
Journal of Machine Learning Research 14 (2013) 1251-1284 Submitted 10/11; Revised 9/12; Published 5/13

Random Spanning Trees and the Prediction of Weighted Graphs

Nicolò Cesa-Bianchi NICOLO.CESA-BIANCHI@UNIMI.IT

Dipartimento di Informatica

Università degli Studi di Milano

via Comelico 39

20135 - Milano, Italy

Claudio Gentile CLAUDIO.GENTILE@UNINSUBRIA.IT

DiSTA

Università dell’Insubria

via Mazzini 5

21100 - Varese, Italy

Fabio Vitale FABIO.VITALE@UNIMI.IT

Dipartimento di Informatica

Università degli Studi di Milano

via Comelico 39

20135 - Milano, Italy

Giovanni Zappella GIOVANNI.ZAPPELLA@UNIMI.IT

Dipartimento di Matematica

Università degli Studi di Milano

via Saldini 50

20133 - Milano, Italy

Editor: Shie Mannor

Abstract

We investigate the problem of sequentially predicting the binary labels on the nodes of an arbitrary

weighted graph. We show that, under a suitable parametrization of the problem, the optimal number

of prediction mistakes can be characterized (up to logarithmic factors) by the cutsize of a random

spanning tree of the graph. The cutsize is induced by the unknown adversarial labeling of the

graph nodes. In deriving our characterization, we obtain a simple randomized algorithm achieving

in expectation the optimal mistake bound on any polynomially connected weighted graph. Our

algorithm draws a random spanning tree of the original graph and then predicts the nodes of this

tree in constant expected amortized time and linear space. Experiments on real-world data sets

show that our method compares well to both global (Perceptron) and local (label propagation)

methods, while being generally faster in practice.

Keywords: online learning, learning on graphs, graph prediction, random spanning trees

1. Introduction

A widespread approach to the solution of classification problems is representing data sets through

a weighted graph where nodes are the data items and edge weights quantify the similarity between

pairs of data items. This technique for coding input data has been applied to several domains,

including Web spam detection (Herbster et al., 2009b), classification of genomic data (Tsuda and

c©2013 Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale and Giovanni Zappella.

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

Schölkopf, 2009), face recognition (Chang and Yeung, 2006), and text categorization (Goldberg and

Zhu, 2004). In many applications, edge weights are computed through a complex data-modeling

process and typically convey information that is relevant to the task of classifying the nodes.

In the sequential version of this problem, nodes are presented in an arbitrary (possibly adversar-

ial) order, and the learner must predict the binary label of each node before observing its true value.

Since real-world applications typically involve large data sets (i.e., large graphs), online learning

methods play an important role because of their good scaling properties. An interesting special case

of the online problem is the so-called transductive setting, where the entire graph structure (includ-

ing edge weights) is known in advance. The transductive setting is interesting in that the learner has

the chance of reconfiguring the graph before learning starts, so as to make the problem look easier.

This data preprocessing can be viewed as a kind of regularization in the context of graph prediction.

When the graph is unweighted (i.e., when all edges have the same common weight), it was

found in previous works (Herbster et al., 2005; Herbster and Pontil, 2007; Herbster, 2008; Herbster

and Lever, 2009) that a key parameter to control the number of online prediction mistakes is the

size of the cut induced by the unknown adversarial labeling of the nodes, that is, the number of

edges in the graph whose endpoints are assigned disagreeing labels. However, while the number

of mistakes is obviously bounded by the number of nodes, the cutsize scales with the number of

edges. This naturally led to the idea of solving the prediction problem on a spanning tree of the

graph (Cesa-Bianchi et al., 2009; Herbster et al., 2009a,b), whose number of edges is exactly equal

to the number of nodes minus one. Now, since the cutsize of the spanning tree is smaller than that

of the original graph, the number of mistakes in predicting the nodes is more tightly controlled. In

light of the previous discussion, we can also view the spanning tree as a “maximally regularized”

version of the original graph.

Since a graph has up to exponentially many spanning trees, which one should be used to maxi-

mize the predictive performance? This question can be answered by recalling the adversarial nature

of the online setting, where the presentation of nodes and the assignment of labels to them are both

arbitrary. This suggests to pick a tree at random among all spanning trees of the graph so as to

prevent the adversary from concentrating the cutsize on the chosen tree (Cesa-Bianchi et al., 2009).

Kirchoff’s equivalence between the effective resistance of an edge and its probability of being in-

cluded in a random spanning tree allows to express the expected cutsize of a random spanning tree

in a simple form. Namely, as the sum of resistances over all edges in the cut of G induced by the

adversarial label assignment.

Although the results of Cesa-Bianchi et al. (2009) yield a mistake bound for arbitrary un-

weighted graphs in terms of the cutsize of a random spanning tree, no general lower bounds are

known for online unweighted graph prediction. The scenario gets even more uncertain in the case

of weighted graphs, where the only previous papers we are aware of Herbster and Pontil (2007),

Herbster (2008), and Herbster and Lever (2009) essentially contain only upper bounds. In this pa-

per we fill this gap, and show that the expected cutsize of a random spanning tree of the graph

delivers a convenient parametrization1 that captures the hardness of the graph learning problem in

the general weighted case. Given any weighted graph, we prove that any online prediction algo-

rithm must err on a number of nodes which is at least as big as the expected cutsize of the graph’s

random spanning tree (which is defined in terms of the graph weights). Moreover, we exhibit a sim-

ple randomized algorithm achieving in expectation the optimal mistake bound to within logarithmic

1. Different parametrizations of the node prediction problem exist that lead to bounds which are incomparable to ours—

see Section 2.

1252

RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

factors. This bound applies to any sufficiently connected weighted graph whose weighted cutsize is

not an overwhelming fraction of the total weight.

Following the ideas of Cesa-Bianchi et al. (2009), our algorithm first extracts a random spanning

tree of the original graph. Then, it predicts all nodes of this tree using a generalization of the method

proposed by Herbster et al. (2009a). Our tree prediction procedure is extremely efficient: it only

requires constant amortized time per prediction and space linear in the number of nodes. Again, we

would like to stress that computational efficiency is a central issue in practical applications where

the involved data sets can be very large. In such contexts, learning algorithms whose computation

time scales quadratically, or slower, in the number of data points should be considered impractical.

As in the work by Herbster et al. (2009a), our algorithm first linearizes the tree, and then operates

on the resulting line graph via a nearest neighbor rule. We show that, besides running time, this

linearization step brings further benefits to the overall prediction process. In particular, similar to

Herbster and Pontil (2007, Theorem 4.2), the algorithm turns out to be resilient to perturbations of

the labeling, a clearly desirable feature from a practical standpoint.

In order to provide convincing empirical evidence, we also present an experimental evaluation of

our method compared to other algorithms recently proposed in the literature on graph prediction. In

particular, we test our algorithm against the Perceptron algorithm with Laplacian kernel by Herbster

and Pontil (2007); Herbster et al. (2009b), and against a version of the label propagation algorithm

by Zhu et al. (2003). These two baselines can viewed as representatives of global (Perceptron) and

local (label propagation) learning methods on graphs. The experiments have been carried out on

five medium-sized real-world data sets. The two tree-based algorithms (ours and the Perceptron

algorithm) have been tested using spanning trees generated in various ways, including committees

of spanning trees aggregated by majority votes. In a nutshell, our experimental comparison shows

that predictors based on our online algorithm compare well to all baselines while being very efficient

in most cases.

The paper is organized as follows. Next, we recall preliminaries and introduce our basic nota-

tion. Section 2 surveys related work in the literature. In Section 3 we prove the general lower bound

relating the mistakes of any prediction algorithm to the expected cutsize of a random spanning

tree of the weighted graph. In the subsequent section, we present our prediction algorithm WTA

(Weighted Tree Algorithm), along with a detailed mistake bound analysis restricted to weighted

trees. This analysis is extended to weighted graphs in Section 5, where we provide an upper bound

matching the lower bound up to log factors on any sufficiently connected graph. In Section 6, we

quantify the robustness of our algorithm to label perturbation. In Section 7, we provide the constant

amortized time implementation of WTA. Based on this implementation, in Section 8 we present the

experimental results. Section 9 is devoted to conclusive remarks.

1.1 Preliminaries and Basic Notation

Let G = (V,E,W) be an undirected, connected, and weighted graph with n nodes and positive edge

weights wi, j > 0 for (i, j) ∈ E. A labeling of G is any assignment y = (y1, . . . ,yn) ∈ {−1,+1}n of

binary labels to its nodes. We use (G,y) to denote the resulting labeled weighted graph.

The online learning protocol for predicting (G,y) can be defined as the following game be-

tween a (possibly randomized) learner and an adversary. The game is parameterized by the graph

G = (V,E,W). Preliminarily, and hidden to the learner, the adversary chooses a labeling y of G.

Then the nodes of G are presented to the learner one by one, according to a permutation of V , which

1253

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

is adaptively selected by the adversary. More precisely, at each time step t = 1, . . . ,n the adversary

chooses the next node it in the permutation of V , and presents it to the learner for the prediction of

the associated label yit . Then yit is revealed, disclosing whether a mistake occurred. The learner’s

goal is to minimize the total number of prediction mistakes. Note that while the adversarial choice

of the permutation can depend on the algorithm’s randomization, the choice of the labeling is obliv-

ious to it. In other words, the learner uses randomization to fend off the adversarial choice of labels,

whereas it is fully deterministic against the adversarial choice of the permutation. The requirement

that the adversary is fully oblivious when choosing labels is then dictated by the fact that the ran-

domized learners considered in this paper make all their random choices at the beginning of the

prediction process (i.e., before seeing the labels).

Now, it is reasonable to expect that prediction performance degrades with the increase of “ran-

domness” in the labeling. For this reason, our analysis of graph prediction algorithms bounds from

above the number of prediction mistakes in terms of appropriate notions of graph label regularity. A

standard notion of label regularity is the cutsize of a labeled graph, defined as follows. A φ-edge of

a labeled graph (G,y) is any edge (i, j) such that yi 6= y j. Similarly, an edge (i, j) is φ-free if yi = y j.

Let Eφ ⊆ E be the set of φ-edges in (G,y). The quantity ΦG(y) =
∣∣Eφ
∣∣ is the cutsize of (G,y), that

is, the number of φ-edges in Eφ (independent of the edge weights). The weighted cutsize of (G,y)
is defined by

ΦW
G (y) = ∑

(i, j)∈Eφ

wi, j .

For a fixed (G,y), we denote by rW
i, j the effective resistance between nodes i and j of G. In the

interpretation of the graph as an electric network, where the weights wi, j are the edge conductances,

the effective resistance rW
i, j is the voltage between i and j when a unit current flow is maintained

through them. For (i, j) ∈ E, let also pi, j = wi, jr
W
i, j be the probability that (i, j) belongs to a random

spanning tree T —see, for example, the monograph of Lyons and Peres (2009). Then we have

EΦT (y) = ∑
(i, j)∈Eφ

pi, j = ∑
(i, j)∈Eφ

wi, jr
W
i, j , (1)

where the expectation E is over the random choice of spanning tree T . Observe the natural weight-

scale independence properties of (1). A uniform rescaling of the edge weights wi, j cannot have an in-

fluence on the probabilities pi, j, thereby making each product wi, jr
W
i, j scale independent. In addition,

since ∑(i, j)∈E pi, j is equal to n−1, irrespective of the edge weighting, we have 0 ≤EΦT (y)≤ n−1.

Hence the ratio 1
n−1

EΦT (y) ∈ [0,1] provides a density-independent measure of the cutsize in G,

and even allows to compare labelings on different graphs.

Now contrast EΦT (y) to the more standard weighted cutsize measure ΦW
G (y). First, ΦW

G (y) is

clearly weight-scale dependent. Second, it can be much larger than n on dense graphs, even in the

unweighted wi, j = 1 case. Third, it strongly depends on the density of G, which is generally related

to ∑(i, j)∈E wi, j. In fact, EΦT (y) can be much smaller than ΦW
G (y) when there are strongly connected

regions in G contributing prominently to the weighted cutsize. To see this, consider the following

scenario: If (i, j) ∈ Eφ and wi, j is large, then (i, j) gives a big contribution to ΦW
G (y) (it is easy

to see that in such cases ΦW
G (y) can be much larger than n). However, this does not necessarily

happen with EΦT (y). In fact, if i and j are strongly connected (i.e., if there are many disjoint paths

connecting them), then rW
i, j is very small and so are the terms wi, jr

W
i, j in (1). Therefore, the effect of

the large weight wi, j may often be compensated by the small probability of including (i, j) in the

random spanning tree. See Figure 1 for an example.

1254

RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

A different way of taking into account graph connectivity is provided by the covering ball ap-

proach taken by Herbster (2008) and Herbster and Lever (2009)—see the next section.

Figure 1: A barbell graph. The weight of the two thick black edges is equal to
√

V , all the other

edges have unit weight. If the two labels y1 and y2 are such that y1 6= y2, then the contri-

bution of the edges on the left clique C1 to the cutsizes ΦG(y) and ΦW
G (y) must be large.

However, since the probability of including each edge of C1 in a random spanning tree

T is O(1/|V |), C1’s contribution to EΦT (y) is |V | times smaller than ΦC1
(y) = ΦW

C1
(y).

If y3 6= y4, then the contribution of edge (3,4) to ΦW
G (y) is large. Because this edge is

a bridge, the probability of including it in T is one, independent of w3,4. Indeed, we

have p3,4 = w3,4 rW
3,4 = w3,4/w3,4 = 1. If y5 6= y6, then the contribution of the right clique

C2 to ΦW
G (y) is large. On the other hand, the probability of including edge (5,6) in T

is equal to p5,6 = w5,6 rW
5,6 = O(1/

√
|V |). Hence, the contribution of (5,6) to EΦT (y)

is small because the large weight of (5,6) is offset by the fact that nodes 5 and 6 are

strongly connected (i.e., there are many different paths among them). Finally, note that

pi, j = O(1/|V |) holds for all edges (i, j) in C2, implying (similar to clique C1) that C2’s

contribution to EΦT (y) is |V | times smaller than ΦW
C2
(y).

2. Related Work

With the above notation and preliminaries in hand, we now briefly survey the results in the existing

literature which are most closely related to this paper. Further comments are made at the end of

Section 5.

Standard online linear learners, such as the Perceptron algorithm, are applied to the general

(weighted) graph prediction problem by embedding the n vertices of the graph in R
n through a map

i 7→ K−1/2ei, where ei ∈R
n is the i-th vector in the canonical basis of Rn, and K is a positive definite

n× n matrix. The graph Perceptron algorithm (Herbster et al., 2005; Herbster and Pontil, 2007)

uses K = LG + 11⊤, where LG is the (weighted) Laplacian of G and 1 = (1, . . . ,1). The resulting

mistake bound is of the form ΦW
G (y)DW

G , where DW
G = maxi, j rW

i, j is the resistance diameter of G.

As expected, this bound is weight-scale independent, but the interplay between the two factors in it

may lead to a vacuous result. At a given scale for the weights wi, j, if G is dense, then we may have

DW
G = O(1) while ΦW

G (y) is of the order of n2. If G is sparse, then ΦW
G (y) = O(n) but then DW

G may

become as large as n.

The idea of using a spanning tree to reduce the cutsize of G has been investigated by Herbster

et al. (2009b), where the graph Perceptron algorithm is applied to a spanning tree T of G. The

1255

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

resulting mistake bound is of the form ΦW
T (y)DW

T , that is, the graph Perceptron bound applied to

tree T . Since ΦW
T (y)≤ ΦW

G (y) this bound has a smaller cutsize than the previous one. On the other

hand, DW
T can be much larger than DW

G because removing edges may increase the resistance. Hence

the two bounds are generally incomparable.

Herbster et al. (2009b) suggest to apply the graph Perceptron algorithm to the spanning tree T

with smallest geodesic diameter. The geodesic diameter of a weighted graph G is defined by

∆W
G = max

i, j
min
Πi, j

∑
(r,s)∈Πi, j

1

wi, j
,

where the minimum is over all paths Πi, j between i and j. The reason behind this choice of T is

that, for the spanning tree T with smallest geodesic diameter, it holds that DW
T ≤ 2∆W

G . However,

one the one hand DW
G ≤ ∆W

G , so there is no guarantee that DW
T = O

(
DW

G

)
, and on the other hand the

adversary may still concentrate all φ-edges on the chosen tree T , so there is no guarantee that ΦW
T (y)

remains small either.

Herbster et al. (2009a) introduce a different technique showing its application to the case of

unweighted graphs. After reducing the graph to a spanning tree T , the tree is linearized via a depth-

first visit. This gives a line graph S (the so-called spine of G) such that ΦS(y) ≤ 2ΦT (y). By

running a Nearest Neighbor (NN) predictor on S, Herbster et al. (2009a) prove a mistake bound

of the form ΦS(y) log
(
n
/

ΦS(y)
)
+ΦS(y). As observed by Fakcharoenphol and Kijsirikul (2008),

similar techniques have been developed to solve low-congestion routing problems.

Another natural parametrization for the labels of a weighted graph that takes the graph structure

into account is clusterability, that is, the extent to which the graph nodes can be covered by a few

balls of small resistance diameter. With this inductive bias in mind, Herbster (2008) developed the

Pounce algorithm, which can be seen as a combination of graph Perceptron and NN prediction. The

number of mistakes has a bound of the form

min
ρ>0

(
N (G,ρ)+ΦW

G (y)ρ
)
, (2)

where N (G,ρ) is the smallest number of balls of resistance diameter ρ it takes to cover the nodes

of G. Note that the graph Perceptron bound is recovered when ρ = DW
G . Moreover, observe that,

unlike graph Perceptron’s, bound (2) is never vacuous, as it holds uniformly for all covers of G

(even the one made up of singletons, corresponding to ρ → 0). A further trick for the unweighted

case proposed by Herbster et al. (2009a) is to take advantage of both previous approaches (graph

Perceptron and NN on line graphs) by building a binary tree on G. This “support tree” helps in

keeping the diameter of G as small as possible, for example, logarithmic in the number of nodes n.

The resulting prediction algorithm is again a combination of a Perceptron-like algorithm and NN,

and the corresponding number of mistakes is the minimum over two earlier bounds: a NN-based

bound of the form ΦG(y)(logn)2 and an unweighted version of bound (2).

Generally speaking, clusterability and resistance-weighted cutsize EΦT (y) exploit the graph

structure in different ways. Consider, for instance, a barbell graph made up of two m-cliques joined

by k unweighted φ-edges with no endpoints in common (hence k ≤ m). This is one of the examples

considered by Herbster and Lever (2009). If m is much larger than k, then bound (2) scales linearly

with k (the two balls in the cover correspond to the two m-cliques). On the other hand, EΦT (y)
tends to be constant: Because m is much larger than k, the probability of including any φ-edge in

T tends to 1/k, as m increases and k stays constant. On the other hand, if k gets close to m the

1256

RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

resistance diameter of the graph decreases, and (2) becomes a constant. In fact, one can show that

when k = m even EΦT (y) is a constant, independent of m. In particular, the probability that a φ-

edge is included in the random spanning tree T is upper bounded by 3m−1
m(m+1) , that is, EΦT (y)→ 3

when m grows large. This can be shown by computing the effective resistance of φ-edge (i, j) as the

minimum, over all unit-strength flow functions with i as source and j as sink, of the squared flow

values summed over all edges, see, for example, Lyons and Peres (2009).

When the graph at hand has a large diameter, for example, an m-line graph connected to an

m-clique (this is sometimes called a “lollipop” graph) the gap between the covering-based bound

(2) and EΦT (y) is magnified. Yet, it is fair to say that the bounds we are about to prove for our

algorithm have an extra factor, beyond EΦT (y), which is logarithmic in m. A similar logarithmic

factor is achieved by the combined algorithm proposed by Herbster et al. (2009a).

An even more refined way of exploiting cluster structure and connectivity in graphs is contained

in the paper of Herbster and Lever (2009), where the authors provide a comprehensive study of the

application of dual-norm techniques to the prediction of weighted graphs, again with the goal of

obtaining logarithmic performance guarantees on large diameter graphs. In order to trade-off the

contribution of cutsize ΦW
G and resistance diameter DW

G , the authors develop a notion of p-norm

resistance. The obtained bounds are dual norm versions of the covering ball bound (2). Roughly

speaking, one can select the dual norm parameter of the algorithm to obtain a logarithmic contri-

bution from the resistance diameter at the cost of squaring the contribution due to the cutsize. This

quadratic term can be further reduced if the graph is well connected. For instance, in the unweighted

barbell graph mentioned above, selecting the norm appropriately leads to a bound which is constant

even when k ≪ m.

Further comments on the comparison between the results presented by Herbster and Lever

(2009) and the ones in our paper are postponed to the end of Section 5.

Departing from the online learning scenario, it is worth mentioning the significantly large liter-

ature on the general problem of learning the nodes of a graph in the train/test transductive setting:

Many algorithms have been proposed, including the label-consistent mincut approach of Blum and

Chawla (2001), Blum et al. (2004) and a number of other “energy minimization” methods—for

example, the ones by Zhu et al. (2003) and Belkin et al. (2004) of which label propagation is an

instance. See the work of Bengio et al. (2006) for a relatively recent survey on this subject.

Our graph prediction algorithm is based on a random spanning tree of the original graph. The

problem of drawing a random spanning tree of an arbitrary graph has a long history—see, for

example, the monograph by Lyons and Peres (2009). In the unweighted case, a random spanning

tree can be sampled with a random walk in expected time O(n lnn) for “most” graphs, as shown by

Broder (1989). Using the beautiful algorithm of Wilson (1996), the expected time reduces to O(n)—
see also the work of Alon et al. (2008). However, all known techniques take expected time Θ(n3)
on certain pathological graphs. In the weighted case, the above methods can take longer due to the

hardness of reaching, via a random walk, portions of the graph which are connected only via light-

weighted edges. To sidestep this issue, in our experiments we tested a viable fast approximation

where weights are disregarded when building the spanning tree, and only used at prediction time.

Finally, the space complexity for generating a random spanning tree is always linear in the graph

size.

To conclude this section, it is worth mentioning that, although we exploit random spanning trees

to reduce the cutsize, similar approaches can also be used to approximate the cutsize of a weighted

graph by sparsification—see, for example, the work of Spielman and Srivastava (2008). However,

1257

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

Figure 2: The adversarial strategy. Numbers on edges are the probabilities pi, j of those edges being

included in a random spanning tree for the weighted graph under consideration. Numbers

within nodes denote the weight of that node based on the pi, j—see main text. We set the

budget K to 6, hence the subset S contains the 6 nodes having smallest weight. The adver-

sary assigns a random label to each node in S thus forcing |S|/2 mistakes in expectation.

Then, it labels all nodes in V \S with a unique label, chosen in such a way as to minimize

the cutsize consistent with the labels previously assigned to the nodes of S.

because the resulting graphs are not as sparse as spanning trees, we do not currently see how to use

those results.

3. A General Lower Bound

This section contains our general lower bound. We show that any prediction algorithm must err at

least 1
2
EΦT (y) times on any weighted graph.

Theorem 1 Let G= (V,E,W) be a weighted undirected graph with n nodes and weights wi, j > 0 for

(i, j)∈E. Then for all K ≤ n there exists a randomized labeling y of G such that for all (deterministic

or randomized) algorithms A, the expected number of prediction mistakes made by A is at least K/2,

while EΦT (y)< K.

Proof The adversary uses the weighting P induced by W and defined by pi, j = wi, jr
W
i, j. By (1), pi, j

is the probability that edge (i, j) belongs to a random spanning tree T of G. Let Pi = ∑ j pi, j be the

sum over the induced weights of all edges incident to node i. We call Pi the weight of node i. Let

S ⊆ V be the set of K nodes i in G having the smallest weight Pi. The adversary assigns a random

label to each node i ∈ S. This guarantees that, no matter what, the algorithm A will make on average

K/2 mistakes on the nodes in S. The labels of the remaining nodes in V \S are set either all +1 or

all −1, depending on which one of the two choices yields the smaller ΦP
G(y). See Figure 2 for an

illustrative example. We now show that the weighted cutsize ΦP
G(y) of this labeling y is less than K,

independent of the labels of the nodes in S.

Since the nodes in V \ S have all the same label, the φ-edges induced by this labeling can only

connect either two nodes in S or one node in S and one node in V \S. Hence ΦP
G(y) can be written

as

ΦP
G(y) = Φ

P,int
G (y)+Φ

P,ext
G (y) ,

1258

RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

where Φ
P,int
G (y) is the cutsize contribution within S, and Φ

P,ext
G (y) is the one from edges between S

and V \ S. We can now bound these two terms by combining the definition of S with the equality

∑(i, j)∈E pi, j = n−1 as in the sequel. Let

Pint
S = ∑

(i, j)∈E : i, j∈S

pi, j and Pext
S = ∑

(i, j)∈E : i∈S, j∈V\S

pi, j .

From the very definition of Pint
S and Φ

P,int
G (y) we have Φ

P,int
G (y)≤ Pint

S . Moreover, from the way the

labels of nodes in V \S are selected, it follows that Φ
P,ext
G (y)≤ Pext

S /2. Finally,

∑
i∈S

Pi = 2Pint
S +Pext

S

holds, since each edge connecting nodes in S is counted twice in the sum ∑i∈S Pi. Putting everything

together we obtain

2Pint
S +Pext

S = ∑
i∈S

Pi ≤
K

n
∑
i∈V

Pi =
2K

n
∑

(i, j)∈E

pi, j =
2K(n−1)

n
,

the inequality following from the definition of S. Hence

EΦT (y) = ΦP
G(y) = Φ

P,int
G (y)+Φ

P,ext
G (y)≤ Pint

S +
Pext

S

2
≤ K(n−1)

n
< K

concluding the proof.

4. The Weighted Tree Algorithm

We now describe the Weighted Tree Algorithm (WTA) for predicting the labels of a weighted tree.

In Section 5 we show how to apply WTA to the more general weighted graph prediction problem.

WTA first transforms the tree into a line graph (i.e., a list), then runs a fast nearest neighbor method

to predict the labels of each node in the line. Though this technique is similar to that one used

by Herbster et al. (2009a), the fact that the tree is weighted makes the analysis significantly more

difficult, and the practical scope of our algorithm significantly wider. Our experimental comparison

in Section 8 confirms that exploiting the weight information is often beneficial in real-world graph

prediction problem.

Given a labeled weighted tree (T,y), the algorithm initially creates a weighted line graph L′

containing some duplicates of the nodes in T . Then, each duplicate node (together with its incident

edges) is replaced by a single edge with a suitably chosen weight. This results in the final weighted

line graph L which is then used for prediction. In order to create L from T , WTA performs the

following tree linearization steps:

1. An arbitrary node r of T is chosen, and a line L′ containing only r is created.

2. Starting from r, a depth-first visit of T is performed. Each time an edge (i, j) is traversed

(even in a backtracking step) from i to j, the edge is appended to L′ with its weight wi, j, and j

becomes the current terminal node of L′. Note that backtracking steps can create in L′ at most

one duplicate of each edge in T , while nodes in T may be duplicated several times in L′.

1259

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

Figure 3: Top: A weighted graph G with 9 nodes. Initially, WTA extracts a random spanning tree

T out of G. The weights on the edges in T are the same as those of G. Middle: The

spanning tree T is linearized through a depth-first traversal starting from an arbitrary

node (node 2 in this figure). For simplicity, we assume the traversal visits the siblings

from left to right. As soon as a node is visited it gets stored in a line graph L′ (first line

graph from top). Backtracking steps produce duplicates in L′ of some of the nodes in

T . For instance, node 7 is the first node to be duplicated when the visit backtracks from

node 8. The duplicated nodes are progressively eliminated from L′ in the order of their

insertion in L′. Several iterations of this node elimination process are displayed from the

top to the bottom, showing how L′ is progressively shrunk to the final line L (bottom

line). Each line represents the elimination of a single duplicated node. The crossed nodes

in each line are the nodes which are scheduled to be eliminated. Each time a new node

j is eliminated, its two adjacent nodes i and k are connected by the lighter of the two

edges (i, j) and (j,k). For instance: the left-most duplicated 7 is dropped by directly

connecting the two adjacent nodes 8 and 1 by an edge with weight 1/2; the right-most

node 2 is eliminated by directly connecting node 6 to node 9 with an edge with weight

1/2, and so on. Observe that this elimination procedure can be carried out in any order

without changing the resulting list L. Bottom: We show WTA’s prediction on the line

L so obtained. In this figure, the numbers above the edges denote the edge weights, the

ones below are the resistors, that is, weight reciprocals. We are at time step t = 3 where

two labels have so far been revealed (gray nodes). WTA predicts on the remaining nodes

according to a nearest neighbor rule on L, based on the resistance distance metric. All

possible predictions made by WTA at this time step are shown.

1260

RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

3. L′ is traversed once, starting from terminal r. During this traversal, duplicate nodes are elim-

inated as soon as they are encountered. This works as follows. Let j be a duplicate node,

and (j′, j) and (j, j′′) be the two incident edges. The two edges are replaced by a new edge

(j′, j′′) having weight w j′, j′′ = min
{

w j′, j,w j, j′′
}

.2 Let L be the resulting line.

The analysis of Section 4.1 shows that this choice of w j′, j′′ guarantees that the weighted cutsize of

L is smaller than twice the weighted cutsize of T .

Once L is created from T , the algorithm predicts the label of each node it using a nearest-

neighbor rule operating on L with a resistance distance metric. That is, the prediction on it is the

label of is∗ , being s∗ = argmins<t d(is, it) the previously revealed node closest to it , and d(i, j) =

∑k
s=1 1/wvs,vs+1

is the sum of the resistors (i.e., reciprocals of edge weights) along the unique path

i = v1 → v2 → ·· · → vk+1 = j connecting node i to node j. Figure 3 gives an example of WTA at

work.

4.1 Analysis of WTA

The following lemma gives a mistake bound on WTA run on any weighted line graph. Given any

labeled graph (G,y), we denote by RW
G the sum of resistors of φ-free edges in G,

RW
G = ∑

(i, j)∈E\Eφ

1

wi, j
.

Also, given any φ-free edge subset E ′ ⊂ E \Eφ, we define RW
G (¬E ′) as the sum of the resistors of

all φ-free edges in E \ (Eφ ∪E ′),

RW
G (¬E ′) = ∑

(i, j)∈E\(Eφ∪E ′)

1

wi, j
.

Note that RW
G (¬E ′)≤ RW

G , since we drop some edges from the sum in the defining formula.

Finally, we use f
O
= g as shorthand for f = O(g). The following lemma is the starting point of

our theoretical investigation—please see Appendix A for proofs.

Lemma 2 If WTA is run on a labeled weighted line graph (L,y), then the total number mL of

mistakes satisfies

mL
O
= ΦL(y)

(
1+ log

(
1+

RW
L (¬E ′) ΦW

L (y)

ΦL(y)

))
+ |E ′|

for all subsets E ′ of E \Eφ.

Note that the bound of Lemma 2 implies that, for any K = |E ′| ≥ 0, one can drop from the bound the

contribution of any set of K resistors in RW
L at the cost of adding K extra mistakes. We now provide

an upper bound on the number of mistakes made by WTA on any weighted tree T = (V,E,W) in

terms of the number of φ-edges, the weighted cutsize, and RW
T .

2. By iterating this elimination procedure, it might happen that more than two adjacent nodes get eliminated. In this

case, the two surviving terminal nodes are connected in L by the lightest edge among the eliminated ones in L′.

1261

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

Theorem 3 If WTA is run on a labeled weighted tree (T,y), then the total number mT of mistakes

satisfies

mT
O
= ΦT (y)

(
1+ log

(
1+

RW
T (¬E ′) ΦW

T (y)

ΦT (y)

))
+ |E ′|

for all subsets E ′ of E \Eφ.

The logarithmic factor in the above bound shows that the algorithm takes advantage of labelings

such that the weights of φ-edges are small (thus making ΦW
T (y) small) and the weights of φ-free

edges are high (thus making RW
T small). This matches the intuition behind WTA’s nearest-neighbor

rule according to which nodes that are close to each other are expected to have the same label. In

particular, observe that the way the above quantities are combined makes the bound independent of

rescaling of the edge weights. Again, this has to be expected, since WTA’s prediction is scale insen-

sitive. On the other hand, it may appear less natural that the mistake bound also depends linearly on

the cutsize ΦT (y), independent of the edge weights. The specialization to trees of our lower bound

(Theorem 1 in Section 3) implies that this linear dependence of mistakes on the unweighted cut-

size is necessary whenever the adversarial labeling is chosen from a set of labelings with bounded

ΦT (y).

5. Predicting a Weighted Graph

In order to solve the more general problem of predicting the labels of a weighted graph G, one can

first generate a spanning tree T of G and then run WTA directly on T . In this case, it is possible

to rephrase Theorem 3 in terms of the properties of G. Note that for each spanning tree T of G,

ΦW
T (y) ≤ ΦW

G (y) and ΦT (y) ≤ ΦG(y). Specific choices of the spanning tree T control in different

ways the quantities in the mistake bound of Theorem 3. For example, a minimum spanning tree

tends to reduce the value of R̃W
T , betting on the fact that φ-edges are light. The next theorem relies

on random spanning trees.

Theorem 4 If WTA is run on a random spanning tree T of a labeled weighted graph (G,y), then

the total number mG of mistakes satisfies

EmG
O
= E

[
ΦT (y)

](
1+ log

(
1+wφ

maxE
[
RW

T

]))
, (3)

where wφ
max = max

(i, j)∈Eφ
wi, j.

Note that the mistake bound in (3) is scale-invariant, since E
[
ΦT (y)

]
= ∑(i, j)∈Eφ wi, jr

W
i, j cannot be

affected by a uniform rescaling of the edge weights (as we said in Section 1.1), and so is the product

w
φ
maxE

[
RW

T

]
= w

φ
max ∑(i, j)∈E\Eφ rW

i, j.

We now compare the mistake bound (3) to the lower bound stated in Theorem 1. In particular,

we prove that WTA is optimal (up to logn factors) on every weighted connected graph in which

the φ-edge weights are not “superpolynomially overloaded” w.r.t. the φ-free edge weights. In order

to rule out pathological cases, when the weighted graph is nearly disconnected, we impose the

following mild assumption on the graphs being considered.

We say that a graph is polynomially connected if the ratio of any pair of effective resistances

(even those between nonadjacent nodes) in the graph is polynomial in the total number of nodes

1262

RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

n. This definition essentially states that a weighted graph can be considered connected if no pair of

nodes can be found which is substantially less connected than any other pair of nodes. Again, as one

would naturally expect, this definition is independent of uniform weight rescaling. The following

corollary shows that if WTA is not optimal on a polynomially connected graph, then the labeling

must be so irregular that the total weight of φ-edges is an overwhelming fraction of the overall

weight.

Corollary 5 Pick any polynomially connected weighted graph G with n nodes. If the ratio of the

total weight of φ-edges to the total weight of φ-free edges is bounded by a polynomial in n, then the

total number of mistakes mG made by WTA when run on a random spanning tree T of G satisfies

EmG
O
= E

[
ΦT (y)

]
logn .

Note that when the hypothesis of this corollary is not satisfied the bound of WTA is not necessar-

ily vacuous. For example, E
[
RW

T

]
w

φ
max = npolylog(n) implies an upper bound which is optimal up to

polylog(n) factors. In particular, having a constant number of φ-free edges with exponentially large

resistance contradicts the assumption of polynomial connectivity, but it need not lead to a vacuous

bound in Theorem 4. In fact, one can use Lemma 2 to drop from the mistake bound of Theorem 4

the contribution of any set of O(1) resistances in E
[
RW

T

]
= ∑(i, j)∈E\Eφ rW

i, j at the cost of adding just

O(1) extra mistakes. This could be seen as a robustness property of WTA’s bound against graphs

that do not fully satisfy the connectedness assumption.

We further elaborate on the robustness properties of WTA in Section 6. In the meanwhile, note

how Corollary 5 compares to the expected mistake bound of algorithms like graph Perceptron (see

Section 2) on the same random spanning tree. This bound depends on the expectation of the product

ΦW
T (y)DW

T , where DW
T is the diameter of T in the resistance distance metric. Recall from the discus-

sion in Section 2 that these two factors are negatively correlated because ΦW
T (y) depends linearly on

the edge weights, while DW
T depends linearly on the reciprocal of these weights. Moreover, for any

given scale of the edge weights, DW
T can be linear in the number n of nodes.

Another interesting comparison is to the covering ball bounds of Herbster (2008) and Herbster

and Lever (2009). Consider the case when G is an unweighted tree with diameter D. Whereas the

dual norm approach of Herbster and Lever (2009) gives a mistake bound of the form ΦG(y)
2 logD,

our approach, as well as the one by Herbster et al. (2009a), yields ΦG(y) logn. Namely, the de-

pendence on ΦG(y) becomes linear rather than quadratic, but the diameter D gets replaced by n,

the number of nodes in G. Replacing n by D seems to be a benefit brought by the covering ball

approach.3 More generally, one can say that the covering ball approach seems to allow to replace

the extra logn term contained in Corollary 5 by more refined structural parameters of the graph

(like its diameter D), but it does so at the cost of squaring the dependence on the cutsize. A typical

(and unsurprising) example where the dual-norm covering ball bounds are better then the one in

Corollary 5 is when the labeled graph is well-clustered. One such example we already mentioned

in Section 2: On the unweighted barbell graph made up of m-cliques connected by k ≪ m φ-edges,

the algorithm of Herbster and Lever (2009) has a constant bound on the number of mistakes (i.e.,

independent of both m and k), the Pounce algorithm has a linear bound in k, while Corollary 5

delivers a logarithmic bound in m+ k. Yet, it is fair to point out that the bounds of Herbster (2008)

3. As a matter of fact, a bound of the form ΦG(y) logD on unweighted trees is also achieved by the direct analysis of

Cesa-Bianchi et al. (2009).

1263

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

and Herbster and Lever (2009) refer to computationally heavier algorithms than WTA: Pounce has a

deterministic initialization step that computes the inverse Laplacian matrix of the graph (this is cu-

bic in n, or quadratic in the case of trees), the minimum (Ψ, p)-seminorm interpolation algorithm of

Herbster and Lever (2009) has no initialization, but each step requires the solution of a constrained

convex optimization problem (whose time complexity was not quantified by the authors). Further

comments on the time complexity of our algorithm are given in Section 7.

6. The Robustness of WTA to Label Perturbation

In this section we show that WTA is tolerant to noise, that is, the number of mistakes made by WTA on

most labeled graphs (G,y) does not significantly change if a small number of labels are perturbed

before running the algorithm. This is especially the case if the input graph G is polynomially

connected (see Section 5 for a definition).

As in previous sections, we start off from the case when the input graph is a tree, and then we

extend the result to general graphs using random spanning trees.

Suppose that the labels y in the tree (T,y) used as input to the algorithm have actually been

obtained from another labeling y′ of T through the perturbation (flipping) of some of its labels.

As explained at the beginning of Section 4, WTA operates on a line graph L obtained through the

linearization process of the input tree T . The following theorem shows that, whereas the cutsize

differences |ΦW
T (y)−ΦW

T (y′)| and |ΦT (y)−ΦT (y
′)| on tree T can in principle be very large, the

cutsize differences |ΦW
L (y)−ΦW

L (y′)| and |ΦL(y)−ΦL(y
′)| on the line graph L built by WTA are

always small.

In order to quantify the above differences, we need a couple of ancillary definitions. Given a

labeled tree (T,y), define ζT (K) to be the sum of the weights of the K heaviest edges in T ,

ζT (K) = max
E ′⊆E : |E ′|=K

∑
(i, j)∈E ′

wi, j .

If T is unweighted we clearly have ζT (K) = K. Moreover, given any two labelings y and y′ of T ’s

nodes, we let δ(y,y′) be the number of nodes for which the two labelings differ, that is, δ(y,y′) =∣∣{i = 1, . . . ,n : yi 6= y′i}
∣∣ .

Theorem 6 On any given labeled tree (T,y) the tree linearization step of WTA generates a line

graph L such that:

1. ΦW
L (y)≤ min

y′∈{−1,+1}n
2
(

ΦW
T (y′)+ζT

(
δ(y,y′)

))
;

2. ΦL(y)≤ min
y′∈{−1,+1}n

2
(
ΦT (y

′)+δ(y,y′)
)

.

In order to highlight the consequences of WTA’s linearization step contained in Theorem 6, consider

as a simple example an unweighted star graph (T,y) where all labels are +1 except for the central

node c whose label is −1. We have ΦT (y) = n−1, but flipping the sign of yc we would obtain the

star graph (T,y′) with ΦT (y
′) = 0. Using Theorem 6 (Item 2) we get ΦL(y)≤ 2. Hence, on this star

graph WTA’s linearization step generates a line graph with a constant number of φ-edges even if the

input tree T has no φ-free edges. Because flipping the labels of a few nodes (in this case the label

of c) we obtain a tree with a much more regular labeling, the labels of those nodes can naturally be

seen as corrupted by noise.

1264

RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

The following theorem quantifies to what extent the mistake bound of WTA on trees can take

advantage of the tolerance to label perturbation contained in Theorem 6. Introducing shorthands for

the right-hand side expressions in Theorem 6,

Φ̃W
T (y) = min

y′∈{−1,+1}n
2
(

ΦW
T (y′)+ζT

(
δ(y,y′)

))

and

Φ̃T (y) = min
y′∈{−1,+1}n

2
(
ΦT (y

′)+δ(y,y′)
)
,

we have the following robust version of Theorem 3.

Theorem 7 If WTA is run on a weighted and labeled tree (T,y), then the total number mT of

mistakes satisfies

mT
O
= Φ̃T (y)

(
1+ log

(
1+

RW
T (¬E ′) Φ̃W

T (y)

Φ̃T (y)

))
+ΦT (y)+ |E ′|

for all subsets E ′ of E \Eφ.

As a simple consequence, we have the following corollary.

Corollary 8 If WTA is run on a weighted and polynomially connected labeled tree (T,y), then the

total number mT of mistakes satisfies

mT
O
= Φ̃T (y) logn .

Theorem 7 combines the result of Theorem 3 with the robustness to label perturbation of WTA’s

tree linearization procedure. Comparing the two theorems, we see that the main advantage of the

tree linearization lies in the mistake bound dependence on the logarithmic factors occurring in the

formulas: Theorem 7 shows that, when Φ̃T (y)≪ ΦT (y), then the performance of WTA can be just

linear in ΦT (y). Theorem 3 shows instead that the dependence on ΦT (y) is in general superlinear

even in cases when flipping few labels of y makes the cutsize ΦT (y) decrease in a substantial way.

In many cases, the tolerance to noise allows us to achieve even better results: Corollary 8 states that,

if T is polynomially connected and there exists a labeling y′ with small δ(y,y′) such that ΦT (y
′) is

much smaller than ΦT (y), then the performance of WTA is about the same as if the algorithm were

run on (T,y′). In fact, from Lemma 2 we know that when T is polynomially connected the mistake

bound of WTA mainly depends on the number of φ-edges in (L,y), which can often be much smaller

than those in (T,y). As a simple example, let T be an unweighted star graph with a labeling y and z

be the difference between the number of +1 and the number of −1 in y. Then the mistake bound of

WTA is linear in z logn irrespective of ΦT (y) and, specifically, irrespective of the label assigned to

the central node of the star, which can greatly affect the actual value of ΦT (y).
We are now ready to extend the above results to the case when WTA operates on a general

weighted graph (G,y) via a uniformly generated random spanning tree T . As before, we need some

shorthand notation. Define Φ∗
G(y) as

Φ∗
G(y) = min

y′∈{−1,+1}n

(
E
[
ΦT (y

′)
]
+δ(y,y′)

)
,

where the expectation is over the random draw of a spanning tree T of G. The following are the

robust versions of Theorem 4 and Corollary 5.

1265

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

Theorem 9 If WTA is run on a random spanning tree T of a labeled weighted graph (G,y), then

the total number mG of mistakes satisfies

EmG
O
= Φ∗

G(y)
(

1+ log
(

1+wφ
maxE

[
RW

T

]))
+E

[
ΦT (y)

]
,

where wφ
max = max

(i, j)∈Eφ
wi, j.

Corollary 10 If WTA is run on a random spanning tree T of a labeled weighted graph (G,y) and

the ratio of the weights of each pair of edges of G is polynomial in n, then the total number mG of

mistakes satisfies

EmG
O
= Φ∗

G(y) logn .

The relationship between Theorem 9 and Theorem 4 is similar to the one between Theorem 7 and

Theorem 3. When there exists a labeling y′ such that δ(y,y′) is small and E
[
ΦT (y

′)
]
≪ E

[
ΦT (y)

]
,

then Theorem 9 allows a linear dependence on E
[
ΦT (y)

]
. Finally, Corollary 10 quantifies the

advantages of WTA’s noise tolerance under a similar (but stricter) assumption as the one contained

in Corollary 5.

7. Implementation

As explained in Section 4, WTA runs in two phases: (i) a random spanning tree is drawn; (ii) the tree

is linearized and labels are sequentially predicted. As discussed in Section 1.1, Wilson’s algorithm

can draw a random spanning tree of “most” unweighted graphs in expected time O(n). The analysis

of running times on weighted graphs is significantly more complex, and outside the scope of this

paper. A naive implementation of WTA’s second phase runs in time O(n logn) and requires linear

memory space when operating on a tree with n nodes. We now describe how to implement the

second phase to run in time O(n), that is, in constant amortized time per prediction step.

Once the given tree T is linearized into an n-node line L, we initially traverse L from left to

right. Call j0 the left-most terminal node of L. During this traversal, the resistance distance d(j0, i)
is incrementally computed for each node i in L. This makes it possible to calculate d(i, j) in constant

time for any pair of nodes, since d(i, j) = |d(j0, i)−d(j0, j)| for all i, j ∈ L. On top of L, a complete

binary tree T ′ with 2⌈log2 n⌉ leaves is constructed.4 The k-th leftmost leaf (in the usual tree repre-

sentation) of T ′ is the k-th node in L (numbering the nodes of L from left to right). The algorithm

maintains this data-structure in such a way that at time t: (i) the subsequence of leaves whose labels

are revealed at time t are connected through a (bidirectional) list B, and (ii) all the ancestors in T ′ of

the leaves of B are marked. See Figure 4.

When WTA is required to predict the label yit , the algorithm looks for the two closest revealed

leaves i′ and i′′ oppositely located in L with respect to it . The above data structure supports this

operation as follows. WTA starts from it and goes upwards in T ′ until the first marked ancestor

anc(it) of it is reached. During this upward traversal, the algorithm marks each internal node of T ′

on the path connecting it to anc(it). Then, WTA starts from anc(it) and goes downwards in order to

find the leaf i′ ∈ B closest to it . Note how the algorithm uses node marks for finding its way down:

For instance, in Figure 4 the algorithm goes left since anc(it) was reached from below through the

4. For simplicity, this description assumes n is a power of 2. If this is not the case, we could add dummy nodes to L

before building T ′.

1266

RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

Figure 4: Constant amortized time implementation of WTA. The line L has n = 27 nodes (the ad-

jacent squares at the bottom). Shaded squares are the revealed nodes, connected through

a dark grey doubly-linked list B. The depicted tree T ′ has both unmarked (white) and

marked (shaded) nodes. The arrows indicate the traversal operations performed by WTA

when predicting the label of node it : The upward traversal stops as soon as a marked

ancestor anc(it) is found, and then a downward traversal begins. Note that WTA first de-

scends to the left, and then keeps going right all the way down. Once i′ is determined, a

single step within B suffices to determine i′′.

right child node, and then keeps right all the way down to i′. Node i′′ (if present) is then identified

via the links in B. The two distances d(it , i
′) and d(it , i

′′) are compared, and the closest node to it
within B is then determined. Finally, WTA updates the links of B by inserting it between i′ and i′′.

In order to quantify the amortized time per trial, the key observation is that each internal node

k of T ′ gets visited only twice during upward traversals over the n trials: The first visit takes place

when k gets marked for the first time, the second visit of k occurs when a subsequent upward visit

also marks the other (unmarked) child of k. Once both of k’s children are marked, we are guaranteed

that no further upward visits to k will be performed. Since the preprocessing operations take O(n),
this shows that the total running time over the n trials is linear in n, as anticipated. Note, however,

that the worst-case time per trial is O(logn). For instance, on the very first trial T ′ has to be traversed

all the way up and down.

This is the way we implemented WTA on the experiments described in the next section.

8. Experiments

We now present the results of an experimental comparison on a number of real-world weighted

graphs from different domains: text categorization, optical character recognition, spam detection

and bioinformatics. Although our theoretical analysis is for the sequential prediction model, all

experiments are carried out using a more standard train-test scenario. This makes it easy to compare

WTA against popular non-sequential baselines, such as Label Propagation.

We compare our algorithm to the following other methods, intended as representatives of two

different ways of coping with the graph prediction problem: global vs. local prediction.

1267

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

Perceptron with Laplacian kernel: Introduced by Herbster and Pontil (2007) and here abbre-

viated as GPA (graph Perceptron algorithm). This algorithm sequentially predicts the nodes of a

weighted graph G = (V,E) after mapping V via the linear kernel based on L+
G + 11⊤, where LG is

the Laplacian matrix of G. Following Herbster et al. (2009b), we run GPA on a spanning tree T of

the original graph. This is because a careful computation of the Laplacian pseudoinverse of a n-node

tree takes time Θ(n+m2+mD) where m is the number of training examples plus the number of test

examples (labels to predict), and D is the tree diameter—see the work of Herbster et al. (2009b) for

a proof of this fact. However, in most of our experiments m = n, implying a running time of Θ(n2)
for GPA.

Note that GPA is a global approach, in that the graph topology affects, via the inverse Laplacian,

the prediction on all nodes.

Weighted Majority Vote: Introduced here and abbreviated as WMV. Since the common under-

lying assumption to graph prediction algorithms is that adjacent nodes are labeled similarly, a very

intuitive and fast algorithm for predicting the label of a node i is via a weighted majority vote on the

available labels of the adjacent nodes. More precisely, WMV predicts using the sign of

∑
j :(i, j)∈E

y jwi, j ,

where y j = 0 if node j is not available in the training set. The overall time and space requirements

are both of order Θ(|E|), since we need to read (at least once) the weights of all edges. WMV is also

a local approach, in the sense that prediction at each node is only affected by the labels of adjacent

nodes.

Label Propagation: Introduced by Zhu et al. (2003) and here abbreviated as LABPROP. This is a

batch transductive learning method based on solving a (possibly sparse) linear system of equations

which requires Θ(|E||V |) time. This bad scalability prevented us from carrying out comparative

experiments on larger graphs of 106 or more nodes. Note that WMV can be viewed as a fast approx-

imation of LABPROP.

In our experiments, we combined WTA and GPA with spanning trees generated in different ways

(note that WMV and LABPROP do not use spanning trees).

Random Spanning Tree (RST). Each spanning tree is taken with probability proportional to the

product of its edge weights—see, for example, the monograph by Lyons and Peres (2009, Chapter

4). In addition, we also tested WTA combined with RST generated by ignoring the edge weights

(which were then restored before running WTA). This second approach gives a prediction algorithm

whose total expected running time, including the generation of the spanning tree, is Θ(|V |) on most

graphs. We abbreviate this spanning tree as NWRST (non-weighted RST).

Depth-first spanning tree (DFST). This spanning tree is created via the following randomized

depth-first visit: A root is selected at random, then each newly visited node is chosen with proba-

bility proportional to the weights of the edges connecting the current vertex with the adjacent nodes

that have not been visited yet. This spanning tree is faster to generate than RST, and can be viewed

as an approximate version of RST.

Minimum Spanning Tree (MST). The spanning tree minimizing the sum of the resistors of all

edges. This is the tree whose Laplacian best approximates the Laplacian of G according to the

trace norm criterion—see, for example, the paper of Herbster et al. (2009b). Note that the expected

running time for the creation of a MST is O(|E|), see the work by Karger et al. (1995), while the

1268

RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

worst-case time is O
(
|E|α(|E|, |V |)

)
where α is the inverse of the Ackermann function (Chazelle,

2000).

Shortest Path Spanning Tree (SPST). Herbster et al. (2009b) use the shortest path tree because

it has a small diameter (at most twice the diameter of G). This allows them to better control the

theoretical performance of GPA. We generated several shortest path spanning trees by choosing the

root node at random, and then took the one with minimum diameter.

In order to check whether the information carried by the edge weight has predictive value for

a nearest neighbor rule like WTA, we also performed a test by ignoring the edge weights during

both the generation of the spanning tree and the running of WTA’s nearest neighbor rule. This is

essentially the algorithm analyzed by Herbster et al. (2009a), and we denote it by NWWTA (non-

weighted WTA). We combined NWWTA with weighted and unweighted spanning trees. So, for

instance, NWWTA+RST runs a 1-NN rule (NWWTA) that does not take edge weights into account

(i.e., pretending that all weights are unitary) on a random spanning tree generated according to the

actual edge weights. NWWTA+NWRST runs NWWTA on a random spanning tree that also disregards

edge weights.

Finally, in order to make the classifications based on RST’s more robust with respect to the

variance associated with the random generation of the spanning tree, we also tested committees

of RST’s. For example, K*WTA+RST denotes the classifier obtained by drawing K RST’s, running

WTA on each one of them, and then aggregating the predictions of the K resulting classifiers via a

majority vote. For our experiments we chose K = 7,11,17.

We ran our experiments on five real-world data sets.

RCV1: The first 10,000 documents (in chronological order) of Reuters Corpus Volume 1, with

TF-IDF preprocessing and Euclidean normalization. This data set is available at trec.nist.gov/

data/reuters/reuters.html.

USPS: The USPS data set with features normalized into [0,2]. This data set is available at

www-i6.informatik.rwth-aachen.de/˜keysers/usps.html.

KROGAN: This is a high-throughput protein-protein interaction network for budding yeast. It

has been used by Krogan et al. (2006) and Pandey et al. (2007).

COMBINED: A second data set from the work of Pandey et al. (2007). It is a combination of

three data sets: Gavin et al.’s (2002), Ito et al.’s (2001), and Uetz et al.’s (2000).

WEBSPAM: A large data set (110,900 nodes and 1,836,136 edges) of inter-host links created

for the Web Spam Challenge 2008 (Yahoo Research and Univ. of Milan, 2007). The data set is

available at barcelona.research.yahoo.net/webspam/datasets/. This is a weighted graph

with binary labels and a pre-defined train/test split: 3,897 training nodes and 1,993 test nodes (the

remaining ones being unlabeled).5

We created graphs from RCV1 and USPS with as many nodes as the total number of examples

(xi,yi) in the data sets. That is, 10,000 nodes for RCV1 and 7291+2007 = 9298 for USPS. Following

previous experimental settings (Zhu et al., 2003; Belkin et al., 2004), the graphs were constructed

using k-NN based on the standard Euclidean distance
∥∥xi − x j

∥∥ between node i and node j. The

weight wi, j was set to wi, j = exp
(
−
∥∥xi − x j

∥∥2/
σ2

i, j

)
, if j is one of the k nearest neighbors of i, and

0 otherwise. To set σ2
i, j, we first computed the average square distance between i and its k nearest

neighbors (call it σ2
i), then we computed σ2

j in the same way, and finally set σ2
i, j =

(
σ2

i +σ2
j

)/
2. We

5. We do not compare our results to those obtained in the challenge since we are only exploiting the graph (weighted)

topology here, disregarding content features.

1269

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

generated two graphs for each data set by running k-NN with k = 10 (RCV1-10 and USPS-10) and

k = 100 (RCV1-100 and USPS-100). The labels were set using the four most frequent categories in

RCV1 and all 10 categories in USPS.

In KROGAN and COMBINED we only considered the biggest connected components of both

data sets, obtaining 2,169 nodes and 6,102 edges for KROGAN, and 2,871 nodes and 6,407 edges

for COMBINED. In these graphs, each node belongs to one or more classes, each class representing

a gene function. We selected the set of functional labels at depth one in the FunCat classification

scheme of the MIPS database (Ruepp, 2004), resulting in seventeen classes per data set.

In order to associate binary classification tasks with the six non-binary data sets/graphs (RCV1-

10, RCV1-100, USPS-10, USPS-100, KROGAN, COMBINED) we binarized the corresponding

multiclass problems via a standard one-vs-rest scheme. We thus obtained: four binary classification

tasks for RCV1-10 and RCV1-100, ten binary tasks for USPS-10 and USPS-100, seventeen binary

tasks for both KROGAN and COMBINED. For a given a binary task and data set, we tried different

proportions of training set and test set sizes. In particular, we used training sets of size 5%, 10%,

25% and 50%. For any given size, the training sets were randomly selected.

We report error rates and F-measures on the test set, after macro-averaging over the binary tasks.

The results are contained in Tables 1–7 (Appendix B) and in Figures 5–6. Specifically, Tables 1–6

contain results for all combinations of algorithms and train/test split for the first six data sets (i.e.,

all but WEBSPAM).

The WEBSPAM data set is very large, and requires us a lot of computational resources in order

to run experiments on this graph. Moreover, GPA has always shown inferior accuracy performance

than the corresponding version of WTA (i.e., the one using the same kind of spanning tree) on all

other data sets. Hence we decided not to go on any further with the refined implementation of GPA

on trees we mentioned above. In Table 7 we only report test error results on the four algorithms

WTA, WMV, LABPROP, and WTA with a committee of seven (nonweighted) random spanning trees.

In our experimental setup we tried to control the sources of variance in the first six data sets as

follows:

1. We first generated ten random permutations of the node indices for each one of the six

graphs/data sets;

2. on each permutation we generated the training/test splits;

3. we computed MST and SPST for each graph and made (for WTA, GPA, WMV, and LABPROP)

one run per permutation on each of the 4+4+10+10+17+17 = 62 binary problems, averaging

results over permutations and splits;

4. for each graph, we generated ten random instances for each one of RST, NWRST, DFST, and

then operated as in step 2, with a further averaging over the randomness in the tree generation.

Figure 5 extracts from Tables 1–6 the error levels of the best spanning tree performers, and compared

them to WMV and LABPROP. For comparison purposes, we also displayed the error levels achieved

by WTA operating on a committee of seventeen random spanning trees (see below). Figure 6 (left)

contains the error level on WEBSPAM reported in Table 7. Finally, Figure 6 (right) is meant to

emphasize the error rate differences between RST and NWRST run with WTA.

Several interesting observations and conclusions can be drawn from our experiments.

1270

RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

 15

 20

 25

 30

 10 20 30 40 50

E
R

R
O

R
 R

A
T

E
 (

%
)

TRAINING SET SIZE (%)

KROGAN

 15

 20

 25

 30

 10 20 30 40 50

E
R

R
O

R
 R

A
T

E
 (

%
)

TRAINING SET SIZE (%)

COMBINED

 10

 15

 20

 25

 30

 10 20 30 40 50

E
R

R
O

R
 R

A
T

E
 (

%
)

TRAINING SET SIZE (%)

RCV1-K10

 10

 15

 20

 25

 30

 10 20 30 40 50

E
R

R
O

R
 R

A
T

E
 (

%
)

TRAINING SET SIZE (%)

RCV1-K100

 0

 2

 4

 6

 10 20 30 40 50

E
R

R
O

R
 R

A
T

E
 (

%
)

TRAINING SET SIZE (%)

USPS-K10

 0

 2

 4

 6

 10 20 30 40 50

E
R

R
O

R
 R

A
T

E
 (

%
)

TRAINING SET SIZE (%)

USPS-K100

Figure 5: Macroaveraged test error rates on the first six data sets as a function of the training set

size. The results are extracted from Tables 1–6 in Appendix B. Only the best performing

spanning tree (i.e., MST) is shown for the algorithms that use spanning trees. These results

are compared to WMV, LABPROP, and 17*WTA+RST.

1271

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

 0

 10

 20

 30

 40

 50

W
TA

W
M

V

LA
B
PR

O
P

7*W
TA

E
rr

o
r

ra
te

 (
%

)
WEBSPAM

 0

 0.2

 0.4

 0.6

 0.8

 1

C
O

M
B
IN

ED

K
R
O

G
A

N

R
C
V

1-K
10

R
C
V

1-K
100

U
SPS-K

10

U
SPS-K

100

D
if

f.
 E

rr
o

r
ra

te
 (

%
)

Difference between RST and NWRST

Figure 6: Left: Error rate levels on WEBSPAM taken from Table 7 in Appendix B. Right: Average

error rate difference across data sets when using WTA+NWRST rather than WTA+RST.

1. WTA outperforms GPA on all data sets and with all spanning tree combinations. In particular,

though we only reported aggregated results, the same relative performance pattern among

the two algorithms repeats systematically over all binary classification problems. In addition,

WTA runs significantly faster than GPA, requires less memory storage (linear in |V |, rather

than quadratic), and is also fairly easy to implement.

2. By comparing NWWTA to WTA, we see that the edge weight information in the nearest neigh-

bor rule increases accuracy, though only by a small amount.

3. WMV is a fast and accurate approximation to LABPROP when either the graph is dense (RCV1-

100, and USPS-100) or the training set is comparatively large (25%–50%), although neither

of the two situations often occurs in real-world applications.

4. The best performing spanning tree for both WTA and GPA is MST. This might be explained by

the fact that MST tends to select light φ-edges of the original graph.

5. NWRST and DFST are fast approximations to RST. Though the use of NWRST and DFST

does not provide theoretical performance guarantees as for RST, in our experiments they do

actually perform comparably. Hence, in practice, NWRST and DFST might be viewed as fast

and practical ways to generate spanning trees for WTA.

6. The prediction performance of WTA+MST is sometimes slightly inferior to LABPROP’s. How-

ever, it should be stressed that LABPROP takes time Θ(|E||V |), whereas a single sweep of

WTA+MST over the graph just takes time O(|E|α(|E|, |V |)), where α is the inverse of the

Ackermann function (Chazelle, 2000). Committees of spanning trees are a simple way to

make WTA approach, and sometimes surpass, the performance of LABPROP. One can see

1272

RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

that on sparse graphs using committees gives a good performances improvement. In partic-

ular, committees of WTA can reach the same performances of LABPROP while adding just a

constant factor to their (linear) time complexity.

9. Conclusions and Open Questions

We introduced and analyzed WTA, a randomized online prediction algorithm for weighted graph

prediction. The algorithm uses random spanning trees and has nearly optimal performance guaran-

tees in terms of expected prediction accuracy. The expected running time of WTA is optimal when

the random spanning tree is drawn ignoring edge weights. Thanks to its linearization phase, the

algorithm is also provably robust to label noise.

Our experimental evaluation shows that WTA outperforms other previously proposed online

predictors. Moreover, when combined with an aggregation of random spanning trees, WTA also

tends to beat standard batch predictors, such as label propagation. These features make WTA (and

its combinations) suitable to large scale applications.

There are two main directions in which this work can improved. First, previous analyses (Cesa-

Bianchi et al., 2009) reveal that WTA’s analysis is loose, at least when the input graph is an un-

weighted tree with small diameter. This is the main source of the Ω(ln |V |) slack between WTA

upper bound and the general lower bound of Theorem 1. So we ask whether, at least in certain

cases, this slack could be reduced. Second, in our analysis we express our upper and lower bounds

in terms of the cutsize. One may object that a more natural quantity for our setting is the weighted

cutsize, as this better reflects the assumption that φ-edges tend to be light, a natural notion of bias

for weighted graphs. In more generality, we ask what are other criteria that make a notion of bias

better than another one. For example, we may prefer a bias which is robust to small perturbations

of the problem instance. In this sense Φ∗
G, the cutsize robust to label perturbation introduced in

Section 6, is a better bias than EΦT . We thus ask whether there is a notion of bias, more natural

and robust than EΦT , which captures as tightly as possible the optimal number of online mistakes

on general weighted graphs. A partial answer to this question is provided by the recent work of

Vitale et al. (2012). It would also be nice to tie this machinery with recent results in the active node

classification setting on trees developed by Cesa-Bianchi et al. (2010).

Acknowledgments

We would like to thank the anonymous reviewers whose comments helped us to improve the pre-

sentation of this paper, and to better put it in the context of the existing literature. This work was

supported in part by Google Inc. through a Google Research Award, and by the PASCAL2 Network

of Excellence under EC grant 216886. This publication only reflects the authors views.

Appendix A.

This appendix contains the proofs of Lemma 2, Theorem 3, Theorem 4, Corollary 5, Theorem 6,

Theorem 7, Corollary 8, Theorem 9, and Corollary 10. Notation and references are as in the main

text. We start by proving Lemma 2.

Proof [Lemma 2] Let a cluster be any maximal sub-line of L whose edges are all φ-free. Then L

contains exactly ΦL(y)+ 1 clusters, which we number consecutively, starting from one of the two

1273

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

terminal nodes. Consider the k-th cluster ck. Let v0 be the first node of ck whose label is predicted

by WTA. After yv0
is revealed, the cluster splits into two edge-disjoint sub-lines c′k and c′′k , both

having v0 as terminal node.6 Let v′k and v′′k be the closest nodes to v0 such that (i) yv′k
= yv′′k

6= yv0
and

(ii) v′k is adjacent to a terminal node of c′k, and v′′k is adjacent to a terminal node of c′′k . The nearest

neighbor prediction rule of WTA guarantees that the first mistake made on c′k (respectively, c′′k) must

occur on a node v1 such that d(v0,v1) ≥ d(v1,v
′
k) (respectively, d(v0,v1) ≥ d(v1,v

′′
k)). By iterating

this argument for the subsequent mistakes we see that the total number of mistakes made on cluster

ck is bounded by

1+

⌊
log2

R′
k +(w′

k)
−1

(w′
k)

−1

⌋
+

⌊
log2

R′′
k +(w′′

k)
−1

(w′′
k)

−1

⌋

where R′
k is the resistance diameter of sub-line c′k, and w′

k is the weight of the φ-edge between v′k and

the terminal node of c′k closest to it (R′′
k and w′′

k are defined similarly). Hence, summing the above

displayed expression over clusters k = 1, . . . ,ΦL(y)+1 we obtain

mL
O
= ΦL(y)+∑

k

(
log
(
1+R′

kw′
k

)
+ log

(
1+R′

kw′′
k

))

O
= ΦL(y)

(
1+ log

(
1+

1

ΦL(y)
∑
k

R′
kw′

k

)
+ log

(
1+

1

ΦL(y)
∑
k

R′′
k w′′

k

))

O
= ΦL(y)

(
1+ log

(
1+

RW
L ΦW

L (y)

ΦL(y)

))
,

where in the second step we used Jensen’s inequality and in the last one the fact that ∑k(R
′
k +R′′

k) =

RW
L and maxk w′

k

O
= ΦW

L (y), maxk w′′
k

O
= ΦW

L (y). This proves the lemma in the case E ′ ≡ /0.

In order to conclude the proof, observe that if we take any semi-cluster c′k (obtained, as before,

by splitting cluster ck, being v0 ∈ ck the first node whose label is predicted by WTA), and pretend to

split it into two sub-clusters connected by a φ-free edge, we could repeat the previous dichotomic

argument almost verbatim on the two sub-clusters at the cost of adding an extra mistake. We now

make this intuitive argument more precise. Let (i, j) be a φ-free edge belonging to semi-cluster c′k,

and suppose without loss of generality that i is closer to v0 than to j. If we remove edge (i, j) then c′k
splits into two subclusters: c′k(v0) and c′k(j), containing node v0 and j, respectively (see Figure 7).

Let mc′k
, mc′k(v0) and mc′k(j) be the number of mistakes made on c′k, c′k(v0) and c′k(j), respectively. We

clearly have mc′k
= mc′k(v0)+mc′k(j).

Let now γ′k be the semi-cluster obtained from c′k by contracting edge (i, j) so as to make i

coincide with j (we sometimes write i ≡ j). Cluster γ′k can be split into two parts which overlap

only at node i ≡ j: γ′k(v0), with terminal nodes v0 and i (coinciding with node j), and γ′k(j). In a

similar fashion, let mγ′k
, mγ′k(v0), and mγ′k(j) be the number of mistakes made on γ′k, γ′k(v0) and γ′k(j),

respectively. We have mγ′k
= mγ′k(v0)+mγ′k(j)− 1, where the −1 takes into account that γ′k(v0) and

γ′k(j) overlap at node i ≡ j.

Observing now that, for each node v belonging to c′k(v0) (and γ′k(v0)), the distance d(v,v′k) is

smaller on γk than on c′k, we can apply the above-mentioned dichotomic argument to bound the

mistakes made on c′k, obtaining mγ′k(v0) ≤ mc′k(v0). Since mc′k(j) = mγ′k(j), we can finally write mc′k
=

mc′k(v0)+mc′k(j) ≤ mγ′k(v0)+mγ′k(j) = mγ′k
+1. Iterating this argument for all edges in E ′ concludes the

6. With no loss of generality, we assume that neither of the two sub-lines is empty, so that v0 is not a terminal node of

ck.

1274

RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

Figure 7: We illustrate the way we bound the number of mistakes on semi-cluster c′k by dropping the

resistance contribution of any (possibly very light) edge (i, j), at the cost of increasing the

mistake bound on c′k by 1. The removal of (i, j) makes c′k split into subclusters c′k(v0) and

c′k(j). We can then drop edge (i, j) by making node i coincide with node j. The resulting

semi-cluster is denoted γ′k. This shortened version of c′k can be viewed as split into sub-

cluster γ′k(v0) and subcluster γ′k(j), corresponding to c′k(v0) and c′k(j), respectively. Now,

the number of mistakes made on c′k(v0) and c′k(j) can be bounded by those made on γ′k(v0)
and γ′k(j). Hence, we can bound the mistakes on c′k through the ones made on γ′k, with the

addition of a single mistake, rather than two, due to the double node i ≡ j of γ′k.

proof.

In view of proving Theorem 3, we now prove the following two lemmas.

Lemma 11 Given any tree T , let E(T) be the edge set of T , and let E(L′) and E(L) be the edge

sets of line graphs L′ and L obtained via WTA’s tree linearization of T . Then the following holds.

1. There exists a partition PL′ of E(L′) in pairs and a bijective mapping µL′ : PL′ → E(T) such

that the weight of both edges in each pair S′ ∈ PL′ is equal to the weight of the edge µL′(S′).

2. There exists a partition PL of E(L) in sets S such that |S| ≤ 2, and there exists an injective

mapping µL : PL → E(T) such that the weight of the edges in each pair S ∈ PL is equal to the

weight of the edge µL(S).

Proof We start by defining the bijective mapping µL′ : PL′ → E(T). Since each edge (i, j) of T is

traversed exactly twice in the depth-first visit that generates L′,7 once in a forward step and once in

a backward step, we partition E(L′) in pairs S′ such that µL′(S′) = (i, j) if and only if S′ contains the

pair of distinct edges created in L′ by the two traversals of (i, j). By construction, the edges in each

7. For the sake of simplicity, we are assuming here that the depth-first visit of T terminates by backtracking over all

nodes on the path between the last node visited in a forward step and the root.

1275

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

pair S′ have weight equal to µL′(S′). Moreover, this mapping is clearly bijective, since any edge of

L′ is created by a single traversal of an edge in T . The second mapping µL : P (L)→ E(T) is created

as follows. PL is created from PL′ by removing from each S′ ∈ PL′ the edges that are eliminated

when L′ is transformed into L. Note that we have
∣∣PL

∣∣≤
∣∣PL′

∣∣ and for any S ∈ PL there is a unique

S′ ∈ PL′ such that S ⊆ S′. Now, for each S ∈ PL let µL(S) = µL′(S′), where S′ is such that S ⊆ S′.
Since µL′ is bijective, µL is injective. Moreover, since the edges in S′ have the same weight as the

edge µL′(S′), the same property holds for µL.

Lemma 12 Let (T,y) be a labeled tree, let (L,y) be the linearization of T , and let L′ be the line

graph with duplicates (as described above). Then the following holds.8

1. ΦW
L (y)≤ ΦW

L′ (y)≤ 2ΦW
T (y);

2. ΦL(y)≤ ΦL′(y)≤ 2ΦT (y).

Proof From Lemma 11 (Item 1) we know that L′ contains a duplicated edge for each edge of T .

This immediately implies ΦL′(y)≤ 2ΦT (y) and ΦW
L′ (y)≤ 2ΦW

T (y).
To prove the remaining inequalities, note that from the description of WTA in Section 4 (Step 3),

we see that when L′ is transformed into L the pair of edges (j′, j) and (j, j′′) of L′, which are

incident to a duplicate node j, gets replaced in L (together with j) by a single edge (j′, j′′). Now

each such edge (j′, j′′) cannot be a φ-edge in L unless either (j, j′) or (j, j′′) is a φ-edge in L′, and

this establishes ΦL(y)≤ ΦL′(y). Finally, if (j′, j′′) is a φ-edge in L, then its weight is not larger than

the weight of the associated φ-edge in L′ (Step 3 of WTA), and this establishes ΦW
L (y)≤ ΦW

L′ (y).

Recall that, given a labeled graph G = (V,E) and any φ-free edge subset E ′ ⊂ E \Eφ, the quantity

RW
G (¬E ′) is the sum of the resistors of all φ-free edges in E \ (Eφ ∪E ′).

Lemma 13 If WTA is run on a weighted line graph (L,y) obtained through the linearization of a

given labeled tree (T,y) with edge set E, then the total number mT of mistakes satisfies

mT
O
= ΦL(y)

(
1+ log2

(
1+

RW
T (¬E ′) ΦW

L (y)

ΦL(y)

))
+ΦT (y)+ |E ′| ,

where E ′ is an arbitrary subset of E \Eφ.

Proof Lemma 11 (Item 2), exhibits an injective mapping µL : P → E, where P is a partition of

the edge set E(L) of L, such that every S ∈ P satisfies |S| ≤ 2. Hence, we have |E ′(L)| ≤ 2|E ′|,
where E ′(L) is the union of the pre-images of edges in E ′ according to µL—note that some edge in

E ′ might not have a pre-image in E(L). By the same argument, we also establish |E0(L)| ≤ 2ΦT ,

where E0(L) is the set of φ-free edges of L that belong to elements S of the partition PL such that

µL(S) ∈ Eφ.

Since the edges of L that are neither in E0(L) nor in E ′(L) are partitioned by PL in edge sets

having cardinality at most two, which in turn can be injectively mapped via µL to E \ (Eφ ∪E ′), we

have RW
L

(
¬
(
E ′(L)∪E0(L)

))
≤ 2RW

T (¬E ′) . Finally, we use |E ′(L)| ≤ 2|E ′| and |E0(L)| ≤ 2ΦT (y)

(which we just established) and apply Lemma 2 with E ′ ≡ E ′(L)∪E0(L). This concludes the proof.

8. Item 2 in this lemma is essentially contained in the paper by Herbster et al. (2009a).

1276

RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

Proof [of Theorem 3] We use Lemma 12 to establish ΦL(y) ≤ 2ΦT (y) and ΦW
L (y) ≤ 2ΦW

T (y). We

then conclude with an application of Lemma 13.

Lemma 14 If WTA is run on a weighted line graph (L,y) obtained through the linearization of

random spanning tree T of a labeled weighted graph (G,y), then the total number mG of mistakes

satisfies

EmG
O
= E

[
ΦL(y)

](
1+ log

(
1+wφ

maxE
[
RW

T

])
+E

[
ΦT (y)

])
,

where w
φ
max = max(i, j)∈Eφ wi, j.

Proof Using Lemma 13 with E ′ ≡ /0 we can write

EmG
O
= E

[
ΦL(y)

(
1+ log

(
1+

RW
T ΦW

L (y)

ΦL(y)

))
+ΦT

]

O
= E

[
ΦL(y)

(
1+ log

(
1+RW

T wφ
max

))
+ΦT

]

O
= E

[
ΦL(y)

](
1+ log

(
1+E

[
RW

T

]
wφ

max

))
+E

[
ΦT (y)

]
,

where the second equality follows from the fact that ΦW
L (y) ≤ ΦL(y)w

φ
max, which in turn follows

from Lemma 11, and the third one follows from Jensen’s inequality applied to the concave function

(x,y) 7→ x
(

1+ log
(

1+ yw
φ
max

))
for x,y ≥ 0.

Proof [Theorem 4] We apply Lemma 14 and then Lemma 12 to get ΦL(y)≤ 2ΦT (y).

Proof [Corollary 5] Let f > poly(n) denote a function growing faster than any polynomial in

n. Choose a polynomially connected graph G and a labeling y. For the sake of contradiction,

assume that WTA makes more than O(E
[
ΦT (y)

]
logn) mistakes on (G,y). Then Theorem 4 im-

plies w
φ
maxE

[
RW

T

]
> poly(n). Since E

[
RW

T

]
= ∑(i, j)∈E\Eφ rW

i, j, we have that w
φ
max max(i, j)∈E\Eφ rW

i, j >

poly(n). Together with the assumption of polynomial connectivity for G, this implies w
φ
maxrW

i, j >

poly(n) for all φ-free edges (i, j). By definition of effective resistance, wi, jr
W
i, j ≤ 1 for all (i, j) ∈ E.

This gives w
φ
max/wi, j > poly(n) for all φ-free edges (i, j), which in turn implies

∑(i, j)∈Eφ wi, j

∑(i, j)∈E\Eφ wi, j
> poly(n) .

As this contradicts our hypothesis, the proof is concluded.

Proof [Theorem 6] We only prove the first part of the theorem. The proof of the second part

corresponds to the special case when all weights are equal to 1.

1277

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

Let ∆(y,y′) ⊆ V be the set of nodes i such that yi 6= y′i. We therefore have δ(y,y′) = |∆(y,y′)|.
Since in a line graph each node is adjacent to at most two other nodes, the label flip of any node

j ∈ ∆(y,y′) can cause an increase of the weighted cutsize of L by at most wi′, j +w j,i′′ , where i′ and i′′

are the two nodes adjacent to j in L (in the special case when j is terminal node we can set w j,i′′ = 0).

Hence, flipping the labels of all nodes in ∆(y,y′), we have that the total cutsize increase is bounded

by the sum of the weights of the 2δ(y,y′) heaviest edges in L, which implies

ΦW
L (y)≤ ΦW

L (y′)+ζL

(
2δ(y,y′)

)
.

By Lemma 12, ΦW
L (u) ≤ 2ΦW

T (u). Moreover, Lemma 11 gives an injective mapping µL : PL → E

(E is the edge set of T) such that the elements of P have cardinality at most two, and the weight of

each edge µL(S) is the same as the weights of the edges in S. Hence, the total weight of the 2δ(y,y′)
heaviest edges in L is at most twice the total weight of the δ(y,y′) heaviest edges in T . Therefore

ζL

(
2δ(y,y′)

)
≤ 2ζT

(
δ(y,y′)

)
. Hence, we have obtained

ΦW
L (y)≤ 2ΦW

T (y′)+2ζT

(
δ(y,y′)

)
,

concluding the proof.

Proof [Theorem 7] We use Theorem 6 to bound ΦL(y) and ΦW
L (y) in the mistake bound of Lemma 13.

Proof [Corollary 8] Recall that the resistance between two nodes i and j of any tree is simply the

sum of the inverse weights over all edges on the path connecting the two nodes. Since T is poly-

nomially connected, we know that the ratio of any pair of edge weights is polynomial in n. This

implies that RW
L ΦW

L (y) is polynomial in n, too. We apply Theorem 6 to bound ΦL(y) in the mistake

bound of Lemma 2 with E ′ = /0. This concludes the proof.

Lemma 15 If WTA is run on a line graph L obtained by linearizing a random spanning tree T of a

labeled and weighted graph (G,y), then we have

E
[
ΦL(y)

] O
= Φ∗

G(y) .

Proof Recall that Theorem 6 holds for any spanning tree T of G. Thus it suffices to apply part 2 of

Theorem 6 and use E
[
minX

]
≤ minE[X] .

Proof [Theorem 9] We apply Lemma 15 to bound E
[
ΦL(y)

]
in Lemma 14.

Proof [Corollary 10] We can use Lemma 2 with the setting E ′ ≡ /0, and bound E
[
ΦL(y)

]
via

Lemma 15. To conclude, observe that since the ratio of the weights of any pair of edges in G is

polynomial in n, then RW
L ΦW

L (y) is polynomial in n, too.

1278

RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

Appendix B.

This appendix summarizes all our experimental results. For each combination of data set, algorithm,

and train/test split, we provide macro-averaged error rates and F-measures on the test set. The

algorithms are WTA, NWWTA, and GPA (all combined with various spanning trees), WMV, LABPROP,

and WTA run with committees of random spanning trees. WEBSPAM was too large a data set to

perform as thorough an investigation. Hence we only report test error results on the four algorithms

WTA, WMV, LABPROP, and WTA with a committee of 7 (nonweighted) random spanning trees.

Train/test split 5% 10% 25% 50%

Predictors Error F Error F Error F Error F

WTA+RST 25.54 0.81 22.67 0.84 19.06 0.86 16.57 0.88

WTA+NWRST 25.81 0.81 22.70 0.83 19.24 0.86 17.00 0.87

WTA+MST 21.09 0.84 17.94 0.87 13.93 0.90 11.40 0.91

WTA+SPST 25.47 0.81 22.65 0.83 19.31 0.86 17.24 0.87

WTA+DFST 26.02 0.81 22.34 0.84 17.73 0.87 14.89 0.89

NWWTA+RST 25.28 0.81 22.45 0.84 19.12 0.86 17.16 0.87

NWWTA+NWRST 25.97 0.81 23.14 0.83 19.54 0.86 17.84 0.87

NWWTA+MST 21.18 0.84 18.17 0.87 14.51 0.89 12.44 0.91

NWWTA+SPST 25.49 0.81 22.81 0.83 19.64 0.86 17.55 0.87

NWWTA+DFST 26.08 0.81 22.82 0.83 17.93 0.87 15.64 0.88

GPA+RST 32.75 0.75 29.85 0.78 27.67 0.80 24.44 0.82

GPA+NWRST 34.27 0.74 30.36 0.78 28.90 0.79 25.99 0.81

GPA+MST 27.98 0.79 24.89 0.82 21.80 0.84 20.27 0.85

GPA+SPST 27.18 0.79 25.13 0.82 22.20 0.84 20.27 0.85

GPA+DFST 47.11 0.61 45.65 0.64 43.08 0.66 38.20 0.71

7*WTA+RST 17.40 0.87 14.85 0.90 12.15 0.91 10.39 0.92

7*WTA+NWRST 17.81 0.87 15.15 0.89 12.51 0.91 10.92 0.92

11*WTA+RST 16.40 0.88 13.86 0.90 11.38 0.92 9.71 0.93

11*WTA+NWRST 16.78 0.88 14.22 0.90 11.73 0.92 10.20 0.93

17*WTA+RST 15.78 0.89 13.23 0.91 10.85 0.92 9.22 0.94

17*WTA+NWRST 16.07 0.89 13.55 0.90 11.18 0.92 9.65 0.93

WMV 31.82 0.76 22.27 0.84 11.82 0.91 8.76 0.93

LABPROP 16.33 0.89 13.00 0.91 10.00 0.93 8.77 0.94

Table 1: RCV1-10. Average error rate and F-measure on 4 classes.

References

N. Alon, C. Avin, M. Koucký, G. Kozma, Z. Lotker, and M.R. Tuttle. Many random walks are faster

than one. In Proc. of the 20th Annual ACM Symposium on Parallel Algorithms and Architectures,

pages 119–128. Springer, 2008.

M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning on large graphs.

In Proc. of the 17th Annual Conference on Learning Theory, pages 624–638. Springer, 2004.

Y. Bengio, O. Delalleau, and N. Le Roux. Label propagation and quadratic criterion. In Semi-

Supervised Learning, pages 193–216. MIT Press, 2006.

1279

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

Train/test split 5% 10% 25% 50%

Predictors Error F Error F Error F Error F

WTA+RST 32.03 0.77 29.36 0.79 26.09 0.81 23.25 0.83

WTA+NWRST 32.05 0.77 29.89 0.78 26.65 0.80 23.82 0.83

WTA+MST 20.45 0.85 17.36 0.87 13.91 0.90 11.19 0.92

WTA+SPST 29.26 0.79 27.06 0.80 24.96 0.82 23.17 0.83

WTA+DFST 32.03 0.77 28.89 0.79 24.18 0.82 20.57 0.85

NWWTA+RST 31.72 0.77 29.46 0.78 26.20 0.81 24.04 0.82

NWWTA+NWRST 32.52 0.76 29.95 0.78 26.88 0.80 24.84 0.82

NWWTA+MST 20.54 0.85 17.68 0.87 14.37 0.89 12.25 0.91

NWWTA+SPST 29.28 0.79 27.13 0.80 25.16 0.82 23.72 0.83

NWWTA+DFST 32.05 0.77 28.81 0.79 24.14 0.82 21.28 0.84

GPA+RST 36.47 0.73 35.33 0.74 33.81 0.75 32.32 0.76

GPA+NWRST 38.26 0.72 35.91 0.73 35.20 0.74 32.73 0.76

GPA+MST 26.65 0.81 24.30 0.82 20.29 0.85 18.75 0.86

GPA+SPST 32.43 0.74 28.00 0.78 26.61 0.79 25.77 0.80

GPA+DFST 48.35 0.61 47.85 0.61 44.78 0.65 41.12 0.68

7*WTA+RST 23.30 0.84 20.55 0.86 16.87 0.88 14.34 0.90

7*WTA+NWRST 23.64 0.84 20.77 0.86 17.27 0.88 14.81 0.90

11*WTA+RST 22.06 0.85 19.39 0.87 15.63 0.89 13.20 0.91

11*WTA+NWRST 22.29 0.85 19.54 0.87 16.09 0.89 13.61 0.91

17*WTA+RST 21.33 0.86 18.62 0.88 14.91 0.90 12.39 0.92

17*WTA+NWRST 21.49 0.86 18.86 0.87 15.29 0.89 12.78 0.91

WMV 12.48 0.91 10.50 0.93 9.49 0.93 8.96 0.94

LABPROP 24.39 0.85 20.78 0.87 14.45 0.91 10.73 0.93

Table 2: RCV1-100. Average error rate and F-measure on 4 classes.

A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In Proc. of

the 18th International Conference on Machine Learning, pages 19–26. Morgan Kaufmann, 2001.

A. Blum, J. Lafferty, M. Rwebangira, and R. Reddy. Semi-supervised learning using randomized

mincuts. In Proc. of the 21st International Conference on Machine Learning, pages 97–104,

2004.

A. Broder. Generating random spanning trees. In Proc. of the 30th Annual Symposium on Founda-

tions of Computer Science, pages 442–447. IEEE Press, 1989.

N. Cesa-Bianchi, C. Gentile, and F. Vitale. Fast and optimal prediction of a labeled tree. In Pro-

ceedings of the 22nd Annual Conference on Learning Theory. Omnipress, 2009.

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. Active learning on trees and graphs. In

Proceedings of the 23rd Annual Conference on Learning Theory. Omnipress, 2010.

H. Chang and D.Y. Yeung. Graph Laplacian kernels for object classification from a single example.

In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages

2011–2016. IEEE Press, 2006.

1280

RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

Train/test split 5% 10% 25% 50%

Predictors Error F Error F Error F Error F

WTA+RST 5.32 0.97 4.28 0.98 3.08 0.98 2.36 0.99

WTA+NWRST 5.65 0.97 4.51 0.97 3.29 0.98 2.56 0.98

WTA+MST 1.98 0.99 1.61 0.99 1.24 0.99 0.94 0.99

WTA+SPST 6.25 0.97 4.72 0.97 3.37 0.98 2.60 0.99

WTA+DFST 6.43 0.96 4.60 0.97 2.92 0.98 2.04 0.99

NWWTA+RST 5.31 0.97 4.25 0.98 3.19 0.98 2.70 0.99

NWWTA+NWRST 5.95 0.97 4.65 0.97 3.45 0.98 2.92 0.98

NWWTA+MST 1.99 0.99 1.59 0.99 1.29 0.99 1.06 0.99

NWWTA+SPST 6.30 0.96 4.83 0.97 3.50 0.98 2.84 0.98

NWWTA+DFST 6.49 0.96 4.59 0.97 3.09 0.98 2.35 0.99

GPA+RST 12.64 0.93 8.53 0.95 6.65 0.96 5.65 0.97

GPA+NWRST 12.53 0.93 9.05 0.95 6.90 0.96 5.19 0.97

GPA+MST 2.58 0.99 3.18 0.98 2.28 0.99 1.48 0.99

GPA+SPST 7.64 0.96 6.26 0.96 4.13 0.98 3.55 0.98

GPA+DFST 42.77 0.70 39.39 0.73 32.38 0.79 20.53 0.87

7*WTA+RST 2.09 0.99 1.56 0.99 1.14 0.99 0.90 0.99

7*WTA+NWRST 2.35 0.99 1.75 0.99 1.26 0.99 1.02 0.99

11*WTA+RST 1.84 0.99 1.35 0.99 1.01 0.99 0.82 1.00

11*WTA+NWRST 2.05 0.99 1.53 0.99 1.14 0.99 0.91 0.99

17*WTA+RST 1.65 0.99 1.23 0.99 0.95 0.99 0.77 1.00

17*WTA+NWRST 1.87 0.99 1.39 0.99 1.06 0.99 0.85 1.00

WMV 24.84 0.85 12.28 0.93 2.13 0.99 0.75 1.00

LABPROP 2.14 0.99 1.16 0.99 0.85 0.99 0.73 1.00

Table 3: USPS-10. Average error rate and F-measure on 10 classes.

B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type complexity. In

Journal of the ACM, 47(6):1028–1047, 2000.

J. Fakcharoenphol and B. Kijsirikul. Low congestion online routing and an improved mistake bound

for online prediction of graph labeling. CoRR, abs/0809.2075, 2008.

A.-C. Gavin et al. Functional organization of the yeast proteome by systematic analysis of protein

complexes. Nature, 415(6868):141–147, 2002.

A. Goldberg and X. Zhu. Seeing stars when there aren’t many stars: Graph-based semi-supervised

learning for sentiment categorization. In HLT-NAACL 2006 Workshop on Textgraphs: Graph-

based algorithms for Natural Language Processing, 2004.

M. Herbster. Exploiting cluster-structure to predict the labeling of a graph. In Proc. of the 19th

International Conference on Algorithmic Learning Theory, pages 54–69. Springer, 2008.

M. Herbster and G. Lever. Predicting the labelling of a graph via minimum p-seminorm interpola-

tion. In Proc. of the 22nd Annual Conference on Learning Theory. Omnipress, 2009.

M. Herbster and M. Pontil. Prediction on a graph with the Perceptron. In Advances in Neural

Information Processing Systems 21, pages 577–584. MIT Press, 2007.

1281

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

Train/test split 5% 10% 25% 50%

Predictors Error F Error F Error F Error F

WTA+RST 9.62 0.95 8.29 0.95 6.55 0.96 5.36 0.97

WTA+NWRST 10.32 0.94 9.00 0.95 7.17 0.96 5.83 0.97

WTA+MST 1.90 0.99 1.49 0.99 1.22 0.99 0.94 0.99

WTA+SPST 8.68 0.95 7.27 0.96 5.78 0.97 4.88 0.97

WTA+DFST 10.36 0.94 8.13 0.96 5.62 0.97 4.21 0.98

NWWTA+RST 9.71 0.95 8.38 0.95 6.78 0.96 5.89 0.97

NWWTA+NWRST 10.39 0.94 9.08 0.95 7.46 0.96 6.45 0.96

NWWTA+MST 1.91 0.99 1.60 0.99 1.23 0.99 1.09 0.99

NWWTA+SPST 8.76 0.95 7.46 0.96 5.94 0.97 5.28 0.97

NWWTA+DFST 10.46 0.94 8.30 0.95 6.00 0.97 4.65 0.97

GPA+RST 14.81 0.91 13.38 0.92 11.94 0.93 9.81 0.94

GPA+NWRST 17.34 0.90 13.68 0.92 11.39 0.94 11.46 0.94

GPA+MST 3.57 0.98 2.26 0.99 1.77 0.99 1.39 0.99

GPA+SPST 8.42 0.95 7.94 0.95 7.20 0.96 5.71 0.97

GPA+DFST 46.09 0.67 42.59 0.71 37.66 0.75 28.45 0.82

7*WTA+RST 5.28 0.97 4.24 0.98 3.05 0.98 2.37 0.99

7*WTA+NWRST 5.82 0.97 4.73 0.97 3.48 0.98 2.69 0.98

11*WTA+RST 5.07 0.97 3.96 0.98 2.76 0.99 2.11 0.99

11*WTA+NWRST 5.55 0.97 4.38 0.98 3.14 0.98 2.40 0.99

17*WTA+RST 5.17 0.97 3.96 0.98 2.72 0.99 2.05 0.99

17*WTA+NWRST 7.60 0.96 6.38 0.97 4.68 0.97 3.32 0.98

WMV 2.17 0.99 1.70 0.99 1.53 0.99 1.45 0.99

LABPROP 6.94 0.96 5.19 0.97 2.51 0.99 1.79 0.99

Table 4: USPS-100. Average error rate and F-measure on 10 classes.

M. Herbster, M. Pontil, and L. Wainer. Online learning over graphs. In Proc. of the 22nd Interna-

tional Conference on Machine Learning, pages 305–312. ACM Press, 2005.

M. Herbster, G. Lever, and M. Pontil. Online prediction on large diameter graphs. In Advances in

Neural Information Processing Systems 22, pages 649–656. MIT Press, 2009a.

M. Herbster, M. Pontil, and S. Rojas-Galeano. Fast prediction on a tree. In Advances in Neural

Information Processing Systems 22, pages 657–664. MIT Press, 2009b.

T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A comprehensive two-hybrid

analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sci-

ences of the United States of America, 98(8):4569–4574, 2001.

D. Karger, P. Klein, and R. Tarjan. A randomized linear-time algorithm to find minimum spanning

trees. In Journal of the ACM, 42: 321–328. ACM, 1995b.

N.J. Krogan et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae.

Nature, 440:637–643, 2006.

R. Lyons and Y. Peres. Probability on trees and networks. Manuscript, 2009.

1282

RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

Train/test split 5% 10% 25% 50%

Predictors Error F Error F Error F Error F

WTA+RST 21.73 0.86 21.37 0.86 19.89 0.87 19.09 0.88

WTA+NWRST 21.86 0.86 21.50 0.86 20.03 0.87 19.33 0.88

WTA+MST 21.55 0.86 20.86 0.87 19.35 0.88 18.36 0.88

WTA+SPST 21.86 0.86 21.58 0.86 20.38 0.87 19.40 0.88

WTA+DFST 21.78 0.86 21.22 0.86 19.88 0.87 18.60 0.88

NWWTA+RST 21.83 0.86 21.43 0.86 20.08 0.87 19.64 0.88

NWWTA+NWRST 21.98 0.86 21.55 0.86 20.26 0.87 19.75 0.87

NWWTA+MST 21.55 0.86 20.91 0.87 19.55 0.88 18.89 0.88

NWWTA+SPST 21.86 0.86 21.57 0.86 20.50 0.87 19.81 0.87

NWWTA+DFST 21.79 0.86 21.33 0.86 20.00 0.87 19.09 0.88

GPA+RST 22.70 0.85 22.75 0.85 22.14 0.86 21.28 0.86

GPA+NWRST 23.83 0.84 23.28 0.85 22.48 0.85 21.53 0.86

GPA+MST 21.99 0.86 21.34 0.86 20.77 0.86 20.48 0.87

GPA+SPST 22.33 0.84 21.34 0.86 20.71 0.86 20.74 0.86

GPA+DFST 39.77 0.72 31.93 0.78 25.70 0.83 24.09 0.84

7*WTA+RST 16.83 0.90 16.63 0.90 15.78 0.90 15.29 0.90

7*WTA+NWRST 16.85 0.90 16.60 0.90 15.89 0.90 15.41 0.90

11*WTA+RST 16.28 0.90 16.11 0.90 15.36 0.91 14.92 0.91

11*WTA+NWRST 16.28 0.90 16.08 0.90 15.55 0.90 14.99 0.91

17*WTA+RST 15.93 0.90 15.78 0.90 15.17 0.91 14.63 0.91

17*WTA+NWRST 15.98 0.90 15.69 0.91 15.23 0.91 14.68 0.91

WMV 42.98 0.70 38.88 0.73 29.85 0.80 22.66 0.85

LABPROP 15.26 0.91 15.21 0.91 14.94 0.91 15.13 0.91

Table 5: KROGAN. Average error rate and F-measure on 17 classes.

G. Pandey, M. Steinbach, R. Gupta, T. Garg, and V. Kumar. Association analysis-based transforma-

tions for protein interaction networks: a function prediction case study. In Proc. of the 13th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 540–549.

ACM Press, 2007.

Yahoo! Research (Barcelona) and Laboratory of Web Algorithmics (Univ. of Milan). Web Spam

Collection. URL barcelona.research.yahoo.net/webspam/datasets/.

A. Ruepp. The FunCat, a functional annotation scheme for systematic classification of proteins

from whole genomes. Nucleic Acids Research, 32(18):5539–5545, 2004.

D.A. Spielman and N. Srivastava. Graph sparsification by effective resistances. In Proc. of the 40th

annual ACM symposium on Theory of computing, pages 563–568. ACM Press, 2008.

H. Shin K. Tsuda and B. Schölkopf. Protein functional class prediction with a combined graph.

Expert Systems with Applications, 36:3284–3292, 2009.

P. Uetz et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.

Nature, 6770(403):623–627, 2000.

1283

CESA-BIANCHI, GENTILE, VITALE AND ZAPPELLA

Train/test split 5% 10% 25% 50%

Predictors Error F Error F Error F Error F

WTA+RST 21.68 0.86 21.05 0.87 20.08 0.87 18.99 0.88

WTA+NWRST 21.47 0.87 21.29 0.86 20.18 0.87 19.17 0.88

WTA+MST 21.57 0.86 20.63 0.87 19.61 0.88 18.37 0.88

WTA+SPST 21.39 0.87 21.34 0.86 20.52 0.87 19.57 0.88

WTA+DFST 21.88 0.86 21.09 0.87 19.82 0.87 18.83 0.88

NWWTA+RST 21.50 0.87 21.15 0.87 20.43 0.87 19.95 0.87

NWWTA+NWRST 21.61 0.86 21.26 0.87 20.52 0.87 20.09 0.87

NWWTA+MST 21.53 0.86 20.95 0.87 20.35 0.87 19.81 0.88

NWWTA+SPST 21.37 0.87 21.06 0.87 20.55 0.87 20.06 0.87

NWWTA+DFST 21.88 0.86 21.05 0.87 20.50 0.87 19.74 0.88

GPA+RST 23.56 0.85 22.27 0.86 21.86 0.86 21.68 0.86

GPA+NWRST 23.91 0.85 23.11 0.85 22.47 0.86 21.30 0.86

GPA+MST 23.32 0.85 21.60 0.86 21.77 0.86 21.67 0.86

GPA+SPST 22.55 0.85 21.89 0.85 21.64 0.85 21.70 0.85

GPA+DFST 41.69 0.71 30.82 0.79 26.75 0.82 23.56 0.84

7*WTA+RST 16.39 0.90 16.09 0.90 15.77 0.91 15.29 0.91

7*WTA+NWRST 16.35 0.90 16.10 0.90 15.77 0.90 15.47 0.91

11*WTA+RST 15.89 0.91 15.61 0.91 15.32 0.91 14.84 0.91

11*WTA+NWRST 15.82 0.91 15.57 0.91 15.34 0.91 14.98 0.91

17*WTA+RST 15.54 0.91 15.31 0.91 14.97 0.91 14.55 0.91

17*WTA+NWRST 15.45 0.91 15.29 0.91 15.05 0.91 14.66 0.91

WMV 44.74 0.68 40.75 0.72 32.97 0.78 25.28 0.84

LABPROP 14.93 0.91 14.98 0.91 15.23 0.91 15.31 0.90

Table 6: COMBINED. Average error rate and F-measure on 17 classes.

Predictors Error F

WTA+NWRST 10.03 0.95

3*WTA+NWRST 6.44 0.97

7*WTA+NWRST 5.91 0.97

WMV 44.1 0.71

LABPROP 12.84 0.93

Table 7: WEBSPAM. Test set error rate and F-measure. WTA operates only on NWRST.

F. Vitale, N. Cesa-Bianchi, C. Gentile, and G. Zappella. See the tree through the lines: the Shazoo

algorithm. In Proc. of the 25th Annual Conference on Neural Information Processing Systems,

pages 1584-1592. Curran Associates, 2012.

D.B. Wilson. Generating random spanning trees more quickly than the cover time. In Proc. of the

28th ACM Symposium on the Theory of Computing, pages 296–303. ACM Press, 1996.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields and har-

monic functions. In ICML Workshop on the Continuum from Labeled to Unlabeled Data in

Machine Learning and Data Mining, 2003.

1284

