = f (A). For any D > 0, this means that if for some M, the inequality |v(A)−M| > D holds

then either | f (A)−M|> D or ‖α∗‖> b, so

Pr [|v(A)−M|> D]≤ Pr [| f (A)−M|> D]+Pr [‖α∗‖> b] . (30)

By the definition of f we know that for any adjacency matrix A′

f (A′)≥ 2eT β∗− (β∗)T

(

I+
A′

ρ

)

β∗

= f (A)+
1

ρ ∑
i, j

(Ai j −A′
i j)β

∗
i β∗

j

≥ f (A)− 1

ρ ∑
Ai j 6=A′

i j

2β∗
i β∗

j ,

where the last sum goes over all i > j. Let ci j =
2β∗

i β∗
j

ρ for i > j. We note that

∑
i> j

c2
i j ≤ 2

1

ρ2 ∑
i, j

(β∗
i )

2(β∗
j)

2 =
2‖β∗‖4

ρ2
≤ 2b4

ρ2
.

The function f is defined on Ai j, i < j a total of d =

(
n

2

)

Bernoulli random variables for the G(n, p)

case. For the planted clique case one needs to consider d =

(
n

2

)

−
(

k

2

)

random variables. Applying

Theorem 29 on f with ci j =
2β∗

i β∗
j

ρ for i > j and B =
√

2b2/ρ we get that there exists an M such that

for any s > 0

Pr

[

| f (A)−M|>
√

2b2s

ρ

]

≤ 4e−s2/4.
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Using this bound together with (30) where D =
√

2b2s/ρ implies (29).

Proof [Proof of Theorem 27.] By Lemma 28 With probability 1− 1
O(n) , for either one of G =

G(n, p) or G = Ḡ(n, 1− p, k), there exists a constant C > 0 such that ‖α∗‖ ≤ C
√

lnn
p

. Applying

Lemma 30 with b =C
√

lnn
p

and s = 2
√

lnn yields

Pr

[

|v(A)−M|>C′
√

ln3 n

ρp

]

= O

(
1

n

)

,

for some constant C′ > 0. By assumption ρ = Θ
(√

np(1− p)
)

, and hence the above equation es-

tablishes that |v(A)−M| ≤ O

√
ln3 n

np3(1−p)
with probability 1−O( 1

n
).

5. Experimental Evaluation

In Section 3 an algorithm was proposed which was capable of discovering a large common dense

subgraph in a collection of graphs. In Section 4.2 an algorithm for discovering a large planted

clique in a single graph was discussed. In this section we examine the performance of the proposed

algorithms. The code and data for the experiments reported here is available online at http://www.

cse.chalmers.se/˜jethava/svm-theta.html.

5.1 Common Dense Subgraph Detection

This subsection presents an experimental evaluation of the CSS algorithm for finding large dense

subgraphs across multiple graphs. We study an abstraction of the problem using the DIMACS’94

data set which consists of graphs motivated from a number of different practical problems (Johnson

and Trick, 1996). The key property of the algorithm is that it is parameter-less, and that it finds large

common dense regions - which was not possible using enumerative approach (Jiang and Pei, 2009).

We also investigate a thresholding heuristic which improves induced subgraph density at the cost of

subgraph size.

5.1.1 DATA SET

We evaluate our algorithm for finding large dense regions on the DIMACS Challenge graphs,2

which is a comprehensive benchmark for testing of clique finding and related algorithms. Each of

the graph families in DIMACS (brock, c-fat, p hat, san, sanr) is motivated by carefully selected real

world problems, for example, fault diagnosis (c-fat), etc.; thus covering a wide range of practical

scenarios (Johnson and Trick, 1996).

We evaluate the algorithm on following class of graphs c-fat graphs which are based on fault

diagnosis problems and are relatively sparse; and, p hat graphs which are generalizations of Erdös-

Rényi random graphs; and are characerized by wider degree spread compared to classical G(n, p)

2. The DIMACS benchmark data set is available online at ftp://dimacs.rutgers.edu/pub/challenge/graph/

benchmarks/clique/.
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model. For the families of dense graphs (brock, san, sanr), we focus on finding large dense region

in the complement of the original graphs.

5.1.2 EVALUATION

We run Algorithm 1 using off-the-shelf MKL solver SimpleMKL,3 to find large common dense

subgraph. In order to evaluate the performance of our algorithm, we compute ā = maxl a(l) and a =

minl a(l) where a(l) = γ(G
(l)
T )/γ(G(l)) is relative density of induced subgraph (compared to original

graph density); and nT/N is relative size of induced subgraph compared to original graph size. We

want a high value of nT/N; while a should not be lower than 1.

Graph family N M nSV nT ā a

c-fat200 200 3 100 90 2.3613 0.99165

c-fat500 500 4 152 140 3.8846 1.0182

brock200‡ 200 4 165 164 1.0704 0.9954

brock400‡ 400 4 397 349 1.0214 1.0084

brock800‡ 800 4 795 686 1.0129 1.0062

p hat300 300 3 158 157 1.5296 1.1456

p hat500 500 3 239 238 1.5551 1.1722

p hat700 700 3 313 312 1.5782 1.1818

p hat1000 1000 3 429 428 1.5976 1.1879

p hat1500 1500 3 574 573 1.6313 1.2011

san200‡ 200 5 200 185 1.0458 1.0029

san400‡ 400 3 359 358 1.0411 0.9947

sanr200‡ 200 2 157 156 1.1402 0.9949

sanr400‡ 400 2 343 342 1.0355 1.0017

Table 1: Common dense subgraph recovery on multiple graphs in DIMACS data set. Here ā and

a denote the maximum and minimum relative density of the induced subgraph (relative to

density of the original graph); nSV and nT denotes the number of support vectors and size

of subset T ⊆ SV returned by Algorithm 1. The enumerative algorithm does not run for

large dense regions (see Jiang and Pei, 2009, Figure 17).

Table 1 shows evaluation of Algorithm 1 on DIMACS data set. We note that our algorithm finds

a large subgraph (large nT/N) with higher density compared to original graph in all of DIMACS

graph classes making it suitable for finding large dense regions in multiple graphs. We note that

traditional set enumerative methods fail to handle dense subgraph recovery for the case when nT/N

is large. For example, finding quasicliques of size nT ≃ 60 requires 11.5 hours (see Jiang and Pei,

2009, Figure 17); in contrast to MKL-based approach which takes less than 1 minute.

The results in Table 1 show that in case of c-fat and p hat graph families, the induced subgraph

density is significantly improved (evidenced by high ā and a); and, the number of support vectors

nSV is a large fraction of N (nSV/N ≃ 1/2). Thus, the algorithm recovers a large common dense

subgraph.

3. The SimpleMKL solver is available online at http://asi.insa-rouen.fr/enseignants/˜arakotom/code/

mklindex.html.
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Graph family N M nT nSc
ā(T ) a(T ) ā(Sc) a(Sc)

brock200‡ 200 4 164 83 1.0704 0.9954 1.36 0.99

brock400‡ 400 4 349 199 1.0214 1.0084 1.15 1.05

brock800‡ 800 4 686 398 1.0129 1.0062 1.08 1.01

san200‡ 200 5 185 100 1.0458 1.0029 1.51 1.08

san400‡ 400 3 358 180 1.0411 0.9947 1.19 1.02

sanr200‡ 200 2 156 79 1.1402 0.9949 1.86 1.04

sanr400‡ 400 2 342 172 1.0355 1.0017 1.20 1.02

Table 2: Heuristic rule: If nSV ≥ 0.8n then choose c such that |Sc| = nSV/2. Here ā and a denote

the maximum and minimum relative density of the induced subgraph (relative to density

of the original graph). Induced subgraph density improves by choosing Sc instead of T ,

that is, ā(Sc)≥ ā(T ) and a(Sc)≥ a(T ) for all graphs.

On the other hand, for brock and san graph families, the number of support vectors is equal to

the overall graph size nSV ≃ N; and consequently the relative density is 1, that is, γ(G
(l)
SV ) = γ(G(l))

which is not interesting. In the following subsection, we discuss a heuristic for improving subgraph

detection performance when all nodes are support vectors.

5.2 Thresholding Heuristic

In this section, we discuss the impact of choosing support vectors with high support by choosing

some c > 0 and selecting the set Sc = {i : α∗
i > c}. Figure 2 shows the densities of the induced

subgraph γ(G
(l)
Sc
) relative to original graph density γ(G(l)) for all graphs G(l) ∈G, that is,

a(l) = γ(G
(l)
Sc
)/γ(G(l))∀G(l) ∈G

at different c thresholds varying between c = 0 (|Sc| = |SV |) and c = 1 (|Sc| = 0) (and correspond-

ingly different subgraph sizes |Sc| which is shown on x-axis).

Figure 2 shows the variation in density of the induced subgraph γ(G
(l)
Sc
) relative to original graph

density γ(G(l)) for all graphs G(l) ∈ G at increasing subgraph sizes for the largest graph (resp. c-

fat500, p hat1500, brock800, san400 and sanr400) in each graph family (resp. c-fat, p hat, brock,

san and sanr). Figure 5 in Appendix A presents the variation for other DIMACS graphs.

Notice that in case of c-fat and p hat graph families (Figures 2(a) and 2(c)), one can further

improve graph densities across all graphs G(l) ∈G by choosing a higher value of c (and correspond-

ingly, a smaller induced subgraph |Sc|). In the remaining examples, choosing a higher value of c

(and correspondingly lower |Sc|) improves the density in at least one G(l) ∈G.

Based on performance on the DIMACS data set, we suggest a simple rule for using the heuristic

whenever nSV ≥ 0.8n, then we choose c such that |Sc| = ⌈nSV/2⌉. Table 2 shows the improvement

by using the heuristic rule whenever nSV ≥ 0.8n. We note that minimum and maximum induced

subgraph density improves by choosing Sc instead of T , that is, ā(Sc)≥ ā(T ) and a(Sc)≥ a(T ) for

all graph families.

It can be seen from Figure 2 that the induced subgraph density is not strictly monotonic with

induced subgraph size |Sc|. However, for medium to large |Sc|, the subgraph density shows a general
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Figure 2: Common dense subgraph recovery. Figures (a)− (e) show the densities of the induced

subgraph γ(G
(l)
Sc
) relative to original graph density γ(G(l)) for all graphs G(l) ∈ G at dif-

ferent values of c ∈ [0,1] (i.e., different subgraph sizes |Sc|) for different DIMACS graph

families.

decreasing trend, that is, if |Sc|> |Sc′ |, then the induced subgraph density γ(G
(l)
Sc
)< γ(G

(l)
Sc′
) for some

regime c,c′ ∈ [cl,ch]. Thus, one can choose a smaller induced subgraph Sc having higher induced

subgraph density by selecting higher value of threshold c.

It is instructive to note that in all graph families, the graph with maximum relative density, for

example, c-fat500 in Figure 2(a) is the graph with minimum average density among all graph G. In

other words, MKL-based approach tries to find a dense region in the sparsest subgraph G(l) ∈ G

while making sure it is compatible with remaining graphs in G.

5.3 Planted Clique Recovery on Random Graphs

We consider the case for Erdos-Renyi graph with general p 6= 1/2 and planted clique of size k, that

is, G(n, p,k).

5.3.1 DATA SET

We generate ns = 100 random graphs based on Ḡ(n,1− p,k) with planted independent set of size

k = 2t
√

n(1− p)/p and p = 1
2
n−α where n = 20000 and α ≥ 0. We choose α = c/30 where c lies

in the set {0,1,2, . . . ,10}; and perform ns experiments for each c. Note that the case of α = 0 yields

the familiar planted clique model G(n,1/2,k) with k = 2t
√

n.
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Figure 3: (a) shows fr the fraction of graphs for which the hidden clique is recovered exactly;

and, the average F1-score measuring quality of recovered subset over ns trials at each t

(k = 2t
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n). (b) shows ω(K)/k (blue) is bounded by (1+1/t) (red) (Theorem 23). This

allows approximation of Lovász ϑ function for large SVM−ϑ graphs without SDP.
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Figure 4: Approximation of Lovász ϑ function for general p. This figure shows ω(K)/k (blue)

is bounded by (1+ 1/t) (red) (Theorem 23). This allows approximation of Lovász ϑ

function for large SVM−ϑ graphs without SDP for general p.

5.3.2 EVALUATION

We consider the LS labelling K = A
ρ + I of G(n,1− p,k) for ρ = 2

√

np(1− p)+ kp as discussed

in Section 4.2. We solve ω(K) using libsvm solver,4 and return the top-k support vectors S̃k as

independent set as discussed in Algorithm 2.

In order to evaluate algorithm accuracy, we compute the fraction of graphs for which the in-

dependent set is recovered exactly using Algorithm 2, that is, fr = nr/ns where nr is the number

of graphs for which independent set is recovered exactly for each Ḡ(n,1− p,k). We also compute

the average (over ns trials) F1 score which measures how different is our solution S̃k to maximum

independent set S as: F1 =
2pr
p+r

, p = |S̃k∩S|
|S̃k|

, r = |S̃k∩S|
|S| .

4. LibSVM solver is available online at http://www.csie.ntu.edu.tw/˜cjlin/libsvm/.

3524



LOVÁSZ ϑ FUNCTION, SVMS, AND FINDING DENSE SUBGRAPHS

5.3.3 DISCUSSION

As predicted by Theorem 23, there exists some t0 > 0 for which Lovász ϑ function is bounded

by ω(K); and the planted clique can be recovered perfectly by selecting the top k support vectors

in sorted descending order of α∗
i . We find experimentally that this approach recovers the planted

clique exactly for t ≥ 2 for all c ∈ {0, . . . ,10}, that is, random graph Ḡ(n,1− p,k) with p = 1
2
n−α

and planted independent set of size k = 2t
√

n(1− p)/p.

In particular we discuss the case c = 0 which yields the Erdös-Rényi graph with p = 1/2 and

planted clique of size k = 2t
√

n. Figure 3(a) shows the fraction of graphs for which the hidden

clique is recovered exactly using above procedure. Figure 3(b) shows ω(K)/k (shown in blue), and

consequently ω(K)/ϑ(G) is bounded by (1+ 1/t) (shown in red) for G(n,1/2,k) case. Figure 4

shows that ω(K)/ϑ(G) is bounded by (1+ 1/t) for case when p 6= 1/2. Thus, one can use ω(K)
for approximating Lovász ϑ function for large SVM−ϑ graphs without solving a SDP problem.

6. Conclusion

The results in this paper establish that there is a close connection between the Lovász ϑ function,

well studied in graph theory and SVM formulation. This link allows us to design scalable algorithms

for computationally difficult problems. In particular we show that on random graphs, the Lovász ϑ

function can be well approximated by solving an SVM. Furthermore this property is not destroyed

even when one plants a large clique in such graphs, allowing extremely scalable algorithms for

identifying it. Using tools from MKL we further describe a algorithm for finding a common large

dense region in large graphs. This algorithm achieves an order of magnitude scalability compared

to state-of-the-art method based on exhaustive search of frequent quasi-cliques.
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Appendix A. Extended Results on DIMACS Graph Families

Figure 5 shows the densities of the induced subgraph γ(G
(l)
Sc
) relative to original graph density γ(G(l))

for all graphs G(l) ∈G at different values of c ∈ [0,1] (i.e., different subgraph sizes |Sc|) for remain-

ing graphs (other than those presented in Figure 2) in different DIMACS graph families.

Appendix B. Some Results Related to Ḡ(n,1− p,k)

In this section we derive two results related to the planted clique problem. In particular we derive

conditions when Ḡ(n,1− p,k) is a Q graph and we compute the ϑ function for the same graph.

B.1 When Is Ḡ(n,1− p,k) a Q Graph?

To prove Theorem 21 we will need a lower bound on the minimum eigenvalue of Ḡ. One can prove

the following
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Figure 5: Common dense subgraph recovery. Figures (a)− (i) show the densities of the induced

subgraph γ(G
(l)
Sc
) relative to original graph density γ(G(l)) for all graphs G(l) ∈G at differ-

ent values of c ∈ [0,1] (i.e., different subgraph sizes |Sc|) for remaining graphs in different

DIMACS graph families.

Lemma 31 Let A be the adjacency matrix of Ḡ(n, 1− p, k). Then with probability at least 1− 1
n
,

the following holds:

−λmin(A)≤ kp− 9k2 p

16n
+

‖A−EA‖2

kp
+
√

lnn+ p.

The proof is crucially dependent on the following result.

Lemma 32 Let A be the adjacency matrix of Ḡ(n, 1− p, k). For any fix x and any δ > 0 we have

Pr
[

x⊤ (A−EA)x ≤−δ‖x‖2
]

≤ e−δ2

.
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Proof Let Â = A−EA and consider the random variable

X =−x⊤Âx = ∑
i> j

−2xix jÂi j,

where we note that the sum goes over independent random variables. Since Âi j varies by at most by

1, the term 2xix jÂi j varies at most |2xix j| where

∑
i> j

(2xix j)
2 = 2∑

i6= j

x2
i x2

j ≤ 2‖x‖4.

Thus Hoeffding’s inequality (McDiarmid, 1998) applied on X states that for any t > 0

Pr[X ≥ t]≤ exp

(

− t2

‖x‖4

)

.

The statement is obtained by letting t = δ‖x‖2.

Proof [Proof of Lemma 31] Consider the matrix A′ = A+D where Di j = p if i = j /∈ S and 0

otherwise, that is, adding p to all diagonal elements not in S. We note that this perturbation gives

EA′ a 2-dimensional column space as all vectors in the column space are constant on S and S̄

respectively. Let x be any unit vector in the column space where we write sin t√
k

on S and cos t√
n−k

on

S̄. Since all eigenvectors corresponding to non-zero eigenvalues must be in this vector space, the

minimum eigenvalue of EA′ is either 0 or the minimum of

x⊤E[A′]x = 2
√

k(n− k)psin t cos t +(n− k)pcos2 t

=
(n− k)p

2
+
√

k(n− k)psin2t − (n− k)p

2
cos2t

≥ (n− k)p

2
− p

2

√

4k(n− k)+(n− k)2

≥ (n− k)p

2
− p

2

(

n+
2nk−3k2

2n

)

=−kp+
3k2 p

4n

where the last inequality follows by Taylor expansion of the square root at n2. Since the last ex-

pression is non-positive we conclude that λ̄ := −kp+ 3k2 p
4n

is a lower bound on the eigenvalues of

EA′.
Now, let v be a normalized eigenvector corresponding to the minimum eigenvalue of EA′ and

let u = x+ y be any unit vector, where x ‖ v and y ⊥ v. Since EA′ is a rank 2 matrix and clearly

Tr(EA′) ≥ 0, EA′ can at most have one negative eigenvalue and thus y⊤E[A′]y ≥ 0. Furthermore,

Lemma 32 states that v⊤Âv ≥−
√

lnn with probability at least
(
1− 1

n

)
. Thus,

λmin(A) = min
‖u‖=1

u⊤ (
EA′+ Â−D

)
u

≥ min
‖u‖=1

λ̄‖x‖2 +x⊤Âx+(2x+y)⊤Ây−u⊤Du

≥−
√

lnn− p+ min
x2

1+x2
2=1

(

λ̄x2
1 −‖Â‖

√

4x2
1 + x2

2 x2

)

,
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where we again use Â = A−EA. By substituting x2 =
2√
3

cos t in the last term we get

λ̄(1− x2
2)−‖Â‖

√

4−3x2
2 x2 =

λ̄

3
− 2

3

(

λ̄cos2t +
√

3‖Â‖sin2t
)

≥ λ̄

3
− 2

3

√

λ̄2 +3‖Â‖2

so by Taylor expanding the square root at k2 p2 we conclude that

min
x2

1+x2
2=1

(

λ̄x2
1 −‖Â‖

√

4x2
1 + x2

2 x2

)

≥ λ̄

3
− 2

3

(

kp+
λ̄2 +3‖Â‖2 − k2 p2

2kp

)

=−kp+
k2 p

n

(
3

4
− 3k

16n

)

− ‖Â‖
kp

.

Thus with probability at least
(
1− 1

n

)
, we get

λmin(A)≥−
√

lnn− p− kp+
k2 p

n

(
3

4
− 3k

16n

)

− ‖Â‖
kp

.

Before we prove the main theorem we will need one more ingredient, a bound on the norm of the

difference between the adjacency matrix and its expectation.

Lemma 33 If A is the adjacency matrix of Ḡ(n,1− p,k) and p(1− p) = Ω(n−1 log4 n), then almost

surely ‖A−EA‖= O(
√

np(1− p)).

Proof The Lemma is easily derived from Theorem 34, due to Vu (2007). In particular in the given

regime of p, one can choose R = A−EA, σ2 = p(1− p) and K = 1. For such a choice, one can

show C(Kσ)1/2n1/4 lnn = O(σ
√

n) and the lemma follows by direct application of following result

in Theorem 34.

We next state a Theorem, without proof, due to Vu (2007).

Theorem 34 (Vu, 2007) There are constants C and C′ such that the following holds. Let Ri j, 1 ≤
i ≤ j ≤ n be independent random variables, with E(Ri j) = 0, E(R2

i j) ≤ σ2, |Ri j| ≤ K and σ ≥
C′n−1/2K ln2 n. Then with probability tending to 1 as n → ∞

‖R‖ ≤ 2σ
√

n+C(Kσ)1/2n1/4 lnn.

We are now ready to begin the proof of the main result.

Proof [Proof of Theorem 21] According to Theorem 5, G is a Q graph if

−λmin(A)≤ |N(i)∩S| for all i 6∈ S, (31)

where S denotes a maximum independent set. We will prove that this equation is satisfied almost

surely for S denoting the planted independent set. In the specified parameter regime, one can argue

that the planted set is the maximum independent set almost surely. It should however be noted
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that this is strictly speaking not needed. As (31) is essentially reformulated optimality criteria, any

independent set satisfying the equation must be a maximum independent set.

For each i 6∈ S, |N(i)∩S| has Bin(k, p) distribution, so using Chernoff bound (Frieze and Reed,

1998) together with a union bound one obtains |N(i)∩S| ≥ kp−√
6kp lnn for all i 6∈ S with proba-

bility at least 1− 1
n
. Using this together with Lemma 31, we get that G is a Q graph with probability

1−O( 1
n
) if

kp− 9k2

16n
+

‖A−EA‖2

kp
+
√

lnn+ p ≤ kp−
√

6kp lnn.

Application of Lemma 33 yields ‖A−EA‖2 = O(np(1− p)). Clearly then almost surely G is a Q

graph if the following holds,

9k2 p

16n
≥
√

6kp lnn+
√

lnn+O
(n

k

)

. (32)

Next we note that for k ≥ 8
3
n2/3 p−1/3(lnn)1/3 the following holds

√

6kp lnn+
√

lnn+O
(n

k

)

=
√

6kp lnn

(

1+O

(
1

k1/2 p1/2
+

n

k3/2 p1/2

))

≤
√

6kp lnn

(

1+O(
1

n1/3 p1/3(lnn)1/6
+

1

(lnn)1/2
)

)

=
√

6kp lnn(1+o(1))

where np = Ω(log4 n) by assumption in the theorem. This means that equation (32) is satisfied for

k ≥ (1+o(1))
8

3
n2/3 p−1/3(lnn)1/3

and the theorem follows.

B.2 Computation of ϑ Function for Ḡ(n,1− p,k)

Proof [of Theorem 22] We will base the proof on the following definition of ϑ function (Knuth,

1994),

ϑ(G) = min
M

λ1(M)

where M goes over all symmetric n× n matrices such that Mi j = 1 whenever Ai j = 0, where A

denotes the adjacency matrix of G. For the given graph Ḡ we will construct a qualified guess of M

at optimality and use this to show a tight bound on ϑ(Ḡ). Specifically, let A be the adjacency matrix

of Ḡ and consider the matrix M defined by

Mi j =







1 if 1 ≤ i, j ≤ k

1− r jAi j if 1 ≤ i ≤ k < j ≤ n

1− riAi j if 1 ≤ j ≤ k < i ≤ n
1
p
(p−Ai j) if k < i, j ≤ n

(33)
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where ri is chosen such that ∑k
j=1 Mi j = 0 for all i > k. Equivalently, ri satisfies

k−Siri = 0 (34)

where Si is the number of neighbours of i which shares an edge with the planted independent set.

The case Si = 0 for some i > k may be resolved arbitrarily. We note that Si ∼ Bin(k, p).
Let ek denote the n-dimensional vector where the first k elements are 1 and the rest 0. Note

that we constructed M such that it has ek as an eigenvector with corresponding eigenvalue k. Using

Lemma 35 we see that this is the maximum eigenvalue almost surely. To conclude we note that since

there is an independent set of size k in Ḡ, k ≤ α(Ḡ) ≤ ϑ(Ḡ). As noted above, ϑ(Ḡ) ≤ λ1(M) = k

almost surely, so k ≤ ϑ(Ḡ)≤ k, and thus ϑ(Ḡ) = k almost surely.

Lemma 35 Let M be defined as in above. If k > 2

√
n(1−p)

p
(1+o(1)) and p(1− p) =Ω(n−1 log4 n),

then λ2(M)< k almost surely.

Let A, as before, denote the adjacency matrix of Ḡ. Consider the two matrices,

Ui j =







0 if 1 ≤ i, j ≤ k
1
p
(p−Ai j) if 1 ≤ i ≤ k < j ≤ n

1
p
(p−Ai j) if 1 ≤ j ≤ k < i ≤ n

1
p
(p−Ai j) if k < i, j ≤ n,

(35)

Vi j =







0 if 1 ≤ i, j ≤ k
(

r j − 1
p

)

(p−Ai j) if 1 ≤ i ≤ k < j ≤ n
(

ri − 1
p

)

(p−Ai j) if 1 ≤ j ≤ k < i ≤ n

0 if k < i, j ≤ n

(36)

where ri are the same as in (33).

The following corollary is a direct consequence of Theorem 34

Corollary 36 For any symmetric n× n matrix R with entries Ri j, independent with mean 0 and

variance bounded above by
1−p

p
and |Ri j| ≤ 1

p
the following holds

‖R‖ ≤ 2

√

n(1− p)

p
(1+o(1))

whenever p(1− p) = Ω(n−1 log4 n).

Proof The corollary follows by noticing that the matrix R satisfies the conditions of Theorem 34

with parameters σ2 = 1−p
p

and K = 1
p
.

We will use the corollary to obtain bounds on the largest eigenvalue of U and V.

Lemma 37 Let U be defined in (35), then if p(1− p) = Ω(n−1 log4 n)

λ1(U)≤ 2

√

n(1− p)

p
(1+o(1)) .
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Proof Let D be diagonal matrix with Dii = 0 whenever 1 ≤ i ≤ k and Dii = 1 whenever i = k+
1, . . . ,n. The matrix U−D satisfies the condition of Corollary 36 and hence

λ1(U)≤ ‖U−D‖+‖D‖ ≤ 2

√

n(1− p)

p
(1+o(1))+1

where we have used the fact that ‖D‖= 1.

Lemma 38 Let V be defined in (36), then if p(1− p) = Ω(n−1 log4 n) and k > 2

√
n(1−p)

p

λ1(V)≤ o

(√

n(1− p)

p

)

.

Proof Consider the n×n matrix V′ defined by

V ′
i j =







0 if 1 ≤ i, j ≤ k
1
p
(p−Ai j) if 1 ≤ i ≤ k < j ≤ n

1
p
(p−Ai j) if 1 ≤ j ≤ k < i ≤ n

0 if k < i, j ≤ n.

We can apply Corollary 36 to obtain ‖V′‖= O

√
n(1−p)

p
.

Let x be a unit eigenvector corresponding to the maximum eigenvalue of V. This means that

λ1(V) = x⊤Vx

= 2
n

∑
i=k+1

xi

(

ri −
1

p

)
k

∑
j=1

(p−Ai j)x j

and by Cauchy-Schwartz inequality

≤ 2





n

∑
i=k+1

x2
i ·

n

∑
i=k+1

(

ri −
1

p

)2
(

k

∑
j=1

(p−Ai j)x j

)2




1/2

≤ 2





n

∑
i=k+1

(pri −1)2

(
k

∑
j=1

1

p
(p−Ai j)x j

)2




1/2

= 2





n

∑
i=k+1

(pri −1)2

(
k

∑
j=1

V ′
i jx j

)2




1/2

≤ 2max
i

|pri −1| ·





n

∑
i=k+1

(
k

∑
j=1

V ′
i jx j

)2




1/2
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since V ′
i j = 0 for i, j > k

= 2max
i

|pri −1| ·





n

∑
i=k+1

(
n

∑
j=1

V ′
i jx j

)2




1/2

≤ 2max
i

|pri −1| ·





n

∑
i=1

(
n

∑
j=1

V ′
i jx j

)2




1/2

= 2max
i

|pri −1| · ‖V′x‖= max
i

|pri −1| ·O
(√

n(1− p)

p

)

,

where the last step follows from that ‖V′x‖ ≤ ‖V′‖ · ‖x‖= ‖V′‖.

By the definition of M, see (34), ri =
k
Si

, where Si ∼ Bin(k, p). For such random variables, we

have the following Chernoff bound

Lemma 39 (McDiarmid, 1998) For every 0 < a ≤ kp we have

Pr [|Si − kp| ≥ a]≤ 2e−a2/3kp.

Let a=
√

6kp lnn. Using the assumptions in the lemma it is easy to verify that kp> 2
√

np(1− p)≫
ln2 n ≫ lnn. Thus for large enough n we have a ≤ kp, so in that case we know that |Si −kp| ≥ a for

some i > k happens with at most probability n · e−2lnn = o(1). This means that, almost surely

max
i

|pri −1|= | kp

kp+O
√

kp lnn
−1|= O

√
kp lnn

kp+O
√

kp lnn
= O

√

lnn

kp
= o(1),

where we use that lnn ≪ kp as noted above. Thus λ1(V ) = o

√
n(1−p)

p
almost surely.

We are now in a position to begin the proof of Lemma 35.

Proof [Proof of Lemma 35] Let ek denote the n-dimensional vector where the first k elements are 1

and the rest 0. By the variational inequality

λ2(M) = min
v

max
‖x‖=1x⊥v

x⊤Mx

≤ max
‖x‖=1x⊥ek

x⊤Mx

≤ λ1(U)+λ1(V)+ max
|x|=1x⊥ek

x⊤(M−U−V)x.
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Recalling the definitions of M, U and V, see (33), (35), (36), we note that for all x ⊥ ek

x⊤(M−U−V)x

=
k

∑
i=1

k

∑
j=1

xi(Mi j −Ui j −Vi j)x j +2
n

∑
i=k+1

k

∑
j=1

xi(Mi j −Ui j −Vi j)x j

+
n

∑
i=k+1

n

∑
j=k+1

xi(Mi j −Ui j −Vi j)x j

=
k

∑
i=1

k

∑
j=1

xix j +2
n

∑
i=k+1

k

∑
j=1

xi

(

1− riAi j −
1

p
(p−Ai j)−

(

ri −
1

p

)

(p−Ai j)

)

x j

=
k

∑
i=1

k

∑
j=1

xix j +2
n

∑
i=k+1

k

∑
j=1

xi (1− pri)x j

=
k

∑
i=1

xi

(
k

∑
j=1

x j

)

︸ ︷︷ ︸

=0

+2
n

∑
i=k+1

xi (1− pri)

(
k

∑
j=1

x j

)

︸ ︷︷ ︸

=0

= 0

so max‖x‖=1,x⊥ek
x⊤(M−U−V)x = 0. Thus if we assume that k > 2

√
n(1−p)

p
, Lemmas 37 and 38

imply that

λ2(M)≤ λ1(U)+λ1(V)≤ 2

√

n(1− p)

p
(1+o(1)) .

The Lemma follows by letting k be strictly greater than the maximum of this value and 2

√
n(1−p)

p
.
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