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Abstract

We propose a new, nonparametric method for multivariateessgon subject to convexity or con-
cavity constraints on the response function. Convexitystamts are common in economics,
statistics, operations research, financial engineerirhaatimization, but there is currently no
multivariate method that is stable and computationallitga for more than a few thousand ob-
servations. We introduce convex adaptive partitioning PgGAvhich creates a globally convex
regression model from locally linear estimates fit on adaptiselected covariate partitions. CAP
is a computationally efficient, consistent method for cankegression. We demonstrate empir-
ical performance by comparing the performance of CAP torosha@pe-constrained and uncon-
strained regression methods for predicting weekly wagesvaitue function approximation for

pricing American basket options.

Keywords: adaptive partitioning, convex regression, nonparamedgecession, shape constraint,
treed linear model

1. Introduction

Consider the regression model foe X C RP andy € R,

y= fo(X) +¢€,

wherefy : RP — R ande is a mean 0 random variable. In this paper, we study the situation where
fo is convex. That s,

)\fo(Xl) + (1—)\) fo(Xz) > fo()\X]_ + (1— )\)Xz),

for everyxi,x2 € X andA € (0,1). Given the observationsu,y1),...,(Xn,Yn), We would like to
estimatefy subject to the convexity constraint. Convex regression is easily extandemhcave
regression since a concave function is the negative of a convex fanctio

Convex regression problems occur in a variety of settings. Economicytloétem dictates
that demand (Varian, 1982), production (Varian, 1984; Allon et al.,72@M0d consumer prefer-
ence (Boyd and Vandenberghe, 2004) functions are concaveaaimcial engineering, stock option
prices often have convexity restrictionsi{/ASahalia and Duarte, 2003). Stochastic optimization
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problems in operations research and reinforcement learning can el seith response surfaces
(Lim, 2010) or value-to-go functions. These exhibit concavity in many ggtitike resource al-
location (Topaloglu and Powell, 2003; Powell, 2007; Toriello et al., 20X03tochastic control
(Keshavarz et al., 2011). Similarly, efficient frontier methods like datalepwment analysis (Kuos-
manen and Johnson, 2010) include convexity constraints. In density gstinghape restrictions
like log-concavity provide flexible estimators without tunable parameters (€ué, 2010; Cule
and Samworth, 2010; Schuhmacher aridvibgen, 2010). Finally, in optimization, convex approxi-
mations to polynomial constraints are valuable for geometric programming (Kain €004; Boyd
et al., 2007; Magnani and Boyd, 2009).

Although convex regression has been well explored in the univaritiagsethe literature re-
mains underdeveloped in the multivariate setting. Methods where an objéatiggon is con-
strained to the set of convex functions through supporting hyperplamgtraints for each pair of
observations (Hildreth, 1954; Holloway, 1979; Kuosmanen, 2008; $gifbSen, 2011; Lim and
Glynn, 2012; Allon et al., 2007) or semidefinite constraints over all olagiemns (Roy et al., 2007;
Aguilera and Morin, 2008, 2009; Henderson and Parmeter, 2009¢ \Afaah Ni, 2012) are too com-
putationally demanding for more than a few thousand observations.

In more recent approaches, different methods have been develBjpiug a convex hull to a
smoothed version of the data (Aguilera et al., 2011) scales to larger dstdgeis inefficient for
more than 4 or 5 dimensions. Refitting a series of hyperplanes can be dofreduentist (Magnani
and Boyd, 2009) or Bayesian (Hannah and Dunson, 2011) mantdle ive Bayesian method does
not scale to more than a few thousand observations, the frequentist me#iesl ® much larger
data sets but can exhibit unstable behavior. Recent literature is moreduyvwed in Section 2.

In this paper, we introduce the first computationally efficient and theohgteaund multivari-
ate convex regression method: convex adaptive partitioning (CAPs H Series of hyperplanes to
the data through adaptive partitioning. It relies on an alternate, first-dedmition of convexity,

fo(x1) > fo(X2) + o(X2) " (X1 — X2), (1)

for everyxi, Xz € X, wheregp(x) € dfo(X) is a subgradient ofp atx. Equation (1) states that a
convex function lies above all of its supporting hyperplanes, or suligmts tangent tdg. More-
over, with enough supporting hyperplands,can be approximately reconstructed by taking the
maximum over those hyperplanes.

The CAP estimator is formed by adaptively partitioning a set of observatiansigthod similar
to trees with linear leaves (Chaudhuri et al., 1994). Within each sub#et phrtition, we fit a linear
model to approximate the subgradientfgfvithin that subset. Given a partition wit subsets and
linear models(ak,Bk)Ezl, a continuous, convex (concave) function is then generated by taléng th
maximum (minimum) over the hyperplanes by

f(X) = X
n(X) kemé}_xK}akJerX

30y

The partition is refined by a twofold strategy. First, one of the subsets isadpliy a cardinal
direction (sayx; or x3) to growK. Then, the hyperplanes themselves are used to refit the subsets.
A piecewise linear function likd, induces a partition; a subset is defined as the region where a
particular hyperplane is dominant. The refitting step places the hyperptecieser alignment with

the observations that generated them. This procedure is repeated usuibsdits have a minimal
number of observations. The CAP estimator is then created by selectindubefti that balances
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fit with complexity using a generalized cross validation method (Golub et al9;1™fedman,
1991). We show that CAP is consistent with respect to/thenetric. Because of the dramatic
reduction in runtime, CAP opens a new class of problems for study, namelgratedto large
problems with convexity or concavity constraints.

2. Literature Review

The literature for convex regression is scattered throughout a vafiélas, including statistics,
operations research, economics numerical analysis and electricateriggn Most methods are de-
signed for the univariate setting, which is closely related to isotonic regredgnivariate methods
rely on the ordering implicit to the real line. Setting1 <X < X 1fori=2,...,n—1,

fo(x) = fo(xi-1) _ fo(Xi+1) = fo(X)
Xi —Xi—1 o Xi+1—Xi
is equivalent to Equation (1). Whef is differentiable, Equation (2) is equivalent to an increasing
derivative function.

The oldest and simplest solution method is the least squares estimator (LI8&),produces
a piecewise linear estimator by solving a quadratic program with a leastesgoigjective function
subject to the constraints in Equation (2) (Hildreth, 1954; Dent, 1973).0a8h the LSE is com-
pletely free of tunable parameters, the estimator is not smooth and can mvbditndary regions.
Consistency, rate of convergence, and asymptotic distribution werendimpianson and Pledger
(1976), Mammen (1991) and Groeneboom et al. (2001), respectivdorithmic methods for
solving the quadratic program were given in Wu (1982); Dykstra (1888l Fraser and Massam
(1989).

Splines use linear combinations of basis functions to produce a smooth estimainivari-
ate convex regression, an increasing function can be fit to the deewattithe original function.
Meyer (2008) and Meyer et al. (2011) used convex-restricted splirin positive parameters in
frequentist and Bayesian settings, respectively. Turlach (2005%hively et al. (2011) used unre-
stricted splines with restricted parameters in frequentist and Bayesian sgttisgectively. In other
methods, Birke and Dette (2007) used convexity constrained kerrrelssign. Chang et al. (2007)
used a random Bernstein polynomial prior with constrained parametess.tdhe constraint on
the derivative offy, univariate convex regression is quite similar to univariate isotonic regres
see Brunk (1955), Hall and Huang (2001), Neelon and Dunsord{221d Shively et al. (2009) for
examples.

In the multivariate setting Equation (1) cannot be reduced to a setdf linear inequalities.
Instead, it needs to hold for every pair of points. The multivariate leagtreg estimator Hildreth
(1954); Holloway (1979) solves the quadratic program,

,o.,n—=1 (2)

)

min;(yi —i)? (3)

subject toy} > i + g (Xj — i), i,j=1,...,n.

Here,y; andg; are the estimated values &f(x;) and the subgradient df at x;, respectively. The
estimatorfSE is piecewise linear,

f-5E(x) = max i +g' (x—x).
ie{1,...,n}
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The characterization (Kuosmanen, 2008) and consistency (Seijo an@®&EL; Lim and Glynn,
2012) of the least squares problem have only recently been studiezl LSt quickly becomes
impractical due to its size: Equation (3) ha@ — 1) constraints. This results in a computational
complexity of O((p+ 1)*n°) (Monteiro and Adler, 1989), which becomes impractical after one to
two thousand observations. It can also severely overfit in bounéaigns. In similar approach,
Allon et al. (2007) proposed a method based on reformulating the maximum dikelibroblem

as one minimizing entropic distance, again subjeat4dinear constraints generated by the dual
problem.

An alternative to first order constraints in Equation (1) is second oodétessian, constraints.
Roy et al. (2007) and Aguilera and Morin (2008, 2009) solved a mathrpm with a least squares
objective function and semidefinite constraints through semidefinite programienderson and
Parmeter (2009) used kernel smoothing with a restricted Hessian ardidaaotution with sequen-
tial quadratic programming. While these methods are consistent in some Ageaésra and Morin,
2008, 2009), they are computationally infeasible for more than about adghdwbservations.

Recently, multivariate convex regression methods have been propibetifferent approaches.
Aguilera et al. (2011) proposed a two step smoothing and fitting processt, the data were
smoothed and functional estimates were generated ovenahover the domain. Then the convex
hull of the smoothed estimate was used as a convex estimator. Again, alth@augtethod is con-
sistent, it is sensitive to the choice of smoothing parameter and does notsoabee than a few
dimensions. Hannah and Dunson (2011) proposed a Bayesian madabtted a prior over the set
of all piecewise linear models. They were able to show adaptive rateeéigence, but the in-
ference algorithm did not scale to more than a few thousand observetionshanfar et al. (2010)
transformed the ordering problem associated with shape constrainezhicdento a combinatorial
optimization problem which was solved with dynamic programming; this scales w huedred
observations.

The work that is closest to CAP is an iterative fitting scheme of Magnani ayd B009). In
this method, the data were divided ifforandom subsets and a linear model was fit within each
subset; a convex function was generated by taking the maximum over tEsplanes. This new
function induced a partition over the covariate space, which generatd eatlection ofK subsets.
Again, linear models were fitted and another convex function was prdduyctaking the maximum
over the new hyperplanes. This sequence was repeated until cengergAlthough this method
usually produces a high quality estimate, it does not always convergeaartae unstable.

3. Convex Adaptive Partitioning

A natural way to model a convex functidgis through the maximum of a set Kfhyperplanes. We
do this by partitioning the covariate space and approximating the gradients edétbimregion by
hyperplanes generated by the least squares estimator. The covaadgagition ané are chosen
through adaptive partitioning. Given a partiti¢Aq, ..., Ax } of X, an estimate of the gradient for
each subset can be created by taking the least squares linear estiredterbal of the observations
within that region,

(at, i) = arg g][i;ni:XiZeAk (vi—a—B"x)”.
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A convex functionf can be created by taking the maximum o, Br)K_;,

T
fa(x) = kem%@ Ok + By X.

Adaptive partitioning models with linear leaves have been proposed betm&haudhuri et al.
(1994), Chaudhuri et al. (1995), Alexander and Grimshaw (199@Del (1996), Dobra and Gehrke
(2002), Gyrfi et al. (2002) and Potts and Sammut (2005) for examples. In most &¢ teses,
the partition is created by adaptively refining an existing partition by dyadiitisg of one subset
along one dimension. That is, all data is initially placed within a single subsethvidiben split
into two new subsets along a single dimension, for examplg at5. The split dimension and
value is chosen in a way that minimizes local error within the subset, throughitgnf@haudhuri
et al., 1994) or mean squared error minimization (Alexander and Grims!98).1The SUPPORT
algorithm of Chaudhuri et al. (1994) computes test statistics for the eliféer between the means
and variances of the residuals and selects the split with the smallest asbpetatdue. Splitting
is continued within a subset until a terminal level of purity or a minimal numbebeéovations is
reached in that subset; however, SUPPORT uses a cross-validatgohibathod as a stopping rule.
Once a full tree has been created, it is pruned using a variety of eatigistion based methods that
aim to remove individual leaves or branches to produce the most simple dteepnesents the data
well; see Breiman et al. (1984) and Quinlan (1993) for pruning methods.

There are two problems that arise when a piecewise linear additive function

K

f*(x) = z (Gk+ BIX) l{XGAk}7
k=1

is changed into a piecewise linear maximization function, fikéirst, a split that minimizes local
error does not necessarily minimize global error forThis is easily remedied by selecting splits
based on minimizing global error. The second problem is more difficult: tharlimedels often act
in areas over which they were not estimated.

The piecewise linear max functiofy,, generates a new partitiofd;, ..., A }, by

A= {XEX ta+Pex>aj+Bx,Vj#k}.

The partition{A1, ..., A } is not necessarily the samefa,, ..., A }. We can use this new partition
to refit the hyperplanes and produce a significantly better estimate. Aigaapbpresentation is
given in Figure 1.

Refitting hyperplanes in this manner can be viewed as a Gauss-Newton nietlibd non-
linear least squares problem (Magnani and Boyd, 2009),

n 2
minimize i; (yi - kegnﬁ)’(K} (o + BIXO) .
Similar methods for refitting hyperplanes have been proposed in Breimag)(aad Magnani and
Boyd (2009). However, repeated refitting may not converge to a stayipaatition and is sensitive
to the initial partition.

Convex adaptive partitioning uses adaptive partitioning with linear leaveasatodinvex function
that is defined as the maximum over the set of leaves. The adaptive parttitsgh differs from
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Figure 1: The original space partitiohand accompanying data partiti@with hyperplanes fit
according to that partition (left), the convex estimator based on thosepigpes; some
points are not represented by the hyperplane they were used to figflcemnd subsets
refit based on the hyperplanes (right).

previous methods in order to fit piecewise linear maximization functions. Pastitimrefined in
two steps. First, candidate splits are generated through dyadic splits tfig@xyartitions. These
are evaluated and the one that minimizes global error is greedily selectamhdséhe new partition
is then refit. Although simple, these rules, and refitting in particular, prolduge gains over naive
adaptive partitioning methods; empirical results are discussed in Section 6.

Most other adaptive partitioning methods use backfitting or pruning to daketitiee or partition
size. Due to the construction of the CAP estimator, we cannot locally pruhsaimstead we rely
on model selection criteria. We derive a generalized cross-validation th&ghthis setting that is
used to seledf. This is discussed in Section 5.

3.1 The Algorithm

We now introduce some notation required for convex adaptive partitiofigen presented with
data, a partition can be defined over the covariate space (denotpd by.,Ax }, with Ax C X)
or over the observation space (denoted{By,...,C«}, with Cx C {1,...,n}). The observation
partition is defined from the covariate partition,

Ck={i:xieA}, k=1... K.

The relationship between these is shown in Figure 1. CAP proposes araheg over a set of
models,My,...,Mk. A model M is defined by: 1) the covariate partitigi\,...,Ax}, 2) the
corresponding observation partitiofCy,...,Cx}, and 3) the hyperplane(sxj,Bj)ﬁ;l fit to those
partitions.

The CAP algorithm progressively refines the partition until each sulasetat be split without
one subset having fewer than a minimal number of observatigfs, This value is chosen to
balance increasing model complexity against accurate local model fibamgltational complexity.
When a relatively small number of observations is used to fit local linear Imatie local models
tend to fit noise. This is particularly problematic with linear models, which cadigrextreme
values based on overfit models. The issue is aggravated when the estindatiimed as a max over
local linear models, which can be dominated by a few extreme values; it oae gsstability in the
estimator of Magnani and Boyd (2009). Therefore, we choose acgats/e value fony,, which
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admits logarithmic partition growth,

Nmin = min{DI(;(m,Z(dle)}.

HereD is a log scaling factor, which acts to change the base of the log operatdii®flg outline
the CAP algorithm below.

3.1.1 ONVEX ADAPTIVE PARTITIONING (CAP)
1. Initialize. SetK = 1; place all observations into a single observation suset {1,...,n};
A; = X; this defines modeWl;.
2. Split. Refine partition by splitting a subset.

a. Generate candidate split&enerate candidate mod&l(jg by 1) fixing a subselt, 2) fixing
a dimensionj, 3) dyadically dividing the data in subdetind dimensiong according to
knota,. This is done folL knots, allp dimensions ané& subsets.

b. Select split. Choose the mode¥ik. 1 from the candidates that minimizes global mean
squared error on the training set and satisfies @i > Nmin. Setk = K + 1.

3. Refit. Use the partition induced by the hyperplanes to generate mi¢deBetMyx = My if
for every subset; in My, |C/| > Nmin.

4. Stopping conditions. If for every subseCy in My, |Cx| < 2nmin, Stop fitting and proceed to
step 5. Otherwise, go to step 2.

5. Select model sizeEach modeM creates an estimator,

Use generalized cross-validation on the estimators to select final tddedm {My}<_;.

3.2 Splitting Rules

To split, we create a collection of candidate models by splitting a single subsévimtubsets. We
create models for every subset and search along every cardinalatirby splitting the data along

that direction. For a fixed dimensigrand subsek, let xr'T'fm be the minimum value arndT'faX be the

maximum value of the covariates in this subset and dimension. kea0< --- < a_ < 1 be a set
of evenly spaced knots that represent the proportion betw{éﬁandx#fax.
We create modeVl i, by 1) fixing subsek € {1,...,K}, and 2) fixing dimension € {1,..., p}.

X =min{x; : i € G}, XK = max{x;j : i € C}.
Use the weighted averafg., = agxﬁin+ (1—- ag)x#faxto splitCx andAy in dimensionj. Set
Cr={i:i € C, %ij <bje}, Ciy1={i1i € Cx, %j > b},

A = {x:x € A, Xj < bje}, A1 = {X:1x € A, X > b}
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Figure 2: (A) The original observation partiti@hfor M,, (B) new splits generated from the subset
Ci1, and (C) new splits generated from the sul3etSince there is only one dimension,
we fix j = 1.

These define new subset and covariate partitiGhg,, ; andAl K+1 WhereC,, = Cy andC;, = Cy
for K # k. See Figure 2 for an example. Fit hyperplafésg, Bk)K“ in each of the subsets. The
triplet of observation partitio@} . , ,, covariate partitiond\, . , ;, and set of hyperplangay, Bk) iy
defines the modemgkz. Thisisdonefok=1,...,K, j=1,...,pand/=1,...,L. After all models
are generated, st=K + 1.

We note that any models where miﬁl’(\ < hmin are discarded. If all models are discarded in
one subset/dimension pair, we produce a model by splitting on the subsetriretfiat dimension.

3.3 Split Selection

Jk/

We select the modél’y, that gives the smallegiobal error. Let(aijké i

associated witi,, and let

)K ; be the hyperplanes

5 ke | k(T
fIki(x) = Ie{nfaﬁ}a‘ +B

be its estimator. We set the modék to be the one that minimizes global mean squared error,

MK:{ ike = (1, k€)= argjmmr::.i@i_fAjkE(Xi)>2}.

Setf to be the minimal estimator. We note thak may not be unique, however this seldom occurs
in practice.
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3.4 Refitting

We refit by using the partition induced by the hyperplanes. (betk,B1x) be the hyperplanes
associated witiMy . Refit the partitions by

Cio= {Xi s o+ BExi > o+ B xi, ] #K}

for k=1,...,K. The covariate partitiond;.« is defined in a similar manner. Fit hyperplanes in
each of those subsets. LM be the model generated by the partit©®p...,C;. SetMx = My if
ICi.| > Nmin for all k.

3.5 Stopping Criteria

Stopping criteria are similar to those in tree-based models (Nobel, 1998fi@yal., 2002). That
is, the model stops when there are not enough observations within dasdt s leaf to generate
any further candidate splits,

ICk| < 2Nmin

for k=1,...,K. After fitting to termination the final model size, however, is chosen through a
pruning method discussed Section 5.

3.6 Tunable Parameters

CAP has two tunable parametetsandnpmin. L specifies the number of knots used when generating
candidate models for a split. Its value is tied to the smoothnedg ahd after a certain value,
usually 5 to 10 for most functions, higher valued afffer little fitting gain.

We choose a minimal subset sizgy,, that admits at mosD(log(n))subsets. A paramet&
is used to specify a minimum subset sing;, = n/(Dlog(n)). HereD transforms the base of the
logarithm frome into exp(1/D). We have found thdD = 3 (implying basex 1.4) is a good choice
for most problems.

Increases in either of these parameters increase the computational tinstivlBemo these
parameters, both in terms of predictive error and computational time, is entigiegamined in
Appendix B.

3.7 Computational Efficiency

Each round of CAP requireS(dKL) regressions to be fit for model proposal. Since observations
are moved from one side of a threshold to another within each leaf, aieefficethod is to maintain
and update parameters and the sum of squares and cross producteadtfnieaf. Alternately, a
QRdecomposition may be maintained and updated for each leaf (Alexanderiansh@w, 1996).
Unlike treed linear models, all linear models need to be refit for each rouGA.

4. Consistency

Consistency for CAP can be shown in a related manner to consistendhévraolaptive partitioning
models, like CART (Breiman et al., 1984), treed linear models (Chaudhuli, €t994) and other
variants (Nobel, 1996; Gyrfi et al., 2002). We take a two-step approach, first showing consisten
for the mean function and first derivatives of a more traditional treed limesattel based on CAP
under thel, metric and then we use that to show consistency for the CAP estimator itself.
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Letting M;, be the model for the CAP estimate aftepobservations, define the discontinuous
piecewise linear estimate basedMp,

Kn
0= (0t BEX) Lxeay-
K=1
whereK, is the partition sized, ..., Ak, are the covariate partitions aidy, Bk)ﬁl are the hyper-
planes associated witil;:. Let f,(x) be the CAP estimator based bfy,
faX)= max ox+prx.
n( ) ke{1,....Kn} k+[3k
Each subsefy has an associated diametéyy = sup,, y,ca, ||X1 — X2||2. Define the empirical co-
variate mean for subsktasx, = ﬁ Yiec Xi- Forx; € A, define

L,....1] ] ;
! [ Ao (6 — X&) g

Note that(ay, Bk) = Glzl Yiec, [iYi wheneveiGy is nonsingular.
Letxy,...,X, be ii.d. random variables. We make the following assumptions:

Al. X is compact andy is Lipschitz continuous and continuously differentiable)omvith Lips-
chitz parametet.

A2. There is ara > 0 such thaft [e?Y~"oX/| X = x| is bounded onX.

A3. Let Ak be the smallest eigenvalue mk\*le andA, = mingAx. ThenA, remains bounded
away from 0 in probability ag — co.

A4. The diameter of the partition m@d;kl — 0 in probability ash — oo,

A5. The number of observations in each subset satisfieg-mink, |Cc| > d..}v/nlog(n) in prob-
ability asn — oo,

AssumptionsAl. andA2. place regularity conditions offiy and the noise distribution, re-
spectively. Assumptio®A3. is a regularity condition on the covariate distribution to ensure the
uniqueness of the linear estimates. Assump#idnis a condition that can be included in the algo-
rithm and checked along with the subset cardinaliy]. If X is given, it can be computed directly,
otherwise it can be approximated usifig : i € C¢}. AssumptiorA5. ensures that there are enough
observations in the terminal nodes to fit the linear models.

To show consistency df, under the/., metric, we first show consistency §f and its derivatives
under thel, metric in Theorem 1. This is similar to Theorem 1 of Chaudhuri et al. (1984)yd¢ed
linear models, although we need to modify it to allow partitions with an arbitrarilyelatgmber of
faces.

Theorem 1 Suppose that assumptioA4. throughA5. hold. Then,

max sup|a+Brx— fo(x)| — O, ax sup||Bxk— Ofo(X)||, — O
k:l,...,KnXEAk k:l,...,KnxeAk

in probability as n— oo,
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The CAP algorithm is similar to the SUPPORT algorithm of Chaudhuri et al.413cept the
refitting step of CAP allows partition subsets to be polyhedra with ug.téaces. Theorem 1 is
analogous to Theorem 1 of Chaudhuri et al. (1994); to prove ourghgonve modify parts of the
proof in Chaudhuri et al. (1994) that rely on a fixed number of polyalddces. The proof is given
in Appendix A.

Using the results from Theorem 1, extension to consistency,fander the/., metric is fairly
simple; this is given in Theorem 2.

Theorem 2 Suppose that assumptioAs. throughA5. hold. Then,

sup| fn(x) — fo(x)| — 0

xeX

in probability as n— co.

The proof follows immediately from Theorem 1 and some algebra. Detailsiaea m the Ap-
pendix A.

5. Generalized Cross-Validation

The terminal model produced by CAP can overfit the data. As a fasbaippation to leave-one-out
cross-validation, we use generalized cross-validation (GCV) (Golah,et979; Friedman, 1991)
to select the best model from all of those produced by AE....,Mk. A given modelM is
generated by a collection & linear models. In linear regression, GCV relies on the following
approximation

n n _ AN\ 2 n - AN 2
i_zl(Yi —fi(x)? = iz (yll_f?ji(l)> ~ ;ZI (32_-::(:_(;)) : (4)
= = i = (H)

whereH; is theith diagonal element of the hat matriX(XTX)~1XT, f_; is the estimator condi-
tioned on all of the data minus elemeantWe note that TiH) is sometimes approximated by the
degrees of freedom divided by the number of observations.

The modelMy is defined byC,,...,Ck, the partition, and the hyperplanesk,Bk)E:l, which

were generated by the partition. L@if;”,ﬁf;i))ﬁzl be the collection of hyperplanes generated
when observationis removed; notice that ife Cy, only (o, k) changes. Lef_jx be the estimator
for modelMg with observation removed. Using the derivation in Equation (4),

ke{1,....K}

2
. 10 [ Yi—0Oki)— Bl(i)xi
== T

NS\ 1- Hn(')l{ieckm}

1 Yi—ak(i)_BI(i)Xi 2 -
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Figure 3: Log-continuous plots for number of observations vs. K (tBfSE (middle), and run-
time in seconds (bottom) for GCV, 5-fold and 10-fold cross validation, plusismone
standard error. Data were generated from 10 i.i.d. training sets xvithNs(0,1),
y= (X1 +.5%+%3)? — x4+ .25 + ¢, ande ~ N(0, 1).

where, in a slight abuse of notatidH-,'i‘ is the diagonal entry of the hat matrix for subketorre-
sponding to elemert and

m ok + By Xi
ke{L...K} 1= Tr(H")1hccy

k(i) =arg
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To selectK, we find theK that minimizes the right hand side of Equation (5). Although more
computationally intensive than GCV in linear models, the computational complexiGA® GCV
is similar to that of the CAP split selection step.

We empirically compared GCV selection léfwith 5- and 10-fold cross validation selection of
K. GCV tends to select a small&r than full cross validation, particularly on smaller problems.
Predictive results, however, are comparable for moderate to largepraizes § > 5,000) while
the runtime of GCV is orders of magnitude less than 5- and 10-fold crossatialid We should
expect more discrepancy between cross-validation and GCV on smalldeprs because GCV
relies on an asymptotic approximation. In these cases, full cross validafiection ofK may be
worthwhile. Representative results are given in Figure 3.

We can use generalized cross-validation to create a more efficient siapienfor CAP. We
note that GCV scores are often unimodakin Instead of fully growing the tree, we stop splitting
after the score has increased twice in a row. The resulting algorithm is E@tdCAP; details are
given in Appendix B.

6. Empirical Analysis

We compare shape constrained and unconstrained regression meathmsisaset of convex re-
gression problems: two synthetic regression problems, predicting medtywesges and value
function approximation for pricing basket options.

6.1 Synthetic Regression Problems

We apply CAP to two synthetic regression problems to demonstrate predietif@mpance and
analyze sensitivity to tunable parameters. The first problem has a mitiva@dtructure, high levels
of covariate interaction and moderate noise, while the second has a sim@eatsi structure em-
bedded in a higher dimensional space and low noise. Low noise or neeprivblems often occur
when a highly complicated convex function needs to be approximated by a siomgléMagnani

and Boyd, 2009).

6.1.1 ARROBLEM 1

Herex € R®. Set
y = (Xg+.5%2+X3)? — X4+ .25 + €,

wheree ~ N(0,1). The covariates are drawn from a 5 dimensional standard Gaussiabutistr,
Ns(0,1).
6.1.2 FROBLEM 2

Herex € R1. Set
y=exp(x'q) +¢,
whereq was randomly drawn from a Dirichlet(1,,1) distribution,

q = (0.06800.01600.1707,0.1513 0.1790 0.2097,0.0548 0.0337,0.0377,0.0791) .

We sete ~ N(0,0.1%). The covariates are drawn from a 10 dimensional standard Gausdid@oudis
tion, N1o(0, 1).
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6.1.3 RREDICTIVE PERFORMANCE ANDRUNTIMES

We compared the performance of CAP and Fast CAP to other regressibndaen problems 1 and
2. We implemented the following shape constrained algorithms: the least sqagression (LSE)
usingcvx (Grant and Boyd, 2012, 2008), and the linear refitting algorithm of Magand Boyd
(2009). The general methods included Gaussian processes (RasmaunssWilliams, 2006) using
gpml in Matlab, tree regression with constant values in the leaves akisggegtree  in Matlab,
multivariate adaptive regression splines (MARS) (Friedman, 1991) ugt&§lab in Matlab, and
support vector machines (SVMs) using #1871 package irR.

For CAP and Fast CAP, we set the parameter® te 3 andL = 10; the sensitivity to these
parameters is examined in Appendix C. The paramiétaras chosen by GCV for CAP. In Fast
CAP, the number of random search directions was set fp-benin(d, 10). All methods were given
a maximum runtime of 90 minutes, after which the results were discarded. Metter@ run on
10 random training sets and tested on the same testing set of 10,000 raovbmates. Average
runtimes and predictive performance are shown in Figure 4.

Non-convex regression methods performed poorly compared to sesipeted methods, par-
ticularly in the higher noise setting. Amongst the shape restricted methods, éilya@d Fast
CAP had consistently low predictive error. The method of Magnani andl B2009) can become
unstable, which is seen in problem 1. Surprisingly, the LSE had high piredarror. This can be
attributed to overfitting, particularly in the boundary regions. A demonstrasi@iven in Figure
5. Although CAP and Fast CAP had similar predictive performance, theiimnes often differed
by an order of magnitude with the largest differences on the biggeskepnatizes. Based on this
performance, we would suggest using Fast CAP on larger problems.

We note that the empirical rate of convergence for CAP and Fast CAP is faster than would
be predicted by minimax convergence rates. The results, howeverpasestent with rates that
adapt to an underlying linear subspace; this is examined in Appendix D.

6.1.4 CAPAND TREEDLINEAR MODELS

Treed linear models are a popular method for regression and classificatiay can be easily
modified to produce a convex regression estimator by taking the maximum eviéndhr leaves.
CAP differs from existing treed linear models in how the partition is refinedst,Faubset splits
are selected based on global reduction of error. Second, the partitiefit iafter a split is made.
To investigate the contributions of each step, we compare to treed linear ngetelsated by: 1)
local error reduction as an objective for split selection and no refittipgldbal error reduction as
an obijective function for split selection and no refitting, and 3) localregduction as an objective
for split selection along with refitting. All estimators based on treed linear medelgenerated by
taking the maximum over the set of linear models in the leaves. We compared-theraace of

these methods on problems 1 and 2 over 10 different training sets andeatssting set. Average
predictive error is displayed in Figure 6.

Global split selection and refitting are both beneficial, but in differentsvdefitting dramat-
ically reduces predictive error, but can add variance to the estimatoisy settings. Global split
selection modestly reduces predictive error but can reduce variamogsiy settings, like problem
1. The combination of the two produces CAP, which has both low variandéhigh predictive
accuracy.
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10%
10" 7 %
10°
107"
1072
107
107

107 1 o

1072

102 10%° 102 10%%  10* 10*® 10°102 1025 10°  10%%  10* 10*® 10°

Number of Observations

Algorithm
—-6-| CAP -+- Fast CAP %- GP MARS -4 CART LSE -¥° Magnani and Boyd SVM

Figure 4: Mean squared error (top) and runtime in seconds (bottom) plus'mire standard error
on problem 1 (left) and problem 2 (right) for CAP, Fast CAP, Gaussiaogsses, MARS,
CART, the least squares estimator, the linear fitting method of Magnani ayul(B609)
and support vector machines.

6.2 Predicting Weekly Wages

We use shape restricted methods to predict mean weekly wages basear®ofyeducation and
experience. The data are from the 1988 Current Population Suris)(Ehey originally appeared
in Bierens and Ginther (2001) and can be accessen1829 in the Sleuth2 package irR. The
data set contains 25,361 records of weekly wages for full-time, adult, naalevs for 1987, along
with years experience, years of education, race (either back or wbitghers were included in the
sample), region, and whether the last job held was part time.

A reasonable assumption for wages is that they are concave in yearseexe. Each year pre-
viously worked should have decreasing returns for average watjigpeak earnings are reached,
with modest declines afterwards. Indeed, this pattern is seen in Figurer wd compare aver-
age weekly wages against experience. Wages can also be expectedtésénbased on education
level, but not in a concave or convex fashion. However, concavitybeagenerated with an expo-
nential transformation of education; this is shown in Figure 7. We therefed a transformation,
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CAP Least Squares Estimator

Figure 5: (A) The CAP estimator, and (B) the LSE fit to 500 observatioawafromy = x2 +
X3 + €, whereg ~ N(0,0.25%). The covariates were drawn from a 2 dimensional uniform
distribution, Unif—1,1]2. The LSE was truncated at predicted values of 2.5 for display,
although some predicted values reached as high as 4,8001o1]?.
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Figure 6: Number of observations (log scale) vs. mean squared &gosdale) plus/minus one

standard error for CAP and treed linear models with local split selectionneitkfitting;
local split selection, with refitting; and global split selection, with no refitting.
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Figure 8: Root mean squared error (RMSE), left, and runtime in secdgts for CAP, Fast CAP,
CART, MARS, and SVMs for predicting weekly wages based on yegper@ance and
years education.

1.2vears educationgg g covariate. Shape restrictions do not hold with any other covasattsey are
discarded.

We implemented CAP, fast CAP, the linear model of Magnani and Boyd (20¥RT, MARS,
and SVMs. Due to the problem size, we did not use Gaussian procestesleast squares esti-
mator. We estimated RMSE through 10-fold cross validation. Results and rgrgiraeshown in
Figure 8 for all methods except Magnani and Boyd (2009). This hatl&Rof 10,156, orders of
magnitude larger than other methods, and was hence omitted from the figures.
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Method RMSE Time
CAP 38574208 128+0.8
Fast CAP 3857420.8 1.9+02
CART 4896+26.1 2.64+0.2
MARS 3858420.7 1504+128
Magnani and Boyd (2009) 101560497652 8.0+0.7
SVM 38894 20.7 729+16

Table 1: Average RMSE and runtime in seconds, plus/minus one standartbeiCAP, Fast CAP,
CART, MARS, Magnani and Boyd (2009) and SVMs.

This data set presents difficulties for many methods due to its Bize0,000) and highly
skewed distribution. CAP, Fast CAP, MARS and SVMs all had comparaleldiqiive error rates,
while CART produced error rates about 27% higher. The linear fitting ndettidviagnani and
Boyd (2009) occasionally tried to fit outliers with hyperplanes, resultindgpouaa 2,500% increase
in predictive error. This potential instability is one of the largest drawbaeith the method of
Magnani and Boyd (2009). In terms of runtimes, Fast CAP and CAP hatesignificantly faster
than any methods that produced comparable results, with runtime redudtimonsesthan 80% over
SVMs.

In Figure 9, we compare the predicted functions produced by CAP amdsS\h areas with
small amounts of data, such for people with low education, the SVM prodese#s that do not
match prior information. In the SVM surface, someone with 0 years of éxpes and 0 years of
education is predicted to have about a 150% larger weekly wage than adhigbl graduate with O
years of experience and about the same weekly wage as someone widaaebllege degree and
0 years of experience. By imposing shape constraints, CAP eliminatesypeseof problems and
produces a surface that conforms to prior knowledge.

Unlike the surface produced by SVM regression, the surface peadoyg CAP is not smooth. A
greater degree of smoothness can be added through ensemble methioaigdikg (Breiman, 1996)
and smearing (Breiman, 2000). Averaging randomized convex estimatmiages a new convex
estimator; these methods have been explored for approximating objectateofis in Hannah and
Dunson (2012). A surface produced by smearing CAP is shown origiieim Figure 9. Note that
its overall shape is quite similar to the original CAP estimator while most of the staps have
been smoothed away.

6.3 Pricing Stock Options

In sequential decision problems, a decision maker takes an action basedmwently observed state
of the world based on the current rewards of that action and possiboie ftewards. Approximate
dynamic programming is a modeling method for such problems based on apptiogimsaalue-to-
go function. Value-to-go functions, or simply “value functions,” give tadue for each state of the
world if all optimal decisions are made subsequently.

Often value functions are known to be convex or concave in the statdlgrihis is common
in options pricing, portfolio optimization and logistics problems. In some situatgrd) as when
a linear program is solved each time period to determine an action, a conuexfuactionis
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Figure 9: Mean weekly wage based on years of experience andgfeaisication (top left), pre-
dicted values using SVM regression (top right), CAP (bottom left), and ssde@AP
(bottom right).

requiredfor computational tractability. Convex regression holds great promisealae function
approximation in these problems.

To give a simple example for value function approximation, we consider griéimerican
basket options on the averageMfunderlying assets. Options give the holder the right—but not
the obligation—to buy the underlying asset, in this case the averaleindlividual assets, for a
predetermined strike pricB. In an American option, this can be done at any time between the
issue date and the maturity dale, However, American options are notoriously difficult to price,
particularly when the underlying asset base is large.

A popular method for pricing American options uses approximate dynamicgroging where
continuation values are approximated via regression (Carriere, 1886iKlis and Van Roy, 1999,
2001; Longstaff and Schwartz, 2001). We summarize these methodaesfasee Glasserman
(2004) for a more thorough treatment. The underlying assets are assuma¢ee the sample path
{X1,.... X7}, whereX = {S(t),...,Su(t)} is the set of securities at tinte At each timet, a
continuation value functionV;(X;), is estimated by regressing a value function for the next time
period, Vi+1(X1), on the current state. The continuation value is the value of holding the

option rather than exercising given the current state of the assets.alteefunction is defined to
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be the max of the current exercise value and the continuation value. Opt®egercised when the
current exercise value is greater than or equal to the continuation value.

The procedure to estimate the continuation values is as follows (as summar@&sgerman
2004):

0. Define basket payoff function,

1
M

Mz

h(X) = max{ S(t) — R,O}.

k=1

1. SampleN independent path§Xyj,..., X7}, j=1,...,N.
2. AttimeT, setVr (X7{) = h(Xt}).
3. Apply backwards induction: far=T —1,...,1,

e given {\7t+1(><(+1j)}5-\|:1, regress on{)(tj}'j\':l to get continuation value estimates
{G Xy
e set value function, _ _
Ve(%;) = max{h(X;),Ci(%;)} -

We use the value function defined by Tsitsiklis and Van Roy (1999).

The regression values are used to create a policy that is implemented orsatteskercise
when the current exercise value is greater than or equal to the estimatadiation value. A good
regression model is crucial to creating a good policy.

In previous Iiterature{Ct(th)}’j\‘:1 has been estimated by regression splines for a single under-
lying asset (Carriere, 1996), or least squares linear regressiarsenof basis functions (Tsitsiklis
and Van Roy, 1999; Longstaff and Schwartz, 2001; Glassermad,) 28@gression on a set of ba-
sis functions becomes problematic whén is defined over moderate to high dimensional spaces.
Well-defined sets of bases such as radial basis functions and polynaagaise an exponential
number of functions to span the space, while manually selecting basis functiarbe quite diffi-
cult. Since the expected continuation values are convex in the assetqurimsket options, CAP is
a simple, nonparametric alternative to these methods.

We compared the following methods: CAP and Fast CAP Witk 3, L = 10 for both and
P’ =min(M, 10), the number of random search directions in Fast CAP; the method of Meama
Boyd (2009); regression trees with constant leaves using the Matlabdoclassregtree  ; least
squares using the polynomial basis functions

(LSO, S0, S 1), SOS(t),h(), i =1,...,M, j#i;

ridge regression on the same basis functions with ridge parameter chyol@yidild cross-validation
each time period from values betweerri@nd 18.

We compared value function regression methods as follows. We simulatedtfdd = 10,000
andN = 50,000 training samples for a 3-month American basket option with a number eflynd
ing assetsM, varying between 1 and 30 using a geometric Brownian motion with a drift 6f&nd
a volatility of 0.10. All assets had correlation 0.5 and starting value 100. ptieohad strike price
110. Policy values were approximated on 50,000 testing sample paths. Aaxepate upper bound
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was generated using the dual martingale methods of Haugh and Kogat) {299 value functions
generated using polynomial basis functions based on the mean of the &3¢132,Y;3,h(Y)),
whereY; = 1/M zi'\"zlxi(t), with 2,000 samples. Upper and lower bounds were generated using 5
training and testing sets.

Results are displayed in Figure 10. We found that CAP and Fast CAPstgtecof the art per-
formance without the difficulties associated with linear functions, such @ssig basis functions
and regularization parameters. We observed a decline in the performalezestosquares as the
number of assets grew due to overfitting. Ridge regularization greatly iragribwe least squares
performance as the number of assets grew. Tree regression did poatlysettings, likely due
to overfitting in the presence of the non-symmetric error distribution genklgtehe geometric
Brownian motion. These results suggest that CAP is robust even in lesgldw conditions, such
as when data have heteroscedastic, non-symmetric error distributions.

Again, we noticed that while the performances of CAP and Fast CAP wenparable, the
runtimes were about an order of magnitude different. On the larger pnsbleuntimes for Fast
CAP were similar to those for unregularized least squares. This is likelgulsecthe number of
covariates in the least squares regression grewMikewnhile all linear regressions in CAP only had
M covariates.

7. Conclusions

In this article, we presented convex adaptive partitioning, a computatioriadiest, theoretically
sound and empirically robust method for regression subject to a conexistraint. CAP is the
first convex regression method to scale to large problems, both in terms afglone and number
of observations. As such, we believe that it can allow the study of prokleshsvere once thought
to be computationally intractable. These include econometrics problems, like tsgirm@ansumer
preference or production functions in multiple dimensions, approximating lexrapnstraint func-
tions for convex optimization, or creating convex value-to-go functionsesponse surfaces that
can be easily searched in stochastic optimization.

CAP can be extended in a number of ways. First, as demonstrated in Handabunson
(2012), CAP can be used in an ensemble setting—like bagging or smearimpgeditce a smoother
estimator. Averages of piecewise linear estimators are particularly useflaptimization setting.
They are still piecewise linear and can be searched by a linear proguaime more stable min-
imum locations than sparse methods like CAP and the linear fitting method of Magméuioyd
(2009). Second, CAP can be extended to more shape constrainedssditemgronotone, concave
and semi-convex functions. Monotone, concave functions are cerfoactions with increasing
slopes, which are common in economics. Although CAP is not a generalgrighape constrained
inference method, a variant for monotone functions can easily be deddrg placing positivity
constraints on the parameters of the linear models. Semi-convex functem®mrex in some
dimensions but unconstrained in others. Variants of CAP could be combiitiedther nonpara-
metric methods like kernels to produce efficient inference methods for Ipadiavex functions.
We believe that the methods supporting the CAP algorithm can bring efficiewttically sound
inference to a variety of shape constrained problems that are inappiaavith traditional meth-
ods.
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8. Online Supplements

Code for CAP can be downloadecdhitp://www.columbia.edu/ ~lah2178/Research.html and
as an online supplement at the JIMLR website.
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Appendix A.

The proof of Theorem 1 is essentially identical to the proof of Theoreni Chaudhuri et al.
(1994) with a few modifications. The Chaudhuri et al. (1994) result$oar@n algorithm that splits
subsections parallel to axes. By allowing subsets to be determined by theatiogpimyperplanes,
the subsets are now polyhedral with a maximal number of faces determirtad dimension and
maximal number of subsets. To show this, we modify Lemma 12.27 of Breiman(&98#4).

Proof [Proof of Theorem 1] It is sufficient to show that

max dyd o, B]' — A(Xk)| — 0

in probability, whereA(X) is the vector of elemento(X, dy,' 3% fo(Xk), - ..,dn‘klﬁfo()?k)]t. Let
ack’ = Ok — }(Zk. AssumptionA3. ensures that the matricEg for all subsets are nonsingular with
probability tending to 1, wherBy = ¥, ¢, I'iF}. LettingY; = fo(Xi) + &, we have

[ap,B' =Dyt ; Fifo(xi) + Dt quiﬁi (6)

fork=1,...,K, with probability tending towards 1. Doing a Taylor expansion of Equatioywe)
get

o, B —AX) =Dt § Tir(xi —x) + Dty T,

i€ i€

wherer (x; — X) are the second order and above terms of the Taylor expansify®dRj. Assump-
tionsAl., A3. andA4. ensure max.y,. k, |dyiDi * Sie, Tif (Xi — Xi) | — 0 in probability ag — co.
To bound the random error term of Equation (6), we first assumehiatfixed. Applying Lemma
12.26 of Breiman et al. (1984) to each componener(ﬂCk]*zieck Iig;, there exist constants
h; > 0, h, > 0 andyp > 0 such that

P (dn‘kl

whenevely < yo. Modifying Lemma 12.27 of Breiman et al. (1984) to account for the greater
dimension of the subsets, we n@&B. bounds the number of polyhedral faces for each subset to be

IC TS T

ie

> v) < hye MGy (7)
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Kn(p+2). Following the proof of 12.27, fom, such thaim,/log(n) — o, we use Equation (7) to
show

P (|[of, Bt — AXe)| > ylxan) < hye ¥ nddG/n,
S h1e7h2v2n’h IOQ(n)

— h1n7h2y2mn
on the event?,|C|/n > mylog(n) /n. Using the VC dimension of the partition,

P (| o, Bl* — A(xk) >yfor eachA andd3,|Cy| > m,Dlog(n))

SinceAb. ensures thah, — o, the result holds.
|

Proof [Proof of Theorem 2] Fix > 0O; letdy be the diameter ak. ChooseN such that for every
n>N

e, sl -t > 5 f <02

P{k—T?Tane‘{A‘E"Bk_Df"(x)”‘” Zdx }“/2

Fix a d net overX such that at least one point of the net sit®\ifor eachk = 1,...,K. Letng be
the number of points in the net and }étbe a point. Then,
> s} ,

P {sup| fa(X) — fo(x)| > e} {sup
xeX xex |k

max ak+Brx — fo(x)

----- Kn

€
<2 { max | max o B0 )| > £,
< T,0 5 €
=P |:Ta)§15 kzl (O(k—l—ﬁkxi ) Ligeag — fox)| > [
<E.

Appendix B.

The CAP algorithm offers two main computational bottlenecks. First, it searoter all cardinal
directions, and only cardinal directions, to produce candidate modeten8git keeps generating
models until no subsets can be split without one having less than the minimum mohofiserva-
tions. In most cases, the optimal number of components is much lower thanrttiesienumber of
components.
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To alleviate the first problem, we suggest usPigrandom projections as a basis for search.
Using ideas similar to compressive sensing, each projegtienNy (0, |) for j =1,...,P". Then we
search along the directiag] x rather thanx;. When we expect the true function to live in a lower
dimensional space, as is the case with superfluous covariates, we Par.ge

We solve the second problem by modifying the stopping rule. Instead ofdtihying the tree
until each subset has less thary 2log(n)) observations, we use generalized cross-validation. We
grow the tree until the generalized cross-validation value has increatgd aonsecutive iterations
or each subset has less thar/ @2 log(n)) observations. As the generalized cross-validation error is
usually concave ik, this heuristic often offers a good fit at a fraction of the computationades@
of the full CAP algorithm.

The Fast CAP algorithm has the potential to substantially reduce tlie)fofgctor by halting
the model generation long befakereache®log(n). Since every feasible partition is searched for
splitting, the computational complexity growslagets larger.

The Fast CAP algorithm is summarized as follows.

B.1 Fast Convex Adaptive Partitioning (Fast CAP)
1. Initialize. As in CAP.

2. Split.

a. Generate candidate split<Generate candidate mOdaljkg by 1) fixing a subsek, 2)
generating a random directigrwith g; ~ Np(0, 1), and 3) dividing the data as follows:

i SEthrll(in = min{g[x; :i € G}, Xinax = max{g]x; : i € Cx} andbjx, = a4 (1—
a£>X|J”ri?ax
e set
Ci={i:i €Ck g]Xi < bje}, Cky1={i1i €Cx g} % > by},
A= {x1x e AGOIx <bj}, A ={X:x €A, g] x> bj}.
Then new hyperplanes are fit to each of the new subsets. This is dobheifots, P’
dimensions an& subsets.
b. Select splitAs in CAP.

3. Refit. Asin CAP.

4. Stopping conditions.Let GCV(Mk ) be the generalized cross-validation error for mddgl
Stop if GCV(Mk) > GCV(Mk-1) and GCV(Mk_1) > GCV(Mk_2) of if |Cx| < 2nmn for
k=1,...,K. Then select final model as in CAP.

Appendix C.

In this subsection, we empirically examine the effects of the two tunable parantbeslog factor,

D, and the number of knots,. The log factor controls the minimal number of elements in each
subset by settin¢Cyx| > n/(Dlog(n)), and hence it controls the number of subsktsat least for
large enoughn. IncreasingD allows the potential accuracy of the estimator to increase, but at the
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Figure 11: Log factoD (log scale) vs. mean squared error (log scale) for CAP and Fast ©AP (
Log factorD (log scale) vs. runtime in seconds (log scale) (bottom). Both methods were
run on problem 1 (left) and problem 2 (right) with= 500 andn = 5,000. Lines are
mean value and shading represents one standard error.

cost of greater computational time due to the increase in possible valu€sifat the larger number
of possibly admissible sets generated in the splitting step of CAP.

We compared values fd ranging from 01 to 20 on problems 1 and 2 with sample sizes of
n =500 andn = 5,000 over 100 training sets and one testing set. Results are displayed ie Figur
11. Note that error may not be strictly decreasing vibtibecause different subsets are proposed
under each value. Additionally, Fast CAP is a randomized algorithm sonearia error rate and
runtime is to be expected.

Empirically, onceD > 1, there was little substantive error reduction in the models, but the
runtime increased a9(D?) for the full CAP algorithm. Sinc® controls the maximum partition
size,K, =Dlog(n), and a linear regression is Ktlog(K) times, the expected increase in the runtime
should only beO(Dlog(D)). We believe that the extra empirical growth comes from an increased
number of feasible candidate splits. In the Fast CAP algorithm, which termiatiezgeneralized
cross-validation gains cease to be made, we see runtimes leveling off widr kigjhes oD. Based
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Figure 12: Number of knots (log scale) vs. mean squared error (log scale) for CAP and Fast CAP
(top). Number of knot&. (log scale) vs. runtime in seconds (log scale) (bottom). Both
methods were run on problem 1 (left) and problem 2 (right) with500 andh = 5, 000.
Lines are mean value and shading represents one standard error.

on these results, we believe that settihg- 3 offers a good balance between fit and computational
expense.

The number of knotsl., determines how many possible subsets will be examined during the
splitting step. LikeD, an increase it offers a better fit at the expense of increased computation.
We compared values far ranging from 1 to 50 on problems 1 and 2 with sample sizas-6/600
andn = 5,000 over 100 training sets and 1 testing set. Results are displayed in Figure 12

The changes in fit and runtime are less dramatic Wwithan they are wittb. After L = 3, the
predictive error rates almost completely stabilized. Runtime increas@dlasas expected. Due to
the minimal increase in computation, we feel that 10 is a good choice for most settings.
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Figure 13: Number of observationglog scale) vs. square root of mean squared error (log scale)
for problem 1 (A) and problem 2 (B). Linear models are fit to find the emglinate of
convergence.

Appendix D.

Although theoretical rates of convergence are not yet available fét, @& are able to empirically
examine them. Rates of convergence for multivariate convex regresai@nadmly been studied
in two articles of which we are aware. Aguilera et al. (2011) studied rdtesrvergence for an
estimator that is created by first smoothing the data, then evaluating the smdatheder ais-net,

and finally convexifying the net of smoothed data by taking the convex hby Bhowed that the
convexify step preserved the rates of the smoothing step. For most sngpalipmithms, these are

minimax nonparametric ratesjﬁ with respect to the empiricdh norm.

Hannah and Dunson (2011) showed adaptive rates for a Bayesiamhtmaid@aces a prior over
the set of all piecewise linear functions. Specifically, they showed thag ifrtte mean functiorfiy
actually maps @-dimensional linear subspace &fto R, that is

fo(X) = go(XA), A € RPX4,

then their model achieves rates ofT&gn)n‘le with respect to the empiricéy norm. Empirically,
we see these types of adaptive rates with CAP.

In Figure 13, we plotted the number of observations against the squaref the mean squared
error in a log-log plot for problems 1 and 2. We then fitted a linear model fur BAP and Fast
CAP. For problem 1p =5 butd = 3, due to the sum in the quadratic term. Likewise, for problem 2,
p= 10 butd = 1 because it is an exponential of a linear combination. Under standapdraonetric
rates, we would expect the slope of the linear model t&%e‘or problem 1 and—li2 for problem
2. However, we see slopes cIoseHé and—% for problems 1 and 2, respectively; values are given
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Method Problem 1| Problem 2
Expected: Ratesip | —0.1429 | —0.0833
Expected: Ratesid | —0.2000 | —0.3333
Empirical: CAP —0.2003 | —0.2919
Empirical: Fast CAP| —0.2234 | —0.2969

Table 2: Slopes for linear models fit to Iog vs. log+MSE) in Figure 13. Expected slopes
are given when: 1) rates are with respect to full dimensionghityand 2) rates are with
respect to dimensionality of linear subspage Empirical slopes are fit to mean squared
error generated by CAP and Fast CAP. Note that all empirical slopedaaest to those
for linear subspace rates rather than those for full dimensionality rates.

in Table 2. These results strongly imply that CAP achieves adaptive genez rates of the type
shown by Hannah and Dunson (2011) for problems 1 and 2.
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