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Abstract

Randomized controlled experiments are often described as the most reliable tool available to scien-

tists for discovering causal relationships among quantities of interest. However, it is often unclear

how many and which different experiments are needed to identify the full (possibly cyclic) causal

structure among some given (possibly causally insufficient) set of variables. Recent results in the

causal discovery literature have explored various identifiability criteria that depend on the assump-

tions one is able to make about the underlying causal process, but these criteria are not directly

constructive for selecting the optimal set of experiments. Fortunately, many of the needed construc-

tions already exist in the combinatorics literature, albeit under terminology which is unfamiliar to

most of the causal discovery community. In this paper we translate the theoretical results and apply

them to the concrete problem of experiment selection. For a variety of settings we give explicit

constructions of the optimal set of experiments and adapt some of the general combinatorics results

to answer questions relating to the problem of experiment selection.

Keywords: causality, randomized experiments, experiment selection, separating systems, com-

pletely separating systems, cut-coverings

1. Introduction

In a variety of scientific fields one of the main goals is to understand the causal relationships among

some variables of interest. In most cases empirical data is key to discovering and verifying such

relationships. While there has been much work on inference principles and algorithms for discover-

ing causal relationships from purely ‘passive observational’ data, largely based on the seminal work
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of Spirtes et al. (1993) and Pearl (2000), randomized controlled experiments (Fisher, 1935) still

often constitute the tool of choice for inferring causal relationships. In the more recent literature on

causal discovery, randomized experiments, in combination with novel inference principles, play an

increasingly prominent role (Cooper and Yoo, 1999; Tong and Koller, 2001; Murphy, 2001; Eaton

and Murphy, 2007; Meganck et al., 2005; Eberhardt et al., 2005; He and Geng, 2008; Hyttinen

et al., 2010, 2011; Claassen and Heskes, 2010). Thus, given a set of assumptions one is willing to

make in a test setting, questions concerning the optimal choices of the manipulations arise. What

sequence of experiments identifies the underlying causal structure most efficiently? Or, given some

background knowledge, how can one select an experiment that maximizes (in some to be defined

sense) the insight one can expect to gain?

In our work (Eberhardt, 2007; Eberhardt et al., 2010; Hyttinen et al., 2011, 2012a,b) we found

that many of these questions concerning the optimal selection of experiments are equivalent to

graph-theoretic or combinatoric problems for which, in several cases, there exist solutions in the

mathematics literature. Generally these solutions are couched in a terminology that is neither com-

mon in the literature on causal discovery, nor obvious for its connections to the problems in causal

discovery. The present article is intended to bridge this terminological gap, both to indicate which

problems of experiment selection already have formal solutions, and to provide explicit procedures

for the construction of optimal sets of experiments.1 It gives rise to new problems that (to our

knowledge) are still open and may benefit from the exchange of research in causal discovery on the

one hand, and the field of combinatorics and graph theory on the other.

2. Causal Models, Experiments, and Identifiability

We consider causal models which represent the relevant causal structure by a directed graph G =
(V ,D), where V is the set of variables under consideration, and D ⊆ V ×V is a set of directed

edges among the variables. A directed edge from xi ∈ V to x j ∈ V represents a direct causal

influence of xi on x j, with respect to the full set of variables in V (Spirtes et al., 1993; Pearl, 2000).

In addition to the graph G, a fully specified causal model also needs to describe the causal processes

that determine the value of each variable given its direct causes. Typically this is achieved either

by using conditional probability distributions (in the ‘causal Bayes nets’ framework) or stochastic

functional relationships (for ‘structural equation models’ (SEMs)).

In addition to describing the system in its ‘natural’ or ‘passive observational’ state, a causal

model also gives a precise definition of how the system behaves under manipulations. Specifically,

consider an intervention that sets (that is, forces) a given variable xi ∈ V to some value randomly

chosen by the experimenter. Such a “surgical” intervention corresponds to deleting all arcs pointing

into xi (leaving all outgoing arcs, and any other arcs in the model, unaffected), and disregarding

the specific process by which xi normally acquires its value.2 The resulting graph is known as the

‘manipulated’ graph corresponding to this intervention. If, in an experiment, the values of several

variables are set by the experimenter, any arcs into any of those variables are deleted. In this way, a

1. The different constructions and bounds presented in the paper are implemented in a code package at: http://www.

cs.helsinki.fi/group/neuroinf/nonparam/.

2. In Spirtes et al. (1993) this is how manipulations are defined, which are then combined with the Markov assump-

tion to yield the Manipulation Theorem that specifies formally the relation between the passive observational and a

manipulated model. In Pearl (2000) the relation is formally specified using the do-operator in combination with the

modularity assumption. For our purposes, either connection suffices.
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causal model provides a concrete prediction for the behaviour of the system under any experimental

conditions.

The problem of causal discovery is to infer (to the fullest extent possible) the underlying causal

model, from sample data generated by the model. The data can come either from a passive obser-

vational setting (no manipulations performed by the researcher) or from one or more randomized

experiments, each of which (repeatedly) sets some subset of the variables to values determined

purely by chance, while simultaneously measuring the remaining variables. We define an experi-

ment E = (J ,U) as a partition of the variable set V into two mutually exclusive and collectively

exhaustive sets J and U, where J ⊆V represents the variables that are intervened on (randomized)

in experiment E , and U = V \ J represents the remaining variables, all of which are passively ob-

served in this experiment. We will not consider the specific distributions employed to randomize

the intervened variables, except to require that the distribution is positive over all combinations of

values of the intervened variables. Note that the identifiability results mentioned below apply when

the variables simultaneously intervened on in one experiment are randomized independently of one

another.3

The extent to which the underlying causal model can be inferred then depends not only on

the amount of data available (number of samples) but fundamentally also on the details of what

experiments are available and what assumptions on the underlying model one can safely make.

In what follows, we only consider model identifiability,4 that is, we disregard sample size and only

examine the settings under which models can be learned in the large sample limit. The identifiability

results we consider build on causal discovery procedures that make one or more of the following

standard assumptions on the underlying model:

acyclicity The graph G is often assumed to be acyclic, that is, there exists no directed path from

a node back to itself. This assumption is useful for causal discovery because finding that x

causes y allows us to deduce that y does not cause x.

causal sufficiency In many cases only a subset of the variables involved in the underlying data

generating process are measured. Even if some variables are unobserved, a causal model

is said to be causally sufficient if there are no unobserved common causes of the observed

variables. Unobserved common causes are typically troublesome because they bring about

a dependence between two observed variables that is not due to any actual causal process

among the observed variables.

faithfulness Many causal discovery procedures use independence tests as a primary tool for infer-

ring the structure of the underlying graph. Such inferences are correct in the limit if the distri-

bution generated by the model is faithful to the graph structure, that is, all independencies in

distribution are consequences of the graph structure rather than the specific parameter values

defining the quantitative relationships between the variables. Under faithfulness, perturbing

the parameters defining the quantitative relationships will not break any of the observed inde-

pendencies between the variables in the distribution.

parametric form Some discovery methods rely on the quantitative causal relations between the

variables being restricted to a particular (simple or smooth) parametric form. The most com-

3. For linear cyclic models this assumption can be relaxed; see Lemma 5 in Hyttinen et al. (2012b).

4. In contrast, Shpitser and Pearl (2006) and Bareinboim and Pearl (2012) consider the identifiability of single causal

effects presuming the knowledge of the true causal structure.
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mon such assumption is linearity: the value of each variable is given by a linear sum of the

values of its parents plus a stochastic error term.

It is well known that even when one makes all of the above assumptions (using only linearity as a

parametric restriction), the true causal structure is in general underdetermined given only passive

observational data, but can be identified using experiments. We can ask more generally: Under

what combination of assumptions and conditions on a set of K experiments {E1, . . . ,EK} is the

underlying causal structure identified?

If a total of n observed variables is considered, it should come as no surprise that a set of

K = n randomized experiments, each of which intervenes on all but one of the variables, is in

general sufficient to uniquely identify the graph G that represents the causal structure among the n

variables. In each such experiment we can test which of the n−1 other variables are direct causes

of the one non-intervened variable. A natural question is whether the full identification of G can

be achieved with other sets of experiments, under various combinations of the above assumptions.

In particular, we can ask whether identification can be reached with fewer than n experiments, or

with experiments that only involve simultaneous interventions on many fewer than n− 1 variables

in each experiment.

Figure 1 provides an example with three variables. Suppose the true causal structure is the chain

x← y← z, as shown in graph (i). Assuming only faithfulness or linearity, the three experiments

intervening on two variables each are sufficient to uniquely identify the true causal graph. In par-

ticular, when intervening on both x and y, as illustrated in graph (ii), both of the edges in the true

model are cut, and z is independent of both of the intervened variables, indicating that the edges

x→ z and y→ z are both absent. On the other hand, when intervening on x and z, as shown in graph

(iii), a dependence is found between y and z, indicating that y← z must be present, while the inde-

pendence between x and y rules out the edge x→ y. Similar considerations apply when intervening

on y and z, illustrated in graph (iv). Together, all potential edges in the model are established as

either present or absent, and hence the full causal structure is identified. Note that this inference is

possible without assuming causal sufficiency or acyclicity.

Assuming causal sufficiency, acyclicity and faithfulness, fewer experiments are needed: If one

had started with an experiment only intervening on x, then a second single intervention experiment

on y would be sufficient for unique identifiability. This is because the first experiment, illustrated in

graph (v), rules out the edges x→ y and x→ z, but also establishes, due to the statistical dependence,

that y and z are connected by an edge (whose orientation is not yet known). Intervening on y next,

as shown in graph (vi), establishes the edge x← y, and the absence of the edge y→ z, allowing us

to conclude (using (v)) that y← z must be present in the true graph. Finally, x and z are independent

in this second experiment, ruling out the edge x← z. Thus, the true causal structure is identified. If

one had been lucky to start with an intervention on z then it turns out that one could have identified

the true causal graph in this single experiment. But that single experiment would, of course, have

been insufficient if in fact the causal chain had been oriented in the opposite direction.

The example illustrates the sensitivity of the identifiability results to the model space assump-

tions. However, recent research has shown that, in several different settings (described explicitly

below), identification hinges on the set of experiments satisfying some relatively simple conditions.

Specifically, consider the following conditions:

Definition 1 (Unordered Pair Condition) A set of experiments {E1, . . . ,EK} satisfies the unordered

pair condition for an unordered pair of variables {xi,x j} ⊆ V whenever there is an experiment
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Figure 1: Graph (i) shows the true data generating structure. Graphs (ii-vi) show the possible infer-

ences about the causal structure that can be made from experiments intervening on two

variables simultaneously (ii-iv), or intervening on a single variable (v-vi). Variables that

are circled twice are intervened on in the corresponding experiment. Edges determined

to be present are solid, edges determined to be absent are dotted and crossed out (×).

The solid line with a question mark denotes an edge determined to be present but whose

orientation is unknown. See the text for a description of the background assumptions that

support these inferences.

Ek = (Jk,Uk) in {E1, . . . ,EK} such that xi ∈ Jk (xi is intervened on) and x j ∈ Uk (x j is passively

observed), or x j ∈ Jk (x j is intervened on) and xi ∈Uk (xi is passively observed).

Definition 2 (Ordered Pair Condition) A set of experiments {E1, . . . ,EK} satisfies the ordered

pair condition for an ordered pair of variables (xi,x j) ∈ V ×V (with xi 6= x j) whenever there

is an experiment Ek = (Jk,Uk) in {E1, . . . ,EK} such that xi ∈ Jk (xi is intervened on) and x j ∈Uk

(x j is passively observed).

Definition 3 (Covariance Condition) A set of experiments {E1, . . . ,EK} satisfies the covariance

condition for an unordered pair of variables {xi,x j} ⊆ V whenever there is an experiment Ek =
(Jk,Uk) in {E1, . . . ,EK} such that xi ∈ Uk and x j ∈ Uk, that is, both variables are passively ob-

served.

The above conditions have been shown to underlie the following identifiability results: Assuming

causal sufficiency, acyclicity and faithfulness, a set of experiments uniquely identifies the causal

structure of a causal Bayes net if and only if for any two variables xi,x j ∈ V one of the follow-

ing is true: (i) the ordered pair condition holds for the ordered pairs (xi,x j) and (x j,xi), or (ii) the

unordered pair condition and the covariance condition hold for the unordered pair {xi,x j} (Eber-

hardt, 2007). Note that the ‘only if’ part is a worst-case result: For any set of experiments that

does not satisfy the above requirement, there exists a causal graph such that the structure is not

identified with these experiments. Since a single passive observation—a so-called null-experiment,

as J = /0—satisfies the covariance condition for all pairs of variables, under the stated assumptions

the main challenge is to find experiments that satisfy the unordered pair condition for every pair of

variables.
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Without causal sufficiency, acyclicity or faithfulness, but assuming a linear data generating

model, a set of experiments uniquely identifies5 the causal structure among the observed variables

of a linear SEM if and only if it satisfies the ordered pair condition for all ordered pairs of variables

(Eberhardt et al., 2010; Hyttinen et al., 2010, 2012a,b). Similar identifiability results can be ob-

tained for (acyclic) causal models with binary variables by assuming a noisy-OR parameterization

for the local conditional probability distributions (Hyttinen et al., 2011).

Such identifiability results immediately give rise to the following questions of optimal experi-

ment selection:

• What is the least number of experiments that satisfy the above conditions?

• Can we give procedures to construct such sets of experiments?

The above questions can be raised similarly given additional context, such as the following:

• The number of variables that can be subject to an intervention simultaneously is limited in

some way.

• Background knowledge about the underlying causal structure is available.

Naturally, there are other possible scenarios, but we focus on these, since we are aware of their

counterparts in the combinatorics literature. To avoid having to repeatedly state the relevant search

space assumptions, we will present the remainder of this article in terms of the satisfaction of the

(unordered and ordered) pair conditions, which provide the basis for the identifiability results just

cited.

3. Correspondence to Separating Systems and Cut-coverings

The satisfaction of the pair conditions introduced in the previous section is closely related to two

problems in combinatorics: Finding (completely) separating systems, and finding (directed) cut-

coverings. Throughout, to simplify notation and emphasize the connections, we will overload sym-

bols to the extent that there is a correspondence to the problem of experiment selection for causal

discovery.

Definition 4 (Separating System) A separating system C = {J1,J2, . . . ,JK} is a set of subsets of

an n-set V with the property that given any two distinct elements xi,x j ∈ V , there exists a Jk ∈ C

such that xi ∈ Jk∧ x j /∈ Jk or xi /∈ Jk∧ x j ∈ Jk.

Definition 5 (Completely Separating System) A completely separating system C = {J1,J2, . . . ,JK}
is a set of subsets of an n-set V with the property that given any two distinct elements xi,x j ∈ V ,

there exist Jk,Jk′ ∈ C such that xi ∈ Jk∧ x j /∈ Jk and xi /∈ Jk′ ∧ x j ∈ Jk′ .

As can be easily verified, a set of experiments {E1, . . . ,EK} that satisfies the unordered pair condi-

tion for all pairs over n variables in V directly corresponds to a separating system over the variable

5. For simplicity, we focus in this article on identifying the causal structure among the observed variables, even though

some of the cited results also permit the identification of confounding.
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set, while a set of experiments that satisfies the ordered pair condition for all ordered variable pairs

corresponds to a completely separating system over the variables.6

A related but more general problem is that of finding cut-coverings. First, we need to define

cuts and directed cuts: A cut Ek corresponds to a partition of a set of vertices V of an undirected

graph H = (V ,P ) into two sets J and U. Any edge p ∈ P connecting an xi ∈ J to an xu ∈U is said

to be in the cut Ek. For a directed graph F , a directed cut is a cut where only the edges from vertices

in J to vertices in U are in the cut, while edges in the opposite direction are not. We are thus ready

to define a cut-covering and a directed cut-covering:

Definition 6 (Cut-covering) A cut-covering for an undirected graph H = (V ,P ) is a set of cuts

{E1, . . . ,EK} such that each edge p ∈ P of H is in some cut Ek.

Definition 7 (Directed Cut-covering) A directed cut-covering for a directed graph F = (V ,Q ) is

a set of directed cuts {E1, . . . ,EK} such that each directed edge q ∈ Q of F is in some directed cut

Ek.

The correspondence of finding cut-coverings to the problem of experiment selection is now

immediate: In the case of searching for a set of experiments that satisfies the ordered pair condition

for all ordered pairs of variables in V , let the graph F = (V ,Q ) be a complete directed graph

over the vertex set V where each ordered pair of variables is connected by a directed edge. Each

directed edge represents an ordered pair condition for a pair of vertices (xi,x j) that needs to be

satisfied by the set of experiments. Finding such a set of experiments is then equivalent to finding

a directed cut-covering for F , where each experiment corresponds to a directed cut. An analogous

correspondence holds for the unordered pair condition with a complete undirected graph H. We

discuss the generalization and interpretation of the problem when H or F are not complete graphs

in Section 6.

As our overloading of symbols suggests, most aspects of the experiment selection have direct

counterparts in the cut-covering representation. However, the edges representing direct causes in

a causal graph G do not correspond to the edges representing the satisfaction of an ordered pair

condition in the directed graph F . That is, F and G in general do not share the same edge structure:

G is the graph of the underlying causal model to be identified, while F represents the set of ordered

pairs that are not yet satisfied. Moreover, there is a difference in how the causal graph G is changed

in light of an experiment E = (J ,U), and how the ordered pair graph F is changed in light of the

(corresponding) cut E . The experiment E results in the manipulated causal graph G′, which is

the same as the original causal graph G except that the edges into the variables in J are removed.

The corresponding cut E , however, cuts the edges of the ordered pair condition graph F that are

outgoing from variables in J (and simultaneously into variables in U). This may seem unintuitive,

but in fact these two representations of E (the experiment and the cut) illustrate two aspects of what

an experiment achieves: It manipulates the underlying causal graph G (by breaking incoming edges

on variables in J ), and it satisfies the ordered pair condition for all ordered pairs (x j,xu) with x j ∈ J

and xu ∈ U by determining whether x j has a causal effect on xu. Similarly in the unordered case,

the causal graph G (or its skeleton) must not be confused with the undirected graph H representing

the unordered pairs that are not yet satisfied.

6. Separating systems and completely separating systems are sometimes also referred to by the terms weakly separating

systems and strongly separating systems, respectively.
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Figure 2: Top: Satisfaction of the unordered pair condition for all pairs of variables in a three

variable model. Undirected double-lined edges indicate pairs for which the unordered

pair condition needs to be satisfied (graph (i)). The cuts (|) indicate which pairs are

satisfied by the experiments intervening on x (graph (ii)) and y (graph (iii)). Bottom:

Satisfication of the ordered pair condition: Directed double-lined edges indicate ordered

pairs for which the ordered pair condition needs to be satisfied (graph (iv)). Graphs (v-

vii) show which pairs are in the directed cuts (are satisfied) by the respective single-

intervention experiments. See text for details.

Figure 2 illustrates for a three variable model (such as that in Figure 1) how the satisfaction of

the (un)ordered pair condition for all pairs of variables is guaranteed using cut-coverings. Graph (i)

gives the complete undirected graph H over {x,y,z} illustrating the three unordered pairs for which

the unordered pair condition needs to be satisfied. Graphs (ii) and (iii) show for which pairs the

unordered pair condition is satisfied by a single intervention experiment on x (or y, respectively), that

is, which pairs are in the cut (|). The pairs that remain unsatisfied by each experiment, respectively,

are shown in gray for easier legibility. Together these experiments constitute a cut-covering for H.

Similarly, graph (iv) gives the complete directed graph F over the three variables, illustrating the six

ordered pairs of variables for which the ordered pair condition needs to be satisfied. Graphs (v-vii)

show for which pairs the ordered pair condition is satisfied by a single intervention experiment on

x (or y or z, respectively), that is which pairs are in the directed cut (|), while the others are again

shown in gray. As can be seen, in the ordered case all three experiments are needed to provide a

directed cut-covering for F .

The correspondence between the problem of finding experiments that satisfy the pair conditions

on the one hand and finding separating systems or cut-coverings on the other, allows us to tap into

the results in combinatorics to inform the selection of experiments in the causal discovery problem.

4. Minimal Sets of Experiments

We now turn to the concrete problem of constructing sets of experiments which satisfy the pair

condition for all pairs of variables, while simultaneously requiring as few experiments as possible.

We divide the results concerning the unordered and the ordered pair condition into Sections 4.1

and 4.2, respectively. In what follows, we always start by presenting the explicit construction of

the intervention sets, and subsequently give the available bounds on the number of experiments.

The constructions are also available as special cases of the algorithms presented in Section 5, and
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I1 = {}
I2 = {1}
I3 = {2}
I4 = {1,2}
I5 = {3}
I6 = {1,3}
I7 = {2,3}

−→

J3 J2 J1

I1 0 0 0

I2 0 0 1

I3 0 1 0

I4 0 1 1

I5 1 0 0

I6 1 0 1

I7 1 1 0

−→
J1 = {x2,x4,x6}
J2 = {x3,x4,x7}
J3 = {x5,x6,x7}

Figure 3: An illustration of the relationship between intervention sets and index sets, giving the

construction of a minimal set of experiments satisfying the unordered pair condition for

all pairs of variables in a 7 variable model. The index sets I1, . . . ,In (left) are chosen

as distinct subsets of the set of experiment indexes {1,2,3}, and each row of the binary

matrix (middle) marks the corresponding experiments. The intervention sets J1, . . . ,JK

(right) are then obtained by reading off the columns of this matrix. Note that one ad-

ditional variable could still be added (intervened on in all three experiments) while still

satisfying the unordered pair condition for all variable pairs. For nine variables, however,

a minimum of four experiments would be needed.

implemented in our associated code package. Throughout, i = 1, . . . ,n indexes the variables in the

variable set V , while k = 1, . . . ,K indexes the experiments in the construction.

Many of the constructions of intervention sets J1, . . . ,JK will be examined using so-called index

sets I1, . . . ,In, where

Ii = {k |xi ∈ Jk}.

That is, the i:th index set simply lists the indexes of the intervention sets that include the variable

xi. Clearly, K experiments (or separating sets) over n variables can be defined either in terms of the

intervention sets J1, . . . ,JK or equivalently in terms of the index sets I1, . . . ,In. See Figure 3 for an

illustration.

4.1 Satisfying the Unordered Pair Condition

The earliest results (that we are aware of) relevant to finding minimal sets of experiments satisfying

the unordered pair condition are given in Rényi (1961)7 in the terminology of separating systems.

He found that a separating system C = {J1,J2, . . . ,JK} over V can be obtained by assigning distinct

binary numbers to each variable in V . That is, the strategy is to choose distinct index sets for all

variables in V . This is supported by the following Lemma:

Lemma 8 (Index sets must be distinct) Intervention sets {J1, . . . ,JK} satisfy the unordered pair

condition for all unordered pairs of variables if and only if the corresponding index sets I1, . . . ,In

are distinct.

7. Rényi (1961) also examines the probability of finding separating systems when subsets of V are selected randomly.

These results apply to causal discovery when experiments are selected at random.
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Proof Assume that the index sets are distinct. Since the index sets Ii and I j of any two variables

are distinct, there must exist an index k such that either k ∈ Ii and k /∈ I j, or k /∈ Ii and k ∈ I j. Thus,

the experiment Ek satisfies the unordered pair condition for the pair {xi,x j}.

Next assume that the unordered pair condition is satisfied for all pairs. Take two arbitrary

index sets Ii and I j. Since the unordered pair condition is satisfied for the pair {xi,x j}, there is an

experiment Ek where xi is intervened on and x j is not, or x j is intervened and xi is not. Either way,

Ii 6= I j.

Again, Figure 3 is used to illustrate this concept.

Rényi (1961, p. 76) notes that the smallest separating system for a set of n variables has size

c(n) = ⌈log2(n)⌉. (1)

This is clear from the previous lemma: K experiments only allow for up to 2K distinct index sets.

Equivalent results and procedures are derived, only in the terminology of finding minimal cut-

coverings for complete graphs, by Loulou (1992, p. 303). In the terminology of causal discovery,

Eberhardt (2007, Theorem 3.3.4) requires ⌊log2(n)⌋+1 experiments to guarantee identifiability of

a causal model.8 For graphs over three variables, the result is obvious given the graph H (for the

unordered pair condition) in Figure 2 (top, left): For a cut-covering of the three undirected edges,

2 = ⌈log2(3)⌉ cuts are necessary and sufficient. The two cuts in graphs (ii) and (iii) in Figure 2

corresponding to the experiments in the last row of Figure 1 are an example. Figure 4 shows the

number of experiments needed to satisfy the unordered pair condition for all variable pairs for

models of up to 5,000 variables.

4.2 Satisfying the Ordered Pair Condition

When Dickson (1969, p. 192) coined the term “completely separating systems”, he also showed

that as the number n = |V | of elements tends to infinity, the size of a minimal completely separating

system approaches the size of a (standard) separating system, that is, log2(n). However, Dickson did

not derive the exact minimal size. Shortly after, Spencer (1970) recognized the connection between

completely separating systems and antichains in the subset lattice, as defined below. See Figure 5

for an illustration.

Definition 9 (Antichain) An antichain (also known as a Sperner system) {Si} over a set S is a

family of subsets of S such that ∀i, j : Si * S j and Si + S j.

The connection between antichains and completely separating systems (that is, satisfying the or-

dered pair condition) is then the following:

Lemma 10 (Index sets form an antichain) The intervention sets {J1, . . . ,JK} satisfy the ordered

pair condition for all ordered pairs if and only if the corresponding index sets {I1, . . . ,In} form an

antichain over {1, . . . ,K}.

8. The one additional experiment sometimes required in this case derives from the need to satisfy the ordered pair

condition, or unordered pair condition and the covariance condition, for each pair of variables, as discussed in Sec-

tion 2. The covariance condition can be trivially satisfied with a single passive observational data set (a so-called

null-experiment).
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Figure 4: Sufficient and necessary number of experiments needed to satisfy the unordered (blue,

lower solid line) and the ordered (red, upper solid line) pair condition for models of

different sizes (in log-scale). The number of variables in the models are only ticked

on the x-axis when an additional experiment is needed. For example, for a model with

100 variables, 7 experiments are needed to satisfy the unordered pair condition, while 9

experiments are needed to satisfy the ordered pair condition.
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Figure 5: Subset lattice of subsets of {1,2,3,4}. A directed path from set Si to set S j exists if and

only if Si ⊂ S j. The largest antichain is the family of sets that are not connected by any

directed paths, which in this case is formed by all the sets of size 2, that is, all the sets on

the middle ‘row’ of the graph.
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I1 = {1,2}
I2 = {1,3}
I3 = {1,4}
I4 = {2,3}
I5 = {2,4}
I6 = {3,4}

−→

J4 J3 J2 J1

I1 0 0 1 1

I2 0 1 0 1

I3 1 0 0 1

I4 0 1 1 0

I5 1 0 1 0

I6 1 1 0 0

−→
J1 = {x1,x2,x3}
J2 = {x1,x4,x5}
J3 = {x2,x4,x6}
J4 = {x3,x5,x6}

Figure 6: Designing the intervention sets of experiments satisfying the ordered pair condition for

all ordered pairs of variables in a n = 6 variable model with K = 4 experiments. Select

the index sets I1, . . . ,In as an antichain over {1, . . . ,K} and translate the index sets into

intervention sets J1, . . . ,JK .

Proof Assume that the index sets form an antichain. Consider an arbitrary ordered pair (xi,x j).
Since index sets form an antichain we have that Ii * I j and there must be experiment Ek such that

k ∈ Ii and k /∈ I j. This experiment satisfies the ordered pair condition for the ordered pair (xi,x j).
Next assume that the ordered pair condition is satisfied for all ordered pairs. Take two arbitrary

index sets Ii and I j. Since the ordered pair condition is satisfied for the pair (xi,x j), there is an

experiment where xi is intervened on and x j is not, thus Ii * I j. Symmetrically, I j * Ii. Thus the

index sets form an antichain.

Earlier, Sperner (1928) had already proven the following theorem on the maximum possible size of

an antichain.

Theorem 11 (Sperner’s Theorem) The largest antichain over {1, . . . ,K} is formed by the subsets

of constant size ⌊K/2⌋ and thus has size
(

K
⌊K/2⌋

)

.

Thus, the minimal completely separating system over a set of size n can always be constructed

by selecting the corresponding index sets as any distinct ⌊K/2⌋-size subsets. See Figure 6 for

an illustration. Using this rationale, Spencer (1970) notes that the cardinality c(n) of a minimal

completely separating system for n elements is given by

c(n) = min{K :

(

K

⌊K/2⌋

)

≥ n}, (2)

which can be approximated using Stirling’s approximation as

c(n) = log2(n)+
1

2
log2 log2(n)+

1

2
log2(

π

2
)+o(1).

Equation 2 is re-proven for directed cut-coverings over complete graphs by Alon et al. (2007, The-

orem 11), also using the connection to antichains. To our knowledge, tight bounds or constructions

have not been previously described in the causal discovery literature on experiment selection.

For graphs over three variables, the graph F (for the ordered pair condition) in Figure 2 (bottom,

left) illustrates the point: For a directed cut-covering of the six directed edges, c(3) = 3 directed cuts

are necessary and sufficient. The three cuts shown in graphs (v-vii) of Figure 2 corresponding to

the three possible single-intervention experiments are an example, but the cuts corresponding to the
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double-intervention experiments in graphs (ii-iv) of Figure 1 would also work. Figure 4 shows the

number of experiments required for models with up to 5,000 variables. Note that the difference

between the number of experiments needed for a separating and a completely separating system

over a given number of variables is only 2 or 3 experiments. Thus, in many cases the possibility of

applying an inference procedure based on weaker assumptions may be worth the investigative cost

of a few additional experiments to satisfy the ordered pair condition.

5. Limiting Intervention Set Size

Section 4 focused on characterizing minimal sets of experiments that guarantee identifiability, but

paid no attention to the particular nature of those experiments. In some cases, the experiments might

require a simultaneous intervention on half of the variables, but of course such experiments will in

many scientific contexts not be feasible. In this section we consider a generalization of the problem

of finding the optimal set of experiments that can take into account additional constraints on the size

of the intervention sets. We consider the following variants of the problem:

1. Given n variables and K experiments, find intervention sets J1, . . . ,JK ⊆ V satisfying the

ordered or unordered pair condition for all variable pairs, such that the intervention sets have

minimal

(a) average intervention set size meanK
k=1|Jk| =

1
K ∑K

k=1 |Jk| (which is equivalent to mini-

mizing the total number of interventions), or

(b) maximum intervention set size maxK
k=1|Jk|.

2. Given n variables and a maximum allowed intervention set size r, find the minimum number

of experiments m(n,r) for which there exists intervention sets J1, . . . ,Jm(n,r) ⊆ V that satisfy

the ordered or unordered pair condition for all variable pairs.

As will become clear from the following discussion, these problems are related. Note that, de-

pending on the additional constraints, these problems may not have solutions (for example, for the

unordered case of Problem 1(a) and 1(b), when K is smaller than the bound given in Equation 1), or

they may trivially reduce to the problems of the previous sections because the additional constraints

are irrelevant (for example, Problem 2 reduces for the unordered case to the problem discussed in

Section 4.1 if r ≥ n/2). As in the previous section, we separate the discussion of the results into

those pertaining to the unordered pair condition (Section 5.1) and those pertaining to the ordered

pair condition (Section 5.2). The algorithms presented here can also be used to construct interven-

tion sets that satisfy the bounds discussed in Section 4.

5.1 Limiting the Intervention Set Size for the Unordered Pair Condition

We start with the simplest problem, Problem 1(a) for the unordered case, and give the construction

of a set of experiments that achieves the smallest possible average intervention set size, given the

number of variables n and the number of experiments K. The construction we present here is

closely related to the first procedures we are aware of, given by Katona (1966). Finding a design

which minimizes the average intervention set size is straightforward once one considers the problem

in terms of the index sets. The sum of intervention set sizes is of course equal to the sum of index
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I1 = {}
I2 = {1}
I3 = {2}
I4 = {3}
I5 = {4}
I6 = {1,2}
I7 = {3,4}

−→

J4 J3 J2 J1

I1 0 0 0 0

I2 0 0 0 1

I3 0 0 1 0

I4 0 1 0 0

I5 1 0 0 0

I6 0 0 1 1

I7 1 1 0 0

−→
J1 = {x2,x6}
J2 = {x3,x6}
J3 = {x4,x7}
J4 = {x5,x7}

Figure 7: Intervention sets for experiments that satisfy the unordered pair condition for all pairs of

variables in a 7 variable model such that both the maximum and average intervention set

size are minimized. The index sets were chosen using Algorithm 2.

set sizes (because both represent the total number of interventions):

K

∑
k=1

|Jk| =
n

∑
i=1

|Ii|. (3)

This identity, together with Lemma 8, implies that to obtain intervention sets with minimum average

size, it is sufficient to find the n smallest distinct subsets of {1, . . . ,K} as the index sets. There are

a total of ∑
p
j=0

(

K
j

)

index sets Ii with |Ii| ≤ p. Consequently, the size l of the largest required index

set is the integer solution to the inequalities

l−1

∑
j=0

(

K

j

)

< n ≤
l

∑
j=0

(

K

j

)

. (4)

If there is no solution for l, the unordered pair condition cannot be satisfied with K experiments. If

there is a solution, the inequalities in Equation 4 imply that when choosing the smallest index sets,

we have to select all

t =
l−1

∑
j=0

(

K

j

)

index sets of sizes 0 to l−1, and the remaining n− t sets of size l. Since the sum of the intervention

set sizes is the same as the sum of the index set sizes (Equation 3), the average intervention set size

obtained is

meanK
k=1|Jk| =

1

K

K

∑
k=1

|Jk| =
1

K

n

∑
i=1

|Ii| =
1

K

[

l−1

∑
j=0

j

(

K

j

)

+ l(n− t)

]

. (5)

For K experiments this is the minimum average intervention set size possible that satisfies the un-

ordered pair condition for all pairs among n variables. For the case of n = 7 variables and K = 4

experiments, Figure 7 provides an example of the construction of intervention sets with minimal av-

erage size. Note that the minimum average would not have been affected if the index sets I6 and I7

had been chosen differently (but with the same size) as long as all the index sets remained distinct.
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Algorithm 1 Selects p index sets of size l, for K experiments, such that the indexes are distributed

fairly among the index sets. The idea of this algorithm appears in a proof in Cameron (1994,

accredited to D. Billington).

Fair(K,l,p)

Draw the index sets {I1, . . . ,Ip} as distinct l-size subsets of {1, . . . ,K}.

While TRUE,

Find the most frequent index M and the least frequent index m among the index sets {I1, . . . ,Ip}.

If freq(M)− freq(m)≤ 1 then exit the loop.

Find10 a set A of size l−1 such that ({M}∪A) ∈ {I1, . . . ,Ip} and ({m}∪A) /∈ {I1, . . . ,Ip}.

Replace the index set ({M}∪A) with ({m}∪A) in {I1, . . . ,Ip}.

Return the index sets {I1, . . . ,Ip}.

The minimum average intervention set size in Equation 5 also gives a lower bound for the

lowest possible maximum intervention set size, given the number of experiments K and variables

n (Problem 1(b)): At least one intervention set of size ⌈meanK
k=1|Jk|⌉ or larger is needed, because

otherwise the intervention sets would yield a lower average. Next, we will show that this is also an

upper bound.

The size of an arbitrary intervention set Jk is equal to the number of index sets that contain the

index k. We say that index sets are selected fairly when the corresponding intervention sets satisfy

|Jk|− |Jk′ | ≤ 1 ∀k,k′. (6)

In the construction that minimizes the average intervention set size, the index sets I1, . . . ,It

constitute all possible subsets of {1, . . . ,K} of size l−1 or less, and consequently all indexes appear

equally often in these sets.9 The remaining n− t index sets can be chosen fairly using Algorithm 1.

It finds fair index sets by simply switching the sets until the experiment indexes appear fairly. Since

(i) the average intervention set size remains unchanged by this switching, (ii) the minimum average

constitutes a lower bound, and (iii) the intervention set sizes differ by at most one, it follows (see

Appendix A) that the lowest maximum intervention set size is given by

maxK
k=1|Jk| = ⌈meanK

k=1|Jk|⌉. (7)

Thus, if the construction of index sets is fair, then both the minimum average and the smallest

maximum intervention set size is achieved, simultaneously solving both Problem 1(a) and 1(b).

Algorithm 2 provides this complete procedure. Note that in general it is possible to select index sets

such that the maximum intervention set size is not minimized, even though the average is minimal

(for example, if I7 had been {1,4} in Figure 7). Figure 8 (top) shows the lowest possible average

intervention set sizes. Rounding these figures up to the closest integer gives the lowest possible

9. This is easily seen if the index sets are represented as binary numbers, as in the center of Figure 7. It is also clear

from considerations of symmetry.

10. We can always find such a set A : If there were no such set A , then for all sets B of size l−1 such that ({M}∪B) ∈
{I1, . . . , Ip} we would also have that ({m}∪B) ∈ {I1, . . . , Ip}. But then, freq(M)− freq(m) ≤ 0 and the algorithm

would have exited already on the previous line.
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Algorithm 2 Constructs K intervention sets that satisfy the unordered pair condition for all pairs

among n variables with a minimum average and smallest maximum intervention set size.

FairUnordered( n, K )

Determine the maximum index set size l from Equation 4, if no such l exists, then the unordered pair

condition cannot be satisfied for n variables with K experiments.

Assign all subsets S ⊆ {1, . . . ,K} such that |S | ≤ l−1 to index sets I1, . . . ,It .

Draw the remaining l-size index sets with: It+1, . . . ,In ← Fair( K, l, n− t )

Return the intervention sets J1, . . . ,JK corresponding to the index sets I1, . . . ,In.

Algorithm 3 Constructs K intervention sets that satisfy the ordered pair condition for all ordered

pairs among n variables and approximates (and sometimes achieves) the minimum average and

smallest maximum intervention size.

FairOrdered( n, K )

Determine the maximum index set size l from Equation 10, if no such l exists, then the ordered pair condition

cannot be satisfied for n variables with K experiments.

Draw the l-size index sets with: I1, . . . ,In ← Fair( K, l, n )

Return the intervention sets J1, . . . ,JK corresponding to the index sets I1, . . . ,In.

maximum intervention set sizes. All of these numbers are achieved by intervention sets constructed

using Algorithm 2.

Using constructions similar to the above, Katona (1966) and Wegener (1979) were able to derive

the following bounds for Problem 2, the minimum number of experiments m(n,r) given an upper

bound r on the intervention set sizes:

m(n,r) = ⌈log2 n⌉, if r > n/2, (8)

log2 n

log2(e ·n/r)

n

r
≤ m(n,r) ≤

⌈

log2 n

log2⌈n/r⌉

⌉

(⌈n/r⌉−1), if r ≤ n/2, (9)

where e denotes Euler’s number. Equation 8 just restates Equation 1, since the constructions in

Section 4.1 without a constraint on the maximum intervention set size result in intervention sets

with no more than n/2 variables. For any practical values of n and r, the value of m(n,r) can be

found by simply evaluating Equations 4, 5 and 7 for different values of K (starting from the lower

bound in 9), so as to find the smallest value of K for which the maximum intervention set size is

smaller than or equal to r. Figure 8 (bottom) illustrates the behavior of the function m(n,r) and the

bounds given by Equation 9.

5.2 Limiting the Intervention Set Size for the Ordered Pair Condition

Recall from Lemma 10 that satisfaction of the ordered pair condition requires that the n index sets

of a set of K experiments form an antichain over {1, . . . ,K}. Thus, no matter whether we seek

to minimize the average or the maximum intervention set size, we have to ensure that the index

sets form an antichain. We begin by considering the (now ordered versions of) Problems 1(a) and
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Figure 8: Satisfying the unordered pair condition while limiting the intervention set sizes. Top:

Lowest achievable average intervention set sizes for models with n variables using K

experiments. The lowest achievable maximum intervention set size is the ceiling of the

average intervention set size shown in the figure. Grey areas denote an insufficient num-

ber of experiments to satisfy the unordered pair condition. Blank areas are uninteresting,

since the average intervention set size can be lowered here by including irrelevant pas-

sive observational (null-)experiments. Bottom: The number of experiments needed for

n = 1024 variables, with a limit r on the maximum allowed intervention set size.
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1(b): Given n and K, we want to specify experiments minimizing either the average or maximum

intervention set size.

First, we note that to obtain an antichain with n elements from K experiments, at least one of

the index sets must be of cardinality l or larger, where l is chosen to satisfy

(

K

l−1

)

< n ≤

(

K

l

)

. (10)

This must be the case because it can be shown using the Lemmas in the proof of Theorem 11 (see

p. 546 bottom in Sperner, 1928) that the largest antichain with sets of at most size l− 1 has size
(

K
l−1

)

, which—given how l was constructed in Equation 10—is not enough to accommodate all n

index sets. On the other hand, it is equally clear that it is possible to obtain an antichain by selecting

the n index sets to all have sizes l.

Thus, a simple approach to attempt to minimize the maximum intervention set size (that is,

solve Problem 1 (b)) is to select the n index sets all with sizes l and use Algorithm 3, exploiting

Algorithm 1, to construct a fair set of index sets. This construction is not fully optimal in all cases

because all sets are chosen with size l while in some cases a smaller maximum intervention set

size is achievable by combining index sets of different sizes. It is easily seen that Algorithm 3 will

generate sets of experiments that have an average and a maximum intervention set size of

meanK
k=1|Jk| =

1

K

K

∑
k=1

|Jk|=
1

K

n

∑
i=1

|Ii|=
n · l

K
, (11)

maxK
k=1|Jk| =

⌈

meanK
k=1|Jk|

⌉

=

⌈

n · l

K

⌉

. (12)

Figure 9 (top) shows the maximum intervention set size in the output of Algorithm 3 for several

values of n and K. Given some of the subsequent results it can also be shown that some of these are

guaranteed to be optimal.11 While this scheme for solving the directed case of Problem 1(b) is quite

good in practice, we are not aware of any efficient scheme that is always guaranteed to minimize

the maximum intervention set size.

Alternatively, one may focus on Problem 1 (a) and thus attempt to minimize the average in-

tervention set size. For this problem, there exists an efficient procedure that obtains the optimum.

Griggs et al. (2012) have recently provided some results in this direction. Here we apply their find-

ings to the problem of experiment selection. To present the construction we need to start with some

results pertaining to antichains.

An antichain is said to be flat if for any pair of sets Ii and I j in the antichain, the cardinalities

satisfy

|Ii|− |I j| ≤ 1, ∀i, j.

Note that flatness requires a selection of index sets that are themselves close in size, while fairness

(Equation 6) requires a selection of index sets such that the intervention sets are close in size. Using

this notion of flatness, Lieby (1994) originally formulated the following theorem as a conjecture:

11. But, for example, when n = 30 and K = 8, Algorithm 3 results in a maximum intervention set size of ⌈ 30·3
8 ⌉ = 12,

although for this case Algorithm 4 can be used to construct suitable intervention sets with at most 11 members.
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Figure 9: Satisfying the ordered pair condition while limiting the size of the intervention sets. Top:

Maximum intervention set sizes achieved by Algorithm 3. Black numbers mark the cases

where the achieved maximum intervention set size is known to be optimal, while red

numbers in parentheses mark cases that are not known to be optimal. Middle: Average

intervention set sizes achieved by Algorithm 4, all guaranteed to be optimal. Bottom:

Number of experiments needed to satisfy the ordered pair condition for n= 1024 variables

with a limit r on the maximum intervention set size.
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Theorem 12 (Flat Antichain Theorem) For every antichain there exists a flat antichain with the

same size and the same average set size.12

Since the sum of the index set sizes is identical to the sum of the intervention set sizes, Theorem 12

shows that whenever the ordered pair condition can be satisfied, the average intervention set size

can be minimized by a set of flat index sets. From Equation 10 it is thus clear that an antichain

minimizing the average set size can be selected solely from the sets of sizes l − 1 and l. The

question then becomes, how can we choose as many sets as possible of size l−1, thus minimizing

the number of sets needed of size l, nevertheless obtaining a valid antichain?

From the Kruskal-Katona Theorem (Kruskal, 1963; Katona, 1968) it follows that an optimal

solution can be obtained by choosing the first p index sets of size l and the last n− p index sets of

size l−1 from the colexicographical order of each of these sets (separately), defined below.

Definition 13 (Colexicographical Order) The colexicographical order over two sets A and B, where

|A| = |B|, is defined by A < B if and only if ∃ i : (A[i] < B[i] and ∀ j > i : A[ j] = B[ j]), where A[i]
denotes the i:th element of the set A, when the elements of the set are arranged in numerical order.

For example, comparing the sets A = {2,3,6} and B = {1,4,6} (note that they are already written

in numerical order), we obtain A < B because A[2] = 3 which is less than B[2] = 4, while A[3] =
B[3] = 6. (See Figure 10 for a further illustration.)

Furthermore, the theory also allows for easily computing the smallest p (and hence largest n− p)

for which a valid antichain is obtained: Any choice for p can be written in a unique l-cascade form

p =
l

∑
j=1

(

a j

j

)

, (13)

where the integers a1, . . . ,al can be computed using a simple greedy approach (for details see Jukna

(2011, p. 146-8) and the code package accompanying this paper). Then, as discussed by Jukna, the

number q of sets of size l−1 that are not subsets of the first p sets in the appropriate colexicograph-

ical order is given by

q =

(

K

l−1

)

−
l

∑
j=1

(

a j

j−1

)

. (14)

Thus, if one can pick the smallest p such that p+q≥ n, then it is possible to construct a flat antichain

of size n that maximizes the number of index sets with size l−1.

Algorithm 4 thus considers all values of p starting from 1, until Equations 13 and 14 imply that

there is a flat antichain of size at least n. It then selects the first p index sets in the colexicographical

order of sets of size l, and the last n− p sets in the colexicographical order of sets of size l−1. The

Kruskal-Katona Theorem ensures that the chosen (l−1)-sized sets will not be subsets of the chosen

l-sized sets, thereby guaranteeing the antichain property (Jukna, 2011, p. 146-8). See Figure 10 for

an example. Thus, Algorithm 4 returns a set of index sets that minimize the average intervention set

size, solving (the directed version of) Problem 1 (a). Figure 9 (middle) shows the optimal average

sizes for various values of n and K.

12. Partial proofs follow from the work of Kleitman and Milner (1973), Lieby (1999) and Roberts (1999), and quite

recently, Kisvölcsey (2006) was able to provide the full proof.
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{1,2,3} < {1,2,4} < {1,3,4} < {2,3,4} < {1,2,5} < {1,3,5}

>

{1,3,6} > {1,2,6} > {3,4,5} > {2,4,5} > {1,4,5} > {2,3,5}

>
{2,3,6} < {1,4,6} < {2,4,6} < {3,4,6} < {1,5,6} < · · ·

· · · < {3,6} < {4,6} < {5,6} < {1,7} < {2,7}

>

{2,8} > {1,8} > {6,7} > {5,7} > {4,7} > {3,7}

>

{3,8} < {4,8} < {5,8} < {6,8} < {7,8}

Figure 10: Selecting the index sets in colexicographical order for n = 30 and K = 8. Selecting 16

index sets of size 3 (up to {3,4,6}, in bold) and 14 index sets of size 2 (starting from

{5,6}, in bold), gives a total of 30 index sets and achieves the lowest possible average

intervention set size for the given n and K. Note that none of the selected index sets is a

subset of another, thus the sets form an antichain. If we were to select only 15 index set

of size 3 (up to {2,4,6}), we could still only select 14 index sets of size 2 (from {5,6}),
ending up with only 29 index sets. If we were to select 17 index sets of size 3 (up to

{1,5,6}), we could select 13 index sets of size 2 (from {1,7}), and find 30 index sets,

but the average intervention set size would then be 1/8 higher.

Algorithm 4 Obtains a set of K intervention sets satisfying the ordered pair condition for all ordered

pairs among n variables that minimizes the average intervention set size.

Flat( n, K )

Determine the maximum index set size l from Equation 10, if no such l exists, the ordered pair condition

cannot be satisfied for n variables with K experiments.

For p from 1 to n,

Find coefficients a1, . . . ,al for a cascade presentation of p in Equation 13.

Calculate the number q of available index sets of size l−1 by Equation 14.

If p+q≥ n exit the for-loop.

Choose the index sets I1, . . . ,Ip as the first sets of size l in the colexicographical order.

Choose the index sets Ip+1, . . . ,In as the last sets of size l−1 in the colexicographical order.

Return the intervention sets J1, . . . ,JK corresponding to the index sets I1, . . . ,In.

Trivially, the ceiling of the minimum average intervention set size for n variables in K experi-

ments gives a lower bound on the lowest maximum intervention set size, that is, for Problem 1 (b).

This allows us to determine the optimality of some of the outputs of Algorithm 3 in Figure 9 (top).
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Problem 2 reverses the free parameters and asks for the minimum number of experiments m(n,r)
given a limit r on the maximum size of any intervention set. Cai (1984b) shows that

m(n,r) =

⌈

2n

r

⌉

, if 2≤
1

2
r2 < n. (15)

With input K = ⌈2n/r⌉, Algorithm 3 generates intervention sets of at most size r (see Appendix B)—

this verifies that m(n,r)≤ ⌈2n/r⌉. Cai’s result also gives an exact minimum number of experiments

when the maximum intervention set size has to be small (see Figure 9 (bottom)). It can also be used

to construct a lower bound on the maximum intervention set size when the number of experiments K

is given: If m(n,r)> K for some r and K, then the maximum intervention set size given n variables

and K experiments must be at least r+1. Again, we use this connection to determine the optimality

of some of the outputs of Algorithm 3 in Figure 9 (top).

For cases when r does not satisfy the restrictions of Cai’s result, Kündgen et al. (2001) use a

similar construction to provide the following bounds:13

min{K|n≤

(

K

⌈Kr/n⌉

)

} ≤ m(n,r) ≤ min{K|n≤

(

K

⌊Kr/n⌋

)

}, if r ≤
n

2
. (16)

Again the upper bound can be easily verified: With the upper bound K as input, Algorithm 3 will

generate intervention sets of at most size r (see Appendix C). The lower bound is an application

of classic results of Kleitman and Milner (1973) concerning average index set sizes. In many cases

we can get an improved lower bound on m(n,r) using Algorithm 4 (which optimally minimizes the

average number of interventions per experiment, for given n and K): Find the smallest K such that

Algorithm 4 returns intervention sets with an average size less than r. In this case we know that the

minimum number of experiments given a maximum intervention set size of r must be at least K (see

Figure 9 (bottom)).

Finally, note that Ramsay and Roberts (1996) and Ramsay et al. (1998) have considered the

problem equivalent to finding a set of experiments where instead of a limited maximum intervention

set size, the intervention sets are constrained to have exactly some given size. Sometimes more

experiments are needed in order to satisfy this harder constraint.

6. Background Knowledge

The results and procedures of the previous two sections apply to scenarios in which there is no

background knowledge concerning the possible causal relationships among the variables. In those

cases, for complete identification, the chosen experiments must satisfy the (ordered or unordered,

depending on the assumptions) pair condition for all pairs of variables. However, in many cases

there exists domain knowledge that can assist in inferring the underlying system. For instance, it

may be the case that background knowledge rules out certain causal relationships. Hyttinen et al.

(2010) gave details of how, in the linear case, such prior knowledge can be integrated into the

discovery procedure, reducing the set of ordered pair conditions that need to be satisfied by the

experiments. As another example, under causal sufficiency, acyclicity, and faithfulness, if by prior

knowledge a given edge is known to be present, or it is known that there is no causal relation between

a given pair of variables, this translates directly to an unordered pair that does not need to be satisfied

13. Roberts and Rylands (2005) give the exact values for m(n,r) for n≤ 10 variables and all suitable r.
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by the set of experiments. Finally, any background knowledge that is equivalent to knowledge of

the outcome of some experiment can be described in terms of satisfied pair conditions. In this

section, we thus consider the selection of experiments when the experiments only need to satisfy

the pair condition for a given subset of all variable pairs, but acknowledge that not all background

knowledge is representable in terms of satisfied pair conditions.

When the pair condition only needs to be satisfied for a subset of the variable pairs, the search

problem is equivalent to that of finding a minimal cut-covering of a given graph. As described

in Section 3, we represent the satisfaction of the unordered pair condition by a graph H over the

vertices V , where an undirected edge between a pair of variables indicates that the unordered pair

condition is not yet satisfied for that pair (and hence needs to be satisfied by the experiments we

select), while the absence of an edge indicates it is already satisfied for the pair (and does not need to

be satisfied by our experiments). Similarly, we use a directed graph F to represent the satisfaction of

the ordered pair condition, in the analogous way. Essentially, the combinatorial problems discussed

in the two previous sections can thus be interpreted as finding a minimal cut-covering for a complete

directed or undirected graph, while in this section we consider the problem of finding a minimal cut-

covering for an arbitrary directed or undirected graph.14

First, consider the satisfaction of the unordered pair condition for an arbitrary subset of all vari-

able pairs. Unlike the case without background knowledge, discussed in Sections 4.1, the problem

of finding the smallest set of experiments to satisfy the unordered pair condition for a subset of all

pairs is known to be hard. Cai (1984a) establishes the connection to minimal graph colorings by

showing (in his Theorem 5) that the smallest cardinality c(H) of a cut-covering of an undirected

graph H relates to its chromatic number χ(H) (the smallest number of colors required to vertex-

color graph H) as

c(H) = ⌈log2(χ(H))⌉. (17)

The result indicates that the main constraint to reducing the number of experiments are cliques of

variables for which the unordered pair condition is not satisfied. Equation 17 constitutes a general-

ization of the results shown in Section 4.1. Furthermore, it follows from Cai’s Theorem 6 that the

problem of finding a minimal set of experiments given background knowledge for arbitrary pairs

is NP-hard, though constructing the appropriate experiments given a graph coloring is very simple.

Various approximation algorithms used for graph coloring could be applied, see for example Welsh

and Powell (1967), Motwani and Naor (1993), Halldórsson (1993), Bussieck (1994) and Liberti

et al. (2011) for proposals, bounds and simulations. Algorithm 5 calls a graph coloring method

(in the code package we use the simple approximation algorithm by Welsh and Powell, 1967) and

constructs intervention sets based on the graph coloring. It results in ⌈log2(χ(H)+c)⌉ experiments,

where c is the number of colors the coloring algorithm uses in excess of the chromatic number

χ(H). So it achieves Cai’s optimal bound on the minimum number of experiments (Equation 17) if

the coloring method uses the smallest number of colors.

In certain restricted cases the problem is easier. When the underlying model is known to be

acyclic and causally sufficient, and the background knowledge derives from passive observational

data or suitable previous experiments, the knowledge can be represented in terms of an (interven-

tional) Markov equivalence class. These are sets of causally sufficient acyclic causal models that are

14. Note that Cai (1984a) uses the terminology of ‘separating systems’ in relation to arbitrary graphs, but this use of the

terminology does not seem to be in widespread use so we do not adopt it here.
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Algorithm 5 Constructs a set of intervention sets satisfying the unordered pair condition for a

given arbitrary set of unordered pairs represented by an undirected graph H over n variables. The

algorithm is adapted from the proof of Theorem 5 in Cai (1984a).

BackgroundUnordered(H)

Obtain a partition Col(H) of the variables V of H into q color classes C1, . . . ,Cq (where χ(H) ≤ q ≤ n,

χ(H) is the chromatic number of H and n = |V |), such that no adjacent vertices belong to the same class

(for example, using the approximation algorithm in Welsh and Powell, 1967).

Let K = ⌈log2(q)⌉.

Obtain “intervention sets” J ′1, . . . ,J
′
K over the color classes C1, . . . ,Cq that satisfy the unordered pair condition

for all pairs of the q color classes (for example, by calling FairUnordered(q,K) (Algorithm 2)).

For each k from 1 to K,

Determine Jk =
⋃

Ci∈J ′
k
Ci. Intervention set Jk consists of all variables colored with a color in J ′k .

Return intervention sets J1, . . . ,JK .

indistinguishable given passive observational data or the experiments performed so far. Algorithm 3

in Hauser and Bühlmann (2012) constructs in polynomial time a minimal set of experiments that is

sufficient and in the worst case necessary to identify the true causal model within such an (inter-

ventional) Markov equivalence class, assuming the skeleton of the true causal graph is identifiable

given the set of experiments. We can translate this situation to our framework as follows: With such

background knowledge, for complete identifiability, the unordered pair condition only needs to be

satisfied for the pairs of variables adjacent in the skeleton, for which the orientation of the edge is

unknown. Thus, if we again consider the example graph (i) in Figure 11 (repeating graph (i) from

Figure 1), and assume that we have a passive observational data set to determine the Markov equiv-

alence class (graph (ii)), then the undirected graph H representing the pairs for which the unordered

pair condition remains unsatisfied is given by graph (iii). (In this case it has the same structure as

the skeleton of the Markov equivalence class of the true graph, but that is not generally the case.)

Given H (graph (iii)), it is obvious that a single experiment E = (J ,U) = ({y},{x,z}) would re-

solve the remaining pairs, that is, the single cut E is a minimal cut-covering (graph (iv)). Under the

assumption of acyclicity, causal sufficiency and faithfulness, this is sufficient for identifiability of

the causal structure.

Satisfaction of the ordered pair condition for an arbitrary subset of the ordered variable pairs

is also known to be hard. Cai (1984a) shows in his Theorem 7 that the problem of determining a

minimal cut-covering for an arbitrary directed graph is NP-hard. More recently, Watanabe et al.

(2000) offered the following bounds on the cardinality of the minimal directed cut-covering c(F):

log2(χ(F)) ≤ c(F) ≤ ⌈log2(χ(F))⌉+ ⌈log2⌈log2(χ(F))+1⌉⌉,

where χ(F) is the chromatic number of the directed graph F representing the unsatisfied ordered

pair conditions.15 These bounds constitute a generalization of the results in Section 4.2 where

no background knowledge was assumed. In general, the conversion of background knowledge to

15. Strictly speaking χ(F) is the chromatic number of the undirected graph with the same set of vertices as F and in

which an undirected edge exists between a pair of vertices if an only if they are adjacent in F .
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Figure 11: Graph (i) is the true causal generating model (repeating Figure 1, (i)), graph (ii) shows

the corresponding passive observational Markov equivalence class (MEC). Graph (iii)

illustrates the remaining pairs for which the unordered pair condition is not satisfied

given the MEC in (ii), and graph (iv) shows that a single intervention on y resolves these

pairs, that is, it provides a cut-covering. Given background knowledge obtained from a

passive observational data set of graph (i), graph (v) shows the ordered pairs for which

the ordered pair condition remains unsatisfied. In this case two further experiments are

required to provide a directed cut-covering, one intervening on y (graph (vi)) and one

intervening on x and z simultaneously (graph (vii)).

pairs satisfying the ordered pair condition is more complicated because the equivalence classes of

causal structures whose identifiability depends on the satisfaction of the ordered pair condition is

less well understood (consider, for example, the equivalence classes for linear cyclic models over a

causally insufficient set of variables). But for simple cases it can still be done: Given background

knowledge derived from a passive observational data set over graph (i) in Figure 11, graph (v)

is the directed graph F indicating the ordered pairs for which the ordered pair condition remains

unsatisfied. Graphs (vi) and (vii) then show the two directed cuts that are still required to obtain a

directed cut-covering of F . If we assume linearity, but not acyclicity or causal sufficiency, the two

experiments corresponding to these cuts would be necessary and sufficient for identifiability given

the background knowledge represented in graph (v).

7. Discussion: Related Work and Open Problems

The combinatorial results and procedures we have translated and combined in this paper update and

generalize a variety of results in the causal discovery literature on the selection of experiments. For

example, Eberhardt (2007, Theorem 3.3.17) only provides an upper bound on the minimum number

of experiments sufficient for the satisfaction of the ordered pair condition. With Spencer’s result

on completely separating systems (Equation 2) we now have an exact result and the experiments

that satisfy this result can be constructed using Algorithm 3. Similarly, Eberhardt (2007, Theorem

3.3.29) gave an upper bound on the minimum number of experiments sufficient to satisfy the un-

ordered pair condition when the maximum intervention set size was restricted. The translation of

the results of Katona (1966) and Wegener (1979) in Equations 8 and 9 now provide much better

bounds, and Algorithm 2 can be used to construct the appropriate intervention sets.

Tong and Koller (2001) and Murphy (2001) use a greedy Bayesian procedure to select the next

best single-intervention experiment, but given the computational complexity cannot solve for mod-

els with more than five variables. Meganck et al. (2005), He and Geng (2008), Eberhardt (2008) and
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Hauser and Bühlmann (2012), in their different ways, also try to find the best next experiment given

background knowledge, typically knowledge of the (interventional) Markov equivalence class. In

Section 6 we showed that the complexity of the satisfaction of the (un)ordered pair condition given

background knowledge is known to be NP-hard in general, and Cai (1984a) already showed (though

in the terminology of separating systems) that the minimum number of experiments required is a

function of the chromatic number of the graph of unsatisfied pair conditions. Except for special

cases (see, for example, Hauser and Bühlmann, 2012), graph-coloring heuristics seem to provide

the best approach to problems of this type, and we have implemented one such procedure in Algo-

rithm 5.

In addition, a variety of open problems remain: In Section 5.2 we noted that for the ordered

pair condition we are not aware of a general algorithm that generates intervention sets for which

the maximum intervention set size is minimized. We also do not know whether the maximum

and average intervention set size can be minimized simultaneously (as we showed is possible for

the unordered pair condition in Section 5.1). Nevertheless, for both cases we have shown that

Algorithm 3 provides a very good approximation and can be shown to provide optimal output in

many cases.

More generally, the type of background knowledge we considered in Section 6 may have to be

integrated into a search procedure that is subject to constraints on the size of the intervention sets.

How to compute the optimal set of experiments in such cases is an open combinatorical problem,

for which we are not aware of any solutions that are not brute force searches.

Naturally, there are also further generalizations of the problem settings we considered. For ex-

ample, it will often not be possible to perform all desired experiments. Some experiments will be

more expensive than others or certain combinations of variables may not be manipulable simulta-

neously. Given a restricted set of experiments, how to select the smallest subset that preserves the

discriminatory power of the full set, is known as the “test collection problem”. There is a large

literature on variants of this problem. Halldórsson et al. (2001) describe the connection to finding

minimal cut-coverings and analyze the complexity of the problem. They show that even good ap-

proximation algorithms are hard to obtain for this problem, but Moret and Shapiro (1985) analyze

and test a variety of heuristics and show that in a real world setting there is reason for optimism that

an (almost) minimal set of experiments can still be found relatively easily.

8. Conclusion

We have summarized and presented combinatorial results for the optimal selection of experiments

when the goal is to learn the causal structure of a system. Most results were originally derived

for so-called (completely) separating systems or minimal cut-coverings. We used these results to

specify the minimum number of experiments necessary and sufficient for identifiability when there

is no background knowledge (Section 4), when there are limitations on the size of the intervention

sets (Section 5), and when background knowledge is available (Section 6). Where possible, we

presented algorithms that actually construct the experiments that satisfy (or closely approximate)

the specified bounds and constraints, and we indicated where extant heuristics can be applied. We

hope that the constructive way of presenting the results and how to obtain them, may also provide

useful guidelines on which experiments to conduct in settings with assumptions not considered here.

For the combinatorics community, we have provided a novel area of application. We have also

given a unifying, more easily understandable framework for the set constructions (which are other-
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wise often hidden in the proofs of the reported bounds), along with clear examples and computer

code. This should help in understanding and comparing the different bounds and constructions.

Perhaps this compilation also helps in identifying where new theoretical findings would also have

a practical value. We hope that this note provides a translation aid and helps to produce a more

congenial flow of research problems and results between the fields of study.
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Appendix A. Proof of Equation 7

Marking the largest intervention set by Jh we have that

|Jh|−meanK
k=1|Jk| =

1

K

K

∑
k=1

(|Jh|− |Jk|) || Equation 6,h ∈ {1, . . . ,K}

≤
K−1

K
< 1.

Since the maximum intervention set size is an integer which is lower bounded by the average inter-

vention set size, yet less than one above it, Equation 7 follows directly.

Appendix B. Upper Bound of Cai (1984b)

We verify the upper bound in Equation 15: The minimum number of experiments m(n,r), given

a limit r on the maximum intervention set size, has an upper bound of ⌈2n/r⌉, when n > 1
2
r2.

Consider that Algorithm 3 is run with input n and K = ⌈2n/r⌉. The first step is to find l that satisfies

Equation 10. The upper bound in Equation 10 is satisfied when l = 2 under the assumption that

n > 1
2
r2:

(

K

l

)

=
K(K−1)

2
||K ≥

2n

r

≥
2n(K−1)

2r
||K ≥

2n

r
>

2 1
2
r2

r
= r⇒ K−1≥ r

≥
2nr

2r
= n.

Thus, the used index set size l will be at most two, as there exists an antichain of n index sets of

constant size l ≤ 2 over K = ⌈2n/r⌉ experiments. Then, Algorithm 3 will produce intervention sets
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with average size (Equation 11) bounded by r:

meanK
k=1|Jk| =

n · l

K
||

1

K
≤

r

2n

≤
nlr

2n
||l ≤ 2

≤
2nr

2n
= r.

Because the index sets are chosen fairly, the maximum intervention set size (Equation 12) is also

bounded by integer r:

maxK
k=1|Jk| = ⌈meanK

k=1|Jk|⌉ ≤ r.

Appendix C. Upper Bound of Kündgen et al. (2001)

We verify the upper bound in Equation 16: The minimum number of experiments m(n,r), given a

limit r on the maximum intervention set size, has an upper bound of min{K′|n ≤
(

K′

⌊K′r/n⌋

)

}, when

r≤ n/2. Consider that Algorithm 3 is run with input n and K =min{K′|n≤
(

K′

⌊K′r/n⌋

)

}. The first step

is to find l that satisfies Equation 10. The upper bound in Equation 10 is satisfied when l = ⌊Kr/n⌋,
simply by the definition of K. Thus, the used index set size l will be at most ⌊Kr/n⌋, as there exists

an antichain of n index sets of constant size l ≤ Kr/n over K experiments. Then, Algorithm 3 will

produce intervention sets with average size (Equation 11) bounded by r:

meanK
k=1|Jk| =

n · l

K
||l ≤

Kr

n

≤
nKr

Kn
= r.

Because the index sets are chosen fairly, the maximum intervention set size (Equation 12) is also

bounded by integer r:

maxK
k=1|Jk| = ⌈meanK

k=1|Jk|⌉ ≤ r.
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