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Abstract

Recently, researchers have proposed penalized maximum likelihood to identify network topology

underlying a dynamical system modeled by multivariate time series. The time series of interest

are assumed to be stationary, but this restriction is never taken into consideration by existing es-

timation methods. Moreover, practical problems of interest may have ultra-high dimensionality

and obvious node collinearity. In addition, none of the available algorithms provides a probabilis-

tic measure of the uncertainty for the obtained network topology which is informative in reliable

network identification. The main purpose of this paper is to tackle these challenging issues. We

propose the S2 learning framework, which stands for stationary-sparse network learning. We pro-

pose a novel algorithm referred to as the Berhu iterative sparsity pursuit with stationarity (BISPS),

where the Berhu regularization can improve the Lasso in detection and estimation. The algorithm is

extremely easy to implement, efficient in computation and has a theoretical guarantee to converge

to a global optimum. We also incorporate a screening technique into BISPS to tackle ultra-high

dimensional problems and enhance computational efficiency. Furthermore, a stationary bootstrap

technique is applied to provide connection occurring frequency for reliable topology learning. Ex-

periments show that our method can achieve stationary and sparse causality network learning and

is scalable for high-dimensional problems.

Keywords: stationarity, sparsity, Berhu, screening, bootstrap

1. Introduction

There has been an increasing interest in identifying network dynamics and topologies in the emerg-

ing scientific discipline of network science (e.g., Newman and Watts, 2006; Lewis, 2009). In a

dynamical network, the evolution of a node is controlled not only by itself, but also by other nodes.

For example, in the gene regulatory network (Faith et al., 2007), the expression levels of genes

influence each other, following some dynamic rules, which connect the genes together and form a

dynamical system. If the topology and evolution rules of the network are known, we can analyze the
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regulation between genes or detect unusual behaviors to help diagnose and cure genetic diseases.

Similarly, the modeling and estimation of dynamical networks are of great importance for various

domains including stock market (Mills and Markellos, 2008), brain network (Bullmore and Sporns,

2009) and social network (Hanneke et al., 2010). To accurately identify the topology and dynamics

underlying those networks, scientists are devoted to developing appropriate mathematical models

and corresponding estimation methods.

In practice, we can obtain discrete observations of the network over a period of time, which

can usually be modeled by multivariate time series from a statistical perspective. For example, the

fMRI data of the human brain is taken every one minute during a two-hour experiment; stock prices

are often recorded daily or weekly. These multivariate time series contain important information

of the network topology and dynamics. Vector autoregressive (VAR) process (Sims, 1980) is one

of the most commonly used models for characterizing the relations between the time series. In

this model, the state of each node is characterized by a time series. The value of a node at a time

point is a linear combination of the past values of itself and the nodes regulating it. This kind of

regulation relationship is regarded as the Granger causal connection (Granger, 1969). By estimating

the transition matrix of the model, we can understand the Granger causal relations between nodes.

In estimating the transition matrix, one must bare in mind two most important objectives: first,

the estimate fitted on the training data should provide accurate prediction; second, a sparse topology

that illustrates the most prominent network connections is desired. Recently, compressive sensing

approaches based on penalized maximum likelihood (PML) are applied to achieve accurate predic-

tion and sparse representation simultaneously (Donoho, 2006; Tsaig and Donoho, 2006; Songsiri

and Vandenberghe, 2010). Different penalties and algorithms are proposed (Fan and Li, 2006, 2001;

Zou, 2006; Zou and Hastie, 2005; Blumensath and Davies, 2010). The ℓ1 penalty (Tibshirani, 1996)

is popular for its computational efficiency and theoretical elegance. Nevertheless, the major prob-

lem of the ℓ1 penalty for dynamical network learning is its incapability of handling collinearity,

which typically exists in network data as a result of the interaction between nodes. The elastic net

(Zou and Hastie, 2005) uses a linear combination of the ℓ1 and ℓ2 penalties to deal with collinearity

and large noise. However, its ℓ2 component may counteract sparsity and bring the so-called “double

shrinkage” issue. To improve these drawbacks, we study a new ‘ℓ1 + ℓ2’ variant—Berhu (Owen,

2007), which fuses the ℓ1 and ℓ2 penalties in a nonlinear fashion and thus can deal with collinearity

as well as achieve sufficient sparsity. We propose a Berhu thresholding operator to efficiently solve

the Berhu penalized problem.

In real-world problems, raw observations from a dynamical network are usually preprocessed

and stationarized before the application of PML (Stock and Watson, 2012; Hsu et al., 2008). Nev-

ertheless, as will be demonstrated in the experiment, it is possible for PML to end up with a non-

stationary estimate, due to noise contamination and limited number of observations. Such nonsta-

tionary estimates may give unmeaningful prediction results, especially for long-term forecasting.

Hence, our work, distinguished from the existing ones, focuses on enforcing the stationarity guar-

antee in network estimation and topology identification, which is of great importance but has never

been properly addressed. The stationarity condition of the VAR model is its spectral radius being

smaller than one (Reinsel, 1997). This constraint is nonconvex and extremely difficult to tackle

directly (Burke et al., 2005; Curtis and Overton, 2012; Overton and Womersley, 1988). Hence, we

use a convex relaxation and come up with a stationarity constrained PML problem. We propose

an efficient algorithm, the Berhu iterative sparsity pursuit with stationarity (BISPS), to achieve

stationary-sparse (S2) network learning. This algorithm is very easy to implement and theoretically
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guaranteed to converge to a global optimum. Experimentation demonstrates that our method can

guarantee a stationary and sparse estimate. It not only gives satisfactory identification accuracy, but

also outperforms the plain PML method significantly in prediction.

Another challenge in network identification lies in the high dimensionality of the data (Fan and

Lv, 2010). For a network with p nodes and n observations, the number of unknown variables in the

transition matrix is p2, and we frequently face practical data sets with p2≫ n, for example, microar-

ray data sets consisting of thousands of genes but fewer than a hundred observations. This so-called

“ultra-high dimensional” problem (Fan and Lv, 2008) adds tremendous difficulties to the inference

methods in terms of statistical estimation accuracy as well as computational complexity. To address

this challenging issue, we propose two efficient techniques. First, the quantile thresholding iterative

screening (QTIS) is designed to “preselect” connections for the BISPS algorithm in a supervised

manner. QTIS differs from existing screening techniques such as the sure independence screening

(Fan and Lv, 2008) in that it takes into account of collinearity in the data. Secondly, we propose

the stationary bootstrap enhanced BISPS (SB-BISPS). Bootstrap is a nonparametric technique for

approximating the distributions of statistics or constructing confidence intervals. Our work applies

this powerful tool with stationarity guarantee to network identification and provides a confidence

level for the occurrence of each possible connection in the network.

The remainder of the paper is organized as follows: Section 2 introduces the stationary and

sparse network model and formulates the S2 learning framework. Section 3 proposes our algo-

rithms, mainly the Berhu iterative sparsity pursuit with stationarity (BISPS) and the quantile thresh-

olding iterative screening (QTIS), and provides theoretical proofs for their convergence. Section 4

describes the stationary bootstrap enhanced BISPS (SB-BISPS). In Section 5, we show experimen-

tal results on synthetic data. In Section 6, we apply the proposed method to the U.S. macroeconomic

data. Section 7 concludes our work.

2. The Stationary-Sparse (S2) Network Learning Framework

Let x be a p-dimensional random vector with each component being a time series associated with

one node in a dynamical network, where p is the number of nodes. We are interested in charac-

terizing the observations of x at different time points using mathematical models, based on which

we can conduct useful network analysis. In particular, we are interested in understanding the causal

relations between nodes and making predictions for future. A commonly used model describes the

current state xt of the system as a linear transformation of its previous state xt−1:

xt = Bxt−1 + εt , εt ∼N (0,Σε), (1)

where B is the transition matrix and εt is random noise. This corresponds to the first-order vector

autoregressive (VAR) model (Sims, 1980). It can be generalized to a VAR model with order m,

where the current state is a linear combination of the most recent m states. On the other hand, any

mth-order VAR model can be converted to a first-order VAR model by appropriately redefining the

node variables (Lütkepohl, 2007), and thus we focus on the former one with m = 1 in this paper.

In (1), the transition matrix B = [bi j]1≤i, j≤p describes a network that represents the dynamical

system: if bi j 6= 0, there is a Granger causal connection (Granger, 1969) from node j to node i with

weight bi j. In other words, node j Granger-causes node i. For example, for a network with 6 nodes
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Figure 1: Example of a network (1) with transition matrix (2).
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, (2)

Figure 1a shows its topology (self-connections are removed). The nodes evolve and interact with

each other through the Granger causal connections, resulting in the random processes plotted in

Figure 1b. Therefore, matrix B not only illustrates the dynamic rules that govern the evolution of

the system, but also captures a linear causality network that describes the (Granger) casual relations

between nodes.

2.1 Sparse Network Learning by Penalized Maximum Likelihood Estimation

Given n observations of the dynamical network x1, · · · ,xn, we wish to estimate B. Due to Markov-

chain property, we can write the likelihood of B as

L(B|x1, · · · ,xn) =
n

∏
t=2

f (xt |xt−1, · · · ,x1,B) f (x1|B) =
n

∏
t=2

f (xt |xt−1,B) f (x1|B).

The exact maximum likelihood (ML) estimate requires solving a nonlinear optimization problem.

For simplicity, researchers often use the conditional likelihood where the initial state x1 is assumed

to be fixed. Due to normality, we have the conditional likelihood

Lc(B) =
n

∏
t=2

f (xt |xt−1,B) =
n

∏
t=2

(2π)−p/2|Σε|−1/2 exp{−1

2
(xt −Bxt−1)

TΣ−1
ε (xt −Bxt−1)}.

So the (conditional) ML estimate of B can be obtained by solving

min
B

1

2

n

∑
t=2

‖xt −Bxt−1‖2
2.
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Letting Y = [xT2 ,x
T

3 , · · · ,xTn ]T, X = [xT1 ,x
T

2 , · · · ,xTn−1]
T and A = BT, we can formulate the problem

in matrix form:

AML = argmin
A

l(A) =
1

2
‖Y −XA‖2

F .

For convenience, we use A instead of B to represent the network in the remainder of the paper.

Note that ai j describes the directed connection strength from node i to node j. The estimate ÂML

has been investigated and applied to many real-world data. For stationary process, the consistency

and asymptotic efficiency of ÂML are analyzed in Reinsel (1997). The small-sample properties are

discussed in Lütkepohl (2007).

Nevertheless, the plain ML estimation is not ideal for network learning. In practice, X usually

demonstrates high collinearity, especially when some nodes have similar dynamical behaviors and

when the number of observations is limited. Moreover, the ML estimation does not promote sparsity

and consequently the resulting model is difficult to interpret. To improve prediction accuracy and

obtain interpretable model, shrinkage estimation is necessary. It can be done by adding a penalty

and/or constraint. For example, we can estimate A via penalized maximum likelihood (PML):

ÂPML = argmin
A

l(A)+P(A;λ). (3)

We consider only the additive penalties and denote P(A;λ) = ∑i, j P(ai j;λi j), where P(·) is a penalty

function applied to each component of A, and λi j is the corresponding regularization parameter(s).

Alternatively, constraints can also be used. See Section 2.3 and Section 3.4.

Different penalties have been proposed. The famous Lasso (Tibshirani, 1996) solves the ℓ1

penalized problem. It is fast in computation. Nevertheless, Lasso suffers from some drawbacks

such as selection inconsistency, estimation bias and incapability of dealing with collinearity, in

particular. Zou and Hastie (2005) propose the elastic net (eNet for short in this paper) which adds

an additional ridge regularization (Hoerl and Kennard, 1970) to deal with collinearity and large

noise. However, the design counteracts sparsity to some extend and may bring the double shrinkage

issue. Some nonconvex alternatives, including the ‘ℓ0 + ℓ1’ SCAD (Fan and Li, 2001) and the

‘ℓ0 + ℓ2’ hard-ridge (She, 2009, 2012), are advocated to promote more sparsity. However, due to

nonconvexity, the convergent solution may be only locally optimal and depend on the choices of the

initial point. They are also more computationally expensive than convex approaches. Therefore, we

do not consider nonconvex regularizations hereinafter.

2.2 The S2 Network Learning

Many real-world time series (possibly after proper transformations such as taking logarithm and/or

differencing) are stationary. Stationary and nonstationary processes behave in fundamentally dif-

ferent manners. See Figure 2. For a stationary process, its probability distribution is invariant

with respect to the shift in time. In the nonstationary process, however, we can clearly see drift-

ing and trending behaviors. In practice, given raw observations sampled from a dynamical system,

researchers first stationarize the time series and then input them to the ML/PML estimator. The

resulting estimate ÂML/ÂPML is used for analysis and forecast. Unfortunately, however, the station-

arity requirement may be violated by ÂML/ÂPML in practice. Figure 3 shows a real-data example.

We apply ML and PML (adopting the ℓ1 penalty) respectively to the U.S. macroeconomic data

(Stock and Watson, 2012), which are stationary after proper transformations. The estimates are

then used to forecast an index “GDP263”. As shown in Figure 3, though the time series of GDP263
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Figure 2: Example of stationary and nonstationary processes. The number of nodes is p = 50. The

stationary process has ρ(A) = 0.95 and the nonstationary process has ρ(A) = 1.05.
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Figure 3: Forecasts of GDP263 given by ML and PML estimation. The time series of GDP263

is obtained from seasonal observations between 1978:IV and 1998:IV. It is a stationary

process. However, the forecasts given by ML and PML exhibit nonstationary behaviors.

ρ(ÂML) = 1.171, ρ(ÂPML) = 1.073.

is stationary, the ML and PML forecasts clearly exhibit nonstationary behaviors and they fail to

capture all characteristics of the original time series.
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In this paper, we propose the framework of stationary-sparse (S2) network learning to address

the limitation of PML to guarantee the stationarity property of the network. We invoke the station-

arity condition and design an efficient algorithm to solve the optimization problem.

A random process as in (1) is stationary if and only if its spectral radius ρ(A) satisfies the

stationarity condition:

ρ(A)
∆
= max

i
|λi|< 1, (4)

where λi is the ith eigenvalue of A, possibly complex, and | · | is the complex norm (Reinsel, 1997).

This leads to the following optimization problem:

min
A

f (A) =
1

2
‖Y −XA‖2

F +P(A;λ)

s.t. ρ(A)< 1.
(5)

Nevertheless, problem (5) is extremely challenging due to the fact that ρ(A) is a nonconvex and

non-Lipschitz-continuous function of A. An optimization method proposed by Curtis and Overton

(2012), which combines sequential quadratic programming and gradient sampling, sheds some light

on solving (5). However, at each iteration, the gradient sampling needs to sample p2 points and

calculate the gradient of the spectral radius at each point. As discussed in Overton and Womersley

(1988), calculating the gradient of spectral radius for a single point is already a challenging and

computationally demanding problem. It is prohibitive to do so for p2 points at each iteration in our

problem. Moreover, this method only guarantees ρ(A)≤ 1, not ρ(A)< 1.

We consider a reasonable convex relaxation of (4) as the stationarity constraint:

‖A‖2
∆
= max

i
|νi| ≤ 1,

where νi is the ith singular value of A and thus ‖A‖2 is the spectral norm. For an arbitrary square

matrix, we have ρ(A) ≤ ‖A‖2, where the equality holds when A is a symmetric matrix. In all our

applications, we have ρ(A)< 1.

The S2 learning problem is given by

ÂS2 = argmin
A

f (A)

s.t. ‖A‖2 ≤ 1.
(6)

Note that the stationarity constraint also has a “shrinking” effect on the estimate, which contributes

to the shrinkage estimation we are seeking, as discussed in Section 2.1.

2.3 The “Berhu” Penalty for Sparsity Pursuit and Model Decorrelation

As discussed in Section 2.1, coherence is often observed in real-world network data, especially

when some nodes have similar dynamical behaviors or strong influence between each other. In

such cases, the conventional Lasso fails to handle collinearity and consequently gives unsatisfactory

identification and forecasting performance. Hence, a more proper penalty is in need for S2 network

learning. We adopt a new hybrid penalty “Berhu”, which has a close relation with Huber’s loss

function for robust regression (Huber, 1981). The Huber function is quadratic at small values and
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linear at large ones, which makes it more robust to outliers than the squared-error criterion. Inspired

by the Huber function, Owen (2007) designed a convex penalty function Berhu

PB(t;λ,M) =

{

λ|t| if |t| ≤M

λ t2+M2

2M
if |t|> M.

(7)

As implied by its name, Berhu reverses the composition of Huber: it is linear at small values and

quadratic at large ones.
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Figure 4: Penalty functions and corresponding solutions.

Figure 4 compares Berhu with the ridge penalty PR(t;η) = 1
2
ηt2, Lasso PL(t;λ) = λ|t| and

eNet PE(t;λ,η) = λ|t|+ 1
2
ηt2. The upper panel plots the functions, while the lower panel shows

their corresponding solutions in the univariate and orthogonal case (see Section 3.2 for details).

The ridge penalty shrinks the coefficients to compensate for collinearity. But it can not produce

exact zero coefficients in the estimate. The Lasso soft-thresholds the coefficients to encourage

sparsity. However, it does not shrink the large coefficients effectively and does not work well for

correlated data. The eNet incorporates the ridge component into the ℓ1. However, the singularity

of the penalty function at zero is smoothed out to some extent by the ℓ2 part, which may lead to

an estimate not parsimonious enough. Also, it tends to over-shrink medium and large coefficients

(Zou and Hastie, 2005). Berhu overcomes these drawbacks by using a nonlinear fusion of the ℓ1

and ℓ2 penalties: for small coefficients, the ℓ1 regularization is enforced to achieve sparsity; for

large coefficients, the ℓ2 regularization is enforced to compensate collinearity (Hoerl and Kennard,

1970) and multi-dimensionality (James and Stein, 1961). As a result, Berhu not only preserves the

singularity property of Lasso at zero but also inherits the advantage of ridge regression in model

decorrelation. It is convex as well. The difference between Berhu and eNet is significant. For

medium and large coefficients, eNet not only shifts but also shrinks, which results in the double

shrinkage effect (Zou and Hastie, 2005). On the other hand, Berhu shifts only medium coefficients
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and shrinks large ones. It does selection and decorrelation separately, which better serves two

important objectives of network learning: accurate prediction and parsimonious representation.

Substituting PB(A;λ,M) into (6), we focus on solving

argmin
A

fB(A) =
1

2
‖Y −XA‖2

F +PB(A;λ,M)

s.t. ‖A‖2 ≤ 1.
(8)

In this problem, PB(A;λ,M) is typically nondifferentiable at zero and piecewise. The stationarity

constraint adds more difficulties to the problem. Moreover, in practice we are frequently confronted

with large-scale networks. Hence, an efficient and scalable algorithm is desired for S2 network

learning.

3. Computation of BISPS

In this section, we propose an algorithm named Berhu iterative sparsity pursuit with stationarity

(BISPS) to effectively solve the S2 learning problem (8). Some algorithms based on conventional

techniques will be developed first. They suffer from high computational complexity, poor numerical

accuracy, and/or insufficient sparsity. We then propose the novel BISPS which is easy to implement

and computationally efficient. Finally, to facilitate BISPS for ultra-high dimensional problems, we

propose the quantile thresholding iterative screening (QTIS). Convergence proofs are provided.

We assume the data matrices X ,Y has been centered before all the computation. Precalculations

ΣXX
∆
= XTX and ΣXY

∆
= XTY help avoid repeated computation.

3.1 Algorithms Based on Conventional Techniques

Problem (8) can be reformulated and then solved by well-known optimization techniques, such

as semidefinite programming, projected subgradient method, and alternating direction method of

multipliers. We briefly discuss these algorithms before introducing BISPS.

3.1.1 SEMIDEFINITE PROGRAMMING

Problem (8) can be reformulated as a semidefinite programming (SDP) problem

min
A

fB(A)

s.t.

[

I A

AT I

]

� 0

and can be solved by general SDP solvers. However, since most of the SDP solvers use interior point

methods, they suffer from extremely high space complexity. For example, we tried the popular SDP

solvers SeDuMi (Sturm, 1998) and SDPT3 (Tütüncü et al., 2003) using MATLAB7.11.0 on a PC

with 4GB memory; when the number of network nodes is larger than 100, both solvers ran out of

memory.

3.1.2 PROJECTED SUBGRADIENT METHOD

Define the subgradient of fB(A) at A as

∂ fB(A) = ∇l(A)+∂PB(A;λ,M),
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where ∂PB(A;λ,M) is the subdifferential (Alber et al., 1998) of PB(·), and ∇l(A) is the gradient of

l(A): ∇l(A) = ΣXX A−ΣXY . The projected subgradient method (PSGM) for problem (8) computes

a sequence of feasible points {Ak} with the update rule

Ak+1 = Π(Ak−αkU
k;1), where Uk ∈ ∂ fB(A

k),

until Ak satisfies 0 ∈ ∂ fB(A
k). The operator Π stands for spectral norm projection defined in

Lemma 5.

PSGM is simple to implement. At each step, one performs subgradient evaluation and spectral

norm projection. Nevertheless, due to the uncertainty of the subgradient at the non-differentiable

point of the penalty function, it suffers from slow convergence and insufficiency of sparsity. For

example, in an experiment where the number of nodes p = 100 and number of observations n = 80,

it does not converge yet after 104 iterations.

3.1.3 ALTERNATING DIRECTION METHOD OF MULTIPLIERS

The basic idea of alternating direction method of multipliers (ADMM) is to split the objective

function and variables and update them in an alternating fashion (Boyd et al., 2010). To apply

ADMM for solving problem (8), we reformulate it as

min
A,B,C

1

2
‖Y −XA‖2

F +PB(B;λ,M)

s.t.

[

A

A

]

=

[

B

C

]

,

and ‖C‖2 ≤ 1.

The augmented Lagrangian can then be written as Lρ1,ρ2
(A,B,C,Γ1,Γ2) = 1

2
‖Y − XA‖2

F+
PB(B;λ,M)+ tr{ΓT

1 (A−B)}+ tr{ΓT

2 (A−C)}+ ρ1

2
‖A−B‖2

F + ρ2

2
‖A−C‖2

F , where Γ1 and Γ2 are

Lagrangian multipliers and ρ1 and ρ2 are the augmented Lagrangian parameters. The iteration of

ADMM consists of the following steps

Ak+1 = (ΣXX +ρ1I +ρ2I)−1(ΣXY −Γk
1−Γk

2 +ρ1Bk +ρ2Ck),

Bk+1 = ΘB(A
k+1 +Γk

1/ρ1;λ/ρ1,M),

Ck+1 = Π(Ak+1 +Γk
2/ρ2;1),

Γk+1
1 = Γk

1 +ρ1(A
k+1−Bk+1),

Γk+1
2 = Γk

2 +ρ2(A
k+1−Ck+1),

where ΘB is the thresholding operator of Berhu—see Appendix A for detail. Note that matrix in-

version is involved in updating A, which increases computational difficulty. The penalty parameters

ρ1 and ρ2 have to be large enough; the choices of them have been shown to influence the number

of iterations significantly. To speed up convergence in practice, one can replace the constants ρ1

and ρ2 with two sequences {ρk
1} and {ρk

2} respectively, where ρk
1 and ρk

2 vary along the iterations

following some ad hoc adaptive rule (He et al., 2000). However, the algorithm is still slow when the

problem is high dimensional. For example, when p = 300,n = 100, ADMM costs up to 10 times

more computation time than BISPS (to be described in Section 3.2) to reach comparable accuracy.

Also, the convergence property of ADMM with varying ρ is not clear.
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In summary, although we have implemented some algorithms based on conventional techniques

for the S2 network learning problem, they are unable to cope with large-scale networks. A more

efficient and scalable algorithm is in great need.

3.2 The Berhu Thresholding Operator

Section 2.3 advocates the Berhu penalty for S2 network learning. However, in the original paper

(Owen, 2007), Berhu was solved through cvx (Grant and Boyd, 2008). Practical applications call

for the development of much faster algorithms. In this paper, we reparameterize Berhu and develop

its coupled thresholding rule, which allows us to solve the Berhu sparsity pursuit—problem (3) with

Berhu penalty—in a simple and efficient way. This formulation facilitates easy parameter tuning.

Also, it helps us understand the essence of Berhu.

Let η = λ/M. Reformulate the Berhu penalty (7) as

PB(t;λ,η) =

{

λ|t| if |t| ≤ λ/η
η2t2+λ2

2η if |t|> λ/η.
(9)

Define a thresholding rule

ΘB(t;λ,η) =











0 if |t|< λ

t−λsgn(t) if λ≤ |t| ≤ λ+λ/η
t

1+η if |t|> λ+λ/η.

(10)

It can be verified that, as shown in Lemma 3, ΘB(·;λ,η) is the coupled thresholding rule for the

Berhu penalty PB(·;λ,η):

PB(t;λ,η) =
∫ |t|

0
(sup{s : ΘB(s;λ,η)≤ u}−u)du.

For the multivariate case, the Berhu thresholding operator is applied elementwise.

With ΘB(·;λ,η), we can solve the Berhu sparsity pursuit (without the stationarity constraint)

using a simple iterative procedure:

Ak+1 = ΘB(A
k +αk(ΣXY −ΣXX Ak);λ,η). (11)

Since PB(·;λ,η) is convex, algorithm convergence is guaranteed given αk ≤
√

2/‖X‖2 (She, 2012).

It is worth pointing out that, based on the construction rule (13), we can also define the thresh-

olding operators for other penalties including Lasso, eNet and the ridge penalty, as shown in Fig-

ure 4. The Berhu thresholding operator ΘB(t;λ,η) offers a nonlinear fusion of the soft thresholding

operator (coupled with Lasso) ΘS(t;λ) = sgn(t)(|t| − λ)1|t|≥λ and the ridge thresholding opera-

tor ΘR(t;η) = t
1+η . For the difference between the Berhu thresholding and the eNet thresholding

ΘE(t;λ,η) = 1
1+ηsgn(t)(|t|−λ)1|t|≥λ, see the discussion in Section 2.3.

3.3 The BISPS Algorithm

Based on the Berhu thresholding operator (10), we now propose BISPS as given in Algorithm 1.

This algorithm contains only simple matrix operations in addition to the spectral norm projection
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Algorithm 1 The Berhu iterative sparsity pursuit with stationarity (BISPS)

Input: data matrix ΣXX ,ΣXY ; regularization parameters λ, η; stopping criteria δ1,δ2, M1, M2; initial

estimate A0.

{Let ‖ · ‖2 denotes the spectral norm and ‖ · ‖max denote the elementwise max-norm.}
k0← any constant satisfying k0 > ‖X‖2;

k← 0;

repeat

1) B0← Ak + 1
k2

0

(ΣXY −ΣXX Ak);

2) j← 0;P0← 0;Q0← 0;

repeat

2.1) C j = ΘB(B
j +P j;λ/k2

0,η/k2
0);

2.2) P j+1 = B j +P j−C j;

2.3) B j+1 = Π(C j +Q j;1);
2.4) Q j+1 =C j +Q j−B j+1;

j← j+1;

until ‖B j−B j−1‖max ≤ δ2 or j ≥M2

3) Ak+1← B j;

k← k+1;

until ‖Ak−Ak−1‖max ≤ δ1 or k ≥M1

Â← Ak;

Output: Â.

Π. Parameter k0 can be set to any constant that is larger than the spectral norm of X . No ad

hoc algorithmic parameters, such as ρ1,ρ2 in ADMM and αk in PSGM, are involved. The inner

iteration of Step 2 often converges within 10 steps in practice, where matrices C,P,Q are auxiliary

variables that contribute to fast convergence of the procedure. Step 2.1 is to enforce sparsity by

Berhu thresholding and Step 2.3 is to project the estimate to the convex set {B : ‖B‖2 ≤ 1}. The

outer iteration has only a simple update step and converges fast. As a result, the algorithm is

computationally efficient as well as easy to implement.

The convergence of BISPS is theoretically guaranteed. For simplicity, we assume the inner

iteration is run till convergence. Theorem 1 states that Algorithm 1 solves the S2 network learning

problem.

Theorem 1 Suppose λ ≥ 0,η ≥ 0 and λη 6= 0. Given k0 > ‖X‖2, for any initial value A0, the

sequence of iterates {Ak} produced by Algorithm 1 converges to a globally optimal solution to

problem (8).

See Appendix A for the detailed proof.

BISPS has more flexibility and generality. Though it is designed with the Berhu penalty, by

replacing ΘB with an appropriate thresholding operator in Step 2.1, the algorithm allows for any

convex penalty for S2 learning. Moreover, if Step 2.2 to Step 2.4 are removed, Algorithm 1 reduces

to the Berhu sparsity pursuit (11).

The most expensive computation of Algorithm 1 lies in the spectral norm projection (Step 2.3).

In practice, we can apply some techniques to further improve computational efficiency. 1) We

can first run Algorithm 1 without Step 2.2 to Step 2.4 and obtain an estimate. If it satisfies the
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stationarity condition (4), we accept and output this solution. Otherwise, we rerun Algorithm 1 with

Step 2.2 to Step 2.4 included. 2) Moreover, we can take advantage of the fact that Ak+1 is sparse and

the number of singular values of Ak+1 that are larger than 1 is much smaller than p. The singular

value thresholding algorithm (Cai et al., 2010), among some other fast algorithms, calculates only

the singular values that are above a threshold and their corresponding singular vectors, which is

computationally efficient for large sparse matrix and thus fits our problem well. We use the package

MODIFIED-PROPACK provided by Lin (2011) to calculate the partial SVD with threshold being

1. For p = 500,n = 100, the partial SVD, compared with the original SVD, can accelerate the

calculation by up to 30 times.

3.4 Quantile Thresholding Iterative Screening

Nowadays, a great challenge for network identification and statistical learning comes from the large

scale of the system. For example, for a network with p = 1000 nodes, the number of variables in the

transition matrix is as large as p2 = 106, which poses a great challenge for any estimation algorithm

in scalability and stability. As a result, ultra-high dimensional learning has become a hot topic (Fan

et al., 2009; Fan and Lv, 2010) . For regression problems, under the assumption that the number

of nonzero coefficients is far smaller than n, screening techniques can be used to coarsely select

the variables before finer estimation. This idea can be adopted in network identification: if one is

sure that the average number of connections for each node is much less than ⌈µn⌉ (say µ = 0.8)

or the total number of connections in the network is much less than ⌈µpn⌉, one can first use fast

screening techniques to select m = ⌈µpn⌉ candidate connections, and then apply BISPS restricted

on the candidate connections for further selection and estimation. If the screening technique can

include all the true connections with high probability, dramatic computational gain can be attained

with mild performance sacrifice.

Independence screening methods, such as the sure independence screening (SIS) (Fan and Lv,

2008) can be applied to preselect variables in a supervised manner. Applied to network learning,

SIS sorts the elements of W = XTY by magnitude in a decreasing order and defines a reduced model

Mµ = {(i, j) : |wi j| is among the m largest of all,1≤ i, j ≤ p}.

This method is simple and fast, but it relies on the assumption that the predictors are independent,

since it only studies the marginal correlation between Y and X and selects the variables accordingly.

In network settings, the nodes are interacting dynamically with each other, so there is usually high

collinearity in the data. In such cases, SIS is too greedy and misses many true connections.

To derive a new screening technique that can handle network data, we first observe that SIS

corresponds to the first step of the iterative procedure in (11) with A0 = 0 and hard thresholding

ΘH(t;λ) = t1|t|≥λ with a properly chosen λ. This inspires us to apply an iterative procedure for

screening: starting from A0 = 0, repeat

1) Ak+1← Ak− 1
k2

0

(ΣXX Ak−ΣXY );

2) λk+1← (m+1)th largest element of Ak+1 in magnitude;

3) Ak+1←ΘH(A
k+1;λk+1);

4) M k+1
µ ←{(i, j) : |ak+1

i j | 6= 0,1≤ i, j ≤ p};

until M k
µ stops changing.
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We call this screening procedure the quantile thresholding iterative screening (QTIS). As shown

in Step 2 and Step 3, QTIS does not select variables using a fixed thresholding parameter λ. Instead,

it uses a dynamic threshold to keep a fixed number m of nonzero elements at each iteration. The

quantile parameter µ determines the number of variables to be selected. In comparison to SIS

which ranks the connections based on XTY , the iterative nature of QTIS lessens the greediness by

repeatedly updating the importance of each candidate connection with a theoretical guarantee of

convergence.

Theorem 2 Given k0 > ‖X‖2, for any 0 < µ≤ 1, the sequence of iterates {Ak} generated by QTIS

has the function value decreasing property that l(Ak+1)≤ l(Ak), where l(A) = 1
2
‖Y −XA‖2

F , and Ak

satisfies ‖Ak‖0 ≤ m, where ‖ · ‖0 denotes the number of nonzero elements.

See Appendix B for the detailed proof.

In practice, Mµ usually stops changing after less than a hundred iterations. The number of

unknowns is reduced from p2 to ⌈µpn⌉ effectively by a small amount of computation. Then, more

involved and sophisticated estimation, for example, BISPS, can be performed to the reduced model.

It is much faster than applying BISPS directly if p2≫ n. In addition, QTIS provides BISPS with a

sparse pattern, which facilitates the fast computation of partial SVD.

To apply BISPS on Mµ, we use element-wise penalty parameters λi j’s and set

λi j = ∞ if (i, j) /∈Mµ.

This simple modification guarantees that only elements in Mµ will be selected by BISPS.

3.5 Two-dimensional Selective Cross Validation for Tuning

The reparameterization of Berhu (9) separates the roles of ℓ1 and ℓ2 regularizations; each of them

is associated with a regularization parameter, namely λ for ℓ1 and η for ℓ2. This provides important

guidelines for parameter tuning. Based on our experience, the estimate is not very sensitive to η, so a

full two-dimensional grid search is not necessary. Instead, we search along several one-dimensional

solution paths including one η-path and three λ-paths:

• Step 1 : Run the η-path (λ = 0). Do ridge regression with a grid of values for η, and choose

the optimal η∗ using AIC (Akaike, 1974).

• Step 2 : Run 3 λ-paths with η = 0.5η∗,0.05η∗,0.005η∗ respectively. For each value of η,

run BISPS with a grid of values for λ, and find the optimal one λo using the K-fold selective

cross-validation (SCV) (She, 2012). This results in three λo’s, one from each path. Choose

the optimal one from them and let it be the optimal thresholding parameter λ∗. The pair (λ∗,
η∗) is our final choice of the two parameters.

The SCV cross-validates different sparsity patterns instead of the regularization parameters. It

is more computationally efficient than the plain cross validation since it runs the sparse algorithm

only once and globally (instead of K times locally). To calculate the SCV error associated with λ,

we first apply BISPS to the whole data set and obtain the solution Â(λ). Then, for k = 1, · · · ,K, we

apply ridge regression restricted to the variables that are picked by nz(Â(λ)) on the data without the

kth data piece, and evaluate its validation error using the kth data piece. The sum of the K validation

errors is defined as the SCV error. See She (2012) for more details.
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4. Stationary Bootstrap (SB) Enhanced Network Learning

The S2 learning framework proposed in Section 3 is an effective technique to identify stationary and

sparse network. Nevertheless, a “one-time” estimate, without any p-value or confidence interval,

provides only limited guidance in identifying the true network topology. In fact, whatever inference

method is used, there will be uncertainty underlying the variable selection procedure. It would be

greatly helpful if one could provide some kind of uncertainty measure for such an estimate. In

our case, we would like to find a certain confidence measure for the estimated topology. This can

be done by assigning a probability for the existence of each connection. Hence, we use bootstrap

(Efron, 1979). In this section, we propose the stationary bootstrap enhanced BISPS (SB-BISPS)

which provides a confidence level about whether a connection exists in the network by measuring

the frequency with which it is chosen by the BISPS algorithm.

4.1 The SB-BISPS Framework

The SB-BISPS procedure completes the BISPS (or QTIS+BISPS) algorithm with a stationary boot-

strap resampling step. The SB-BISPS is described as follows.

• Step 1 : Run BISPS over the original data set X . Record the pattern of Â, which is a p× p

binary matrix Φ = [φi j]1≤i, j≤p defined as:

φi j =

{

1 if âi j 6= 0

0 if âi j = 0.

• Step 2 : Draw B stationary bootstrap samples from X . Repeat Step 1 for each sample. Record

Φ∗j for the jth sample.

• Step 3 : Compute the matrix F = [ fi j]1≤i, j≤p of connection occurring frequency (COF) by

adding up all the patterns Φ∗j’s and normalizing the result by B:

F =
1

B

B

∑
j=1

Φ∗j .

Given a sufficiently large B, fi j is a good approximation of the probability for BISPS to select

connection ai j, which serves as a measure of how confident we are with the existence of this con-

nection. For example, if fi j = 80%, it means that in 80% of the bootstrap samples, a connection

from node i to node j is detected. So we can say the probability for the existence of this connection

is (approximately) 80%. We can use a cutoff value f ∗ to threshold the COF matrix, and choose only

the connections with fi j ≥ f ∗ for further analysis. This renders us a sparse topology that shows the

most significant connections within the network.

4.2 Stationary Bootstrap

There are different resampling schemes to draw bootstrap samples from the original data in Step 2.

If the observations are independent and identically distributed, we can resample the data randomly

with replacement. When the observations are time series, the problem is more complicated, since

the observations are largely dependent on each other, and we would like to preserve the specific
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dependency structure in bootstrapping. Techniques such as resampling blocks of consecutive ob-

servations or resampling “blocks of blocks” can be used (Kunsch, 1989). The basic idea is that,

despite the dependence of individual observations, blocks of observations can be approximately

independent with each other given a proper block size l.

When a time series is stationary, it is natural to maintain this property in the bootstrap samples.

The stationary bootstrap (Politis and Romano, 1994) is a method with this property. It is based on

resampling blocks of random lengths, where the length of each block follows a geometric distri-

bution with mean 1/γ. We apply a simple approach to conduct such resampling. Given that x∗i is

chosen to be the Jth observation xJ in the original time series, we choose x∗i+1 based on the following

rule:

x∗i+1 =

{

xJ+1 with probability 1− γ

picked randomly from x1, · · · ,xn with probability γ.

Similar with block bootstrap, where the block size l has to be determined, the value of γ should be

chosen properly. Fortunately, the sensitivity of γ in stationary bootstrap is less than that of l in block

bootstrap.

5. Experiments

In this section, we present the experimental results on synthetic data and demonstrate the effective-

ness of the proposed S2 network learning framework.

5.1 Performance Measures and Experiment Settings

To examine the performance of the proposed methods, we define the following measures.

• Stationarity violation percentage (Pv): In N repeated experiments, if there are Nv experiments

in which the estimate Â violates the stationarity condition (4), then the stationarity violation

percentage is defined as Pv = Nv/N.

• Miss rate (Pm): If ai j 6= 0, âi j = 0, we say there is a miss. Denote Cm as the total number of

misses and Cnz as the number of nonzero entries in A. The miss rate is defined as Pm =Cm/Cnz.

• False alarm rate (Pf ): If ai j = 0, âi j 6= 0, we say there is a false alarm. Denote C f as the total

number of false alarms and Cz as the number of zero entries in A. The false alarm rate is

defined as Pf =C f /Cz.

• Testing error (T E): The testing error is defined as T E = 1
nt
‖Y t−X t Â‖2

F , where Y t and X t are

testing data, and nt is their length. For time series, the testing data are collected right after the

training data.

• Computation time: The averaged running time of an algorithm. All the algorithms are run in

MATLAB7.11.0 on a PC with 4GB memory.

Particularly, to evaluate the prediction/forecasting performances of the algorithms, we adopt the

so-called rolling MSE, a conventional measure in econometrics (Stock and Watson, 2012). Suppose

we have T observations: x1, · · · ,xT . Let the rolling window size be W and the horizon be h. Standing

at time t, we use the most recent W observations to estimate A, denoting the estimate as Ât . Then
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we use this estimate to forecast xt+h, denoting the forecast as x̂t+h and the forecasting error as

eh
t = ‖xt+h− x̂t+h‖2

2. This process is repeated for t = W, · · · ,W +N − 1 as we shift the window.

N is the number of window shifting that satisfies 1 ≤ N ≤ T −W − h− 1. Then the rolling MSE

for horizon h is defined as MSEh
rolling =

1
N ∑W+N−1

t=W eh
t . When using Ât to forecast xt+h, we should

do pseudo out-of-sample forecasting. That is, we assume the observations after t are not available

and consequently we need do h-step-ahead forecast. For our model (1), this should be done as:

x̂t+h = Â
T

t x̂t+h−1 for h≥ 1, where x̂t
∆
= xt when h = 1. The testing error defined above corresponds

to the rolling MSE for h = 1.

We generate the p× p transition matrix A with both sparsity and stationarity properties. First,

the topology is generated from a directed random graph G(p,ξ), where the edge from one node to

another node occurs independently with probability ξ. Then the strength of the edges is generated

independently from a Gaussian distribution. This process is repeated until we obtain a matrix A that

has a desired spectral radius 0.9 < ρ(A)< 1. We set ξ = 10/p,Σε = σ2I,σ2 = 10.

The regularization parameters are chosen by SCV as described in Section 3.5. For a λ-path, we

use a grid of 100 values for λ, which is picked from the interval [0,‖A0 +XTY −XTXA0‖max]. The

initial estimate is simply set as A0 = 0. For an η-path, we use a grid of 76 values for η, which is

picked from the interval [2−10,25]. The number of folds for SCV is set to be K = 5. All the statistics

collected are averaged over N = 100 times of window shifting. The length of testing data nt = 200.

5.2 Performance of BISPS

We compare the performance of BISPS with Lasso, eNet and Berhu—we use the penalty name to

denote the corresponding PML estimation. The number of observations is n= 80. Table 1 shows the

experiment results for different network sizes, namely p = 100,200,300. Recall that for a network

with size p, the number of unknown parameters is p2. For example, for the network with 300 nodes,

the number of parameters to be estimated is 9× 104, which is extremely high compared with the

number of observations 80.

Among the three penalties, the Lasso solution gives higher miss rates. This is because when

some predictors are correlated, Lasso tends to choose only a part, or even none, of them. As a

result, Lasso sometimes “over-shrinks” the estimate. The eNet and Berhu, in such cases, tend to

include all the correlated predictors, thanks to the ℓ2 part in the penalties. However, the sparsity

of the eNet solution is affected by the ℓ2 regularization, so it gives high false alarm rates. On the

other hand, Berhu has improved eNet to some extend by enforcing the ℓ2 regularization only to

large coefficients. As a result, Berhu achieves the smallest testing errors (h = 1) among the three

penalties.

As shown by Pv, no matter what penalty is used, it is possible for PML to give a nonstationary

estimate, whereas the proposed S2 learning and BISPS can guarantee the stationarity property of Â.

This indicates that adding the stationarity constraint into the sparsity pursuit does effectively prevent

the estimate from becoming nonstationary. Meanwhile, the S2 estimate can achieve a comparable

estimation and detection accuracy with the PML estimate. Table 1 gives the rolling MSEs for

different horizons h to illustrate both the short term and long term forecasting performance. For

PML estimates, the rolling MSEs grow explosively with h due to the existence of nonstationary

estimates, while those of BISPS accumulate much more slowly.

To further illustrate the disadvantages of a nonstationary estimate, we find one run where

Lasso gives a nonstationary estimate ÂLasso. Starting from a time point t, we generate x̂t+h(Â)
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p method Pv (Pm,Pf )(%) h = 1 h = 64 h = 128

100

Lasso 5% (13.6, 22.3) 23.4 1058.3 7798.9

eNet 5% (12.3, 25.9) 23.5 1238.1 10842.8

Berhu 5% (12.3, 24.9) 23.0 1329.4 12219.6

BISPS 0% (12.4, 24.8) 23.1 195.9 209.2

200

Lasso 3% (15.8, 29.3) 41.8 332.8 10998.7

eNet 2% (14.5, 26.9) 36.5 207.8 405.3

Berhu 2% (14.2, 24.6) 32.2 201.4 391.5

BISPS 0% (14.2, 24.4) 32.1 131.9 200.5

300

Lasso 2% (18.1, 14.9) 19.9 61.6 111.2

eNet 3% (13.5, 26.1) 20.4 65.5 123.2

Berhu 3% (13.4, 22.9) 18.8 66.5 121.3

BISPS 0% (13.7, 22.1) 19.3 63.3 65.5

Table 1: Performance comparison of BISPS with Lasso, eNet and Berhu. n = 80.

for h = 1, · · · ,100 using ÂLasso and ÂBISPS respectively and compare them with xt+h observed from

the true model. The results are plotted in Figure 5. We can easily see that x̂(ÂBISPS) gives a reason-

able imitation of the true system. The nonstationary estimate x̂(ÂLasso), however, blows up quickly

and behaves completely differently from the true model. This indicates that ensuring a stationary

estimate is indeed crucial.

5.3 Performance of QTIS

To examine the performance of QTIS for connection screening, we first compare it with the sure

independence screening (SIS) (Fan and Lv, 2008) by examining their ability to include all the true

connections, which can be measured by the miss rate. Simulation is done for networks with dif-

ferent sizes, namely p = 300,400,500. The sample size n = 80. Independence screening methods,

including SIS, are very popular in ultra-high dimensional problems for dimension reduction and

variable selection. However, our finding is that such methods can perform very poorly for network

learning. As shown in Figure 6, it is possible for SIS to miss even more than half of the true connec-

tions. One possible reason is that, because of the evolving processes, correlation exits ubiquitously

in dynamical networks. As a result, independence screening is not appropriate for network learning.

On the other hand, the proposed QTIS algorithm considers the correlation issue and thus can obtain

much smaller miss rates than SIS. Also, its performance is more robust to the choice of the quantile

parameter µ.

We then run BISPS with and without QTIS and check the difference of their performances.

Denote “QTIS+BISPS” as the procedure that first applies QTIS to screen the connections and then

applies BISPS to the reduced model. Networks with sizes up to p = 800 are considered (the number

of unknown parameters is p2 = 640,000). The sample size n = 80. The quantile parameter µ = 0.8.

Figure 7 compares the performance of QTIS+BISPS and BISPS. When p/n ratio is large, adding

QTIS not only improves the estimation and identification accuracy, but also saves up to 80% of the

computation time. As the p/n ratio becomes larger, the improvement becomes more remarkable.

Therefore, QTIS is a helpful tool to facilitate BISPS for ultra-high dimensional network learning.
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Figure 5: Comparison of BISPS and Lasso in terms of forecasting performance. Top: sample from

the true model; Middle: forecast from the nonstationary estimate ÂLasso; Bottom: forecast

from the stationary estimate ÂBISPS.
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Figure 6: Miss rate comparison for QTIS and SIS. n = 80.

6. Application to U.S. Macroeconomic Data

We apply the proposed learning framework to the U.S. macroeconomic data. The data set consists

of quarterly observations on 108 macroeconomic variables from 1960:I to 2008:IV, which belong

to 12 categories. A complete description of the data can be found at "http://www.princeton.

edu/˜mwatson/wp.html". There are in total 109 macroeconomic variables from 13 categories.

We remove Category 13 (consumer expect) since it has only one variable while we are interested
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Figure 7: Performance of QTIS+BISPS, compared with applying BISPS to a full model. n = 80.

Category Lasso BISPS Category Lasso BISPS

1. GDP 0.589 0.445 7. Prices 1.971 1.874

2. IP 0.846 0.576 8. Wages 0.552 0.207

3. Employment 0.936 0.711 9. Interest rate 1.443 0.738

4. Unempl. rate 0.289 0.165 10. Money 0.114 0.065

5. Housing 0.071 0.033 11. Exchange rates 0.370 0.107

6. Inventories 0.506 0.217 12. Stock prices 0.254 0.100

Table 2: Normalized Rolling MSE of Lasso and BISPS for each category.

in multivariate time series. The data have been preprocessed so that each time series is a station-

ary process. We use the S2 network model (1) to detect Granger causal relations between these

macroeconomic indices.

3092



STATIONARY-SPARSE CAUSALITY NETWORK LEARNING

h 1 2 4 8 16 32

Lasso 0.017 0.021 0.029 0.365 329.9 3.1×108

BISPS 0.017 0.018 0.019 0.020 0.020 0.018

Table 3: Rolling MSE of Lasso and BISPS for different horizons.

6.1 Comparison of Rolling MSE

We first study the data set by category, considering that multiple time series explain the interactions

of the indices in each category. To each of the 12 categories, we apply Lasso and BISPS respectively

with the horizon h = 1 and the rolling window size W = 0.8× p, where p is the number of time

series (network size). Table 2 shows the rolling MSEs of the Lasso and BISPS, normalized by that

of the AR(4) model, which is a conventional benchmark of macroeconomic forecasting.

Compared with the AR(4) model, both Lasso and BISPS, based on a VAR model, have attained

much smaller forecasting errors, except for Category 7 (prices). Therefore, by introducing the

Granger causal interactions between different indices, we can build a multivariate network model

that is more accurate than the univariate AR model in capturing the evolution of the U.S. macroe-

conomics, given the same amount of observations. The exception of Category 7 may be due to the

higher lag order used in the univariate AR model.

Moreover, we note that BISPS gives smaller forecasting errors than Lasso for all the 12 cate-

gories of macroeconomic time series. It indicates that adopting a fusion of ℓ1 and ℓ2 penalties and

imposing the stationarity constraint can capture the network dynamics more accurately and achieve

a stronger capability of forecasting. To further support this conclusion, we apply Lasso and BISPS

respectively to all the 108 variables with W = 0.8× p and different horizons h. The rolling MSEs

for h = 1,2,4,8,16,32 is recorded in Table 3. As the horizon increases, the rolling MSE of Lasso

grows exponentially, which clearly indicates that some estimates of the Lasso are nonstationary and

thus fail to forecast for large horizons. On the other hand, the rolling MSE of BISPS stays stable for

different horizons. This phenomenon is similar to what is shown in Figure 5. They have illustrated

the fundamental difference of the S2 learning from the plain PML estimation.

6.2 Bootstrap Analysis

In this experiment, we apply the SB-BISPS to the macroeconomic data before and after the “Great

Moderation” (Davis and Kahn, 2008) and analyze the changes in their Granger causal connections.

As the economic structure of U.S. has gone through huge changes in the Great Moderation in mid-

1980, we expect to see significantly different causality networks before and after mid-1980. Hence,

we divide the time series into two periods, the pre-Great Moderation period and the post-Great

Moderation period, and apply SB-BISPS separately to the two periods.

For the pre-Great Moderation period, we use the data from 1960:I to 1979:IV as training set (80

observations); for the post-Great Moderation period, we use the data from 1985:I to 2004:IV (80

observations). The stationary bootstrap samples are obtained using the R function tsboot (Dalgaard,

2008) with default parameter values. The number of stationary bootstrap samples is set to be B =
100. Figure 8 shows the COF (connection occurring frequency) matrices given by SB-BISPS for

the pre-Great Moderation and the post-Great Moderation periods. We notice that the COF matrix of

the pre-Great Moderation period has a higher energy level than that of the post-Great Moderation
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Figure 8: COFs of the pre-Great Moderation period and the post-Great Moderation period.
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Figure 9: Topologies of the macroeconomic network in the pre-Great Moderation period and the

post-Great Moderation period. f ∗ = 80%. Self-loops are not shown.

period. This indicates that the nodes are more actively interacting with each other in the pre-Great

Moderation period than in the post-Great Moderation period, which effectively reflects the reduction

in volatility of the business cycle fluctuations since the Great Moderation.

To illustrate the idea more clearly, we set the cutoff value for COF to be f ∗ = 80% and identify

the most significant connections. The topologies obtained for the pre-Great Moderation period

and the post-Great Moderation period are shown in Figure 9. Isolated nodes are removed. In the

pre-Great Moderation period, the macro variables actively interact and form a complex dynamical
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network. There are three prominent variables, namely GDP281 (durable goods index), GDP256 and

GDP261 (gross private domestic investment indices), which act like “hub” variables. They interact

not only with many non-hub variables but also with each other. Therefore, there are no independent

clusters. After the Great Moderation, on the other hand, the interactions have been remarkably

reduced and most of the variables seem only self-regulated. This makes it easier for the network

to stay stable. There are two hub variables, GDP255 (real personal consumption expenditure) and

GDP275-3 (energy goods price index). The increasing importance of these two variables agrees

with the observation that environmental regulations and energy policies have begun to influence the

economic growth since the Great Moderation period (Jorgenson and Wilcoxen, 1990; Halkos and

Tzeremes, 2011).

7. Conclusion

We have proposed the stationary-sparse (S2) learning of causality networks described in Granger’s

sense. Distinguished from the existing works, we explicitly incorporated the stationarity concern in

a possibly ultra-high dimensional scenario and provided a probabilistic measure for the occurrence

of any causal connection. We added a relaxed stationarity constraint in the penalized maximum

likelihood estimation and proposed the BISPS algorithm which is easy to implement and computa-

tionally efficient. We must point out that although the algorithm is designed for the Berhu penalty,

the framework extends to any convex penalties and their coupled thresholding rules. In network

modeling, the number of unknown variables p2 is often much larger than the number of observa-

tions n, which confronts us with an ultra-high dimensional problem. Therefore, we implanted the

quantile thresholding iterative screening (QTIS) into the BISPS algorithm to improve scalability and

computational efficiency. Furthermore, the stationary bootstrap enhanced BISPS (SB-BISPS) was

proposed to provide a confidence measure for each possible connection in the network. The method

has been successfully applied to the U.S. macroeconomic data, which leads to some interesting

discoveries.

Our current work assumes multivariate Gaussian noise and focuses on learning the transition

matrix. We will pursue the network learning in more general settings in the future. One particular

problem of interest is to jointly capture the structure of the transition matrix and the concentration

matrix, which may provide more comprehensive descriptions of the network. Also, we will con-

sider the situations where the noise follows other distributions other than Gaussian, for example,

the heavy-tail distribution. Finally, we will proceed to nonlinear time series models for network

identification to handle more complex network data.
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Appendix A. Proof of Theorem 1

We begin the proof by introducing some lemmas. Throughout the proof, we assume τ ≥ 0,λ ≥
0,η≥ 0, and λη 6= 0.
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Lemma 3 Given the Berhu penalty (9), the minimization problem

min
B

1

2
‖B−Ξ‖2

F +PB(B;λ,η) (12)

has a unique optimal solution given by B̂ = ΘB(Ξ;λ,η), where ΘB(·;λ,η) is the Berhu thresholding

rule defined as (10).

Proof It is easy to verify that ΘB(·;λ,η) is an odd, nondecreasing, shrinkage function that satisfies

the definition of a thresholding rule given in She (2009). Following the construction procedure

P(t;λ,η) =
∫ |t|

0
(sup{s : Θ(s;λ,η)≤ u}−u)du, (13)

the Berhu penalty PB(·;λ,η) can be constructed from ΘB(·;λ,η). So ΘB(·;λ,η) is the coupled

thresholding rule for PB(·;λ,η). By Lemma 1 in She (2012), ΘB(·;λ,η) is the global minimizer

of (12).

Lemma 4 The Berhu thresholding operator ΘB(·;λ,η) is nonexpansive, that is, |ΘB(t;λ,η)−
ΘB(t̃;λ,η)| ≤ |t− t̃| for any t, t̃ ∈ R.

The conclusion directly extends to the multivariate case: ‖ΘB(A;λ,η)−ΘB(Ã;λ,η)‖≤ ‖A− Ã‖
for any A, Ã ∈ R

p×q.

Proof It is sufficient to show that the univariate Berhu thresholding operator ΘB is nonexpansive.

Define ∆ = |t− t̃|2−|ΘB(t;λ,η)−ΘB(t̃;λ,η)|2 and a = |t|,b = |t̃|.
a) Suppose a≤ λ,b≤ λ. Then ΘB(t;λ,η) = ΘB(t̃;λ,η) = 0. So ∆ = |t− t̃|2 ≥ 0.

b) Suppose a≤ λ,λ < b≤ λ+λ/η. Then |ΘB(t;λ,η)−ΘB(t̃;λ,η)|2 = |t̃−λsng(t̃)|2 = b2 +λ2−
2λb. So ∆ = a2 +b2−2ab− (b2 +λ2−2λb) = (λ−a)(2b−a−λ)≥ 0.

c) Suppose a≤ λ,b≥ λ+λ/η. Then |ΘB(t;λ,η)−ΘB(t̃;λ,η)|2 = | t̃
1+η |2. So ∆ = a2 +b2−2ab−

b2

(1+η2)
= a2 +[ η2+2η

(1+η)2 b−2a]b≥ a2 +[ η2+2η
(1+η)2 (λ+λ/η)−2a]λ = (a−λ)2 + 1

1+η λ2 ≥ 0.

d) Suppose λ < a≤ λ+λ/η,λ < b≤ λ+λ/η. Then ∆ = 2λ(1− sgn(tt̃))(a+b−λ)≥ 0.

e) Suppose λ < a ≤ λ+λ/η,b ≥ λ+λ/η. Then ∆ = |t− t̃|2−|t−λsgn(t)− t̃
η+1
|2 = η(η+2)

(η+1)2 b2−
2b

ηa+λ
η+1

sgn(tt̃)+λ(2a−λ)= b[η(η+2)
(η+1)2 b−2

ηa+λ
η+1

sgn(tt̃)]+λ(2a−λ)≥ (λ+λ/η)[η(η+2)
(η+1)2 (λ+λ/η)−

2
ηa+λ
η+1

sgn(tt̃)]+λ(2a−λ) = λ
η [ηλ+2λ−2(ηa+λ)sgn(tt̃)]+λ(2a−λ)≥ 0.

f) Suppose a≥ λ+λ/η,b≥ λ+λ/η. Then ∆ = |t− t̃|2−| t
1+η − t̃

1+η |2 =
η2+2η
(1+η)2 |t− t̃|2 ≥ 0.

Therefore, |ΘB(t;λ,η)−ΘB(t̃;λ,η)| ≤ |t− t̃| for any t, t̃ ∈ R. So the Berhu thresholding operator

is nonexpansive.

Lemma 5 Let the SVD of B be B =USVT, where S = diag(ν1,ν2, · · · ,νp) with ν1,ν2, · · · ,νp being

the singular values. Then Π(B;τ) defined by

Π(B;τ) =Udiag(min(ν1,τ), · · · ,min(νp,τ))V
T

gives the projection of B into the convex set {B : ‖B‖2 ≤ τ}.
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Proof Let C be the projection of B into the convex set {B : ‖B‖2 ≤ τ}. Then C can be solved by

min
C
‖B−C‖2

F ,

s.t. ‖C‖2 ≤ τ.

To prove the lemma, we introduce von Neumann’s trace inequality (von Neumann, 1937), which

states that for any p× p matrices A and B with singular values α1 ≥ α2 ≥ ·· · ≥ αp and β1 ≥ β2 ≥
·· · ≥ βp respectively,

|tr{AB}| ≤
p

∑
i=1

αiβi, (14)

where equality holds if and only if it is possible to find unitary matrices U and V that simultaneously

singular value decompose A and B.

Let B =U0S0VT

0 and C =USVT be the singular value decompositions of B and C respectively,

where S0 = diag(ν0,1,ν0,2, · · · ,ν0,p) and S = diag(ν1,ν2, · · · ,νp) with ν0,1 ≥ ν0,2 ≥ ·· · ≥ ν0,p and

ν1 ≥ ν2 ≥ ·· · ≥ νp. Then,

‖B−C‖2
F = ‖B‖2

F +‖C‖2
F +2tr{BTC}

≥ ‖S0‖2
F +‖S‖2

F +2tr{S0S}

=
p

∑
i=1

(ν0,i−νi)
2.

Equality holds if and only if U = U0 and V = V 0. Optimality is achieved at νi = min(ν0,i,τ), i =
1, · · · , p. The proof is complete.

Lemma 6 The projection operator Π(·;τ) defined in Lemma 5 is nonexpansive, that is, ‖Π(A)−
Π(Ã)‖F ≤ ‖A− Ã‖F for any A, Ã ∈ R

p×p.

Proof For simplicity, we denote Π(·;τ) as Π(·). Let the SVDs for p× p matrices A and Ã be

A =UDVT and Ã = ŨD̃Ṽ
T

respectively. Define ∆ = ‖A− Ã‖2
F −‖Π(A)−Π(Ã)‖2

F . Then,

∆ = ‖UDVT−ŨD̃Ṽ
T‖2

F −‖UΠ(D)VT−ŨΠ(D̃)Ṽ
T‖2

F

= ‖D‖2
F +‖D̃‖2

F −‖Π(D)‖2
F −‖Π(D̃)‖2

F −2tr{V DUTŨD̃Ṽ
T}+2tr{V Π(D)UTŨΠ(D̃)Ṽ

T}.

Applying von Neumann’s trace inequality (14) again, we have

−2tr{V DUTŨD̃Ṽ
T}+2tr{V Π(D)UTŨΠ(D̃)Ṽ

T}
=−2tr{V (D−Π(D))UTŨD̃Ṽ

T
+V Π(D)UTŨ(D̃−Π(D̃))Ṽ

T}

≥ −2{
p

∑
i=1

(di−Π(di))d̃i +
p

∑
i=1

(d̃i−Π(d̃i))Π(di)}.

Therefore,

∆≥
p

∑
i=1

{(di− d̃i)
2− (Π(di)−Π(d̃i))

2}.

3097



HE, SHE AND WU

It is easy to verify that (di− d̃i)
2− (Π(di)−Π(d̃i))

2 ≥ 0, i = 1, · · · , p. So ∆≥ 0. The projection Π

is a nonexpansive mapping.

Lemma 7 Let P0 = Q0 = 0. The sequence {B j} of iterative procedure

C j = ΘB(B
j +P j;λ,η),

P j+1 = B j +P j−C j,

B j+1 = Π(C j +Q j;τ),

Q j+1 =C j +Q j−B j+1

(15)

converges to a globally optimal solution to

min
B

1

2
‖B−B0‖2

2 +PB(B;λ,η),

s.t. ‖B‖2 ≤ τ.
(16)

Procedure (15) is designed for a penalized minimization problem with a convex constraint based

on Dykstra’s projection algorithm (Dykstra, 1983; Boyle and Dykstra, 1986).

Proof First, we rewrite the problem as

min
B

1

2
‖B−B0‖2

2 + f (B)+g(B), (17)

where f (B) = PB(B;λ,η) and g(B) = 1‖B‖2≤τ is an indicator function for ‖B‖2 ≤ τ, defined as

1‖B‖2≤τ =

{

0 if ‖B‖2 ≤ τ

+∞ otherwise.

It is easy to show that g(B) is a proper lower semicontinuous convex function, f (B) is a proper

continuous (hence lower semicontinuous) convex function (Rockafellar, 1970) and they satisfy

dom f ∩domg 6= /0.

Lemma 3 and Lemma 5 imply that ΘB(·;λ,η) and Π(·;τ) are the proximity operators (Moreau,

1962) of f (B) and g(B) respectively:

prox f B = ΘB(B;λ,η) and proxgB = Π(B;τ).

Therefore, by Theorem 3.2 and Theorem 3.3 in Bauschke and Combettes (2008), it holds that

B j→ prox f+gB0.

Hence, the sequence {B j} converges to a globally optimal solution to problem (17).
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Now we can establish Theorem 1. Recall that Algorithm 1 is to solve

min
A

f (A;λ,η) =
1

2
‖Y −XA‖2

F +PB(A;λ,η),

s.t. ‖A‖2 ≤ 1.

We use Opial’s conditions (Opial, 1967) to prove the convergence of {Ak}. To be specific, we

show that the iteration of Step 1 to Step 3 in Algorithm 1 is a nonexpansive asymptotically regular

mapping with a nonempty set of fixed points.

Lemma 8 For the sequence {Ak} generated by Algorithm 1,

f (Ak;λ,η)− f (Ak+1;λ,η)≥ 1

2
(k2

0−‖X‖2
2)‖Ak+1−Ak‖2

F .

Proof First define

g(A,B;λ,η) =
1

2
‖Y −XB‖2

F +PB(B;λ,η)+
1

2
tr{(B−A)T(k2

0I−XTX)(B−A)}.

Given A, minimizing g over B is equivalent to

min
B

1

2
‖B−A− 1

k2
0

(XTY −XTXA)‖2
F +PB(B;λ/k2

0,η/k2
0)

s.t. ‖B‖2 ≤ 1.

We can obtain its globally optimal solution by performing the iterative procedure (15) in Lemma 7,

substituting τ← 1,B0← A+ 1
k2

0

(XTY −XTXA),λ← λ/k2
0,η← η/k2

0. Therefore, we have

f (Ak;λ,η) = g(Ak,Ak;λ,η)≥ g(Ak,Ak+1;λ,η) = f (Ak+1;λ,η)+
1

2
(k2

0−‖X‖2
2)‖Ak+1−Ak‖2

F .

The proof is complete.

Given k0 > ‖X‖2, Lemma 8 implies that the sequence {Ak} is asymptotically regular (Browder

and Petryshyn, 1966).

Lemma 9 The sequence {Ak} generated by the iteration of Algorithm 1 is uniformly bounded.

Proof First, based on Lemma 8 we have

PB(A
k;λ,η)≤ f (Ak;λ,η)≤ f (A0;λ,η)

∆
=C.

This implies that PB(a
k
i j;λ,η)≤C, ∀0≤ i, j ≤ p.

If |ak
i j| ≤ λ/η, we have λ|ak

i j| ≤C, which implies (ak
i j)

2 ≤ max(λ2/η2,C2/λ2). If |ak
i j| > λ/η,

we have
η2t2+λ2

2η ≤C, which implies (ak
i j)

2 ≤ 2ηC−λ2

η2 . Given λη 6= 0,

(ak
i j)

2 ≤max

(

λ2/η2,C2/λ2,
2ηC−λ2

η2

)

∆
=C2, 1≤ i, j ≤ p.
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Hence,

‖Ak‖2
F ≤ p2C2.

The sequence {Ak} is uniformly bounded.

Lemma 10 The iteration of Step 1 to Step 3 in Algorithm 1 is a nonexpansive mapping.

Proof From Lemma 4 and Lemma 6, ΘB and Π are nonexpansive mappings. In fact, the com-

position of nonexpansive mappings is also nonexpansive. So the inner iteration given by Step 2 in

Algorithm 1 is nonexpansive. When k0 ≥ ‖X‖2, Step 1 in Algorithm 1 is nonexpansive. Again, the

composition of Step 1 and Step 2 is nonexpansive. Hence, the iteration of Algorithm 1 is nonexpan-

sive.

Lemma 9 and Lemma 10 imply that the mapping of Algorithm 1 is a nonexpansive mapping

into a bounded closed convex subset. By Theorem 1 in Browder (1965), it has a fixed point. Then,

with all Opial’s conditions satisfied, the sequence {Ak} has a unique limit point, denoted as A∗, and

it is a fixed point of Algorithm 1.

Next, we prove that A∗ must be a global minimizer of problem (8). Denote h(A) = ‖A‖2− 1.

By Lemma 7 and Lemma 8, A∗ satisfies the KKT conditions (Boyd and Vandenberghe, 2004) of

problem (16) with τ = 1:























0 ∈ A∗−B0 +∂PB(A
∗;λ/k2

0,η/k2
0)+ν∗∂h(A∗),

h(A∗)≤ 0,

ν∗ ≥ 0,

ν∗h(A∗) = 0.

Substituting B0 = A∗+ 1
k2

0

(ΣXY −ΣXX A∗), we have























0 ∈ ΣXY −ΣXX A∗+∂PB(A
∗;λ,η)+ ν̃∗∂h(A∗),

h(A∗)≤ 0,

ν̃∗ ≥ 0,

ν̃∗h(A∗) = 0.

(18)

Note that problem (8) is convex and its KKT conditions are given by (18). Hence, A∗ is a global

minimizer of problem (8). The proof is complete.

Appendix B. Proof of Theorem 2

First, we introduce a quantile thresholding rule Θ#(·;m) as a variant of the hard thresholding rule.

Given 1 ≤ m ≤ pq: A ∈ R
p×q→ B ∈ R

p×q is defined as follows: bi j = ai j if |ai j| is among the m

largest in the set of {|ai j| : 1≤ i≤ p,1≤ j ≤ q}, and bi j = 0 otherwise.

To prove the function value decreasing property, we introduce the following lemma.

3100



STATIONARY-SPARSE CAUSALITY NETWORK LEARNING

Lemma 11 B̂ = Θ#(A;m) is a globally optimal solution to

min
B

l(B) =
1

2
‖A−B‖2

F

s.t. ‖B‖0 ≤ m.

Proof Let I ⊂ {(i, j)|1 ≤ i ≤ p,1 ≤ j ≤ q} with |I| = m. Assuming BIc = 0, we get the optimal

solution B̂ with B̂ = AI . It follows that l(B̂) = 1
2
‖A‖2

F − 1
2 ∑i, j∈I a2

i j. Therefore, the quantile thresh-

olding Θ#(A;m) yields a global minimizer.

Define a surrogate function

l̃(A,B) =
1

2
‖Y −XB‖2

F +
1

2
tr{(B−A)T(k2

0−XTX)(B−A)}.

Based on Lemma 11 and k0 ≥‖X‖2, the function value decreasing property can be proved following

the lines of Lemma 8. So we have

l(Ak) = l̃(Ak,Ak)≥ l̃(Ak,Ak+1) = l(Ak+1)+
1

2
(k2

0−‖X‖2
2)‖Ak+1−Ak‖2

F ≥ l(Ak+1).

The proof is complete.
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