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Abstract

We describe a Bayesian method for group feature selection in linear regression problems. The

method is based on a generalized version of the standard spike-and-slab prior distribution which is

often used for individual feature selection. Exact Bayesian inference under the prior considered is

infeasible for typical regression problems. However, approximate inference can be carried out ef-

ficiently using Expectation Propagation (EP). A detailed analysis of the generalized spike-and-slab

prior shows that it is well suited for regression problems that are sparse at the group level. Fur-

thermore, this prior can be used to introduce prior knowledge about specific groups of features that

are a priori believed to be more relevant. An experimental evaluation compares the performance

of the proposed method with those of group LASSO, Bayesian group LASSO, automatic relevance

determination and additional variants used for group feature selection. The results of these exper-

iments show that a model based on the generalized spike-and-slab prior and the EP algorithm has

state-of-the-art prediction performance in the problems analyzed. Furthermore, this model is also

very useful to carry out sequential experimental design (also known as active learning), where the

data instances that are most informative are iteratively included in the training set, reducing the

number of instances needed to obtain a particular level of prediction accuracy.

Keywords: group feature selection, generalized spike-and-slab priors, expectation propagation,

sparse linear model, approximate inference, sequential experimental design, signal reconstruction

1. Introduction

Many regression problems of practical interest are characterized by a small number of training in-

stances n and a large number of explanatory variables or features d. Examples of these problems
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include the reconstruction of medical images (Seeger et al., 2009), the processing of fMRI data

(Gerven et al., 2009), the discovery of gene regulators (Hernández-Lobato et al., 2008), the pro-

cessing of natural language (Sandler et al., 2009) or the reconstruction of transcription networks

(Hernández-Lobato and Dijkstra, 2010). Under these circumstances a simple linear model is typi-

cally assumed to describe the observed data. However, when n ≪ d the problem of estimating the

optimal linear relation is under-determined. In particular, there is an infinite number of values for

the model coefficients that explain the data equally well (Johnstone and Titterington, 2009). To ad-

dress this difficulty and also to alleviate over-fitting, a practical solution that is typically employed

is to assume that only a few of all the explanatory variables or features are actually relevant for

prediction. The consequence is that the estimation problem is generally regularized by assuming

that most of the model coefficients in the optimal solution are exactly equal to zero (Johnstone and

Titterington, 2009). That is, the vector of model coefficients is sparse. This means that the features

whose associated model coefficients take value equal to zero do not contribute to the decisions made

by the model and are hence considered to be irrelevant. To estimate the model coefficients under

the sparsity assumption different strategies described in the literature can be used. These include

introducing regularization norms or assuming sparse enforcing priors in the estimation process (Tib-

shirani, 1996; George and McCulloch, 1997; Tipping, 2001; Kappen and Gómez, 2013).

The process of inducing the model coefficients under the sparsity assumption can be facilitated

when prior information is available about groups of features that are expected to be jointly relevant

or jointly irrelevant for prediction (Huang and Zhang, 2010). That is, when different groups of

model coefficients are expected to be jointly equal to or jointly different from zero. Finding this

type of information can be difficult in practice. However, such prior information can be deduced

from a related task (see, e.g., Section 7.2) or from some additional data (see, e.g., Section 7.3).

Furthermore, if this information is available and it is accurate, it can be beneficial to improve the

estimates of the model coefficients and to reduce the number of samples required to obtain a good

generalization performance. As described by Puig et al. (2011) the class of problems where sparsity

at the group level is beneficial include spectrum cartography for cognitive radio (Bazerque et al.,

2011), jointly-sparse signal recovery (Wakin et al., 2006), regression with grouped variables (Yuan

and Lin, 2006) and source localization (Malioutov et al., 2005). Other classes of problems that can

benefit from group sparsity are multi-task feature selection (Hernández-Lobato et al., 2010) or whole

genome association mapping (Kim and Xing, 2008). As with the individual sparsity assumption,

sparsity at the group level can be introduced in the estimation process of the model coefficients by

considering specific regularization norms or by assuming sparse enforcing priors at the group level

(Yuan and Lin, 2006; Ji et al., 2009; Vogt and Roth, 2010; Raman et al., 2009; Yen and Yen, 2011).

For this purpose, we specifically consider a generalized version of the standard spike-and-slab prior

which has been typically employed for individual feature selection (Mitchell and Beauchamp, 1988;

Geweke, 1996; George and McCulloch, 1997). Under the assumption that the grouping information

is given beforehand, the proposed prior introduces a set of binary latent variables, one for each

different group of features. If the latent variable of a particular group is equal to zero, the model

coefficients corresponding to that group are set to zero and the features of the group are not used for

prediction of the targets. On the other hand, if the latent variable is equal to one, the features of that

particular group are used for prediction and the model coefficients are assumed to be generated from

a multi-variate Gaussian distribution. When there is no grouping information this prior reduces to

the standard spike-and-slab prior. Exact Bayesian inference under the prior considered is infeasible
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for typical regression problems. Thus, in practice one has to resort to approximate techniques for

Bayesian inference.

The proposed generalized version of the spike-and-slab prior has several practical advantages

over other methods for group feature selection. In particular, it is the only prior that puts a positive

probability mass on values equal to zero for the model coefficients of each group. Furthermore,

introducing the prior fraction of relevant groups for prediction or the expected deviation from zero of

the coefficients that are actually different from zero is very easy under this prior. The proposed prior

also has a closed form convolution with the Gaussian distribution, which allows the use of efficient

algorithms for approximate Bayesian inference like expectation propagation (EP) (Minka, 2001).

This is impossible with other existing priors that can also be used for group feature selection like

the multi-variate Laplace distribution (Raman et al., 2009) or the multi-variate horseshoe (Carvalho

et al., 2009). The proposed prior also provides a direct estimate of the relative importance of each

group for prediction, hence identifying easily the most relevant groups. This estimate is simply

obtained by computing the posterior probability that the different latent variables of the prior are

activated.

The EP algorithm has a total running time under this prior that scales as O(n2d), where n is the

number of training instances and d is the number of features. This linear dependence on d is very

efficient when n ≪ d, which is the general scenario we assume. The EP algorithm also provides a

direct estimate of the posterior covariances of the model coefficients. These are useful for carrying

out sequential experimental design in a linear model that incorporates the grouping information

using the proposed generalized spike-and-slab prior. Specifically, in sequential experimental design

we save on costly experiments by iteratively including in the training set the data instances that are

most informative about the model coefficients (Seeger, 2008). Our experiments indicate that EP

and the proposed prior are very effective towards this end. Additionally, a detailed analysis of the

sparsity properties of the generalized prior shows that it is adequate for group feature selection. In

particular, it produces selective shrinkage of the different groups of the model coefficients. Namely,

under this prior it is possible to achieve high levels of group sparsity and, at the same time, to avoid

shrinking the model coefficients that are truly different from zero. We show that this is not possible

with other popular methods for group feature selection. Finally, incorporating prior knowledge

about specific groups of features that are more likely to be used for prediction is straight-forward

under the generalized spike-and-slab prior. This type of prior information can be very useful to

improve the prediction performance.

The performance of a model based on the generalized spike-and-slab prior and the EP algorithm

is evaluated on a collection of benchmark regression problems and compared with other methods

from the literature that can also be used for group feature selection. The problems investigated

include the reconstruction of sparse signals from a reduced set of noisy measurements (Ji et al.,

2008), the prediction of user sentiment (Blitzer et al., 2007), and the reconstruction of images of

hand-written digits extracted from the MNIST data set (LeCun et al., 1998). The methods we com-

pare with include the group LASSO (Yuan and Lin, 2006; Kim et al., 2006), the Bayesian group

LASSO (Raman et al., 2009), a modified version of the horseshoe prior for group feature selection

(Carvalho et al., 2009) and the group automatic relevance determination (ARD) principle (Ji et al.,

2009). We also include for comparison a model which does not consider the grouping informa-

tion and a model that uses Markov chain Monte Carlo methods (Gibbs sampling) for approximate

inference instead of the EP algorithm. The results of these experiments indicate that the grouping

information can significantly improve the performance of the prediction models. Furthermore, the
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model based on the proposed prior and the EP algorithm generally performs best in the problems

investigated. There is little difference between the performance obtained by using EP or Gibbs

sampling for approximate inference. This confirms the accuracy of the posterior approximation

computed by EP, while the EP algorithm is orders of magnitude faster than Gibbs sampling. The

running time of EP is also better than or similar to the running time of the other methods analyzed

in this document. These experiments also show that the proposed prior is very useful to identify the

most relevant groups for prediction and that prior knowledge about specific groups that are a priori

expected to be more relevant for prediction can significantly improve the prediction performance of

the resulting model.

The rest of this document is organized as follows. Section 2 describes the generalized spike-

and-slab prior considered for group feature selection. Section 3 shows how the EP algorithm can

be successfully applied for approximate inference in a linear regression model based on this prior.

Section 4 introduces sequential experimental design and shows how it can be efficiently imple-

mented in the model based on the generalized spike-and-slab prior and the EP algorithm. Section

5 gives a summary of other methods that are available in the literature to carry out group feature

selection. Section 6 introduces a detailed analysis of the group sparsity properties of the general-

ized spike-and-slab prior and the other methods that can be used for this purpose. Section 7 shows

some experiments comparing the different methods that can be used for group feature selection and,

finally, Section 8 presents the conclusions of this work.

2. Group Feature Selection Using Spike-and-Slab Priors

In this section we describe the linear regression model which promotes sparsity at the group level

using a generalized spike-and-slab prior. Consider some training data in the form of n d-dimensional

feature vectors summarized in a design matrix X = (x1, . . . ,xn)
T and some associated target values

y = (y1, . . . ,yn)
T with yi ∈R. A linear predictive rule is assumed for y given X:

y = Xw+ǫ , (1)

where w is a vector of unknown model coefficients and ǫ is a n-dimensional vector of independent

additive Gaussian noise with variance σ2
0, that is, ǫ ∼ N (0,σ2

0I). Given X and y, the likelihood of

w is defined as

P (y|X,w) =
n

∏
i=1

P (yi|xi,w) =
n

∏
i=1

N (yi|wTxi,σ
2
0) . (2)

When d ≫ n, (2) is not strictly concave and infinitely many values of w fit the training data equally

well with perfect prediction accuracy. These are precisely the type of problems we are interested

in. A strong regularization technique that is typically employed in this context is to assume that w

is sparse. We further assume the availability of prior information about groups of components of w

that are expected to be jointly zero or jointly different from zero. This is equivalent to considering

specific groups of features that are expected to be jointly relevant or jointly irrelevant for prediction.

All these assumptions can be incorporated into the model using a generalized version of the stan-

dard spike-and-slab prior (Mitchell and Beauchamp, 1988; Geweke, 1996; George and McCulloch,

1997).

Consider a partition of w into G disjoint groups (in general we do not allow for groups of model

coefficients to overlap) such that w = (wT
1 , . . . ,w

T
G)

T. We introduce a vector z with G binary latent
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variables {z1, . . . ,zG}, where each zg indicates whether wg is zero (zg = 0) or different from zero

(zg = 1). When z is known, the prior for w is defined as:

P (w|z) =
G

∏
g=1

[zgN (wg|0,v0I)+(1− zg)δ(wg)]

=
d

∏
j=1

[

zg( j)N (w j|0,v0)+(1− zg( j))δ(w j)
]

, (3)

where g( j) is the index of the group which contains the j-th coefficient, N (·|0,v0I) is a Gaussian

density, with zero mean and a group specific variance v0 (the slab), and δ(·) is a point probability

mass centered at the origin (the spike). The value of v0 controls the shrinkage of the coefficients

that are different from zero. If v0 is large, the coefficients of the groups that are different from zero

are barely regularized. Conversely, if v0 is small these coefficients are strongly shrunk towards zero.

Finally, the prior for z is a multivariate Bernoulli distribution:

P (z) = Bern(z|p0) =
G

∏
g=1

[

p
zg

0,g(1− p0,g)
(1−zg)

]

, (4)

where p0,g is the prior probability that the coefficients within the g-th group are different from zero

and p0 = (p0,1, . . . , p0,G)
T. Thus, incorporating prior knowledge about specific groups of features

that are more likely to be used for prediction is straight-forward under (4). For this we only have

to increase the corresponding components of the vector p0. When all groups of features are a

priori believed to be equally relevant for prediction, each p0,g with g = 1, . . . ,G can be set equal

to a constant value p0, which indicates the fraction of groups initially expected to be relevant for

prediction. Finally, we note that when all groups of features are of size one, (3) reduces to the

standard spike-and-slab prior described by George and McCulloch (1997).

2.1 Inference, Prediction and Relevant Groups

Given the observed data X and y, we make inference about the potential values of w and z using

Bayes’ theorem:

P (w,z|y,X) =
P (y|w,X)P (w|z)P (z)

P (y|X)
, (5)

where P (y|X) is a normalization constant, known as the model evidence, which is useful for model

comparison (Bishop, 2006; MacKay, 2003). This posterior distribution and the likelihood (2) can be

combined to compute a predictive distribution for the target ynew ∈R associated to a new observation

xnew:

P (ynew|xnew,y,X) = ∑
z

∫
P (ynew|w,xnew)P (w,z|y,X)dw . (6)

The posterior distribution of z defines the probability of the features contained in specific relevant

groups to be used for prediction:

P (z|y,X) =
∫

P (w,z|y,X)dw . (7)
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Furthermore, one can marginalize (7) over zg′ , with g′ 6= g, for a specific latent variable zg to com-

pute P (zg|y,X), that is, the associated posterior probability of using the g-th group of features for

prediction.

A practical difficulty is that the exact computation of (5), (6) and (7) is intractable for typical

learning problems. All these expressions involve a number of summations which grows exponen-

tially with G, which is typically of the same order as d. Thus, they must be approximated in

practice. Approximate Bayesian inference is typically implemented in the literature using Markov

chain Monte Carlo techniques (Gibbs sampling, in particular) where one samples from a Markov

chain whose stationary distribution coincides with the posterior distribution of the model (Neal,

1993). Unfortunately, these methods are computationally expensive since the Markov chain has to

be run for a large number of iterations to get just a few independent samples. As a more efficient

alternative we employ here expectation propagation (EP), a method for fast approximate inference

with Bayesian models (Minka, 2001). This method is described in the next section.

3. Expectation Propagation for Bayesian Group Feature Selection

Expectation propagation (EP) is a deterministic method for carrying out approximate Bayesian in-

ference (Minka, 2001). EP approximates the posterior distribution of the parameters of interest

using a simpler parametric distribution Q . The form of Q is chosen so that the integrals required to

calculate expected values and marginal distributions with respect to Q can be obtained analytically

in closed form. EP fixes the parameters of Q to approximately minimize the Kullback-Leibler di-

vergence between the exact posterior and Q . As a side effect, EP also provides an estimate of the

model evidence, which can be useful to perform model selection.

In many probabilistic models that assume i.i.d. observations the joint probability can be ex-

pressed as a product of several factors. In the specific case of a linear regression model, the joint

probability of w, z and y conditioned to X can be written as the product of 3 factors:

P (w,z,y|X) = P (y|w,X)P (w|z)P (z) =
3

∏
i=1

fi(w,z) , (8)

where the first factor corresponds to the likelihood, the second factor corresponds to the prior for w,

and the final factor corresponds to the prior for z. Namely,

f1(w,z) = N (y|Xw,σ2
0I) , (9)

f2(w,z) =
d

∏
j=1

zg( j)N (w j|0,σ2
g( j))+(1− zg( j))δ(w j) ,

f3(w,z) =
G

∏
g=1

p
zg

0,g(1− p0,g)
1−zg . (10)

EP approximates each exact factor fi by a simpler factor f̃i such that

3

∏
i=1

fi(w,z)≈
3

∏
i=1

f̃i(w,z) .

All approximate factors f̃i are constrained to belong to the same family of exponential distributions,

but they do not have to integrate to one. Once normalized with respect to w, and z, (8) becomes the
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exact posterior distribution (5). Similarly, the normalized product of the f̃i becomes an approxima-

tion to the posterior:

Q (w,z) =
1

Z
∏

i

f̃i(w,z) , (11)

where Z is the normalization constant which approximates P (y|X). The exponential family of dis-

tributions is closed under the product operation. Therefore, Q has the same simple exponential

form as the f̃i and Z can be readily computed. In practice, the form of Q is selected first, and the

f̃i are then constrained to have the same form as Q . For each approximate factor f̃i, one consid-

ers Q \i ∝ Q / f̃i. EP iteratively updates each f̃i one by one while minimizing the Kullback-Leibler

(KL) divergence between fiQ
\i and f̃iQ

\i. The KL-divergence minimized by EP includes a correc-

tion term so that it can be applied to un-normalized distributions (Zhu and Rohwer, 1995). More

precisely, each EP update step minimizes

KL
(

fiQ
\i|| f̃iQ

\i
)

= ∑
z

∫ [
fiQ

\i log
fiQ

\i

f̃iQ \i
+ f̃iQ

\i − fiQ
\i

]

dw . (12)

with respect to f̃i. Note that we have omitted in (12) the dependencies of f̃i, fi and Q \i on the

parameters w and z to improve the readability. Specifically, EP involves the following steps:

1. Initialize all f̃i and Q to be uniform (non-informative).

2. Repeat until Q converges:

(a) Select an f̃i to refine and compute Q \i ∝ Q / f̃i.

(b) Update f̃i to minimize KL
(

fiQ
\i|| f̃iQ

\i
)

.

(c) Update the approximation Q new ∝ f̃iQ
\i.

3. Evaluate Z ≈ P (y|X) as the integral of the product of all the approximate factors.

The optimization problem in step 2-(b) is convex with a single global optimum. The solution

to this problem is found by matching the expected values of the sufficient statistics under fiQ
\i and

f̃iQ
\i (Bishop, 2006). EP is not guaranteed to converge globally but extensive empirical evidence

shows that most of the times it converges to a fixed point (Minka, 2001). Non-convergence can be

prevented by damping the EP updates (Minka and Lafferty, 2002). Damping is a standard procedure

and consists in setting

f̃i = [ f̃ new
i ]ξ[ f̃ old

i ]1−ξ (13)

in step 2-(b), where f̃ new
i is the updated factor and f̃ old

i is the factor before the update. ξ ∈ [0,1] is

a parameter which controls the amount of damping. When ξ = 1, the standard EP update operation

is recovered. When ξ = 0, no update of the approximate factors occurs. In our experiments we set

ξ = 0.9 and progressively decay its value at each iteration of EP by 1%. Such a strategy offers good

practical results and EP appears to always converge to a stationary solution. Finally, when compared

to other approximate inference methods, such as Monte Carlo sampling or variational inference, EP

has shown good overall performances (Minka, 2001). EP is also the preferred method for approxi-

mate inference in linear models with the standard spike-and-slab prior (Hernández-Lobato, 2010).

1897
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3.1 The Posterior Approximation

We approximate the posterior (5) using a parametric distribution that belongs to the exponential

family

Q (w,z) = N (w|m,V)
G

∏
g=1

Bern(zg|σ(pg)) , (14)

where N (·|m,V) denotes the probability density of a multivariate Gaussian with mean vector m

and covariance matrix V, and Bern(·|σ(pg)) denotes the probability mass function of a Bernoulli

distribution with success probability σ(pg) and σ(·) is the sigmoid function:

σ(x) =
1

1+ exp{−x} .

In (14), p = (p1, . . . , pG)
T, m and V are free parameters that have to be estimated by EP. The

particular choice of (14) makes all the required computations tractable and offers good experimental

results detailed in Section 7. The logistic function eliminates numerical under-flow or over-flow

errors and simplifies the EP update operations, in a similar way as when EP is applied to a linear

regression model with the standard spike-and-slab prior (Hernández-Lobato, 2010).

The approximate factors f̃i must have the same functional form as (14) but need not be normal-

ized. Furthermore, the exact factor f1 corresponding to the likelihood (2), only depends on w. The

Bernoulli part of f̃1 can thus be removed:

f̃1(w) = s̃1 exp

{

−1

2
(w− m̃1)

TṼ−1
1 (w− m̃1)

T

}

, (15)

where m̃1, Ṽ1 and s̃1 are free parameters to be estimated by EP. The second and third approximate

factor f̃2 and f̃3 also have a special form because the corresponding exact factors f2 and f3 factorize

with respect to each component of w and z, respectively. Furthermore, f3 is independent of w and

its corresponding Gaussian part can be ignored. These approximate factors are hence defined as:

f̃2(w,z) = s̃2

[

d

∏
j=1

exp

{

− 1

2ṽ2, j
(w j − m̃2, j)

2

}

Bern(zg( j)|σ( p̃2, j))

]

, (16)

f̃3(z) = s̃3

[

G

∏
g=1

Bern(zg|σ( p̃3,g))

]

, (17)

where s̃2, s̃3, m̃2 = (m̃2,1, . . . , m̃2,d)
T, ṽ2 = (ṽ2,1, . . . , ṽ2,d)

T, p̃2 = ( p̃2,1, . . . , p̃2,d)
T and

p̃3 = ( p̃3,1, . . . , p̃3,G)
T are free parameters to be estimated by EP. The constants s̃1, s̃2 and s̃3 are

introduced to make sure that f̃iQ
\i and the corresponding fiQ

\i integrate up to the same value.

Once the different parameters of f̃1, f̃2 and f̃3 have been estimated, the corresponding param-

eters m, V and p of Q can be easily computed by using (11) and the closure property of the ex-

ponential family under the product operation. Namely, the product of two un-normalized Gaussian

distributions is another un-normalized Gaussian distribution. Similarly, the product of two Bernoulli

distributions is another Bernoulli distribution. The specific details of the product rules for Gaussian
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and Bernoulli distributions are described in the Appendix of Hernández-Lobato (2009). The param-

eters of Q given each f̃i are obtained from applying those rules:

V =
(

Ṽ−1
1 +Λ

−1
)−1

, (18)

m = V
(

Ṽ−1
1 m̃1 +Λ

−1m̃2

)

, (19)

pg = ∑
g( j)=g

p̃2, j + p̃3,g, for g = 1, . . . ,G , (20)

where Λ = diag(ṽ2,1,, . . . , ṽ2,d) and diag(a1, . . . ,ad) denotes a diagonal matrix with elements

a1, . . . ,ad in the diagonal. At first glance, the computation of V according to (18) requires the

inversion of a d × d matrix, with d equal to the dimensionality of the data. However, if Ṽ−1
1 is

known and the regression problem satisfies d ≫ n (as for the regression problems we consider), the

Woodbury formula provides a faster alternative with a computational cost of O(n2d), where n is the

number of observed samples (the specific details are given in the next section).

3.2 EP Update Operations

This section details how to update each approximate factor f̃1, f̃2 and f̃3 according to the steps 2-

(a), 2-(b) and 2-(c) of the EP algorithm. These operations involve minimizing the KL divergence

between fiQ
\i and f̃iQ

\i with respect to f̃i. This problem is convex with a single global minimum

which is found by setting f̃i so that the expected values of the sufficient statistics under f̃iQ
\i and

fiQ
\i match after normalization (Bishop, 2006). To simplify the notation, we only present here the

operations for ξ = 1, that is, when there is no damping in the EP updates. Incorporating the effect of

damping in these operations is straight-forward and is omitted. In particular, the natural parameters

of each approximate factor become a convex combination of the natural parameters before and

after each update operation, as derived from (13). However, as shown in this section, only the

approximate factor f̃2 needs to be updated. The optimal parameters of f̃1 and f̃3 can be computed

exactly and these factors need not be updated by EP. Finally, we note that the parameters s̃1, s̃2 and

s̃3 of f̃1, f̃2 and f̃3 are only needed to compute the approximation of the marginal likelihood in step 3

of the EP algorithm. Their computation can thus be delayed until EP converges as described below.

We now describe how to compute the parameters m̃1 and Ṽ1 of the first approximate factor f̃1,

which is fairly simple. In particular, we note that the corresponding exact factor f1 has a Gaussian

form with respect to w, namely the likelihood of the observed data, as described in (9). Furthermore,

the form of f̃1 in (15) is also Gaussian. This means that the factor f1 can be approximated exactly

by EP, independently of the values of the other approximate factors f̃2 and f̃3. We only have to set

f̃1 = f1, since both f̃1 and f1 have the same form. Consequently f̃1 needs not be re-estimated by

EP through the steps 2-(a) to 2-(c) but set equal to f1 at the beginning of the EP algorithm and kept

constant afterwards. The parameters of f̃1 are:

Ṽ−1
1 =

1

σ2
0

XTX , Ṽ−1
1 m̃1 =

1

σ2
0

XTy . (21)

Note that m̃1 is not uniquely defined in (21) whenever d > n. More precisely, if d > n then Ṽ−1
1

is not full rank, Ṽ1 does not exist and the likelihood (2) is not strictly concave. Therefore, when

d > n, there are infinitely many vectors m̃1 that can be used as potential solutions and must satisfy

(21). For this reason, it is better in practice to define f̃1 in terms of its natural parameters Ṽ−1
1 and
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Ṽ−1
1 m̃1. Namely,

f̃1(w) = s̃1 exp

{

−1

2
wTṼ−1

1 w+wTṼ−1
1 m̃1

}

,

where the constant terms can be included in s̃1.

The optimal parameters p̃3 of the third approximate factor f̃3 can be found following the same

reasoning. Specifically, the exact factor f3 has the same form as the approximate factor f̃3, that

is, a product of G Bernoulli distributions, one for each component of z. See (10) and (17). Thus

f̃3 is set equal to f3 and not iteratively re-estimated through the EP algorithm. The corresponding

parameters of f̃3 are:

p̃3,g = σ−1(p0,g) , for g = 1, . . . ,G , (22)

where σ−1(·) is the logit function, that is, the inverse of the sigmoid function. Namely,

σ−1(x) = log
x

1− x
.

In (22) p0,g is the prior probability of using the g-th group of features for prediction.

Updating the approximate factor f̃2 is somewhat more complex and requires implementing all

steps 2-(a) to 2-(c) of the EP algorithm. To simplify the computation, each of the d components

of f̃2 that appear in (16) is updated in parallel, as suggested by Gerven et al. (2009). For this, we

factorize f̃2 as follows:

f̃2(w,z) =
d

∏
j=1

s̃2, j f̃2, j(w j,zg( j)) , (23)

where

s̃2 =
d

∏
j=1

s̃2, j , f̃2, j(w j,zg( j)) = exp

{

− 1

2ṽ2, j
(w j − m̃2, j)

2

}

Bern(zg( j)|σ( p̃2, j)) .

Note that in (23) each component f̃2, j is the product of a univariate Gaussian distribution and a

Bernoulli distribution. Thus, we only need the marginal distributions of Q for each component of

w and z to obtain the corresponding update operations. The marginal distribution of Q for each

component of z, zg, with g = 1, . . . ,G, is a Bernoulli distribution with probability parameter pg,

where pg is defined in (20). Finding the means m and the variances diag(V) of each marginal

distribution of Q for each component of w is more difficult. In principle, we could use (18) and (19)

for computing diag(V) and m, respectively. However, such a computation would require inverting

a d × d matrix, where d is the number of dimensions. The Woodbury formula offers an efficient

alternative when d ≫ n, with a computational cost in O(n2d):

V =Λ−ΛXT
[

Iσ2
0 +XΛXT

]−1
XΛ , (24)

where Λ is the diagonal matrix defined in (18) and Iσ2
0 +XΛXT is a n× n matrix. Given this

representation for V, the value of the mean parameter m of Q can be computed using (19) and (21)

in O(n2d) steps. Namely,

m =Λη−ΛXT
[

Iσ2
0 +XΛXT

]−1
XΛη , (25)
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where η = XT y/σ2
0 +Λ

−1m̃2 is a d-dimensional column vector. The d ×d components of V need

not be evaluated but only the diagonal of this matrix for the variances of the marginals. Conse-

quently the cost of computing diag(V) = (V11, . . . ,Vdd)
T and m is in O(n2d), which is linear in the

dimensionality d of the regression problem. The use of the Woodbury formula may lead to numer-

ical instabilities, which however have never been observed for the regression problems considered

in Section 7.

Given diag(V) and m, we compute for each f̃2, j the corresponding parameters of the marginal

distributions of w j and zg( j) under Q \2, j ∝ Q / f̃2, j. These parameters are obtained using the rules

for the quotient between Gaussian distributions and the quotient between Bernoulli distributions.

These rules are described in the Appendix of Hernández-Lobato (2009). Consider m
\2, j
j and v

\2, j
j to

be respectively the mean and the variance of the marginal distribution of w j under Q \2, j. Similarly,

let σ(p
\2, j
g ), with g = g( j), be the probability of using the g-th group for prediction under Q \2, j.

These parameters are obtained from diag(V), m and the parameters of f̃2, j as follows:

v
\2, j
j =

(

V−1
j j − ṽ−1

2, j

)−1

,

m
\2, j
j = v

\2, j
j

(

V−1
j j m j − ṽ−1

2, jm̃2, j

)

,

p
\2, j
g = pg − p̃2, j , (26)

where Vj j and m j are respectively the variance and the mean of the marginal distribution of w j under

Q .

Once Q \2, j has been computed, we find the corresponding approximate factor f̃2, j which mini-

mizes the KL divergence between f2, jQ
\2, j and f̃2, jQ

\2, j, where f2, j is obtained from a factorization

of f2 equivalent to the one described for f̃2 in (23). Specifically, f2, j(w j,zg( j))= zg( j)N (w j|0,σ2
g( j))+

(1− zg( j))δ(w j). Given Q \2, j the optimal parameters of f̃2, j are:

ṽnew
2, j =

1

a2
j −b j

− v
\2, j
j ,

m̃new
2, j = m

\2, j
j +

a j

a2
j −b j

,

p̃new
2, j = logN (0|m\2, j

j ,v
\2, j
j + v0)− logN (0|m\2, j

j ,v
\2, j
j ) ,

where v0 is the marginal variance of the slab and a j and b j are constants defined as:

a j = σ
(

p̃new
2, j + p

\2, j
g

) m
\2, j
j

v
\2, j
j + v0

+σ
(

− p̃new
2, j − p

\2, j
g

) m
\2, j
j

v
\2, j
j

,

b j = σ
(

p̃new
2, j + p

\2, j
g

) (m
\2, j
j )2 − v

\2, j
j − v0

(v
\2, j
j + v0)2

+σ
(

− p̃new
2, j − p

\2, j
g

) (m
\2, j
j )2 − v

\2, j
j

(v
\2, j
j )2

.

These update operations require the value of v
\2, j
j to be positive. In some rare situations a negative

value is found for v
\2, j
j after removing f̃2, j from the posterior approximation Q to compute Q \2, j.

In such a rare occurrence, the corresponding update of f̃2, j is not performed. Furthermore, a neg-

ative value for ṽnew
2, j may be observed when computing the optimal parameters for f̃2, j. Negative
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variances are common in many EP implementations (Minka, 2001; Minka and Lafferty, 2002). In

this case, the approximate factors are not un-normalized density functions, but correction factors

that compensate for errors in the first approximate factor f̃1. It has been observed in the literature

that negative variances can lead to erratic behavior in EP and to longer convergence times (Seeger,

2008; Hernández-Lobato, 2010). To avoid these problems, we minimize the KL between f2, jQ
\2, j

and f̃2, jQ
\2, j with the constraint of ṽnew

2, j being positive. In this case, whenever the optimal ṽnew
2, j is

negative, we simply set ṽnew
2, j = v∞, where v∞ is a large positive constant. The update of the other

parameters of f̃2, j (m̃2, j and p̃2, j) is kept unchanged. This approach, already used in the linear re-

gression model with standard spike-and-slab priors described by Hernández-Lobato (2010), offered

improved convergence results.

Once all the approximate factors f̃2, j, with j = 1, . . . ,d, have been updated in parallel, Q needs

to be recomputed as the product of all the approximate factors. This corresponds to step 2-(c) of

the EP algorithm. For this, we can use (18), (19) and (20). However, we have already described

how to obtain the means m and the variances diag(V) of the marginals of Q for w to update each

approximate factor f̃2, j. Thus, in practice, one only has to use (20) to recompute the parameter p of

Q , which is needed in (26). There is no need to recompute the complete covariance matrix V of the

Gaussian part of Q since only the diagonal of this matrix is strictly needed for the EP updates. In

summary, the total cost of the EP algorithm under the assumption of a constant number of iterations

until convergence is in O(n2d), where n is the number of training instances and d is the number of

features.

3.3 Approximation of the Model Evidence

The Bayesian approach to model selection specifies that the model with the largest evidence should

be preferred (Bishop, 2006; MacKay, 2003). The model evidence is defined in (5) as P (y|X), that

is, the normalization constant used to compute the posterior distribution from the joint distribution

of the model parameters and the data. It can also be described as the probability that the targets y

are generated from the design matrix X using a linear model whose coefficient vector w is randomly

sampled from the assumed prior distribution. The model evidence naturally achieves a balance be-

tween penalizing model complexity and rewarding models that provide a good fit to the training data

(Bishop, 2006). However, a practical difficulty in computing P (y|X) is its expensive computational

cost. Specifically, the exact evaluation of P (y|X) is infeasible for large G since it involves a sum of

2G terms. These are the 2G different configurations for the vector of latent variables z. Neverthe-

less, if needed, EP can be used to efficiently compute an approximation once it has converged, as

described in step 3 of the algorithm:

P (y|X)≈
∫

∑
z

f̃1(w,z) f̃2(w,z) f̃3(w,z)dw . (27)

Since all the approximate factors f̃1, f̃2 and f̃3 have simple exponential forms, (27) can be readily

evaluated. We only have to use the formulas for the product of Gaussian and Bernoulli distributions.

These formulas are described in the Appendix of Hernández-Lobato (2009). The evaluation of (27)

also requires the computation of the parameters s̃1, s̃2 and s̃3 of each approximate factor. These

parameters are estimated once EP has converged and their specific values are fixed to guarantee that
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f̃iQ
\i and the corresponding fiQ

\i integrate up to the same value:

log(s̃1) =−n

2
log(2πσ2

0)−
1

2σ2
0

yTy ,

log(s̃2, j) = log(κ j)− log
(

σ( p̃2, j)σ(p
\2, j
g( j))+σ(− p̃2, j)σ(−p

\2, j
g( j))

)

− 1

2
log(2πṽ2, j)

− log
(

N (0|m\2, j
j − m̃2, j, ṽ2, j +V

\2, j
j j )

)

, for j = 1, . . . ,d

log(s̃3) = 0 ,

were κ j = σ(p
\2, j
g( j))N (0|m\2, j

j ,v0+V
\2, j
j j )+σ(−p

\2, j
g( j))N (0|m\2, j

j ,V
\2, j
j j ) and s̃2 = ∏d

j=1 s̃2, j since we

have further factorized f̃2 as the product of d factors f̃2, j with j = 1, . . . ,d. See (23) for further

details.

Given these values, we can approximate the logarithm of the model evidence by

logP (y|X)≈
3

∑
i=1

log s̃i +
G

∑
g=1

log

(

σ( p̃3,g) ∏
g( j)=g

σ( p̃2, j)+σ(− p̃3,g) ∏
g( j)=g

σ(− p̃2, j)

)

− 1

2
m̃T

2Λ
−1m̃2 +

d

2
log(2π)+

1

2
log(|V|)+ 1

2
υTVυ , (28)

where V is the covariance matrix of the Gaussian part of Q and υ is a d-dimensional vector defined

as υ = 1/σ2
0XTy+Λ

−1m̃2 . In practice it is better to work with the logarithm of the approximation

to P (y|X) to avoid numerical over-flow and under-flow errors. Furthermore, the computation of |V|
can be efficiently implemented when d ≫ n using the Sylvester’s determinant formula and υTVυ

can be evaluated in O(n2d) steps using the representation for V given in (24).

We note that one should use the model evidence with care to perform model selection. In

particular, if the assumptions made about the form of the model are not accurate enough, the re-

sults obtained by Bayesian model comparison can be misleading, as indicated by Bishop (2006).

This is precisely the case of the experiments reported in Section 7.2, where we have observed that

the approximation to the model evidence (28) provides sub-optimal decisions to choose the model

hyper-parameters p0 and v0. Thus, in a practical application it is wise to keep aside an independent

validation set to evaluate the overall performance of the final system.

3.4 Prediction and Identification of Relevant Groups

Once EP has converged and Q has been estimated, we can use this approximation for making

predictions. In particular, we only have to substitute the posterior approximation in (6) to obtain an

approximate predictive distribution for the target ynew associated to a new instance xnew:

P (ynew|xnew,y,X)≈ ∑
z

∫
P (ynew|w,xnew)Q (w,z)dw

= N (ynew|mTxnew,x
T
newVxnew +σ2

0) , (29)

where m and V are the mean vector and the covariance matrix of the posterior approximation Q for

w. Both xT
newVxnew and mTxnew can be efficiently computed in O(n2d) steps using the representa-

tions given in (24) and (25), respectively. Finally, if one is only interested in the expected value of

ynew and not in the uncertainty of the prediction, the computation of xT
newVxnew can be omitted.
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The posterior approximation Q is also very useful to identify the groups of features that are

more relevant for prediction after substituting the exact posterior by Q in (7). Namely,

P (z|y,X)≈
∫

Q (w,z)dw =
G

∏
g=1

Bern(zg|σ(pg)) ,

where σ(pg) approximates the posterior probability of using the g-th group of features for predic-

tion. Thus, we can use the parameters p1, . . . , pG of Q to identify the groups which are more likely

used for prediction. More precisely, we should observe a bi-separation of the different groups in

two sets according to these parameters. The first set would contain features which are unlikely to be

used for prediction. By contrast, the second set would contain features which are used for prediction

with high posterior probability.

4. Sequential Experimental Design

Sequential experimental design (also known in the literature as optimal design or active learning)

deals with the problem of saving on expensive experiments to obtain the highest level of information

about the different latent variables or parameters of the assumed model (Seeger, 2008; Chaloner and

Verdinelli, 1995; Fedorov, 1972). In our particular scenario, sequential experimental design tries to

answer the following problem. Consider several candidate points xnew that are available for inclu-

sion into the training set of the model. At which of these points should the corresponding target value

ynew be sampled to obtain as much new information as possible about the unknown w? Assuming

that xnew and ynew are both known, Seeger (2008) and MacKay (1991) describe some natural scores

that can be used to answer this question: for example, the decrease in the posterior uncertainty or

the gain in information from the current posterior distribution P (w|y,X) to the updated posterior

distribution P ′(w|y,X) that is obtained once the new data instance is introduced in the training set.

Information gain can be measured in terms of the KL divergence between these two distributions.

Namely, we could aim to maximize KL(P ′||P ). The target value ynew is however often not available

for the candidate points xnew. A natural alternative is obtained by marginalizing this score over the

expected distribution of ynew given the assumed model. Such a score is defined as E{KL(P ′||P )},

where the expectation goes over P (ynew|xnew,y,X), that is, the predictive distribution for ynew given

the current model. Another potential score to be used for this purpose is the expected decrease in

the entropy of the posterior distribution once the new instance has been included in the training set.

That is, E{H[P ]−H[P ′]}, where H[P ] and H[P ′] respectively denote the entropy of the posterior

distribution before and after the inclusion of the candidate point xnew into the training set. MacKay

(1991) actually shows that both scores are equivalent and lead to the selection of the same instance

xnew. Consequently we focus on this last score in the rest of this section. Such score has also been

used by Ji and Carin (2007) and by Seeger (2008) to perform sequential experiment design using a

sparse linear model and by Lawrence et al. (2003) in the context of sparse Gaussian processes.

As discussed in Section 2.1, the computation of the exact posterior distribution P (w|y,X) is

intractable in practice. Thus, we have to resort to the EP posterior approximation Q for the esti-

mation of the entropy of the posterior distribution. More precisely, we replace the entropy of the

exact posterior H[P ] by the entropy of the EP approximation H[Q ]. The score to maximize is now

defined as E{H[Q ]−H[Q ′]}, where H[Q ] and H[Q ′] respectively denote the entropy of Q before

and after the inclusion of the candidate point xnew into the training set.

1904



GENERALIZED SPIKE-AND-SLAB PRIORS FOR BAYESIAN GROUP FEATURE SELECTION

Assume we would like to score a new instance xnew. Further consider that Q has been marginal-

ized over the latent variables z, which means that only the Gaussian part of Q remains. Under these

assumptions, the logarithm of the entropy of Q is:

logH[Q ] =−1

2
log

(∣

∣

∣

∣

1

σ2
0

XTX+Λ
−1

∣

∣

∣

∣

)

+C (30)

where C summarizes some constants that are independent of xnew, and Λ is the diagonal matrix

defined in (20). Once xnew has been included in the training set, the logarithm of the entropy of the

updated posterior approximation Q ′ is:

logH[Q ′] = logH[Q ]− 1

2
log

(

1+
1

σ2
0

xT
newVxnew

)

+C . (31)

where we have used the Sylvester’s determinant theorem and V is the covariance matrix of the

Gaussian part of Q , that is, the posterior approximation before the update. Furthermore, in (31) we

have made the assumption that the parameters ṽ2 of the approximate factor f̃2 in Q (the diagonal

entries of the matrix Λ) are constant when the candidate point xnew is included in the training set.

Of course, this assumption need not be satisfied in practice and EP has to be run to find the updated

parameters ṽ2 of f̃2 in Q ′. However, running the EP algorithm each time a candidate point has to be

scored would be very expensive. A simple alternative, used in (31), keeps the approximate factor f̃2

constant and lets f̃1 vary in Q ′. In other words, for the purpose of scoring new candidate points we

treat the model as purely linear-Gaussian. Doing so lets us compute the score very efficiently and

many candidate points can be evaluated. The same approximation has been used by Seeger (2008)

in a linear regression model with Laplace priors. Note that (30) does not depend on the target ynew

associated to xnew. This means that H[Q ] is independent of ynew and can be taken out from the

expectation with respect to P (ynew|xnew,y,X). The same applies to H[Q ′] under the assumptions

described. Thus, for the purpose of scoring candidate points, we can ignore the expectation over

P (ynew|xnew,y,X).
Since H[Q ] is constant for all candidate points to be scored, expression (31) indicates that

the candidate point xnew to be included in the model is the one that maximizes xT
newVxnew. This is

precisely the term which specifies the uncertainty in the prediction of the target value ynew associated

to the instance xnew under the current model. See (29) for further details. In other words, those

points for which the model is the most unsure about their target value are preferred. These points

are expected to be the most informative. However, in practice, the candidate points can also be

unknown. In such a situation, the optimal candidate point xnew to include in the model is a vector

parallel to the eigenvector of the covariance matrix V with the largest associated eigenvalue. Such

vector can be efficiently found, for example, using the power method. The total computational cost

of the power method under the assumption of a constant number of iterations until convergence is

O(n2d) when d ≫ n. For guaranteeing such computational cost, the algorithm must be efficiently

implemented using the representation for V given in (24). Once xnew has been found, we can

carry out the required experiments to measure the associated target value ynew. This is precisely the

procedure which is followed in adaptive compressed sensing experiments, where a sparse signal (the

model coefficients w) is reconstructed from a small number of sequentially designed measurements

(Seeger, 2008; Ji and Carin, 2007). The model described here also includes prior knowledge about

groups of components of the sparse signal which are expected to be jointly equal to zero or jointly

different from zero. Section 7 shows that the inclusion of this prior knowledge in the inductive

procedure leads to improved reconstruction errors.
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5. Related Methods for Group Feature Selection

In this section we review other methods that are available in the literature to perform feature selec-

tion at the group level. Some of these techniques involve a complete Bayesian approach, similar to

the one described in this document, but they use Markov chain Monte Carlo sampling techniques

instead of EP to approximate the posterior distribution of w given the observed data (Bishop, 2006;

MacKay, 2003). Other techniques do not necessarily proceed this way and specify instead a par-

ticular objective function which is optimized. This function includes an error loss and a set of

constraints to enforce sparsity at the group level. Finally, other techniques follow a type-II maxi-

mum likelihood approach (Bishop, 2006) in which the model evidence is optimized with respect to

some hyper-parameters to enforce sparsity at the group level.

5.1 The Group LASSO

We start by reviewing the group LASSO (Yuan and Lin, 2006; Kim et al., 2006), which is probably

the most popular method employed for group feature selection. This method is a natural extension

of the LASSO (Tibshirani, 1996) and consists in estimating a linear predictor by minimizing a

squared loss error function evaluated on the observed data, under a series of constraints which

enforce sparsity at the group level. Unlike the approach described in this document, this method

does not provide a posterior probability distribution for w, but a point estimate. Specifically, the

estimator for w in the group LASSO is:

ŵ = arg min
w

L(w) s.t.
G

∑
g=1

s(dg)||wg|| ≤ k , (32)

where L is a convex loss function evaluated on the training data, for example, the squared loss

defined as ∑n
i=1(yi−wTxi)

2; wg is a vector that contains the components of w within the g-th group;

dg is the dimension of the vector wg; s(·) is a scaling function used to account for groups of different

sizes; ||wg|| is a norm of the vector wg; and k is a positive regularization parameter. Besides the

squared loss, other authors have also considered a logistic regression loss to address classification

problems (Meier et al., 2008). The norm that penalizes each vector wg is typically the ℓ2-norm,

although the ℓ∞-norm has also been considered by Vogt and Roth (2010). The function s(·) is

often set to be the square root (Meier et al., 2008). The group LASSO has been shown to be

asymptotically consistent under certain conditions (Bach, 2008; Meier et al., 2008). However, when

d ≫ n, the minimizer of (32) may not be unique (Roth and Fischer, 2008; Vogt and Roth, 2010). The

level of sparsity in the group LASSO is determined by the regularization parameter k. The smaller

the value of k the sparser the solution at the group level and vice-versa. The optimal value of k is

specific to the problem under consideration. Typically, it is fixed by minimizing an independent

estimate of the generalization error obtained by cross-validation. An optimal solution to (32) can be

obtained using the efficient algorithm described by Roth and Fischer (2008). Finally, there exists an

equivalent formulation of the group LASSO where the optimization problem is un-constrained, but

the loss function is penalized by the sum of the ℓ2-norms of the group components of w (Yuan and

Lin, 2006). Namely, (32) is equivalent to

ŵ = arg min
w

L(w)+ γ
G

∑
g=1

s(dg)||wg|| . (33)
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for some γ > 0, which plays an opposite role to k in (32). In particular, the larger the value of γ, the

sparser the solution is at the group level.

The group LASSO has proven to be useful in many domain applications (Kim et al., 2006;

Meier et al., 2008; Roth and Fischer, 2008). Nevertheless, this method suffers from the problem of

finding meaningful variance and covariance estimates for the regression coefficients w, as described

by Raman et al. (2009). These estimates could be easily obtained by using the formulation given

in (33) to compute the Hessian at the optimal solution. This is, for example, the approach followed

by the Laplace approximation to perform approximate Bayesian inference (MacKay, 2003). Un-

fortunately, the objective function in (33) is not differentiable at the optimum as a consequence of

the regularization term which enforces sparsity at the group level. This means that the Hessian is

un-defined at the optimum and the variance and covariance estimates of w cannot be computed in

practice. In the case of the model described in this document these estimates can be very useful, as

reported in Section 7, to perform sequential experimental design. Finally, another drawback of the

group LASSO is that, as such, it does not allow to favor the selection of specific groups of features

that are a priori believed to be more relevant. In the model described in this document, the inclusion

of this type of prior knowledge is very easy by specifying different values for p0,g, with g= 1, . . . ,G,

in the prior distribution (4) for z.

5.2 The Bayesian Group LASSO

The Bayesian group LASSO is proposed in Raman et al. (2009) as a full Bayesian treatment of the

group LASSO to overcome the problem of covariance estimation just described. From a proba-

bilistic perspective the group LASSO can be understood as a standard linear regression model with

Gaussian noise and a product of multi-variate Laplacian priors over the regression coefficients. In

particular, the target values y=(y1, . . . ,yn)
T are assumed to be generated according to yi =wTxi+εi,

with εi ∼ N (0,σ2
0), which implies a Gaussian likelihood equivalent to the one described in (2). As-

sume dg is the dimension of the g-th group of features. Consider now for each group of coefficients

wg, with g = 1, . . . ,G, a multivariate and spherical dg-dimensional Multi-Laplace prior, which can

be expressed as a hierarchical normal-gamma model. Namely,

P (wg) =
∫

N (wg|0,λ2
gI)Gamma

(

λ2
g

∣

∣

∣

∣

dg +1

2
,

2

dgγ2

)

dλ2
g

∝
(

dgγ2
)

dg
2 exp

{

−γ
√

dg||wg||2
}

,

where γ is a parameter which determines the degree of group sparsity, || · ||2 represents the ℓ2-

norm, λ2
g can be seen as some latent parameter and Gamma(·|a,b) denotes a gamma distribution

with shape and scale parameters a and b, respectively. The complete prior for w is hence defined

as P (w) = ∏G
g=1 P (wg). Consider now the posterior distribution of w under this likelihood and

this prior distribution P (w|y) ∝ P (y|X,w)∏G
g=1 P (wg). If we set σ2

0 = 1/2, the group LASSO, as

defined in (33), is obtained by maximizing the logarithm of P (w|y) with respect to w.

Instead of considering only a single point estimate of w, the Bayesian group LASSO considers

the complete posterior distribution for w given the observed data, under the model just described.

Unfortunately, the exact computation of this distribution is intractable and closed form expressions

to describe it cannot be obtained. This means that in practice one has to use approximate inference

techniques. Raman et al. (2009) have proposed to use Markov chain Monte Carlo methods for this
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purpose. In particular, a Gibbs sampling approach which iteratively generates samples from the con-

ditional distributions of each coefficient w j and each latent parameter λ2
g from the normal-gamma

prior. In this document we consider a more efficient Gibbs sampling algorithm for the Bayesian

group LASSO where the model coefficients are marginalized out and we directly sample from the

unconditional distribution of the latent parameters λ2
g, with g = 1, . . . ,G. Once these samples have

been generated, we then sample from the conditional distribution of w given the latent parameters.

Appendix A describes the details of this algorithm. Finally, even though it successfully provides co-

variance estimates, the Bayesian group LASSO does not consider favoring the selection of specific

groups of features.

5.3 The Group Horseshoe

The group horseshoe introduced in this section is a natural extension of the robust horseshoe prior

initially proposed to address sparse supervised learning problems (Carvalho et al., 2009). A model

incorporating the horseshoe prior can be described by assuming Gaussian noise around the target

values y = (y1, . . . ,yn)
T, as in the Bayesian model considered here and as in the Bayesian group

LASSO. The likelihood for y given w, P (y|X,w), is equivalent to (2). Under the horseshoe prior

each component of w, w j, is assumed to be conditionally independent with a density which can be

represented as a scale mixture of normals:

P (w j|λ j,τ) =
∫

N (w j|0,λ2
jτ

2)C+(λ j|0,1)dλ j , (34)

where C+(·|0,1) is a half-Cauchy distribution with location and scale parameters equal to 0 and 1,

respectively; λ2
j is a latent parameter; and τ is a shrinkage parameter which determines the level of

sparsity: the smaller the value of τ, the sparser the prior. We note that (34) describes a hierarchical

normal-half-Cauchy model. This prior has two interesting properties which make it useful for in-

duction under the sparsity assumption for w. First, Cauchy-like tails allow for large values of w j.

Second, it has an infinitely tall spike at the origin which favors values of w j close to zero. A detailed

analysis of this prior and several benchmark experiments which consider different regression prob-

lems illustrate its advantages with respect to other approaches for sparse learning (Carvalho et al.,

2009).

The prior described in (34) can be easily generalized to address sparsity at the group level. For

this, we only have to assume the same latent parameter λ j for several components of w. Specifically,

we consider for each group of coefficients wg, with g = 1, . . . ,G, a multivariate and spherical dg-

dimensional prior, which can be expressed as a hierarchical normal-half-Cauchy model, as in (34):

P (wg|λg,τ) =
∫

N (wg|0,λ2
gτ2I)C+(λg|0,1)dλg , (35)

where λg is a latent parameter specific to each group and τ is a shrinkage parameter. The resulting

prior has similar properties to the one-dimensional prior described in (34). That is, Cauchy-like tails

to allow for large values of each component of wg and an infinitely tall spike at the origin which

favors values where all the components of wg are close to zero. See Section 6 for further details on

this prior.

The posterior distribution of w under the assumed Gaussian likelihood and the prior distribution

introduced in (35) is given by P (w|y) ∝ P (y|X,w)∏G
g=1 P (wg). As in the Bayesian group LASSO,
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the exact computation of this distribution is intractable and, in practice, we have to resort to ap-

proximate techniques. Initially, one can think about using EP for this task. However, the specific

application of the EP algorithm to this model is challenging. Specifically, the prior distribution

suggested in (35) can not be evaluated exactly since it is not possible to evaluate the corresponding

integral in closed form. Furthermore, this prior does not have a closed form convolution with the

Gaussian distribution. This makes all the computations required by EP very difficult. Consequently

we use a simpler alternative in this document. Namely, a Gibbs sampling technique similar to the

one used for the Bayesian group LASSO. Appendix A explains the details of this algorithm.

5.4 Automatic Relevance Determination for Groups of Features

Another technique which can be used to perform feature selection at the group level is Automatic

Relevance Determination (ARD) (Tipping, 2001; Ji et al., 2009). Like the other models described

so far in this section, ARD also assumes a Gaussian likelihood for y given w. Then, a zero mean

factorizing Gaussian prior is fixed for w. In the simplest formulation of ARD, this prior distribution

has a different hyper-parameter α j for each dimension of the problem (Li et al., 2002). Namely,

P (w) = N (w|0,A−1), where A is a diagonal matrix with entries A j j = α j, for j = 1, . . . ,d. Thus,

each hyper-parameter α j, is the inverse of the prior variance for the corresponding component w j of

w. Since both the likelihood and the prior are Gaussian under this formulation, the model evidence

can be evaluated exactly. This evidence can be maximized component-wise with respect to the

hyper-parameters α j, with j = 1, . . . ,d, using the fast algorithm suggested by Tipping and Faul

(2003). Specifically, these authors provide a closed form solution for the optimal α j while the other

hyper-parameters are kept fixed. This means that one only has to iteratively optimize the model

evidence with respect to each α j until convergence. In such case, one typically finds that most of

these hyper-parameters are driven to infinity during the optimization process. Consequently the

posterior distribution of the coefficients of w corresponding to these hyper-parameters is set to a

delta function centered at zero. Thus, this procedure can be used to induce w under the sparsity

assumption.

Following the ARD principle sparsity at the group level can be easily obtained by considering

a different hyper-parameter for each group of coefficients. Specifically, Ji et al. (2009) consider the

following Gaussian prior distribution for w:

P (w) =
G

∏
g=1

P (wg) =
G

∏
g=1

N (wg|0,α−1
g I) ,

where αg is the inverse of the prior variances for each component of wg, that is, the vector of model

coefficients within the g-th group. Given this prior distribution and a Gaussian likelihood such as

the one described in (2), the corresponding model evidence is P (y|X) = N (y|0,C), where C is a

n×n matrix defined as C = σ2
0I+XA−1XT, and A is a diagonal matrix with components A j j = αg,

if the j-th feature belongs to the g-th group, for j = 1, . . . ,d. This value, P (y|X), can be easily

optimized iteratively with respect to each αg using an algorithm similar to the one described by

Tipping and Faul (2003). In this case one typically finds that most of the αg’s tend to infinity,

enforcing the posterior for the corresponding wg to be a spike at the origin. Unfortunately the

optimization process is more difficult and there is no closed form solution for the optimal αg while

the other hyper-parameters are kept fixed. Ji et al. (2009) provide a closed form approximate solution

which is shown to perform well in practice but we consider here the exact maximization of the
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model evidence. Appendix B describes an algorithm which can be used for this task. The model

evidence need not be convex with respect to the different hyper-parameters. Hence, the solution

obtained depends on the starting configuration of the optimization algorithm. One typically starts

from all hyper-parameters being equal to infinity and iteratively optimizes each hyper-parameter

until convergence.

The group ARD formulation (more precisely the type-II maximum likelihood principle followed

by group ARD) can be seen as a Bayesian approach where the posterior distribution of each hyper-

parameter αg, with j = 1, . . . ,d, is approximated by a delta function centered at the peak of the exact

posterior under the assumption of a flat prior for each α j (Bishop, 2006). Thus, the actual prior for

wg is a hierarchical mixture where the hyper-prior for αg is set to be flat (actually flat in log-scale)

(Tipping, 2001). If we marginalize out αg, the actual prior can be shown to become the improper

prior:

P (wg) ∝

∫
N (wg|0,α−1

g I)dαg/αg ∝ 1/||wg||dg

2 .

where 1/αg is the flat hyper-prior for αg in log-scale and dg is the dimension of wg. This improper

prior favors solutions with all the components of wg set equal to zero since it has an infinitely tall

spike at the origin. It also promotes solutions with coefficient values far from zero since it has heavy

tails. Thus, it enjoys similar properties to those of the group horseshoe.

The posterior distribution of w under the group ARD model is Gaussian since both the likelihood

and the prior are Gaussian. Thus, sequential experimental design can be carried out very easily in

this model using techniques similar to those described in Section 4. Finally, note that the group ARD

lacks a hyper-parameter to specify the desired level of sparsity at the group level. The uniform prior

assumed for αg can be considered to be optimal when there is no information about the level of

sparsity associated to the learning problem. Nevertheless, this prior can be sub-optimal when such

information is available beforehand or when it can be estimated from the data, for example, by

cross-validation.

5.5 Other Related Methods

Instead of the EP algorithm, it is also possible to use Markov chain Monte Carlo techniques to

approximate the posterior distribution of the Bayesian model introduced in Section 2. For this,

we only have to interpret the prior described in (3) for each group of model coefficients wg as a

mixture of two multivariate Gaussians. A first multivariate Gaussian with zero variance for the

different components of wg (the spike) and a second multivariate Gaussian with v0 variance. These

two variances are equivalent to the latent parameters λg described in Sections 5.2 and 5.3 for the

Bayesian group LASSO and the group horseshoe. Thus, we can rely on a Gibbs sampling algorithm

very similar to the one described in those sections. Appendix A further details this algorithm. It

is inspired from other works for approximate inference in a Bayesian model based on the standard

spike-and-slab prior (George and McCulloch, 1997; Lee et al., 2003). Gibbs sampling has also been

used by Scheipl et al. (2012) to carry out posterior inference on additive regression models using a

generalized prior similar to the one described in this document. Section 7 shows however that EP

provides equal performance at a much smaller computational cost. In particular, EP is hundreds of

times faster than Gibbs sampling, which is too slow to carry out sequential experimental design.

Variational Bayes (VB) (Attias, 2000; Jaakkola, 2001) is a common alternative for approximate

inference in Bayesian models. VB consists in fitting a parametric distribution Q with the aim to ap-
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proximate the posterior distribution P . For this, the Kullback-Leibler divergence between Q and P ,

KL(Q ||P ), is minimized. Such an approach differs from EP where the approximate minimization of

KL(P ||Q ) takes place. As a result, one can expect VB to be less accurate than EP for the model de-

scribed in Section 2. Specifically, in sparse linear regression models optimal predictive performance

in terms of mean square error is expected to be given by the mean of the posterior distribution. In

general, EP produces a global fit to the posterior distribution while VB only approximates the pos-

terior locally around one of its modes. This is illustrated in Bishop (2006). Posterior distributions

generated by spike-and-slab priors are often multi-modal and hence the global fit produced by EP

is expected to be better at approximating the posterior mean than the local approximation generated

by VB. Furthermore, several works in the literature also report a preference of EP over VB in terms

of accuracy of the posterior approximation (Minka, 2001; Nickisch and Rasmussen, 2008).

A different generalization of the standard spike-and-slab prior has been proposed in a multi-task

setting by Hernández-Lobato et al. (2010). They describe a Bayesian model for the selection of

features that are relevant for prediction across L classification tasks. These tasks share the same

d features, although the feature values might be different across tasks. The relevant features are

identified by using standard spike-and-slab priors on the coefficients of each task, where these priors

share the same binary latent variables z = (z1, . . . ,zd)
T. These latent variables indicate whether the

corresponding features are used for classification in all the tasks or in none of them. This prior

cannot be used to tackle the group feature selection problem considered here. In particular, it does

not allow to introduce prior knowledge on groups of features that are believed to be jointly relevant

or irrelevant for the same task. By contrast, the prior considered in this work can be used to address

the multi-task feature selection problem by reformulating it as a single-task learning problem on an

extended space:

X =







X1 0 0

0
. . . 0

0 0 XL






, y =







y1

...

yL






, w =







w1

...

wL






,

where Xl , yl and wl , with 1 ≤ l ≤ L, respectively denote the training instances, the targets and the

model coefficients for the l-th learning task. The equivalence holds provided that there is a group

per feature and that the g-th group contains the L coefficients associated with the g-th feature, for

g = 1, . . . ,d.

The generalized spike-and-slab prior described in Section 2 can be seen as a degenerate case

of the network-based prior proposed by Hernández-Lobato et al. (2011). These authors suggest

a modification of the standard spike-and-slab prior by introducing prior dependencies among the

components of z = (z1, . . . ,zd)
T, that is, the vector of latent variables which indicate whether to use

or not each feature for prediction. These dependencies are determined by a network of features.

Whenever two features are connected in this network, the two corresponding latent variables are

positively correlated. The amount of correlation is specified by a positive parameter b. When

the network of features contains G connected components, each component being composed of

the features of the same group, and b tends to +∞, the network-based prior is equivalent to the

prior considered in this work. However, the network-based prior suggested by Hernández-Lobato

et al. (2011) does not provide a direct estimate of the relevance of each group. It only computes

posterior probabilities for individual features. Furthermore, the approximate inference mechanism

used does not take into account correlations among the different components of w. Specifically,

the approximation considered for the posterior of w factorizes among the different components
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of this vector. In the model described in this document these correlations are proven to be very

useful to perform sequential experimental design, that is, to determine which instance to include

in the training set to obtain the most information about w (see Section 7). Additionally, the model

considered by Hernández-Lobato et al. (2011) can only address binary classification problems and

was not designed to address regression problems, which is the focus of the present document.

The work of Yen and Yen (2011) describes an alternative generalization of the spike-and-slab

prior which considers both sparsity at the group and the feature level. Specifically, these authors

introduce two sets of latent variables. A first set is used to describe whether or not each group of

variables is used for prediction, and a second set is used to describe whether or not each feature

within a group is used for prediction. Thus, the prior considered in this work can be seen as a

particular case of the prior considered by these authors where there is no sparsity at the feature

level, but only at the group level. To infer the model coefficients from the data Yen and Yen (2011)

do not follow a complete Bayesian approach, and instead find the maximum a posteriori (MAP)

solution using a blockwise coordinate ascent algorithm. Finding the MAP solution in such model is

arguably controversial. In particular, the posterior distribution includes delta functions which take

infinite values at some positions and make the objective unbounded. Furthermore, this task involves

solving a combinatorial problem which is NP-Hard. To address this difficulty Yen and Yen (2011)

propose to use a majorization-minimization technique to simplify the computations needed. Finally,

even though they can approximate the MAP solution, their approach does not provide an estimate

of the correlations among the different components of w which are required to carry out sequential

experimental design, as described in Section 4.

6. Analysis of Group Sparsity

In this section we study the properties of the generalized spike-and-slab prior to favor solutions that

are sparse at the group level. The alternative priors described in Section 5, which can also be used for

this purpose, are also analyzed in detail for the sake of comparison. The analysis introduced is based

on the work of Carvalho et al. (2009) about the sparsity properties of the standard horseshoe prior

and shows interesting insights about the regularization process enforced by each prior distribution

and the potential benefits and drawbacks for group feature selection.

Consider the vector wg summarizing the dg model coefficients corresponding to the features

contained in the g-th group. The different priors for wg analyzed in this section are displayed

in Table 1 alongside with their associated hyper-parameters. In this table N (·|µ,Σ) denotes a

Gaussian distribution with mean µ and covariance matrix Σ; C+(·|a,b) denotes a half-Cauchy

distribution with location and scale parameters a and b, respectively; δ(·) denotes a point probability

mass evaluated at the origin; and || · ||2 denotes the ℓ2-norm. We do not include the prior for the group

LASSO since it is identical to the one in the Bayesian group LASSO, as described in Section 5.2.

Figure 1 shows the different priors displayed in Table 1 for some values of their hyper-parameters

and for a group of size two, that is, dg = 2. In this figure an arrow denotes a point probability mass

at the origin. Note that most priors have an infinitely tall spike at the origin to favor solutions with

all the model coefficients near or equal to zero. The only exception is the prior corresponding to

the group LASSO, which has a sharp peak at the origin instead. From these priors, only the spike-

and-slab is able to put a positive probability mass at the origin. This probability is specified by the

hyper-parameter p0,g. By contrast, in the group horseshoe, the group ARD and the Bayesian group

LASSO the probability of observing wg at the origin is zero. This means that one will never observe
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actual zeros in the samples from these priors. On the other hand, an appealing property of the group

ARD and the group horseshoe is that they allow for values of wg located far from the origin since

they have heavy tails. This is not the case of the spike-and-slab. However, the hyper-parameter

that models the variance of the slab, v0, can be made arbitrary large to account for coefficients

significantly different from zero without changing the desired level of sparsity, specified by p0,g.

The group ARD, the spike-and-slab and the group horseshoe are hence expected to be effective for

inducing sparsity at the group level. Specifically, for some value of the prior hyper-parameters, they

will either strongly drive the values of the model coefficients towards the origin (as a consequence of

the spike), or they will leave them barely unchanged (as a consequence of the heavy tails or the large

variance of the slab). The prior corresponding to the Bayesian group LASSO has neither heavy tails

nor an infinitely tall spike at the origin. Thus, this prior is expected to perform worse in this task.

Finally, the ARD prior is not fully adequate to our problem as it does not include a hyper-parameter

to set the desired level of group sparsity, which can be strongly problem dependent.

Prior for wg Density Hyper-parameters

Generalized spike-and-slab p0,gN (wg|0,v0I)+(1− p0,g)δ(wg) v0, p0,g

Group horseshoe
∫

N (wg|0,λ2
gτ2I)C+(λg|0,1)dλg τ

Bayesian group LASSO ∝
(

dgγ2
)

dg
2 exp

{

−γ
√

dg||wg||2
}

γ

Group ARD ∝ 1/||wg||dg

2 -

Table 1: Description of the different priors for enforcing sparsity at the group level.

6.1 Shrinkage Interpretation of the Prior Distributions

The different prior distributions for wg that are displayed in Table 1 can be understood as a scale

mixture of multivariate Gaussian distributions. More precisely, these priors are equivalent to a zero-

mean multivariate Gaussian with a random covariance matrix λ2
gI, where I is the identity matrix.

The prior distribution for λ2
g determines the resulting family of prior distributions for wg. Thus,

under this representation, we have to marginalize out λ2
g to evaluate the actual prior probability

density for wg. In particular,

P (wg) =
∫

N (wg|0,λ2
gI)P (λ2

g)dλ2
g ,

where P (λ2
g) denotes the specific prior distribution for λ2

g. The shrinkage properties of each of the

prior distribution displayed in Table 1 can be analyzed by looking at the corresponding assumed

prior density for λ2
g. This density is displayed in Table 2 for each different prior for wg.

For simplicity, we focus in this section on a toy regression problem which can be analyzed in

detail. This problem gives interesting insights about the shrinkage properties of each prior distribu-

tion for wg. In particular, we assume that there is a single group of dg model coefficients, that is,

w = wg. Furthermore, we assume that there are n = dg observations yT = (y1, . . . ,yn), one for each

model coefficient, which are generated according to the rule described in (1) for σ2
0 = 1. We also

assume that the design matrix X is equal to the identity matrix I. Under these settings, the optimal

value for wg is y. Moreover, the expected posterior value for wg can be computed exactly given λ2
g.
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Figure 1: Plots of the different priors displayed in Table 1 for favoring solutions which are sparse at

the group level. Results are displayed for wg = (w1,w2)
T, that is, a group of size two, and

for some particular values of the hyper-parameters of each different prior distribution.

The arrow indicates a point probability mass at the origin. All priors except the prior

for the group LASSO and the Bayesian group LASSO have an infinitely tall spike at the

origin. The different hyper-parameters are set as follows: p0,g = 0.5, v0 = 1, τ = 1 and

γ = 1.

Namely,

E[wg|λ2
g] =

λ2
g

1+λ2
g

y+
1

1+λ2
g

0 =
λ2

g

1+λ2
g

y , (36)

where κ = 1/(1+λ2
g), with κ ∈ [0,1], is a random shrinkage coefficient which can be understood

as the amount of weight that the posterior mean places at the origin once the targets y are observed

(Carvalho et al., 2009). If κ = 1 the posterior mean is completely shrunk towards the origin. If

κ = 0, the posterior mean is not regularized at all. Since κ is a random variable, it is possible to

plot its prior density to analyze the shrinkage properties of each prior. This density is fully specified
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Prior for wg Prior density for λ2
g

Generalized spike-and-slab p0,gδ(λ2
g − v0)+(1− p0,g)δ(λ

2
g)

Group horseshoe C+
(√

λ2
g|0,τ

)

1/
(

2
√

λ2
g

)

Bayesian group LASSO Gamma
(

λ2
g |

dg+1

2
, 2

dgγ2

)

Group ARD ∝ 1/λ2
g

Table 2: Description of the different priors assumed for λ2
g.

by the prior distribution for λ2
g which can be any of the ones displayed in Table 2, depending on

the actual prior for wg. In an ideal situation, P (κ), that is, the prior distribution for κ, should favor

the bi-separation of the model coefficients that is characteristic of sparse models at the group level.

Specifically, while most groups of model coefficients take values close to zero, a few of them take

values significantly different from zero. Thus, P (κ) should be large for values of κ near one, to

favor the shrinkage of un-important groups of model coefficients. Similarly, P (κ) should be large

for values of κ near zero, to barely shrink those groups of model coefficients which are important

for prediction.

Figure 2 displays for each different prior distribution for wg, the corresponding prior distribution

for the shrinkage coefficient κ, P (κ). The plots are displayed for a single group of size two. How-

ever, similar results are obtained for groups of larger sizes. The prior distributions are obtained from

the densities displayed in Table 2 by performing a change of variable since κ = 1/(1+λ2
g). For each

prior distribution, the corresponding hyper-parameters are selected so that the distance between the

10% and 90% percentiles of the resulting marginal distribution of each component of wg is equal

to 0.7, 3.5 and 17.5, respectively. These values correspond to high, medium, and low sparsity at

the group level. The exception is the prior for κ corresponding to group ARD, which does not have

any hyper-parameter to specify the desired level of group sparsity. In this figure the arrows denote a

point probability mass and the length of the arrow is proportional to the corresponding probability

mass.

Figure 2 shows that the prior corresponding to the Bayesian group LASSO is not able to simul-

taneously produce large densities for values of κ close to zero and one. Furthermore, the probability

density for κ = 1 is always equal to zero. This is an unexpected result which questions the capacity

of this prior to provide solutions that are sparse at the group level in a selective manner. In particular,

under this prior it is not possible to achieve high levels of sparsity (this corresponds to high density

values of κ near one) while not shrinking the model coefficients that are different from zero towards

the origin (this corresponds to high density of κ near the origin). The next section illustrates that

these issues still appear when the MAP solution is used and zeros are produced in the solution set,

as in the group LASSO.

The other priors, that is, the spike-and-slab, the group horseshoe and the group ARD, do not

suffer from the limitations described for the Bayesian group LASSO. These priors produce densi-

ties that are peaked at κ = 1 and at values of κ near the origin. Furthermore, in the case of the

spike-and-slab prior, one actually obtains a positive probability at κ = 1. Thus, the posterior distri-

bution of the coefficients corresponding to non-predictive features will concentrate near the origin

under these priors. On the other hand, both the group horseshoe and the group ARD priors are

characterized by heavy tails. This can be observed in Figure 2 by the fact that they simultaneously
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Figure 2: Prior distribution for κ associated to the different priors for wg displayed in Table 1. The

plots are displayed for a single group of size two, and for some particular values of the

hyper-parameters of each prior distribution for wg that give the same inter-quantile range

(IQR) for each individual component of this vector. A single curve is plotted for the

group ARD prior since it does not have any hyper-parameter. An arrow denotes a point

probability mass.

give high probabilities to values of κ near the origin. The consequence is that these priors will

barely regularize important groups of coefficients that are strictly needed for prediction. The spike-

and-slab prior does not have heavy tails. However, a similar effect can be obtained by specifying

large values for v0, the parameter that controls the variance of the slab. Therefore, these three prior

distributions are expected to selectively shrink the posterior mean, which is the ideal situation for

regression problems which are sparse at the group level.

6.2 Regularization Properties of the Prior Distributions

We continue the analysis of the toy regression problem described in Section 6.1. Specifically, we

study the behavior of the posterior mean, E[wg], under the different priors for wg when the targets

y are similar to or very different from the prior mean, that is, a vector with all the components

equal to zero. It is possible to show, by marginalizing (36) over the posterior distribution for λ2
g,

that in this toy problem E[wg] is a vector parallel to y. More precisely, these two vectors only
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differ in their ℓ2-norms. In particular, the ℓ2-norm of E[wg] is always smaller or equal than the

ℓ2-norm of y. The same applies when the MAP estimate is considered instead of the posterior

mean, as in the group LASSO. Thus, we can analyze the regularization properties of each prior

distribution by comparing the ℓ2-norm of the targets ||y||2 with the corresponding value of the ℓ2-

norm of the posterior mean ||E[wg]||2. Figure 3 shows a comparison between these two norms for

each different prior distribution for wg and for different values of the prior hyper-parameters. The

identity function is also displayed to indicate where the two norms are equal. We include plots

both for the group LASSO and the Bayesian group LASSO to illustrate the differences between the

posterior mean E[wg] and the MAP estimate ŵg. Similarly, since the spike-and-slab prior has two

hyper-parameters, p0,g and v0, we display two plots for this prior. In the first plot p0,g varies and

v0 is kept constant. Conversely, in the second plot v0 varies and p0,g is kept constant. Finally, we

provide a single curve for the group ARD prior since it does not have any hyper-parameter.

Figure 3 shows that for small values of ||y||2, the group LASSO actually drives the model

coefficients to zero. In particular, under this model it is possible to show that if ||y||2 ≤
√

dgγ/2

then ||ŵg||2, the ℓ2-norm of the MAP estimate of w, is equal to zero. When ||y||2 >
√

dgγ/2,

the ℓ2-norm of ŵg must satisfy ||ŵg||2 = ||y||2 −
√

dgγ/2. Thus, if the targets y are significantly

different from the mean of the prior, the differences between the two norms in the group LASSO

are actually constant and proportional to the value of the hyper-parameter γ, which controls the level

of sparsity. The consequence is that for high levels of group sparsity, as specified by γ, the group

LASSO regularizes the coefficients that are different from zero and introduces a significant bias in

their estimation. Specifically, under this model it is not possible to simultaneously consider large

values for the model coefficients and high levels of group sparsity. When the posterior mean is

considered instead of the MAP estimate, as in the Bayesian group LASSO, the observed behavior

is very similar for large values of ||y||2. Nevertheless, in this case, small values of ||y||2 no longer

produce zeros in the estimation for w, but a stronger regularization effect which forces E[wg] to be

closer to the origin. These two methods, that is, the group LASSO and the Bayesian group LASSO,

are hence unable to shrink the model coefficients in a selective manner and are expected to lead to

an impaired prediction performance in problems that are actually sparse at the group level.

The group ARD also drives the model coefficients towards zero for small values of ||y||2. Specif-

ically, if ||y||2 ≤
√

dg then the optimal parameter λ2
g which maximizes the model evidence is equal

to zero, and the posterior estimate of w, E[wg], is placed at the origin. When ||y||2 >
√

dg, the

optimal value for λ2
g is equal to ||y||22/dg − 1 and hence, from (36), ||E[wg]||2 = ||y||2 − dg/||y||2.

Thus, the group ARD also introduces a bias in the estimation of the model coefficients when the

targets are significantly different from the origin. Nevertheless, this bias is equal to dg/||y||2 and

tends to zero when ||y||2 approaches infinity. This is a consequence of the heavy tails of the prior

for wg which barely regularizes the model coefficients when these are significantly different from

zero and strictly required for prediction. A similar behavior is observed for the group horseshoe.

Namely, when ||y||2 approaches infinity both norms tend to coincide and the prior distribution barely

regularizes the model coefficients. By contrast, for small values of ||y||2, the model coefficients are

strongly regularized in an amount that depends on τ. The smaller its value, the stronger the regu-

larization effect. Note that this parameter has very little effect on the regularization of the model

coefficients when ||y||2 is large. This is a very interesting property. From this, we conclude that

these two prior distributions, the group ARD and the group horseshoe, are expected to be useful

to provide the bi-separation of the model coefficients that is characteristic of sparse models at the

group level.
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Figure 3: Plots of the ℓ2-norm of the posterior expected value of the model coefficients, as a func-

tion of the ℓ2-norm of the observed targets y, for each different prior distribution for wg,

and for different values of the hyper-parameters of each prior. We report results for both

the Bayesian group LASSO and for the group LASSO, that is, the MAP estimate in the

Bayesian group LASSO. The diagonal solid line represents where both norms are equal.
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In the spike-and-slab prior, modifying p0,g, that is, the parameter that determines the prior prob-

ability that the model coefficients are equal to zero, has an impact in the posterior mean when

the optimal values of the model coefficients are close to zero. In particular, reducing this hyper-

parameter produces a stronger regularization effect for small values of ||y||2 without affecting the

regularization of the model coefficients when these are significantly different from zero, or equiv-

alently, when ||y||2 is large. An exception is observed when p0,g is set equal to zero. In this case,

the posterior mean is placed at the origin. The modification of v0, that is, the parameter that de-

termines the variance of the slab, has little impact when ||y||2 is close to zero. By contrast, this

parameter fully specifies the regularization of the model coefficients that are strictly important for

prediction. Specifically, for large ||y||2 it is possible to show that the posterior distribution for λ2
g

tends to δ(λ2
g − v0) and consequently, from (36), that E[wg] ≈ y− y/(1+ v0). This indicates that

the spike-and-slab prior introduces a positive bias in the estimation of the model coefficients, when

these are far from the origin. This bias is proportional to the optimal value of each coefficient and

it is a consequence of the absence of heavy tails in this prior distribution to explain for large values

of the model coefficients. Nevertheless, we note that it is possible to reduce the estimation bias

simply by increasing v0, as illustrated by Figure 3. In summary, the spike-and-slab is also expected

to perform well in problems that are sparse at the group level. In particular, this prior distribution

is also able to model the bi-separation of the model coefficients that is characteristic of this type of

problems.

7. Experiments

In this section, the performance of the model based on the EP algorithm and the generalized spike-

and-slab prior is evaluated in several regression problems from different domains of application,

using both simulated and real-world data. The problems analyzed include the reconstruction of

sparse signals from a reduced number of noisy measurements (Huang and Zhang, 2010; Ji et al.,

2008), the prediction of user sentiment from customer-written reviews of kitchen appliances and

books (Pang et al., 2002; Blitzer et al., 2007) and the reconstruction of images of hand-written

digits extracted from the MNIST data set (LeCun et al., 1998). The data sets of these problems

have similar characteristics. That is, a large number of attributes and a rather small number of

training instances, that is, d ≫ n. Similarly, on each data set only a reduced number of features

is expected to be useful for prediction. These are precisely the characteristics of the regression

problems where the sparsity assumption is expected to perform well and to be useful for induction.

In these experiments, the prior information about groups of features that are expected to be jointly

relevant or jointly irrelevant for prediction is assumed to be given or it is estimated from additional

data.

We refer to the regression model that assumes generalized spike-and-slab priors and uses EP for

approximate inference as GSS-EP. This model is compared in this section with the related meth-

ods for group feature selection described in Section 5. Namely, the group LASSO (G-LASSO),

the Bayesian group LASSO (BG-LASSO), the group horseshoe (G-HS), the group ARD formula-

tion (G-ARD), a model that also assumes generalized spike-and-slab priors but uses Markov chain

Monte Carlo sampling for approximate inference (GSS-MCMC) and finally, a regression model

that also uses EP for approximate inference but only considers the standard spike-and-slab prior for

induction (SS-EP). This last model is described in detail by Hernández-Lobato (2010) and is a par-

ticular case of GSS-EP which does not consider the grouping information in the induction process,

1919



HERNÁNDEZ-LOBATO, HERNÁNDEZ-LOBATO AND DUPONT

that is, all groups are of size one. SS-EP is included in the comparison to evaluate the benefit of

considering sparsity at the group level instead of only at the feature level. Furthermore, comparing

results with respect to SS-EP is also supported by the good performance obtained by such method

in regression problems that are sparse at the feature level (Hernández-Lobato, 2010). Similarly,

GSS-MCMC is included in the comparison to evaluate the performance of the EP approximation of

the posterior distribution. In particular, Markov chain Monte Carlo methods do not suffer from any

approximation bias, unlike deterministic techniques, such as the EP algorithm.

In our experiments, we report the training time of each method being evaluated. The different

training algorithms have been implemented in R (R Development Core Team, 2011), and care has

been taken to make them as efficient as possible.1 Specifically, the implementation of G-LASSO

is based on the fast algorithm described by Roth and Fischer (2008) and Appendix A gives all the

details about the implementation of BG-LASSO, G-HS and GSS-MCMC. In these three methods,

the posterior distribution of the model is approximated by generating 10,000 Gibbs samples after

a burn-in period of 1,000 samples. This number of samples seems to be adequate and experiments

indicate that no significant improvements are obtained by increasing the number of samples gener-

ated. All the details of the implementation of G-ARD are given in Appendix B. Finally, in GSS-EP,

GSS-MCMC, SS-EP, G-ARD, BG-LASSO and G-HS the estimate of the model coefficients, ŵ, is

given by the approximate posterior mean. In G-LASSO ŵ is given by the MAP estimate.

7.1 Reconstruction of Sparse Signals

A first batch of experiments is carried out to illustrate the potential applications of the generalized

spike-and-slab prior in the field of compressive sensing (Donoho, 2006; Candes and Wakin, 2008).

The objective in compressive sensing is to reconstruct a sparse signal, generally codified in the

model coefficients w = (w1, . . . ,wd)
T, from a limited set of linear measurements y = (y1, . . . ,yn)

T,

with n ≪ d. The measurements y are obtained after projecting the signal w onto an n×d measure-

ment matrix X, that is, y = Xw+ ǫ, where ǫ = (ε1, . . . ,εn)
T ∼ N (0,σ2

0I) is a Gaussian noise. If w

is sparse, it is possible to reconstruct this vector accurately from y and X using fewer measurements

than the number of degrees of freedom of the signal, which is the limit required to guarantee the

reconstruction of arbitrary signals. When w is not sparse, it can still be estimated using less than d

samples provided that it is compressible in some orthogonal basis B, for example, a wavelet basis,

such that w̃ = BTw is sparse or nearly sparse. In this case, the measurement process is performed

after projecting the signal onto the columns of B, that is, y = XBTw+ǫ= Xw̃+ǫ. Once an estimate

of w̃ is obtained from y and X, we can approximate w using w = Bw̃.

We evaluate the different methods in a problem similar to the standard benchmark problems

used in the field of signal reconstruction (Ji et al., 2008). More precisely, we generate 100 random

sparse signals to be reconstructed from noisy measurements where each signal has d = 512 random

components that are codified using a particular group sparsity pattern. Specifically, the components

of each signal (i.e., the model coefficients) are iteratively assigned to G= 128 different groups of the

same size that contain 4 components. From the 128 groups of components, only 4 randomly chosen

groups contain components that are actually different from zero. The values of these components

are uniformly chosen in the interval [−1,1]. The resulting signal is stored in the vector w0 of model

coefficients. This vector contains the sparse signal to be reconstructed. Given a particular signal

w0 we then generate a reduced amount of measurements using a design matrix X = (x1, . . . ,xn)
T

1. The R source code for GSS-EP is available at http://arantxa.ii.uam.es/%7edhernan/GSS-EP/.
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whose rows are sampled uniformly in the hyper-sphere of radius
√

d. For the reconstruction of

each signal a total of n = 64 noisy measurements y = {y1, . . . ,yn} are used. These are generated as

yi = wT
0 xi + εi, for i = 1, . . . ,n, where εi follows a standard Gaussian distribution.

Given X and y we induce w0 using the different methods evaluated. Let ŵ be the corresponding

estimate of the signal w0. The reconstruction error is quantified by ||ŵ−w0||2/||w0||2, where || · ||2
denotes the ℓ2-norm. In these experiments, the hyper-parameters of each method are fixed optimally.

In particular, we set p0, that is, the fraction of groups initially expected to be relevant for prediction,

equal to 4/128 in GSS-EP and GSS-MCMC. In these two methods v0, that is, the variance of the

slab, is set equal to 1/3, that is, the actual variance of the components of w0 that are different from

zero. In SS-EP the same value is used for v0, but p0 = 16/512 since in this model there is a group

for each different coefficient. In BG-LASSO we set γ =
√

120 so that the resulting prior has the

same variance as the expected variance of the signal w0. In G-LASSO we try different values for k

and report the best performing value observed, which corresponds to k = 8. The group horseshoe

prior does not have defined variances. Thus, we fix τ in G-HS so that the marginals under the group

horseshoe have the same distance between the percentiles 1% and 99% as the marginals under

the generalized spike-and-slab prior. We specifically use these extreme values for the percentiles

because otherwise, for high levels of sparsity, that is, when p0 is close to zero, the spike-and-slab

prior can easily have an inter quantile range equal to zero. Finally, in all methods except G-LASSO,

σ2
0, that is, the variance of the Gaussian noise, is set equal to one.

The results of these experiments are displayed in Table 3. This table shows the average re-

construction error of each method and the corresponding average training time in seconds.2 The

figures after the symbol ± are standard deviation estimates. We note that GSS-EP obtains the best

reconstruction error. Furthermore, the performance of this method is equivalent to the performance

of GSS-MCMC. This indicates that the posterior approximation obtained by EP is accurate. The

table also illustrates the importance of considering the grouping information for prediction. In par-

ticular, SS-EP obtains a significantly worse reconstruction error. After GSS-EP and GSS-MCMC,

the best performing methods are GS-HS and G-ARD. The reconstruction error of these methods is

only slightly worse than the reconstruction error obtained when generalized spike-and-slab priors

are assumed. Finally, we note that the performance of G-LASSO, and especially BG-LASSO, is

significantly worse than the performance of the other methods that use the grouping information.

This validates the results of Section 6, where these two methods were expected to perform poorly. A

paired Student t-test confirms that GSS-EP and GSS-MCMC perform better than the other methods

being compared (p-value below 5%). On the contrary, the differences in performance between these

two methods are not statistically significant.

GSS-EP GSS-MCMC SS-EP G-LASSO BG-LASSO G-HS G-ARD

Error 0.29±0.11 0.29±0.10 0.71±0.20 0.54±0.11 0.92±0.03 0.35±0.12 0.39±0.12

Time 1.60±1.91 1168±64 3.89±3.42 2.39±1.63 3007±339 2909±328 2.56±1.55

Table 3: Average reconstruction error and training time of each method on the sparse signal recon-

struction problem.

2. Training times were measured on an Intel(R) Xeon(R) 2.5Ghz CPU.
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When comparing the average training time of the different methods displayed in Table 3 we

observe that the fastest method is GSS-EP. In particular, GSS-EP needs approximately one second

and a half for training, on average. This method is more than 500 times faster than GSS-MCMC

and more than 1,000 times faster than BG-LASSO or G-HS, the induction methods that rely on

Gibbs sampling for approximate inference. The training time of G-LASSO and G-ARD is also

small, typically below 10 seconds, but above the training time of GSS-EP. Finally, we note that

the training time of SS-EP exceeds the training time of GSS-EP. This is because in SS-EP the EP

algorithm requires more iterations to converge, even though SS-EP is implemented with the same

code as GSS-EP and also uses damped EP updates to improve convergence. This specific problem

is also reported by Hernández-Lobato (2010) and is a consequence of the multiple modes of the

posterior distribution under the standard spike-and-slab prior. When the grouping information is

considered for induction, as in GSS-EP, the problem seems to be alleviated and the EP algorithm

converges in fewer iterations.

Figure 4 displays, for a given instance of the signal reconstruction problem, the actual signal

w0 and the different reconstructions generated by each method. The figure shows that GSS-EP

and GSS-MCMC obtain the most accurate reconstructions and only fail to reconstruct the smallest

components of the signal, probably due to the measurement noise. Furthermore, the reconstructions

from these two methods look nearly identical. This gives further evidence indicating that the EP

posterior approximation of the posterior mean is accurate. By contrast, SS-EP completely fails to

reconstruct the original signal. In particular, without the grouping information it is impossible to

reconstruct accurately this signal and SS-EP actually includes in the solution coefficients that only

explain the observed data by chance. Similarly, many important coefficients are excluded from

the solution found by SS-EP. The reconstructions generated by G-HS and G-ARD look accurate

too. However, these methods include many coefficients with values just slightly different from zero

which were not present in the original signal. In the group horseshoe this behavior can be explained

because under this prior the probability of observing a group at the origin is zero. Similarly, in G-

ARD the optimization process is not convex and can converge to a local and sub-optimal maximum

of the type-II likelihood. The signal reconstructed by G-LASSO underestimates some values of the

model coefficients and, at the same time, includes many coefficients that take values slightly dif-

ferent from zero. This behavior is due to the properties of the corresponding Multi-variate Laplace

prior described in Section 6. In particular, this prior distribution is unable to achieve high levels

of sparsity without shrinking too much the model coefficients that are different from zero. Finally,

the signal reconstructed by BG-LASSO is rather inaccurate and not sparse at all. The Multi-variate

Laplace prior produces an excessive shrinkage of non-zero model coefficients, while the magnitude

of the coefficients that should be zero is not sufficiently reduced. Specifically, when a full Bayesian

approach is used under this prior, the probability density of observing a group at the origin is zero,

as illustrated by Figure 2. This questions the utility of the Bayesian group LASSO for group feature

selection.

We also evaluate the utility of sequential experimental design to generate the different measure-

ments used for the reconstruction of the sparse signal. For this, we repeat the previous experiments

for an iteratively increasing number of measurements and report the reconstruction error of each

method, except BG-LASSO, G-HS and GSS-MCMC. These methods are excluded because the cost

of Gibbs sampling makes the corresponding computations too expensive. In these experiments, we

start from an initial set of 32 measurements which are randomly generated using a design matrix X

whose rows are sampled uniformly in the hyper-sphere of radius
√

d. The reason for this is that the
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Figure 4: True signal w0 and the different reconstructions generated by each method for one in-

stance of the signal reconstruction problem. Similar results are observed in other in-

stances of this problem. The x-axis represents each of the model coefficients and the

y-axis their values.

sequential design of new measurements from the beginning typically leads to over-fitting, as indi-

cated by Ji and Carin (2007). We then iteratively generate up to 32 extra measurements and report

the corresponding reconstruction error. The new measurements are generated using the sequential

experimental design strategy described in Section 4. To investigate the benefits of such strategy,

we also report results when these new 32 measurements are randomly generated. G-LASSO is also

excluded from the experiments since it is impossible to compute posterior covariances under this

method.

The results of the experiments are displayed graphically in Figure 5. This figure shows the

reconstruction error of GSS-EP, SS-EP, and G-ARD as a function of the number of measurements

performed when X is designed or randomly chosen. These curves indicate that sequential experi-

mental design significantly improves the reconstruction error when compared to random design. In
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particular, a steeper error descent with respect to the number of measurements made is produced

for GSS-EP, SS-EP and G-ARD. The smallest final reconstruction error is achieved by GSS-EP

followed by G-ARD, when X is designed. Furthermore, the reconstruction error of SS-EP signifi-

cantly improves in this situation and becomes very close to the reconstruction error of the methods

that consider the grouping information when X is chosen randomly. This illustrates the benefits of

sequential experimental design. In any case, the reconstruction error of GSS-EP is much better than

the reconstruction error of SS-EP when X is designed. This remarks again the beneficial properties

of considering the grouping information during the induction process.
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Figure 5: Average reconstruction error on the signal reconstruction problem as a function of the

number of measurements performed for GSS-EP, G-ARD and SS-EP. We report results

when X is chosen randomly and when X is designed.

The last experiments of this section investigate the sensitivity of the generalized spike-and-slab

prior to the incorrect specification of the information about which groups of model coefficients are

expected to be jointly relevant or jointly irrelevant for prediction. For this, we repeat the experiments

whose results are displayed in Table 3. However, this time we introduce increasing levels of noise

in the grouping information. Specifically, we permute at random 10%, 20%, 40%, 60% and 100%

of the components of a vector with length equal to d, the total number of components in the signal

to be reconstructed. Such vector summarizes the grouping information. Namely, its entries take

values between 1 and the total number of groups, 128, and they respectively indicate the particular

group each component belongs to. When 100% of the components of the vector are randomly

permuted, the grouping information is completely random. By contrast, when a smaller fraction of

the components are permuted, the vector may still contain useful information that is only partially

correct.

Table 4 displays the average reconstruction error of each method for each different level of noise

introduced in the grouping information. The error of a method has been high-lighted in bold-face

when it is better than the error of GSS-EP and there is statistical evidence indicating a performance
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difference. A paired t-test has been used for this purpose (p-value < 5%). Similarly, when there is

not enough statistical evidence to indicate a performance difference (GSS-EP performs similarly),

the corresponding error has been underlined. The errors where GSS-EP is found to perform better

according to the t-test have been left un-modified. The table shows that when the level of noise

in the groups is small (i.e., 10% or 20%) the grouping information is still useful to reconstruct the

sparse signal and GSS-MCMC and GSS-EP perform best. By contrast, when the level of noise

introduced is large (i.e., 60% or 100%), using the grouping information for induction is harmful

and the performance of the different methods degrades significantly. The best method is in this case

SS-EP as a logical consequence of not considering the grouping information. Similar results have

been obtained by Huang and Zhang (2010) for the group LASSO.

Noise

Level GSS-EP GSS-MCMC SS-EP G-LASSO BG-LASSO G-HS G-ARD

10% 0.39±0.17 0.38±0.16 0.71±0.20 0.60±0.13 0.92±0.03 0.44±0.16 0.48±0.16

20% 0.51±0.19 0.49±0.17 0.71±0.20 0.65±0.12 0.93±0.02 0.54±0.15 0.56±0.18

40% 0.70±0.24 0.69±0.20 0.71±0.20 0.75±0.11 0.93±0.02 0.68±0.16 0.73±0.19

60% 0.83±0.18 0.83±0.17 0.71±0.20 0.81±0.09 0.94±0.02 0.78±0.12 0.88±0.17

100% 0.95±0.17 0.90±0.14 0.71±0.20 0.85±0.07 0.94±0.02 0.86±0.11 0.97±0.15

Table 4: Average reconstruction error of each method on the sparse signal reconstruction problem

as a function of the fraction of components (noise level) that are randomly permuted in the

vector that contains the grouping information.

7.2 Prediction of User Sentiment

In this section we investigate the utility of the generalized spike-and-slab prior to address the prob-

lem of sentiment prediction from user-written product reviews (Pang et al., 2002). In this task

the objective is to predict the rating assigned by a user to a particular product in terms of the text

contained in the product review by the user. We specifically focus on the four sentiment data sets

described by Blitzer et al. (2007). These data sets contain reviews and the corresponding user rat-

ings from different products extracted from www.amazon.com. The products from each data set are

classified in a different category: books, DVDs, kitchen appliances or electronics, and the range of

possible user ratings goes from 1 to 5. Each review is represented by a vector of features whose

components correspond to the unigrams and bigrams (i.e., single words and pairs of words, respec-

tively) that appear in at least 100 reviews of the products within the same category. The feature

values are simply the number of times that the corresponding unigram or bigram appears in the

review. Table 5 displays the total number of instances and the total number of features of each

sentiment data set.

The predictive performance of the different methods compared is evaluated on the sentiment

data sets Books and Kitchen. The data sets DVDs and Electronics are respectively used to generate

the different groups of features considered for induction in the latter data sets. In particular, the

DVDs data set is used to generate the groups for the Books data set and the Electronics data set

is used to generate the groups for the Kitchen data set. All the features of the Book data set are

contained in the DVDs data set and all the features of the Kitchen data set are contained in the
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Data Set # Instances # Features (d)

Books 5501 1213

DVDs 5518 1303

Kitchen 5149 824

Electronics 5901 1129

Table 5: Number of instances and features corresponding to each sentiment data set.

Electronics data set. This means that we can safely consider exclusively the common features

between these pairs of data sets to generate the groups. For this, we assume that the relevance or

irrelevance of each group of features transfers from one data set to another. We then fit a simple

linear ridge regression model using all the available data of the data set from which the groups are

induced and a hierarchical clustering algorithm is run on the absolute values of the estimated model

coefficients. This algorithm is stopped when 150 clusters are generated and the features associated

to the coefficients contained in each cluster are grouped together. This guarantees that the features

for which the associated model coefficients take similar values are contained in the same group.

Thus, we expect that sets of relevant features (i.e., the features whose associated coefficients take

large values) are actually placed in the same group of features. The same behavior is expected for

irrelevant features (i.e., the features whose associated coefficients take small values). The results of

the experiments reported in this section seem to confirm our expectation. In particular, using the

grouping information for prediction has a beneficial effect on the predictive performance.

The evaluation procedure on each data set consists in generating 100 random partitions of the

data into a training set with n = 100 instances and a test set with the remaining data. This par-

ticular size for the training set is chosen because we are interested in evaluating the performance

of the different methods when n ≪ d. In each train and test partition the features are normalized

alongside with the targets to have zero mean and unit standard deviation across data instances.

Furthermore, the hyper-parameters of GSS-EP, p0 and v0, are chosen in terms of an independent

10-fold cross-validation estimate of the prediction performance computed on the training data. The

model evidence, as estimated by the EP algorithm, is not used for this purpose since it has been

empirically found to provide inaccurate decisions in these data sets. The values of p0 and v0 are

selected from a grid of 5× 5 points. This grid is centered on a combination of hyper-parameters

with good estimated predictive performances for GSS-EP. In SS-EP p0 and v0 are also selected by

10-fold cross-validation, but using a different grid of 5× 5 points. This grid is also centered on a

combination of hyper-parameters with good estimated predictive performances for SS-EP. In GSS-

MCMC we use the same hyper-parameters as the ones found in GSS-EP. This allows to directly

compare results between GSS-MCMC and GSS-EP. G-HS and BG-LASSO are too computation-

ally expensive for a cross-validation search of the prior hyper-parameters. In BG-LASSO we set γ

so that the marginals of the resulting prior have, on average, the same variances as the variances of

the marginals of the generalized spike-and-slab prior in GSS-EP. In G-HS we select τ so that the

marginals of the group horseshoe prior have the same distance between the percentiles 1% and 99%

as the marginals under the generalized spike-and-slab prior in GSS-EP. Recall that the horseshoe

prior does not have defined variances. In G-LASSO we select k by 10-fold cross-validation using

a grid of 10 values. This grid contains hyper-parameter values with good estimated predictive per-

formances for G-LASSO. Finally, σ2
0, that is, the variance of the noise, is set equal to one in all the
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methods compared. This specific value provides good results in general. Recall that the targets y

are normalized to have zero mean and unit standard deviation in each train and test partition.

The results of these experiments are displayed in Tables 6 and 7 for the Books and the Kitchen

data sets, respectively. These tables show the mean squared error (MSE) of each method on the test

set and the corresponding average training time in seconds, without including the time required for

finding the model hyper-parameters. The tables show that in both data sets GSS-EP obtains nearly

the best prediction results. Furthermore, the prediction error of GSS-EP is again almost equivalent

to the prediction error of GSS-MCMC. This gives further evidence supporting that the posterior ap-

proximation computed by EP is accurate. These results also indicate that it is important to consider

the grouping information for prediction. In particular, SS-EP obtains worse reconstruction errors

than GSS-EP in both data sets. After GSS-EP and GSS-MCMC, the best performing method is GS-

HS. The prediction error of this method is only slightly worse than the prediction error of GSS-EP.

G-ARD does not perform well in these data sets and seems to produce high levels of over-fitting.

Specifically, it produces nearly the worst prediction results among the methods that consider the

grouping information. This can be related to the fact that this method lacks a hyper-parameter to

specify the desired level of group sparsity or to the multiple local maxima of the type-II likelihood.

Finally, the performance of BG-LASSO, is also poor in both data sets while G-LASSO provides

only good prediction results in the Kitchen data set. A Wilcoxon test confirms that GSS-EP and

GSS-MCMC perform better than the other methods being evaluated in both data sets (p-value be-

low 5%). On the other hand, the differences in performance between these two methods are not

statistically significant. The non-parametric Wilcoxon test is used in these experiments where the

train and test partitions are no longer independent because it is more conservative than the Student’s

t-test when the assumptions made by such a test are questionable (Demšar, 2006).

GSS-EP GSS-MCMC SS-EP G-LASSO BG-LASSO G-HS G-ARD

MSE 2.17±0.10 2.17±0.10 2.26±0.10 2.30±0.10 2.35±0.16 2.23±0.08 2.48±0.23

Time 5.14±1.37 4202±563 3.09±1.00 1.99±1.78 7416±513 7571±397 4.77±2.95

Table 6: MSE and average training time for each method on the Books data set.

GSS-EP GSS-MCMC SS-EP G-LASSO BG-LASSO G-HS G-ARD

MSE 1.95±0.11 1.94±0.11 2.08±0.10 2.04±0.14 2.21±0.19 2.02±0.08 2.19±0.23

Time 4.00±0.97 2967±109 2.24±0.61 1.94±1.42 5473±278 5699±436 3.69±1.62

Table 7: MSE and average training time for each method on the Kitchen data set.

When we compare the average training time of the different methods we observe that GSS-EP

is among the fastest methods. Nevertheless, the average training time of SS-EP, G-LASSO and G-

ARD is slightly better. The reason for this is that the EP algorithm takes more iterations to achieve

convergence in the two sentiment data sets considered. In any case, the results reported show that

GSS-EP is still significantly faster than GSS-MCMC, BG-LASSO or G-HS, the induction methods

that rely on Gibbs sampling for approximate inference. Note that in these experiments we do not

report plots of the values of the model coefficients, as estimated by each different method, because

the differences among these cannot be appreciated by visual inspection. Furthermore, unlike in the

previous experiments about the reconstruction of sparse signals, in these data sets the optimal values

of the model coefficients are unknown.
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In this section we also evaluate the utility of sequential experimental design to select the train-

ing instances to induce the different models. Specifically, we repeat the previous experiments when

considering an iteratively increasing number of training instances for induction and report the result-

ing prediction performance of G-ARD, GSS-EP and SS-EP. For each data sets, that is, Books and

Kitchen, we consider the train and test partitions of the data previously generated. Initially, we train

each model with the set of 100 instances contained in training set. Then, we iteratively select one by

one up to 64 additional training instances from a validation set. This validation set contains 256 in-

stances randomly extracted from the test set. The instances selected are then iteratively included in

the training set, which is used again for induction. Once each model has been re-trained, we report

the corresponding average prediction error on the remaining test data. The training instance that is

extracted from the validation set and included in the training set is chosen using the criterion for

sequential experimental design described in Section 4. Namely, we select the instance (xnew,ynew)
that maximizes xT

newVxnew, where xnew has been normalized to have a unit ℓ2-norm. Note that the

target ynew is not used in this process. The corresponding target can be obtained once xnew has been

selected and included in the training set. To investigate the benefits of this strategy, we also report

results when these new 64 instances are selected randomly from the validation set. Finally, in each

train and test partition of the data we set the different hyper-parameters of each method to the same

values as the ones used in the previous experiments.

The results of those experiments are displayed in Figure 6 for each sentiment data set. The

curves in this figure show the average prediction performance of each method as a function of the

number of additional training instances considered for induction when these instances are selected

from the validation set randomly or using sequential experimental design. We note that in both sen-

timent data sets sequential experimental design tends to improve the prediction error with respect

to random selection. Nevertheless, these improvements are generally below the ones reported in

Figure 5. Specifically, in the case of SS-EP the observed improvements are marginal. The smaller

gains observed in this figure can be explained by the fact that in these experiments we do not gen-

erate xnew, but select it from a validation set. In the case of GSS-EP the observed improvements in

the prediction error are more significant. Furthermore, there is statistical evidence indicating that

sequential experimental design provides better prediction performance in GSS-EP than random se-

lection when 164 training instances are used for induction. Specifically, a Wilcoxon t-test comparing

the prediction error of sequential experimental design and the prediction error of random selection

provides a p-value smaller than 5%. This illustrates again the benefits of sequential experimental

design and the favorable properties of considering the grouping information during the induction

process. Finally, we note that in the case of G-ARD sequential experimental design provides much

larger improvements in the prediction error. Notwithstanding, the results of this method are far from

the ones of GSS-EP.

7.3 Reconstruction of Images of Hand-written Digits

A last batch of experiments is carried out to assess the effectiveness of the generalized spike-and-

slab prior to reconstruct images of hand-written digits extracted from the MNIST data set (LeCun

et al., 1998). These images can also be interpreted as random signals w to be reconstructed from a

small set of random measurements. The MNIST data set contains 60,000 digit images of 28× 28

pixels (i.e., d = 784). This means that in this data set there are about 6,000 images of each different

digit from 0 to 9. The images are in gray scale and each pixel takes a value between 0 and 255.
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Figure 6: Mean squared prediction error for the Books and the Kitchen data sets as a function of the

number of training instances for GSS-EP, G-ARD and SS-EP. We report results when the

training instances are chosen randomly from a validation set and when they are selected

from this data set using sequential experimental design.

Most of the pixels in each image are inactive and hence take values equal to 0. Conversely, only

a few pixels are active in each image and take values near 255. Thus, these images are sparse and

adequate to be reconstructed from a small set of random measurements using the method proposed.

We randomly extract 200 images of each digit from the MNIST data set. The first 100 random

images are reconstructed from noisy measurements. The remaining 100 random images are used to

generate the corresponding grouping information. Specifically, for each digit we generate 784/4 =
196 groups of 4 pixels as follows.3 First, we randomly select an initial pixel to represent each group.

Then, for each different group we iteratively add, from the remaining set of pixels, the pixel that

has on average the most similar activation pattern with respect to the pixels already included in the

group. Similarity is measured in terms of the ℓ2-norm. This process is repeated until all groups

contain exactly 4 pixels. The second set of 100 images corresponding to each different digit are

exclusively used to estimate the similarity between the activation patterns of the pixels. Once the

different groups of pixels have been generated we proceed to reconstruct the set of 100 random

images of each digit. The images are first normalized so that each pixel takes a value in the interval

[0,1] (we divide each pixel value by 255). Then, each image is stored in the vector w0 of d = 784

model coefficients. This vector contains the image to be reconstructed. Given a particular image

w0 we then generate a reduced amount of measurements using a design matrix X = (x1, . . . ,xn)
T

whose rows are sampled uniformly in the hyper-sphere of radius
√

d. For the reconstruction of each

image, a total of n = 288 noisy measurements y = {y1, . . . ,yn} are used. This particular number

of measurements is chosen because it allows to accurately reconstruct the images considered and

also to discriminate among the different methods being compared (Figure 9 also reports results

3. This particular choice of the number of groups and their size is supported by the good performance results obtained

by the different methods that use the grouping information.
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for other numbers of measurements). Finally, each measurement is generated as yi = wT
0 xi + εi,

for i = 1, . . . ,n, where εi follows a standard Gaussian distribution, that is, the noise is introduced

artificially.

Given X and y we induce w0 using the different methods evaluated. Let ŵ be the corresponding

estimate of the image w0. The reconstruction error is measured as ||ŵ−w0||2/||w0||2, where || · ||2
denotes the ℓ2-norm. In these experiments the hyper-parameters of each method are fixed optimally.

In GSS-EP and GSS-MCMC p0, that is, the fraction of groups initially expected to be relevant for

prediction, is set for each different image equal to the actual fraction of groups whose associated

pixels take values different from zero. For these two methods, v0, that is, the variance of the slab, is

set equal to the square of the average deviation from zero of each component of w0 that is different

from zero. In SS-EP the same value is used for v0, but p0 is set equal to the actual fraction of pixels

that take values different from zero. In BG-LASSO we set γ so that the resulting prior has the same

variance as the generalized spike-and-slab prior in GSS-EP and GSS-MCMC. In G-LASSO we try

different values for k and report the best performing value observed for each different digit. In G-HS

we fix τ so that the marginals under the group horseshoe prior have the same distance between the

percentiles 1% and 99% as the marginals under the generalized spike-and-slab prior. Finally, in all

methods except G-LASSO, σ2
0, that is, the variance of the Gaussian noise, is set equal to one.

The results of these experiments are displayed in Table 8. This table shows the average recon-

struction error of each method for each different digit of the MNIST data set. The average training

time in seconds of each method is also displayed on the last row of the table. We have high-lighted

in bold face the reconstruction error of each method when it is better than the reconstruction error

of GSS-EP and there is statistical evidence indicating a performance difference. A paired t-test has

been used for this purpose (p-value < 5%). Similarly, when there is not enough statistical evidence

to indicate a performance difference (GSS-EP performs similarly), the corresponding error has been

underlined. The results where GSS-EP is found to perform better according to a t-test have been

left un-modified. The table shows that the best reconstruction errors are obtained by GSS-MCMC

closely followed by GSS-EP. As a matter of fact for three digits, that is, 1, 3 and 7, there is no

performance difference between the two methods. GSS-EP offers a better reconstruction error than

the other methods that use the grouping information. These differences in the reconstruction error

are statistically significant, except when comparing results with those of G-ARD for the digits 4

and 6. In those cases there is not enough statistical evidence to indicate a performance difference.

When comparing results with respect to SS-EP we observe also better reconstruction errors. This

highlights the beneficial properties of considering the grouping information in the reconstruction

problem. After GSS-EP and GSS-MCMC, the best performing method that uses the grouping in-

formation is G-ARD followed by G-HS. Finally, G-LASSO does not perform very well in this task

and BG-LASSO obtains the worst reconstruction errors. This validates the results of Section 6.

When comparing the average training time of the different methods displayed in Table 8 we

observe again that GSS-EP is among the fastest methods. In particular, GSS-EP needs only 85

seconds for training, on average. This method is again significantly faster than GSS-MCMC, BG-

LASSO or G-HS, the induction methods that rely on Gibbs sampling for approximate inference. We

also note that the standard deviation estimate of GSS-EP is very large. This is a consequence of the

fact that the EP algorithm in some extreme situations requires a high number of iterations to achieve

convergence. In any case, the training time of GSS-EP is better than the training time of SS-EP.

This shows that the EP algorithm in SS-EP requires even more iterations to converge. Finally, the
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Digit GSS-EP GSS-MCMC SS-EP G-LASSO BG-LASSO G-HS G-ARD
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E
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o
r

0 0.26±0.14 0.23±0.09 0.85±0.17 0.48±0.12 0.73±0.02 0.30±0.12 0.29±0.18

1 0.12±0.02 0.12±0.02 0.15±0.14 0.36±0.06 0.62±0.05 0.13±0.02 0.14±0.02

2 0.24±0.14 0.22±0.10 0.76±0.29 0.46±0.12 0.73±0.03 0.29±0.12 0.28±0.16

3 0.20±0.09 0.20±0.08 0.73±0.32 0.42±0.12 0.71±0.03 0.25±0.10 0.24±0.14

4 0.18±0.07 0.17±0.04 0.52±0.36 0.38±0.10 0.70±0.04 0.20±0.06 0.19±0.06

5 0.22±0.13 0.19±0.07 0.59±0.35 0.41±0.10 0.71±0.03 0.24±0.09 0.24±0.14

6 0.23±0.17 0.21±0.14 0.69±0.32 0.42±0.14 0.71±0.04 0.26±0.14 0.24±0.17

7 0.17±0.07 0.16±0.04 0.52±0.37 0.38±0.09 0.69±0.04 0.19±0.06 0.19±0.08

8 0.24±0.15 0.21±0.10 0.79±0.25 0.45±0.13 0.72±0.03 0.28±0.13 0.29±0.20

9 0.18±0.11 0.17±0.08 0.58±0.37 0.39±0.11 0.70±0.04 0.21±0.09 0.20±0.12

Time 85±100 20730±1472 211±154 292±191 25188±1495 25536±1842 59±36

Table 8: Average reconstruction error of each method on each digit of the MNIST data set and

average training time in seconds.

training time of G-ARD is also small and slightly better than the training time of GSS-EP while the

training time of G-LASSO is slightly longer.

Figure 7 displays in gray scale, for a given instance of the image reconstruction problem, the ac-

tual image to be reconstructed w0 and the corresponding reconstructions generated by each method.

The figure shows that GSS-EP and GSS-MCMC obtain the most accurate reconstructions and only

include some pixels with values slightly different from zero, probably due to the measurement noise.

Furthermore, the reconstructions from these two methods look nearly identical. This gives further

evidence indicating that the EP posterior approximation of the posterior mean is accurate. SS-EP

completely fails to reconstruct the original image (except in the images corresponding to the digit

1) and actually includes in the solution several pixels that only explain the observed data by chance.

Similarly, many important pixels are excluded from the solution found by SS-EP. The reconstruc-

tions generated by G-HS and G-ARD look accurate for some images. However, these methods

include many coefficients with values just slightly different from zero which were not present in

the original image. The images reconstructed by G-LASSO also include many coefficients that take

values slightly different from zero. Furthermore, this method tends to underestimate the values of

some pixels. Again, this behavior is due to the properties of the corresponding Multi-variate Laplace

prior which is not able to achieve high levels of sparsity without shrinking too much the model co-

efficients that are different from zero. Finally, the image reconstructed by BG-LASSO is not sparse

at all which questions again the utility of the Bayesian group LASSO for group feature selection.

In these experiments we also analyze the utility of the posterior approximation computed by

EP in GSS-EP to identify relevant features for prediction. In particular, for each different digit and

image, we record the value of the parameters σ(pg) ∈ [0,1], with g = 1, . . . ,G, of the EP approxi-

mation to P (z|y,X). This approximate distribution is described in detail in (7) and each parameter

σ(pg) estimates the posterior probability of using the g-th group of pixels for prediction. Thus, we

can simply estimate the probability of using a particular pixel for the reconstruction task by looking

at the corresponding parameter σ(pg). To evaluate the benefits of considering the grouping infor-

mation for the computation of the pixel importance, we also analyze the results obtained by SS-EP.

In SS-EP there is a group for each different pixel and hence σ(pg), with g = 1, . . . ,d, directly esti-
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Exact Image GSS-EP GSS-MCMC SS-EP G-LASSO BG-LASSO G-HS G-ARD

Figure 7: Representative exact images from the MNIST data set in gray scale for each different

digit and the corresponding reconstructions obtained by each different method evaluated.

mates the corresponding pixel importance. Additionally, to compare results with the method based

on Gibbs sampling we also report the corresponding estimates of GSS-MCMC. In GSS-MCMC

the pixel importance is computed by estimating the average fraction of times the prior variance of

the corresponding coefficient is different from zero within the generated samples (see Appendix A

for further details). The results of these analyses are displayed graphically in Figure 8. This figure

shows the importance of each pixel for the image reconstruction as estimated by GSS-EP, GSS-

MCMC and SS-EP for each different digit. The results are averages over the 100 different images

corresponding to each different digit. The importance of each pixels is displayed using a gray scale

from 0, which corresponds to white, to 1, which corresponds to black. The results displayed show
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that GSS-EP is very confident in the estimation of the pixel importance: most pixels are unlikely to

be used for the reconstruction problem. Conversely, only a few pixels are very likely to be used for

this task. In the case of SS-EP the results displayed show that this method is much less confident

about the relative importance of each pixel for the image reconstruction. Specifically, most pixels

show an intermediate level of importance, except for those of digit 1. This is probably due to the

larger level of sparsity of these images, where only a few measurements are needed to identify the

actual sparsity pattern. Finally, GSS-EP and GSS-MCMC offer nearly identical results. This gives

further evidence supporting the accuracy of the posterior approximation computed by EP. We do not

report here results for the other methods evaluated because they do not directly provide and estimate

of the relative importance of each group of features for prediction.

Method 0 1 2 3 4 5 6 7 8 9

G
S

S
-E

P
G

S
S

-M
C

M
C

S
S

-E
P

Figure 8: Average importance of each pixel for the reconstruction of the images corresponding

to each different digit, as estimated by GSS-EP, GSS-MCMC and SS-EP. The feature

importance of each pixel is represented in a gray scale from 0, which corresponds to the

white color, to 1, which corresponds to the black color.

We also evaluate the utility of sequential experimental design to generate the different measure-

ments used for the reconstruction of the images of hand-written digits. For this, we repeat the previ-

ous experiments for an iteratively increasing number of measurements and report the reconstruction

error of each method. Again, we focus on GSS-EP, SS-EP and G-ARD. In these experiments, we

start from an initial set of 128 measurements which are randomly generated using a design matrix X

whose rows are sampled uniformly in the hyper-sphere of radius
√

d. We then iteratively generate

up to 160 extra measurements and report the corresponding reconstruction error. The new mea-

surements are generated using the sequential experimental design strategy described in Section 4.

Finally, we also report results when these new 160 measurements are randomly generated.

The result of these experiments are displayed in Figure 9. The figure shows the reconstruction

error of GSS-EP, SS-EP, and G-ARD as a function of the number of measurements performed when

X is designed or randomly chosen for a representative subset of the ten digits contained in the

MNIST data set (similar results are obtained for the digits not shown). Again, the curves displayed

indicate that sequential experimental design significantly improves the reconstruction error when

compared to random design. In particular, a steeper error descent with respect to the number of

measurements made is produced for GSS-EP, SS-EP and G-ARD. The smallest final reconstruction

error is achieved by GSS-EP followed by G-ARD, when X is designed. This illustrates the benefits

of sequential experimental design. The reconstruction error of GSS-EP is also much better than the
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reconstruction error of SS-EP when X is designed. This high-lights again the beneficial properties

of considering the grouping information for the induction process.
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Figure 9: Reconstruction error for a representative subset of the ten digits contained in the MNIST

data set as a function of the number of measurements carried out. We report results for

GSS-EP, G-ARD and SS-EP when the measurements are chosen randomly and when they

are chosen using sequential experimental design.

Finally, in this section we evaluate the utility of the generalized spike-and-slab prior to fa-

vor/penalize specific groups of features which are a priori believed to be more relevant/irrelevant

for prediction. In particular, the prior distribution for z, as defined in (4), allows to specify a differ-

ent prior probability p0,g, with g = 1, . . . ,G, of using the g-th group of features for prediction. In

a typical application, all these parameters are set equal to a constant p0. However, when there is

prior information before hand about the relevancy or irrelevancy of specific group of features, this

can be easily codified in GSS-EP by modifying these parameters. To evaluate this characteristic

of the generalized spike-and-slab prior, we repeat the previous experiments where we report the

reconstruction error of GSS-EP as a function of the number of random measurements performed,

from 128 to 288 measurements. In these experiments we compare the results of GSS-EP when no

specific prior information is used and when this information is actually used in the induction pro-

cess. For this, we consider the 100 images that were used to identify each group of features. For

each different digit, we evaluate the average ℓ2-norm of the pixels contained in each group. Then,

we double the p0,g parameter for the 25 groups with the largest estimated ℓ2-norm. Similarly, we
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reduce by half the p0,g parameter for the 25 groups with the smallest estimated ℓ2-norm. Recall

that initially we set all these parameters equal to the actual fraction of groups that were relevant for

prediction. To further evaluate the properties of the mechanism described to introduce prior infor-

mation in the induction process, we also report results when we randomly reduce by half or double

the value of the parameter p0,g for 50 randomly chosen groups. Such a protocol evaluates the effect

of wrongly choosing the prior information. We do not evaluate here the other methods described for

group feature selection because they do not allow to introduce this type of prior information during

the induction process.

The results of these experiments are displayed graphically in Figure 10. This figure shows the

reconstruction error of GSS-EP as a function of the number of random measurements performed for

a representative subset of the ten digits contained in the MNIST data set (similar results are obtained

for the digits not shown). The curves report the corresponding reconstruction errors when no prior

information is actually used, when the prior information is used during the induction process, and

when this information is chosen randomly. The figure shows that using the prior information for

induction has a beneficial effect. In particular, it leads to a significant decrease of the reconstruction

error in GSS-EP. The improvements obtained are more significant when the number of measure-

ments used for induction is small. When the prior information is chosen randomly, we observe only

a slight increase of the reconstruction error of GSS-EP, which is very small compared to the gains

obtained when the prior information is correctly specified. In fact, it is difficult to visually differen-

tiate from the results obtained when no prior information is actually used. Thus, introducing prior

information can be certainly beneficial for the reconstruction error, whenever such information is

correct. By contrast, it barely affects the resulting model when the information is inaccurate.

8. Conclusions

In this document we have described a method for carrying out feature selection at the group level

in linear regression problems. This method is able to use prior information about groups of features

that are expected to be jointly relevant or irrelevant for prediction. More precisely, it is based on a

linear model that considers a generalized spike-and-slab prior for group feature selection. Specifi-

cally, under this prior a set of binary latent variables is introduced, one for each different group of

features, and each latent variable indicates whether or not the corresponding group is used for pre-

diction. Exact inference under this prior is infeasible in typical regression problems. However, ex-

pectation propagation (EP) can be used as a practical alternative to carry out approximate Bayesian

inference. The computational cost of EP is in O(n2d), where n is the number of training instances

and d is the number of features. This linear cost with respect to d is very efficient when n ≪ d,

which is the typical scenario we consider. Furthermore, the EP approximation provides an estimate

of the posterior covariances of w, that is, the vector of model coefficients. These covariances are

shown to be very useful to carry out sequential experimental design in the linear regression model.

In particular, they can be used to determine which instance to include in the training set to obtain the

most information about w, saving on costly experiments. The generalized spike-and-slab prior is

also shown to be very useful to introduce prior knowledge about specific groups of features that are

a priori expected to be more relevant or more irrelevant for prediction than the other groups. When

this information is not available, the prior considered has only two hyper-parameters: p0 and v0.

The interpretation of these parameters is very intuitive. They respectively describe the prior fraction

of groups expected to be relevant for prediction and the prior variance of the model coefficients of
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Figure 10: Reconstruction error for a representative subset of the ten digits contained in the MNIST

data set as a function of the number of measurements carried out. We report results

for GSS-EP when the measurements are chosen randomly. Furthermore, we consider

different cases of prior information: (i) no prior information is used about the relevancy

of each group of features (GSS-EP), (ii) the prior information is actually employed (GSS-

EP PRIOR), and (iii) the prior information is chosen randomly (GSS-EP PRIOR RANDOM).

the relevant groups. Thus, unlike in other methods for group feature selection, in the generalized

spike-and-slab prior it is very easy to specify the expected level of group sparsity and the expected

deviation from zero of the relevant coefficients. If this information is available beforehand, or can be

deduced from additional data, it can be readily introduced in the prior. Finally, the proposed method

has the advantage of providing a posterior estimate of the importance of each group of features.

This estimate can be used to identify the most relevant groups.

A detailed analysis compares the regularization properties of the generalized spike-and-slab

prior considered in this document with the properties of the priors used in other methods that can

also be used for group feature selection: namely, the group LASSO, the Bayesian group LASSO, the

group horseshoe and the group ARD principle. This analysis shows that the generalized spike-and-

slab prior is very effective for group feature selection. In particular, it is the only prior that can put a

positive probability mass at the origin for the coefficients corresponding to the different groups. This

probability is specified by the hyper-parameter p0. This hyper-parameter determines the sparsity at

the group level and mainly affects the regularization of irrelevant coefficients for prediction. The
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smaller its value, the stronger the regularization of the model coefficients that actually take small

values. By contrast, the regularization of the coefficients that are actually relevant for prediction

are barely affected by p0. These coefficients are fully regularized by the second hyper-parameter

of this prior, v0. The larger its value, the smaller the regularization of these coefficients and, as

in the previous case, v0 has little impact on the coefficients that are irrelevant for prediction. In

summary, under the generalized spike-and-slab prior it is possible to provide solutions that are

sparse at the group level in a selective manner. More precisely, under this prior we can model very

high levels of sparsity at the group level (small values of p0), while at the same time allowing for

model coefficients that are significantly different from zero (large values of v0). This is not possible,

for example, in the case of the group LASSO or the Bayesian group LASSO. The group horseshoe

also enjoys this selective shrinkage property. However, the resulting prior does not have a closed

form convolution with the Gaussian distribution which makes difficult to apply the EP algorithm for

fast approximate inference.

An extensive collection of experiments which considers real and synthetic data sets compares

the performance of a model based on the generalized spike-and-slab prior and the EP algorithm

with the other methods for group feature selection. In these experiments we also compare results

when Gibbs sampling is used for approximate inference instead of EP. A model which does not

use the grouping information for induction is also included in the comparison. Our results indicate

that when accurate prior information about relevant or irrelevant groups of features for prediction

is available, group feature selection significantly improves the results of single feature selection.

In addition, from the models that use the grouping information for induction, the model based on

the generalized spike-and-slab prior is shown to perform best. Furthermore, the performance of

this model is very similar when the EP algorithm is used for induction or when Gibbs sampling

is used instead. This confirms the accuracy of the EP approximation of the posterior distribution.

Additionally, the computational cost of EP is significantly better than the computational cost of the

methods based on Gibbs sampling, including the Bayesian group LASSO and the group horseshoe.

The computational cost of the EP algorithm is also similar or better than the computational cost

of the methods based on the group ARD principle or the group LASSO. Our results also show the

utility of the EP algorithm in the proposed model for carrying out sequential experimental design. In

particular, sequential experimental design in this model provides better results for a smaller number

of training instances. Finally, our experiments show the benefits of introducing information about

specific groups of features that are expected to be more relevant or more irrelevant a priori for

prediction. When this prior information is introduced in the model based on the generalized spike-

and-slab prior, better prediction results are obtained. By contrast, if this information is misspecified

(chosen randomly), the prediction performance of the resulting model does not vary significantly.

A practical issue with the generalized spike-and-slab prior is the selection of the model hyper-

parameters p0 and v0, which can be difficult. However, unlike the other methods for group feature

selection, the interpretation of these parameters is very intuitive and they can be easily set by hand

or chosen to match some specific model properties. Initially, we considered the model evidence,

as approximated by the EP algorithm, for this purpose. Nevertheless, our results indicate that this

is not adequate in some situations. Specifically, if the assumptions made by the model are not

satisfied in practice, the model evidence can lead to wrong decisions. The more general technique

of cross-validation is suggested instead. Another possibility, which is left for future exploration, is

to specify hyper-priors for the model hyper-parameters and to learn them simultaneously alongside

with the model coefficients w. This has already been considered in the standard spike-and-slab
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prior when Markov chain Monte Carlo is used for approximate inference (West, 2003). The model

described is also restricted to work with non-overlapping groups. Thus, future research directions

can also consider dealing with groups of features that overlap or that are considered to be relevant

for prediction following some particular hierarchy. Another path for future investigation includes

considering non-Gaussian additive noise in the estimation of the model parameters or developing

some method for extracting the grouping information from the data.
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Appendix A.

In this section we show how to implement an efficient Gibbs sampler for the regression models based

on the generalized spike-and-slab prior, the Bayesian group LASSO and the group horseshoe prior.

As described in Table 2, all these models are very similar and only differ in the prior distribution

assumed for λ2
g, that is, the prior variance for the coefficients wg corresponding to the g-th group

of features. In the case of the group horseshoe, the latent variances λ2
g are also multiplied by the

squared value of the hyper-parameter τ. For simplicity, we include this hyper-parameter in all the

derivations of this section and assume that τ = 1 for the Bayesian group LASSO and the generalized

spike-and-slab prior. Consider the vector of latent variables λ= (λ2
1, . . . ,λ

2
G)

T, where G is the total

number of groups. The method described in this section consists in first conditionally sampling

each component of λ from the corresponding posterior distribution given X and y. Then, w is

sampled conditioned to each sample of λ. Once this is done, the samples of λ are discarded and

the samples of w are used to approximate the expectations with respect to the posterior distribution

of w. This is the approach followed by the Gibbs sampling algorithm described by George and

McCulloch (1997) and by Lee et al. (2003) for the standard spike-and-slab algorithm. However,

we incorporate some characteristics of the framework introduced by Tipping and Faul (2003) to

speed-up the computations.

First, we describe how to conditionally sample from the posterior of λ2
g, for g = 1, . . . ,G. As-

sume P (λ2
g) is the corresponding prior distribution of λ2

g. Then, the logarithm of the posterior of

λ= (λ2
1, . . . ,λ

2
G)

T is:

logP (λ|X,y) = logN (y|0,C)+
G

∑
g=1

logP (λ2
g)+ constant , (37)

where C=σ2
0I+XAXT is an n×n matrix and A is a d×d diagonal matrix whose entries are defined

as A j j = τ2λ2
g if the j-th feature belongs to the g-th group for j = 1, . . . ,d. Consider now that all

the components of λ are fixed except for a particular λ2
g corresponding to the g-th group of features.

Furthermore, denote by λ−g the vector (λ2
1, . . . ,λ

2
G)

T where the g-th component has been omitted.

Then,

logP (λ2
g|X,y,λ−g) = L(λ−g)+L(λ2

g) , (38)
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where

L(λ−g) = logN (y|0,C−g)+ ∑
g′ 6=g

logP (λ2
g′)+ constant ,

C−g = σ2
0I+XA−gXT is a n×n matrix and A−g is a d×d diagonal matrix equal to A, except for the

diagonal entries corresponding to the g-th group of features. These entries are set to zero. Assume

that dg is the size of the g-th group of features and that Xg is a n× dg matrix which contains in

each row, for each instance, only the features of the g-th group. Consider the dg × dg matrix M =
XT

g C−1
−gXg. Denote by s j and by e j the j-th eigenvalue and the j-th eigenvector of M, respectively.

Then,

L(λ2
g) =

dg

∑
j=1

L j(λ
2
g)+ logP (λ2

g) , (39)

where

L j(λ
2
g) =

1

2

(

q2
jτ

2λ2
g

1+ τ2λ2
gs j

− log
(

1+ τ2λ2
gs j

)

)

, (40)

and q j = eT
j yTC−1

−gXg. From (38) and (39) it follows that

P (λ2
g|X,y,λ−g) ∝

[

dg

∏
j=1

exp(L j(λ
2
g))

]

P (λ2
g) . (41)

We generate a Gibbs sampling of λ = (λ2
1, . . . ,λ

2
G)

T by running through all the components of this

vector to generate a value for λ2
g according to the distribution in (41). Once the process of sampling

each λ2
g has been completed, we consider that we have generated a single sample of λ. This process

is repeated until 11,000 samples of λ are generated. From these, the first 1,000 are discarded and

the remaining are kept. Computing s j and q j for j = 1, . . . ,dg can be done very efficiently since

we typically assume that dg, that is, the size of the g-th group, is relatively small. Furthermore,

instead of storing the matrices C−g and C−1
−g in memory, we exclusively work with the Cholesky

decompositions of these matrices which are iteratively updated for each different value of g in time

O(dgn2) (Gill et al., 1974). In particular, C = C−g + τ2λ2
gXgXT

g and C−g = C− τ2λ2
gXgXT

g . Those

represent dg rank-one updates of C−g and C, respectively. To avoid numerical errors, the Cholesky

decompositions are recomputed from scratch each time ten new Gibbs samples of λ are generated.

Finally, since ∑G
g=1 dg = d, the cost of generating one sample of λ is O(n2d), where d is the total

number of features.

Sampling from the distribution described in (41) for g = 1, . . . ,G is straight-forward in the

case of the generalized spike-and-slab prior as a consequence of the simpler form of P (λ2
g). For

the Bayesian LASSO and the group horseshoe, the method described by Damien et al. (1999) is

used. For this, we sample dg auxiliary latent variables u j, with j = 1, . . . ,dg so that exp(u j) ∼
U[0,exp(L j(λ

2
g)] where L j(·) is defined as in (40). Then, we sample λ2

g from P (λ2
g) but restricted

to the set Au = ∩dg

j=1Au j
, where Au j

= {λ2
g : L j(λ

2
g) > u j}. Note that each function L j(·) has a

single global maximum (Faul and Tipping, 2001), which is found at zero when q2
j < s j, and at
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(q2
j − s j)/(τ

2s2
j) otherwise. Let λ̃2

g( j) be the global maximum of L j(·). Each set Au j
can be identi-

fied by finding the roots of L j(λ
2
g)−u j in the intervals [0, λ̃2

g( j)] and [λ̃2
g( j),∞]. If Au is found to be

empty (this rarely occurs in practice) we do not sample a new value for λ2
g and use the previous one.

Finally, in the group horseshoe and the Bayesian group LASSO, λ is initialized to a vector whose

components are all equal to 1 as described by Scott (2010). In the sampler for the model based on

the generalized spike-and-slab prior, λ is initialized to contain only ρ0G components different from

zero and equal to v0. The chosen components are those with the smallest least squares training error.

Given the samples of the vector λ, we sample from the conditional posterior of w to approximate

the posterior distribution of this vector. Conditioning on λ, we can sample w from a Gaussian

distribution with covariance matrix Σλ = A+1/σ2
0XTX and mean vector 1/σ2

0ΣλXy. When d ≫
n, this procedure has a cost in O(n2d). See Appendix B.2 of Seeger (2008). The total cost of

Gibbs sampling is in O(kn2d), where k is the number of samples to be generated from the posterior

distribution. However, often k ≫ d for accurate inference.

Appendix B.

In this section we show how to implement the group ARD method for group feature selection.

Section 5.4 shows that this method consists in finding the maximum a posteriori (MAP) solution of

αg, for g = 1, . . . ,G, where αg is the inverse of the prior Gaussian variance of wg, that is, the model

coefficients of the g-th group, and G is the total number of groups. A uniform prior for each αg

is assumed in this process. For simplicity, we use here the notation of Appendix A and work with

λ2
g = α−1

g . Consider the vector of latent variables λ= (λ2
1, . . . ,λ

2
G)

T. From (37) we have that

logP (λ|X,y) = logN (y|0,C)+ constant , (42)

where C = σ2
0I+XAXT is a n×n matrix and A is a d×d diagonal matrix whose entries are defined

as A j j = λ2
g if the j-th feature belongs to the g-th group for j = 1, . . . ,d. To find the maximum of

(42) we use a coordinate ascent method. Consider that all the components of λ are fixed except for

a particular λ2
g corresponding to the g-th group of features. Furthermore, denote by λ−g the vector

(λ2
1, . . . ,λ

2
G)

T, where the g-th component has been omitted. From (38) and (39), it follows that

logP (λ2
g|X,y,λ−g) =

dg

∑
j=1

L j(λ
2
g)+ constant , (43)

where dg is the number of features in the g-th group and L j(λ
2
g) is defined as in (40) for τ2 = 1. We

can optimize (42) with respect to λ by iteratively optimizing (43) for g = 1, . . . ,G. However, unlike

the single feature selection method (Faul and Tipping, 2001), the maximum of this function has no

analytical solution (Ji et al., 2009). Thus, we have to resort to non-linear optimization to find the

location of the maximum. For this, the gradient of L j(λ
2
g) with respect to λ2

g can be very useful:

dL j(λ
2
g)

dλ2
g

=
1

2

dg

∑
j=1

(

q2
j − s j −λ2

gs2
j

(1+λ2
gs j)2

)

,

where q j and s j are defined as in (40).

In our implementation each λ2
g is initialized to 0. Furthermore, as in Appendix A, instead of

storing the matrices C−g and C−1
−g in memory, we exclusively work with the Cholesky decomposi-

tions of these matrices which are iteratively updated for each different value of g in time O(dgn2)
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(Gill et al., 1974). We take care of doing the updates of these matrices only when they are strictly

needed. For example, if the optimal λ2
g is found to be equal to zero then C = C−g. The total cost of

the algorithm described is in O(n2d) under the assumption that the number of relevant groups is in

O(d), where d is the total number of features.
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