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Abstract

We discuss schemes for exact and approximate computations of permanents, and compare them

with each other. Specifically, we analyze the belief propagation (BP) approach and its fractional

belief propagation (FBP) generalization for computing the permanent of a non-negative matrix.

Known bounds and Conjectures are verified in experiments, and some new theoretical relations,

bounds and Conjectures are proposed. The fractional free energy (FFE) function is parameterized

by a scalar parameter γ ∈ [−1;1], where γ =−1 corresponds to the BP limit and γ = 1 corresponds

to the exclusion principle (but ignoring perfect matching constraints) mean-field (MF) limit. FFE

shows monotonicity and continuity with respect to γ. For every non-negative matrix, we define

its special value γ∗ ∈ [−1;0] to be the γ for which the minimum of the γ-parameterized FFE func-

tion is equal to the permanent of the matrix, where the lower and upper bounds of the γ-interval

corresponds to respective bounds for the permanent. Our experimental analysis suggests that the

distribution of γ∗ varies for different ensembles but γ∗ always lies within the [−1;−1/2] interval.

Moreover, for all ensembles considered, the behavior of γ∗ is highly distinctive, offering an empir-

ical practical guidance for estimating permanents of non-negative matrices via the FFE approach.

Keywords: permanent, graphical models, belief propagation, exact and approximate algorithms,

learning flows

1. Introduction

This work is motivated by computational challenges associated with learning stochastic flows from

two consecutive snapshots/images of n identical particles immersed in a flow (Chertkov et al., 2008;

Chertkov et al., 2010). The task of learning consists in maximizing the permanent of an n× n

matrix, with elements constructed of probabilities for a particle in the first image to correspond to

a particle in the second image, over the low-dimensional parametrization of the reconstructed flow.

The permanents in this enabling application are nothing but a weighted number of perfect matchings

relating particles in the two images.

In this manuscript we continue the thread of Watanabe and Chertkov (2010) and focus on com-

putations of positive permanents of non-negative matrices constructed from probabilities. The exact
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computation of the permanent is difficult, that is, it is a problem of likely exponential complex-

ity, with the fastest known general Algorithm for computing the permanent of a full n× n matrix

based on the formula from Ryser (1963) requiring O(n2n) operations. In fact, the task of computing

the permanent of a non-negative matrix was one of the first problems established to be in the #-P

complexity class, and the task is also complete in the class (Valiant, 1979).

Therefore, recent efforts have mainly focused on developing approximate Algorithms. Three in-

dependent developments, associated with the mathematics of strict bounds, Monte-Carlo sampling,

and graphical models, contributed to this field.

The focus of the mathematics of permanent approach was on establishing rigorous lower and

upper bounds for permanents. Many significant results in this line of research are related to the

Conjecture of van der Waerden (1926) that the minimum of the permanent over doubly stochastic

matrices is n!/nn, and it is only attained when all entries of the matrix are 1/n. The Conjecture

remained open for over 50 years before Falikman (1981) and Egorychev (1981) proved it. Recently,

Gurvits (2008) found an alternative, surprisingly short and elegant proof that also allowed for a

number of unexpected extensions. See, for example, the discussion of Laurent and Schrijver (2010).

A very significant breakthrough in the Monte-Carlo sampling was achieved with the invention of

the fully polynomial randomized Algorithmic schemes (fpras) for the permanent problem (Jerrum

et al., 2004): the permanent is approximated in polynomial time, provably with high probability

and within an arbitrarily small relative error. The complexity of the fpras of Jerrum et al. (2004) is

O(n11) in the general case. Even though the scaling was improved to O(n4 logn) in the case of very

dense matrices (Huber and Law, 2008), the approach is still impractical for the majority of realistic

applications.

Belief propagation (BP) heuristics applied to permanent showed surprisingly good performance

(Chertkov et al., 2008; Huang and Jebara, 2009; Chertkov et al., 2010). The BP family of Algo-

rithms, originally introduced in the context of error-correction codes by Gallager (1963), artificial

intelligence by Pearl (1988), and related to some early theoretical work in statistical physics by

Bethe (1935), and Peierls (1936) on tree graphs, can generally be stated for any GM according to

Yedidia et al. (2005). The exactness of the BP on any tree, that is, on a graph without loops, sug-

gests that the Algorithm can be an efficient heuristic for evaluating the partition function, or for

finding a maximum likelihood (ML) solution of the GM defined on sparse graphs. However, in the

general loopy cases, one would normally not expect BP to work very well, making the heuristic

results of Chertkov et al. (2008), Huang and Jebara (2009) and Chertkov et al. (2010) somehow

surprising, even though not completely unexpected in view of the existence of polynomially effi-

cient Algorithms for the ML version of the problem (Kuhn, 1955; Bertsekas, 1992), which were

shown by Bayati et al. (2008) to be equivalent to an iterative Algorithm of the BP type. This raises

questions about understanding the performance of BP. To address this challenge (Watanabe and

Chertkov, 2010) established a theoretical link between the exact permanent and its BP approxi-

mation. The permanent of the original non-negative matrix was expressed as a product of terms,

including the BP-estimate and another permanent of an auxiliary matrix, β. ∗ (1−β),1 where β is

the doubly stochastic matrix of the marginal probabilities of the links between the particles in the

two images (edges in the underlying GM) calculated using the BP approach. (See Theorem 3.) The

exact relation of Watanabe and Chertkov (2010) followed from the general loop calculus technique

of Chertkov and Chernyak (2006a,b), but it also allowed a simple direct derivation. Combining this

1. Here and below we will follow Matlab notations for the component-wise operations on matrices, such as A. ∗B for

the component-wise, Hadamard, product of the matrices A and B.
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exact relation with aforementioned results from the mathematics of permanents led to new lower

and upper bounds for the original permanent. Moreover this link between the math side and the GM

side gained a new level of prominence with the recent proof by Gurvits (2011) of the fact that the

variational formulation of BP in terms of the Bethe free energy (BFE) function, discussed earlier by

Chertkov et al. (2008), Chertkov et al. (2010) and Watanabe and Chertkov (2010), and shown to be

convex by Vontobel (2013), gives a provable lower bound to the permanent. Remarkably, this proof

of Gurvits was based on an inequality suggested earlier by Schrijver (1998) for the object naturally

entering the exact, loop calculus based, BP formulas, perm(β.∗ (1−β)).

This manuscript contributes two-fold, theoretically and experimentally, to the new synergy de-

veloping in the field. On the theory side, we generalize the BP approach to approximately computing

permanents, suggesting replacing the BFE function by its FFE generalization in the general spirit

of Wiegerinck and Heskes (2003), differing from the BFE function of Yedidia et al. (2005) in the

entropy term, and then derive new exact relations between the original permanent and the results

of the FFE-based approach (see Theorem 13). The new object, naturally appearing in the theory, is

perm(β.∗(1−β).−γ), where γ∈ [−1;1]. The case of γ=−1 corresponds to BP and the case of γ= 1

corresponds to the so-called exclusion principle (Fermi), but ignoring perfect matching constraints,

mean field (MF) approximation discussed earlier by Chertkov et al. (2008). Using recent results

from the “mathematics of permanents,” in particular from Gurvits (2011), we show, that considered

as an approximation, the FFE-based estimate of the permanent is a monotonic continuous function

of the parameter γ with γ =−1 and γ = 0 setting, respectively, the lower bound (achievable on trees)

and an upper bound. We also analyze existing and derive new lower and upper bounds. We adopt

for our numerical experiments the so-called zero-suppressed binary decision diagrams (ZDDs) ap-

proach of Minato (1993) (see, for example, Knuth 2009), which outperforms Ryser’s formula for

realistic (sparsified) matrices, for exactly evaluating permanents, develop numerical schemes for

efficiently evaluating the fractional generalizations of BP, test the aforementioned lower and up-

per bounds for different ensembles of matrices and study the special, matrix dependent, γ∗, which

is defined to be the special γ for which the FFE-based estimate is equal to the permanent of the

matrix.2

The material in the manuscript is organized as follows: the technical introduction, stating the

computation of the permanent as a GM, is explained in Section 2 and Appendix A. The BP-based

optimization formulations, approximate methods, iterative Algorithms and related exact formulas

are discussed in Section 3 and Appendices B, C, D, E. Section 4 is devoted to permanental inequal-

ities, discussing the special values of γ and Conjectures. Our numerical experiments are presented

and discussed in Section 5 and Appendices F, G, H. We conclude and discuss the path forward in

Section 6.

2. Technical Introduction

The permanent of a square matrix p, p = (pi j|i, j = 1, . . . ,n), is defined as

perm(p) = ∑
s∈Sn

n

∏
i=1

pis(i),

2. Note that a methodologically similar approach, of searching for the best/special FFE-based coefficient, was already

discussed in the literature by Cseke and Heskes (2011) for a Gaussian BP example.
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Figure 1: Illustration of graphical model for perfect matchings and permanent.

where Sn is the set of all permutations of the set, {1, . . . ,n}. Here and below we will only discuss

permanents of non-negative matrices, that is, with ∀i, j = 1, . . . ,n : pi j ≥ 0. We also assume that

perm(p)> 0.

An example of a physics problem, where computations of permanents are important, is given by

particle tracking experiments and measurements techniques, of the type discussed in Chertkov et al.

(2008) and Chertkov et al. (2010). In this case, an element of the matrix, p = (pi j|i, j = 1, . . . ,n), is

interpreted as an unnormalized probability that the particle labeled i in the first image moves to the

position labeled j in the second image. In its most general formulation, the task of learning a low

dimensional parametrization of the flow from two consecutive snapshots consists of maximizing the

partition function Z = perm(p) over the “macroscopic” flow parameters affecting p. Computing the

permanent for a given set of values of the parameters constitutes an important subtask, the one we

are focusing on in this manuscript.

2.1 Computation of the Permanent as a Graphical Model Problem

The permanent of a matrix can be interpreted as the partition function Z of a graphical model (GM)

defined over a bipartite undirected graph, G = (V = (V1,V2),E), where V1, V2 are of equal size,

|V1| = |V2| = n, and V1, V2, and E stand for the set of n vertices/labels of particles in the first

and second images and the set of edges (possible relations) between particles in the two images,

respectively. The basic binary variables, σi j = 0,1, are associated with the edges, while the perfect

matchings are enforced via the constraints associated with vertexes, ∀i ∈ V1 : ∑ j∈V2
σi j = 1 and

∀ j ∈ V2 : ∑i∈V1
σi j = 1, as illustrated in Figure 1. A non-negative element of the matrix, pi j, turns

into the weight associated with the edge (i, j). In summary, the GM relates the following probability

to any of n! perfect matchings, σ:

ρ(σ) = Z(p)−1 ∏
(i, j)∈E

(pi j)
σi j , (1)

σ =

(

σi j = 0,1

∣

∣

∣

∣

∣

(i, j) ∈ E ; ∀i ∈ V1 : ∑
j∈V2

σi j = 1;∀ j ∈ V2 : ∑
i∈V1

σi j = 1

)

,

Z(p) = perm(p) = ∑
σ

∏
(i, j)∈E

(pi j)
σi j . (2)
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The GM formulation (1) also suggests a variational, Kullback-Leibler (KL) scheme for comput-

ing the permanent. The only minimum of the so-called exact free energy (FE) function,

F(b|p) = ∑
σ

b(σ) log

(

b(σ)

∏(i, j)∈E (pi j)σi j

)

, (3)

computed over b(σ) ≥ 0 for all σ under the normalization condition, ∑σ b(σ) = 1, is achieved at

b(σ) = ρ(σ), and the value of the exact FE function at the minimum over b(σ) is − log(Z(p)). Here,

the general and the optimal b(σ) are interpreted as, respectively, the proxy and the probability of

the perfect matching σ.

The relation between the problem of computing the permanent and the problem of finding the

most probable (maximum) perfect matching is discussed in Appendix A.1.

2.2 Exact Methods for Computing Permanents

Computing the permanent of a matrix is a #-P hard problem, that is, it is a problem which most

likely requires a number of operations exponential in the size of the matrix. In Appendix H, we

experiment and compare the performance of the following two exact deterministic ways to evaluate

permanents:

• A general method based on zero-suppressed binary decision diagrams (ZDDs), explained in

more detail in Knuth (2009). See also detailed explanations below in Appendix G. As argued

in Knuth (2009), the ZDD approach may be a very efficient practical tool for computing

partition functions in general graphical models. This thesis was illustrated by Yedidia (2009)

on the example of counting independent sets and kernels of graphs.

• A permanent-specific method based on Ryser’s formula:

Z(p) = (−1)n ∑
S⊆{1,...,n}

(−1)|S|
n

∏
i=1

∑
j∈S

pi j.

We use code from TheCodeProject for implementing the Ryser’s formula.

Note that in most practical cases many entries of p are very small and they do not affect the per-

manent of p significantly. These entries do, however, take computational resources if accounted for

in the Algorithm. To make computations efficient we sparsify the resulting matrix p, implementing

the heuristic pruning technique explained in Appendix F.

We also verify some of our results against randomized computations of the permanent using the

FPRAS from Jerrum et al. (2004), with a specific implementation from Chertkov et al. (2008).

3. Approximate Methods and Exact Relations

We perform an approximate computation of the permanent by following the general BFE approach

of Yedidia et al. (2005) and the associated belief propagation/Bethe-Peierls (BP) Algorithm, dis-

cussed in detail for the case of permanents of non-negative matrices in Chertkov et al. (2008), Huang

and Jebara (2009) and Chertkov et al. (2010). See also Appendix B reproducing the description of

Chertkov et al. (2008) and Chertkov et al. (2010) and presented in this manuscript for convenience.
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In our BP experiments we implement the Algorithm discussed by Chertkov et al. (2008) with a

special type of initialization corresponding to the best perfect matching of p. We also generalize the

BP scheme by modifying the entropy term in the BFE.

In the following Subsections we re-introduce the BFE approach, the related but different MF

FE approach, and also consider a fractional FE approach generalizing and interpolating between

Bethe/BP and MF approaches. Even though these optimization approaches and respective Algo-

rithms can be thought of as approximating the permanent we will show that they also generate some

exact relations for the permanent.

3.1 Belief Propagation/Bethe-Peierls Approach

Let us start by defining some useful notation.

Definition 1 (β-polytope) Call the β-polytope of the non-negative matrix p (or just β-polytope for

short) the set of doubly stochastic non-negative matrices with elements corresponding to zero ele-

ments of p equal to zero, that is, Bp =(βi j|∀i : ∑(i, j)∈E βi j = 1;∀ j : ∑(i, j)∈E βi j = 1;∀(i, j) with pi j =

0 βi j = 0 holds). We say that β lies in the interior of the β-polytope, β ∈ B
(int)
p , if ∀(i, j) with pi j 6=

0 βi j 6= 0,1 holds.3

In English, the interior solution means that all elements of the doubly stochastic matrices β are

non-integer, under exception of the case when pi j = 0 and, respectively, βi j = 0.

Definition 2 (Bethe free energy for the permanent) The following function of β ∈ Bp

FBP(β|p) = ∑
(i, j)

(βi j log(βi j/pi j)−(1−βi j) log(1−βi j)) , (4)

conditioned to a given p, is called the Bethe free energy (BFE) or the belief-Propagation/Bethe-

Peierls (BP) function (for the permanent).4

To motivate the definition above let us briefly discuss the concept of the Bethe FE which was

introduced in Yedidia et al. (2005) for the case of a general pair-wise interaction GM (with variables

associated with vertices of the graph). Schematically, the logic extended to the case with variables

associated with edges of the graph and leading to Equation (4) for the permanent is as follows.

(See Watanabe and Chertkov 2010 for a detailed discussion.) Consider a GM with binary variables

associated with edges of the graph. If the graph is a tree, then the following exact relation holds,

ρ(σ) = ∏i ρi(σi)/∏(i, j) ρi j(σi j), where σi = (σi j = 0,1|(i, j) ∈ E). Here, ρi(σi) and ρi j(σi j) are

marginal probabilities associated, respectively, with vertex i and edge (i, j) of the graph. Replacing

the probabilities by their proxies/beliefs, ρ(σ) → b(σ), ρi(σi) → bi(σi) and ρi j(σi j) → bi j(σi j),
substituting the ratio of probabilities expression for b(σ) in the exact FE function (3), and accounting

for relations between the marginal beliefs, one arrives at the general expression for the Bethe FE

function. This expression for the Bethe FE function is exact on a tree only, and it is similar in spirit

to the one introduced in Yedidia et al. (2005) as an approximation for GM on a graph with loops.

3. What we call here “interior” would be mathematically more accurate to call “relative interior”.

4. In the following, and whenever Bethe, MF, or fractional FE are mentioned, we will drop the clarifying—for the

permanent—as only permanents are discussed in this manuscript.
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When the graph is bi-partite with an equal number of nodes in the two parts the BP replacement for

b(σ) becomes

bBP(σ) =
∏(i, j)∈E :σi j=1 βi j

∏(i, j)∈E :σi j=0(1−βi j)
, (5)

where βi j = bi j(1) is the marginal belief corresponding to finding the edge (i, j) in the matching.

Then, substituting b(σ) by bBP(σ) in Equation (3) results in the Bethe FE expression (4) for the

perfect matchings (permanents). Note, that while the exact FE (3) is the sum of O(n!) terms, there

are only O(n2) terms in the Bethe FE (4).

According to the Loop Calculus approach of Chertkov and Chernyak (2006a,b), extended to the

case of the permanent in Chertkov et al. (2008), Chertkov et al. (2010) and Watanabe and Chertkov

(2010), the BP expression and the permanent are related to each other as follows:

Theorem 3 (Permanent and BP) If the BP Equations following from minimization of the the BFE

(4) over the doubly stochastic matrix β, that is,

∀(i, j) : (1−βi j)βi j =
pi j

uiu j
, (6)

where log(ui) and log(u j) are positive-valued Lagrangian multipliers conjugated to ∑ j∈V2
βi j = 1

and ∑i∈V1
βi j = 1, respectively, have a solution in the interior of the β-polytope, β ∈ B

(int)
p , then

Z = ZBP(p)perm(β.∗ (1−β))
1

∏i, j(1−βi j)
, (7)

where ZBP(p) =− log(FBP(β|p)).

The proof of the Theorem 3 also appears in Appendix B.1. An iterative heuristic Algorithm solving

BP Equations (6) for the doubly stochastic matrix β efficiently is discussed in Appendix B.2.

Let us recall that the (i, j) element of the doubly stochastic matrix β, βi j, is interpreted as the

proxy (approximation) to the marginal probability for the (i, j) edge of the bipartite graph G to be

in a perfect matching, that is, βi j, should be thought of as an approximation for ρi j = ∑σ:σi j=1 ρ(σ).

Note also that log(ui) and log(u j) in Equations (6) are the Lagrange multipliers related to the

2n double stochasticity (equality) constraints on β.

3.1.1 BP AS THE MINIMUM OF THE BETHE FREE ENERGY

Definition 4 (Optimal Bethe free energy) We define optimal BFE, Fo−BP(p), and respective count-

ing factor, Zo−BP(p), according to

− log(Zo−BP(p)) = Fo−BP(p) = min
β∈B

FBP(β|p), (8)

where FBP(β|p) is defined in Equation (4).

Considered in the general spirit of Yedidia et al. (2005), Fo−BP(p), just defined, should be un-

derstood as an approximation to − log(perm(p)). To derive Equation (8) one needs to replace b(σ)
by (5). See Watanabe and Chertkov (2010) for more details.

The relation between the optimization formulation (8) and the BP Equations (6) requires some

clarifications stated below in terms of the following two Propositions.
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Proposition 5 (Partially resolved BP solutions) Any doubly stochastic matrix β solving

Equations (6) and lying on the boundary of the β polytope, that is, β ∈ Bp but β /∈ B
(int)
p , can be

reduced by permutations of rows and columns of β (and p, respectively) to a block diagonal matrix,

with one block consisting of 0,1 elements only and corresponding to a partial perfect matching,

and the other block having all elements strictly smaller than unity, and nonzero if the respective

pi j 6= 0. We call such a solution of the BP Equations (6) partially resolved solutions, emphasizing

that a part of the solution forms a partial perfect matching, and any other perfect matching over

this subset is excluded by the solution (in view of the probabilistic interpretation of β). A doubly

stochastic matrix β corresponding to a full perfect matching is called a fully resolved solution of the

BP Equations (6).

Proof This statement follows directly from the double stochasticity of β and from the form of the

BP Equations (6), and it was already discussed in Chertkov et al. (2008) and Watanabe and Chertkov

(2010) for the fully resolved case.

Proposition 6 (Optimal Bethe FE and BP equations) The optimal Bethe FE, Fo−BP(β) over β ∈
Bp, can only be achieved at a solution of the BP Equations (6), possibly with the Lagrange multi-

pliers ui, u j taking the value +∞.

Proof This statement is an immediate consequence of the fact that Proposition 5 is valid for any

p, and so a continuous change in p (capable of covering all possible achievable p) can only result

in an interior solution for the doubly stochastic matrix β merging into a vertex of the β-polytope,

or emerging from the vertex (then respective Lagrangian multipliers take the value +∞), but never

reaching an edge of the polytope at any other location but a vertex. Therefore, we can exclude the

possibility of achieving the minimum of the Bethe FE anywhere but at an interior solution, partially

resolved solution or a fully resolved solution (corresponding to a perfect matching) of the BP equa-

tions.

Note, that an example where the minimum in Equation (8) is achieved at the boundary of the

β− polytope (in fact, at the most probable perfect matching corner of the polytope) was discussed

in Watanabe and Chertkov (2010).

Another useful and related statement, made recently in Vontobel (2013), is

Proposition 7 (Convexity of the Bethe FE) The Bethe FE (4) is a convex function of β ∈ Bp.

A few remarks are in order. First, the statement above is nontrivial as, considered naively, individual

edge contributions in Equation (4) associated with the entropy term, βi j logβi j − (1−βi j) log(1−
βi j), are not convex for βi j > 1/2, and the convexity is restored only due to the global (double

stochasticity) condition. Second, the convexity means that if the optimal solution is not achieved at

the boundary of Bp, then either the solution is unique (general case) or the situation is degenerate

and one finds a continuous family of solutions all giving the same value of the Bethe FE. The

degeneracy means that p should be fine tuned to get into the situation, and addition of almost any

small (random) perturbation to p would remove the degeneracy. To illustrate how the degeneracy

may occur, consider an example of a (2×2) matrix p with all elements equal to each other. We first
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observe that regardless of p for n = 2, the entropy contributions to the Bethe FE are identical to zero

for any doubly stochastic (2×2) matrix, ∑
i, j=1,2
(i, j) (βi j logβi j − (1−βi j) log(1−βi j)) = 0. Moreover,

the remaining, linear in β, contribution to the Bethe FE (which is also called the self-energy in

physics) turns into a constant for the special choice of p. Thus one finds that in this degenerate

n = 2 case,

β =

(

α 1−α

1−α α

)

,

with any α ∈ [0;1], is a solution of Equations (6) also achieving the minimum of the Bethe FE.

Creating any asymmetry between the four components of the (2×2) p will remove the degeneracy,

moving the solution of Equations (6) achieving the minimum of the Bethe FE to one of the two

perfect matchings, corresponding to α = 0 and α = 1, respectively. It is clear that this special

“double” degeneracy (first, cancellation of the entropy contribution, and then constancy of the self-

energy term) will not appear at all if the doubly stochastic matrix β, solving Equations (6) in the

n > 2 case has more than two nonzero components in every row and column. Combined with

Proposition 7, this observation translates into the following statement.

Corollary 8 (Uniqueness of interior BP solution) If n > 2 and an interior, β ∈ B
(int)
p , solution of

Equations (6) has more than two nonzero elements in every row and column, then the solution is

unique

In the following, discussing an interior BP solution, β ∈ B
(int)
p and aiming to focus only on

the interesting/nontrivial cases, we will be assuming that n > 2 and p has more than two nonzero

elements in every row and column.

3.2 Mean-Field Approach

Definition 9 (Mean field free energy) For β ∈ Bp, the MF FE is defined as

FMF(β|p) = ∑
(i, j)

(βi j log(βi j/pi j)+(1−βi j) log(1−βi j)) . (9)

Let us precede discussion of the MF notion/approach by a historical and also motivational re-

mark. MF is normally thought of as an approximation ignoring correlations between variables.

Then, the joint distribution function of σ is expressed in terms of the product of marginal distribu-

tions of its components. In our case of the perfect matching GM over the bi-partite graph, the MF

approximation constitutes the following substitution for the exact beliefs,

b(σ)→ ∏
(i, j)∈E

bi j(σi j), (10)

into Equation (3). Making the substitution and relating the marginal edge beliefs to β according to,

∀(i, j) ∈ E : bi j(1) = βi j, bi j(0) = 1−βi j, one arrives at Equation (9). Because of how the perfect

matching problem is defined, the two states of an individual variable, σi j = 0 and σi j = 1, are in the

exclusion relation, and so one can also associate the special form of Equation (9) with the exclusion

or Fermi- (for Fermi-statistics of physics) principle.

Direct examination of Equation (9) reveals that
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Proposition 10 (MF FE minimum is always in the interior) FMF(β|p) is strictly convex and its

minimum is achieved at β ∈ B
(int)
p .

Looking for the interior minimum of Equation (9) one arrives at the following MF equations for

the (only) stationary point of the MF FE function

∀(i, j) ∈ E : βi j =
1

1+ viv j/pi j

,

where log(vi) and log(v j) are Lagrangian multipliers enforcing the conditions, ∑ j βi j = 1 and

∑i βi j = 1, respectively. The equations can also be rewritten as

∀(i, j) :
βi j

1−βi j

=
pi j

viv j
, (11)

making comparison with the respective BP Equations (6) transparent. An efficient heuristic for

solving the MF equations (11) is discussed in Appendix C.2.

Direct examination shows that (unlike in the BP case) β with a single element equal to unity or

zero (when the respective p element is nonzero) cannot be a solution of the MF Equations (11)

over doubly stochastic matrix β—fully consistently with the Proposition 10 above. Moreover,

− log(Zo−MF(p)), defined as the minimum of the MF FE (9), is simply equal to − log(ZMF(p),
defined as FMF(β) evaluated at the (only) doubly stochastic matrix solution of Equation (11).

Note also that the MF function (9) cannot be considered as a variational proxy for the per-

manent, bounding its value from below. This is because the substitution on the right-hand side of

Equation (10) does not respect the perfect matching constraints, assumed reinforced on the left-hand

side of Equation (10). In particular, the probability distribution function on the right-hand side of

Equation (10) allows two edges of the graph adjacent to the same vertex to be in the active, σi j = 1,

state simultaneously. However, this state is obviously prohibited by the original probability distri-

bution, on the left-hand side of Equation (10) defined only over n! of states corresponding to the

perfect matchings. As shown below in Section 4.2, the fact that the MF ignores the perfect matching

constraints results in the estimate ZMF(p) upper bounding perm(p), contrary to what a standard MF

(not violating any original constraints) would do.

Finally and most importantly (for the MF discussion of this manuscript), the MF approximation

for the permanent, ZMF , can be related to the permanent itself as follows:

Theorem 11 (Permanent and MF)

Z(p) = perm(p) = ZMF(p)perm(β./(1−β)) ∏
(i, j)∈E

(1−βi j), (12)

where β is the only interior minimum of (9).

The proof of this statement is given in Appendix C.1.

3.3 FFE-based Approach

Similarity between the exact BP expression (7) and the exact MF expression (12) suggests that the

two formulas are the limiting instances of a more general relation. We define
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Definition 12 (Fractional free energy) For β ∈ Bp, the FFE is defined as

F
(γ)
f (β|p) =− log(Z

(γ)
f (β|p)) = ∑

(i, j)

(βi j log(βi j/pi j)+ γ(1−βi j) log(1−βi j)) . (13)

Then, one finds that

Theorem 13 (FFE-based representation for permanent) For any non-negative p and doubly stochas-

tic matrix β which solves

∀(i, j) :
βi j

(1−βi j)γ
=

pi j

wiw j
, (14)

for γ ∈ [−1;1], and if the solution found is in the interior of the domain, that is, β ∈ B
(int)
p , the

following relation holds

perm(p) = Z
(γ)
f (β|p)perm

(

β.

(1−β).γ

)

∏
(i, j)

(1−βi j)
γ, (15)

where FFE was defined above in Equation (13) and log(wi) and log(w j) in Equation (14) are the

Lagrangian multipliers enforcing the conditions, ∑ j βi j = 1 and ∑i βi j = 1, respectively.

The proof of Equation (13) is given in Appendix D.1. An iterative heuristic Algorithm solving

Equations (14) efficiently is described in Appendix D.2.

Following the general GM logic and terminology introduced in Wiegerinck and Heskes (2003)

and Yedidia et al. (2005), we call F
(γ)
f (β|p) the fractional FE. Obviously the two extremes of γ =−1

and γ = 1 correspond to BP and MF limits, respectively. Many features of the BP and MF ap-

proaches extend naturally to the FFE-based case. In particular, one arrives at the following statement

which appears in Theorem 60 of Vontobel (2013).

Proposition 14 (Fractional convexity) The FFE-based function defined in Equation (13), F
(γ)
f (β|p),

is a convex function, convex over β ∈ Bp for any γ ∈ [−1;1] and any non-negative p.

Obviously, this statement generalizes Proposition 7. Also, the following statement becomes a direct

consequence of Proposition 14:

Corollary 15 (Uniqueness of the interior fractional minimum) If the minimum of F
(γ)
f (β|p) is

realized at β ∈ B
(int)
p , it is unique.

3.4 Minimal FFE-based Solution

It is clear that at γ > 0 the FFE-based Equations (14) cannot have a perfect matching solution, thus

suggesting that at least in this case the solution, if it exists, is in the interior, β ∈ B
(int)
p . On the

other hand general existence (for any p) of such a solution follows immediately from the existence

in a special case, for example of p with all elements equal, and then from the continuity of the

Equations (14) solution with respect to p.

The case of γ ∈]−1;0] is a bit trickier. In this case, Equations (14) formally do allow a perfect

matching solution. However, for all but degenerate p, that is, one reducible by permutations to a
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diagonal matrix, the perfect matching solution is an isolated point. Indeed, let us consider a vicinity

of a degenerate p. If one picks (without loss of generality) a diagonal, p(0) = (aiδi j|(i, j) ∈ E), and

consider p = p(0)+ δp, where δp is a small positive matrix, then one observes that Equations (14)

do allow a solution, β = 1+ εb, where ε is a small positive scalar and b = (bi j|(i, j) ∈ E ;∀i ∈ V1 :

∑ j bi j = 0; ∀ j ∈ V2 : ∑i bi j = 0) is a matrix with O(1) elements, if the following scaling relation

holds, |δ| ∼ ε1+γ. Moreover, one also finds that a solution β is ε-close to a perfect matching only if

p is ε1+γ-close to a diagonal matrix. Now we apply the same continuity and existence arguments,

as used above in the γ > 0 case arguments, to find out that the following statement holds.

Proposition 16 (FFE-based Minima) The minimal FFE-based solution, defined by

− log(Z
(γ)
o− f (p)) = F

(γ)
o− f (p) = min

β∈Bp

F
(γ)
f (β|p),

can only be achieved for γ >−1 and general (non-degenerate) p at β ∈ B
(int)
p .

Then the following statement follows.

Proposition 17 (γ-monotonicity and continuity) For any non-negative p, Z
γ
o− f (p) is a monotoni-

cally increasing and continuous function of γ in [−1;1].

Proof Observe that for any non-negative p and doubly stochastic matrix β, ∑(i, j)∈E (1−βi j) log(1−
βi j)< 0, so for any γ1,2 ∈ [−1;1] such that γ1 > γ2, F

(γ1)
f (β|p)≤ F

(γ2)
f (β|p). Then according to the

definition of F
(γ)

o− f (p), F
(γ1)

o− f (p) ≤ F
(γ1)
f (β|p) ≤ F

(γ2)
f (β|p), for any doubly stochastic matrix β, in

particular for β which is optimal for γ2. Finally, F
(γ1)

o− f (p) ≤ F
(γ2)

o− f (p), proving monotonicity. The

continuity of Z
(γ)
o− f (p) with respect to γ in ]− 1;1] follows from Proposition 16 combined with

F
(γ)
f (β|p) continuity with respect to both γ ∈ [−1;1] and β ∈ B

(int)
p . (The intuition with respect to

the continuity is as follows: an increase in γ pushes the optimal β away from the boundary of the

Bp polytope.)

4. Permanent Inequalities, Special Value of γ, and Conjectures

We start this Section discussing in Subsection 4.1 the recently derived permanent inequalities related

to BP and MF analysis. Then, we switch to describing new results of this manuscript in Subsection

4.2, which are mainly related to the FFE-based generalizations of the inequalities discussed in Sub-

section 4.1. We also discuss in Subsection 4.2 the special (and p-dependent) value of the fractional

coefficient γ for which perm(p) is equal to Z
γ
o− f (p). Finally, Subsection 4.3 is devoted to discussing

Conjectures whose resolutions should help to tighten bounds for the permanent.

4.1 Recently Derived Inequalities

In this Subsection we discuss a number of upper and lower bounds on permanents of positive ma-

trices introduced recently. Our task is two-fold. First, we wish to relate the bounds/inequalities

to the BP and MF approaches introduced and discussed in the preceding Section. Some of these

relations and interpretations are new. However, we also aim to test these bounds, and specifically to
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characterize the tightness of the bounds by testing the gap as a function of advection and diffusion

parameters in the 2d diffusion+advection model in Section 5.

The first bound of interest is

Proposition 18 (BP lower bound) For any non-negative p

perm(p)≥ Zo−BP(p). (16)

This statement, as an experimental but unproven observation, was made in Chertkov et al. (2008).

It was stated as a Theorem (theorem # 14) in Vontobel (2010), but the proof was not provided. See

also discussion in Vontobel (2013) following Theorem 49/Corollary 50. The statement was proven

in Gurvits (2011). Interpreted in terms of the terminology and logic introduced in the preceding

Section, the proof of Gurvits (2011) consists (roughly) in combining the inequality by (Schrijver,

1998)

perm(β.∗ (1−β))≥ ∏
(i, j)

(1−βi j), (17)

stated for any doubly stochastic matrix β, with some (gauge) manipulations/transformations of the

type discussed above in Sections 3.1.1. We give our version of the proof (similar to the one in

Gurvits (2011) in spirit, but somewhat different in details) in Appendix E. One direct Corollary of

the bound (16) discussed in Gurvits (2011), is that

Corollary 19 For an arbitrary doubly stochastic matrix φ

perm(φ)≥ Zo−BP(φ)≥ ∏
(i, j)

(1−φi j)
1−φi j . (18)

Next, the following two lower bounds follow from analysis of Equation (7).

Proposition 20 (BP lower bound #1) For any non-negative p and doubly stochastic matrix β ∈
B

(int)
p solving Equations (6) (if the solution exists) results in

perm(p)≥ ZBP(β|p)∏
(i, j)

(1−βi j)
βi j−1 n!

nn
.

This is the statement of Corollary 7 of Watanabe and Chertkov (2010) valid for any interior point

solution of the BP-equations, and it follows from the Gurvits-van der Waerden Theorem of Gurvits

(2008) and Laurent and Schrijver (2010), also stated as Theorem 6 in Watanabe and Chertkov

(2010).

Proposition 21 (BP lower bound #2) For any non-negative p and β ∈ B
(int)
p solving Equations (6)

(if the solution exists) results in

Z ≥ 2ZBP(β|p)(∏
i, j

(1−βi j))
−1 ∏

i

βiΠ(i)(1−βiΠ(i)),

where Π is an arbitrary permutation.
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This statement was made in Theorem 8 in Watanabe and Chertkov (2010) and it is also related to an

earlier observation of Engel and Schneider (1973).5

Proposition 22 (BP upper bound) For any non-negative p and β ∈ B
(int)
p solving Equations (6) (if

the solution exists)

perm(p)≤ ZBP(β|p)( ∏
(i, j)∈E

(1−βi j))
−1 ∏

j

(1−∑
i

(βi j)
2),

This statement was made in Proposition 9 of Watanabe and Chertkov (2010).

4.2 New Bounds and γ∗

Of the bounds discussed above, three are related to BP and one to MF, while as argued in Section

4.3 the FFE-based approach interpolates between BP and MF. This motivates exploring below new

FFE-based generalizations of the previously known (and discussed in the preceding Subsection) BP

and MF bounds.

We first derive a new lower bound generalizing Proposition 20 to the FFE-based case.

Proposition 23 The following is true for any doubly stochastic matrix β and any γ ∈ [−1;1]

perm
(

β.∗ (1−β).−γ
)

≥ n!

nn ∏
(i, j)

(1−βi j)
−γβi j .

Proof This bound generalizes Corollary 7 of Watanabe and Chertkov (2010), and it follows di-

rectly from the Gurvits-van der Waerden Theorem of Gurvits (2008) and Laurent and Schrijver

(2010) (see also Proposition 8 of Watanabe and Chertkov (2010), where a misprint should be cor-

rected nn/n! → n!/nn), and the inequality, ∑ j βi j(1−βi j)
−γx j ≥ ∏ j

(

(1−βi j)
−γ

x j

)βi j
.

Then, combining Proposition 23 with Theorem 13, one arrives at the following statement, general-

izing Proposition 20:

Corollary 24 (FFE-based lower bound) For any non-negative p and β ∈ B
(int)
p solving Equa-

tions (14) (if the solution exists), the following lower bound holds for any γ ∈ [−1;1]

perm(p)≥ Z
(γ)
f (β|p)n!

nn ∏
(i, j)∈E

(1−βi j)
γ(1−βi j). (19)

Next, one arrives at the following FFE-based generalization of Proposition 22.

Corollary 25 (FFE-based upper bound #1) For any non-negative p and β ∈ B
(int)
p solving Equa-

tions (14) (if the solution exists), the following upper bound holds for any γ ∈ [−1;1]

perm(p)≤ Z
(γ)
f (β|p)( ∏

(i, j)∈E

(1−βi j)
γ)∏

j
∑

i

βi j(1−βi j)
−γ.

5. The proof of the Theorem 8 in Watanabe and Chertkov (2010) contained a misprint that was corrected in the erratum

available at https://sites.google.com/site/mchertkov/publications/mypapers/91_erratum.pdf.
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This upper bound follows from combining Theorem 13, with the simple (and standard) upper bound,

perm(A)≤ ∏ j(∑i Ai, j) applied to A = β.∗ (1−β).−γ.

Note that Corollary 25, applied to the γ= 0 case and reinforced by the observation, that for γ≥ 0

the minimum of the FFE-based function (13) is achieved in β ∈ B
(int)
p , translates into

perm(p)≤ Z
(γ=0)
o− f (p). (20)

Combined with Proposition 17, Equation (20) results in the following:

Corollary 26 (FFE-based upper bound #2) For any non-negative p

∀γ ≥ 0 : perm(p)≤ Z
(γ)
o− f (p).

This completes the list of inequalities we were able to derive generalizing the BP and MF in-

equalities stated in the preceding Subsection for the FFE-based case. These generalizations are valid

(at least) for any γ ∈ [0;1]. Therefore, one may hope to derive somewhat stronger statements rein-

forcing the continuous family of inequalities with the mononotonicity of the FFE-based approach

stated in Proposition 17.

Indeed, combining Equations (16) with Propositions 17,26 one arrives at

Proposition 27 (Special γ∗) For any non-negative p there exists a special γ∗ ∈ [−1;0], such that

perm(p) = Z
(γ∗)
o− f (p), and the minimal FFE-based solution upper (lower) bounds the permanent at

0 ≥ γ > γ∗ (−1 ≤ γ < γ∗).

proposition 27 motivates our experimental analysis of the γ∗(p) dependence discussed in Section 5.

Note also that due to the monotonicity stated in Proposition 17, the γ = 0 upper bound on the

permanent is tighter than the MF, γ = 1, upper bound. However, and as discussed in more details in

the next Subsection, even the γ = 0 upper bound on the permanent is not expected to be tight.

4.3 Conjectures

It was Conjectured in Vontobel (2010) that

perm(p)≤ Zo−BP(p)∗ f (n), (21)

and also that f ∼√
n. The second part of the Conjecture was disproved by Gurvits (2011) with an

explicit counter-example. The inequality in Equation (21) turns into the equality f (n) =
√

2
n

when

p is doubly stochastic matrix and block diagonal, with all the elements in the 2×2 blocks equal to

1/2.6 Then it was Conjectured in Gurvits (2011) that

Conjecture 28 (BP upper bound Gurvits, 2011) For any non-negative p, f (n) in Equation (21)

is ∼
√

2
n
.

Another related (but not identical) Conjecture of Gurvits (2011) is as follows:

6. Note that this special form of the 2× 2 block corresponds to the “double degeneracy” discussed in the paragraph

preceding Corollary 8.
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Conjecture 29 The following inequality holds for any doubly stochastic n×n matrix φ:

perm(φ)≤
√

2
n

∏
(i, j)

(1−φi j)
(1−φi j). (22)

Note that if Equation (22) is true it implies according to Linial et al. (2000) a deterministic polynomial-

time Algorithm to approximate the permanent of n× n nonnegative matrices within the relative

factor
√

2
n
.

It can be verified directly that the condition (22) is achieved (i.e., inequality is turned into equal-

ity) for the special matrix built of the “doubly degenerate” blocks. This special case results in Z
(γ)
f

with γ = −1/2 on the right-hand side of Equation (22). Therefore one reformulates Conjecture 28

as

Conjecture 30 The following inequality holds for any non-negative p

perm(p)≤ Z
γ=−1/2

o− f (p).

We refer an interested reader to Vontobel (2013) for discussion of some other Conjectures related to

permanents.

5. Experiments

We experiment with deterministic and random (drawn from an ensemble) non-negative matrices.

Our simple deterministic example is of the matrices with elements taking two different values

such that all the diagonal are the same and such that all the off-diagonal elements are the same

(Watanabe and Chertkov, 2010).

In our experiments with stochastic matrices we consider the following four different ensembles

• (λin,λout): Ensemble of matrices motivated by Chertkov et al. (2008) and Chertkov et al.

(2010) and corresponding to a mapping between two consecutive images in 2d flows pa-

rameterized by the vector λ = (a,b,c,κ), where κ is the diffusion coefficient and (a,b,c)
stand for the three parameters of the velocity gradient tensor (stretching, shear and rotation,

respectively—see Chertkov et al. 2010 for details). In generating such a matrix p we need to

construct two sets of λ parameters. The first one, λin, is used to generate an instance of parti-

cle positions in the second image, assuming that particles are distributed uniformly at random

in the first image. The second one, λout, corresponds to an instance of the guessed values of

the parameters in the learning problem, where computation of the permanent is an auxiliary

step. (Actual optimal learning consists in computing the maximum of the permanent over

λout.) In our simulations we test the quality of the permanent approximations in the special

case, when λin = λout, and also in other cases when the guessed values of the parameters do

not coincide with the input ones, λin 6= λout.

• [0;ρ]-uniform: In this case one generates elements of the matrix independently at random and

distributed uniformly within the [0;ρ]-range.

• δ-exponential: In this case one generates elements of the matrix independently at random.

Any element is an exponentially distributed random variable with mean δ.
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Figure 2: Illustration for the case of the deterministic matrix (23). Figure (a) shows the gap between

the exact permanent and its lower bound estimate by Equation (24). Figure (b) shows

dependence of the special γ∗ on the parameters.

• [0;ρ]-shifted: We generate the block diagonal matrix with

(

1/2 1/2

1/2 1/2

)

blocks and add

independent random and uniformly distributed in the [0;ρ] interval components to all ele-

ments of the matrix. The choice of this ensemble is motivated by the special role played by

the (doubly degenerate) block-diagonal matrix in the Gurvits Conjecture discussed in Section

4.3.

To make the task of the exact computation of the permanent of a random matrix tractable we

consider sparsified versions of the ensembles defined above. To achieve this goal we either prune

full matrix from the bare (i.e., not yet pruned) ensemble, according to the procedure explained in

Appendix F, or in the case of the [0;ρ]-uniform ensemble we first generate a sufficiently sparse

sub-graph of the fully connected bipartite graph (for example picking a random subgraph of fixed

O(1) degree) and then generate nonzero elements corresponding only to edges of the sub-graph.

5.1 Deterministic Example

We consider a simple example which was already discussed in Watanabe and Chertkov (2010). The

permanent of the matrix p with elements

pi j =

{

w1/T , i = j

1, i 6= j
,

where w > 1 and T > 0, can be evaluated through the recursion,

n

∑
k=0

W (n−k)/T

(

n

k

)

Dk,

D0 = 1, D1 = 0, and ∀k ≥ 2,Dk = (k−1)(Dk−1 +Dk−2). On the other hand, seeking for solution of

the FFE-based Equations (14) in the form of a doubly stochastic matrix β, where

βi j =

{

1− ε(n−1), i = j

ε, i 6= j
, (23)
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one finds that ε should satisfy the following transcendental equation,

(1− ε(n−1))(1− ε)γ = w1/T (n−1)γε1+γ.

At T → ∞ this equation has a unique uniform, ε → 1/(n−1), solution. An interior, ε > 0, solution

of Equation (23) exists, and it is also unique, at any finite T for γ >−1. According to Watanabe and

Chertkov (2010), the interior solution does not exists at γ =−1 and T < logω/ log(n−1).

To test the gap between the exact expression for the permanent and the FFE-based lower bound

of Corollary 24, we fix w = 2,n = 20 and vary the temperature parameter, T . The results are shown

in Figure 2a. One finds that the gap depends on γ with γ = 0 resulting in the best lower bound

for all the tested temperatures. One also observes that the γ-dependence of the gap decreases with

increase in T . Figure 2b shows dependence of the special γ∗, defined in Proposition 27, on n and T

at w = 2. One finds that, consistently with the Conjecture 30, γ∗ is always smaller than −1/2 and it

also decreases with increase in either n or T .

5.2 Random Matrices. Special γ∗.

We search for the special γ = γ∗, defined in Proposition 27, by calculating the permanent of a full

matrix, p, of size n× n, with n = 3, . . . ,14, and of a pruned matrix with n = 10, . . . ,40, and then

comparing it with the FFE-based value Z
(γ)
f (β, p),7 where the doubly stochastic matrix β solves

Equations (14) for given p, for different γ. By repeatedly evaluating the FFE-based approximation

for different values of γ and then taking advantage of the Z
(γ)
f monotonicity and continuity with

respect to γ and performing a search we find the special γ for a specific p.

In general we observed that the special γ∗ for tested matrices was always less than or equal to

−1/2, which is consistent with Conjecture 30. We also observed, estimating or extrapolating the

approximate value of the special γ∗ for a given matrix, that it might be possible to estimate the

permanent of a matrix efficiently and very accurately for some ensembles.

5.2.1 THE (λin,λout) ENSEMBLE

In this Subsection we describe experiments with several of the (λin,λout) ensembles. We are inter-

ested in studying the dependence of the special γ∗, defined in Proposition 27, on the matrix size and

other parameters of the ensemble. We consider here a variety of cases.

Figure 3 shows the results of experiments with full but (relatively) small matrices and different

values λin,λout. The results are presented in the form of a scatter plot, showing results for different

matrix instances from the same ensemble.

As can be seen from the grouping of the first five plots in Figure 3, the dependence of the special

γ∗ on the matrix size at λin = λout is largely sensitive to the diffusion parameter κ and it is not so

dependent on the advection parameters a,b,c. Indeed, Figures 3 (a,b) are similar to each other, as

are Figures 3(c-e), despite having different values of a,b,c.

Figures 3(a-e) also demonstrate an interesting feature: the lower κ, the more erratic the behavior

of the special γ∗.

Analyzing the three last cases in Figure 3 with λin 6= λout, we observed that the larger the value

of κout , the more regular the resulting behavior.

7. In the following we will use the shorter notation, Z
(γ)
f for this object.
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(a) λin =λout = (1,1,1,1)/2 (b) λin =λout = (2,2,2,1/2) (c) λin =λout = (0,0,0,1)

(d) λin =λout = (1,1,1,1) (e) λin =λout = (2,2,2,1) (f) λin =λout = (0,0,0,2)

(g) λin = (1,1,1,1), λout =
(0,0,0,1)

(h) λin = (0,0,0,2), λout =
(0,0,0,1)

(i) λin = (0,0,0,1), λout =
(0,0,0,2)

Figure 3: Scatter plot of the special γ∗ calculated for instances from the (λin,λout) ensemble and

varying the matrix size within the 2÷14 range (no pruning).

Figure 4 shows the same scatter plots as in Figure 3, observed for larger but sparser (90%

pruned) matrices. We observed the general tendency for the average special γ∗ to decrease with

increasing n; however, it is not clear from the observations if the resulting level of fluctuations

decreases with the increase in n or remains the same.

Summarizing, for the (λin,λout) ensemble, we found that the behavior of the special γ∗ with

respect to matrix size to be largely dependent on κout , the diffusion coefficient used to generate the

matrix, while the dependence on other factors is significantly less pronounced. The average special

γ∗ decreases with increasing n, while respective variance remains roughly the same.
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(a) λin = λout = (1,1,1,1)/2 (b) λin = λout = (1,1,1,1) (c) λin = λout = (0,0,0,1)

(d) λin = λout = (2,2,2,1/2) (e) λin = (0,0,0,2),
λout = (0,0,0,1)

(f) λin = (1,1,1,1),λout =
(0,0,0,1)

Figure 4: Scatter plot of the estimated special γ∗ calculated for instances from the (λin,λout) ensem-

ble and varying the matrix size within the 15÷40 range (with 90% pruning).

(a) uniform ensemble. Full (small)

matrix.

(b) δ-exponential ensemble with

δ = 1. Full (small) matrix.

Figure 5: Scatter plot of the estimated special γ calculated for instances from a random matrix

ensemble and varying the matrix size.

5.2.2 UNIFORM AND δ-EXPONENTIAL ENSEMBLES

Figure 5 shows scatter plots for examples of the (a) [0;1]-uniform ensemble,8 and (b) δ-exponential

ensemble. Here we found a very impressive decrease in variance with increase in the matrix size.

Besides, we observe that in spite of their difference, the two ensembles show qualitatively similar

behavior of γ∗ as a function of n. This indicates that for large matrices, whose entries are inde-

8. The simulations results of Section 4 of Huang and Jebara (2009) and the Conjectures in Section VII.B of Vontobel

(2013) apply to the same ensemble.
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(a) ρ = 1/20-shifted (b) ρ = 1/200-shifted

Figure 6: Scatter plot of the estimated special γ∗ calculated for instances from two examples of the

[0;ρ]-shifted ensembles and varying the matrix size.

pendent random variables, we could achieve excellent accuracy by extrapolating on the special γ∗
and estimating Z f (γ∗) = perm(p). Indeed, the rapidly decreasing variance suggests that most of the

error would come from the extrapolation of the average special γ∗ for a given matrix size and not

the error of Z f (γ∗,average)−Z f (γ∗,actual), since γ∗,average and γ∗,actual will be very close in value.

5.2.3 THE [0;ρ]-SHIFTED ENSEMBLE

We also studied the special γ∗ in “badly-behaved” cases such as the one brought up earlier, with

2× 2 squares of 1/2’s positioned along the diagonal. (See discussion in Section 4.3.) It can be

easily shown that the special value of γ∗ of the bare block-diagonal matrix is −1/2. Unsurprisingly,

our experiments, documented in Figure 6, showed that: (a) the resulting γ is always smaller than

−1/2, and (b) as more noise was introduced, the special γ∗ decreased in value faster with respect

to matrix size. However, this decrease with n towards smaller γ∗ was much slower than in other

ensembles, particularly for low noise.

5.3 Random Matrices: Testing Inequalities and Conjectures

Figures 7,8 and Figures 9,10, showing the average behavior and scatter plots for smaller and larger

(pruned) matrices, respectively (see Figure captions for explanations), present experimental verifi-

cation to the variety of inequalities discussed in Section 4.1. The ensemble used for these plots was

the ensemble λin = λout = (1,1,1,1)/2. The data suggests that neither of the bounds are actually

tight, and moreover the values of the gaps, between the exact expression and respective estimates

tested, fluctuate more strongly with increasing matrix size. We also observe from Figures 7 and Fig-

ures 8f, that Equation (21) has f (n) growing faster with n than ∼√
n even on average. In the case

of larger pruned matrices we removed the two expressions log((ZBP(∏(i, j)∈E (1− βi j))
−1 ∏ j(1−

∑i(βi j)
2))/Z) and log((2ZBP(∏i, j(1−βi j))

−1 ∏i βiΠ(i)(1−βiΠ(i)))/Z). We removed the former be-

cause in the case of pruning the resulting β is often partially-resolved (with some elements of β

equal to one) and in this case the inequality does not carry any restriction. We removed the latter

because, in the pruned case and for a randomly chosen permutation, it is very likely that at least one

element of β is zero, making the bound discussed unrestrictive.

Figure 11 shows that the bounds given by the corollaries 24, 25 do not depend much on γ and

that they in practice depend more on matrix size and on peculiarities of individual matrices. There
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Figure 7: This Figure describes the gap between the actual value of the permanent and the values of

the various theoretical upper and lower bounds described in the paper and averaged over

different simulation trials. Each color corresponds to an upper or lower bound as follows:

Blue dots corresponds to the MF approximation to the permanent, ZMF . Green X’s cor-

respond to log(ZBP(∏(i, j)∈E (1− βi j))
−1 ∏ j(1−∑i(βi j)

2)/Z). Red sideways Y’s corre-

spond to log(ZBP ∏i, j(1−βi j)
βi j−1 n!

nn /Z). Cyan “+” symbols correspond to log(ZBP/Z).
Yellow inverted Y’s correspond to log(2ZBP(∏i, j(1− βi j))

−1 ∏i βii(1− βii)/Z). Purple

stars correspond to log(0.01ZBP

√
n/Z). Black circles correspond to log(Z

γ=0
f /Z). Black

Y’s correspond to log(Z
γ=−0.5
f /Z). To make a data point, 100 instances, each correspond-

ing to a new matrix are drawn, and the log of the ratio of the bound to the actual permanent

is recorded. The data shown corresponds to matrices from the (λin,λout) ensemble.

is a slight change for values of γ near −1, but otherwise the plot is nearly flat, so it seems that

unfortunately little tightening of the bounds can be achieved by tweaking γ. Another noteworthy

observation is that a higher upper bound implies a higher lower bound, and vice-versa.

Figure 12 is related to discussions of Corollary 19 for the permanent of a doubly stochastic

matrix. We generate an instance of a doubly stochastic matrix and calculate the respective BP

expression in three steps (this is the procedure of Knopp and Sinkhorn (1967), also discussed by
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(a) log(ZMF/Z) (b) log((ZBP(∏(i, j)∈E (1 −
βi j))

−1 ∏ j(1−∑i(βi j)
2))/Z)

(c) log((ZBP ∏i, j(1 −
βi j)

βi j−1 n!
nn )/Z)

(d) log(ZBP/Z) (e) log((2ZBP(∏i, j(1 −
βi j))

−1 ∏i βiΠ(i)(1−βiΠ(i)))/Z)

(f) log(0.01ZBP

√
n/Z)

(g) log(Z
(γ=0)
f /Z) (h) log(Z

(γ=−0.5)
f /Z)

Figure 8: Scatter plots for the data shown in Figures (7). For better presentation the data is split

into 8 sub-figures. The vertical axis of each scatter plot is specific to the behavior of the

expression with respect to the matrix size and the color coding for different objects tested

coincides with that used in Figure 7.

Huang and Jebara 2009): (a) generate a non-negative matrix from the [0;1] ensemble; (b) re-scale

rows and columns of the matrix iteratively to get a respective doubly stochastic matrix;9 and (c)

apply the BP- (γ =−1) procedure to evaluate the Zo−BP estimate for the resulting doubly stochastic

matrix. In agreement with Equation (18), the average value of the log corresponding to the BP-lower

bound is positive and smaller than the respective expression for the average of the log of the explicit

expression on the right-hand side of Equation (18). (The hierarchical relation obviously holds as

well for any individual instance of the doubly stochastic matrix β from the generated ensemble.) We

9. The rescaling is a key element of Linial et al. (2000), and we can also think of the procedure as of a version of the

γ = 0 iterative Algorithm.

2051



CHERTKOV AND YEDIDIA

10 15 20 25 30 35
Number of particles

−20

−10

0

10

20

30

40

50
V
a
lu

e
s

Figure 9: The data is shown like in Figure 7, but for large, sparsified matrices. Less mean-

ingful expressions were removed from the plot. Each color/symbol pair corresponds

to a mathematical expression, as follows, blue dots: log(ZMF/Z), red sideways Y’s:

log(ZBP ∏i, j(1 − βi j)
(βii−1) · n!/(nnZ)), cyan “+” symbols: log(ZBP/Z), purple stars:

log(ZBP

√
n/(100Z)), black circles: log(Z f (γ = 0)/Z), black Y’s: log(Z f (γ =−1/2)/Z);

where Z = perm(p).

also observe that the average values of the curves show a tendency to saturate, while the standard

deviation decreases dramatically, suggesting that for large n this random ensemble may be well

approximated by either BP or, even more simply, by its explicit lower bound from the right-hand

side of Equation (18), the latter being in the agreement with the proposal of Gurvits (2011).

6. Conclusions and Path Forward

The main message of this and other related recent papers by Chertkov et al. (2008), Huang and

Jebara (2009), Chertkov et al. (2010), Watanabe and Chertkov (2010), Vontobel (2010), Vontobel

(2013) and Gurvits (2011) is that the BP approach and improvements not only give good heuristics

for computing permanents of non-negative matrices, but also provide theoretical guarantees and

thus reliable deterministic approximations. The main highlights of this manuscript are
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(a) log(ZMF/Z) (b) log((ZBP ∏i, j(1 −
βi j)

βi j−1 n!
nn )/Z)

(c) log(ZBP/Z)

(d) log(0.01ZBP

√
n/Z) (e) log(Z

(γ=0)
f /Z) (f) log(Z

(γ=−0.5)
f /Z)

Figure 10: Scatter plots for the data shown in Figures (9). For better presentation the data is split

into 6 sub-figures. Each scatter plot is specific to the behavior of the expression with

respect to the matrix size and the color coding for different objects tested coincides with

the one used in Figure 9.
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Figure 11: This plot shows γ-dependence of the gap between upper and lower bounds correspond-

ing to Corollaries 24, 25. Here, the bounds were plotted for six different matrices, each

generated with λin = λout = (1,1,1,1)/2, where the upper and lower bounds are color-

coded and use matching symbols to indicate that they correspond to the same matrix.
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Figure 12: A plot of the average (Subfigure a) and standard deviation (Subfigure b)

of perm(β)/∏i, j(1 − βi j)
1−βi j (in blue dots connected by a solid line) and

perm(β)/Zo−BP(β) (in red crosses connected by a dashed line), where β is a doubly

stochastic matrix picked from 100 instances of the random ensemble described in the

text, shown as a function of n.

• The construction of the FFE-based approach, parameterized by γ ∈ [−1;1] and interpolating

between BP (γ =−1) and MF (γ = 1) limits.

• The discovery of the exact relation between the permanent of a non-negative matrix, perm(p)

and the respective FFE-based expression, Z
(γ)
f (p), where the latter is computationally tractable.

• The proof of the continuity and monotonicity of Z
(γ)
f (p) with γ, also suggesting that for some

γ∗ ∈ [−1;0], perm(p) = Z
(γ∗)
f (p).

• The extension of the list of known BP-based upper and lower bounds for the permanent by

their FFE-based counterparts.

• The experimental analysis of permanents of different ensembles of interest, including those

expressing relations between consecutive images of stochastic flows visualized with particles.

• Our experimental tests include analysis of the gaps between exact expression for the perma-

nent, evaluated within the ZDD technique adapted to permanents, and the aforementioned

BP- and fractional-based lower/upper bounds.

• The experimental analysis of variations in the special γ for different ensembles of matrices

suggests the following conclusions. First, the behavior of the special γ varies for different

ensembles, but the general trend remains the same: as long as there is some element of ran-

domness in the ensemble, the special γ decreases as matrix size increases. Second, for each

ensemble the behavior of the special γ is highly distinctive. For some considered random ma-

trix ensembles, the variance decreases quickly with increasing matrix size. All of the above

suggest that the FFE-based approach offers a lot of potential for estimating matrix perma-

nents.

We view these results as creating a foundation for further analysis of theoretical and computa-

tional problems associated with permanents of large matrices. Of the multitude of possible future

problems, we consider the following ones listed below as the most interesting and important:
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• Improving BP and FFE-based approaches and making the resulting lower and upper bounds

tighter.

• Further analysis of the γ-dependence, making theoretical statements for statistics of log-

permanents at large n and for different random ensembles.

• Using the new permanental estimations and bounds for learning flows in the setting of Chertkov

et al. (2010). Combining within the newly introduced FFE-based approach the β-optimization

with optimization over flow parameters (by analogy with what is done in Chertkov et al.

2010). Applying the improved technique to various particle image velocimetry (PIV) exper-

iments of interest in fluid mechanics in general, and specifically to describe spatially smooth

multi-pole flows in micro-fluidics, see, for example, discussion of the most recent relevant

experiments in Drescher et al. (2010) and Guasto et al. (2010) and references therein.10

• Addressing other GM problems of the permanental type, for example, counting matchings

(and not only perfect matchings) on arbitrary graphs, drawing inspiration from Sanghavi et al.

(2011) generalizing Bayati and Nair (2006) and Bayati et al. (2008) in the ML setting, and

higher dimensional matchings, in particular corresponding to matching of paths between mul-

tiple consecutive images within the “learning the flow” setting.
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Appendix A. Most Probable Perfect Matching

This short Appendix is introduced to guide the reader through material which is related, but only

indirectly (through physics motivation and historical links), to the main subject of the manuscript.

A.1 Most Probable Perfect Matching over Bi-Partite Graphs

According to Equation (2), the permanent can be interpreted as the partition function of a GM.

The partition function represents a weighted counting of the n! perfect matchings. Using “physics

terminology” one says that this perfect matching representation allows to interpret the permanent as

the statistical mechanics of perfect matchings (called dimers in the physics literature) over the bi-

partite graph. This is statistical mechanics at finite temperatures, as the partition function represents

a (statistical) sum over the perfect matchings.

10. We are thankful to Eric Lauga for suggesting to us the micro-fluidics experiments as one possible application for the

“learning the flow” BP-based approach.
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However, it is still of interest to discuss (at least in the context of establishing historical links)

the “zero temperature,” or maximum likelihood (ML) version of Equation (2)

− log(ZML(p)) = min
σ

∑
(i, j)∈E

σi j log(1/pi j). (24)

According to the logic of Yedidia et al. (2005), Equation (24) can also be stated in the probability

space (i.e., in terms of b(σ)) as

− log(ZML(p)) = min
b

∑
(i, j)∈E

∑
σ

σi j log(1/pi j)b(σ). (25)

Then, the function of b(σ) which is the object of minimization over beliefs in Equation (25) is

naturally the ML (zero temperature) version of the FE function (3).

By construction, ZML(p)≤ Z(p) for any p. Note also that Equation (24) is a linear programming

(LP) equation, but one which at first sight appears intractable, giving an optimization defined over

a huge polytope and spanning all the perfect matchings with nonzero probability. For a general

GM the LP-ML formulation is indeed intractable, but for the specific problem under consideration

(finding the perfect matching over a bipartite graph) the ML-LP problem (25) becomes tractable,

as discussed below in the next Subsection. Given classical results from optimization theory, related

to the so-called Hungarian Algorithm, by Kuhn (1955), and the auction Algorithm, by Bertsekas

(1992), this special solvability (reduced complexity) of the ML perfect matching problem is not

surprising.

A.2 Linear Programming Relaxation of BP

The Bethe FE (4) can be split naturally into the self-energy term and the self-entropy terms (at unit

temperature), FBP = EBP −SBP:

EBP(β|p) =− ∑
(i, j)

βi j log(pi j),

SBP(β|p) = ∑
(i, j)

(−βi j log(βi j)+(1−βi j) log(1−βi j)) .

If the entropy term is ignored in Equation (8) the problem turns into the linear programming (LP)

formulation of BP

− log(ZLP(p)) = min
β

EBP(β). (26)

One can also arrive at the same LP formulation (26) by relaxing the original ML-LP setting

(25). As shown in Bayati et al. (2008) and Chertkov (2008), the relaxation is provably tight for

any p , that is, ZLP(p) = ZML(p), as the resulting matrix of constraints in the LP problem (26)

describing the doubly stochasticity of β is totally uni-modular, so the corners of the respective

polytope are in one-to-one correspondence with the perfect matching configurations/corners of the

higher-dimensional polytope from Equation (25), also in accordance with the Birkhoff-von Neu-

mann Theorem by (Kőnig, 1936; Birkhoff, 1946; von Neumann, 1953).

Appendix B. Bethe-Free Energy Approach

This Appendix provides some additional details on the Bethe-Free Energy Approach.
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B.1 Exact BP-based Relations for Permanents

We present here a simple proof of Equation (7), essentially following a slightly modified version of

what was the main statement of Watanabe and Chertkov (2010).

Consider an interior minimum of the Bethe FE function (4) achieved with a strictly nonzero (for

elements with positive pi j) doubly stochastic matrix β. Then, the minimum satisfies Equations (6),

where log(u) are respective Lagrangian multipliers. Weighting the logarithm of Equations (6) with

β, summing up the result over all the edges, using Equation (4) and the double stochasticity of β,

one derives

∑
(i, j)∈E

βi j log(uiu j) = ∑
i∈V1

logui + ∑
j∈V2

logu j

= ∑
(i, j)∈E

(βi j log(pi j/βi j)−βi j log(1−βi j)) = logZBP − ∑
(i, j)∈E

log(1−βi j). (27)

On the other hand, applying the permanent to both sides of Equation (6) one arrives at

perm(p) = perm(β.∗ (1−β))

(

∏
i∈V1

ui

)(

∏
j∈V2

u j

)

. (28)

Combining Equation (27) with Equation (28) results in Equation (7).

B.2 Iterative Algorithm(s) for Finding Solution of BP Equations

First of all, let us recall that according to Proposition 7, (4) is convex. However, as explained

above the convexity is not trivial, as it is enforced by global constraints. This lack of convexity of

individual edge-local terms in Equation (4) creates a technical obstacle to finding a valid fixed point

of FBP, suggesting that an iterative Algorithm converging to the fixed point of FBP will be more

elaborate than the one discussed below in the MF case.

To find a valid solution of BP in our numerical experiments we use the following practical

iterative scheme (heuristics), previously described in Chertkov et al. (2008) (see Equations (7,8) as

well as preceding and following explanations):

∀(i, j) : βi j(n+1)=λβi j(n)+
(1−λ)pi j

pi j +(∑k βk j(n)/2+∑k βik(n)/2−βi j(n))2(ui(n)u j(n))
, (29)

∀i : ui(n+1) =
∑k pik/uk(n)

1−∑ j(βi j(n))2
, ∀ j : u j(n+1) =

∑k pk j/uk(n)

1−∑i(βi j(n))2
, (30)

where the arguments of the β’s indicate the order of the iterations. The damping parameter λ (typ-

ically chosen 0.4÷0.5) helps with convergence. To ensure appropriate accuracy for solutions with

β’s close to zero or unity we also insert a normalization step after Equations (29) but prior to Equa-

tions (30), making the following two transformations subsequently, (a) ∀(i, j): βi j → βi j/∑k βik,

and (b) ∀(i, j): βi j → βi j/∑k βk j. (The two steps implement an elementary step of the Sinkhorn

operation from Huang and Jebara 2009.) The Algorithm is sensitive to initial values for β and u.

To ensure convergence, one initiates the Algorithm with the output of the MF scheme (which con-

verges much better) as described in Appendix C.2, that is, β(0) = βMF and u(0) = vMF . Numerical

experiments show that this procedure always converges to an interior stationary point of the BFE
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(4), when one exists and is not degenerate. In the special cases when the solution is on the boundary

it seemed to converge there as well, but we did not study this systematically to make a definitive

statement.

Note that the Algorithm presented above is certainly not the only option one can use to find a

doubly stochastic matrix solution of BP Equations (6). In fact, the standard sum-product Algorithm

(SPA) of Yedidia et al. (2005), stated for the problem of computing the permanent in Chertkov

et al. (2010), is a serious competitor, which according to Theorem 32 of Vontobel (2013) always

converges to the minimum of the Bethe FE. Future work is required to compare the convergence

speed of the two Algorithms.

Appendix C. Mean-Field (Fermi) Approach

This Appendix provides some additional details on the Mean-Field Approach.

C.1 Exact MF-based Relations for Permanents

We present here a simple proof of Equation (12), essentially following the logic of what was de-

scribed above for BP in Appendix B.1.

Weighting the logarithm of Equations (11) with that doubly stochastic matrix β which minimizes

Equation (12), summing the result over all the edges, and making use of Equations (11,9), one

derives

∑
(i, j)∈E

βi j log(viv j) = ∑
i∈V1

logvi + ∑
j∈V2

logv j

= ∑
(i, j)∈E

(βi j log(pi j/βi j)+βi j log(1−βi j)) = logZMF(p)+ ∑
(i, j)∈E

log(1−βi j). (31)

On the other hand, applying the permanent to both sides of Equation (11) one arrives at

perm(p) = perm(β./(1−β))

(

∏
i∈V1

vi

)(

∏
j∈V2

v j

)

. (32)

Combining Equation (31) with Equation (32) results in Equation (12).

C.2 Iterative Scheme for Solving Mean-Field Equations

An efficient heuristic way to find a (unique) solution of the MF system of Equations (11) for doubly

stochastic matrix β is to initialize with vi(0) = v j(0) = 1 and iterate according to

βi j(n+1) =
pi j

pi j + vi(n)v j(n)
, (33)

vi(n+1) = vi(n)∑
j

βi j(n), v j(n+1) = v j(n)∑
i

βi j(n), (34)

until the tolerance δ > max(abs(β(n+1)−β(n))) is met.

Appendix D. FFE-based Approach

This Appendix provides some additional details on the FFE-based Approach.
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D.1 Exact Relations for Permanents

We present here a simple proof of Equation (15), which is a direct generalization of what was

discussed above in Appendices B.1, C.1.

Weighting the logarithm of Equations (14) with that doubly stochastic matrix β which minimizes

Equation (15), summing the result over all the edges, and making use of Equations (14,13), one

derives

∑
(i, j)∈E

βi j log(wiw j) = ∑
i∈V1

logwi + ∑
j∈V2

logw j

= ∑
(i, j)∈E

(βi j log(pi j/βi j)+ γβi j log(1−βi j))

= logZ
(γ)
f (β|p)+ γ ∑

(i, j)∈E

log(1−βi j). (35)

On the other hand, applying the permanent to both sides of Equation (14) one arrives at

perm(p) = perm(β./(1−β).γ)

(

∏
i∈V1

wi

)(

∏
j∈V2

w j

)

. (36)

Combining Equation (35) with Equation (36) results in Equation (15).

D.2 Iterative Scheme for Solving FFE-based Equations

All edge-local terms in the FFE-based function (13) are convex in β ∈ [0;1] for γ > 0, while for

negative γ the edge-term convexity holds only when all elements of β are smaller than a threshold

βc ≥ 1/2, which is a solution of βc log(βc) =−γ(1−βc) log(1−βc). This suggests different iterative

schemes for positive and negative γ.

When γ > 0 we use the following modification of the MF scheme (33,34):

βi j(n+1) =
pi j(1−βi j(n))

γ−1

pi j(1−βi j(n))γ−1 +wi(n)w j(n)
,

wi(n+1) = wi(n)∑
j

βi j(n), w j(n+1) = w j(n)∑
i

βi j(n),

In the case of γ ≤ 0 we use the following modification of the BP scheme

∀(i, j) : βi j(n+1) = λβi j(n) (37)

+
(1−λ)pi j(1+βi j(n))

1+γ

pi j(1+βi j(n))1+γ +(∑k β
j

k(n)/2+∑k βk
i (n)/2−βi j(n))2(wi(n)w j(n))

,

∀i : wi(n+1) =
∑k pik(1+βik(n))

1+γ/wk(n)

1−∑ j(βi j(n))2
,

∀ j : w j(n+1) =
∑k pk j(1+βk j(n))

1+γ/wk(n)

1−∑i(βi j(n))2
, (38)

where the arguments of the β’s indicate the order of the iterations. The damping parameter λ (typ-

ically chosen 0.4÷0.5) helps with convergence. To ensure appropriate accuracy for solutions with
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β’s close to zero or unity we also insert a normalization step after Equations (37) but prior to Equa-

tions (38), making the following two transformations consequently,

(a) ∀(i, j) : βi j → βi j/∑
k

βik,

(b) ∀(i, j) : βi j → βi j/∑
k

βk j.

The Algorithm is sensitive to initial values for β and w. To ensure convergence, we initiate the

Algorithm with the output of the MF scheme (which converges much more easily) described in Ap-

pendix C.2, that is, β(0) = βMF and w(0) = vMF . Numerical experiments show that this procedure

converges to a stationary point of the fractional FE (13). We also verified that the iterative scheme

designed for γ < 0 converges in the γ > 0 case, even thought the former scheme is obviously faster.

Note that FFE-based version of the standard sum-product Algorithm (SPA) can be developed. It

is also natural to expect, in view of the general convexity of the fractional FE discussed in the main

body of the text, that there exists a provably convergent version of the SPA. It will be important to

design such a convergent γ-SPA in the future and to compare its practical performance against one

of the heuristics described above.

Appendix E. BP Gives Lower Bound on the Permanent

Here we give our version of the proof of the lower bound (16). First of all, in the case when the

Bethe FE reaches its minimum in the interior of the domain, that is, at β ∈ Bp, Equation (16) follows

directly from the main result of Watanabe and Chertkov (2010), that is, Equation (7), and Schijver’s

inequality (17). Therefore, according to explanations of Section 3.1.1, we only need to analyze the

case when the minimum of the Bethe FE is a partially resolved solution, with a β which can be

split by appropriate permutations of rows and columns of the matrix into a perfect matching block

(corresponding to a corner of the respective projected polytope), the block with all elements smaller

than unity and nonzero unless the respective element of p is zero (thus lying in the interior of the

respective subspace), and all cross elements of β (between the blocks) equal to zero. Then, Zo−BP

for such a partially resolved solution is split into the product of two contributions, Zo−BP = Zpm ·Zint ,

where Zpm corresponds to the perfect matching block, and Zint corresponds to the interior block. In

fact, Zpm is equal to the weighted perfect matching block of p and − log(Zint) corresponds to the

minimum of the Bethe FE computed for the interior block of p. On the other hand the full partition

function, Z, can be bounded from below by the product Z ≥ Z1 ·Z2, where Z1 and Z2 are permanents

of the first and second blocks of the original matrix p. (Thus contributions of all the cross-terms

of p into Z are ignored.) However, Z1 ≥ Zpm, as counting only one perfect matching (and ignoring

others), and Z2 ≥ Zint in accordance to what was already shown above for any minimum of Bethe

FE achieved in the interior of the respective domain.

Appendix F. Pruning of the Matrix

Computing the permanent of sufficiently dense matrices exactly with the ZDD approach explained

in Appendix G is infeasible for n > 30. To overcome this difficulty we choose to sparsify dense ma-

trices generated in one of our experimental ensembles, removing their less significant entries in the

following steps. First, we use LP, described in Appendix A.2, to find the permutation correspond-

ing to the maximum perfect matching. To avoid getting a zero permanent in the result, we include
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all components of the maximum perfect matching permutation in the pruned matrix. Second, we

consider every other entry of the matrix (not contributing to the maximum perfect matching) and

keep it in the matrix only if it is included in a perfect matching which is close to the maximum

perfect matching, that is, the two permutations share all but a few of their entries and the ratio of

their weighted contributions (in the permanent) is larger than a pre-defined value. Then, we act ac-

cording to either of the two strategies, both of which are explored in this manuscript. One strategy is

to include all permutations whose products are more than a given fraction of the main permutation.

This method will tend to reduce the fluctuations in the error of the pruned matrix (i.e., will reduce

the variation in Zpruned/Zoriginal). The other method is to always prune a set fraction of entries from

the matrix, and prune them in order of decreasing value as determined by the above criterion. This

method will reduce the fluctuations in the runtime of the Algorithm.

Appendix G. Zero-suppressed Binary Decision Diagrams Method

Zero-suppressed binary decision diagrams, or ZDDs, are a tool useful for representing combinatorial

problems. The concept was introduced by Shin-Ichi Minato in 1993 (Minato, 1993). The idea of

ZDD is as follows: if one defines a combinatorial problem to be a function of many variables,

each taking values in {0, 1}, with the value of the function itself being also in {0, 1}, then those

sequences of inputs that lead to unity can be thought of as “solutions” to the problem. Furthermore,

each solution can be described in terms of the input variables within it that are equal to unity. The

problem, then, can be described as being a “family of sets,” or set of sets, where the family is of all

solutions to the problem and each set within the family is the set of input variables whose value is 1

in that solution.

To give an example of the “family of sets” concept, consider the XOR function, which returns

1 if and only if the inputs are equal. This function can also be represented as the family of sets

{ /0,{1,2}}, where 1 and 2 correspond to inputs 1 and 2 to the function, because if the function is

to have value 1 then either both inputs must be equal to 1 or neither must be. Once this has been

understood, it is best to see the ZDD as nothing more than a concise representation of this family

of sets, since the family can get quite cumbersome for problems with many solutions and many

variables. Note that this system of representing problems provides the greatest improvement when

there are few solutions, and when the solutions themselves are sparse, since the family of sets is

then small. Correspondingly, ZDDs are most efficient under these conditions.

The actual format of a ZDD is that of a directed tree of nodes, with each node having a directed

edge to two other nodes. Each edge emanating from a node has an identity, in that it is either a high

“HI” branch or a low “LO” branch, and of the two edges emanating from each node, there must be

exactly one “HI” branch and one “LO” branch. Each node also has an identity, a number from 1 to

n if there are n inputs to the combinatorial problem. The tree must contain one or two special nodes,

or “sinks”, one of which is the “true” sink, and optionally the “false” sink. We also introduce the

conventions that nodes can only point to nodes of higher identity than themselves and that no two

nodes can be identical in both their identity and their LO and HI pointers.

Each node in a ZDD represents a choice about the variable the node identifies. If one begins at

the top node of a ZDD, taking the HI branch represents including the variable represented by the

node’s identity in a prospective solution, and taking the LO branch represents not including that

variable. If a LO or HI branch points to the true sink, that implies that a solution is reached if

and only if all variables with identity greater than the current node identity are not included. If a
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(a) (b)

Figure 13: Two simple ZDD diagrams discussed in the text.

LO branch points to the false sink, that implies that no solution is possible given the choices made

previously. Interestingly, the constraints introduced in the paragraph previous to this one imply that

a HI branch can never point to the False sink.

ZDDs are best understood with examples. The first example, also illustrated in Figure 13(a), is

of the ZDD for the exactly-two function of three variables, in other words, the function that returns

1 if exactly two of its three inputs have value 1 and 0 otherwise. It can also be described as the

family of sets {{1, 2}, {1, 3}, {2, 3}}. Here, a dotted line denotes a LO branch and a normal line

denotes a HI branch. Furthermore, the T and F symbols denote the true and false sinks, respectively,

and the numbers inside each node refer to the nodes’ identities (the variables that they represent).

Our second example, shown in Figure 13(b), represents the family of sets { /0,{1},{1,2},{1,3}}.

Note the absence of a False sink. Note, also, the fact that a node’s HI and LO branches need not

point to the different locations. A more in-depth exploration of the ZDD concept can be found in

Knuth (2009).

Once the basic concept of ZDDs is introduced, one can use it for solving various combinatorial

problems, for example, to represent a permanent as a ZDD in order to use the method. When we

apply ZDDs to the computations of permanent, we classify each entry of the matrix as either zero

or nonzero. Then, we define a variable for each nonzero entry in the matrix. Each solution of our

resulting ZDD will represent a possible permutation, meaning a set of entries in the matrix such that

exactly one entry in each row and column is included in the set. There is a recursive Algorithm,

suggested in Knuth (2009), that allows for efficient counting of the solutions of the ZDD. The

Algorithm is simple: the number of solutions of a ZDD rooted at a node is equal to the sum of the

numbers of solutions of the ZDD rooted at the HI and LO children of that node. The True sink is

defined as having 1 solution, and the False sink as having 0. Note that the number of solutions of
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(a) pruning 40% (b) pruning 60% (c) pruning 80%

Figure 14: Scatter plot of the number of memory accesses required to exactly compute the perma-

nent of a sparse matrix for instances with different degree of pruning. Red and blue dots

mark results of the Ryser formula and of the ZDD-based method, respectively. The num-

bers of memory accesses required to compute Ryser’s formula at each trial are closely

clumped, and so we link their results by a red line. The ZDD method’s performance is

less predictable, so we do not draw a line through its scatter plot.

a ZDD representing a matrix is equal to the permanent of the corresponding to 0− 1 matrix, with

each 1 corresponding a nonzero entry.

In order to find the permanent of matrices that are not 0-1 matrices, only a small modification

is necessary. Instead of purely counting solutions of the ZDD, we do a weighted count, where the

weighted number of solutions of a ZDD rooted at a node is equal to the value of the corresponding

matrix entry times the weighted number of solutions at the HI child added to the weighted number

of solutions at the LO child. In other words, if we are considering a node n with children HI and

LO whose identity corresponds to a matrix entry of nonzero value v, then

WeightedCount(n) = v ·WeightedCount(HI)+WeightedCount(LO).

The WeightedCount of the root node of the ZDD will be equal to the permanent of the corresponding

matrix.

This leaves the question of how to build the ZDD from the matrix. This is done using Knuth’s

“melding” Algorithm. The Algorithm is somewhat complex and will not be described here, but it is

described in detail in Knuth (2009). The melding Algorithm is an efficient and systematic method

for constructing larger ZDD out of the logical combination of smaller ones. The smallest ZDD

being melded together using Knuth’s Algorithm are ZDD representing the “exactly-one” constraint

for each row and column of the matrix; in other words, they are constraints requiring exactly one

matrix entry in every row and column to be included in a permutation which will be a “solution” to

our problem.

Appendix H. Comparison of Ryser’s Formula with the ZDD-based Method

As part of our experiments we compared the speed of Ryser’s formula with the speed of the ZDD-

based method by counting memory accesses in each of the two Algorithms in order to fairly compare

them. We found that the values we got for memory accesses were strongly correlated with the

actual speed of the Algorithm. We found that for very dense matrices, Ryser’s formula is faster,
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but for sparser matrices the ZDD-based method is faster. We performed experiments with matrices

that were 20%, 40%, and 60% sparse in order to get a good idea of the point where the ZDD-

based method starts outperforming Ryser’s formula. (Naturally, with no pruning, Ryser’s formula

outperforms the ZDD-based method significantly.)

As can be seen from Figure 14, the ZDD-based method begins outperforming Ryser’s formula

when matrices are around 60% sparse.
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