Journal of Machine Learning Research 14 (2013) 3537-3559 Submitted 2/13; Revised 8/13; Published 12/13

Learning Trees from Strings: A Strong Learning Algorithm for some
Context-Free Grammars

Alexander Clark ALEXANDER.CLARK @KCL.AC.UK
Department of Philosophy

King’s College London

The Strand

London WC2R 2LS

Editor: Mehryar Mohri

Abstract

Standard models of language learning are concerned with weak learning: the learner, receiving as
input only information about the strings in the language, must learn to generalise and to generate
the correct, potentially infinite, set of strings generated by some target grammar. Here we define
the corresponding notion of strong learning: the learner, again only receiving strings as input, must
learn a grammar that generates the correct set of structures or parse trees. We formalise this using
a modification of Gold’s identification in the limit model, requiring convergence to a grammar that
is isomorphic to the target grammar. We take as our starting point a simple learning algorithm for
substitutable context-free languages, based on principles of distributional learning, and modify it
so that it will converge to a canonical grammar for each language. We prove a corresponding strong
learning result for a subclass of context-free grammars.

Keywords: context-free grammars, grammatical inference, identification in the limit, structure
learning

1. Introduction

We present an algorithm for inducing a context-free grammar from a set of strings; this algorithm
comes with a strong theoretical guarantee: it works in polynomial time, and for any grammar in
a certain class it will converge to a grammar which is isomorphic/strongly equivalent to the target
grammar. Moreover the convergence is rapid in a technical sense. This very strong guarantee
comes of course at a price: the class of grammars is small. In the first part of the paper we explain
the learning model we use which is an extension of the Gold identification in the limit model; and in
the second part we present an algorithm which learns a class of languages with respect to this model.
We have implemented this algorithm and we present some examples at the end which illustrate the
properties of this algorithm, testing on some simple example languages. As far as we are aware
this is the first nontrivial algorithm for learning trees from strings which has any sort of theoretical
guarantee of its convergence and correctness.

Our ultimate domain of application of these techniques is primarily in linguistics, where the
strings will be sequences of words in a natural language, but the techniques can be applied more
broadly to artificial languages, bioinformatics and other fields where the input data consists of
strings which have some hierarchical structure.

(©2013 Alexander Clark.

CLARK

We can contrast the approach here with the task of unsupervised parsing in computational lin-
guistics as exemplified by Cohn et al. (2010). Unsupervised parsers use a variety of heuristic ap-
proaches to extract a single tree for each sentence, taking as input a large natural language corpus,
and being evaluated against some linguistically annotated corpus. Here we are interested not in find-
ing the most likely parse, but in finding the set of allowable parses in a theoretically well-founded
way.

1.1 Linguistics

The notions of weak and strong generation are fundamental in the fields of mathematical and the-
oretical linguistics. A formal grammar weakly generates a set of strings, and strongly generates a
set of structures (Miller, 1999). We do not have the space for a full discussion of the rather subtle
methodological and indeed philosophical issues involved with which model is appropriate for study-
ing linguistics, which questions depend on what the subject matter of linguistics is taken to be; we
merely note that while mathematical attention has largely focused on the issues of weak generation,
many linguists are more concerned with the issues of strong generation and as a result take the weak
results to be largely irrelevant (Berwick et al., 2011). Indeed, taking a grammar as a model of human
linguistic competence, we are primarily interested in the set of structures generated. Unfortunately,
we have little or no direct evidence about the nature of these structures, notwithstanding recent ad-
vances in neuroimaging and psycholinguistics, and our sources of information are essentially only
about the set of strings that are weakly generated by the grammar, since these can be observed, and
our intuitions about the associated meanings.

We can define corresponding notions of weak and strong learning.! Weak learning involves
merely learning a grammar that generates the right set of strings; strong learning involves learning
a grammar that generates the right set of structures (Wexler and Culicover, 1980, p. 58). Some
sentences are ambiguous and will require a grammar that generates more than one structure for a
particular sentence. We do not consider in this paper the problem of learning when the input to the
learner are trees; see for example Sakakibara (1990, 1992), Drewes and Hogberg (2003) and Lopez
et al. (2004). We consider only the problem where the learner has access to the flat strings alone,
but must infer an appropriate set of trees for each string in the language. Rather than observing the
derivation trees themselves, we observe only the yields of the trees.

Weak learning of context-free grammars and richer formalisms has made significant progress
in recent years (Clark and Eyraud, 2007; Yoshinaka, 2011; Yoshinaka and Kanazawa, 2011; Yoshi-
naka, 2012) but strong learning has received less attention. For CFGs this means that the hypothesis
needs to be isomorphic (assuming it is trim) or better yet, identical to the target grammar. We define
these notions of equivalence and the associated learning models in Section 3. Strong learning is
obviously impossible for the full class of context-free grammars since there are an infinite number
of structurally different context-free grammars that generate a given context-free language.

In this paper we work in a categorical model which assumes, unrealistically, a partition of the
strings into grammatical and ungrammatical, but probabilistically the situation is not better; given
a distribution defined by a probabilistic CFG (PCFG) there are infinitely many structurally different
CFGs that define the same set of distributions; in other words PCFGs are not identifiable from strings
(Hsu et al., 2013). This is in contrast to discrete HMMs which are (Petrie, 1969).

1. Note that this has nothing to do with strong and weak learners as those terms are used in the boosting literature in
machine learning (Schapire, 1999).

3538

LEARNING TREES FROM STRINGS

The contributions of this paper are as follows. We first define an appropriate notion of strong
learning from strings, restricting ourselves to the case of CFGs for simplicity. We then show that ex-
isting learning algorithms for regular languages (Angluin, 1982) can be viewed as also being strong
learning algorithms, in a trivial sense. We then present a strong learning algorithm for some CFGs,
based on combining the polynomial algorithm for substitutable context-free languages defined in
Clark and Eyraud (2007), which we recall in Section 4, with a recent proposal for a formal notion
of syntactic structure (Clark, 2011) that we interpret as a form of canonical grammars. We spec-
ify the canonical grammars we target in Section 5, present an algorithm in Section 6, and prove
its correctness and efficiency in Section 7. Section 8 contains some examples, including one with
an ambiguous grammar. An appendix contains some detailed proofs of various technical lemmas
regarding the properties of the languages we consider in this paper.

2. Notation

Let X be a finite non-empty set of atomic symbols. X* is the set of all finite strings over . We
denote the empty string by A. The set of non-empty strings is £ = X*\ {A}. We write |u| for the
length of a string u, and for a finite set of strings X we define the size as || X|| = ¥,.ex [W|.

A language L is any subset of X*. Given two languages M,N C ¥* we write M - N or sometimes
just MN for the set {uv | u € M,v € N}. Note that this is just the normal concatenation of sets of
strings.

Given a language D, we define Sub(D) to be the set of non-empty substrings of elements of D:

Sub(D) = {u€ X" |3(l,r) € L* x T lur € D}.

Given a non-zero sequence of languages oo = (X, ..., X,) we write & for the concatenation, that
iIs,0=Xq----- X,. We shall assume an order < or < on ¥ which we shall extend to the length-
lexicographic order on X*.

We define a context (, r) to be an ordered pair of strings, an element of £* x X*. The distribution
of a string u € X* with respect to a language L is defined to be

Dp(u) ={(l,r) eX* xX* | lur € L}.

We say that u = v iff Dy (u) = Dr(v). This is the syntactic congruence, which is equivalent to
complete mutual substitutability of # and v.

We write [u];, for {v € X* | Dp.(u) = Dr(v)}. If we have a set of strings, X, that are all congruent
then we write [X| for the congruence class containing them. Note that for any strings u, v, [uv] D
[u][v] so if X,Y are congruence classes we can write [XY] and the result is well defined.

The unique congruence class [A] is called the unit congruence class. The set {u | D (u) = 0}
if it is non-empty is a congruence class, which is called the zero congruence class. A congruence
class in a language L is non-zero iff it is a subset of Sub(L). We are mostly concerned with non-zero
non-unit congruence classes in this paper.

Definition 1 We will be considering sequences of congruence classes: so if 0. is a sequence X1, ..., X,
where each of the X; is a congruence class, then we write Q. for the set of strings formed by concate-
nating all of the X;. We write |0 for the length of the sequence, n in this case. Note that all of the
elements of 0. will be congruent: if u,v € Q. then u = v. We can therefore write without ambiguity
[@] for the congruence class of the strings in Q.

3539

CLARK

We say that u =y v if there is some (I, r) such that [ur € L and [vr € L. This is partial or weak
substitutability; u and v can be substituted for each other in the context (/,r). If u =, v and u, v have
a non-empty distribution then u = v, but the converse is clearly not true.

Definition 2 A language L is substitutable if for all u,v € X, u =; v implies u = v.

In other words, for any two non-empty strings u,v if Dy (u) N Dy (v) # 0 then Dy (u) = Dr(v).
This language theoretic closure property allows us to define algorithms that generalise correctly,
even under pessimistic learning conditions.

2.1 Context-Free Grammars

A context-free grammar (CFG) G is a tuple G = (X,V,I,P) where V is a finite non-empty set of
nonterminals disjoint from X, I C V is a set of distinguished start symbols and P is a subset of
V x (VUE)" called the set of productions. We write this as N — o.. We do not allow productions
with a right hand side of length 0, and as a result the languages we consider will not contain the
empty string. We use Gcrg for the class of all context-free grammars.

We define the standard notion of single-step derivation as = and define = as the reflexive
transitive closure of =; for all N € V, L(G,N) = {w € Z* | N = w}; and L(G) = Use; L(G,S).
Using a set of start symbols rather than a single start symbol does not change the generative capacity
of the formalism.

We say that a CFG is trim if for every nonterminal N there is a context (I, 7) such that § = INr
for some S € I and a string u such that N = u: in other words every nonterminal can be used in the
derivation of some string.

We say that two CFGs, G and G’ are weakly equivalent if £L(G) = L(G').

Proposition 3 (Ginsburg, 1966) Given two CFGs, G and G', it is undecidable whether L(G) =
L(G).

Two CFGs are isomorphic if there is a bijection between the two sets of nonterminals which
extends to a bijection between the productions. In other words they are identical up to a relabeling
of nonterminals. We denote this by G = G’. Clearly if two grammars are isomorphic then they are
weakly equivalent.

Proposition 4 Given two CFGs, G and G, it is decidable whether G = G'.

There is a trivial exponential time algorithm that involves searching through all possible bijec-
tions. This problem is GI-complete: as hard as the problem of graph isomorphism (Zemlyachenko
et al., 1985; Read and Corneil, 1977). We may not be able to do this efficiently for general CFGs.

3. Learning Models

We start by reviewing the basic theory of learnability using the Gold identification in the limit
paradigm (Gold, 1967). We consider only the model of given text—where the learner is provided
with positive data only. We assume a class of CFGs, G C Gcrg.

A presentation of a language L is an infinite sequence of elements of ¥*, wy,w,... such that
L={w;|i>0}. Given a presentation T = (wy,...), we write T, for the finite subsequence consisting

3540

LEARNING TREES FROM STRINGS

of the first n elements. A polynomial learning algorithm is a polynomially computable function from
finite sequences of positive examples to Gcrg.

Given a presentation T of some language L, we can apply A to the various prefixes of 7', which
produces an infinite sequence of elements of Gegg, A(71),A(T2),. ... These are hypothesis gram-
mars; we will use G; to refer to A(T;), the ith hypothesis output by the learning algorithm.

Consider a target grammar G, € G, and a sequence of hypothesized grammars G1, G, ... pro-
duced by a learning algorithm on a presentation 7 for L(G.,). There are various notions of conver-
gence of which we outline four, which vary on two dimensions: one dimension concerns whether
we are interested in weak or strong learning, and the other whether we are interested in controlling
the number of internal changes as well, or are only interested in the external behaviour.

Weak behaviorally correct learning (WBC)
There is an N such that for all n > N, L(G,) = L(G.).

Weak Gold learning (GOLD)
There is an N such that for all n > N, L(G,) = L(G,) and G, = Gy.

Strong behaviorally correct learning (SBC)
There is an N such that for all n > N, G, = G,.

Strong Gold learning (SGOLD)
There is an N such that for all n > N, G,, = G, and G,, = Gy.

For each of these four notions of convergence, we have a corresponding notion of learnabil-
ity. We say that a learner, A, WBC/GOLD/SBC/SGOLD learns a grammar G,, iff for every pre-
sentation of £(G,), it WBC/GOLD/SBC/SGOLD converges on that presentation. Given a class of
CFGs, G, we say that A WBC/GOLD/SBC/SGOLD learns the class, iff for every G, in G the learner
WBC/GOLD/SBC/SGOLD learns G,.

In the case of GOLD learning, this coincides precisely with the standard model of Gold iden-
tification in the limit from given text (positive data only) (Gold, 1967). WBC-learning is the stan-
dard model of behaviorally correct learning (Case and Lynes, 1982). We cannot in general turn a
WBC-learner into a GOLD-learner: see discussion in Osherson et al. (1986). The property of order-
independence as defined by Blum and Blum (1975), can be thought of as an even stronger version
of SGOLD learning.

However, a SBC-learner can be changed into a SGOLD-learner, if we can test whether two hy-
potheses are isomorphic. There does not seem to be a theoretically interesting difference between
SBC-learning and SGOLD-learning: the only difference, in the case of CFGs, is that the SBC learner
may occasionally pick different labels for the nonterminals after convergence, whereas the SGOLD
learner may not.

We can ask how can a GOLD learner differ from a SGOLD learner: how can a weak learner fail to
be a strong learner? The difference is that on different presentations of the same language, a weak
Gold learner may converge to different answers. That is to say we might have a learner which on
presentation 7”7 of grammar G produces a grammar G’ and on presentation 7" of the same grammar,
produces a grammar G”, where G’ and G” are weakly equivalent but not isomorphic.

Definition S We say that a class of context-free grammars is redundant if it contains two grammars
Gy s G such that Gy % Gy and L(G]) = L(Gz).

3541

CLARK

Proposition 6 Suppose that A is an algorithm which SGOLD-learns a class of grammars G. Then
G is not redundant.

The proof is immediate—any presentation for Gy is also a presentation for G,. In other words
if G contains two non-isomorphic grammars for the same language then it is not strongly learnable.
A simple corollary is then that the class of CFGs is not strongly identifiable in the limit even from
informed data, that is to say from labelled positive and negative examples, since there are an infinite
number of non-isomorphic grammars for every non-empty language.

One can therefore try to convert a weak learner to a strong learner by defining a canonical
form. If we can restrict the class so that there is only one structurally distinct grammar for each
language, and we can compute that, then we could find a strong learning algorithm. We formalise
this as follows. Suppose A is some learning algorithm that outputs grammars in a hypothesis class
Ha C Gerg, and suppose that it can GOLD-learn the class of grammars G C #z. Suppose we have
some ‘canonicalisation’ function f from gz — Gerg such that foreach G € G, L(G) = L(f(G)) and
such that f(G) is not redundant. Then we can construct a learner A’ which outputs A'(T;) = f(A(T;)),
which will then be a SGOLD learner for G. Moreover, if A and f are both polynomially computable
then so will A’ be.

For example, suppose D is the class of all DFAs and f is the standard function for minimizing a
deterministic finite-state automaton (DFA), which can be done in polynomial time. Since all minimal
DFAs for a given regular language are isomorphic, f(D) is not redundant. Therefore any learner
for regular languages that outputs DFAs, such as the one in Angluin (1982), can be converted into
a strong learner using this technique. From the point of view of structural learning such results
are trivial in two important respects. The first is that each string in the language has exactly one
labelled structure, and the other is that every structure is uniformly right branching, whereas we
are interested in learning grammars which may assign more than one different structure to a given
string.

Moreover, it is easy to see that any SGOLD-learner for a class of grammars G will implicitly
define such a canonicalisation function for G. We can enumerate the strings in the language and
apply the learner to them, and the limit of the hypothesis grammars will then satisfy the conditions
given above, though this function may not be computable. There is therefore a close relationship
between canonicalisers and strong learners. There is much more that could be said about the learning
models, and further refinements of them, but this is enough for our purposes.

4. Weak Learning of Substitutable Languages

We recall the Clark and Eyraud (2007) result, using a simplified version of the algorithm (Yoshinaka,
2008), and explain why it is only a weak rather than a strong result.

Given a finite non-empty set of strings D = {wy,...,w,} the learner constructs a grammar as
shown in Algorithm 1. We create a set of symbols in bijection with the elements of Sub(D) where we
write [[u]] for the symbol corresponding to the substring u: that is to say we have one nonterminal
for each substring of the observed data. The grammar G(D) is the CFG (X,V,I,PLUPgUPy) as
shown in the pseudocode in Algorithm 1. The sets P, Pg and Py are the sets of lexical, branching
and unary productions respectively.

Example 1 Given a set D = {c,acb}, we have Sub(D) = {a,b,c,ac,cb,acb}, and corresponding

sets: V = {[[a]}, [[b]], [[c]], [[ac]], [[cb]], [[acb]]}, I = {[[c]], [[acb]]}, P = {[[a]] = a,[[b]] = b, [[c]] =

3542

LEARNING TREES FROM STRINGS

Algorithm 1 Grammar construction procedure
Data: A finite set of strings D = {wy,wa,...,w,}
Result: A CFG G
V :=Sub(D);

I:={[[u] | u € D};

Pp:={[[d]] v alacXZnV}

Py = {[[w]] = [[W][V] | w,v,uv € V'};

Py :={[[u]] = [[v]] | 3(I,r) ANlur € D Alvr € D};
output G = (X,V,I,PLUPgUPy)

ct, Pg = {[lac]] — [[a]][[c]]; [[eb]] = [[c]][[b]], [lacb]] — [lac]][[b]]; [[acb]] — [[al][[cb]]} and Py =
{[[e]] = [[acD]],[[acb]] — [[c]]}. As can be verified this CFG defines the language {a"cb" | n > 0}.

There are two natural ways to turn this grammar construction procedure into a learning algo-
rithm. One is simply to apply this procedure to all of the available data. This will give a WBC-learner
for the class of substitutable CFGs.

Alternatively since we can parse with the grammars, we can convert this into a GOLD learner,
by only changing the hypothesis when the hypothesis is demonstrably too small. This means that
once we have a weakly correct hypothesis the learner will no longer change its output. This simple
modification gives a variant of the learner in Clark and Eyraud (2007). However this does not mean
that this is a strong learner, since it may converge to a different hypothesis for different presenta-
tions of the same language. For example if a presentation of the language from Example 1 starts
{a,acb,...} then the learner will converge in two steps to the grammar shown in Example 1. If
on the other hand, the presentation starts {acb,aacbb, ...} then it will also converge in two steps,
but to a different, larger, grammar that includes nonterminals such as [[aa]] and has a larger set of
productions. This grammar is weakly equivalent to the former grammar, but it is not isomorphic
or structurally equivalent, as it will assign a larger set of parses to strings like aacbb. It is more
ambiguous. Indeed it is easy to see that this grammar will assign every possible binary branching
structure to any string that is part of the set that the grammar is constructed from. And of course,
the presentation could start with an arbitrarily long string—in which case the first grammar which
it generates could be arbitrarily large.

5. The Syntactic Structure of Substitutable Languages

In this section we use a modification of Clark (2011) as the basis for our canonical grammars;
in the case of substitutable languages the theory is quite simple so we will not present it in all
its generality. Each nonterminal/syntactic category will correspond to a congruence class. With
substitutable languages, we can show that the language itself, considered as a set of strings, has a
simple intrinsic structure that can be used to define a particular finite grammar.

We start with the following definition:

Definition 7 A congruence class X is prime if it is non-zero and non-unit and for any two congru-
ence classes Y,Z such that X =Y - Z then either Y or Z is the unit. If a non-zero non-unit congruence
class is not prime then we say it is composite.

3543

CLARK

In other words a class is not prime if it can be decomposed into the concatenation of two other
congruence classes. The stipulation that the unit and zero congruence classes are not prime is
analogous to the stipulation that 1 is not a prime number. We will not give a detailed exposition of
why the concept of a prime congruence class is important, but one intuitive reason is this. If we have
nonterminals that correspond to congruence classes, and a congruence class N is composite, then
that means that we can decompose N into two classes P, Q such that N = PQ. In that case we can
replace every occurrence of N on the right hand side of a rule by the sequence (P, Q); assuming that
P and Q can be represented adequately, nothing will be lost. Thus non-prime congruence classes
can always be replaced by a sequence of prime congruence classes, and we can limit our attention
to the primes which informally are those where “the whole is greater than the sum of the parts”.
More algebraically, we can think of the primes as representing the points where the concatenation
operations in the free monoid and the syntactic monoid differ in interesting ways.

Example 2 Consider the language L = {da"cb" | n > 0}. This language is not regular and therefore
has an infinite number of congruence classes of which three are prime. The congruence classes are
as follows:

o {A} is a congruence class with just one element; this is the unit congruence class which is
not prime.

o The zero congruence class which consists of all strings that have empty distribution.
e L is a congruence class which is prime.
o [a] ={a} is prime as is [b] = {b}.

e We also have an infinite number of congruence classes of the form {a'} for any i > 1. These
are all composite as they can be represented as [a) - [a'"]; similarly for {b'}.

e Similarly we have classes of the form [a'c] = {a'/cb/ | j > 0} and [cb'] = {ach™ | j > 0}
which again are composite.

L is not always prime as the following trivial example demonstrates.

Example 3 Consider the finite language L = {ab}. This language has 5 congruence classes:
[a], [b],[ab],[A] and the zero congruence class. The first 4 are all singleton sets. |a] and [b] are
prime but [ab] = {ab} = [a][b], and so L is not prime.

Proposition 8 For every a € X, for any language L, if [a] is non-zero and non-unit then [a] is prime.

Proof Let a be some letter in a language L and let [a] be its congruence class. Suppose there are
two congruence classes X,Y such that XY = [a]. Since a € [a], a must be in XY. Since we cannot
split a string of length 1 into two non-empty strings, one of X and Y must be the unit. |

We can now define the class of languages that we target with our learning algorithm.

Definition 9 Let L. be the set of all languages which are substitutable, non-empty, do not contain
A and have a finite number of prime congruence classes.

3544

LEARNING TREES FROM STRINGS

Given that there are substitutable languages which are not CFLs—the MIX language (Kanazawa
and Salvati, 2012) being a good example—we need to restrict the class in some way. Here we
consider only languages where there are a finite number of prime congruence classes. This implies,
as we shall see later, that the language is a CFL. Every regular language of course has a finite
number of primes as it has a finite number of congruence classes. Not all substitutable context-free
languages have a finite number of primes, as this next example shows.

Example 4 Consider the language L = {c'ba'b | i > 0} U{c'de'd | i > 0}. This is a substitutable
context-free language. The distribution of ba'b is the single context {(c',\)} which is the same as
that of de'd. Therefore we have an infinite number of congruence classes of the form {ba'b,de'd},
each of which is prime.

Definition 10 A prime decomposition of a congruence class X is a finite sequence of one or more
prime congruence classes oo = (Xj,...,Xy) such that X = Q.

Clearly any prime congruence class X has a trivial prime decomposition of length one, namely
(X). We have a prime factorization lemma for substitutable languages; we can rather pompously call
this the ‘fundamental lemma’ by analogy with the fundamental lemma of arithmetic. This lemma
means that we can represent all of the congruence classes exactly using just concatenations of the
prime congruence classes.

Lemma 11 Every non-zero non-unit congruence class of a language in Ly has a unique prime
factorisation.

For proof see Lemma 33 in the appendix. Note that this is not the case in general for languages
which are not substitutable, as the following example demonstrates.

Example 5 Let L = {abcd,apcd,bx}. Note that L is finite but not substitutable since p # b. Among
the congruence classes are {a},{b},{c} {ab,ap}, {bc,pc} and {abc,apc}. Clearly {ab,ap},
{bc, pc} are both prime but {abc,apc} is composite and has the two distinct prime decompositions

{ab,ap} -{c} and {a} - {bc, pc}.

If we restrict ourselves to languages in L, then we can assume without loss of generality that
the nonterminals of the generating grammar correspond to congruence classes. In a substitutable
language, a trim CFG cannot have a nonterminal that generates two strings that are not congruent.
Similarly, if the grammar had two distinct nonterminals that generated congruent strings, we could
merge them without altering the generated language.

Given that non-regular languages will have an infinite number of congruence classes, and that
CFGs have by definition only a finite number of nonterminals, we cannot have one nonterminal for
every congruence class. However in languages in L, there are only finitely many prime congru-
ence classes, and since every other congruence class can be represented perfectly as a sequence of
primes, it is sufficient to consider a grammar which has nonterminals that correspond to the primes.
Therefore we will consider grammars whose nonterminals correspond only to the prime congruence
classes of the grammar: we add one extra nonterminal S, a start symbol, which will not appear on
the right hand side of any rule.

3545

CLARK

5.1 Productions

We now consider an abstract notion of a production where the nonterminals are the prime congru-
ence classes.

Definition 12 A correct branching production is of the form [0 — o where o is a sequence of at
least 2 primes and [Q] is a prime congruence class. A correct lexical production is one of the form
[a] — a where a € X, and [a] is prime.

Example 6 Consider the language L = {a"cb" | n > 0}. This has primes [a], [c] and [b]. The correct
lexical productions are the three obvious ones [a] — a, [b] — b and [c] — c¢. The only correct
branching productions have [c] on the left hand side, and are [c] — [a][c|[b], [c] — [a][a][c][D][b] and
50 on.

Clearly in the previous example we want to rule out productions like [c] — [a][a][c][b][D] since
the right hand sides are too long, and will make the derivation trees too flat. We want each pro-
duction to be as simple as possible. Informally we say that the right hand side of the production
[a][a][c][P][D] is too long since there is a proper subsequence [a][c]|[p] which generates strings in a
prime congruence class, and should be represented just by the prime [c].

Definition 13 We say that a sequence of primes o. is pleonastic (too long) if o.= YB3 for some v, B, d,
which are sequences of primes, such that |y|+|8| > 0, [B] is a prime, and |B| > 1.

Definition 14 We say that a correct production N — o is pleonastic if & is pleonastic. A correct
production is valid if it is not pleonastic.

Note that a pleonastic production by definition must have a right hand side of length at least 3.

For any string w in a prime congruence class where w = ay...a,, a; € £ we can construct
a correct production [w| — [a1]...[a,]. Such productions may in general be pleonastic because
there may be substrings that can be represented by prime congruence classes. From a structural
perspective, the local trees derived from these productions are too shallow as they flatten out relevant
parts of the structure of the string. Nonetheless we can find a set of valid productions that will
generate the string w from the nonterminal [w], as Lemma 18 below shows.

5.2 Canonical Grammars

We will now define canonical grammars for every language L in L. Note that for every language
in Ly, L is a congruence class.

First of all we need the following lemma to establish that the grammar will be finite: see proof
of Lemma 35 in the appendix.

Lemma 15 If L € L, then there are a finite number of valid productions.
Definition 16 Ler L be some language in Ly.. We define the following grammar, G.(L). The non-
terminals are the prime congruence classes of L, together with an additional symbol S, which is the

start symbol. Let 0(L) be the unique prime decomposition of L. We define the set of productions, P,
to have the following elements:

3546

LEARNING TREES FROM STRINGS

e the single production containing the start symbol: S — (L),

e all valid productions, of which there are only finitely many by Lemma 15,

e for each terminal symbol a that occurs in the language, the production [a] — a.

This is a unique CFG for every language in L;.. We now show that G, (L) generates L.
Lemma 17 If L € L. is a substitutable language, then for any prime congruence class X,
L(G.(L),X) CX.

Proof This is a simple induction on the length of the derivation. For X — a, we know that a € X by
construction. Suppose X; = u; for all 1 <i<nand Xy — X)...X, is a production in the grammar.
Then by the inductive hypothesis u; € X; and by the correctness of the production, u; ...u, € Xo. B

Lemma 18 Suppose X — o is a correct production. Then X :*>G* L) O

Proof By induction on the length of o.. Base case: o is of length 2, in which case it cannot be
pleonastic, and so X — o is valid and in G.(L), and therefore X = o. Inductive step: consider a
correct production X — o where a is of length k. If it is not pleonastic, then it is valid, and so
X — o is a production in G, (L), and so X = o.. Alternatively it is pleonastic and therefore o, = Y5
where v is the right hand side of a correct production, ¥ — 7. Consider X — BY 9, and Y — Y. Both
BY & and 7y are shorter than o, and so by the inductive hypothesis X = BYd and ¥ = yso X = a. So
the lemma follows by induction. |

Lemma 19 Suppose X is a prime, and w € X. Then X :*>G* (L) W-

Proof If w is of length 1, then we have X — w. Let w = a; ...qa, be some string of length n > 1.
Let o = [ay]...[a,). So X — ais a correct production. Therefore by Lemma 18 X = a.. Since we
have the lexical rules [a;] — a; we can also derive a = w. []

Proposition 20 Forany L € Ly, L(G.(L)) = L.

Proof Suppose L has prime factorisation A; ...A,. S occurs on the left hand side of the single pro-
duction S — Aj ... A,. Since L(G.(L),A;) =A; by Lemmas 17 and 19, L(G.(L),S) =A;...A, =L.
|

Definition 21 We define Gy to be the set of canonical context-free grammars for the languages in
Lye:
Gse ={G(L) | L € Ly }.

Lemma 22 G, is not redundant.

Proof Suppose we have two weakly equivalent grammars Gi,G> in this class; then G| =
G.(L(G})) = G.(L(G2)) = G, and so they are isomorphic. [|

3547

CLARK

6. An Algorithm for Strong Learning

We now present a strong learning algorithm. We then demonstrate in Section 7 that for all grammars
in G;. the algorithm strongly converges in the SGOLD framework.

In outline, the algorithm works as follows; we accumulate all of the data that we have seen so
far into a finite set D. We start by using Algorithm 1 to construct a CFG G" which will be weakly
correct for a sufficiently large input data. Using this observed data, together with the grammar
which is used for parsing, we can then compute the canonical grammar for the language as follows.

1. We partition Sub(D) into congruence classes, with respect to our learned grammar G".

2. We pick the lexicographically shortest string in each class as the label we will use for the
nonterminal.

3. We then test to see which of the congruence classes are prime.

4. Each class is decomposed uniquely into a sequence of primes.

5. A set of valid rules is constructed from the strings in the prime congruence classes.
6. We then eliminate pleonastic productions from this set of productions.

7. Finally, we return a grammar G° constructed from these productions.

We can perform the first task efficiently, using the grammar and the substitutability property.
Given that each string in Sub(D) occurs in the sample D, for each substring # we have some context
(1,r) such that lur € D. Given the substitutability condition, v is congruent to u iff lvr € L(G..).
Under the assumption that the grammar is correct we can test this by seeing whether lvr € L(G"),
using a standard polynomial parser, such as a CKY parser.

We now have a partition of Sub(D) into k classes Cy,...,Cr. We pick the lexicographically
shortest element of each class (with respect to <) which we denote by uy,...,u;. Given a class,
we want to test whether it is prime or not. Take the shortest element w in the class. Test every
possible split of w into non-zero strings u, v such that uv = w. Clearly there are |w| — 1 possible
splits—for each split, identify the classes of u,v and test to see whether every element in the class
can be formed as a concatenation of these two. If there is some string that cannot be split, then we
know that the congruence class must be prime. If on the other hand we conclude that the class is not
prime, we might potentially be wrong: we might for example think that X = Y Z simply because we
have not yet observed one of the strings in X \ YZ. We present the pseudocode for this procedure in
Algorithm 2.

For all of the non-prime congruence classes, we now want to compute the unique decomposition
into primes. There are a number of obvious polynomial algorithms. We start by taking the shortest
string w in a class; suppose it is of length n consisting of a; ...a,. We convert this into a sequence
of primes [a;]...[a,]. We then greedily convert this into a unique shortest sequence of primes
by checking every proper subsequence of length at least 2, and seeing if that string is in a prime
congruence class. If it is then we replace that subsequence by the prime. We repeat until there are
no proper subsequences that are primes. Alternatively we can use a shortest path algorithm. We
create a graph which has one node for each 0,1,...,n. We create an arc from i — j if the substring
spanning [i, j] is prime. We then take the shortest path from O to n; and read off the sequence of

3548

LEARNING TREES FROM STRINGS

Algorithm 2 Testing for primality

Data: A set of strings X

Data: A partition of strings X = {Xj,...,X,}, such that Sub(X) CUX

Result: True or false

Select shortest w € X;

for u,v € X" such that uv = w do
X; € X is the set such that u € Xj;
X € X is the set such that v € Xj;
if X - X[Xj then

return false;

end if

end for

return true;

primes by looking at the primes of the relevant segments. Note that since the lexical congruence
classes are all prime, we know there will be at least one such path; since the language is substitutable
we know this will be unique.

We then identify a set of valid productions. Every valid production will be of the form N — M«
where N, M are primes and 0. is a prime decomposition of length at least 1. For any given N, M there
will be at most one such rule. Accordingly we loop through all triples of N and M, Q as follows:
for each prime N, for each prime M, for each class Q, take o to be the prime decomposition of Q,
and test to see if N — Ma is valid. We can test if it is correct easily by taking any shortest string
u from M and any shortest string v from o and seeing if uv € N; if it does then the rule is correct.
Then we can test if it is valid by taking every proper prefix of M of length at least two and testing
if it corresponds to a prime. If no prefix does then the production is not pleonastic and is therefore
valid.

For the lexical productions, we simply add all productions of the form [a] — a where a € £. For
the initial symbol S, we identify the unique congruence class of strings in the language X. If it is
prime, then we add a rule § — X. If it is not prime, and « is its unique prime decomposition then
we add the rule S — a.

7. Analysis

We now proceed to the analysis of Algorithm 3, the learner AsgoLp. We want to prove three things:
first that the algorithm strongly learns a certain class; secondly, that the algorithm runs in polyno-
mial update time; finally that the algorithm converges rapidly, in the technical sense that it has a
polynomially sized characteristic set.

We now are in a position to state our main result. We have defined a learning model, SGOLD, an
algorithm Aggorp and a class of grammars Gie.

Theorem 23 Asgorp SGOLD-learns the class of grammars Gi..
In order to prove this we will show that for any presentation of a grammar in the class we will

converge strongly to a grammar isomorphic to the canonical grammar. In what follows we suppose
G, is a grammar in G, and that L, = £(G,). For a grammar G, € G, we define X(G,) to be

3549

CLARK

Algorithm 3 4.0, p Strong Gold Learning Algorithm
Data: A sequence of strings wi,wo, ...
Data: ¥
Result: A sequence of CFGs G1,Go,. ..
letD:= o;
forn=1,2,... do
let D:=DU{w,};
G=G(D);
Let C be the partition of Sub(D) into classes;
Let Pr be the set of primes computed using Algorithm 2;
For each class N in C compute the prime decomposition o(N) € Pr™;
Let V. = {[[N]] | N € Pr} be a set of nonterminals each labeled with the lexicographically
shortest element in its class;
Let S be a start symbol;
PL={[[N]] = a|[[N]] €V,a€e ENN};
Pr={S—[[N]]| 3w € N,w € D};
PB = 0;
for Ne Pr,M € Pr,Q € Cdo
R= (N — Ma(Q));
if R is correct and valid then

Py =PgU{R};
end if
end for
output G, :== (£,VU{S},{S},PLUPsUP);
end for

a sufficiently large, yet polynomially bounded set of strings from £(G,) such that when the input
data includes this set, the weak grammar output will be correct (Clark and Eyraud, 2007) and which
contains the shortest string in each prime congruence class.

Definition 24 For a grammar G = (X,V,1, P) we define ¥(G) as follows. For any o. € (2UV)T we
define w(Q) € =T to be the smallest word, according to <, generated by . Thus in particular for
any word u € ¥, w(u) = u. For each non-terminal N € V define c(N) to be the smallest pair of
terminal strings (1,r) (extending < from L* to £* x X¥, in some way), such that S = INr. We now
define the characteristic set X(G.) = {lwr | (N —) € P,(l,r) =c(N),w =w(a)}.

We prove the correctness of the rest of the model under the assumption that the input data
contains X(G,) and as a result that G" is weakly correct: L(G") = L(G,). First, if G" is correct,
then the partition of Sub(D) into congruence classes will be correct in the sense that two strings of
Sub(D) will be in the same class iff they are congruent.

Lemma 25 Suppose Xi,...,X, is a correct partition of Sub(D) into congruence classes. Then if
Algorithm 2 returns true when applied to X;, then [X;] is in fact prime.

Proof Suppose [X;] is not prime: then there are two congruence classes Y, Z such that [X;] = YZ.
Consider a string w € X;. There must be strings u,v such that w =uv and u € Y,v € Z. Since

3550

LEARNING TREES FROM STRINGS

w € Sub(D), u,v € Sub(D). Since the partition of Sub(D) is correct, there must be sets X;, X; such
that u € X;,v € X;. Therefore, using again the correctness and the fact that Sub(D) is substring
closed, we have that X; C X;X;, in which case Algorithm 2 will return false. [|

Lemma 26 Suppose X\, ...,X, is a correct partition of Sub(D) into congruence classes, and D D
X(G.). Then Algorithm 2 returns true when applied to X;, iff [Xi] is in fact prime.

Proof X; is a finite subset of Sub(D), and we assume that all of the elements of X; are in fact con-
gruent. We already showed one direction, namely that if the algorithm returns true then [X;] is prime
(Lemma 25). We now need to show that if [X;] is prime, then the algorithm correctly returns true.
If [X;] is prime, then it will correspond to some nonterminal in the canonical grammar G,, say N.
There will be more than one production in G, with N on the left hand side, and so by the construc-
tion of x(G.), and the correctness of the weak grammar, we will have at least one string from each
production in Sub(D), which means that since it is a correct partition the algorithm cannot find any
pair of classes whose concatenation contains X;. |

As a consequence of this Lemma, we know that the algorithm will be able to correctly identify
the set of primes of the language, and as a result will converge to the right set of nonterminals.

Proposition 27 If the input data includes ¥,(G,), then G* = G,.

Proof We can verify that all and only the valid productions will be generated by the algorithm by
the construction of the characteristic set.

Suppose N — Xj...X, is a valid production in the grammar. Then by the construction of the
characteristic set we will have a unique congruence class in the grammar corresponding to [X - - - X,,].
If n > 2 then this will be composite, and if n = 2 this will be prime, but in any event it will have
a unique prime decomposition which will be exactly (Xa,...,X,), by Lemma 33. Therefore this
production will be produced by the algorithm.

Secondly suppose the algorithm produces some production N — Xi,...X,. We know that this
will be valid since X3, ...X, is a prime decomposition and is thus not pleonastic, and we tested all
of the prefixes. We know that it will be correct, by the correctness of the weak learner and the fact
that the congruence classes are correctly divided. It is easy to verify that the lexical and initial rules
are also correctly extracted. |

To conclude the proof of Theorem 23, we just need to observe that since the characteristic set
includes the shortest element of each prime congruence class, and so the labels for each nonterminal
will not change which means that the output grammars will converge exactly.

We now consider the efficiency of the algorithm. It is easy show that this algorithm runs in
polynomial time in the size of the data set ||D||, noting first that |Sub(D)| is polynomial in ||D||,
and that as a result the grammars generated are all of polynomial size. Moreover the characteristic
set has cardinality which is polynomial in the size of the grammar, and whose size is polynomially
bounded in the thickness (Wakatsuki and Tomita, 1993).

3551

CLARK

S —s NTO
Y e
close NT2 — NT2 NT0
NT4 — neg NT2 — NTO NT2
S — NT0 NT4 — NTO NT1
NT1 — b NTO — a NT2 —a
NTO — NTO NTO
NT2 > a NTO — b
NTO — NT2 NT1
NTO0 — ¢ NTO0 — ¢ NTO — NT1 NT2
NTO — NT2NTONT1 NTO - NT3NT4NTONT2 oo
EE : ;‘f‘tfd NT1 — NT1 NT0
NT1 — implies NT1 — NTONTI1
NT1 — or

Table 1: Output grammars for the three examples; on the left the grammar for {a"cb" | n > 0}, in
the middlem the language of propositional logic, and on the right, the ambiguous grammar
for {w € {a,b}" | |w|s = |w|»}.

8. Examples

We have implemented the algorithm presented here.> We present the results of running this al-

gorithm on small data sets that illustrate the properties of the canonical grammars for the learned
languages. These examples are not intended to demonstrate the effectiveness of the algorithm but
merely as illustrative examples to help the reader understand the representational assumptions, and
as a result we have restricted ourselves to very simple languages which will be easy to understand.
Nonterminals in the output grammar are either S for the start symbol or NT followed by a digit for
the congruence classes that correspond to primes.

8.1 Trivial Context-Free Language

Consider the running example of {a"cb" | n > 0}. A characteristic set for this is just {c,acb}.
Given this input data, we get the grammar shown on the left of Table 1. This defines the correct
language; Figure 1 shows the parse trees for the three shortest strings in the language. This grammar
is unambiguous so every string has only one tree.

8.2 Propositional Logic

Our next example is the language of sentential logic, with a finite number of propositional symbols.
We have the alphabet {Ay,..., A (,),—,V,A,=,<}. We would standardly define this language
with the CEG: § - A;, S — (—S5), S— (SVS), S = (SAS), S—= (S=S8) and S — (S & 9).
Note that in this language the brackets are part of the object language not the meta-language—the
algorithm does not know that they are brackets or what their function is. We replace them with other
symbols in the experiment to emphasize this point. Thus the algorithm is given only flat sequences

2. A Java implementation will be made available on the author’s website.

3552

LEARNING TREES FROM STRINGS

S S S
| | |
NTO NTO NTO
‘ /’\
¢ NT2 NTO NTI1
\ \ \ NT2 NTO NT1
a C b ‘ ‘
a b

NT2 NTO NT1
| | |

a C b

Figure 1: Example parse trees for the example {a"cb" | n > 0}.

of strings—there is implicitly structural information here, but the algorithm must discover it, as it
must discover that the correct grammar is unambiguous. Sentential logic is an interesting example
because it illustrates a case where the algorithm works but produces a different parse tree, but one
that is still adequate for semantic interpretation. The canonical structure does not look like the
ancestral tree we would see in a textbook presentation (Enderton, 2001).

Since (—A) and (A VA) are both in the language, = = AV, so the parse tree for (A V B) will look a
little strange: the canonical grammar has pulled out some more structure than the textbook grammar
does: see Figure 2 for example trees. Nonetheless this is still suitable for semantic interpretation
and the grammar is still unambiguous.

We fix some input data, replacing the symbols with strings to obtain input data of { a, b, ¢, open
a and b close, open a or b close, open a implies c close, open a iff c close, open neg a close }. This
produces the grammar shown in the middle of Table 1, which is weakly correct. This generates one
tree for each string in the language as shown in Figure 2.

8.3 An Ambiguous Language

The next example is the language which consists of equal numbers of @’s and b’s in any order:
{we{a,b}" | |w|a=|w|p}. We give the input data: {ab, ba,abab,abba,baba,bbaa}. The resulting
grammar has 10 productions as shown on the right of Table 1.

In this case the grammar is ambiguous and the number of parses for each string varies, depending
on properties of the string that are more complex than just the length. For example, the string abab
has 5 parses, the string abba has 3 and the string aabb has only 2.

9. Discussion

Our goal in this paper is to take a small but theoretically well-founded step in a novel direction. This
is not merely a new learning result but a new type of learning result: a strong learning result for a
class of languages that includes non-regular languages. The main points of this paper are to define
the learning model, and to establish that it is possible to obtain such results for at least some CFGs
from positive strings alone. To the best of the author’s knowledge this is the first non-trivial learning
result of this type. There are of course trivial enumerative algorithms that can strongly learn any

3553

CLARK

S S
| |
NTO NTO

|

a
NT3 NT4 NTO NT2

| TN | |

open NTO NT1 c close

a implies

S
|
NTO
NT3 NT4 NTO NT2
open NTO NT1 close

| | NT3 NT4 NTO NT2

impli | | | |
¢ Hopies open neg b close

Figure 2: Example parse trees for the sentential logic example. Each example has only one parse
tree.

non-redundant finite class of CFGs from positive data given a list of the elements of the class ordered
by inclusion, and as mentioned before, the algorithm presented by Angluin (1982) can be viewed
also as a strong learner for deterministic regular grammars. The Gold learning model is too onerous
and as a result the class of languages that can be learned is very limited, but nonetheless includes
some interesting natural examples as we showed in the previous section.

Strong learning is hard—accordingly we decompose it into two subproblems of rather different
flavors. The first is a weak learning algorithm, and the second is a component that converts a weak
learner to a strong learner; the latter component can be thought of as the computation of a canonical
form. In general it will not be possible to compute a canonical form for an arbitrary grammar as this
will be undecidable; however we may be able to do this for the grammars output by weak learners
which will typically produce grammars in a restricted class.

In this paper, we have chosen to work using the simplest type of weak learner, and using only
CFGs. The algorithm we have obtained therefore lacks some important features of natural language;
notably lexical ambiguity and displacement. It also relies on an overly strong language theoretic
closure property (substitutability) that natural languages do not satisfy. It is natural therefore to
extend this in two ways. Firstly instead of using congruence classes as the basis for the nonterminals
in the grammar, we can use syntactic concepts (Clark, 2013) which can be used to represent all

3554

LEARNING TREES FROM STRINGS

CFGs, and secondly we can move from CFGs to a much richer class of grammars—the class of
well-nested multiple context-free grammars (Seki et al., 1991). The fundamental lemma is a nice
technical result which simplifies the algorithm and the proof; however we will not have such a clean
property in the case of larger classes of languages. Nonetheless we can extend the notion of a prime
congruence class naturally to the richer mathematical structures that we need to model the more
complex grammar formalisms required for natural language syntax.

Acknowledgments

I am grateful to Rémi Eyraud and Anna Kasprzik for helpful comments and discussion, and to
Ryo Yoshinaka for detailed comments on an earlier draft. I would also like to thank the anonymous
reviewers for their extremely constructive and helpful comments, which have greatly improved the
paper. Any remaining errors are of course my own.

Appendix A.

This appendix contains the proofs of some technical lemmas that we use earlier that are not impor-
tant from a learning theoretic point of view, but merely concern the algebraic properties of substi-
tutable languages and their congruence classes. In all of the lemmas that follow, we assume we have
a fixed language L € L.

Lemma 28 If X is a prime, and Y is a congruence class which is not equal to X, then there is a
string in X which does not start with an element of Y .

Proof Suppose every string in X starts with Y. Let x,x’ be strings in X; then x = yv and X’ = y'V/ for
some y,y € Y and some other strings v,/. Then v =1/ by substitutability so X = ¥ [v] and X is not
prime. |

Lemma 29 Suppose oo =A;...A,, and B = By ...B, are sequences of primes such that 0. O B then
there is some j, 1 < j < nsuchthat Ay 2 By ...B;.

Proof If B; = A, then we are done. Alternatively pick some element b; € B; which does not start
with an element of A; (by Lemma 28). Now let w be some string in B, ...B,. Since byw € O we
must have some aj, p; such that a; = by p;, where a; € A;. If p; € B then BjB, C Ay, s0 j =2
and we are done. Otherwise take some element of B, that does not start with an element of [p;],
say bp. By the same argument we must have some a; € A| and a p, such that a, = b1byp,, and
where byps € [p1]. We repeat the process, and if we do not find some suitable j then we will have
constructed a string in P which does not start with A; which contradicts the assumption that p C @.
Therefore there must be some j such that By ... B; C Aj. n

Lemma 30 Suppose X is a prime, and o, B are strings of primes such that X6 C X P, where Xp C
Sub(L), then & C B.

3555

CLARK

Proof Suppose oo =A;...A, and B = B ...B, are sequences of primes that satisfy the conditions
of the lemma. Take some string in @, say a. Let x be a shortest string in X. xa is in the set X& so we
must have xa = x'b, for some X’ € X,b € . Now x is the shortest string so either x =x" and a = b
in which case the lemma holds, or |x’| > |x| in which case we have xcb = xa = x'b, for some non-
empty string ¢. So xc = x” and X', x are both in X so xc = x. Therefore xcbh = xccb and so b = ¢b, by
substitutability. Now we can write b as a sequence of elements of B say b = by ...b,, where b; € B;.
Since we have some context (/,r) such that [br € L therefore Icbr € L by substitutability we will
have by = cby so cb; € Bj since it is a congruence class. This means that ¢cb € B so a € B since
a=ch. S0 CB. [|

An immediate corollary is this:

Lemma 31 If X is a prime, and o, are strings of primes such that X0. = X B, where X C Sub(L),
then o = B.

Lemma 32 [f o and B are non-empty sequences of prime congruence classes such that 0. = B = [0,
and & C Sub(L), then a. = .

Proof By induction on the length of the shortest string w in &. If this is 1 then clearly oo = [w] = P.
Inductive step: suppose o = (A ...A,,) and B = (By,...B,). Since & C B, we know by Lemma 29
that there must be some i such that A; ...A; C By and similarly, since B C @, there must be some j
such that By ... B; C A;. Consider the shortest string w € &. This means thatw =ay ...a,, = by ...b,,
where a; € Ag, by € By. This means that all of the ay, by are the shortest strings in their respective
classes.

Suppose a; # b;. Without loss of generality assume that |a;| > |b;|. This implies that a; = bys,
for some s. Now as we have seen, A| 2 By ...B;, s0 s = b, ...b;, by substitutability. If |s| > |b, ... 5|
then @} = sb,...b; would be an even shorter element of A;. If |s| < |ba...b;| then bysbiy,...b,
would be a shorter element of B (using the fact that B = [B] Sos=by...b;and a; = b; ...b;. This
means thatay...a, = biy1...by.

Pick an a’ € A| which does not start with an element of By (which exists by Lemma 28). Con-
sider w' = d’a, . .. a,, which must also be equal to b ...b),, where b} € By as before.

So a’ must be a prefix of b} which means thatd’a, ...a; = b} by substitutability andso aj; ...a, =
bh...b,. So |by...b)| = |aji1...am| <l|az...am| = |biy1...by| < |ba...b,|, which is a contradic-
tion since b», ... b, are the shortest strings in By ...B,. Soa; = b; and A| = B;. By Lemma 31 and
by induction this means that o0 = . |

We now prove the ‘fundamental lemma’ of substitutable languages.
Lemma 33 Every non-zero non-unit congruence class has a unique prime factorisation.

Proof We show that every congruence class can be represented as a product of primes; uniqueness
then follows immediately by Lemma 32. Base case: the shortest string in X of length 1. (X is not
the unit, so we know it is not of length 0). Then it is prime, and can be represented uniquely as a
product of 1 prime, itself. Inductive step: suppose X is a congruence class whose shortest string is
of length k. If X is prime, then again it is uniquely representable so suppose it is not prime, and there

3556

LEARNING TREES FROM STRINGS

is at least one decomposition into two congruence classes Y,Z. Y, Z must contain strings of length
less than k and so by the inductive hypothesis, ¥ and Z are both decomposable into sequences of
prime congruence classes, Y =Y,...Y;andZ=1Z2,...Z;so X =Y,...Y;Z, ... Z;. [|

Lemma 34 Suppose N is a prime and Q.Y are nonempty sequences of primes such that N — yo. is
a valid production. Then o is the prime decomposition of [Ql].

Proof By induction on the length of o.. The base case where o is of length 1 is trivial by the defi-
nition of a prime decomposition. Inductive step: Let 3 be the prime decomposition of [@]. Clearly
a C B and so by Lemma 29 we know that there is some j such that Ay...A; C By. If j > 1 then
this would mean that the rule was pleonastic and thus not valid, therefore j = 1 and so A = By; the
result follows by induction. |

Lemma 35 G.(L) only has a finite number of valid productions.

Proof Let n is the number of primes in the language L. Suppose we have two valid productions
N — Ao and N — AP, where N,A are primes and o, [} are sequences of primes. Therefore by
Lemma 34 o = P, which means that there can be at most one production for each pair of primes
N, A; therefore the total number of branching productions is at most r2. |

References

D. Angluin. Inference of reversible languages. Journal of the ACM, 29(3):741-765, 1982.

R.C. Berwick, P. Pietroski, B. Yankama, and N. Chomsky. Poverty of the stimulus revisited. Cog-
nitive Science, 35:1207-1242, 2011.

L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information and
Control, 28(2):125-155, 1975.

J. Case and C. Lynes. Machine inductive inference and language identification. Automata, Lan-
guages and Programming, pages 107-115, 1982.

A. Clark. A language theoretic approach to syntactic structure. In Makoto Kanazawa, Andrés
Kornai, Marcus Kracht, and Hiroyuki Seki, editors, The Mathematics of Language, pages 39-56.
Springer Berlin Heidelberg, 2011.

A. Clark. The syntactic concept lattice: Another algebraic theory of the context-free languages?
Journal of Logic and Computation, 2013. doi: 10.1093/logcom/ext037.

A. Clark and R. Eyraud. Polynomial identification in the limit of substitutable context-free lan-
guages. Journal of Machine Learning Research, 8:1725-1745, August 2007.

T. Cohn, P. Blunsom, and S. Goldwater. Inducing tree-substitution grammars. Journal of Machine
Learning Research, 11:3053-3096, 2010.

3557

CLARK

F. Drewes and J. Hogberg. Learning a regular tree language from a teacher. In Zoltdn Esik and
Zoltan Fiilop, editors, Developments in Language Theory, pages 279-291. Springer Berlin Hei-
delberg, 2003.

H. Enderton. A Mathematical Introduction to Logic. Academic press, 2001.
S. Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York, 1966.
E. Mark Gold. Language identification in the limit. Information and Control, 10:447-474, 1967.

D. Hsu, S. M. Kakade, and P. Liang. Identifiability and unmixing of latent parse trees. In Advances
in Neural Information Processing Systems (NIPS), pages 1520-1528, 2013.

M. Kanazawa and S. Salvati. MIX is not a tree-adjoining language. In Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1, pages
666—674. Association for Computational Linguistics, 2012.

D. Lépez, J.M. Sempere, and P. Garcia. Inference of reversible tree languages. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 34(4):1658-1665, 2004.

PH. Miller. Strong Generative Capacity: The Semantics of Linguistic Formalism. CSLI Publica-
tions, Stanford, CA, 1999.

D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Introduction to Learning Theory
for Cognitive and Computer Scientists. MIT Press, first edition, 1986.

T. Petrie. Probabilistic functions of finite state Markov chains. The Annals of Mathematical Statis-
tics, 40(1):97-115, 1969.

R.C. Read and D.G. Corneil. The graph isomorphism disease. Journal of Graph Theory, 1(4):
339-363, 1977.

Y. Sakakibara. Learning context-free grammars from structural data in polynomial time. Theoretical
Computer Science, 76(2):223-242, 1990.

Y. Sakakibara. Efficient learning of context-free grammars from positive structural examples. In-
Sformation and Computation, 97(1):23 — 60, 1992.

R. E. Schapire. A brief introduction to boosting. In Proceedings of 16th International Joint Con-
ference on Artifical Intelligence, pages 1401-1406, 1999.

H. Seki, T. Matsumura, M. Fujii, and T. Kasami. On multiple context-free grammars. Theoretical
Computer Science, 88(2):229, 1991.

M. Wakatsuki and E. Tomita. A fast algorithm for checking the inclusion for very simple de-
terministic pushdown automata. [EICE TRANSACTIONS on Information and Systems, 76(10):
1224-1233, 1993.

K. Wexler and P. W. Culicover. Formal Principles of Language Acquisition. MIT Press, Cambridge,
MA, 1980.

3558

LEARNING TREES FROM STRINGS

R. Yoshinaka. Identification in the Limit of k-/-Substitutable Context-Free Languages. In Alexan-
der Clark, Francgois Coste, and Laurent Miclet, editors, Grammatical Inference: Algorithms and
Applications, pages 266-279. Springer Berlin Heidelberg, 2008.

R. Yoshinaka. Efficient learning of multiple context-free languages with multidimensional substi-
tutability from positive data. Theoretical Computer Science, 412(19):1821 — 1831, 2011.

R. Yoshinaka. Integration of the dual approaches in the distributional learning of context-free gram-
mars. In Adrian-Horia Dediu and Carlos Martin-Vide, editors, Language and Automata Theory
and Applications, pages 538-550. Springer Berlin Heidelberg, 2012.

R. Yoshinaka and M. Kanazawa. Distributional learning of abstract categorial grammars. In Sylvain
Pogodalla and Jean-Philippe Prost, editors, Logical Aspects of Computational Linguistics, pages
251-266. Springer Berlin Heidelberg, 2011.

V.N. Zemlyachenko, N.M. Korneenko, and R.I. Tyshkevich. Graph isomorphism problem. Journal
of Mathematical Sciences, 29(4):1426-1481, 1985.

3559

