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Abstract

The PC algorithm uses conditional independence tests falehselection in graphical modeling
with acyclic directed graphs. In Gaussian models, testooélitional independence are typically
based on Pearson correlations, and high-dimensionalstensy results have been obtained for the
PC algorithm in this setting. Analyzing the error propagatirom marginal to partial correlations,
we prove that high-dimensional consistency carries overltooader class of Gaussian copula or
nonparanormamodels when using rank-based measures of correlation.rephgequences with
bounded degree, our consistency result is as strong as@aiossian results. In simulations, the
‘Rank PC’ algorithm works as well as the ‘Pearson PC’ algonifor normal data and considerably
better for non-normal data, all the while incurring a nelig increase of computation time. While
our interest is in the PC algorithm, the presented analyfstsror propagation could be applied to
other algorithms that test the vanishing of low-order jgdudorrelations.

Keywords: Gaussian copula, graphical model, model selection, nauléite normal distribution,
nonparanormal distribution

1. Introduction

Let G = (V,E) be an acyclic digraph with finite vertex set, andXet (X,)vey be a random vec-
tor whose entries are in correspondence with the graph’s vertices thberaphG determines a
statistical model for the joint distribution of by imposing conditional independences that can be
read off fromG using the concept of d-separation. These independences arel ifatueaedges
in E encode causal/functional relationships among the random varidhlasd a distribution that
satisfies them is said to Béarkovwith respect tdG. Appendix B contains a brief review of these
and other key notions that are relevant to this paper. More detailed intronsito statistical mod-
eling with directed graphs can be found in Lauritzen (1996), PearlQR®Ebirtes et al. (2000) or
Drton et al. (2009, Chapter 3). As common in the field, we use the abbrevA& (for ‘directed
acyclic graph’) when referring to acyclic digraphs.

We will be concerned with the consistency of the PC algorithm, which is naméd foventors,
the first two authors of Spirtes et al. (2000). This algorithm uses condltindependence tests to
infer a DAG from data. Alongside greedy-search techniques that optinfizenation criteria, the
PC algorithm is one of the main methods for inference of directed grapleenRapplications of the
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PC algorithm can be found in Maathuis et al. (2010), Schmidberger 2tdl1], Le et al. (2013),
and Verdugo et al. (2013).

Graph inference is complicated by the fact that two DAGs- (V,E) andH = (V,F) with
the same vertex s& may beMarkov equivalentthat is, they may possess the same d-separation
relations and, consequently, induce the same statistical model. Henceathmgomes estimation
of the Markov equivalence class of an acyclic digr&ph-or representation of the equivalence class,
prior work considers a particular partially directed gr&ifs), for which it holds tha€C(G) =C(H)
if and only if the two DAGsG andH are Markov equivalent; see Andersson et al. (1997) and
Chickering (2002). The grap@(G) may contain both directed and undirected edges, and it is
acyclic in the sense of its directed subgraph having no directed cyclewilWefer to C(G) as the
completed partially directed acyclic gragiCPDAG), but other terminology such as tessential
graphis in use.

The PC algorithm uses conditional independence tests to infer a CPDAGdata (Spirtes
et al., 2000). In its population version, the algorithm amounts to a clevernsche reconstruct
the CPDAGC(G) from answers to queries about d-separation relations in the underliGg®
Theorem 1 summarizes the properties of the PC algorithm that are relevahefpresent paper.
For a proof of the theorem as well as a compact description of the PGthlgave refer the reader
to Kalisch and Bihimann (2007). Recall that the degree of a node is the number of edges it
incident to, and that the degree of a DA&s the maximum degree of any node, which we denote
by dedG).

Theorem 1 Given only the ability to check d-separation relations in a DAG G, the PC algorithm
finds the CPDAG @G) by checking whether pairs of distinct nodes are d-separated by sdts S o
cardinality |§| < deqg G).

Let Xa denote the subvectdX,)yea. The joint distribution of a random vectat = (X,)vev
is faithful to a DAG G if, for any triple of pairwise disjoint subse#s B,S C V, we have thatS
d-separateé\ andB in G if and only if Xa and Xg are conditionally independent givefy; it is
customary to denote this conditional independenc&by | Xg|Xs. Under faithfulness, statistical
tests of conditional independence can be used to determine d-sepaghttmmns in a DAG and lead
to a sample version of the PC algorithm that is applicable to data.

If X follows the multivariate normal distributioN (., Z), with positive definite covariance ma-
trix Z, then

Xa L Xg|Xs <= XylLX/|Xs YueA veB.

Moreover, the pairwise conditional independenceXgfand X, given Xs is equivalent to the van-
ishing of thepartial correlation p,ys, that is, the correlation obtained from the bivariate normal
conditional distribution of X;, X,) given Xs. The iterations of the PC algorithm make use of the

recursion
Puvis\w — Puwis\wPvwis\w

puv]S: )
\/(1 - pﬁvﬁ&w) (1- p\Z/MS\W)

for anyw € S wherepy,p = puv is the correlation oti andv. Our later theoretical analysis will use
the fact that

(1)

0 Wi
S=
ST Wil
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PC ALGORITHM FOR NONPARANORMAL GRAPHICAL MODELS

whereW =2 s (g IS the concerned principal submatrixDf

A natural estimate ofys is the sample partial correlation obtained by replacngth the em-
pirical covariance matrix of available observations. Sample partial ctimetaderived from inde-
pendent normal observations have favorable distributional propéftieterson, 2003, Chapter 4),
which form the basis for the work of Kalisch andiBmann (2007) who treat the PC algorithm in
the Gaussian context with conditional independence tests based on santigllecprrelations. The
main results in Kalisch andiBiimann (2007) show high-dimensional consistency of the PC algo-
rithm, when the observations form a sample of independent normal raneictors that are faithful
to a suitably sparse DAG.

The purpose of this paper is to show that the PC algorithm has high-dimehsarsastency
properties for a broader class of distributions, when standard FPegqse empirical correlations
are replaced by rank-based measures of correlations in tests of coaditidependence. The
broader class we consider includes continuous distributions with Gausspaita. Phrased in the
terminology of Liu et al. (2009), we consideonparanormadistributions. Recall that a correlation
matrix is a covariance matrix with all diagonal entries equal to one.

Definition 2 Let f = (fy)vev be a collection of strictly increasing functionsg :fR — R, and let
3 € RV*V be a positive definite correlation matrix. The nonparanormal distributioNKPX) is
the distribution of the random vectof,(Z,))vev for (Zy)vev ~ N(0,X).

Taking the functionsf, to be affine shows that all multivariate normal distributions are also
nonparanormal. 1X ~ NPN(f,X), then the univariate marginal distribution for a coordinate, say
Xv, may have any continuous cumulative distribution funcig@s we may takdé, = F~ o ®, where
® is the standard normal distribution function afd(u) = inf{x: F(x) > u}. Note thatf, need
not be continuous.

Definition 3 The nonparanormal graphical model NP@) associated with a DAG G is the set of
all distributions NPN f, X) that are Markov with respect to G.

Since the marginal transformatiofisare deterministic, the dependence structure in a nonpara-
normal distribution corresponds to that in the underlying latent multivariat@aladistribution. In
other words, ifX ~ NPN(f,Z) andZ ~ N(0, %), then it holds for any triple of pairwise disjoint sets
A B,SCV that

XA_LLXB|X5 < ZAJ_LZB|ZS.

Hence, for two nodes andv and a separating s&tC V \ {u, v}, it holds that
Xo LL X[ Xs <= puys=0, 3)

with pyys calculated fronk as in (1) or (2). In light of this equivalence, we will occasionally speak
of a correlation matrixz being Markov or faithful to a DAG, meaning that the requirement holds
for any distributionNPN(f,%).

In the remainder of the paper we study the PC algorithm in the nonparancontakt, propos-
ing the use of Spearman’s rank correlation and Kendelfitg estimation of the correlation matrix
parameter of a nonparanormal distribution. In Section 2, we review hasftranations of Spear-
man'’s rank correlation and Kendaltsyield accurate estimators of the latent Gaussian correlations.
In particular, we summarize tail bounds from Liu et al. (2012a). Thed8eim Section 4 gives
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our main result, an error bound for the output of the PC algorithm whemlations are used to
determine nonparanormal conditional independence. In Corollary fieseribe high-dimensional
asymptotic scenarios and suitable conditions that lead to consistency of #igd?ithm. The proof

of Theorem 8 is given in Section 3, which provides an analysis of erapgmation from marginal
to partial correlations. Our numerical work in Section 5 makes a strongfoaskee use of rank

correlations in the PC algorithm. Some concluding remarks are given in Séction

2. Rank Correlations

Let (X,Y) be a pair of random variables, and FetandG be the cumulative distribution functions
of X andY, respectively. Spearmarysfor the bivariate distribution ofX,Y) is defined as

pS = Corr(F(X),G(Y)),

thatis, it is the ordinary Pearson correlation between the quahtiésandG(Y). Another classical
measure of correlation is Kendalfs defined as

T = Corr(sign(X —X') ,sign(Y —Y’))

where (X',Y’) is an independent copy @KX,Y), that is, (X',Y’) and (X,Y) are independent and
have the same distribution.

Supposé Xy, Y1),...(Xn, Yn) are independent pairs of random variables, each pair distributed as
(X,Y). Let rankX;) be the rank oX; amongXj,...,Xs. In the nonparanormal setting, the marginal
distributions are continuous so that ties occur with probability zero, makitkg raell-defined. The
natural estimator ob° is the sample correlation among ranks, that is,

~S n ZI (ra;\f?.) B l) (fa:flf %)
\/ Z ra::f:)l-(q % \/ Z, 1 rarr1]+1 - 7)2
—1_ 6_1) Z(rank(Xi) - Fank(Yi)) ’

n(n? £

which can be computed iB(nlogn) time. Kendall’st may be estimated by

2 S sign(%—X;)sign(¥, —Y)).

I=
n(n_ 1> 1<i<j<n

A clever algorithm using sorting and binary trees to comguie time O(nlogn) instead of the
naiveO(n?) time has been developed by Christensen (2005).

It turns out that simple trigonometric transformation$dandT are excellent estimators of the
population Pearson correlation for multivariate normal data. In partidulagt al. (2012a) show
that if (X,Y) are bivariate normal with CofX,Y) = p, then

P()Zsin(%ﬁs) —p) > s) < 2exp<—922ns ) (4)

P(’sin(gf) - p‘ > s) < 2exp<—§2nsz> . (5)
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Clearly,p® andt depend on the observatiof¥;,Y1),... (X, Ya) only through their ranks. Since
ranks are preserved under strictly increasing functions, (4) arsti{@old if (X,Y) ~ NPN(f,%)
with Pearson correlatiop = Zy in the underlying latent bivariate normal distribution. Throughout
the rest of this paper, we will assume that we have some estifpatbp which has the property
that, for nonparanormal data,

P(|p—p| >€) < Aexp(—Bre?) (6)

for fixed constants & A B < «. As just argued, the estimators considered in (4) and (5) both have
this property.

When presented with multivariate observations from a distribuN®&N(f, %), we apply the
estimator from (6) to every pair of coordinates to obtain an estinfatfrthe correlation matrix
parameter. Plugging into (1) or equivalently into (2) gives partial correlation estimators that we
denotedyys.

3. Error Propagation from Marginal to Partial Correlations

The PC algorithm leverages statistical decisions on conditional indepesdé&m analysis of the
algorithm in the context of nonparanormal distributions thus requiresdsoan errors in partial
correlations. The following Lemma 4 is our main tool. It provides a uniformrigban errors
in partial correlations when a uniform bound on errors in marginal tiroas is available. At
times we will write such uniform bounds in terms of thevector norm of a matrix. For matrix
A= (aj) € R9*9we denote this norm by

Alle = max |ajj|.

[Allo =, max [a]
Some proofs involve the spectral noifA||, that is, the square-root of the maximal eigenvalue of
ATA.

Lemma 4 (Errors in partial correlations) Suppose € R9%9 is a positive definite matrix with
minimal eigenvalu@n,, > 0. If Z € R9%9 satisfies

Pl
” (2+ C)qJF)\mian
with ¢ > 0, then all partial correlations are well-defined and their differences avaritled as
b 5
1Puvi\ fuvy — Puvi\ funy | = - —W__l<¢ 1<u<v<aq
| VEidTad  VEUEA

The proof of Lemma 4 follows by combining the conclusions of Lemmas 5, 6 d&mh? this
section. The first of these, that is, Lemma 5, invokes classical resultsarpeopagation in matrix
inversion.

Lemma 5 (Matrix inversion) Suppose& € R%9 is a positive definite matrix with minimal eigen-
valueAmin > 0. If E € R%*9 is a matrix of errors with||E||« < € < Amin/d, thenZ + E is invertible

and /)\2
_ _ ge/As

S+E) -3t < —/Tmin__

[(E+E) =2 o < g R
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Proof First, note that
|Ell < [[Ell < qllE]

w; (7)

see entrieg2,6) and (6,2) in the table on p. 314 in Horn and Johnson (1990). Using the sub-
multiplicativity of a matrix norm, the second inequality in (7), and our assumptiog, eve find

that o
IEZH <= Bl < 5 < 1. (8)
min
As discussed in Horn and Johnson (1990, Section 5.8), this implies th&Z ! and thus also
>+ E is invertible. Moreover, by the first inequality in (7) and inequality (5.8.2) ioridand

Johnson (1990), we obtain that

IEZ Y|

SHEY s YL <lE+E) oz Y <z B2
[(Z+E) oo <[[(Z+E) | <[=" T

Since the functiorx — x/(1 —X) is increasing forx < 1, our claim follows from the fact that
|Z7Y| = 1/Amin and the inequality EX || < g /Amin from (8). [ |

Lemma 6 (Diagonal of inverted correlation matrix) If = € R99is a positive definite correlation
matrix, then the diagonal entries &f ! = (0')) satisfya" > 1.

Proof The claim is trivial forg = 1. So assumeg > 2. By symmetry, it suffices to consider the
entryc¥9, and we partition the matrix as

A b
= (5 )
with A € R@-Dx(@-1) andb € R9-1. By the Schur complement formula for the inverse of a parti-

tioned matrix,
1

qq _ :
S T

compare Horn and Johnson (1990, Section 0.7.3). Shisepositive definite, so i& 1. Hence,
b"A~1b > 0. Sincez ! is positive definitegdd cannot be negative, and so we deduce thgt> 1,
with equality if and only ifo = 0. |

The next lemma addresses the error propagation from the inverse ofedation matrix to
partial correlations.

Lemma 7 (Correlations) Let A= (&) and B= (bjj;) be symmetri@ x 2 matrices. If A is positive
definite with a;,ap2 > 1 and ||[A— Bl < d < 1, then

a2 B b12 . 20
Vanag  /biby| 1-8
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Proof Without loss of generality, supposg, > 0. Since||A— B||» < §,

b ap - a;2+0 . ap
Vbuby  Vandz  \/(ag1-9)(ap—93) Vad
0 ta 1 1
12 - .
v/ (a11—9) (a2 —9) V(a1—9) (a2—90) audz2

Using thatai1,a22 > 1 to bound the first term amf2 < aji1az to bound the second term, we obtain
that

b2 a1z 5 1 1
- < +Vaa -
Vbbb  ande 1-90 ez ( v/ (a11—8) (az2—d) \/a11a22)

) a1 a2
- 1—5+ (\/311—6 8.22—5_l> '

Since the functiox — x/(x— 9) is decreasing, we may use our assumption éhaty, > 1 to get

the bound
b12 . a2 < o) n /1 ) 1 1) = 20
v/briboo  /ar182 1-9 1-6 1-9 S 1-9%

A similar argument yields that

arn b12 20
— < ,
Vaidz /bbby  1+0

from which our claim follows. [ |

4. Rank PC Algorithm

Based on the equivalence (3), we may use the rank-based partielatiom estimated,s to test
conditional independences. In other words, we conclude that

Xo LLX[Xs <= }ﬁu\/]s‘ <Y, 9)

wherey € [0,1] is a fixed threshold. We will refer to the PC algorithm that uses the conditional
independence tests from (9) as the ‘Rank PC’ (RPC) algorithm. We @11@) for the output of
the RPC algorithm with tuning parameter

The RPC algorithm consist of two parts. The first part computes thelatorematrixs = (Puv)
in time O(p?nlogn), wherep := |[V|. This computation take®(logn) longer than its analogue
under use of Pearson correlations. The second part of the algoritimeteilsendent of the type of
correlations involved. It determines partial correlations and perfor@agshiral operations. For an
accurate enough estimate of a correlation matrilxat is faithful to a DAGG, this second part takes
O(pde@fG>) time in the worst case, but it is often much faster; compare Kalisch @htiigann (2007).
For high-dimensional data with smaller thanp, the computation time for RPC is dominated by
the second part, the PC-algorithm component. Moreover, in practicanapevish to apply RPC
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for several different values gf in which case the estimateneeds to be calculated only once. As
a result, Rank PC takes only marginally longer to compute than Pearson R{gliedimensional
data.

What follows is our main result about the correctness of RPC. For @lation matrixZ €
RV*V | let

Cmin(z> = min{|puv|8| rUveV,SCV \ {U,V}, Puvis 7& 0} (10)

be the minimal magnitude of any non-zero partial correlation, andgt>) be the minimal eigen-
value. Then for any integer> 2, let

Cmin(Z,q) :=min{Cmin(Z1) : I CV,|I| <q}, and (12)
Amin(Z,0) == min{Amin(Z ) : 1 CV, |I| <q} (12)

be the minimal magnitude of a non-zero partial correlation and, respectivelminimal eigenvalue
of any principal submatrix of order at most

Theorem 8 (Error bound for RPC-algorithm) Let X, ..., X, be a sample of independent obser-
vations drawn from a nonparanormal distribution NPNZX) that is faithful to a DAG G with p
nodes. For g=dedG) + 2, let ¢c:= cmin(Z,q) and A := Amin(Z,q). If n > q, then there exists a
thresholdy € [0, 1] for which

B)\4ncz>

P(G(G) £C(G)) < ’;p2exp(—36q2

where0 < A B < « are the constants from (6).

We remark that while all subsets of sigappear in the definitions in (11) and (12), our proof
of Theorem 8 only requires the corresponding minima over those prinsyfmhatrices that are
actually inverted in the run of the PC-algorithm.

Proof (Theorem 8) We will show that our claimed probability bound for the evég([G) # C(G)
holds when the threshold in the RPC algorithny is ¢c/2. By Theorem 1, if all conditional inde-
pendence tests for conditioning sets of $8e< deg G) make correct decisions, then the output of
the RPC algorithmfy(G) is equal to the CPDA®(G). Wheny = ¢/2, the conditional indepen-
dence test accepts a hypothesisLL X,[Xs if and only if |pyys| <y = ¢/2. Hence, the test makes

a correct decision ifpuys — Puvs| < ¢/2 because all non-zero partial correlations|fgir< deg G)

are bounded away from zero lbyrecall (10) and (11). It remains to argue, using the error analy-
sis from Lemma 4, that the evejfiys — Puys| > ¢/2 occurs with small enough probability when
S| < degG).

Suppose our correlation matrix estimate- (pyy) satisfies|> — ||« < & for

cA? _ Ac/2 -0
(44+c)g+hcq  (2+c/2)g+Aqe/2 7

(13)

Choose any two nodesv € V and aseBC V \ {u,v} with [§ < degG) = q—2. Letl = {u,v}US
Applying Lemma 4 to the x | submatrix ofz andZ yields

~ Cc
’puvls_ puv\S‘ < é
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Therefore||5 — 2| < € implies that our tests decide all conditional independences correctly in the
RPC algorithm.
Next, using (6) and a union bound, we find that

P (C,(G) #C(G)) <P (|Zuy— Zu| > € for someu,v e V)

p(p—1)
2

<A exp(—Bre?).

Plugging in the definition of gives the claimed inequality
A A BA“nc® A BA“nc?
P (Cy(G) #C(G)) < =p®exp| — < Zp?ex (— )
(&(6) #C(G) < 5p p( ((4+C)qﬂcq)2>_2p P~ 362

because < 1 andA < 1. The inequalityc < 1 holds trivially because partial correlations are in
[—1,1]. The inequalityA < 1 holds because@x g correlation matrix has traag this trace is equal
to the sum of the eigenvalues, anAl is the minimal eigenvalue. |

From the probability bound in Theorem 8, we may deduce high-dimensiemsistency of
RPC. For two positive sequencés) and(tp), we writes, = O(t,) if sy < Mty, ands, = Q(ty) if
S, > Mt, for a constant < M < oo,

Corollary 9 (Consistency of RPC-algorithm) Let (Gn) be a sequence of DAGs. Let pe the
number of nodes of Gand let g = deqd Gp) 4+ 2. SupposéZ,) is a sequence of,p< py correlation
matrices, withZ, faithful to G,. Suppose further that there are consta@ts a,b,d, f < 1 that
govern the growth of the graphs as

log pn = O(n?), th = O(n°),
and minimal signal strengths and eigenvalues as
Crin(Zn, n) = Q(n"9), Amin(Zn, tn) = Q(n"").
Ifa+2b+2d+4f < 1, then there exists a sequence of threshgldsr which

lim P(C,,(Gn) =C(Gn)) =1,

n—oo

whereéyn(Gn) is the output of the RPC algorithm for a sample of independent observations, X
from a nonparanormal distribution NP(N, Z).

Proof By Theorem 8, for large enough we can pick a thresholg, such that
P(Cy,(Gn) # C(Gn) < Aexp(2n® — B/nt 2-21-41)

for constants G< A',B’ < . The bound goes to zero if-12b—2d — 4f > a. [ |

As previously mentioned, Kalisch andiBlmann (2007) prove a similar consistency result in
the Gaussian case. Whereas our proof consists of propagatiorors #om correlation to partial
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correlation estimates, their proof appeals to Fisher’s result that undess@aity, sample partial
correlations follow the same type of distribution as sample correlations whesathple size is
adjusted by subtracting the cardinality of the conditioning set (Anderda®8,2Chapter 4). It is
then natural to work with a bound on the partial correlations associated midl sonditioning
sets. More precisely, Kalisch andiBlmann (2007) assume that there is a constanf < 1 such
that for anyn, the partial correlationg,ys of the matrixz, satisfy

Pwisl <M YuveV, SCV\{uv}, | <o (14)

It is then no longer necessary to involve the minimal eigenvalues from {#.work in Kalisch
and Bihimann (2007) is thus free of an analogue to our condtaBtated for the case of polynomial
growth of p,, (with a= 0), their result gives consistency whies 2d < 1; our constanb corresponds

to 1— b in Kalisch and Bihimann (2007). The condition from Corollary 9, on the other hand,
requires B+ 2d < 1 even iff = 0. This is more restrictive as largbrallows for faster growth in
the degree of the graphs and lardaallows for faster decay of the minimal signal strength.

In the important special case of bounded degree, however, ouaremgrmal result is just
as strong as the previously established Gaussian consistency gualgtatgag with polynomial
growth of py, that is,a = 0, suppose the sequence of graph degreef3i¢ds indeed bounded by
a fixed constant, sagp — 2. Then clearlyb = 0. Moreover, the set of correlation matrices of size
go satisfying (14) withg, = qp is compact. Since the smallest eigenvalue is a continuous function,
the infimum of all eigenvalues of such matrices is achieved for some invertilitexmidence, the
smallest eigenvalue is bounded away from zero, and we concludd thdd. Corollary 9 thus
implies consistency if@< 1, orifd < % = %b precisely as in Kalisch andiBilmann (2007). (No
generality is lost by assumiray= 0; in either one of the compared results this constant is involved
solely in a union bound over ord@? events.)

5. Numerical Experiments

In this section we evaluate the finite-sample properties of the RPC algorithm ifaiong and in
an application to gene expression data. In implementations of the PC algorithepicatty pack-
age for R (Kalisch et al., 2012) and other software sucheasad |V,! the Gaussian conditional
independence tests use a fixed level [0, 1] and decide that

Xo 1L X|Xs <= /n—|9 —3‘1Iog (H?“V'S)
2 1“puws
If the observations are multivariate normal ap\gs are sample partial correlations thenis an
asymptotic significance level for the test. The sample size adjustmentftom— |§ — 3 achieves
a bias-correction (Anderson, 2003).
Suppose for a moment that in (15) the square roat of|S — 3 was simply,/n. Then, for

fixed n anda, the acceptance region in (15) could be translated into a corresponxiigvilue
for yin (9). Hence, our Theorem 8 would apply directly when plugging ranketations into the
mentioned software implementations of the PC algorithm. With the sample size adjuftmnent
ton—|§ — 3, however, the value gfdepends oS and further arguments are needed. We postpone
these to Appendix A, where we show that the sample size adjustment had maedfect on the
consistency result in Corollary 9.

<o l(1-a/2). (15)

1. Tetrad IV can be found at t p: / / ww. phi | . cnu. edu/ proj ects/tetrad
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5.1 Simulations

We compare RPC to two other versions of the PC-algorithm: (i) ‘Pearsonby @hich we mean

the standard approach of using sample partial correlations to test Gaugssiditional indepen-
dences, and (ii))Q,-PC’, which is based on a robust estimator of the covariance matrix and was
considered in Kalisch andiBlmann (2008). All our computations are done with pleal g pack-

age for R.

Following Kalisch and Bhimann (2007), we simulate random DAGs and sample from proba-
bility distributions faithful to them. Fix a sparsity parameset [0,1] and enumerate the vertices
asV ={1,...,p}. Then we generate a DAG by including the edge> v with probability s, inde-
pendently for each paiu,v) with 1 < u < v < p. In this scheme, each node has the same expected
degree(p—1)s.

Given a DAGG = (V,E), let A = (Ayy) be ap x pmatrix withAy, = 0 if u— v¢ E. Furthermore,
lete = (g1,...,€p) be a vector of independent random variables. Then the random vestaving
the equation system

X=AX+¢ (16)

is well-known to be Markov with respect 6. Here, we draw the edge coefficieig, u — v € E,
independently from a uniform distribution on the inter¢@ll,1). For such a random choice, with
probability one, the vectoX solving (16) is faithful with respect t&. We consider three different
types of data:

(i) multivariate normal observations, which we generate by takimg(16) to have independent
standard normal entries;

(i) observations with Gaussian copula obtained by transforming the margihdhe normal
random vectors from (i) to a ;-distribution;

(i) contaminated data, for which we generate the entriesinf(16) as independent draws from
a 80-20 mixture between a standard normal and a standard Cauchy tistribu

The contaminated distributions in (iii) do not belong to the nonparanormal class

For the simulations we sample from two graph distributions: A small graph orettices with
an expected vertex degree of three, and a larger graph on oneshweltices with an expected
vertex degree of six. For eache {50,1000; and each of the three types of data listed above, we
sample 201 random graphs from both the small and large graph distrigutiotighen sampla
observations from the graph with the given data distribution.

For each resulting combination, we run each of the three consideredngos the PC algorithm
on a grid ofa’s ranging from 101%to 0.8. We consider the RPC algorithm in the version that uses
Spearman correlations as in (4); the results for Kendalliere similar. For each estimated skeleton,
we compute the proportions of true and of false positives by comparingstheaged skeleton to
the true skeleton. The skeleton of a grdpis the undirected graph with edges between nodes that
are adjacent irs. Finally, we compute the area under the receiver operating charactetistie
(AUC) for each of the 201 repetitions. Mean areas with standard deviatiparenthesis are listed
in Tables 1- 3.

A clear message emerges from the tables. First, Table 1 shows that foalratata, RPC per-
forms only marginally worse than Pearson-PC. ThePC algorithm does well on larger sample
sizes, but it not as good on smaller sample sizes. Second, Table 2 shivarmatic relative gain
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Pearson-PC

Qn'PC

RPC

Small graphn =50

0.824 (0.065)

0.734 (0.102)

0.809 (0.072)

Small graphn = 1000

0.938 (0.050)

0.930 (0.053)

0.936 (0.050)

Large graphn =50

0.721 (0.016)

0.584 (0.022)

0.706 (0.016)

Large graphn = 1000

0.837 (0.023)

0.830 (0.023)

0.835 (0.023)

Table 1: Mean AUC for Normal data

Pearson-PC

Qn-PC

RPC

Small graphn =50

0.668 (0.079)

0.506 (0.062)

0.813 (0.067)

Small graphn = 1000

0.774 (0.068)

0.566 (0.082)

0.930 (0.054)

Large graphn =50

0.587 (0.012)

0.502 (0.004)

0.704 (0.016)

Large graphn = 1000

0.678 (0.021)

0.525 (0.011)

0.833 (0.024)

Table 2: Mean AUC for Nonparanormal data

in performance for RPC for the Gaussian copula data Wthmarginals. As expected, the per-
formance of RPC on nonparanormal data is the same as on normal datathahixé Pearson-PC
and Q,-PC deteriorate. Finally, Table 3 shows that RPC continues to do well in gsepce of
contaminated data, the mean AUC for the other two algorithms is significantly Id@etously,
despite using a robust covariance matrix estimator Q¢ C performs substantially worse than
Pearson-PC on this data.

5.2 Gene Expression Data

While Kendall'st and Spearman’s rank correlation give similar results for continuous\aigms
from a distribution with Gaussian copula, the two measures of correlatiomigamuite differ-
ent results in applications. We illustrate this for data on gene expressioragt fyfem Brem and
Kruglyak (2005), where we focus gn= 54 genes from the MAPK signaling pathway as was done
in Sun and Li (2012). The sample sizenis- 112.

When plotting histograms of the expression measurements for each of teeésl, the majority
of the plots do not show any obvious deviation from normality but, as one raigdgect, there are
several with signs of skewness as well as some outliers. Moreovefiyéogenes, the marginal
distribution appears to be bimodal; see Figure 1 for an example. Multimodalmablrgan arise
under nonparanormal distributions, which thus have the potential to alldhiateffects of such

Pearson-PC | Q,-PC RPC

Small graphn =50

0.781 (0.075)

0.656 (0.102)

0.819 (0.073)

Small graphn = 1000

0.905 (0.078)

0.859 (0.110)

0.939 (0.053)

Large graphn =50

0.646 (0.023)

0.518 (0.008)

0.690 (0.017)

Large graphn = 1000

0.738 (0.039)

0.616 (0.044)

0.832 (0.024)

Table 3: Mean AUC for Contaminated data
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Histogram for gene BCK1

0.6
|

0.4

0.0
L

Expression measurements

Figure 1: A histogram suggesting a bimodal distribution for the expressilies of gene BCK1.

obvious departures from multivariate normality. This said, a Gaussiafdaogmains of course a
strong assumption about the joint distribution.

We ran the PC algorithm using Pearson correlations, Spearman correkadiorell as Kendall's
1. We considered a grid of values farfrom 10-8 to 0.5 and selected by optimizing the Bayesian
information criterion (BIC) of Schwarz (1978). (Extensions in the spfr€lben and Chen, 2008 and
Foygel and Drton, 2010 could be attractive for this tuning problem bu lyat to be adapted and
studied for directed graphs.) The computations were done using routimegHe aforementioned
R packagepcal g as well as the packaggm(Sadeghi and Marchetti, 2012). The former package
offers, in particular, routines to create DAGs from the PC output and tter lzackage contains a
routine to fit a DAG model by maximum likelihood.

For the case of Pearson correlations, tuning with BIC gave0.5 and a graph with 178 edges.
Spearman correlations behaved similarly. No true optimum arose during @éuBing, which
again suggested = 0.5 and led to a graph with 171 edges. For Kendallsn the other hand,
the BIC was minimal form = 0.1 and only values in the rand6.05,0.1] gave comparable BIC
values. The graph inferred for= 0.1 has 74 edges. We display its largest connected component in
Figure 2.

Figure 2 was produced using output from TETRAD IV and featuresctiite undirected and
bidirected edges. While the former two arise in CPDAGS, the latter type ofiadgsates incon-
sistencies that the PC algorithm encountered. Briefly put, a bidirectedegidgs when this edge
appears in the skeleton inferred in the first stage of the PC algorithm betitfeeorientation rules
in the second stage of the algorithm yield arrowheads at both tails of the edge

As mentioned in Sun and Li (2012), some prior biological knowledge atfmupathway is
available but not in a form that can be translated into a statistical model agleoed here. Never-
theless, in this example, the use of Kendalkeems preferable to that of Pearson and also Spearman
correlations. Both the sparsity of the inferred graph as well as the maoeatale behavior in the
likelihood computations underlying the BIC search speak for Kendall’s
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Figure 2: Largest connected component in the output of the Kendall &f&ithm applied to
expression data for genes in the MAPK pathway in yeast.

6. Conclusion

The PC algorithm of Spirtes et al. (2000) addresses the problem of s&ldetion in graphical mod-
elling with directed graphs via a clever scheme of testing conditional indepeed. For multivari-
ate normal observations, the algorithm is known to have high-dimensionaistency properties
when conditional independence is tested using sample partial correldfialisch and Bihimann,
2007). We showed that the PC algorithm retains these consistencyjepgien observations fol-
low a Gaussian copula model and rank-based measures of correla&iosealto assess conditional
independence. The assumptions needed in our analysis are no stitarg#nose in prior Gaus-
sian work when the considered sequence of DAGs has boundecedégfteen the degree grows
our assumptions are slightly more restrictive as our proof requires tarfttbe conditioning of
principal submatrices of correlation matrices that are inverted to estimatd partiglations in the
rank-based PC (RPC) algorithm.

In our simulations, the use of the RPC algorithm led to negligible differencesiistical ef-
ficiency when data were indeed normal. For nonnormal data, RPC clegfdgréormed the other
considered versions of the algorithm. Since rank correlations take onbjima#ly longer to com-
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pute than sample correlations, the simulations suggest that there are Imgrdopansides associated
with making RPC the standard version of the PC algorithm for continuous data.

Consistency results assume the data-generating distribution to be faithfultaarlying DAG.
In fact, our results make the stronger assumption that non-zero pantialatmns are sufficiently
far from zero. As shown in Uhler et al. (2013), this can be a restrietbg2imption, which provides
an explanation for why consistency does not ‘kick-in’ quicker in simulasiaies such as the one
in Kalisch and Bihimann (2007) and also ours.

Our analysis of the PC algorithm made use of two main arguments. First, fongvath suit-
ably bounded degree the population version of the PC algorithm only needfeeck conditional
independences with small conditioning sets. Second, the low-order pamtielations whose van-
ishing corresponds to these conditional independence can be estimaieately. Lemma 4, which
provides the error propagation from marginal to partial correlationgddcgimilarly be used to an-
alyze other algorithms that test the vanishing of low-order partial corragtiOne example is the
FCI algorithm that infers a more complex graphical object to deal with situaiioravhich some
relevant variables remain unobserved (Spirtes et al., 2000; ColomhoZ012).

Recent work shows that Kendalliscan be used to obtain accurate estimates of the dispersion
parameters in a more general setting of elliptical (rather than nonpardjatistabutions. Our
analysis would again carry over to this case as an analogue to (5) is &vaildbis setting. How-
ever, in the elliptical family zeros in the dispersion matrix do not correspondigpiendences and
would have to be interpreted in terms of a latent normal random vector (lail, @012b).
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Appendix A. Sample Size Adjustment

We now show that the consistency result in Corollary 9 still holds when ubkagonditional inde-
pendence tests from (15). In these tests, the sample size is adjustettivors |S — 3.
Proof The test in (15) accepts a conditional independence hypothesis if §nif on

‘ﬁuv\s‘ < y(n,\Si,z), (17)

where

_exp(z/y/n—19-3) -1
exp(z/\/n—]§-3)+1
andz = z(a) = 201(1—a/2). We need to find a sequence,) of values fora such that con-
sistency holds under the scaling assumptions made in Corollary 9. We will doytisigecifying a
sequenceéz,) for values for the (doubled) quantiles
We claim that the RPC algorithm using the tests from (17) is consistent whaosicly the
guantile sequence

y(n,|§,2)

Zn= m.logﬁfg:@, (18)
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where we use the abbreviation
Ch = Cmin(znaqn)~

We will show that as the sample sipetends to infinity, with probability tending to ongyys —
Puvs| < /3 for everyu,v eV and|§ < gn. Furthermore, we will show that for the above choice of
z, and all sufficiently large, we havec,/3 < y(n,|S,z,) < 2c,/3 for each relevant s&with 0 <
IS < agn. These facts imply that, with asymptotic probability one, every conditional iewiggnce
test is correct, and the RPC algorithm succeeds.

First, we slightly adapt the proof of Theorem 8. Choosing the uniforrorehreshold for the
correlation estimates as

cA2

———>0
(6+c)g+Acq

in place of (13) yields that, with probability at least

4
1- ’;pzexp<— BA ”CZ> , (19)

6402

we have thatpyys — Puvs| < ¢/3 for everyu,v e V and|S| < . When substitutingy,, gn, ¢, and
Amin(Zn,0n) for p, g, c andA, respectively, the scaling assumptions in Corollary 9 imply that the
probability bound in (19) tends to one as-+ o, and we obtain the first part of our claim.

For the second part of our claim, note that our choicg,@fi (18) givesy(n,0, z,) = ¢,/3. Since
y(n,|S],z) is monotonically increasing ifg, we need only show that for sufficiently large

Y(N, 0, Zn) —Y(n,0,2,) < Cq/3.

Forx > 0, the function
_exp(x)—1

= exp(X) + 1

is concave and, thus, for aqy > 0,

¥(, Gn, Z0) —Y(n,0,20) = f (ﬁ) - f <nz_3>
f <\/nz— 3> (\/n —an—3 - \/nz— 3) ' 20

, 2exp(x)
f'(X)=—""—.
(exp(x) + 1)
Evaluating the right hand side of (20), we obtain that

(- Pm(22) (452
S ()
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Being derived from absolute values of partial correlations, the seguagis in [0,1]. Now, log/(1+
X)/(1—x)] is a convex function ok > 0 that is zero ak = 0 and equal to lo@) for x = 1/3.

Therefore,
1 1+c,/3 1

2Iog<1_cn/3> < élog(Z)'cn, Ch € [0,1].

This shows that the bound in (21)ag$c,) because, by assumptiogy, = o(,/n). In particular, the
bound in (21) is less thaey /3 for sufficiently largen, proving the claimed consistency result.l

Appendix B. Background on Graphical Models

LetG = (V, E) be an acyclic digraph with finite vertex set. We wnite> w € E to indicate thatv, w)

is an edge irE. As mentioned in the introduction, the conditional independences assowiiled
the graphG may be determined using d-separation; compare, for example, page 48ritzéa
(1996). We briefly review the concept.

Since a DAG contains at most one edge between any two nodes, we may a@efith from a
nodeu to a nodev to be a sequence of distinct nodesg, vs,...,Vn) such thatvg = u, v, = v and
forall 1 <k < n, eithervg_1 — v € E orvk_1 < v € E. Two distinct nodesi andv are then said
to bed-separatedy a setSc V \ {v,u} if every path fromu to v contains three consecutive nodes
(Vk—1, Vk, Vk+1) for which one of the following is true:

(i) The three nodes form a chaiR_1 — Vk — Vki1, @ chainvi_1 < Vi < Vi1, or a forkvg_1 <
Vk — Vi1, and the middle node is in S.

(i) The three nodes form a collidex_1 — vk + Vki1, and neithery nor any of its descendants
isinS

Supposed, B, Sare pairwise disjoint subsets ¥f ThenSd-separates andB if Sd-separates any
pair of nodesa andb with a € A andb € B.

Two DAGsG = (V,E) andH = (V, F) with the same vertex sst areMarkov equivalenif they
may possess the same d-separation relations, that is, twA aat$B are d-separated given a third
setC in the graphG if and only if the same holds iH. To give an example, the grapbs— v— w
andu <« v < w are Markov equivalent, but — v — w andu — v < w are not. As first shown in
Verma and Pearl (1991), two DAGS andH are Markov equivalent if and only if they have the
same skeleton and the same unshielded colliders. skbaketonof a digraphG is the undirected
graph obtained by converting each directed edge into an undirectedAsdgeshielded collideis
a triple of nodegu, v,w) that induces the subgraph— v < w, that is, there is no edge between
andw.

Let [G] be the Markov equivalence class of an acyclic digréph (V,E). Write E(H) for the
edge set of a DAGH, and define the edge set

[E]= {J E(H).
He[G]

That is,(v,w) € [E] if there exists a DAGH < [G] with the edger — win its edge set. We interpret
the presence of botfv,w) and (w,v) in [E] as an undirected edge betweeandw. The graph
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C(G) = (V,[E]) is known as theompleted partially directed acyclic grag@PDAG) forG or also
as theessential graphTwo DAGsG andH satisfyC(G) = C(H) if and only if [G] = [H], making
the CPDAG a useful graphical representation of a Markov equivalelass; see Andersson et al.
(1997) and Chickering (2002).
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