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Abstract
The PC algorithm uses conditional independence tests for model selection in graphical modeling
with acyclic directed graphs. In Gaussian models, tests of conditional independence are typically
based on Pearson correlations, and high-dimensional consistency results have been obtained for the
PC algorithm in this setting. Analyzing the error propagation from marginal to partial correlations,
we prove that high-dimensional consistency carries over toa broader class of Gaussian copula or
nonparanormalmodels when using rank-based measures of correlation. For graph sequences with
bounded degree, our consistency result is as strong as priorGaussian results. In simulations, the
‘Rank PC’ algorithm works as well as the ‘Pearson PC’ algorithm for normal data and considerably
better for non-normal data, all the while incurring a negligible increase of computation time. While
our interest is in the PC algorithm, the presented analysis of error propagation could be applied to
other algorithms that test the vanishing of low-order partial correlations.

Keywords: Gaussian copula, graphical model, model selection, multivariate normal distribution,
nonparanormal distribution

1. Introduction

Let G= (V,E) be an acyclic digraph with finite vertex set, and letX = (Xv)v∈V be a random vec-
tor whose entries are in correspondence with the graph’s vertices. Then the graphG determines a
statistical model for the joint distribution ofX by imposing conditional independences that can be
read off fromG using the concept of d-separation. These independences are natural if the edges
in E encode causal/functional relationships among the random variablesXv, and a distribution that
satisfies them is said to beMarkovwith respect toG. Appendix B contains a brief review of these
and other key notions that are relevant to this paper. More detailed introductions to statistical mod-
eling with directed graphs can be found in Lauritzen (1996), Pearl (2009), Spirtes et al. (2000) or
Drton et al. (2009, Chapter 3). As common in the field, we use the abbreviation DAG (for ‘directed
acyclic graph’) when referring to acyclic digraphs.

We will be concerned with the consistency of the PC algorithm, which is named for its inventors,
the first two authors of Spirtes et al. (2000). This algorithm uses conditional independence tests to
infer a DAG from data. Alongside greedy-search techniques that optimizeinformation criteria, the
PC algorithm is one of the main methods for inference of directed graphs. Recent applications of the
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PC algorithm can be found in Maathuis et al. (2010), Schmidberger et al. (2011), Le et al. (2013),
and Verdugo et al. (2013).

Graph inference is complicated by the fact that two DAGsG = (V,E) and H = (V,F) with
the same vertex setV may beMarkov equivalent, that is, they may possess the same d-separation
relations and, consequently, induce the same statistical model. Hence, the goal becomes estimation
of the Markov equivalence class of an acyclic digraphG. For representation of the equivalence class,
prior work considers a particular partially directed graphC(G), for which it holds thatC(G) =C(H)
if and only if the two DAGsG and H are Markov equivalent; see Andersson et al. (1997) and
Chickering (2002). The graphC(G) may contain both directed and undirected edges, and it is
acyclic in the sense of its directed subgraph having no directed cycles. Wewill refer to C(G) as the
completed partially directed acyclic graph(CPDAG), but other terminology such as theessential
graph is in use.

The PC algorithm uses conditional independence tests to infer a CPDAG from data (Spirtes
et al., 2000). In its population version, the algorithm amounts to a clever scheme to reconstruct
the CPDAGC(G) from answers to queries about d-separation relations in the underlying DAG G.
Theorem 1 summarizes the properties of the PC algorithm that are relevant for the present paper.
For a proof of the theorem as well as a compact description of the PC algorithm we refer the reader
to Kalisch and B̈uhlmann (2007). Recall that the degree of a node is the number of edges itis
incident to, and that the degree of a DAGG is the maximum degree of any node, which we denote
by deg(G).

Theorem 1 Given only the ability to check d-separation relations in a DAG G, the PC algorithm
finds the CPDAG C(G) by checking whether pairs of distinct nodes are d-separated by sets S of
cardinality |S| ≤ deg(G).

Let XA denote the subvector(Xv)v∈A. The joint distribution of a random vectorX = (Xv)v∈V

is faithful to a DAG G if, for any triple of pairwise disjoint subsetsA,B,S⊂ V, we have thatS
d-separatesA andB in G if and only if XA andXB are conditionally independent givenXS; it is
customary to denote this conditional independence byXA ⊥⊥ XB |XS. Under faithfulness, statistical
tests of conditional independence can be used to determine d-separation relations in a DAG and lead
to a sample version of the PC algorithm that is applicable to data.

If X follows the multivariate normal distributionN(µ,Σ), with positive definite covariance ma-
trix Σ, then

XA⊥⊥ XB |XS ⇐⇒ Xu⊥⊥ Xv |XS ∀u∈ A, v∈ B.

Moreover, the pairwise conditional independence ofXu andXv given XS is equivalent to the van-
ishing of thepartial correlation ρuv|S, that is, the correlation obtained from the bivariate normal
conditional distribution of(Xu,Xv) given XS. The iterations of the PC algorithm make use of the
recursion

ρuv|S=
ρuv|S\w−ρuw|S\wρvw|S\w

√

(

1−ρ2
uw|S\w

)(

1−ρ2
vw|S\w

)

, (1)

for anyw∈ S, whereρuv| /0 = ρuv is the correlation ofu andv. Our later theoretical analysis will use
the fact that

ρuv|S=−
Ψ−1

uv
√

Ψ−1
uu Ψ−1

vv

, (2)
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whereΨ = Σ(u,v,S),(u,v,S) is the concerned principal submatrix ofΣ.
A natural estimate ofρuv|S is the sample partial correlation obtained by replacingΣ with the em-

pirical covariance matrix of available observations. Sample partial correlations derived from inde-
pendent normal observations have favorable distributional properties(Anderson, 2003, Chapter 4),
which form the basis for the work of Kalisch and Bühlmann (2007) who treat the PC algorithm in
the Gaussian context with conditional independence tests based on sample partial correlations. The
main results in Kalisch and B̈uhlmann (2007) show high-dimensional consistency of the PC algo-
rithm, when the observations form a sample of independent normal randomvectors that are faithful
to a suitably sparse DAG.

The purpose of this paper is to show that the PC algorithm has high-dimensional consistency
properties for a broader class of distributions, when standard Pearson-type empirical correlations
are replaced by rank-based measures of correlations in tests of conditional independence. The
broader class we consider includes continuous distributions with Gaussiancopula. Phrased in the
terminology of Liu et al. (2009), we considernonparanormaldistributions. Recall that a correlation
matrix is a covariance matrix with all diagonal entries equal to one.

Definition 2 Let f = ( fv)v∈V be a collection of strictly increasing functions fv : R→ R, and let
Σ ∈ R

V×V be a positive definite correlation matrix. The nonparanormal distribution NPN( f ,Σ) is
the distribution of the random vector( fv(Zv))v∈V for (Zv)v∈V ∼ N(0,Σ).

Taking the functionsfv to be affine shows that all multivariate normal distributions are also
nonparanormal. IfX ∼ NPN( f ,Σ), then the univariate marginal distribution for a coordinate, say
Xv, may have any continuous cumulative distribution functionF , as we may takefv =F−◦Φ, where
Φ is the standard normal distribution function andF−(u) = inf{x : F(x) ≥ u}. Note that fv need
not be continuous.

Definition 3 The nonparanormal graphical model NPN(G) associated with a DAG G is the set of
all distributions NPN( f ,Σ) that are Markov with respect to G.

Since the marginal transformationsfv are deterministic, the dependence structure in a nonpara-
normal distribution corresponds to that in the underlying latent multivariate normal distribution. In
other words, ifX ∼NPN( f ,Σ) andZ∼N(0,Σ), then it holds for any triple of pairwise disjoint sets
A,B,S⊂V that

XA⊥⊥ XB |XS ⇐⇒ ZA⊥⊥ ZB |ZS.

Hence, for two nodesu andv and a separating setS⊂V \{u,v}, it holds that

Xu⊥⊥ Xv |XS ⇐⇒ ρuv|S= 0, (3)

with ρuv|S calculated fromΣ as in (1) or (2). In light of this equivalence, we will occasionally speak
of a correlation matrixΣ being Markov or faithful to a DAG, meaning that the requirement holds
for any distributionNPN( f ,Σ).

In the remainder of the paper we study the PC algorithm in the nonparanormalcontext, propos-
ing the use of Spearman’s rank correlation and Kendall’sτ for estimation of the correlation matrix
parameter of a nonparanormal distribution. In Section 2, we review how transformations of Spear-
man’s rank correlation and Kendall’sτ yield accurate estimators of the latent Gaussian correlations.
In particular, we summarize tail bounds from Liu et al. (2012a). Theorem8 in Section 4 gives
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our main result, an error bound for the output of the PC algorithm when correlations are used to
determine nonparanormal conditional independence. In Corollary 9, wedescribe high-dimensional
asymptotic scenarios and suitable conditions that lead to consistency of the PCalgorithm. The proof
of Theorem 8 is given in Section 3, which provides an analysis of error propagation from marginal
to partial correlations. Our numerical work in Section 5 makes a strong casefor the use of rank
correlations in the PC algorithm. Some concluding remarks are given in Section6.

2. Rank Correlations

Let (X,Y) be a pair of random variables, and letF andG be the cumulative distribution functions
of X andY, respectively. Spearman’sρ for the bivariate distribution of(X,Y) is defined as

ρS= Corr(F(X),G(Y)) ,

that is, it is the ordinary Pearson correlation between the quantilesF(X) andG(Y). Another classical
measure of correlation is Kendall’sτ, defined as

τ = Corr
(

sign
(

X−X′
)

,sign
(

Y−Y′
))

where(X′,Y′) is an independent copy of(X,Y), that is,(X′,Y′) and (X,Y) are independent and
have the same distribution.

Suppose(X1,Y1), . . .(Xn,Yn) are independent pairs of random variables, each pair distributed as
(X,Y). Let rank(Xi) be the rank ofXi amongX1, . . . ,Xn. In the nonparanormal setting, the marginal
distributions are continuous so that ties occur with probability zero, making ranks well-defined. The
natural estimator ofρS is the sample correlation among ranks, that is,

ρ̂S=
1
n ∑n

i=1

( rank(Xi)
n+1 − 1

2

)( rank(Yi)
n+1 − 1

2

)

√

1
n ∑n

i=1

( rank(Xi)
n+1 − 1

2

)2
√

1
n ∑n

i=1

( rank(Yi)
n+1 − 1

2

)2

= 1− 6
n(n2−1)

n

∑
i=1

(

rank(Xi)− rank(Yi)
)2
,

which can be computed inO(nlogn) time. Kendall’sτ may be estimated by

τ̂ =
2

n(n−1) ∑
1≤i< j≤n

sign(Xi−Xj)sign(Yi−Yj) .

A clever algorithm using sorting and binary trees to computeτ̂ in time O(nlogn) instead of the
naiveO(n2) time has been developed by Christensen (2005).

It turns out that simple trigonometric transformations ofρ̂S andτ̂ are excellent estimators of the
population Pearson correlation for multivariate normal data. In particular,Liu et al. (2012a) show
that if (X,Y) are bivariate normal with Corr(X,Y) = ρ, then

P

(∣

∣

∣
2sin

(π
6

ρ̂S
)

−ρ
∣

∣

∣
> ε
)

≤ 2exp

(

− 2
9π2nε2

)

(4)

and

P

(∣

∣

∣
sin
(π

2
τ̂
)

−ρ
∣

∣

∣
> ε
)

≤ 2exp

(

− 2
π2nε2

)

. (5)
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Clearly,ρ̂S andτ̂ depend on the observations(X1,Y1), . . .(Xn,Yn) only through their ranks. Since
ranks are preserved under strictly increasing functions, (4) and (5)still hold if (X,Y)∼ NPN( f ,Σ)
with Pearson correlationρ = Σxy in the underlying latent bivariate normal distribution. Throughout
the rest of this paper, we will assume that we have some estimatorρ̂ of ρ which has the property
that, for nonparanormal data,

P(|ρ̂−ρ|> ε) < Aexp
(

−Bnε2) (6)

for fixed constants 0< A,B< ∞. As just argued, the estimators considered in (4) and (5) both have
this property.

When presented with multivariate observations from a distributionNPN( f ,Σ), we apply the
estimator from (6) to every pair of coordinates to obtain an estimatorΣ̂ of the correlation matrix
parameter. PlugginĝΣ into (1) or equivalently into (2) gives partial correlation estimators that we
denoteρ̂uv|S.

3. Error Propagation from Marginal to Partial Correlations

The PC algorithm leverages statistical decisions on conditional independence. An analysis of the
algorithm in the context of nonparanormal distributions thus requires bounds on errors in partial
correlations. The following Lemma 4 is our main tool. It provides a uniform bound on errors
in partial correlations when a uniform bound on errors in marginal correlations is available. At
times we will write such uniform bounds in terms of thel∞ vector norm of a matrix. For matrix
A= (ai j ) ∈ R

q×q we denote this norm by

‖A‖∞ = max
1≤i, j≤q

|ai j |.

Some proofs involve the spectral norm‖A‖, that is, the square-root of the maximal eigenvalue of
ATA.

Lemma 4 (Errors in partial correlations) SupposeΣ ∈ R
q×q is a positive definite matrix with

minimal eigenvalueλmin > 0. If Σ̂ ∈ R
q×q satisfies

‖Σ̂−Σ‖∞ <
cλ2

min

(2+c)q+λmincq

with c> 0, then all partial correlations are well-defined and their differences are bounded as

|ρ̂uv|\{u,v}−ρuv|\{u,v}| :=

∣

∣

∣

∣

∣

Σ−1
uv

√

Σ−1
uu Σ−1

vv

− Σ̂−1
uv

√

Σ̂−1
uu Σ̂−1

vv

∣

∣

∣

∣

∣

< c, 1≤ u< v≤ q.

The proof of Lemma 4 follows by combining the conclusions of Lemmas 5, 6 and 7from this
section. The first of these, that is, Lemma 5, invokes classical results on error propagation in matrix
inversion.

Lemma 5 (Matrix inversion) SupposeΣ ∈ R
q×q is a positive definite matrix with minimal eigen-

valueλmin > 0. If E ∈ R
q×q is a matrix of errors with‖E‖∞ < ε < λmin/q, thenΣ+E is invertible

and

‖(Σ+E)−1−Σ−1‖∞ ≤
qε/λ2

min

1−qε/λmin
.
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Proof First, note that
‖E‖∞ ≤ ‖E‖ ≤ q‖E‖∞; (7)

see entries(2,6) and (6,2) in the table on p. 314 in Horn and Johnson (1990). Using the sub-
multiplicativity of a matrix norm, the second inequality in (7), and our assumption onε, we find
that

‖EΣ−1‖ ≤ ‖Σ−1‖ · ‖E‖< qε
λmin

< 1. (8)

As discussed in Horn and Johnson (1990, Section 5.8), this implies thatI +EΣ−1 and thus also
Σ +E is invertible. Moreover, by the first inequality in (7) and inequality (5.8.2) in Horn and
Johnson (1990), we obtain that

‖(Σ+E)−1−Σ−1‖∞ ≤ ‖(Σ+E)−1−Σ−1‖ ≤ ‖Σ−1‖ · ‖EΣ−1‖
1−‖EΣ−1‖ .

Since the functionx 7→ x/(1− x) is increasing forx < 1, our claim follows from the fact that
‖Σ−1‖= 1/λmin and the inequality‖EΣ−1‖< qε/λmin from (8).

Lemma 6 (Diagonal of inverted correlation matrix) If Σ ∈Rq×q is a positive definite correlation
matrix, then the diagonal entries ofΣ−1 = (σi j ) satisfyσii ≥ 1.

Proof The claim is trivial forq = 1. So assumeq≥ 2. By symmetry, it suffices to consider the
entryσqq, and we partition the matrix as

Σ =

(

A b
bT 1

)

with A∈ R
(q−1)×(q−1) andb∈ R

q−1. By the Schur complement formula for the inverse of a parti-
tioned matrix,

σqq =
1

1−bTA−1b
;

compare Horn and Johnson (1990, Section 0.7.3). SinceA is positive definite, so isA−1. Hence,
bTA−1b≥ 0. SinceΣ−1 is positive definite,σqq cannot be negative, and so we deduce thatσqq≥ 1,
with equality if and only ifb= 0.

The next lemma addresses the error propagation from the inverse of a correlation matrix to
partial correlations.

Lemma 7 (Correlations) Let A= (ai j ) and B= (bi j ) be symmetric2×2 matrices. If A is positive
definite with a11,a22≥ 1 and‖A−B‖∞ < δ < 1, then

∣

∣

∣

∣

a12√
a11a22

− b12√
b11b22

∣

∣

∣

∣

<
2δ

1−δ
.

3370



PC ALGORITHM FOR NONPARANORMAL GRAPHICAL MODELS

Proof Without loss of generality, supposea12≥ 0. Since‖A−B‖∞ < δ,

b12√
b11b22

− a12√
a11a22

<
a12+δ

√

(a11−δ)(a22−δ)
− a12√

a11a22

=
δ

√

(a11−δ)(a22−δ)
+a12

(

1
√

(a11−δ)(a22−δ)
− 1√

a11a22

)

.

Using thata11,a22≥ 1 to bound the first term anda2
12< a11a22 to bound the second term, we obtain

that

b12√
b11b22

− a12√
a11a22

<
δ

1−δ
+
√

a11a22

(

1
√

(a11−δ)(a22−δ)
− 1√

a11a22

)

=
δ

1−δ
+

(√

a11

a11−δ
· a22

a22−δ
−1

)

.

Since the functionx 7→ x/(x−δ) is decreasing, we may use our assumption thata11,a22≥ 1 to get
the bound

b12√
b11b22

− a12√
a11a22

<
δ

1−δ
+

(

√

1
1−δ

· 1
1−δ

−1

)

=
2δ

1−δ

A similar argument yields that

a12√
a11a22

− b12√
b11b22

<
2δ

1+δ
,

from which our claim follows.

4. Rank PC Algorithm

Based on the equivalence (3), we may use the rank-based partial correlation estimateŝρuv|S to test
conditional independences. In other words, we conclude that

Xu⊥⊥ Xv|XS ⇐⇒
∣

∣ρ̂uv|S
∣

∣≤ γ, (9)

whereγ ∈ [0,1] is a fixed threshold. We will refer to the PC algorithm that uses the conditional
independence tests from (9) as the ‘Rank PC’ (RPC) algorithm. We writeĈγ(G) for the output of
the RPC algorithm with tuning parameterγ.

The RPC algorithm consist of two parts. The first part computes the correlation matrixΣ̂= (ρ̂uv)
in time O(p2nlogn), wherep := |V|. This computation takesO(logn) longer than its analogue
under use of Pearson correlations. The second part of the algorithm isindependent of the type of
correlations involved. It determines partial correlations and performs graphical operations. For an
accurate enough estimate of a correlation matrixΣ that is faithful to a DAGG, this second part takes
O(pdeg(G)) time in the worst case, but it is often much faster; compare Kalisch and Bühlmann (2007).
For high-dimensional data withn smaller thanp, the computation time for RPC is dominated by
the second part, the PC-algorithm component. Moreover, in practice, onemay wish to apply RPC
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for several different values ofγ, in which case the estimatêΣ needs to be calculated only once. As
a result, Rank PC takes only marginally longer to compute than Pearson PC forhigh-dimensional
data.

What follows is our main result about the correctness of RPC. For a correlation matrixΣ ∈
R

V×V , let
cmin(Σ) := min

{

|ρuv|S| : u,v∈V, S⊆V \{u,v}, ρuv|S 6= 0
}

(10)

be the minimal magnitude of any non-zero partial correlation, and letλmin(Σ) be the minimal eigen-
value. Then for any integerq≥ 2, let

cmin(Σ,q) := min{cmin(ΣI ,I ) : I ⊆V, |I | ≤ q} , and (11)

λmin(Σ,q) := min{λmin(ΣI ,I ) : I ⊆V, |I | ≤ q} (12)

be the minimal magnitude of a non-zero partial correlation and, respectively, the minimal eigenvalue
of any principal submatrix of order at mostq.

Theorem 8 (Error bound for RPC-algorithm) Let X1, . . . ,Xn be a sample of independent obser-
vations drawn from a nonparanormal distribution NPN( f ,Σ) that is faithful to a DAG G with p
nodes. For q:= deg(G)+2, let c := cmin(Σ,q) and λ := λmin(Σ,q). If n > q, then there exists a
thresholdγ ∈ [0,1] for which

P
(

Ĉγ(G) 6=C(G)
)

≤ A
2

p2exp

(

−Bλ4nc2

36q2

)

,

where0< A,B< ∞ are the constants from (6).

We remark that while all subsets of sizeq appear in the definitions in (11) and (12), our proof
of Theorem 8 only requires the corresponding minima over those principalsubmatrices that are
actually inverted in the run of the PC-algorithm.
Proof (Theorem 8)We will show that our claimed probability bound for the eventĈγ(G) 6=C(G)
holds when the threshold in the RPC algorithm isγ = c/2. By Theorem 1, if all conditional inde-
pendence tests for conditioning sets of size|S| ≤ deg(G) make correct decisions, then the output of
the RPC algorithmĈγ(G) is equal to the CPDAGC(G). Whenγ = c/2, the conditional indepen-
dence test accepts a hypothesisXu ⊥⊥ Xv|XS if and only if |ρ̂uv|S| < γ = c/2. Hence, the test makes
a correct decision if|ρ̂uv|S−ρuv|S| < c/2 because all non-zero partial correlations for|S| ≤ deg(G)
are bounded away from zero byc; recall (10) and (11). It remains to argue, using the error analy-
sis from Lemma 4, that the event|ρ̂uv|S−ρuv|S| ≥ c/2 occurs with small enough probability when
|S| ≤ deg(G).

Suppose our correlation matrix estimateΣ̂ = (ρ̂uv) satisfies‖Σ̂−Σ‖∞ < ε for

ε =
cλ2

(4+c)q+λcq
=

λ2c/2
(2+c/2)q+λqc/2

> 0. (13)

Choose any two nodesu,v∈V and a setS⊆V \{u,v}with |S| ≤ deg(G) = q−2. LetI = {u,v}∪S.
Applying Lemma 4 to theI × I submatrix ofΣ andΣ̂ yields

|ρ̂uv|S−ρuv|S| <
c
2
.
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Therefore,‖Σ̂−Σ‖∞ < ε implies that our tests decide all conditional independences correctly in the
RPC algorithm.

Next, using (6) and a union bound, we find that

P
(

Ĉγ(G) 6=C(G)
)

≤ P
(

|Σ̂uv−Σuv| ≥ ε for someu,v∈V
)

≤ A
p(p−1)

2
exp
(

−Bnε2) .

Plugging in the definition ofε gives the claimed inequality

P
(

Ĉγ(G) 6=C(G)
)

≤ A
2

p2exp

(

− Bλ4nc2

((4+c)q+λcq)2

)

≤ A
2

p2exp

(

−Bλ4nc2

36q2

)

becausec≤ 1 andλ ≤ 1. The inequalityc≤ 1 holds trivially because partial correlations are in
[−1,1]. The inequalityλ≤ 1 holds because aq×q correlation matrix has traceq, this trace is equal
to the sum of theq eigenvalues, andλ is the minimal eigenvalue.

From the probability bound in Theorem 8, we may deduce high-dimensional consistency of
RPC. For two positive sequences(sn) and(tn), we writesn = O(tn) if sn ≤Mtn, andsn = Ω(tn) if
sn≥Mtn for a constant 0< M < ∞.

Corollary 9 (Consistency of RPC-algorithm) Let (Gn) be a sequence of DAGs. Let pn be the
number of nodes of Gn, and let qn = deg(Gn)+2. Suppose(Σn) is a sequence of pn× pn correlation
matrices, withΣn faithful to Gn. Suppose further that there are constants0≤ a,b,d, f < 1 that
govern the growth of the graphs as

logpn = O(na), qn = O(nb),

and minimal signal strengths and eigenvalues as

cmin(Σn,qn) = Ω(n−d), λmin(Σn,qn) = Ω(n− f ).

If a+2b+2d+4 f < 1, then there exists a sequence of thresholdsγn for which

lim
n→∞

P
(

Ĉγn(Gn) =C(Gn)
)

= 1,

whereĈγn(Gn) is the output of the RPC algorithm for a sample of independent observationsX1, . . . ,Xn

from a nonparanormal distribution NPN( · ,Σn).

Proof By Theorem 8, for large enoughn, we can pick a thresholdγn such that

P(Ĉγn(Gn) 6=C(Gn)≤ A′exp
(

2na−B′n1−2b−2d−4 f
)

for constants 0< A′,B′ < ∞. The bound goes to zero if 1−2b−2d−4 f > a.

As previously mentioned, Kalisch and Bühlmann (2007) prove a similar consistency result in
the Gaussian case. Whereas our proof consists of propagation of errors from correlation to partial
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correlation estimates, their proof appeals to Fisher’s result that under Gaussianity, sample partial
correlations follow the same type of distribution as sample correlations when thesample size is
adjusted by subtracting the cardinality of the conditioning set (Anderson, 2003, Chapter 4). It is
then natural to work with a bound on the partial correlations associated with small conditioning
sets. More precisely, Kalisch and Bühlmann (2007) assume that there is a constant 0≤M < 1 such
that for anyn, the partial correlationsρuv|S of the matrixΣn satisfy

|ρuv|S| ≤M ∀u,v∈V, S⊆V \{u,v}, |S| ≤ qn. (14)

It is then no longer necessary to involve the minimal eigenvalues from (12).The work in Kalisch
and B̈uhlmann (2007) is thus free of an analogue to our constantf . Stated for the case of polynomial
growth ofpn (with a= 0), their result gives consistency whenb+2d< 1; our constantb corresponds
to 1− b in Kalisch and B̈uhlmann (2007). The condition from Corollary 9, on the other hand,
requires 2b+2d < 1 even if f = 0. This is more restrictive as largerb allows for faster growth in
the degree of the graphs and largerd allows for faster decay of the minimal signal strength.

In the important special case of bounded degree, however, our nonparanormal result is just
as strong as the previously established Gaussian consistency guarantee. Staying with polynomial
growth of pn, that is,a= 0, suppose the sequence of graph degrees deg(Gn) is indeed bounded by
a fixed constant, sayq0−2. Then clearly,b= 0. Moreover, the set of correlation matrices of size
q0 satisfying (14) withqn = q0 is compact. Since the smallest eigenvalue is a continuous function,
the infimum of all eigenvalues of such matrices is achieved for some invertible matrix. Hence, the
smallest eigenvalue is bounded away from zero, and we conclude thatf = 0. Corollary 9 thus
implies consistency if 2d < 1, or if d < 1

2 = 1−b
2 , precisely as in Kalisch and B̈uhlmann (2007). (No

generality is lost by assuminga= 0; in either one of the compared results this constant is involved
solely in a union bound over orderp2 events.)

5. Numerical Experiments

In this section we evaluate the finite-sample properties of the RPC algorithm in simulations and in
an application to gene expression data. In implementations of the PC algorithm in thepcalg pack-
age for R (Kalisch et al., 2012) and other software such asTetrad IV,1 the Gaussian conditional
independence tests use a fixed levelα ∈ [0,1] and decide that

Xu⊥⊥ Xv|XS ⇐⇒
√

n−|S|−3

∣

∣

∣

∣

1
2

log

(

1+ ρ̂uv|S
1− ρ̂uv|S

)∣

∣

∣

∣

≤Φ−1(1−α/2) . (15)

If the observations are multivariate normal andρ̂uv|S are sample partial correlations thenα is an
asymptotic significance level for the test. The sample size adjustment fromn to n−|S|−3 achieves
a bias-correction (Anderson, 2003).

Suppose for a moment that in (15) the square root ofn− |S| − 3 was simply
√

n. Then, for
fixed n andα, the acceptance region in (15) could be translated into a corresponding fixed value
for γ in (9). Hence, our Theorem 8 would apply directly when plugging rank correlations into the
mentioned software implementations of the PC algorithm. With the sample size adjustmentfrom n
to n−|S|−3, however, the value ofγ depends on|S| and further arguments are needed. We postpone
these to Appendix A, where we show that the sample size adjustment has indeed no effect on the
consistency result in Corollary 9.

1. Tetrad IV can be found athttp://www.phil.cmu.edu/projects/tetrad.
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5.1 Simulations

We compare RPC to two other versions of the PC-algorithm: (i) ‘Pearson-PC’, by which we mean
the standard approach of using sample partial correlations to test Gaussian conditional indepen-
dences, and (ii) ‘Qn-PC’, which is based on a robust estimator of the covariance matrix and was
considered in Kalisch and B̈uhlmann (2008). All our computations are done with thepcalg pack-
age for R.

Following Kalisch and B̈uhlmann (2007), we simulate random DAGs and sample from proba-
bility distributions faithful to them. Fix a sparsity parameters∈ [0,1] and enumerate the vertices
asV = {1, . . . , p}. Then we generate a DAG by including the edgeu→ v with probabilitys, inde-
pendently for each pair(u,v) with 1≤ u< v≤ p. In this scheme, each node has the same expected
degree(p−1)s.

Given a DAGG=(V,E), letΛ=(λuv) be ap×p matrix withλuv= 0 if u→ v 6∈E. Furthermore,
let ε = (ε1, . . . ,εp) be a vector of independent random variables. Then the random vectorX solving
the equation system

X = ΛX+ ε (16)

is well-known to be Markov with respect toG. Here, we draw the edge coefficientsλuv, u→ v∈ E,
independently from a uniform distribution on the interval(0.1,1). For such a random choice, with
probability one, the vectorX solving (16) is faithful with respect toG. We consider three different
types of data:

(i) multivariate normal observations, which we generate by takingε in (16) to have independent
standard normal entries;

(ii) observations with Gaussian copula obtained by transforming the marginalsof the normal
random vectors from (i) to anF1,1-distribution;

(iii) contaminated data, for which we generate the entries ofε in (16) as independent draws from
a 80-20 mixture between a standard normal and a standard Cauchy distribution.

The contaminated distributions in (iii) do not belong to the nonparanormal class.
For the simulations we sample from two graph distributions: A small graph on ten vertices with

an expected vertex degree of three, and a larger graph on one hundred vertices with an expected
vertex degree of six. For eachn∈ {50,1000} and each of the three types of data listed above, we
sample 201 random graphs from both the small and large graph distributions, and then samplen
observations from the graph with the given data distribution.

For each resulting combination, we run each of the three considered versions of the PC algorithm
on a grid ofα’s ranging from 10−100 to 0.8. We consider the RPC algorithm in the version that uses
Spearman correlations as in (4); the results for Kendall’sτ were similar. For each estimated skeleton,
we compute the proportions of true and of false positives by comparing the estimated skeleton to
the true skeleton. The skeleton of a graphG is the undirected graph with edges between nodes that
are adjacent inG. Finally, we compute the area under the receiver operating characteristiccurve
(AUC) for each of the 201 repetitions. Mean areas with standard deviationin parenthesis are listed
in Tables 1- 3.

A clear message emerges from the tables. First, Table 1 shows that for normal data, RPC per-
forms only marginally worse than Pearson-PC. TheQn-PC algorithm does well on larger sample
sizes, but it not as good on smaller sample sizes. Second, Table 2 shows adramatic relative gain
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Pearson-PC Qn-PC RPC
Small graph,n= 50 0.824 (0.065) 0.734 (0.102) 0.809 (0.072)
Small graph,n= 1000 0.938 (0.050) 0.930 (0.053) 0.936 (0.050)
Large graph,n= 50 0.721 (0.016) 0.584 (0.022) 0.706 (0.016)
Large graph,n= 1000 0.837 (0.023) 0.830 (0.023) 0.835 (0.023)

Table 1: Mean AUC for Normal data

Pearson-PC Qn-PC RPC
Small graph,n= 50 0.668 (0.079) 0.506 (0.062) 0.813 (0.067)
Small graph,n= 1000 0.774 (0.068) 0.566 (0.082) 0.930 (0.054)
Large graph,n= 50 0.587 (0.012) 0.502 (0.004) 0.704 (0.016)
Large graph,n= 1000 0.678 (0.021) 0.525 (0.011) 0.833 (0.024)

Table 2: Mean AUC for Nonparanormal data

in performance for RPC for the Gaussian copula data withF1,1 marginals. As expected, the per-
formance of RPC on nonparanormal data is the same as on normal data, whilethat of Pearson-PC
andQn-PC deteriorate. Finally, Table 3 shows that RPC continues to do well in the presence of
contaminated data, the mean AUC for the other two algorithms is significantly lower.Curiously,
despite using a robust covariance matrix estimator, theQn-PC performs substantially worse than
Pearson-PC on this data.

5.2 Gene Expression Data

While Kendall’sτ and Spearman’s rank correlation give similar results for continuous observations
from a distribution with Gaussian copula, the two measures of correlation cangive quite differ-
ent results in applications. We illustrate this for data on gene expression in yeast from Brem and
Kruglyak (2005), where we focus onp= 54 genes from the MAPK signaling pathway as was done
in Sun and Li (2012). The sample size isn= 112.

When plotting histograms of the expression measurements for each of the 54 genes, the majority
of the plots do not show any obvious deviation from normality but, as one mightsuspect, there are
several with signs of skewness as well as some outliers. Moreover, forfive genes, the marginal
distribution appears to be bimodal; see Figure 1 for an example. Multimodal marginals can arise
under nonparanormal distributions, which thus have the potential to alleviatethe effects of such

Pearson-PC Qn-PC RPC
Small graph,n= 50 0.781 (0.075) 0.656 (0.102) 0.819 (0.073)
Small graph,n= 1000 0.905 (0.078) 0.859 (0.110) 0.939 (0.053)
Large graph,n= 50 0.646 (0.023) 0.518 (0.008) 0.690 (0.017)
Large graph,n= 1000 0.738 (0.039) 0.616 (0.044) 0.832 (0.024)

Table 3: Mean AUC for Contaminated data
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Figure 1: A histogram suggesting a bimodal distribution for the expression values of gene BCK1.

obvious departures from multivariate normality. This said, a Gaussian copula remains of course a
strong assumption about the joint distribution.

We ran the PC algorithm using Pearson correlations, Spearman correlations as well as Kendall’s
τ. We considered a grid of values forα from 10−8 to 0.5 and selectedα by optimizing the Bayesian
information criterion (BIC) of Schwarz (1978). (Extensions in the spirit of Chen and Chen, 2008 and
Foygel and Drton, 2010 could be attractive for this tuning problem but have yet to be adapted and
studied for directed graphs.) The computations were done using routines from the aforementioned
R packagepcalg as well as the packageggm (Sadeghi and Marchetti, 2012). The former package
offers, in particular, routines to create DAGs from the PC output and the latter package contains a
routine to fit a DAG model by maximum likelihood.

For the case of Pearson correlations, tuning with BIC gaveα = 0.5 and a graph with 178 edges.
Spearman correlations behaved similarly. No true optimum arose during the BIC tuning, which
again suggestedα = 0.5 and led to a graph with 171 edges. For Kendall’sτ on the other hand,
the BIC was minimal forα = 0.1 and only values in the range[0.05,0.1] gave comparable BIC
values. The graph inferred forα = 0.1 has 74 edges. We display its largest connected component in
Figure 2.

Figure 2 was produced using output from TETRAD IV and features directed, undirected and
bidirected edges. While the former two arise in CPDAGs, the latter type of edgeindicates incon-
sistencies that the PC algorithm encountered. Briefly put, a bidirected edgearises when this edge
appears in the skeleton inferred in the first stage of the PC algorithm but theedge orientation rules
in the second stage of the algorithm yield arrowheads at both tails of the edge.

As mentioned in Sun and Li (2012), some prior biological knowledge aboutthe pathway is
available but not in a form that can be translated into a statistical model as considered here. Never-
theless, in this example, the use of Kendall’sτ seems preferable to that of Pearson and also Spearman
correlations. Both the sparsity of the inferred graph as well as the more favorable behavior in the
likelihood computations underlying the BIC search speak for Kendall’sτ.
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Figure 2: Largest connected component in the output of the Kendall RPCalgorithm applied to
expression data for genes in the MAPK pathway in yeast.

6. Conclusion

The PC algorithm of Spirtes et al. (2000) addresses the problem of modelselection in graphical mod-
elling with directed graphs via a clever scheme of testing conditional independences. For multivari-
ate normal observations, the algorithm is known to have high-dimensional consistency properties
when conditional independence is tested using sample partial correlations (Kalisch and B̈uhlmann,
2007). We showed that the PC algorithm retains these consistency properties when observations fol-
low a Gaussian copula model and rank-based measures of correlation are used to assess conditional
independence. The assumptions needed in our analysis are no strongerthan those in prior Gaus-
sian work when the considered sequence of DAGs has bounded degree. When the degree grows
our assumptions are slightly more restrictive as our proof requires control of the conditioning of
principal submatrices of correlation matrices that are inverted to estimate partial correlations in the
rank-based PC (RPC) algorithm.

In our simulations, the use of the RPC algorithm led to negligible differences in statistical ef-
ficiency when data were indeed normal. For nonnormal data, RPC clearly outperformed the other
considered versions of the algorithm. Since rank correlations take only marginally longer to com-
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pute than sample correlations, the simulations suggest that there are hardly any downsides associated
with making RPC the standard version of the PC algorithm for continuous data.

Consistency results assume the data-generating distribution to be faithful to an underlying DAG.
In fact, our results make the stronger assumption that non-zero partial correlations are sufficiently
far from zero. As shown in Uhler et al. (2013), this can be a restrictiveassumption, which provides
an explanation for why consistency does not ‘kick-in’ quicker in simulationstudies such as the one
in Kalisch and B̈uhlmann (2007) and also ours.

Our analysis of the PC algorithm made use of two main arguments. First, for graphs with suit-
ably bounded degree the population version of the PC algorithm only needsto check conditional
independences with small conditioning sets. Second, the low-order partialcorrelations whose van-
ishing corresponds to these conditional independence can be estimated accurately. Lemma 4, which
provides the error propagation from marginal to partial correlations, could similarly be used to an-
alyze other algorithms that test the vanishing of low-order partial correlations. One example is the
FCI algorithm that infers a more complex graphical object to deal with situations in which some
relevant variables remain unobserved (Spirtes et al., 2000; Colombo et al., 2012).

Recent work shows that Kendall’sτ can be used to obtain accurate estimates of the dispersion
parameters in a more general setting of elliptical (rather than nonparanormal) distributions. Our
analysis would again carry over to this case as an analogue to (5) is available in this setting. How-
ever, in the elliptical family zeros in the dispersion matrix do not correspond to independences and
would have to be interpreted in terms of a latent normal random vector (Liu etal., 2012b).
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Appendix A. Sample Size Adjustment

We now show that the consistency result in Corollary 9 still holds when usingthe conditional inde-
pendence tests from (15). In these tests, the sample size is adjusted fromn to n−|S|−3.
Proof The test in (15) accepts a conditional independence hypothesis if and only if

|ρ̂uv|S| ≤ γ(n, |S|,z), (17)

where

γ(n, |S|,z) = exp
(

z/
√

n−|S|−3
)

−1

exp
(

z/
√

n−|S|−3
)

+1

andz= z(α) = 2Φ−1(1−α/2). We need to find a sequence(αn) of values forα such that con-
sistency holds under the scaling assumptions made in Corollary 9. We will do thisby specifying a
sequence(zn) for values for the (doubled) quantilesz.

We claim that the RPC algorithm using the tests from (17) is consistent when choosing the
quantile sequence

zn =
√

n−3· log

(

1+cn/3
1−cn/3

)

, (18)
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where we use the abbreviation
cn := cmin(Σn,qn).

We will show that as the sample sizen tends to infinity, with probability tending to one,|ρ̂uv|S−
ρuv|S|< cn/3 for everyu,v∈V and|S| ≤ qn. Furthermore, we will show that for the above choice of
zn and all sufficiently largen, we havecn/3≤ γ(n, |S|,zn)≤ 2cn/3 for each relevant setSwith 0≤
|S| ≤ qn. These facts imply that, with asymptotic probability one, every conditional independence
test is correct, and the RPC algorithm succeeds.

First, we slightly adapt the proof of Theorem 8. Choosing the uniform error threshold for the
correlation estimates as

ε =
cλ2

(6+c)q+λcq
> 0

in place of (13) yields that, with probability at least

1− A
2

p2exp

(

−Bλ4nc2

64q2

)

, (19)

we have that|ρ̂uv|S−ρuv|S| < c/3 for everyu,v∈V and|S| ≤ q. When substitutingpn, qn, cn and
λmin(Σn,qn) for p, q, c andλ, respectively, the scaling assumptions in Corollary 9 imply that the
probability bound in (19) tends to one asn→ ∞, and we obtain the first part of our claim.

For the second part of our claim, note that our choice ofzn in (18) givesγ(n,0,zn) = cn/3. Since
γ(n, |S|,z) is monotonically increasing in|S|, we need only show that for sufficiently largen,

γ(n,qn,zn)− γ(n,0,zn)≤ cn/3.

Forx≥ 0, the function

f (x) =
exp(x)−1
exp(x)+1

is concave and, thus, for anyqn≥ 0,

γ(n,qn,zn)− γ(n,0,zn) = f

(

z√
n−qn−3

)

− f

(

z√
n−3

)

≤ f ′
(

z√
n−3

)(

z√
n−qn−3

− z√
n−3

)

. (20)

The derivative off is

f ′(x) =
2exp(x)

(exp(x)+1)2 .

Evaluating the right hand side of (20), we obtain that

γ(n,qn,zn)− γ(n,0,zn)≤
1
2

(

1− c2
n

9

)

log

(

1+cn/3
1−cn/3

)(
√

n−3√
n−qn−3

−1

)

≤ 1
2

log

(

1+cn/3
1−cn/3

)(
√

n−3√
n−qn−3

−1

)

. (21)
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Being derived from absolute values of partial correlations, the sequencecn is in [0,1]. Now, log[(1+
x)/(1− x)] is a convex function ofx≥ 0 that is zero atx = 0 and equal to log(2) for x = 1/3.
Therefore,

1
2

log

(

1+cn/3
1−cn/3

)

≤ 1
2

log(2) ·cn, cn ∈ [0,1].

This shows that the bound in (21) iso(cn) because, by assumption,qn = o(
√

n). In particular, the
bound in (21) is less thancn/3 for sufficiently largen, proving the claimed consistency result.

Appendix B. Background on Graphical Models

Let G= (V,E) be an acyclic digraph with finite vertex set. We writev→w∈E to indicate that(v,w)
is an edge inE. As mentioned in the introduction, the conditional independences associatedwith
the graphG may be determined using d-separation; compare, for example, page 48 in Lauritzen
(1996). We briefly review the concept.

Since a DAG contains at most one edge between any two nodes, we may define a path from a
nodeu to a nodev to be a sequence of distinct nodes(v0,v1, . . . ,vn) such thatv0 = u, vn = v and
for all 1≤ k≤ n, eithervk−1→ vk ∈ E or vk−1← vk ∈ E. Two distinct nodesu andv are then said
to bed-separatedby a setS⊂V \{v,u} if every path fromu to v contains three consecutive nodes
(vk−1,vk,vk+1) for which one of the following is true:

(i) The three nodes form a chainvk−1→ vk→ vk+1, a chainvk−1← vk← vk+1, or a forkvk−1←
vk→ vk+1, and the middle nodevk is in S.

(ii) The three nodes form a collidervk−1→ vk← vk+1, and neithervk nor any of its descendants
is in S.

SupposeA,B,Sare pairwise disjoint subsets ofV. ThenSd-separatesA andB if Sd-separates any
pair of nodesa andb with a∈ A andb∈ B.

Two DAGsG= (V,E) andH = (V,F) with the same vertex setV areMarkov equivalentif they
may possess the same d-separation relations, that is, two setsA andB are d-separated given a third
setC in the graphG if and only if the same holds inH. To give an example, the graphsu→ v→ w
andu← v← w are Markov equivalent, butu→ v→ w andu→ v← w are not. As first shown in
Verma and Pearl (1991), two DAGsG andH are Markov equivalent if and only if they have the
same skeleton and the same unshielded colliders. Theskeletonof a digraphG is the undirected
graph obtained by converting each directed edge into an undirected edge. An unshielded collideris
a triple of nodes(u,v,w) that induces the subgraphu→ v← w, that is, there is no edge betweenu
andw.

Let [G] be the Markov equivalence class of an acyclic digraphG= (V,E). Write E(H) for the
edge set of a DAGH, and define the edge set

[E] =
⋃

H∈[G]

E(H).

That is,(v,w) ∈ [E] if there exists a DAGH ∈ [G] with the edgev→ w in its edge set. We interpret
the presence of both(v,w) and (w,v) in [E] as an undirected edge betweenv andw. The graph
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C(G) = (V, [E]) is known as thecompleted partially directed acyclic graph(CPDAG) forG or also
as theessential graph. Two DAGsG andH satisfyC(G) =C(H) if and only if [G] = [H], making
the CPDAG a useful graphical representation of a Markov equivalence class; see Andersson et al.
(1997) and Chickering (2002).
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