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Abstract

Principal curves and manifolds provide a framework to formulate manifold learning within a sta-

tistical context. Principal curves define the notion of a curve passing through the middle of a distri-

bution. While the intuition is clear, the formal definition leads to some technical and practical dif-

ficulties. In particular, principal curves are saddle points of the mean-squared projection distance,

which poses severe challenges for estimation and model selection. This paper demonstrates that

the difficulties in model selection associated with the saddle point property of principal curves are

intrinsically tied to the minimization of the mean-squared projection distance. We introduce a new

objective function, facilitated through a modification of the principal curve estimation approach,

for which all critical points are principal curves and minima. Thus, the new formulation removes

the fundamental issue for model selection in principal curve estimation. A gradient-descent-based

estimator demonstrates the effectiveness of the new formulation for controlling model complexity

on numerical experiments with synthetic and real data.

Keywords: principal curve, manifold estimation, unsupervised learning, model complexity, model

selection

1. Introduction

Manifold learning is emerging as an important tool in many data analysis applications. In mani-

fold learning, the assumption is that a given sample is drawn from a low-dimensional manifold

embedded in a higher dimensional space, possibly corrupted by noise. However, the manifold is

typically unknown and only observations from the ambient high-dimensional space are available.

Manifold learning refers to the task of uncovering the low-dimensional manifold given the high-

dimensional observations. Recent work in the machine learning community, such as Laplacian

eigenmaps (Belkin and Niyogi, 2003), isomap (Tenenbaum et al., 2000), and locally linear embed-

ding (Roweis and Saul, 2000) build directly on the manifold assumption and typically formulate

the manifold estimation in terms of a graph embedding problem. The focus of these methods is to

recover a low-dimensional description without modeling the manifold.

Hastie and Stuetzle (1989), motivated by the statistical properties of principal component anal-

ysis, introduced the notion of a principal curve passing through the middle of a distribution. The

principal curve formulation casts manifold learning as a statistical fitting problem. Several ap-
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proaches that fit a manifold model, such as autoencoder neural networks (Hinton and Salakhutdi-

nov, 2006), self-organizing maps (Kohonen, 1988) and unsupervised kernel regression (Meinicke

et al., 2005), can be implicitly or explicitly related to the principal curve formulation. The principal

curve approach to manifold learning can be advantageous over alternatives that exclusively estimate

descriptive parameters. For instance, the expected distance of the data to the manifold provides a

quantitative measure of the geometric fit to the data. Additionally, the formulation provides a con-

sistent approach to project and reconstruct unseen data points which can be important in practical

applications.

While several methods have been proposed to estimate principal curves, a systematic approach

to model selection remains an open question. To facilitate the discussion, recall the formal definition

of principal curves. Let Y be a random variable with a smooth density p such that the support

Ω = {y : p(y)> 0} is a compact, connected region with a smooth boundary.

Definition 1 (Principal Curve, Hastie and Stuetzle, 1989) Let g : Λ→Rn, Λ⊂R and λg : Ω→Λ

with projection index λg(y) = maxs{s : ‖y−g(s)‖= infs̃‖y−g(s̃)‖}. The principal curves of Y are

the set G of smooth functions g that fulfill the self consistency property E[Y |λg(Y ) = s] = g(s).

Hastie and Stuetzle (1989) showed that principal curves are critical points of the expected projection

distance d(g,Y )2 = E[‖g(λg(Y ))−Y‖2], that is, for g a principal curve the (Fréchet) derivative of

d(g,Y )2 with respect to g is zero. Estimators for principal curves typically minimizes d(g,Y )2

directly over a suitable representation of g (e.g., kernel smoother, piece-wise linear). However,

Duchamp and Stuetzle (1996) showed, for principal curves in the plane, that all critical points are

saddles. Thus, there are always adjacent (nonprincipal) curves with lower projection distance.

In fact, without additional regularization, principal curve estimation results in space-filling

curves, which have both lower training and test projection distance than curves that provide a more

meaningful summary of the distribution. Thus, all estimation approaches impose, implicit or ex-

plicit, regularity constraints on the curves (Tibshirani, 1992; Kégl et al., 2000; Chang and Ghosh,

2001; Smola et al., 2001; Meinicke et al., 2005) which, due to the saddle point property, will lead

to estimates that lie on the constraint boundary and typically do not satisfy the conditions for prin-

cipal curves. Using only the data, there is no well-defined, correct amount of regularization, and a

regularization strategy would necessarily depend on extraneous considerations (e.g., the particular

properties of the application). Thus, Duchamp and Stuetzle (1996) noted: “To our knowledge, no-

body has yet suggested a reasonably motivated, automatic method for choice of model complexity

in the context of manifold estimation or nonparametric orthogonal distance regression. This remains

an important open problem”. In this paper we propose a solution to address the model complexity

challenge in principal curve estimation.

This paper contends that the model selection problem is intrinsically tied to the mean-squared-

error objective function of the principal curve formulation. In the supervised setting, for example,

for regression, the mean squared error provides an adequate measure for model selection (Härdle

and Marron, 1985). In the unsupervised setting, for manifold estimation, the missing information

on variable relationships renders distance measures inadequate. To be more precise, in regression

for two observations with the same predictor measurements, the differences in predicted value is

necessarily due to noise. Manifold estimation faces an inherent ambiguity in whether differences

between observations should be treated as variation orthogonal to the manifold or as variation along

the manifold, as illustrated in Figure 1.
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Figure 1: Two curves (solid lines) with a different trade off between variation along (dashed arrows)

and orthogonal to (solid arrows) the curve for two data points in identical positions. A

direct minimization of mean squared projection distance d(g,Y )2 = E[‖g(λ(Y ))−Y‖2]
will always favor curves passing close to the data points and not necessarily move towards

a principal curve.

Informally, this indicates why principal curves are not minima of the distance function; trad-

ing off variation orthogonal to the manifold with variation along the curve leads to curves with

smaller projection distances. This becomes evident in cross-validation, where a test example has

no fixed assigned manifold coordinate (as compared to the fixed predictor variables in regression)

but has manifold coordinates assigned based on the current fit. This leaves the flexibility to adapt

the manifold coordinates of the test data to minimize projection distance, and leads, almost always,

to simultaneous decreases in train and test error. This would not pose a significant problem if the

principal curves would be minima of the mean squared projection distance—one would rely on the

local minimum provided by the optimization. However, due to the saddle point property, the opti-

mization moves towards a curve that passes through all the training data and cross-validation does

not provide any reliable indication for early stopping. Thus, principal curve estimation based on

minimizing the projection distance is not a viable path for automatic model selection.

Recent research produced some sophisticated approaches to automatically select the regulariza-

tion parameters, such as the minimum description length approach by Wang and Lee (2006) and the

oracle inequality approach by Biau and Fischer (2012). However, the fundamental problem persists;

a regularized principal curve, is estimated which will always force the principal curve conditions

to be violated. To expand on this point, consider this comparison to the regression setting. For

nonparametric least squares regression, the regularization is a mechanism to cope with finite sample

sizes. If the complete density is known, the regularization is unnecessary. The regression curve that

minimizes the least squares objective function, the conditional expectation given the predictor, is the

desired solution. Thus, with increasing sample size the amount of regularization required decreases

to zero, for example, the bandwidth in kernel regression. For principal curves, the regularization is

required even if the full density is available; the regularization serves as a crutch to fix a shortcoming

in the objective function. This paper proposes an approach to principal curve estimation that fixes

this shortcoming in the objective function. The proposed alternative objective function, for which
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Figure 2: Illustration of the traditional approach compared to the proposed method for estimating

principal curves. (left) The traditional approach specifies a curve g (yellow) and defines

λg as the coordinate corresponding to the closest point on the curve. (right) The proposed

formulation specifies and arbitrary λ—here a few level sets of λ are shown—which in

turn defines the curve g = E[Y |λ(Y )] (blue). In the traditional approach g is optimized to

find a principal curve. In the new formulation the optimization is over λ.

principal curves emerge naturally as minima, alleviates the need for regularization or changes of the

original principal curve definition.

The proposed formulation rests on the observation that minimizing d(g,Y )2 allows principal

curves g to move away from saddle points and improve their fit by violating the self consistency

property. This leads to the idea of turning the optimization problem around. Instead of having the

projection index λg controlled by the curve g, we fix g ≡ E[Y |λ(Y )] to the conditional expectation

given λ and let λ be an arbitrary function λ : Ω 7→ R (with mild conditions, to be specified in

Section 2). To distinguish from Hastie and Stuetzle (1989), with λg fixed given g, we call λ the

coordinate mapping and E[Y |λ(Y )] the conditional expectation curve of λ. The difference between

the two formulations is illustrated in Figure 2. Now, the strategy is to optimize over the coordinate

mapping λ rather than g. Minimizing d(λ,Y ) = E
[

‖g(λ(Y ))−Y‖2
]

with respect to λ leads to

critical points that are, indeed, principal curves, but unfortunately they are still saddle points. In this

case, escaping from saddle points is possible by violating the orthogonal projection condition. This

inspires the design of an objective function, facilitated through this level-set based formulation, that

penalizes nonorthogonality of the coordinate mapping λ

q(λ,Y )2 = E





〈

(g(λ(Y ))−Y ) ,
d

ds
g(s)

∣

∣

∣

∣

s=λ(Y )

〉2


 .

Here, g is by definition self-consistent and the orthogonal projection of λ is enforced by the objective

function. In this formulation, all critical points λ∗ are minima with q(λ∗,Y )2 = 0. Hence, the

conditional expectation curve at a minima g ≡ E[Y |λ∗(Y )] corresponds to a principal curve (see

Section 2).

The proposed formulation leads to a practical estimator, that does not impose any model com-

plexity penalty in its estimate. This regularization-free estimation scheme has the remarkable prop-

erty that a minimum on training data typically corresponds to a desirable solution (see Sections 3

and 4).
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2. Conditional Expectation Curves

Let Y be a random variable with a smooth density p with support Ω̃ = {y : p(y) > 0} ⊂ Rn such

that the closure Ω = cl(Ω̃) is a compact, connected region with smooth boundary. This includes

densities p that smoothly go to 0 at the boundary with an open support as well as densities with a

compact support. Let λ : Ω → Λ be Lipschitz with Λ a connected closed subset of R. To shorten

notation, let µ be the measure such that p is the Radon-Nikodym derivative of µ with respect to the

Lebesgue measure and write dµ = dµ(y) = µ(dy) = p(y)dy.

As for principal curve setting, the conditional expectation E[Y |λ(Y )] is defined over a set of

measure zero and is not a priori well defined. To formally define the conditional expectation let

gσ(s) =

∫
Ω Kσ(s−λ(y))ydµ∫
Ω Kσ(s−λ(y))dµ

with Kσ(s) a mollifier. Now we define the conditional expectation as the limit

E[Y |λ(Y ) = s] = lim
σ→0

gσ(s) =

∫
Ω δ(λ(y)− s)ydµ∫
Ω δ(λ(y)− s)dµ

=

∫
λ−1(s) yp(y)Jλ(y)

−1dHn−1(y)∫
λ−1(s) p(y)Jλ(y)−1dHn−1(y)

. (1)

with Jλ(y) the 1-dimensional Jacobian of λ and Hn−1 dimensional Hausdorff measure. The second

equality follows from the uniform convergence of the mollifier to the Dirac delta distribution. The

last equality invokes the coarea formula (Federer, 1969) by changing to integration over the level

sets of λ. This definition is, for λ an orthogonal projection, equivalent to the conditional expectation

as understood in Hastie and Stuetzle (1989) and Duchamp and Stuetzle (1996). This formulation

also directly extends to define conditional expectation manifolds with Λ ⊂ Rm.

Depending on λ and Ω the conditional expectation (1) can be discontinuous, for example, for λ

with constant regions or for λ and Ω that result in abrupt topological or geometrical changes in the

level sets. However, additional conditions on λ and Ω, ensure that g is a differentiable.

Lemma 2 For λ ∈C2(Ω), g is differentiable Λ-almost everywhere.

Proof The derivative of g is

d

ds
g(s) =

d
ds

m(s)

n(s)
−g(s)

d
ds

n(s)

n(s)
.

with

m(s) =
∫

λ−1(s)
yp(y)Jλ(y)

−1dHn−1(y) ,

n(s) =
∫

λ−1(s)
p(y)Jλ(y)

−1dHn−1(y) .

By Sard’s theorem, the set of critical values of λ has measure zero in Λ, and by the implicit function

theorem, λ−1(s) is a Riemannian manifold Λ-almost everywhere. Thus, integrating with respect to
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the Hausdorff measure is equivalent to integration over the manifold λ−1(s), Λ-almost everywhere.

Then, by the general Leibniz rule (Flanders, 1973), the derivatives d
ds

m(s) and d
ds

n(s) are

d

ds

∫
λ−1(s)

ω =
∫

λ−1(s)
i(v,dyω)+

∫
∂λ−1(s)

i(v,ω)+
∫

λ−1(s)

d

ds
ω (2)

with i(·, ·) the interior product, dy the exterior derivative with respect to y and ω the differential

(n−1)-form yp(y)Jλ(y)
−1dλ−1(s) for d

ds
m(s) and p(y)Jλ(y)

−1dλ−1(s) for d
ds

n(s), respectively. The

vector field v is the change of the manifold λ−1(s) with respect to s. For Ω with smooth boundary

∂Ω, the restriction λ|∂Ω is also in C2(∂Ω). Thus, by the implicit function theorem, v exist Λ-almost

everywhere for both λ and λ|∂Ω and it follows that d
ds

g(s) exists Λ-almost everywhere.

Corollary 3 If λ ∈C2(Ω), Jλ(y)> 0 Ω-almost everywhere and Jλ|∂Ω
(y)> 0, ∂Ω-almost everywhere

then g is differentiable everywhere.

The conditions in Corollary 3 ensure that the integrals in Equation (2) are well defined for all s ∈ Λ

and hence, the derivative of g is defined everywhere as well. As for the conditional expectation (1),

Lemma 2 and Corollary 3 do not rest on a scalar λ and directly extends to conditional expectation

manifolds.

With the definition of g ≡ E[Y |λ(Y )], the conditional expectation given a coordinate mapping

λ, one is tempted to minimize the distance function

d(λ,Y )2 = E
[

‖g(λ(Y ))−Y‖2
]

with respect to λ. This formulation does, indeed, lead to conditional expectations at critical points

that are principal curves and the self consistency cannot be violated by definition. Unfortunately,

critical points are still saddles. In this case, λ can move towards conditional expectation curves

with lower objective by violating the orthogonal projection requirement (rather than violating the

self consistency requirement, as happens in the original formulation). However, the switch from

optimization of curves g to optimization of coordinate mappings λ permits an alternative objective

function that penalizes nonorthogonal λ:

q(λ,Y )2 = E





〈

g(λ(Y ))−Y,
d

ds
g(s)

∣

∣

∣

∣

s=λ(Y )

〉2


 . (3)

For q(λ,Y ) to be well defined d
ds

g(s) has to exist Ω-almost everywhere and thus, requires the con-

ditions of Corollary 3.

The next Section shows that all critical points of (3) are minima and that the corresponding

conditional expectation curves are principal curves in the sense of Hastie and Stuetzle (1989).

2.1 Properties of Critical Points

The following definition introduces a slightly weaker version of principal curves. For principal

curves which have no ambiguity points, that is, all y ∈ Ω have a unique closest point on the curve,

the definition is equivalent to principal curves.
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REGULARIZATION-FREE PRINCIPAL CURVE ESTIMATION

Definition 4 (Weak Principal Curves) Let g : Λ → Rn and λ : Ω → Λ. The weak principal curves

of Y are the set Gw of functions g that fulfill the self consistency property E[Y |λ(Y ) = s] = g(s) with

λ satisfying
〈

y−g(λ(y)), d
ds

g(s)
∣

∣

s=λ(y)

〉

= 0∀y ∈ Ω.

Weak principal curves do include all principal curves but can potentially also include additional

curves for λg with discontinuities, that is, curves with ambiguity points. However, under restriction

to continuous λ, which excludes principal curves with ambiguity points, the set of principal curves

and weak principal curves are identical under this restriction. Furthermore, in practical applications

principal curves with ambiguity points are typically not of interest.

Theorem 5 The conditional expectation curves of critical points of q(λ,Y )2 are weak principal

curves.

Proof The self-consistency property follows immediately from the definition of g as conditional

expectation given λ. Thus, to show that critical points of q(λ,Y )2 are principal curves, requires
d
ds

g(s) to be orthogonal to g(s)− y almost everywhere for y in the level set λ−1(s).
Let τ be an admissible variation of λ, that is, τ ∈C3 and satisfies the conditions of Corollary (3).

Taking the Gâteaux derivative of q(λ,Y )2 with respect to τ yields

d

dε
q(λ+ ετ,Y )2

∣

∣

∣

∣

ε=0

=
∫

Ω

〈

(g(λ(y))− y) ,
d

ds
g(s)

∣

∣

∣

∣

s=λ(y)

〉

d

dε

〈

(g(λ(y)+ ετ(y))− y) ,
d

ds
g(s)

∣

∣

∣

∣

s=λ(y+ετ(y))

〉∣

∣

∣

∣

∣

ε=0

dµ .

It immediately follows λ is critical if it is orthogonal to its conditional expectation curve Ω-almost

everywhere.

To exclude other possible critical points requires that there is no λ for which

〈

d

dε
g(λ(y)+ ετ(y))

∣

∣

∣

∣

ε=0

,
d

ds
g(s)

∣

∣

∣

∣

s=λ(y)

〉

+

〈

(g(λ(y))− y) ,
d

dε

d

ds
g(s)

∣

∣

∣

∣

s=λ(y+ετ(y))

∣

∣

∣

∣

∣

ε=0

〉

= 0

for all admissible τ.

For the variation of g(λ(y)) take the Gâteaux derivative of the mollified expectation

d

dε
gσ(λ(y)+ ετ(y))

∣

∣

∣

∣

ε=0

=

∫
Ω K′

σ(λ(y)−λ(ỹ))(τ(y)− τ(ỹ))
(

ỹ−gσ(λ(y))
)

dµ(ỹ)∫
Ω Kσ(λ(y)−λ(ỹ))dµ(ỹ)

with K′
σ(s−λ(ỹ)) = d

ds
Kσ(s−λ(ỹ)). Separating the terms into τ(y) and τ(ỹ) yields

d

dε
gσ(λ(y)+ ετ(y))

∣

∣

∣

∣

ε=0

= τ(λ(y))
d

ds
g(s)

∣

∣

∣

∣

s=λ(y)

+ασ(λ(y),τ)

with

ασ(s,τ) =

∫
Ω K′

σ(s−λ(ỹ))τ(ỹ)(ỹ−gσ(s))dµ∫
Ω Kσ(s−λ(ỹ))dµ
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The same procedure for d
ds

g(s) yields

d

dε

dgσ(s)

ds

∣

∣

∣

∣

s=λ(y)+ετ(y)

∣

∣

∣

∣

∣

ε=0

=

∫
Ω K′′

σ(λ(y)−λ(ỹ))(τ(y)− τ(ỹ))(y−gσ(λ(y)))dµ(ỹ)∫
Ω Kσ(λ(y)−λ(ỹ))dµ(ỹ)

−

∫
Ω K′

σ(λ(y)−λ(ỹ))(τ(y)− τ(ỹ))dµ∫
Ω Kσ(λ(y)−λ(ỹ))dµ(ỹ)

d

ds
gσ(s)

∣

∣

∣

∣

s=λ(y)

−
d

ds
gσ(s)

∣

∣

∣

∣

s=λ(y)

d

dε
g(λ(y)+ ετ(y))

∣

∣

∣

∣

ε=0

and by separating the terms

d

dε

dgσ(s)

ds

∣

∣

∣

∣

s=λ(y)+ετ(y)

∣

∣

∣

∣

∣

ε=0

=τ(y)
d2

ds2
gσ(s)

∣

∣

∣

∣

s=λ(y)

+βσ(λ(y),τ)

with

βσ(s,τ) =−

∫
Ω K′′

σ(s−λ(ỹ))τ(ỹ)(y−gσ(s))dµ∫
Ω Kσ(s−λ(ỹ))dµ

+

∫
Ω K′

σ(s−λ(ỹ))τ(ỹ)dµ∫
Ω Kσ(s−λ(ỹ))dµ

d

ds
gσ(s)−

d

ds
gσ(s)ασ(s,τ) .

Terms of the form
∫

Ω K′
σ(s − λ(ỹ) f (ỹ)dỹ converge uniformly to

∫
Ω δ′(s − λ(ỹ) f (ỹ)dỹ =

d
ds

∫
λ−1(s) f (ỹ)dỹ which under the conditions of Lemma (2) exist. Thus, d

ds
gσ(s) converges uni-

formly and with the uniform convergence of gσ → g yields the limit limσ→0
d
ds

gσ(s) =
d
ds

g(s). With

α(s,τ) = limσ→0 ασ(s,τ) and β(s,τ) = limσ→0 βσ(s,τ) and taking the limit as σ → 0 yields

d

dε

〈

(g(λ(y)+ ετ(y))− y) ,
d

ds
g(s)

∣

∣

∣

∣

s=λ(y+ετ(y))

〉∣

∣

∣

∣

∣

ε=0

=τ(y)

∥

∥

∥

∥

∥

d

ds
g(s)

∣

∣

∣

∣

s=λ(y)

∥

∥

∥

∥

∥

2

+

〈

d

ds
g(s)

∣

∣

∣

∣

s=λ(y)

,α(λ(y),τ)

〉

+

〈

g(λ(y))− y,

(

τ(y)
d2

ds2
g(s)

∣

∣

∣

∣

s=λ(y)

+β(λ(y),τ)

)〉

.

Note that ∫
λ−1(s)

(g(s)− y)dµ = g(s)
∫

λ−1(s)
dµ−

∫
λ−1(s)

ydµ = 0 ,

and thus the term
〈

α(λ(y),τ), d
ds

g(s)
∣

∣

s=λ(y)

〉

with constant value along the level sets of λ does not

contribute to the variation. Therefore, a critical point for which
〈

g(λ(y))− y,
d

ds
g(s)

∣

∣

∣

∣

s=λ(y)

〉

6= 0

Ω-almost everywhere, there must be a λ for which

∥

∥

∥

∥

∥

d

ds
g(s)

∣

∣

∣

∣

s=λ(y)

∥

∥

∥

∥

∥

2

+

〈

g(λ(y))− y,
d2

ds2
g(s)

∣

∣

∣

∣

s=λ(y)

+β(λ(y),τ)

〉

= 0
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Ω-almost everywhere. Since β(λ(y),τ), d
ds

g(s)
∣

∣

s=λ(y)
and d2

ds2 g(s)
∣

∣

∣

s=λ(y)
are constant along the level

set of λ requires that

∥

∥

∥

d
ds

g(s)
∣

∣

s=λ(y)

∥

∥

∥

2

= 0 and either g(λ(y))− y = 0 or

〈

g(λ(y))− y,
d2

ds2
g(s)

∣

∣

∣

∣

s=λ(y)

+β(λ(y),τ)

〉

= 0 ,

Ω-almost everywhere. It follows that for all critical points

〈

g(λ(y))− y,
d

ds
g(s)

∣

∣

∣

∣

s=λ(y)

〉

= 0 .

Corollary 6 All critical points of q(λ,Y )2 are minima.

Proof By definition q(λ,Y )2 ≥ 0 and by Theorem 5 q(λ,Y )2 = 0 for all critical points.

Corollary 7 The coordinate mapping λ is a minima of q(λ,Y ) if and only if E[Y |λ(Y )] is a weak

principal curve.

Proof If λ is minimal it follows from Theorem 5 that E[Y |λ(Y )] is a weak principal curve. If

E[Y |λ(Y )] is a principal curve λ has to be an orthogonal projection and thus q(λ,Y )2 = 0 is mini-

mal.

2.2 Remarks

The minima include pathological conditional expectation sets such as single points, curves with

discontinuities and space-filling curves. However, if Ω and p admit a minimal λ that satisfies the

condition in Lemma 2, the conditional expectation is a well behaved curve Λ-almost everywhere.

In principle, q(λ,Y )2 can be minimized by shrinking the tangent d
ds

g(s), that is, through a re-

parametrization of g. If λ is constrained so that the resulting conditional expectation has a fixed-

length tangent, for example, a unit parametrization, or if the objective function is changed to

qn(λ,Y )
2 = E







〈

g(λ(Y ))−Y, d
ds

g(s)
∣

∣

s=λ(Y )

〉2

∥

∥

∥

d
ds

g(s)
∣

∣

s=λ(Y )

∥

∥

∥

2






,

then shortening the tangent does not change the objective. However, in practice, using the approach

described in Section 3, this problem did not arise and the empirical differences between minimizing

qn and q were negligible.

At critical points (local minima), the length of the tangent d
ds

g(s) has no effect on either the

objective function or the solution. Changing the coordinate mapping to λ̃(y) = η(λ(y)) with η :
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Λ 7→ R differentiable and monotonic results in a re-parametrization of the conditional expectation

curve, thus, the minimal sets consist of an infinite number of curves. Only for a re-parametrization

η(s) = c, that is, a constant λ, is the geometry of the curve changed to a single point. Thus, the set

of local minima of this objective form a single connected set, with many re-parametrizations and

different curves connected at the solution λ = c. In terms of the objective function q(λ,Y ), these are

all equally good solutions. Similar to principal components, choosing among the possible principal

curves an alternate criterion, possibly application dependent, is required. An obvious choice is

the mean squared projection distance and exclude the trivial space filling solution with zero mean

squared projection distance.

3. An Algorithm for Data Sets

Gerber et al. (2009) proposed an algorithm to minimize d(λ,Y )2 using a radial basis function ex-

pansion for λ and a kernel regression for the conditional expectation g. For a data set Y = {yi}
n
1, the

radial basis function expansion is

λ(y) =
∑n

j=1 K(y− y j)z j

∑n
j=1 K(y− y j)

with K a Gaussian kernel with bandwidth σλ and Z = {zi}
n
1 ∈ R a set of parameters. The parameters

Z are a set of locations in Λ, the range of the coordinate mapping λ. Each point in Ω is thus mapped

to a weighted average of the parameters Z. The expected squared projection distance d(λ,Y )2

is estimated with the sample mean-squared projection distance d̂(λ,Y )2 = 1
n ∑n

i=1‖g(λ(yi))− yi‖
2.

Gerber et al. (2009) employ a gradient descent on Z to minimize d̂(λ,Y )2. Here, the same approach

is used for minimizing

q̂(λ,Y ) =
1

n

n

∑
i=1

〈

g(λ(yi))− yi,
d

ds
g(s)

∣

∣

∣

∣

s=λ(yi)

〉2

(4)

but instead of a Nadaraya-Watson kernel regression (Nadaraya, 1964; Watson, 1964) for g we use

a locally linear regression (Cleveland, 1979), for better behavior for data near the boundaries of Λ.

The algorithm is implemented in R in the package cems (Gerber, 2011).

The gradient of (4) is

d

dzk

q̂(λ,Y )2 =
n

∑
i=1

〈

(g(λ(yi))− yi) ,
d

ds
g(s)

∣

∣

∣

∣

s=λ(yi)

〉

[〈

d

dzk

g(λ(yi)),
d

ds
g(s)

∣

∣

∣

∣

s=λ(yi)

〉

+

〈

(g(λ(yi))− yi) ,
d

dzk

d

ds
g(s)

∣

∣

∣

∣

s=λ(yi)

〉]

. (5)

This has a similar form as the first variation of q(λ,Y )2 and for λ orthogonal to g q̂(λ,Y ) is also min-

imal. However, there may exist additional local minima for which λ is not an orthogonal projection

onto g.
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Because this is a local optimization, one must consider the initialization. The parameters Z

can be initialized by principal components, a spectral manifold learning method (Tenenbaum et al.,

2000; Roweis and Saul, 2000; Belkin and Niyogi, 2003), or by some heuristic that is particular to

the application. The algorithm generalizes in a straightforward manner to m-dimensional manifolds

by initializing Z to points in Rm and replacing dot products with the appropriate matrix-vector

multiplications.

3.1 Model Complexity through Automatic Bandwidth Selection

Gerber et al. (2009) reported good results with cross-validation for minimizing the mean-squared

projection distance d̂(λ,Y )2 starting from a λ that results in a smooth estimate g. However, the

optimization was based on fixed bandwidths for the kernel regression and radial basis function

expansion and thus imposed implicitly a regularization on the estimate.

In the proposed computational scheme, there are two bandwidth selection problems σλ for λ and

σg for g that control model complexity. The bandwidth for λ determines a degree of smoothness

in the coordinate mapping and thereby provides a form of regularization. For sufficiently small

λ, the regularization effect is negligible but can negatively affect generalization performance. The

bandwidth of g determines the smoothness of the conditional expectation estimate. By shrinking σg

towards zero the estimate will be forced to pass through the training data.

For automatically deducing model complexity the bandwidth selection is incorporated into the

optimization. The optimization alternates between gradient descent steps of the spatial locations Z

(5) of the radial basis function expansion λ and gradient descent steps of the bandwidths

d

dσ
q̂(λ,Y )2 =

(

∂

∂σg

q̂(λ,Y )2
,

∂

∂σλ
q̂(λ,Y )2

)

with stopping based on held out data.

The empirical results bear out the theoretical arguments in Section 2: cross-validation for band-

width selection for g and λ is not feasible when minimizing projection distance. The minimization

of d̂(λ,Y )2 with bandwidth selection tends towards curves with increased curvature, possibly mov-

ing away from a close by principal curve that is smoother than the initial curve (see Figures 3

and 5). Even starting from smooth curves cross-validation is not a reliable indicator for estimating

a good, approximating principal curve (see Figure 4). This, empirically, demonstrates the saddle

point nature of the critical points. Minimizing q̂(λ,Y ) mitigates these issues and shows a desirable

objective-function landscape (see Figures 3, 4 and 5).

For minimizing q̂(λ,Y )2 stopping based on cross-validation data was unnecessary in all numer-

ical experiments—the test error follows closely in step with the training error. This nice property

is not unexpected and hinges directly on the theoretical results of the new formulation to principal

curves. Over-fitting in the case of minimizing q̂(λ,Y )2 requires a λ which is close to orthogonal for

training data but not on the test data. However, the objective function q̂(λ,Y )2 indicates no pref-

erence towards such a particular orthogonal λ on the training data and does not express a desire to

increase the length/complexity of the curve in order to achieve a minima. Furthermore, a minima

of q(λ,Y )2 given the complete density p is also a minima for the empirical objective q̂(λ,Y )2 on a

sample of Y . This is not true for the objective function d(λ,Y )2 or even for least squares regression

in the supervised setting (however, for regression cross-validation is a viable option as mentioned

in the discussion in Section 1). These two observations provide an explanation of the remarkable
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property of the proposed estimation scheme that a regularization-free minimum on the training data

is typically a desirable principal curve.

3.2 Computational Considerations

The observation on the properties of the regularization suggest the optimization strategy of Z,σλ

and σg in Algorithm 1, which proves to be effective in practice (see Section 4).

Data: Y

Result: Conditional expectation curve

Initialize Z from Y ( isomap, PCA, LLE, . . . ) ;

Initialize σλ to average k-nearest neighbor distance of Y ;

Initialize σg to average k-nearest neighbor distance of λ(Y ) ;

while q̂(λ,Y ) is improving do

while q̂(λ,Y ) is improving do

Gradient descent step in σλ ;

end

Gradient descent step in σg ;

Gradient descent step in Z ;

end

Algorithm 1: Conditional expectation curve optimization strategy

Various alternatives and extensions for the algorithm proposed here are possible, such as the

choice of the conditional expectation estimator and the modeling of λ. A naive implementation of

the algorithm has a complexity of O(n3md) per gradient descent step with n the number of points, m

the intrinsic dimensionality of the manifold and d the ambient dimensionality. This can be reduced

to O(nc2md) by taking advantage of local nature of the kernel based formulation for both g an λ.

For any yi and zi only approximately c data points, with c depending on the bandwidth parameter,

are effectively contributing to the mapping. A detailed analysis of these run time complexity results

is in Gerber et al. (2009). For further speed up one can consider reducing the number of parameters

Z in the mapping λ. The mapping complexity of λ only depends on the complexity of the principal

curve and can be independent of the number of data points. Since the complexity can conceiv-

ably vary spatially, one should consider an adaptive algorithm that introduces more or less control

points Z in λ as required and varies the bandwidth spatially as well. While the spatial varying band-

width is essentially included in the optimization through spreading the parameters Z differently, an

implementation incorporating variable bandwidths is potentially more effective in practice.

4. Numerical Experiments

The numerical experiments illustrate the theoretical results on the critical point properties of q(λ,Y )2

and d(λ,Y )2 using the estimation strategy proposed in Section 3. Gerber et al. (2009) report

extensive results on the optimization of d̂(λ,Y )2 with equal or improved performance compared

to several principal curve algorithms in various settings. Thus, the comparison is representative to

a typical principal curve estimation scheme based on minimizing the squared projection distance.

The results demonstrate that automatic bandwidth selection leads to good results for q̂(λ,Y )2, while

minimizing d̂(λ,Y )2 shows the expected behavior of tending towards curves with high curvature

that pass close to the training data, even with early stopping based on held-out data.
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4.1 Conditional Expectation Curves in the Plane

Here we demonstrate the observations on optimization and bandwidth selection on a 2D data set

generated by a(φ) = (sin(φ),cos(φ))t(1+ε). A 180 degree arc of radius one and ε ≈ N (0,η2) nor-

mal distributed noise added orthogonal to the arc. To generate n data points φ is sampled uniformly

on [0,π].

Figure 3 shows optimization results for n = 150 and η = 0.15 but with Z = sin(φ) initialized

close to a principal component. Starting from bandwidths σg = 0.2 and σλ = 0.1, the minimization

of d̂(λ,Y ) moves away from the principal component while q̂(λ,Y ) approximately recovers the

principal component. These observations also hold for other bandwidth initializations.

Figure 3: Minimization of d̂(λ,Y )2 and q̂(λ,Y )2 starting from a curve close to a principal compo-

nent with bandwidths initialized to σg = 0.2 and σλ = 0.1.

Figures 4 and 5 show optimization results for n = 150, η = 0.25 and Z = φ initialized to the

ground truth starting from different bandwidth initialization. Once again, minimizing d̂(λ,Y )2 fa-

vors curves with high curvature. The minimization of q̂(λ,Y )2 moves towards the ground truth,

even for a small initial bandwidth.

The theoretical results give no guarantee/bounds on the radius of convergence around solutions.

However,in all numerical experiments the optimization moved towards the anticipated solution.

4.2 Conditional Expectation Surfaces in 3D

The numerical results on algorithm behavior generalize to conditional expectation surfaces. This

section replicates the results from Section 4.1 on the synthetic Swissroll data, a 2D-manifold in

3D-space (illustrated in Figures 6 and 7), commonly used to validate manifold learning techniques.

The Swissroll is a parametric surface s(h,φ) = (cos(φ)φ,h,sin(φ)φ). The data for the experiments

are generated by drawing observations (hi,φi) ∈ H ×Φ, with H = [0,4] and Φ = [π,3π] and adding

normal N (0, 1
2
) distributed noise orthogonal to s(hi,φi). Note, this induces a nonuniform sample of

the Swissroll, where the density in the ambient space decreases with increasing radius.

Figure 6 shows results for minimizing d̂(λ,Y )2 and q̂(λ,Y )2 on a training sample with n = 1000

drawn uniformly on H ×Φ. The optimization of Z is initialized by a 2D isomap embedding using

15-nearest neighbors. Bandwidths are initialized by the average 75-nearest neighbor distance of

λ(Y ) for σg and the average 25-nearest neighbor distance of Y for σλ. The same behavior as for the
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Figure 4: Minimization of (top) d̂(λ,Y )2 and (bottom) q̂(λ,Y )2 with automatic bandwidth selection

starting from σg = 1 and σλ = 0.1. (left) Fitted curve with optimization path and (right)

train and test error with points indicating minimal train and test error, respectively.

1D case in Section 4.1 holds. To qualitatively inspect the optimization, test data is created using

points from a regular grid on H ×Φ, again with normal N (0, 1
2
) noise orthogonal to the surface

added at each grid location.

Figure 7 shows optimization results starting from a surface close to a principal plane. Band-

widths are initialized by the average 75-nearest neighbor distance of λ(Y ) for σg and the average

25-nearest neighbor distance of Y for σλ. As in the 1D case q̂(λ,Y )2 moves towards the principal

plane, while d̂(λ,Y )2 results in a highly curved fit that begins to fill the space.

4.3 Conditional Expectation Manifolds in Higher Dimensions

The final experiment reports results of fitting a 3D manifold on an image data set. The data set con-

sists of 1965 images of a face with different facial expression with varying orientation. The images

are 20× 28 pixels with intensities in [0,255] and treated as points in a 560-dimensional Euclidean

space. To test the quality of automatic bandwidth selection normally-distributed (N (0,20)) noise is

added to each pixel. The data set is randomly split into 1000 training and 965 testing images. Then
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Figure 5: Minimization of (top) d̂(λ,Y )2 and (bottom) q̂(λ,Y )2 with automatic bandwidth selection

starting from σg = 0.1 and σλ = 0.1. (left) Fitted curve with optimization path and (right)

train and test error with points indicating minimal train and test error, respectively.

q̂2(λ,Y ) and d̂2(λ,Y ) is optimized on the training data with Z initialized to a 3D isomap embed-

ding. The optimization is stopped based on the objective function value of the test data. Figure 8

shows the original and noisy images and the projection on the conditional expectation manifold

for each optimization. While the mean squared projection distance is similar for both solutions,

the optimization q̂2(λ,Y ) leads to qualitatively much better results. This underscores the observa-

tions in the introduction: mean squared error in itself is not a good indicator of model quality for

nonparametric manifold estimation.

5. Conclusion

The conditional expectation curve formulation together with the introduction of a new objective

function solves the model complexity problem in principal curve estimation. The resulting algo-

rithm for finite data has the remarkable property that a regularization-free minimum on training

data is typically a desired solution. The proposed formulation appears to transform the ill-posed
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(a) (b) (c)

Figure 6: Optimization results on the Swissroll (wire frame). Projection g(λ(y)) of (a) test data

after minimization (on a separate training sample shown in Figure 7) of (b) q̂(λ,Y )2 and

(c) d̂(λ,Y )2. A good estimate projects the noisy test data points, located orthogonal to the

wire frame, close to the intersections.

(a) (b) (c)

Figure 7: Minimization of (b) q̂(λ,Y )2 and (c) d̂(λ,Y )2 starting from an (a) initial surface close to

a principal plane.

problem of principal curve estimation into a well-posed, or at least stable, problem. A formal inves-

tigation of the stability as defined in the framework of Mukherjee et al. (2006) could provide insight

towards possible adaptations to other ill-posed problems.

Several important questions regarding the interplay between noise, curvature and sample size

remain open. Of particular interest are the convergence rates of q̂(λ,Y ) to q(λ,Y ) or error bounds

on the corresponding conditional expectation curves. An analysis of the requirements imposed by

projection distance, curvature and sample size on σλ and implications on alternative formulations

for modelling λ is an interesting direction for future research.

Acknowledgments

The authors thank Thomas Fletcher for the helpful discussions on Lemma 2. This work was sup-

ported by the NSF grant CCF-073222.

1300



REGULARIZATION-FREE PRINCIPAL CURVE ESTIMATION

Figure 8: Optimization results on (1st row) face data set. Test data (2nd row) with N (0,20) noise

added, projected onto the conditional expectation manifold after minimization of (3rd

row) d̂(λ,Y )2 and (4th row) q̂(λ,Y )2 on training data also with N (0,20) noise added.
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