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Abstract

Linear reinforcement learning (RL) algorithms like least-squares temporal difference learning

(LSTD) require basis functions that span approximation spaces of potential value functions. This

article investigates methods to construct these bases from samples. We hypothesize that an ideal

approximation spaces should encode diffusion distances and that slow feature analysis (SFA) con-

structs such spaces. To validate our hypothesis we provide theoretical statements about the LSTD

value approximation error and induced metric of approximation spaces constructed by SFA and the

state-of-the-art methods Krylov bases and proto-value functions (PVF). In particular, we prove that

SFA minimizes the average (over all tasks in the same environment) bound on the above approx-

imation error. Compared to other methods, SFA is very sensitive to sampling and can sometimes

fail to encode the whole state space. We derive a novel importance sampling modification to com-

pensate for this effect. Finally, the LSTD and least squares policy iteration (LSPI) performance of

approximation spaces constructed by Krylov bases, PVF, SFA and PCA is compared in benchmark

tasks and a visual robot navigation experiment (both in a realistic simulation and with a robot). The

results support our hypothesis and suggest that (i) SFA provides subspace-invariant features for

MDPs with self-adjoint transition operators, which allows strong guarantees on the approximation

error, (ii) the modified SFA algorithm is best suited for LSPI in both discrete and continuous state

spaces and (iii) approximation spaces encoding diffusion distances facilitate LSPI performance.

Keywords: reinforcement learning, diffusion distance, proto value functions, slow feature analy-

sis, least-squares policy iteration, visual robot navigation
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1. Introduction

Reinforcement learning (RL, Sutton and Barto, 1998; Bertsekas and Tsitsiklis, 1996) provides a

framework to autonomously learn control policies in stochastic environments and has become pop-

ular in recent years for controlling robots (e.g., Abbeel et al., 2007; Kober and Peters, 2009). The

goal of RL is to compute a policy which selects actions that maximize the expected future reward

(called value). An agent has to make these decisions based on the state x ∈ X of the system. The

state space X may be finite or continuous, but is in many practical cases too large to be represented

directly. Approximated RL addresses this by choosing a function from function set F that resembles

the true value function. Many function sets F have been proposed (see, e.g., Sutton and Barto, 1998;

Kaelbling et al., 1996, for an overview). This article will focus on the space of linear functions with

p non-linear basis functions {φi(·)}p
i=1 (Bertsekas, 2007), which we call approximation space Fφ.

The required basis functions φi(·) are usually defined by hand (e.g., Sutton, 1996; Konidaris

et al., 2011) and a bad choice can critically impede the accuracy of both the value estimate and the

resulting control policy (see, e.g., Thrun and Schwartz, 1993). To address this issue, a growing body

of literature has been devoted to the construction of basis functions and their theoretical properties

(Mahadevan and Maggioni, 2007; Petrik, 2007; Parr et al., 2007; Mahadevan and Liu, 2010; Sun

et al., 2011). Recently, the unsupervised method slow feature analysis (SFA, Wiskott and Sejnowski,

2002) has been proposed in this context (Legenstein et al., 2010; Luciw and Schmidhuber, 2012).

This article presents a theoretical analysis of this technique and compares it with state-of-the-art

methods. We provide theoretical statements for two major classes of automatically constructed

basis functions (reward-based and subspace-invariant features, Parr et al., 2008) with respect to the

induced Euclidean metric and the approximation error of least-squares temporal difference learning

(LSTD, Bradtke and Barto, 1996). We also prove that under some assumptions SFA minimizes an

average bound on the approximation error of all tasks in the same environment and argue that no

better solution based on a single training sequence exists.

In practical applications (such as robotics) the state can not always be observed directly, but may

be deducted from observations1 z ∈Z of the environment. Partial observable Markov decision pro-

cesses (POMDPs, Kaelbling et al., 1998) deal with the necessary inference of hidden states from

observations. POMDPs are theoretically better suited, but become quickly infeasible for robotics.

In contrast, this article focuses on another obstacle to value estimation: the metric associated with

observation space Z can influence basis function construction. We assume for this purpose a unique

one-to-one correspondence2 between states x ∈ X and observations z ∈ Z. To demonstrate the

predicted effect we evaluate construction methods on a robotic visual navigation task. The observa-

tions are first-person perspective images, which exhibit a very different Euclidean metric than the

underlying state of robot position and orientation. We hypothesize that continuous SFA (RSK-SFA,

Böhmer et al., 2012) is not severely impeded by the change in observation metric and substantiate

this in comparison to continuous proto value functions (PVF, Mahadevan and Maggioni, 2007) and

kernel PCA (Schölkopf et al., 1998). We also confirm theoretical predictions that SFA is sensitive

to the sampling policy (Franzius et al., 2007) and derive an importance sampling modification to

compensate for these imbalances.

1. In this article the set of all possible observations Z is assumed to be a manifold in vector space IRd .

2. This makes Z an isomorphism of X, embedded in IRd . The only difference is the associated metric. In the following

we will continue to discriminate between X and Z for illustrative purposes.
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1.1 Approximation Spaces

State spaces X can be finite or continuous.3 We define the corresponding observation space Z to be

isomorphic, but it may be governed by a very different metric. For example: finite X are usually

equipped with a discrete metric, in which all states have equal distance to each other. Isomor-

phic observations z ∈ Z ⊂ IRd , on the other hand, might be equipped with an Euclidean metric in

IRd instead. To approximate the value function V (·) : Z→ IR, one aims for a function f (·) ∈ F

that minimizes the approximation error w.r.t. some norm ‖V − f‖. This article is focusing on the

Euclidean L2 norm4 (see Section 2 for details), which depends on the metric’s distance function.

Besides different approximation errors, generalization to unseen states will also be very different in

these spaces. This raises the question which metric is best suited to approximate value functions.

Values are defined as the expected sum of future rewards. States with similar futures will therefore

have similar values and are thus close by under an ideal metric. Diffusion distances compare the

probabilities to end up in the same states (see, e.g., Coifman et al., 2005, and Section 4.1). It sands

therefore to reason that a diffusion metric facilitates value approximation.

This article is using the term approximation space Fφ for the set of linear functions with p

non-linear basis functions φi : Z→ IR, Fφ :=
{

f (·) =w⊤φ(·) |w ∈ IRp
}

. Function approximation

can be essentially performed by an inverse of the covariance matrix (see Section 2.3) and value

estimation can be guaranteed to converge (Bertsekas, 2007). Nonetheless, the choice of basis func-

tions φ : Z→ IRp and thus approximation space Fφ will strongly affect approximation quality and

generalization to unseen samples. An ideal approximation space should therefore (i) be able to ap-

proximate the value function well and (ii) be equipped with a Euclidean metric in {φ(z) |z ∈ Z}
that resembles a diffusion metric. Approximation theory provides us with general functional bases

that allow arbitrarily close approximation of continuous functions and thus fulfill (i), for example

polynomials or a Fourier basis (Konidaris et al., 2011). However, those bases can usually not be

defined on high-dimensional observation spaces Z, as they are prone to the curse of dimensionality.

A straightforward approach to basis construction would extract a low-dimensional manifold of

Z and construct a general function base on top of it. This can be achieved by manifold extraction

(Tenenbaum et al., 2000; Jenkins and Mataric, 2004) or by computer vision techniques (e.g., Visual

SLAM, Smith et al., 1990; Davison, 2003), which require extensive knowledge of the latent state

space X. Some approaches construct basis functions φ(·) directly on the observations z ∈ Z, but

are either restricted to linear maps φ(·) (PP, Sprague, 2009) or do not generalize to unseen samples

(ARE, Bowling et al., 2005). None of the above methods extracts X in a representation that encodes

a diffusion metric.

Recent analysis of the approximation error has revealed two opposing approaches to basis con-

struction: reward-based and subspace-invariant features (Parr et al., 2008). The former encode the

propagated reward function and the latter aim for eigenvectors of the transition matrix. Section 3.1

provides an overview of the reward-based Krylov bases (Petrik, 2007), Bellman error basis func-

tions (BEBF, Parr et al., 2007), Bellman average reward bases (BARB, Mahadevan and Liu, 2010)

and Value-function of the Bellman error bases (V-BEBF, Sun et al., 2011). All of these algorithms

are defined exclusively for finite state spaces. The encoded metric is investigated in Section 4.1.

Proto-value functions (PVF, Mahadevan and Maggioni, 2007, and Section 3.3) are the state-of-the-

3. This article does not discuss discrete countable infinite state spaces, which are isomorphisms to IN.

4. Other approaches are based on the L∞ norm (Guestrin et al., 2001; Petrik and Zilberstein, 2011) or the L1 norm

(de Farias and Roy, 2003). However, all norms eventually depend on the metric of X or Z.
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Figure 1: Scheme of a general RL architecture for visual tasks. First (solid arrow) one or many

visual tasks generate images z to train a representation φ : Z→ IRp, which is a functional

basis in the true state space X. Given such a basis (dashed) one task is used to train a

control policy with a linear RL algorithm. In the verification phase (dotted) the trained

control policy generates multiple test trajectories.

art subspace-invariant feature construction method. In finite state spaces PVF are the eigenvectors

to the smallest eigenvalues of the normalized graph Laplacian of an undirected graph representing

the transition possibility (not probability) between states. As the calculation requires no knowledge

of the reward, this technique has proven useful to transfer knowledge between different tasks in the

same environment (Ferguson and Mahadevan, 2006; Ferrante et al., 2008). In Section 4.3 we will

explain this observation by defining the class of learning problems for which this transfer is nearly

optimal. To cope with continuous state or observation spaces, there also exists an extension based on

the PVF of a k-nearest neighbors graph and Nyström approximation between the graph nodes (Ma-

hadevan and Maggioni, 2007). However, as this approach is based on neighborhood relationships

in Z, the solution will not preserve diffusion distances.

An extension preserving these distances are Laplacian eigenmaps (Belkin and Niyogi, 2003)

of the transition operator. Recently Sprekeler (2011) has shown that slow feature analysis (SFA,

Wiskott and Sejnowski, 2002, and Section 3.4) approximates Laplacian eigenmaps. In the limit

of an infinite training sequence, it can be shown (under mild assumptions) that the resulting non-

linear SFA features span a Fourier basis in the unknown state space X (Wiskott, 2003). Franzius

et al. (2007) show additionally that the order in which the basis functions are encoded is strongly

dependent on the relative velocities in different state dimensions. This can lead to an insufficient

approximation for low dimensional, but has little effect on high dimensional approximation spaces.

Section 3.5 addresses this problem with an importance sampling modification to SFA.

1.2 Visual Tasks

Most benchmark tasks in RL have either a finite or a continuous state space with a well behaving

Euclidean metric.5 Theoretical statements in Section 4 predict that SFA encodes diffusion distances,

which are supposed to facilitate generalization. Testing this hypothesis requires a task that can be

solved either with a well behaving true state x ∈ X or based on observations z ∈ Z ⊂ IRd with a

disadvantageous metric. Value functions approximated w.r.t. a diffusion metric, that is, with SFA

features, should provide comparable performance in both spaces. Based on a method that encodes

only Euclidean distances in Z (e.g., PCA), on the other hand, the performance of the approximated

value functions should differ.

5. An example for finite state spaces is the 50-state chain (Section 5.2). The puddle-world task (Section 5.3) and

the mountain-car task (not evaluated) have been defined with continuous and with discrete state spaces (Boyan

and Moore, 1995; Sutton, 1996). Both continuous tasks are defined on well-scaled two dimensional state spaces.

Euclidean distances in these spaces resemble diffusion distances closely.
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Figure 2: The figure shows the visual control process to guide a robot into the circular goal area.

At its position (a), the robot observes an image with its head mounted camera (b). A

function φ(·), generated by one of the discussed unsupervised methods, maps the image

into a p-dimensional feature space (c). For each action a∈A, these features are weighted

by the LSPI parameter vector wa ∈ IRp (d), giving rise to the Q-value function Qπ(·, ·)
(e). The control always chooses the action a with the highest Q-value (f).

Applied to visual input, for example camera images, this class of problems is called visual

tasks. Setting problems of partial observability aside, the true state x is usually assumed to be

sufficiently represented by a set of hand-crafted features of z. However, there is no straightforward

way to extract the state reliably out of visual data without introducing artificial markers to the

environment. Current approaches to visual tasks aim thus to learn a feature mapping φ : Z→ IRp

from observations z, without loosing too much information about the true state x (see Jodogne

and Piater, 2007, for an overview). Figure 1 shows a sketch of a general RL architecture to solve

visual tasks with linear RL methods. Here we first learn an image representation φ : Z→ IRp

from experience (solid arrow), collected in one or more visual tasks within the same environment.

To learn a control policy (dashed arrows) the agent treats the representation φ(z) ∈ IRp of each

observed image z ∈Z as the representation of the corresponding state x∈X. A linear RL algorithm

can estimate future rewards r ∈ IR by approximating the linear Q-value function Qπ : IRp×A→
IR with weight vector w ∈ IRp|A|. The control policy always chooses the action a ∈ A with the

highest Q-value predicted by Qπ and can be verified by independent test runs from random start

positions (dotted arrows). For example, in the context of navigation, Lange and Riedmiller (2010)

employed a deep auto-encoder (Hinton and Osindero, 2006), Legenstein et al. (2010) hierarchical

nonlinear slow feature analysis (SFA, Wiskott and Sejnowski, 2002) and Luciw and Schmidhuber

(2012) incremental SFA (Kompella et al., 2012) to represent the underlying state space. The control

problem was subsequently solved by different approximate RL algorithms. All above works verified
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their approaches on a very regular observation space Z by providing the agent with a bird’s eye view

of an artificial world, in which a set of pixels determines the agents position uniquely.

To yield a less ideal observation space Z, the visual navigation task in Section 5.4 observes first-

person perspective images6 instead. Figure 2 shows the control loop of the robot. The true state x is

the robot’s position at which an image z is taken by a head-mounted camera. X is continuous and in

principle the actions a ∈A should be continuous too. However, selecting continuous actions is not

trivial and for the sake of simplicity we restricted the agent to three discrete actions: move forward

and turn left or right.

1.3 Contributions

The contributions of this article are threefold:

1. We provide theoretical statements about the encoded diffusion metric (Section 4.1) and the

LSTD value approximation error (Section 4.2) of both reward-based (Krylov bases) and

subspace-invariant (SFA) features. We also prove that SFA minimizes an average bound on

the approximation error of a particular set of tasks (Section 4.3). We conclude that SFA can

construct better approximation spaces for LSTD than PVF and demonstrate this on multiple

discrete benchmark tasks (Sections 5.1 to 5.3).

2. We investigate the role of the metric in approximation space Fφ on a visual robot navigation

experiment, both in a realistic simulation and on a robot (Sections 5.4 to 5.7). We demonstrate

than SFA can sometimes fail to encode the whole state space due to its dependence on the

sampling policy and address this problem with a novel importance sampling modification to

the SFA algorithm.

3. We compare the performance of approximation spaces constructed by Krylov bases, PVF,

SFA and PCA for least-squares policy iteration (LSPI, Lagoudakis and Parr, 2003). Results

suggest that (i) the modified SFA algorithm is best suited for LSPI in both discrete and contin-

uous state spaces and (ii) approximation spaces that encode a diffusion metric facilitate LSPI

performance.

Both theoretical and empirical results leave room for interpretation and unresolved issues for future

works. Section 6 discusses open questions as well as potential solutions. Finally, the main results

and conclusions of this article are summarized in Section 7.

2. Reinforcement Learning

In this section we review reinforcement learning in potentially continuous state spaces X, which

require a slightly more complicated formalism than used in standard text books (e.g., Sutton and

Barto, 1998). The introduced notation is necessary for Section 4 and the corresponding proofs in

Appendix A. However, casual readers familiar with the RL problem can skip this section and still

comprehend the more practical aspects of the article.

There exist many linear RL algorithms one could apply to our experiment, like temporal dif-

ference learning (TD(λ), Sutton and Barto, 1998) or Q-learning (Watkins and Dayan, 1992). We

6. Rotating a camera by some degrees represents only a minor change in its orientation and therefore in X, but shifts all

pixels and can lead to very large Euclidean distances in Z. Moving slightly forward, on the other hand, changes only

the pixels of objects close by and thus yields a much smaller distance in Z.
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chose here the least-squares policy iteration algorithm (LSPI, Lagoudakis and Parr, 2003, see Sec-

tion 2.4), because the underlying least-squares temporal difference algorithm (LSTD, Bradtke and

Barto, 1996, see Section 2.3) is the most sample effective unbiased value estimator (Grünewälder

and Obermayer, 2011). For practical implementation we consider sparse kernel methods, which are

introduced in Section 2.5.

2.1 The Reinforcement Learning Problem

We start with the definition of a Markov decision process (MDP). Let B(X) denote the collection

of all Borel sets of set X. A Markov decision process is a tuple (X,A,P,R). In our setup, X is a

finite or compact continuous7 state space and A the finite8 action space. The transition kernel9 P :

X×A×B(X)→ [0,1] represents the probability P(A|x,a) to end up in set A∈B(X) after executing

action a in state x. R : X×A×X×B(IR)→ [0,1] is a distribution over rewards: R(B|x,a,y) is

the probability to receive a reward within set B ∈ B(IR) after a transition from state x to state y,

executing action a. In our context, however, we will be content with the mean reward function

r : X×A→ IR, defined as r(x,a) =
∫

IR

∫
X

r R(dr|x,a,y)P(dy|x,a),∀x ∈ X,a ∈ A. A control policy

π : X×B(A)→ [0,1] is a conditional distribution of actions given states. The goal of reinforcement

learning is to find a policy that maximizes the value Vπ(x) at each state x, that is the expected sum

of discounted future rewards

Vπ(x0) := IE

[
∞

∑
t=0

γt r(xt ,at)

∣
∣
∣
∣

at ∼ π(·|xt)
xt+1 ∼ P(·|xt ,at)

]

, ∀x0 ∈ X .

Here the discount factor γ ∈ [0,1) determines the relative importance of short term to long term

rewards.10 The value function can also be expressed recursively:

Vπ(x) =
∫

r(x,a)π(da|x)+γ
∫∫

Vπ(y)P(dy|x,a)π(da|x) , ∀x ∈ X .

In finite state (and action) spaces this equation can be solved by dynamic programming. Note that

for fixed Vπ(·) the equation is linear in the policy π(·|·) and vice versa, allowing an expectation

maximization type algorithm called policy iteration (PI, Sutton and Barto, 1998) to find the best

policy. To allow for continuous state spaces, however, we need to translate this formalism into a

Hilbert space.

2.2 MDP in Hilbert Spaces

For the sake of feasibility we will restrict our discussion to value functions vπ ∈ L2(X,ξ) from

the space of square-integrable functions on X, endowed with probability measure ξ : B(X) →
[0,1],

∫
ξ(dx) = 1. This Hilbert space contains ξ-measurable functions and should suffice for all

7. Compact state spaces X are necessary for ergodicity, see Footnote 12 on Page 2074. All finite X are compact.

8. For generality we maintain the notation of continuous compact action spaces as long as possible.

9. Following probability theory, a kernel denotes here a conditional measure over some set, in this article X×A or just

X. If this measure over the whole set is always one then it is called a transition or Markov kernel. Note that the

Radon-Nikodym derivative of a kernel w.r.t. the uniform measure is called a kernel function in integral calculus. Note

also the difference to positive semi-definite kernels in the context of RKHS (see Section 3.2).

10. In classical decision theory, γ can be interpreted as the continuous version of a maximal search depth in the decision

tree. Alternatively, one can see γt as shrinking certainty about predicted rewards.
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continuous setups. The induced inner product and norm are

〈 f ,g〉ξ =
∫

f (x)g(x)ξ(dx) and ‖ f‖ξ = 〈 f , f 〉1/2

ξ
, ∀ f ,g ∈ L2(X,ξ) .

For a fixed policy π, this yields the transition operator11 P̂π : L2(X,ξ)→ L2(X,ξ),

P̂π[ f ](x) :=
∫∫

f (y)P(dy|x,a)π(da|x) , ∀x ∈ X , ∀ f ∈ L2(X,ξ) .

The operator is called ergodic if every Markov chain sampled by the underlying transition kernel P

and policy π is ergodic.12 This is a convenient assumption as it implies the existence of a steady

state distribution ξ, which we will use as measure of L2(X,ξ). This also implies

ξ(B) =
∫∫

P(B|x,a)π(da|x)ξ(dx) , ∀B ∈B(X) .

Under the assumption that all rewards are bounded, that is, |r(x,a)|2 < ∞ ⇒ ∃rπ ∈ L2(X,ξ) :

rπ(x) :=
∫

r(x,a)π(da|x),∀x ∈ X,∀a ∈A, we can define the Bellman operator in L2(X,ξ)

B̂π[ f ](x) := rπ(x)+γP̂π[ f ](x) , ∀x ∈ X , ∀ f ∈ L2(X,ξ) ,

which performs recursive value propagation. This is of particular interest as one can show13 that

B̂π[ f ] is a contract mapping in ‖ · ‖ξ and an infinite application starting from any function f ∈
L2(X,ξ) converges to the true value function vπ ∈ L2(X,ξ).

2.3 Least-squares Temporal Difference Learning

Infinitely many applications of the Bellman operator B̂π[·] are not feasible in practice. However,

there exist an efficient solution if one restricts oneself to an approximation from Fφ = { f (·) =
w⊤φ(·) |w ∈ IRp}⊂ L2(X,ξ). For linearly independent basis functionsφi ∈ L2(X,ξ) the projection

of any function f ∈ L2(X,ξ) into Fφ w.r.t. norm ‖ · ‖ξ can be calculated by the linear projection

operator Π̂φ

ξ
: L2(X,ξ)→ L2(X,ξ),

Π̂φ

ξ
[ f ](x) :=

p

∑
j=1

w j∈IR
︷ ︸︸ ︷

p

∑
i=1
〈 f ,φi〉ξ (C−1)i j φ j(x) , Ci j := 〈φi,φ j〉ξ , ∀x ∈ X , ∀ f ∈ L2(X,ξ) .

Instead of infinitely many alternating applications of B̂π and Π̂φ

ξ
, one can directly calculate the fixed

point fπ ∈ Fφ of the combined operator

fπ
!
= Π̂φ

ξ

[
B̂π[ fπ]

]
⇒ wπ =

(

〈φ,φ−γP̂π[φ]〉ξ
︸ ︷︷ ︸

Aπ∈IRp×p

)†
〈φ,rπ〉ξ
︸ ︷︷ ︸

bπ∈IRp

,

11. Every kernel A :X×B(X)→ [0,∞) induces a linear operator Â : L2(X,ξ)→ L2(X,ξ), Â[ f ](x) :=
∫

A(dy|x) f (y), ∀x∈
X,∀ f ∈ L2(X,ξ), which in this article bears the same name with a hat.

12. A Markov chain is called ergodic if it is aperiodic and positive recurrent: if there is a nonzero probability to break

any periodic cycle and if any infinite sequence eventually must come arbitrarily close to every state x ∈ X. This is a

property of the transition kernel rather than the policy. If one policy that assigns a nonzero probability to each action

yields ergodic Markov chains, then every such policy does. Of course this does not hold for deterministic policies.

13. In a straightforward extension of the argument for finite state spaces (Bertsekas, 2007, Chapter 6).
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where wπ ∈ IRp denotes the corresponding parameter vector of fixed point fπ(x) = (wπ)⊤φ(x),
∀x∈X, (Aπ)† denotes the Moore-Penrose pseudo-inverse of matrix Aπ and we wrote (〈φ,φ〉ξ)i j =
〈φi,φ j〉ξ for convenience.

The stochastic matrices Aπ and bπ can be bias-free estimated given a set of transitions
{
φ(xt)

rt→
φ(x′t)

}n

t=1
of start states xt ∼ ξ(·), executed actions at ∼ π(·|xt), corresponding successive states

x′t ∼ P(·|xt ,at) and received rewards rt ∼ R(·|xt ,at ,x
′
t). The resulting algorithm is known as least-

squares temporal difference learning (LSTD, Bradtke and Barto, 1996). It can be shown that it

converges14 in ‖ ·‖ξ norm (Bertsekas, 2007). Note that for this property the samples must be drawn

from steady state distribution ξ and policy π, usually by a long Markov chain executing π.

Moreover, Tsitsiklis and Van Roy (1997) have proven that in ‖ · ‖ξ norm the error between true

value function vπ ∈ L2(X,ξ) and approximation fπ ∈ Fφ is bounded15 by

∥
∥
∥vπ− fπ

∥
∥
∥

ξ
≤ 1
√

1−γ2

∥
∥
∥vπ− Π̂φ

ξ

[
vπ
]
∥
∥
∥

ξ
.

In Section 4 we will improve upon this bound significantly for a special case of SFA features.

We will also show that for a specific class of tasks the basis functions φi(·) extracted by SFA

minimize a mean bound on the right hand side of this equation, in other words minimize the mean

approximation error over all considered tasks.

2.4 Least-squares Policy Iteration

Estimating the value function does not directly yield a control policy. This problem is tackled by

least-squares policy iteration (LSPI, Lagoudakis and Parr, 2003), which alternates between Q-value

estimation (the expectation step) and policy improvement (the maximization step). At iteration i

with current policy πi, the Q-value function Qπi : X×A→ IR is defined as the value of state x ∈ X

conditioned on the next action a ∈A:

Qπi(x,a) := r(x,a)+γ
∫

Vπi(y)P(dy|x,a) = r(x,a)+γ
∫∫

Qπi(y,b)πi(db|y)P(dy|x,a) .

Note that Q-value estimation is equivalent to value estimation in the space of twice integrable

functions over the space of state-action pairs X×A endowed with probability measure µ(B,A) :=∫
Bπi(A|x)ξ(dx) , ∀(B,A) ∈ B(X)×B(A), that is, L2(X×A,µ). The corresponding transition op-

erator P̂
πi

Q : L2(X×A,µ)→ L2(X×A,µ) is

P̂
πi

Q [ f ](x,a) :=
∫∫

f (y,b)πi(db|y)P(dy|x,a) , ∀ f ∈ L2(X×A,µ) , ∀x ∈ X , ∀a ∈A .

The greedy policy πi+1 in the i’th policy improvement step will for each state x draw one of the

actions with the highest Q-value, that is, aπi(x)∼ argmax
a∈A

Qπi(x,a), and stick with it:

πi+1(a|x) :=

{
1 , if a = aπi(x)
0 ,else

, ∀x ∈ X , ∀a ∈A .

14. In a straightforward extension of the argument for finite state spaces (Bertsekas, 2007, Chapter 6).

15. Besides this bound in the weighted L2 norm there exists a multitude of bounds in L∞ and sometimes L1 norm. See

Petrik and Zilberstein (2011) for a recent overview.
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In finite state-action spaces, this procedure will provably converge to a policy that maximizes the

value for all states (Kaelbling et al., 1996).

To cope with continuous state and/or action spaces, LSPI employs the LSTD algorithm to es-

timate approximated Q-value functions fπi ∈ Fφ, where the basis functions φi ∈ L2(X×A,µ) are

defined over state-action pairs rather than states alone. In difference to value estimation, any expe-

rienced set of transitions {(xt ,at)
rt→ x′t}n

t=1 yields the necessary information for Q-value estimation

with arbitrary policies πi, in other words the LSTD training set

{

φ(xt ,at)
rt→

∫
φ(x′t ,a)πi(da|x′t)

}n

t=1

.

However, convergence guarantees hold only when µ is the steady state distribution of P
πi

Q , which

usually only holds in the first iteration. Although it can thus not be guaranteed, empirically LSPI

fails only for large function spaces Fφ and γ close to 1. In Section 5, Figure 8, we demonstrate this

at the example of well and poorly constructed basis functions.

The easiest way to encode p state-action pairs for finite action spaces A is to use an arbitrary

q := p/|A| dimensional state encoding φ : X→ IRq and to extend it by φ̄(x,a) := φ(x)e⊤a , ∀x ∈
X,∀a ∈ A, where ea ∈ IR|A| is a column vector of length 1 which is 0 everywhere except in one

dimension uniquely associated with action a. The resulting q×|A| matrix φ̄(x,a) can be treated as

set of p state-action basis functions.

2.5 Reproducing Kernel Hilbert Spaces

Although L2(X,ξ) is a very powerful tool for analysis, it has proven problematic in machine learning

(Wahba, 1990; Schölkopf and Smola, 2002). Many algorithms employ instead the well behaving

reproducing kernel Hilbert spaces Hκ ⊂ L2(Z,ξ) (RKHS, see, e.g., Schölkopf and Smola, 2002). A

RKHS is induced by a positive semi-definite kernel function κ :Z×Z→ IR; the set {κ(·,x) |x∈Z}
is a full (but not orthonormal) basis of Hκ. The inner product of two kernel functions in Hκ can be

expressed as a kernel function itself. Take the example of the Gaussian kernel used in this article:

〈κ(·,x),κ(·,y)〉Hκ
= κ(x,y) := exp

(
− 1

2σ2 ‖x−y‖2
2

)
, ∀x,y ∈ Z .

Due to compactness of Z, all continuous functions f in L2(Z,ξ) can be approximated arbitrarily

well in L∞ (supremum) norm by functions from Hκ.

Naive implementation of the kernel trick with n observed samples {zt}n
t=1 induces a computa-

tional complexity of O(n3) and a memory complexity of O(n2). For large n it can thus be neces-

sary to look for approximate solutions in the subspace spanned by some sparse subset {si}m
i=1 ⊂

{zt}n
t=1, m≪ n, and thus f (·) = ∑m

i=1 αiκ(·,si) ∈Hκ,α ∈ IRm (projected process matrix sparsi-

fication, Rasmussen and Williams, 2006). If subset and approximation space are chosen well, the

LSTD solution fπ ∈ Fφ can be approximated well too:

fπ ∈ Fφ ⊂ F{κ(·,si)}m
i=1

︸ ︷︷ ︸

approximation space

⊂
↑

subset selection

Hκ ⊂ L2(Z,ξ)
︸ ︷︷ ︸

all continuous functions

.

However, finding a suitable subset is not trivial (Smola and Schölkopf, 2000; Csató and Opper,

2002). We employ the matching pursuit for maximization of the affine hull algorithm (MP-MAH,
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Böhmer et al., 2012) to find a uniformly distributed subset. Section 5.5 empirically evaluates the

effect of this choice.

A MDP with discrete state space Z := {xi}d
i=1 can also be embedded as a RKHS. The kernel

κ(xi,x j) = δi j induces the discrete metric, where δi j is the Kronecker delta. In this metric every state

is an open set and thus Borel sets, integrals, ergodicity and all other concepts in this section can be

extended to discrete state spaces. The discrete metric does not allow generalization to neighboring

states, though. In this case the “sparse” subsets of the kernel algorithms discussed in Section 3

must contain all states, that is, {si}m
i=1 = {xi}d

i=1, which restricts the formalism to finite or compact

continuous state spaces.

3. Basis Function Construction

Solving an MDP with the methods discussed in Section 2 requires the projection into an approxima-

tion space Fφ = { f (·) =w⊤φ(·) |w ∈ IRp}⊂ L2(Z,ξ). The discussed algorithms make it necessary

to specify the involved basis functions φi(·) ∈ L2(Z,ξ),∀i ∈ {1, . . . , p}, before training, though. As

the true value function vπ ∈ L2(Z,ξ) is initially unknown, it is not obvious how to pick a basis that

will eventually approximate it well. Classical choices (like Fourier bases, Konidaris et al., 2011)

are known to approximate any continuous function arbitrarily well in the limit case. However, if

applied on high-dimensional observations, for example, z ∈ IRd , the number of required functions

p scales exponentially with d. It would therefore be highly advantageous to exploit knowledge of

task or observation space and construct a low dimensional basis.

In this context, recent works have revealed two diametrically opposed concepts (Parr et al.,

2008). Expressed in the notation of Section 2, the Bellman error of the fixed point solution fπ(·) =
(wπ)⊤φ(·) !

= Π̂φ

ξ
[B̂π[ fπ]] ∈ Fφ can be separated into two types of error functions,

B̂π[ fπ]− fπ =
(
Î− Π̂φ

ξ

)
[rπ]

︸ ︷︷ ︸

∆r∈L2(Z,ξ)

+ γ
p

∑
i=1

wπ
i

(
Î− Π̂φ

ξ

)[
P̂π[φi]

]

︸ ︷︷ ︸

∆
φ
i ∈L2(Z,ξ)

,

the reward error ∆r ∈ L2(Z,ξ) and the per-feature errors ∆φ
i ∈ L2(Z,ξ). Correspondingly, there

have been two opposing approaches to basis function construction in literature:

1. Reward-based features encode the reward function and how it propagates in time. ∆r is thus

zero everywhere, but ∆φ
p can still induce Bellman errors.

2. Subspace-invariant features aim for eigenfunctions of transition operator P̂π to achieve no

per-feature errors. ∆r, however, can still induce Bellman errors.

This article focuses on subspace-invariant feature sets, but reward-based features are introduced for

comparison in Section 3.1. As a baseline which encodes distances in Z but does not attempt sub-

space invariance, we introduce principal component analysis (PCA, Section 3.2). We continue with

proto value functions (PVF, Section 3.3), which are the current state of the art in subspace-invariant

features. Slow feature analysis (SFA, Section 3.4) has only recently been proposed to generate basis

functions for RL. Section 4 analyzes the properties of both reward-based and subspace-invariant

features in detail and Section 5 empirically compares all discussed algorithms in various experi-

ments.
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3.1 Reward-based Basis Functions

The true value function vπ ∈ L2(Z,ξ) is defined as vπ(z) = ∑∞
t=0γ

t (P̂π)t [r](z) ,∀z ∈ Z , where

(P̂π)t refers to t consecutive applications of operator P̂π and (P̂π)0 := Î. This illustrates the intuition

of Krylov bases (Petrik, 2007):

φK
i := (P̂π)i−1[r] ∈ L2(Z,ξ) , ΦK

k := {φK
1 , . . . ,φ

K
k } .

These bases are natural for value iteration, as the value functions of all iterations can be exactly

represented (see also Corollary 10, Page 2087). However, the transition operator must be approxi-

mated from observations and the resulting basis ΦK
k is not orthonormal. If employed, a projection

operator must thus compute an expensive inverse (see Section 2.3). Bellman error basis functions

(BEBF, Parr et al., 2007) rectify this by defining the (k+ 1)’th feature as the Bellman error of the

fixed point solution f k ∈ FΦB
k

with k features:

φB
k+1 := B̂π[ f k]− f k ∈ L2(Z,ξ) , f k !

= Π̂
ΦB

k

ξ

[
B̂π[ f k]

]
∈ FΦB

k
, ΦB

k := {φB
1 , . . . ,φ

B
k } .

BEBF are orthogonal, that is, 〈φB
i ,φ

B
j 〉ξ = εδi j,ε > 0, and scaling ε to 1 yields an orthonormal

basis. Parr et al. (2007) have shown that Krylov bases and BEBF span the same approximation

space FΦK
k
= FΦB

k
. Both approaches require many features if γ→ 1.

Mahadevan and Liu (2010) have extended BEBF to Bellman average reward bases (BARB)

by including the average reward ρ as the first feature. This is motivated by Drazin bases and has

been reported to reduce the number of required features for large γ. Recently, Sun et al. (2011)

have pointed out that given some basis Φk, the best k + 1’th basis function is always the fixed

point solution with the current Bellman error, that is, the next BEBF φB
k+1, as reward. Adding the

resulting Value function of the Bellman error (V-BEBF) to the current basis can represent the true

value exactly. However, the approach has to be combined with some feature selection strategy, as

finding the V-BEBF fixed point is just as hard.

All above algorithms are exclusively defined on discrete MDPs. Although an extension to gen-

eral RKHSs seems possible, it is not the focus of this article. However, to give readers a comparison

of available methods we will evaluate orthogonalized Krylov bases (which are equivalent to BEBF)

on discrete Benchmark tasks in Sections 5.2 and 5.3.

3.2 Principal Component Analysis

To provide a baseline for comparison, we introduce principal component analysis (PCA, Pearson,

1901). As PCA does not take any transitions into account, the extracted features must therefore en-

code Euclidean distances in Z. PCA aims to find subspaces of maximal variance, which are spanned

by the eigenvectors to the p largest eigenvalues of the data covariance matrix. One interpretation of

PCA features φ : Z→ IRp is an optimal encoding of the centered data {zt}n
t=1 ⊂Z⊂ IRd w.r.t. linear

least-squares reconstruction, that is the optimization problem

inf
φ∈(Flin)p

inf
f∈(Fφ)d

ĨEt

[∥
∥zt −f(zt)

∥
∥2

2

]

︸ ︷︷ ︸

least-squares reconstruction in Fφ

,

where ĨEt [·] is the empirical expectation operator w.r.t. all indices t and Flin the set of linear functions

in IRd .
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In the interest of a more efficient encoding one can extend the function set Flin. A popular

example are reproducing kernel Hilbert spaces, introduced in Section 2.5. The resulting algorithm

is called kernel PCA (Schölkopf et al., 1998) and performs an eigenvalue decomposition of the

centered kernel matrix Ki j = κ(zi,z j). The eigenvectors vi ∈ IRn to the p largest eigenvalues are

the coefficients to the feature maps:

φi(z) :=
n

∑
t=1

vi
t κ(z,zt) , ∀z ∈ Z .

The classical algorithm (Schölkopf et al., 1998) is severely limited by a computational complexity

of O(n3) and a memory complexity of O(n2). It can thus be necessary to approximate the solution

by using a sparse kernel matrix of a subset of the data (projected process, Rasmussen and Williams,

2006), that is, Kit = κ(si,zt), with {si}m
i=1 ⊂ {zt}n

t=1, m≪ n. The eigenvectors vi ∈ IRm of 1
n
KK⊤

determine the coefficients of the sparse kernel PCA features. If a large enough subset is distributed

uniformly in Z, the approximation is usually very good.

3.3 Proto-value Functions

In finite state spaces Z, |Z| < ∞, proto-value functions (PVF, Mahadevan and Maggioni, 2007) are

motivated by diffusion maps on graphs (Coifman et al., 2005). For this purpose a connection graph is

constructed out of a Markov chain {zt}n
t=1 ⊂Z: for the first observed transition from state x to y, the

corresponding entry of connection matrix W is set Wxy := 1. All entries of non-observed transitions

are set to zero. As diffusion maps require undirected graphs, this matrix must be symmetrized by

setting W← 1
2(W+W⊤). PVF are the eigenvectors to the p smallest eigenvalues of the normalized

graph Laplacian L := D−1/2 (D−W) D−1/2, where Dxy = δxy ∑
|Z|
z=1Wxz,∀x,y ∈ Z, and δxy is the

Kronecker delta. Section 4.1 shows that this approach, also known as spectral encoding (Belkin

and Niyogi, 2003), yields approximation spaces in which Euclidean distances are equivalent to

diffusion distances on the connection graph. Note, however, that these are not exactly the diffusion

distances of the transition kernel, as the transition possibility rather than probability is encoded in

matrix W. Section 4.2 discusses this difference.

For infinite observation spaces Z PVF are also defined by connection graphs. However, in dif-

ference to the finite case, the construction of this graph is not straightforward. Mahadevan and

Maggioni (2007) proposed a symmetrized k-nearest neighbors graph W out of a random16 set

{s j}m
j=1 ⊂ {zt}n

t=1, m≪ n. Each node si is only connected with the k nearest nodes {s′j}k
j=1 ⊂

{s j}m
j=1 (w.r.t. the Euclidean norm in Z), with weights determined by a Gaussian kernel κ(·, ·) with

width-parameter σ,

Wi j := κ(si,s j) = exp
(
− 1

2σ2 ‖si−s j‖2
2

)
.

After symmetrization the PVF φ̂i at the nodes s j are calculated. A Nyström extension approximates

the PVF for all samples z by calculating the mean over the weighted PVF of the k nodes {s′j}k
j=1 ⊂

{s j}m
j=1 closest to z,

φi(z) :=
k

∑
j=1

κ(z,s′j)

∑k
l=1κ(z,s

′
l)
φ̂i(s

′
j) , ∀z ∈ Z .

16. Ideally the nodes are uniformly drawn w.r.t. the true diffusion metric, in other words uniformly in X. If nodes are

drawn randomly or uniformly in Z, this difference can lead to a significant deviation in the number of transitions

between nodes and the resulting diffusion distances thus deviate as well.
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Note that these features are no longer based on the transitions of the observed Markov chain, but on

Euclidean distances in Z.

3.4 Slow Feature Analysis

The unsupervised learning method slow feature analysis (SFA, Wiskott and Sejnowski, 2002) aims

for a set of mappings φ : Z→ IRp such that the values φi(zt) change slowly over an observed

Markov chain {zt}n
t=1 ⊂ Z. The objective (called slowness S) is defined as the expectation of the

squared discrete temporal derivative:

inf
φ∈(F)p

p

∑
i=1

S(φi) :=
p

∑
i=1

ĨEt [φ̇
2
i (zt)] (slowness) .

To ensure each slow feature encodes unique information and can be calculated in an iterative fash-

ion, the following constraints must hold ∀i ∈ {1, . . . , p} :

ĨEt [φi(zt)] = 0 (zero mean),

ĨEt [φ
2
i (zt)] = 1 (unit variance),

∀ j 6= i : ĨEt [φi(zt)φ j(zt)] = 0 (decorrelation),

∀ j > i : S(φi) ≤ S(φ j) (order) .

The principle of slowness has been used for a long time in the context of neural networks (Földiák,

1991). Kompella et al. (2012) have proposed an incremental online SFA algorithm. Recently several

groups have attempted to use SFA on a random walk of observations to generate basis functions for

RL (Legenstein et al., 2010; Luciw and Schmidhuber, 2012).

Although formulated as a linear algorithm, SFA was originally intended to be applied on the

space of polynomials like quadratic (Wiskott and Sejnowski, 2002) or cubic (Berkes and Wiskott,

2005). The polynomial expansion of potentially high dimensional data, however, spans an imprac-

tically large space of coefficients. Hierarchical application of quadratic SFA has been proposed to

solve this problem (Wiskott and Sejnowski, 2002; Legenstein et al., 2010). Although proven to work

in complex tasks (Franzius et al., 2007), this approach involves a multitude of hyper-parameters and

no easy way to counteract inevitable over-fitting is known so far.

An alternative to polynomial expansions are sparse kernel methods (see Section 2.5). We sum-

marize in the following the regularized sparse kernel SFA (RSK-SFA, Böhmer et al., 2012) which

we have used in our experiments. For a given sparse subset {si}m
i=1 ⊂ {zt}n

t=1, the algorithm deter-

mines the mapping φ : Z→ IRp in 3 steps:

i Fulfilling the zero mean constraint directly on sparse kernel matrix Kit := κ(si,zt), that is,

K′ := (I− 1
m
1m1

⊤
m)K(I− 1

n
1n1

⊤
n ), where 1k ∈ IRk is a column vector of ones.

ii Fulfilling unit variance and decorrelation constraints by performing an eigenvalue decomposi-

tion UΛΛΛΛΛU⊤ := 1
n
K′K′⊤ and projecting K′′ := ΛΛΛΛΛ−

1
2 U⊤K′.

iii Minimize the objective by another eigenvalue decomposition RΣΣΣR⊤ := 1
n−1 K̇′′K̇′′⊤, where K̇′′it :=

K′′it+1−K′′it . Grouping the kernel functions of the sparse subset into one multivariate function

k : Z→ IRm with ki(z) := κ(z,si), ∀z ∈ Z, the solution is given by

φ(z) = A⊤k(z)−c , ∀z ∈ Z

with A := (I−1m1
⊤
m)UΛΛΛΛΛ−

1
2 R , and c := 1

n
AK1n .
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Böhmer et al. (2012) have demonstrated the numerical instability of this algorithm in face of

insufficient sparseness and introduced a regularization term ‖φi‖Hκ
to the objective to stabilize the

solution. In our experiments we did not face this problem, and regularization is thus omitted here.

3.5 Relative Velocities and Modified SFA

In the limit of an infinite Markov chain in Z and some mild assumptions17 on the transition kernel

in X, the slowest possible mappings can be calculated analytically (Wiskott, 2003; Franzius et al.,

2007). As the discrete temporal derivative is specified by the transition kernel in X, the analytical

solutions have domain X as well. Note, however, that the same transition kernel yields the same

feature maps in X, independent18 of the actual observation space Z. Section 4.1 demonstrates

that these solutions are endowed with the diffusion metric of the symmetrized transition kernel, not

unlike PVF in finite state spaces. Sprekeler (2011) has recently shown that in this case SFA solutions

are (almost) equivalent to PVF. Note also that SFA encodes the actual transition probabilities, which

requires more samples to converge than the transition possibilities encoded by PVF.

The analytically derived SFA features of Franzius et al. (2007) are of particular interest to the

visual navigation experiment (Section 5.4 and Figure 2, Page 2071), as they assume the same setup.

The solution is a Fourier basis on domain X := [0,Lx]× [0,Ly]× [0,2π),

φι(i, j,l)(x,y,θ) =

{
3
√

2cos( iπ
Lx

x)cos( jπ
Ly

y)sin( l+1
2 θ), l odd

3
√

2cos( iπ
Lx

x)cos( jπ
Ly

y)cos( l
2 θ), l even

, ∀(x,y,θ) ∈ X ,

where ι : (IN×IN×IN \ {(0,0,0)})→ IN+ is an index function, which depends on the relative veloc-

ities in two spatial dimensions x and y, and the robot’s orientation θ. It can occur that SFA features

have the same slowness, in which case the solution is no longer unique. For example, if φι(1,0,0)

and φι(0,1,0) have the same slowness, then S(φι(1,0,0)) = S(φι(0,1,0)) = S(aφι(1,0,0)+bφι(0,1,0)) holds

as long as a2 + b2 = 1. This corresponds to an arbitrary rotation in the subspace of equally slow

features. However, if we are interested in the space spanned by all features up to a certain slowness,

every rotated solution spans the same approximation space Fφ.

The order ι(·, ·, ·) of the analytical SFA features derived by Franzius et al. (2007, see above)

depend strongly on the relative velocities in the state dimensions. For example, crossing the room

in our experiment in Section 5.4 requires 10 movements, during which feature φι(1,0,0) will run

through half a cosine wave. In as little as 4 rotations, on the other hand, feature φι(0,0,1) registers

the same amount of change. Sampled evenly by a random policy, the first SFA features will there-

fore not encode the robot’s orientation, which can critically impair the value representation in low

dimensional approximation spaces. This article proposes a simple modification to the RSK-SFA

algorithm to adjust the relative velocities by means of importance sampling.

Let {(zt ,at)}n
t=0 denote a training sequence sampled by policy π with a steady state distri-

bution ξ, which induces the joint distribution µ(B,A) =
∫

Bπ(A|z)ξ(dz),∀B ∈ B(Z),∀A ∈ B(A).
To switch to another policy τ and state distribution ζ, that is, the joint distribution η(B,A) =∫

B τ (A|z)ζ(dz),∀B ∈ B(Z),∀A ∈ B(A), one can weight each transition with the Radon-Nikodym

17. In this case decorrelated Brownian motion in a multivariate state space X with independent boundary conditions for

each dimension. Examples are rectangles, cubes, tori or spheres of real coordinates.

18. In line with SFA literature, this article does not discuss partial observability of the state. In other words, we assume

there exist an unknown one-to-one mapping of states x ∈ X to observations z ∈ Z.
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derivative
dη
dµ

. This yields the modified SFA optimization problem

inf
φ∈(F)p

p

∑
i=1

Ŝ(φi,η) :=
p

∑
i=1

ĨEt

[
dη
dµ
(zt ,at) φ̇

2
i (zt)

]

s.t.
ĨEt

[
dη
dµ
(zt ,at) φi(zt)

]

= 0

ĨEt

[
dη
dµ
(zt ,at) φi(zt)φ j(zt)

]

= δi j

, ∀i, j ∈ {1, . . . , p} .

However, there is no indication which distribution ζ and policy τ ensure a balanced encoding.

We propose here a simple heuristic for situations in which the actions affect only mutually

independent subspaces of X. In our robot navigation experiment, for example, rotations do not

influence the robot’s spatial position nor do the movements influence it’s orientation. As opti-

mal SFA features in the spatial subspace are significantly slower (see above), the first features

will encode this subspace exclusively. This can be counteracted by setting ζ := ξ and defining
dτ
dπ

(z,a) := ϑ(a),∀z ∈ Z,∀a ∈ A, where ϑ : A→ IR+ weights each action independent of the cur-

rent state. In practice, weights ϑ(a) need to be adjusted by hand for each action a ∈ A: the higher

ϑ(a), the weaker the influence of the corresponding subspace of X onto the first features. Only the

last step (iii) of RSK-SFA has to be modified by redefining K̇′′it ← ϑ
1
2 (at) K̇′′it . Figure 9, Page 2101,

demonstrates the effect of this modification.

4. Theoretical Analysis

This section analyzes the theoretical properties of reward-based and subspace-invariant features

w.r.t. value function approximation. The employed formalism is introduced in Section 2. If not

stated otherwise, the features are assumed to be optimized over L2(Z,ξ) and based on an infinite

ergodic Markov chain. Proofs to all given lemmas and theorems can be found in Appendix A.

At the heart of function approximation lies the concept of similarity. Similar states will have

similar function values. Usually this similarity is given by a metric on the observation space. Devi-

ations of the function output from this metric must be compensated by the optimization algorithm.

However, value function approximation allows for explicit specification of the required similarity.

The definition of the value assigns similar function output to states with (i) similar immediate re-

wards and (ii) similar futures. As discussed in Section 3, reward-based features focus on encoding

(i), whereas subspace-invariant features focus on (ii). Section 4.1 analyzes how SFA encodes sim-

ilar futures as diffusion distances and shows some restrictions imposed onto the class of subspace-

invariant features. The ramifications of these restrictions onto value function approximation are

discussed in Section 4.2.

This article also presents a second, novel perspective onto value function approximation. The

MDP one will face is usually not known before learning and the construction of a suitable basis is

very expensive. Instead of approximating a particular MDP at hand, one could focus on a complete

set M of anticipated MDPs. An optimal approximation space should be able to approximate any

MDP m ∈M if encountered. In difference to the classical analysis put forward by Petrik (2007),

Parr et al. (2007) and Mahadevan and Maggioni (2007), this point of view puts emphasis on the

reuse of prior experience, as investigated in transfer learning (Taylor and Stone, 2009; Ferguson

and Mahadevan, 2006; Ferrante et al., 2008). Section 4.3 defines a criterion of optimal features for

some anticipated set M. Under some assumptions on M, we prove that SFA optimizes a bound on
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this criterion and argue that there can be no better bound based on a single Markov chain. Section

4.4 provides a summarizing conclusion and further implications can be found in Section 6.

4.1 Diffusion Metric

Values of observed states x,y ∈ Z depend less on their Euclidean distance in Z than on common

future states. PVF are thus based on diffusion distances dt(x,y) of a graph representing the sym-

metrized transition possibilities Txy := Wxy/(∑z∈ZWxz) between discrete states (see Section 3.3 or

Mahadevan and Maggioni, 2007):

d2
t (x,y) = ∑

z∈Z
ξz

(

(Tt)xz− (Tt)yz

)2
,

where ξ ∈ IR|Z| are arbitrary19 non-negative weights and Tt denotes the t’th power of matrix T.

These diffusion distances are equal to Euclidean distances in a space spanned by the eigenvectors

φi ∈ IR|Z| and eigenvalues λi ∈ IR of connectivity matrix T (e.g., for general similarity matrices see

Coifman et al., 2005):

dt(x,y) =
∥
∥ψt(x)−ψt(y)

∥
∥

2
, ψt

i(x) := λt
iφix , ∀t ∈ IN .

An extension to potentially continuous observation (or state) spaces Z with ergodic transition

kernels Pπ :Z×B(Z)→ [0,1] is not trivial. Mean-squared differences between distributions are not

directly possible, but one can calculate the difference between Radon-Nikodym derivatives.20 Due

to ergodicity the derivative always exists for finite sets Z, but for continuous Z one must exclude

transition kernels that are not absolutely continuous.21

Assumption 1 If Z is continuous, the transition kernel knows no finite set of future states.

P(B|z,a) = 0 , ∀B ∈
{

B ∈B(Z)
∣
∣ |B|< ∞

}
, ∀z ∈ Z , ∀a ∈A .

This can always be fulfilled by adding a small amount of continuous noise (e.g., Gaussian) to

each transition. Let in the following (Pπ)t(·,x) : B(Z)→ [0,1] denote the state distribution after

t transitions, starting at state x ∈ Z. Note that under Assumption 1 the Radon-Nikodym derivative

w.r.t. steady state distribution ξ is22 d(Pπ)t(·|x)
dξ

∈ L2(Z,ξ),∀t ∈ IN\{0}.

Definition 1 The diffusion distance dt : Z×Z→ IR+ based on ergodic transition kernel Pπ with

steady state distribution ξ is defined as

dt(x,y) :=
∥
∥
∥µt

x−µt
y

∥
∥
∥

ξ
, µt

x := d(Pπ)t(·|x)
dξ

∈ L2(Z,ξ) , ∀x,y ∈ Z , ∀t ∈ IN\{0} .

19. In our context these weights are the equivalent to the steady state distribution and thus named the same.

20. If Radon-Nikodym derivative
dζ
dξ

exists then
∫

ξ(dz) dζ
dξ
(z) f (z) =

∫
ζ(dz) f (z) , ∀ f ∈ L2(Z,ξ).

21. The Radon-Nikodym derivative
dζ
dξ

exists if distribution ζ is absolutely continuous w.r.t. steady state distribution ξ,

that is if ξ(B) = 0 ⇒ ζ(B) = 0, ∀B ∈B(Z). If there exists a finite Borel set B ∈B(Z) with ζ(B)> 0, however, the

derivative must not exist as ξ(B) = 0 can hold for ergodic Markov chains.

22. Assumption 1 guarantees the Radon-Nikodym derivative exists in the space of integrable functions L1(Z,ξ), but by

compactness of Z the derivative is also in L2(Z,ξ)⊂ L1(Z,ξ) (Reed and Simon, 1980).
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The projection methods discussed in Section 2 are based on Euclidean distances in the approxi-

mation space Fφ. These spaces are invariant to scaling of the basis functions. Given a particular

scaling, however, diffusion distances can equal Euclidean distances in Fφ. In this case we say that

the basis functions encode this distance.

Definition 2 Basis functions φi ∈ L2(Z,ξ), i ∈ {1, . . . , p}, are said to “encode” a distance function

d : Z×Z→ IR+ if there exists a scaling vector ̺ ∈ (IR+)p such that

d(x,y) =

√

p

∑
i=1

̺i

(

φi(x)−φi(y)
)2

=
∥
∥
∥φ(x)−φ(y)

∥
∥
∥
̺
, ∀x,y ∈ Z .

If the analogy between value function generalization and diffusion distances is correct, one should

aim for a set of basis functions that at least approximates an encoding of diffusion distances dt(·, ·),
if possible for all forecast parameters t ∈ IN\{0} at once.

Lemma 3 Let ξ denote the steady state distribution of ergodic transition kernel Pπ, which has

a self-adjoint transition operator P̂π = (P̂π)∗ : L2(Z,ξ)→ L2(Z,ξ). The corresponding diffusion

distance equals the Euclidean distance in the space spanned by ψt
i(·) := λt

iφi(·),∀i ∈ IN, where

λi ∈ IR and φi ∈ L2(Z,ξ) are the eigenvalues and eigenfunctions of P̂π, that is

dt(x,y) = ‖ψt(x)−ψt(y)‖2 , ∀x,y ∈ Z ,∀t ∈ IN\{0} .

Proof see Appendix A, Page 2108. �

Note that the full set of eigenfunctions φi encodes all diffusion distances dt(·, ·),∀t ∈ IN \ {0}.
Lemma 3 shows that the above relationship between diffusion and Euclidean distances in the

eigenspace of the transition operator P̂π : L2(Z,ξ)→ L2(Z,ξ) also holds, but only if this opera-

tor is self-adjoint.23 This does not hold for most transition operators, however. Their eigenfunctions

do not have to be orthogonal or even be real-valued functions, analogous to complex eigenvec-

tors of asymmetric matrices. Using these eigenfunctions, on the other hand, is the declared intent

of subspace-invariant features (see Section 3). Constructing real-valued basis functions with zero

per-feature error thus does not seem generally possible.

In this light one can interpret the symmetrized transition possibilities encoded by PVF as a self-

adjoint approximation of the transition probabilities of Pπ. This raises the question whether better

approximations exist.

Lemma 4 Let Pπ be an ergodic transition kernel in Z with steady state distribution ξ. The kernel

induced by adjoint transition operator (P̂π)∗ in L2(Z,ξ) is ξ-almost-everywhere an ergodic transi-

tion kernel with steady state distribution ξ.

Proof see Appendix A, Page 2109. �

To obtain a self-adjoint transition kernel, Lemma 4 shows that the kernel of the adjoint operator

(P̂π)∗ is a transition kernel as well. Intuitively, when P̂π causes all water to flow downhill, (P̂π)∗

would cause it to flow the same way uphill. Note the difference to an inverse transition kernel, which

could find new ways for the water to flow uphill. Although this changes the transition dynamics,

23. Each linear operator Â : L2(Z,ξ) → L2(Z,ξ) has a unique adjoint operator Â∗ for which holds: 〈 f , Â[g]〉ξ =

〈Â∗[ f ],g〉ξ ,∀ f ,g ∈ L2(Z,ξ). The operator is called self-adjoint, if Â = Â∗.
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one can construct a symmetrized transition operator P̂π
s := 1

2 P̂π+ 1
2(P̂

π)∗ as a self-adjoint approx-

imation of P̂π. Estimating P̂π
s may take more samples than the connection graph T constructed by

PVF, but it stands to reason that P̂π
s is a better approximation to P̂π. This intuition is put to the

test in Section 5.1. We find indeed that SFA features have on average smaller per-feature errors

than PVF. For purely random transition kernels the advantage of SFA is minuscule, but the when

P̂π resembles a self-adjoint operator the difference is striking (see Figure 3 on Page 2092). The

goal of encoding diffusion distances based on Pπ appears thus best served by the eigenfunctions of

the symmetrized transition operator P̂π
s . Lemma 5 shows24 that in the limit of an infinite training

sequence, SFA extracts these eigenfunctions in the order of their largest eigenvalues:

Lemma 5 In the limit of an infinite ergodic Markov chain drawn by transition kernel Pπ in Z with

steady state distribution ξ holds S( f ) = 2〈 f ,(Î− P̂π)[ f ]〉ξ,∀ f ∈ L2(Z,ξ) .
Proof see Appendix A, Page 2109. �

Note that the first, constant eigenfunction of P̂π
s is not extracted, but has no influence on the encoded

distance. Encoding any diffusion distance dt(·, ·) would therefore need a potentially infinite number

of SFA features. As the influence of each feature shrinks exponentially with the forecast parameter

t, however, the encoding can be approximated well by the first p SFA features. Except for t = 0, this

approximation is optimal in the least-squares sense. Note also that for fixed p the approximation

quality increases with t. Predictions based on SFA features will therefore be more accurate in the

long term than in the short term.

Theorem 6 SFA features {φi}∞
i=1 simultaneously encode all diffusion distances dt(·, ·),∀t ∈ IN \

{0}, based on the symmetrized transition kernel Pπ
s = 1

2 Pπ + 1
2(P

π)∗. The first p SFA features are

an optimal p-dimensional least-squares approximation to this encoding.

Proof The theorem follows directly from Definition 2 and Lemmas 3, 4, 5 and 15. �

A similar proposition can be made for PVF features and diffusion distances based on transition

possibilities. The connection to reward-based features (Section 3.1) is less obvious. Concentrating

naturally on immediate and short term reward, these basis functions depend on the reward function

at hand. It is, however, possible to show the encoding of diffusion distances on average, given the

reward function is drawn from a white noise functional25 ρ.

Theorem 7 On average over all reward functions rπ : Z→ IR drawn from a white noise func-

tional ρ, the squared norm of a Krylov basis {φK
i }

p
i=1 from an ergodic transition kernel Pπ encodes

squared diffusion distances based on P̂π up to horizon p−1, that is

d2
t (x,y) = IE

[∥
∥φK(x)−φK(y)

∥
∥2

̺

∣
∣
∣r

π ∼ ρ
]

, ∀x,y ∈ Z , ∃̺ ∈ (IR+)p, ∀t ∈ {1, . . . , p−1} .

Proof see Appendix A, Page 2110. �

Although Krylov bases are different for each reward function rπ ∈ L2(Z,ξ) and the employed

squared distances diverge slightly from Definition 1, Theorem 7 implies that on average they encode

24. Lemma 5 shows that the SFA optimization problem is equivalent to infφ 〈φ,(Î− P̂π)[φ]〉ξ ≡ supφ 〈φ, P̂π[φ]〉ξ =

supφ 〈φ, P̂π
s [φ]〉ξ, due to the symmetry of the inner product.

25. A white noise functional is the Hilbert space equivalent to a Gaussian normal distribution (Holden et al., 2010). In

our context it suffices to say that IE[〈 f ,rπ〉2
ξ
|rπ ∼ ρ] = 〈 f , f 〉ξ,∀ f ∈ L2(Z,ξ).
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diffusion distances up to time horizon p− 1. The same results hold for BEBF (Petrik, 2007) and

with minor modifications for BARB bases (Mahadevan and Liu, 2010).

In conclusion, reward-based features encode diffusion distances exactly up to some time hori-

zon, whereas SFA and PVF approximate an encoding for all possible distances. So far the only

connection to value function approximation is the intuition of a generalizing metric. However, in

the next subsection we show striking parallels between diffusion distances and approximation er-

rors.

4.2 Value Function Approximation

The analysis in Section 4.1 revealed a critical problem for the construction of subspace-invariant

features (Parr et al., 2008): eigenfunctions of the transition operator P̂π are not necessarily orthog-

onal and real-valued. Constructing a real-valued, orthonormal basis of subspace-invariant features

is thus only possible in some rare cases of self-adjoint transition operators. Both SFA and PVF sub-

stitute therefore a “similar” self-adjoint transition operator for P̂π. SFA employs the symmetrized

operator P̂π
s := 1

2 P̂π + 1
2(P̂

π)∗ and PVF assigns equal probability to all possible neighbors26 T̂π.

Analytical comparison of the quality of these approximations is difficult, however.

On the other hand, the class of MDPs for which SFA features are subspace-invariant contains the

class for which PVF are. To see this, imagine a transition kernel Tπ for which PVF are subspace-

invariant, which implies that for each state there exists a uniform distribution to end up in the

set of its neighbors, with symmetric neighborhood relationships. As T̂π is thus self-adjoint, any

ergodic Markov chain from this kernel will yield subspace-invariant SFA features. Reversely, one

can construct a transition kernel Pπ with a self-adjoint transition operator but without uniform

transition probabilities. PVF would no longer correspond to eigenfunctions of P̂π and would thus

not be subspace-invariant. SFA can in this sense be seen as a generalization of PVF.

Within the class of MDPs with self-adjoint transition operators, however, one can make some

strong claims regarding value function approximation with LSTD (Section 2.3).

Lemma 8 Let {φi}p
i=1 denote any p SFA features from a MDP with self-adjoint transition operator,

then the LSTD fixed point fπ = Π̂φ

ξ

[
B̂π[ fπ]

]
and the projection of true value function vπ = B̂π[vπ]

coincide, that is

fπ(x) = Π̂φ

ξ
[vπ](x) =

p

∑
i=1

〈rπ,φi〉ξ τi φi(x) , ∀x ∈ Z , τi :=
(
1−γ+ γ

2 S(φi)
)−1

.

Proof see Appendix A, Page 2110. �

Lemma 8 implies that for SFA features of symmetric transition models, the bound of Tsitsiklis and

Van Roy (1997, introduced in Section 2.3) can be dramatically improved:

Corollary 9 The approximation error of the LSTD solution fπ to the true value vπ for MDPs with

self-adjoint transition operators using any corresponding SFA features {φi}p
i=1 is

∥
∥
∥vπ− fπ

∥
∥
∥

ξ
=

∥
∥
∥vπ− Π̂φ

ξ
[vπ]

∥
∥
∥

ξ
.

26. In the discrete case these are all observed transitions, in the continuous case neighborhood relationships are based on

similarities in observation space Z (Mahadevan and Maggioni, 2007).
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An analogous proposition can be made for PVF, but for a smaller subset of MDPs. Equivalent fixed

point solutions for p reward-based features, on the other hand, do not appear generally possible as

the behavior beyond p− 1 time steps is not encoded (see Theorem 7). However, it is easy to see

that finite horizon solutions can be computed exactly by projected value iteration (finite application

of the projected Bellman operator, see, e.g., Bertsekas, 2007).

Corollary 10 Finite horizon value functions vπh := (B̂π)h[r] = (Π̂φK

ξ
[B̂π])h[r] can be computed ex-

actly up to horizon h = p−1 by projected value iteration with Krylov base {φK
i }

p
i=1.

The conclusions from Theorems 6 & 7 and Corollaries 9 & 10 are very similar: SFA/PVF optimally

approximate/generalize infinite-horizon value functions for a subset of possible MDPs, whereas

reward-based features represent/generalize finite-horizon value functions exactly without any such

restrictions.

There have also been attempts to join both types of basis functions by selecting the subspace-

invariant feature most similar to the current Bellman error (Petrik, 2007; Parr et al., 2008). To

motivate this, Parr et al. (2007) gave a lower bound for the approximation-bound improvement if a

BEBF feature φB
p is added to the set ΦB

p−1 := {φB
i }

p−1
i=1 :

∥
∥
∥vπ− Π̂

ΦB
p−1

ξ
[vπ]

∥
∥
∥

ξ
−
∥
∥
∥vπ− Π̂

ΦB
p

ξ
[vπ]

∥
∥
∥

ξ
≥

∥
∥
∥vπ− f (p−1)

∥
∥
∥

ξ
−
∥
∥
∥vπ− B̂

[
f (p−1)

]
∥
∥
∥

ξ
,

where f (p−1) ∈ FΦB
p−1

is the LSTD fixed point solution based on ΦB
p−1. One can observe that for

each added feature the bound shrinks by the Bellman error function φB
p. The PVF feature with the

highest correlation to φB
p is thus a good subspace-invariant choice.

We can provide an even stronger assertion about the approximation error of SFA features here.

Theorem 11 does not rely on the knowledge of a current LSTD solution, but on the similarity of

reward function rπ and SFA feature φp. Given SFA features and reward, the basis can thus be

selected before training begins.

Theorem 11 Let ξ be the steady state distribution on Z of a MDP with policy π and a self-

adjoint transition operator in L2(Z,ξ). Let further Φp = {φi}p
i=1 be any set of p SFA features

and vπ ∈ L2(Z,ξ) the true value of the above MDP. The improvement of the LSTD solution f (p) :=

Π̂
Φp

ξ

[
B̂π[ f (p)]

]
by including the p’th feature is bounded from below by

∥
∥
∥vπ− f (p−1)

∥
∥
∥

ξ
−
∥
∥
∥vπ− f (p)

∥
∥
∥

ξ
≥ 1−γ

2

〈rπ,φp〉2ξ
‖rπ‖ξ

τ 2
p , τp :=

(
1−γ+ γ

2 S(φp)
)−1

.

Proof see Appendix A, Page 2111. �

The bound improves with the similarity to reward function rπ ∈ L2(Z,ξ). The factor τp, defined in

Lemma 8, is inversely related to the slowness of the feature φp. In L2(Z,ξ) we can guarantee27 for

27. Lemma 5, Page 2085, shows that the slowness of eigenfunction φp of self-adjoint Pπ is related to the corresponding

eigenvalue λp by S(φp) = 2(1− λp). Eigenvalues can be negative, but since limp→∞ |λp| = 0, every finite set of

SFA features for infinite state/observation spaces will correspond to nonnegative eigenvalues only. In finite state

spaces or in general RKHS with finite support, for example, in all sparse kernel algorithms, one can only guarantee

0 < S(φp)≤ 4 and lim
p→∞

lim
γ→1

τp =
1
2 .
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infinite state/observation spaces that S(φ1)> 0 and lim
p→∞

S(φp) = 2 that

lim
γ→0

τp = 1 , lim
γ→1

τp =
2

S(φp)
≥ 1 , lim

p→∞
lim
γ→1

τp = 1 .

One could use this bound to select the best feature set for a given MDP, similar to matching pursuit

approaches (Mallat and Zhang, 1993). However, this is beyond the scope of this article and left for

future works.

4.3 Encoding Anticipated Value Functions

The last subsection analyzed the properties of SFA for value function approximation of an MDP

at hand. Constructed features still need to be represented somehow, for example with a RKHS or

some larger set of given basis functions. Reward-based features like BEBF can reduce the value

estimation time by incrementally increasing the feature set by the current Bellman error. Strictly,

there is no reason to remember those features, though. One could instead simply remember the

current value estimate. And since the features depend on the reward function, reusing them to solve

another MDP is out of the question.

Subspace-invariant features, on the other hand, do not depend on the reward function but are

very expensive to construct. This raises the question of when these features are actually computed.

For example, constructing p RSK-SFA features based on a Markov chain of n observations with

a sparse subset of m support observations yields a computational complexity of O(m2n). Sparse

kernel LSTD (Xu, 2006) alone exhibits the same complexity but makes use of the full span of the

sparse subset, instead of only a p-dimensional subspace thereof. Computing features and the value

function at the same time therefore does not yield any computational advantage.

Alternatively, one could rely on previously experienced “similar” MDPs to construct the basis

functions (transfer learning, Taylor and Stone, 2009). Ferguson and Mahadevan (2006) and Ferrante

et al. (2008) followed this reasoning and constructed PVF out of experiences in MDPs with the same

transition, but different reward model. This section aims to analyze this transfer effect without going

into the details of how to choose the MDPs to learn from.

Instead of defining “similar” MDPs, we ask how well one can approximate all value functions

for a set of anticipated tasks M. The set of all value functions one might encounter during value

iteration is huge. For LSTD, however, one only has to consider fixed points fπ ∈ L2(Z,ξ) of the

combined operator Π̂φ

ξ

[
B̂π[·]

]
(see Section 2.3). Note that there is a unique fixed point fπ for

every policy π from the set of allowed policies Ω, for example all deterministic policies. Moreover,

Tsitsiklis and Van Roy (1997) have derived the upper bound

∥
∥
∥vπ− fπ

∥
∥
∥

ξ
≤ 1
√

1−γ2

∥
∥
∥vπ− Π̂φ

ξ

[
vπ
]
∥
∥
∥

ξ
,

which means that the approximation error (left hand side) is bounded by the projection error of

true value function vπ ∈ L2(Z,ξ) onto Fφ (right hand side). It stands to reason that a set of basis

functions which minimizes the right hand side of this bound for all tasks in M and policies from Ω

according to their occurrence can be called optimal in this sense.
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Definition 12 A set of p basis functions {φi}p
i=1 ⊂ L2(Z,ξ) is called “optimal” w.r.t. the distribu-

tions ρ : B(M)→ [0,1] and ω : B(Ω)→ [0,1], if they are a solution to

inf
φ∈(L2(Z,ξ))p

IE

[
∥
∥vπm− Π̂φ

ξ

[
vπm
]∥
∥2

ξ
︸ ︷︷ ︸

(bound)

∣
∣
∣

m∼ ρ(·)
π ∼ ω(·)

]

.

The expectation integrates over all true value functions vπm which are determined by all policies

π ∈Ω, drawn from some distribution ω : B(Ω)→ [0,1] (e.g., uniform) and all tasks m drawn from

distribution28 ρ : B(M)→ [0,1]. A similar definition of optimality has been proposed in the context

of shaping functions29 (Snel and Whiteson, 2011). Other definitions of optimality are discussed in

Section 6.2.

The optimization problem in Definition 12 has no general analytic solution. In particular there

is no solution for one MDP and all policies, which would be ideal for policy iteration (e.g., LSPI,

Section 2.4). There is another special case, however, which demonstrates the setting under which

SFA extracts nearly optimal approximation spaces.

For a fixed policy π ∈ Ω and task m ∈ M one can calculate the exact value function vπ ∈
L2(Z,ξ). Let (Î−γP̂π)−1 denote the inverse operator30 to (Î−γP̂π), then

vπ
!
= B̂π[vπ] = rπ+γP̂π[vπ] = (Î−γP̂π)−1[rπ] .

Substituting this into Definition 12, one can give an analytic solution φi ∈ L2(Z,ξ), i ∈ {1, . . . , p},
for all tasks within the same environment,31 that is, M := {(X,A,P,r) | r ∼ ρ}, restricted to the

sampling policy π, that is, Ω := {π}. The key insight is that the only allowed difference between

tasks is the expected reward function rπ : Z → IR. If we do not constrain the possible reward

functions (e.g., all states are possible goals for navigation), their statistics ρ can be described as a

white noise functional in L2(Z,ξ) (Holden et al., 2010, see also Footnote 25 on Page 2085).

Theorem 13 For any infinite ergodic Markov chain with steady state distribution ξ over state space

Z, SFA selects features from function set F⊂ L2(Z,ξ) that minimize an upper bound on the optimal-

ity criterion of Definition 12 for sampling policy π and discount factor γ > 0, under the assumption

that the mean-reward functions rπ : Z→ IR are drawn from a white noise functional in L2(Z,ξ).

Proof: see Appendix A, Page 2111. �

The main result of Theorem 13 is that under the above assumptions, SFA approximates the

optimal basis functions of Definition 12. To be exact, the SFA objective minimizes a bound on the

optimality criterion. A closer look into the the proof of Theorem 13 on Page 2111 shows that the

exact solution in Definition 12 requires a bias-free estimation of the term
∥
∥(P̂π)∗[φi]

∥
∥2

ξ
, which is

impossible without double sampling (see, e.g., Sutton and Barto, 1998). We argue therefore that SFA

constitutes the best approximation to optimal features one can derive using a single Markov chain.

Note that unlike the results in Sections 4.1 and 4.2, this conclusion is not restricted to self-adjoint

transition operators.

28. To define a proper distribution ρ one must formally define all anticipated MDPs in M over the union of all involved

state-action spaces. See Snel and Whiteson (2011) for an example of such an approach.

29. In the context of value iteration, shaping functions are equivalent to an initialization of the value function.

30. The existence of such an operator is shown in Lemma 14, Page 2112.

31. With the same state (observation) space Z, action space A and transition kernel P. This class of tasks is also called

variable-reward tasks (Mehta et al., 2008) and applies for example when a flying robot needs to execute different

maneuvers, but is constraint by the same aerodynamics (Abbeel et al., 2007).
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4.4 Conclusion

Although no direct relationship has been proven, this section has provided evidence for a strong

connection between diffusion distances and value function approximation. Our analysis suggests

that reward-based features can represent finite-horizon value functions exactly. They do not gen-

eralize to different MDPs or policies and can thus as well be forgotten after the value estimate is

updated. Subspace-invariant features, on the other hand, approximate infinite-horizon values op-

timally if the transition kernel adheres to some restrictions. Moreover, we argue that even in the

general case, SFA provides the best possible construction method based on a single Markov chain.

Computational complexity prevents this class of features from performing cost-efficient dimension-

ality reduction for LSTD, though. On the other hand, subspace-invariant features provide on average

an optimal basis for all reward functions within the same environment. This optimality is still re-

stricted to the sampling policy π, but SFA features should have an advantage over PVF here, as they

are subspace-invariant for a much larger class of MDPs.

Using such features effectively for transfer learning or within policy iteration requires them to

perform well for other policies π′, in other words to induce little per-feature errors when applied to

P̂π′ . In the absence of theoretical predictions a uniform sampling-policy π appears to be a reason-

able choice here. Note that depending on the transition kernel Pπ, this can still yield an arbitrary

steady state distribution ξ. PVF features are in the limit not affected by ξ and importance sampling

should be able to compensate the dependence of SFA (see Section 3.5). Theoretical statements

about the influence of sampling policy and steady state distribution on SFA and PVF per-feature

errors with other policies, however, are beyond the scope of this article and left for future works.

See Section 6.1 for a discussion.

Although SFA is more sensitive to the sampling policy than PVF, the presented analysis suggests

that it can provide better approximation spaces for value estimation, that is, LSTD.

5. Empirical Analysis

This section empirically evaluates the the construction of approximation spaces in light of the theo-

retical predictions of Section 4. Our analysis focuses on three questions:

1. How well does LSTD estimate the value function of a given Markov chain?

2. How good is the performance of policies learned by LSPI based on a random policy?

3. How does this performance depend on the approximation space metric?

We start with evidence for the relationship (hypothesized in Section 4.1) between per-feature errors

(see Section 3) and how self-adjoint a transition operator is. Furthermore, Section 4.2 predicts that

the set of MDPs for which PVF are subspace-invariant is a subset of the respective set of SFA.

To test both possibilities we evaluated the first two questions on two discrete benchmark tasks:

the 50-state chain in Section 5.2 and the more complicated puddle-world task in Section 5.3. The

third question can not be answered with a discrete metric. To test the influence of the observation

space metric, we designed a simple but realistic robot navigation task with continuous state and

observation spaces (Section 5.4). A robot must navigate into a goal area, using first-person video

images as observations. Results are presented in Sections 5.5, 5.6 and 5.7.
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5.1 Comparison of Subspace Invariance

In Section 4.1 we stated our intuition that the symmetrized transition operator of SFA approximates

the true transition operator better than the neighborhood operator of PVF. Here we want to substan-

tiate this intuition by testing the per-feature errors of theoretical SFA and PVF solutions applied to

randomly generated MDPs.

5.1.1 THEORETICAL FEATURES

Discrete MDPs allow an exact calculation of the objectives described in Section 3. To test the limit

case of an infinite Markov chain one can generate theoretical features, which is straight forward32

for SFA. These features depend on steady state distribution (s.s.d.) ξ. Changing ξ has a surprising

effect on per-feature errors, in particular if one assumes a uniform ξ. To demonstrate this effect, all

experiments with theoretical features also include this case.

Theoretical PVF, on the other hand, require a proper definition of neighborhood. As all states

could be connected by the transition kernel, transition possibility (as in Section 3.3) is not always an

option. We followed the k-nearest neighbor approach of Mahadevan and Maggioni (2007) instead

and defined33 the k most probable transitions as neighbors.

For each feature φi from a set Φp := {φ1, . . . ,φp} one can calculate the per feature error ∆
Φp

i ∈
L2(X,ξ) (see Section 3). To measure how how strongly Φp diverges from subspace invariance,

we add the norms of all p error functions together, that is, ∑
p
i=1 ‖∆

Φp

i ‖ξ. This yields a measure of

subspace invariance for each set of p features. To compare construction methods we also calculated

the mean of the above measure over p ∈ {1,2, . . . ,100}.

5.1.2 SUBSPACE-INVARIANCE AND SELF-ADJOINT TRANSITION OPERATORS

To investigate whether SFA or PVF features approximate arbitrary transition models better, we

tested the per-feature errors ∆
Φp

i of random MDPs. 100 MDPs with d = 100 states each were

created. Each state is connected with 10 random future states and each connection strength is

uniformly i.i.d. drawn. The resulting matrix is converted into a probability matrix Pπ by normal-

ization. SFA features are subspace-invariant for self-adjoint transition operators and PVF only for

a subset thereof. As the above generated transition matrices are usually not self-adjoint, we re-

peatedly applied a symmetrization operator Ĝ : IRd×d → IRd×d to each matrix P, that is, Ĝ[P]i j :=
(Pi j +Pji)/(1+∑k Pjk). With each application the resulting transition matrices come closer and

closer to be self-adjoint.

Figure 3 shows the measure for subspace invariance for theoretical PVF and SFA with both

sampling distributions ξ. The left figure plots this measure against the feature set size p. One can

observe that all methods show similar errors for the original asymmetric MDP (solid lines). Ap-

plication of the symmetrization operator (dashed lines), on the other hand, yields a clear advantage

for one SFA method. This becomes even more apparent in the right plot of Figure 3. Here the

mean measure over all feature set sizes p is plotted against the number of symmetrization operator

applications. One can observe that (in difference to PVF) the per-feature errors of both SFA meth-

32. SFA minimizes the slowness, in the limit according to Lemma 5: S(φi) = 2〈φi,(Î − P̂π)[φi]〉ξ. Let Pπ be the

transition matrix and ΞΞΞΞΞΞ a diagonal matrix of steady state distribution ξ, which is the left eigenvector to the largest

eigenvalue of Pπ . Expressing the objective in matrix notation, the theoretical SFA features are the eigenvectors to

the smallest eigenvalues of the symmetric matrix 2ΞΞΞΞΞΞ−ΞΞΞΞΞΞPπ− (ΞΞΞΞΞΞPπ)⊤.

33. We tested k ∈ {1,2,5,10,20,50,100} and present here the best results for k = 10.
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Figure 3: Subspace invariance of SFA and PVF features of random MDPs and symmetrized ver-

sions thereof. The left plot shows ∑
p
i=1 ‖∆

Φp

i ‖ξ for different feature set sizes p. The

first symmetrization reduces per-feature errors of both methods, but all following sym-

metrization operations reduce only the error of SFA which is illustrated in the right plot.

All means and standard deviations are w.r.t. 100 random MDPs. Note that the scale of

per-feature errors differs between plots.

ods shrink the more self-adjoint the transition operator becomes. Also, SFA features with uniform

distribution ξ are roughly 3 times as subspace-invariant as original SFA features with steady state

distribution ξ.

We conclude that PVF and SFA methods approximate arbitrary asymmetric MDPs equally well.

However, the more self-adjoint the transition operator, the larger the advantage of SFA. Furthermore,

SFA features based on a uniform distribution ξ are on average more subspace-invariant than those

based on the steady state distribution.

5.2 50-state Chain-Benchmark Task

First we investigate how well a basis constructed from a Markov chain can approximate the corre-

sponding value function. The employed 50-state chain task is based on a problematic 4-state MDP

by Koller and Parr (2000) and has been extended in various variations by Lagoudakis and Parr

(2003). Here we adopt the details from Parr et al. (2007). The task has a very similar transition- and

neighborhood structure.

5.2.1 TASK

50 states are connected to a chain by two actions: move left and right. Both have a 90% chance to

move in their respective direction and a 10% chance to do the opposite. Non-executable transitions

at both ends of the chain remain in their state. Only the 10th and 41th state are rewarded. Executing

any action there yields a reward of +1. The task is to estimate the value function with a discount
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factor γ = 0.9 from a Markov chain. Note that transition probabilities of a random policy equal the

neighborhood relationships. SFA features for this policy should therefore equal PVF features.

5.2.2 ALGORITHMS

We compare discrete versions of slow feature analysis, proto value functions and Krylov bases as

described in Section 3. SFA feature sets also contained a constant feature. In this and the following

experiments, higher Krylov bases have proven to be too similar for stable function approximation.

We therefore orthonormalized each feature w.r.t. its predecessors, which solved the problem. After

construction, the features were used to estimate the value function from the same training set with

LSTD. Sampling influences value estimation here and to avoid the resulting bias we measure the

difference (in some norm) to the LSTD solution with a discrete representation.

5.2.3 RESULTS

To explore the effect of the sampling policy, we tested the (non-deterministic) uniform and the

(deterministic) optimal policy. Figure 4 plots mean and standard deviation of the LSTD solution

difference in L2 norm w.r.t. 1000 trials and 4000 samples each. To make sure all states are visited,

an optimal policy trial is sampled in 40 trajectories with random start states and 100 samples each.

Training sets that did not visit all states were excluded. As reported by previous works (Petrik, 2007;

Parr et al., 2008; Mahadevan and Liu, 2010), reward-based features like Krylov bases perform in

this task much better than subspace-invariant features. Solutions with PVF and SFA features are

virtually identical for the random policy, as the transition probabilities of SFA equal the neighbor-

hood relations of PVF. There are distinguishable differences for the optimal policy, but one can

hardly determine a clear victor. Using the L∞ norm for comparison (not shown) yields qualitatively

similar results for the two feature spaces. Policy iteration did also not yield any decisive differences

between SFA and PVF (not shown). In conclusion, the 50-state chain appears to belong to the class

of MDPs for which features learned by SFA and PVF are not always identical, but equally able to

estimate the value functions with LSTD.

5.3 Puddle-world–Benchmark Task

The puddle-world task was originally proposed by Boyan and Moore (1995), but details presented

here are adapted from Sutton (1996). It is a continuous task which we discretize in order to compare

reward-based features. This is a common procedure and allows to evaluate robustness by running

multiple discretizations. In comparison to the 50-state chain the task is more complex and exhibits

differing transition- and neighborhood-structures.

5.3.1 TASK

The state space is a two dimensional square of side length 1. Four actions move the agent on av-

erage 0.05 in one of the compass directions. The original task was almost deterministic (Sutton,

1996) and to make it more challenging we increased the Gaussian noise to a standard deviation of

0.05. Centered in the (1,1) corner is an absorbing circular goal area with radius 0.1. Each step

that does not end in this area induces a punishment of −1. Additionally, there exist two puddles,

which are formally two lines (0.1,0.75)←→ (0.45,0.75) and (0.45,0.4)←→ (0.45,0.8) with a

radius of 0.1 around them. Entering a state less than 0.1 away from one of the center-lines is pun-
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Figure 4: Difference in L2 norm between approximated and discrete LSTD solutions vs. feature

space size for random (left plot) and optimal (right plot) sampling policies in the 50-state

chain. Means an standard deviations w.r.t. 1000 trials. L∞ differences decrease slower but

show otherwise the same qualitative trends.
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Figure 5: Difference in L2 norm between approximated and discrete LSTD solutions vs. feature

space size in puddle-worlds. Means and standard deviations are w.r.t. 10 training sets for

each state space size {20×20,25×25, . . . ,50×50}, sampled with random (left plot) or

optimal (right plot) policies. Note the logarithmic x-axis. Measuring the differences in

L∞ norm yields the same qualitative trends.
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ished with −400 times the distance into the puddle. The task is to navigate into the goal, collecting

as little punishment as possible. Seven discretizations with horizontal and vertical side length of

s̄ ∈ {20,25, . . . ,50} states were tested. Transition probabilities of states xi to states x j are the

normalized continuous probabilities (average movement µa plus Gaussian noise with standard de-

viation σ̃), that is

Pa
i j :=

exp(− 1
2σ̃2 ‖xi +µa−x j‖2

2)

∑s̄2

k=1 exp(− 1
2σ̃2 ‖xi +µa−xk‖2

2)
, ∀i, j ∈ {1, . . . , s̄2} , ∀a ∈ {1, . . . ,4} .

5.3.2 ALGORITHMS

We evaluated discrete versions of slow feature analysis (SFA), proto value functions (PVF) and

orthonormalized Krylov bases. To test the influence of sampling on feature construction we also

evaluated the theoretical features of all three algorithms34 (see Section 5.1). The algorithms were

trained with a long (uniform) random policy Markov chain {xt}n
t=1 in both LSTD and LSPI eval-

uations. To see the effect of different policies on LSTD, we trained all three on the optimal policy

as well. In this case the training set consists of randomly initialized trajectories of length 20 to

overcome sampling problems. We chose n = 80 s̄2, as large state spaces require more samples to

converge.

All constructed approximation spaces were tested with LSTD and LSPI35 under discount factor

γ = 0.99 on the same training sequence {xt}n
t=1 used in feature construction. Policy iteration

ended if the value of all samples differed by no more than 10−8 or after 50 iterations otherwise.

To investigate asymptotic behavior we also tested LSPI with all state-action pairs and true mean

future states as training set, corresponding to the limit of an infinite Markov chain. Performance

of a (deterministic) policy learned with LSPI is measured by the mean accumulated reward of

1000 trajectories starting at random states. A test trajectory terminates after 50 transitions or upon

entering the goal area.

5.3.3 LSTD EVALUATION

We tested the LSTD approximation quality as in Section 5.2. Figure 5 shows the difference in L2

norm between the LSTD solution based on the constructed features and a discrete state representa-

tion vs. the number of employed features p ∈ {2,4,8,16,32,64,96,128,192, 256,384}. Means and

standard deviations are w.r.t. 10 training sets for each state space size {20×20,25×25, . . . ,50×50},
sampled with random (left plot) or optimal (right plot) policies. Note in comparison to Figure 4 that

the x-axis is logarithmic. Reward-based Krylov bases have a clear advantage for p ≥ 16 features

(and reach perfection for p ≥ 64), similar to the 50-state chain task. Fewer SFA features, on the

other hand, capture the value function much better. This has also been observed for large discount

factors γ when comparing BEBF and modified PVF (Mahadevan and Liu, 2010). The different

encoding of diffusion distances (Theorems 6 & 7, Page 2085) provides a good explanation for this

effect: Krylov bases represent finite-horizon value functions perfectly (Corollary 10, Page 2087),

34. We tested theoretic PVF with k ∈ {5,10,15,20,25,50} and chose k = 10. For larger k we observed slowly degrading

performance, which is more pronounced under realistic LSPI sampling.

35. As convergence to the optimal policy can not be guaranteed for LSPI, the eventual policy depends also on the initial

(randomly chosen) policy π0. In difference to Lagoudakis and Parr (2003) we used throughout this article a true

(non-deterministic) random policy π0(a|z) = 1
|A| ,∀z ∈ Z ,∀a ∈ A. This heuristic appeared to be more robust in

large feature spaces.
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Figure 6: Performance of LSPI with optimal (left column) and realistic sampling (right column) in

puddle-worlds. The upper row employed theoretical features and the lower row features

constructed from samples. Means and standard deviations are w.r.t. state space sizes

{20×20,25×25, . . . ,50×50}.

whereas SFA represents the infinite-horizon values approximatively (Corollary 9, Page 2086). How-

ever, Figure 5 clearly supports our hypothesis (proposed in Section 4.4) that SFA can provide better

approximation spaces for value function approximation with LSTD than PVF. With respect to the

previous subsection one should extend this hypothesis by adding when transition and neighborhood

structures are dissimilar.

5.3.4 LSPI EVALUATION

Figure 6 shows the LSPI performance with both theoretic (upper row) and sampled features (lower

row). LSPI was trained with an optimal training set (left column) and a realistic sequence drawn by
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a random policy (right column). The top-left plot is the most hypothetical and the bottom-right plot

the most realistic scenario. Means and standard deviation are w.r.t. state space sizes.

First and foremost, note that the sampled SFA features (crosses, lower row) perform significantly

(more than one standard deviation) better, except in the under-fitting regime of 80 features and less.

They are also the only sampled features that are robust against LSPI sampling, which can be seen

by similar performance in both bottom plots. In comparison with theoretic SFA features, their

performance resembles the solution with uniform distribution ξ (circles, upper row), which clearly

outperforms SFA features based on the very similar steady state distribution ξ (crosses, upper row).

This is surprising, as the two distributions only differ at the borders of the square state space. Similar

to Section 5.1, the uniform distribution appears nonetheless to have an advantage here.

Secondly, note that although theoretic PVF features (squares, upper row) rival the best of SFA,

sampled PVF features (squares, lower row) are less successful. In the most realistic case the per-

formance appears almost unaffected by additional features. This is consistent with our observations

of the LSTD solutions in Figure 5, where sampled PVF features performed equally bad under both

policies. Reward-based Krylov Features (diamonds), on the other hand, appear relatively stable

through most settings and only cave in at the most realistic scenario. However, note that for LSPI

reward-based features do not have any (empirical or theoretical) advantage over subspace-invariant

features.

Although not exactly predicted by theory, we see this as evidence that discrete SFA can construct

better approximation spaces for LSPI than PVF or Krylov bases. Theoretical PVF may rival SFA,

but realistic sampling appears to corrupt PVF features. This advantage of SFA may be lost for other

sampling policies, though. As an example, observe the strong influence of minor changes in the

sampling distribution ξ on the theoretical SFA solution.

5.4 Visual Navigation-Setup

We investigate our third question on Page 2090 with a simple but realistic continuous application

task. Continuous state spaces impede the use of reward-based features, but allow an analysis of the

presented metric by encoding observations with PCA. Our focal idea is to compare basis construc-

tion approaches based on different metrics in the observation space and the underlying state space.

A visual navigation task guides a robot into a designated goal area. Observations are first-person

perspective images from a head mounted video camera (see Figure 2, Page 2071, for a sketch of

the control process). While robot coordinates come close to encoding diffusion distances of random

policies, these observations clearly do not. A comparison between PCA and SFA features in these

two cases can thus illuminate the role of the observation metric in the construction of continuous

basis functions. Adequacy of SFA in this task is demonstrated with a real robot (Section 5.7) and ex-

tensively compared with PVF and PCA in a realistic simulation (Section 5.6). Section 5.5 provides

an evaluation of the involved sparse subsets.

5.4.1 ROBOT

We used the wheeled PIONEER 3DX robot (Figure 7a), equipped with a head mounted BUMBLEBEE

camera for the experiments. The camera recorded mono RGB images from a first-person perspective

of the environment in front of the robot with a 66◦ field of vision (Figure 7b). The robot was able to

execute 3 commands: Move approximately 30cm forwards; turn approximately 45◦ left or right.
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b) Robot View c) Simulator Viewa) Robot

Figure 7: a) PIONEER 3DX wheeled robot. b) A first-person perspective image from the robot

camera. c) Corresponding image of the simulator.

5.4.2 ENVIRONMENT

The robot had to navigate within a rectangular 3m×1.8m area surrounded by walls, approx. 1m in

height. We covered the walls with different wallpaper to have a rich texture (sketched in Figure 10).

The scenery was well-lit by artificial light. A camera installed at the ceiling allowed us to track the

robot’s position for analysis. We also ran simulations of the experiment for large scale comparison.

Based on photographed textures, the JAVA3D engine rendered images from any position in the

simulated environment. Those images were similar to the real experiment, but not photo-realistic

(Figure 7c).

5.4.3 TASK

Starting from a random start position, the robot has to execute a series of actions (move forward,

turn left, turn right) that lead to an unmarked goal area in as few steps as possible without hitting the

walls. Learning and control are based on the current camera image zt and a corresponding reward

signal rt ∈ {−1,0,+1} indicating whether the robot is in the goal area (rt = +1), close to a wall

(rt =−1) or none of the above (rt = 0).

5.4.4 ALGORITHMS

The algorithms sparse kernel principal component analysis (SK-PCA, Section 3.2), k-nearest-

neighbor extension of proto value functions (kNN-PVF, Section 3.3) and regularized sparse ker-

nel slow feature analysis (RSK-SFA Section 3.4), were implemented36 using a Gaussian kernel

κ(x,y) = exp(− 1
2σ2 ‖x−y‖2) , ∀x,y ∈ Z . To ensure the respective function sets from which the

basis functions were chosen are roughly equivalent, we set the Gaussian width parameter σ = 5 for

all algorithms. Runtime deviated at most by a factor of 2, as SFA requires two eigenvalue decompo-

sitions. The importance sampling modification of SFA described in Section 3.5 assigned a weight37

of ϑ(amove) = 5 to forward movements and ϑ(aturn) = 1 to rotations. This balanced out relative

velocities and ensured that the first features encode both spatial and orientational information.

36. RSK-SFA and SK-PCA select functions from a RKHS, based on any positive semi-definite kernel, for example, the

Gaussian kernel. kNN-PVF are based on a k-nearest-neighbors graph with edges weighted by a Gaussian kernel of

the distance between nodes.

37. We tested other weights with less detail. The results appear stable around ϑ(amove) = 5± 1 but exact statements

require an order of magnitude more simulations than we were able to provide for this article.

2098



CONSTRUCTION OF APPROXIMATION SPACES FOR REINFORCEMENT LEARNING

All discussed algorithms also require a sparse subset of the data. For optimal coverage it appears

straightforward to select this subset uniformly in observation space Z. This can be achieved with the

matching pursuit for affine hull maximization algorithm (MP-MAH, Böhmer et al., 2012). However,

we show in Section 5.5 that this intuition is wrong and in fact one should instead select the subset

uniformly distributed in the true state space X, which can be achieved by applying MP-MAH on X

instead of Z. As X is usually not known explicitly, the comparison between algorithms in Section

5.6 is performed with randomly drawn subsets.

5.4.5 SIMULATED EXPERIMENTS

Drawing actions uniformly, we generated 10 independent random walks with 35,000 samples each.

The rendered images were brightness corrected and scaled down to 32× 16 RGB pixels, yielding

observations zt ∈ Z⊂ [0,1]1536. Each training set was used to construct one feature space for each

of the above algorithms with a sparse subset of 4000 samples (see Section 5.5). The resulting basis

functions were applied on the corresponding training set.

The control policy was learned by LSPI on the first p ∈ {2,4,8, . . . ,2048} constructed features

φi : Z→ IR and a constant feature φ0(z) = 1 ,∀z ∈ Z. The discount factor was γ = 0.9 and the goal

area was located in the lower right corner with a radius of 50cm around x=260cm and y=40cm (see

right plot of Figure 10). A distance to the walls of 40cm or less was punished.

The resulting policies were each tested on 200 test trajectories from random start positions.

Navigation performance is measured38 as fraction of successful trajectories, which avoid the wall

and hit the goal in less than 50 steps.

5.4.6 ROBOT EXPERIMENT

Running the robot requires a large amount of time and supervision, preventing a thorough evalu-

ation. For RSK-SFA the continuous random walk video of approx. 10 hours length was sampled

down to approx. 1 Hz and a sparse subset of 8,000 out of 35,000 frames was selected with the

MP-MAH algorithm (Böhmer et al., 2012). The first 128 RSK-SFA and one constant feature were

applied on a training set of 11,656 transitions sampled from the same video. LSPI was trained as

in the simulator experiments and evaluated on each 20 test trajectories for the lower right and for a

smaller center goal with a radius of 20cm (see Figure 10).

5.5 Visual Navigation-Sparse Subset Selection

The analysis of Böhmer et al. (2012) suggests that a sparse subset uniformly distributed in observa-

tion space Z improves the performance of RSK-SFA. We observed the same effect on the slowness

(not shown), but interestingly not on the navigation performance of the respective LSPI solution.

Figure 8 plots this performance against the number of features p used for LSPI. Random subset

selection (crosses) outperforms MP-MAH selection on Z with the correct kernel width (upward tri-

angle) significantly. Moreover, random selection yields high performance reliably (small standard

deviation), whereas subsets that are uniformly distributed in Z result in unpredictable behavior for

large approximation spaces. Shrinking the kernel parameter σ of MP-MAH (not of RSK-SFA) de-

creases the disadvantage as the algorithm converges theoretically to random selection in the limit

38. Other measures are possible. We tested “mean number of steps to goal” and also compared those to an almost optimal

policy. However, the resulting plots were qualitatively so similar that we stuck to the simplest measure.
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Figure 8: The influence of sparse subset selection for RSK-SFA on the performance of LSPI. Mean

and standard deviation (over 10 independent training sets) of the navigation performance

are plotted against the (logarithmic) number of features used in LSPI. Note that a subset

equally distributed in the true state space X (circles) is most efficient and reliable, whereas

for equal distribution in observation space Z (triangles) LSPI becomes unreliable in large

approximation spaces Fφ.

σ→ 0 (downwards triangles). Using MP-MAH to select a subset uniformly distributed in the true

state space39 X (circles), however, demonstrates that this is not an over-fitting effect as the learned

policies outperform those of random selection significantly. Section 6.3 attempts an explanation of

these results and discusses some practical implications for sparse subset selection.

However, in practice X is usually not explicitly known. The main comparison in Section 5.6 is

therefore performed with randomly drawn subsets. Note that our random walk sampled the state

space X almost uniformly, which is the explanation for the good performance of randomly selected

subsets. A random selection from biased random walks, for example, generated by other tasks, will

severely decrease the navigation performance. We expect a similar effect in other sparse kernel RL

methods (e.g., Engel et al., 2003; Xu, 2006).

5.6 Visual Navigation-Comparison of Algorithms

The left plot of Figure 9 shows a comparison of the effect of all discussed basis function construc-

tion algorithms on the control policy learned by LSPI. Note that the algorithms are based on the

same randomly chosen sparse subset of 4000 samples: 4000 orthogonal features extracted by any

algorithm span approximation space F{κ(·,si)}m
i=1

. Therefore all algorithms perform equally well

with enough (p ≥ 1024) features. One can, on the other hand, observe that both the original RSK-

SFA (crosses) and the modified algorithm (circles) outperform SK-PCA (triangles) and kNN-PVF40

39. Robot position and orientation coordinates for which the Euclidean metric resembles diffusion distances.

40. We tested the navigation performance based on kNN-PVF basis functions for the kNN parameters k ∈ {10,25,50}.
As the results did not differ significantly, we omitted them here.

2100



CONSTRUCTION OF APPROXIMATION SPACES FOR REINFORCEMENT LEARNING

2 32 256 2048
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of Feature Space Φ

F
ra

c
ti
o
n
 o

f 
S

u
c
c
e
s
s
fu

l 
T

e
s
t−

T
ra

je
c
to

ri
e
s

Observation Feature Space Comparison

 

 

Modified RSK−SFA

Original RSK−SFA

Sparse Kernel PCA

kNN−PVF, k=25

2 32 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of Feature Space Φ

F
ra

c
ti
o
n
 o

f 
S

u
c
c
e
s
s
fu

l 
T

e
s
t−

T
ra

je
c
to

ri
e
s

True State Feature Space Comparison

Figure 9: Comparison of subspace-invariant feature space construction algorithms on observations

z ∈ Z (camera images, left plot) and on the true state x ∈ X (robot coordinates, right

plot). Mean and standard deviation (over 10 independent training sets) of the navigation

performance are plotted against the number of features used in LSPI. Note that the x-axis

is logarithmic and differs between plots. The dotted lines indicate 80%, 90% and 100%

performance levels.

(squares) significantly in medium sized feature spaces (32 ≤ p < 1024 features). In particular the

80% and 90% levels of navigation performance are both reached with roughly a quarter of basis

functions. We attribute this advantage to approximation spaces encoding diffusion distances rather

than similarities in Z.

Close inspection of the feature space revealed that the first RSK-SFA features encode spatial

information only (not shown). This is due to the different velocities of rotations and movements

of the robot in the true state space X (see Section 3.5 and Franzius et al., 2007). Consequentially,

small feature spaces can not express policies involving rotation and thus perform poorly. The mod-

ified algorithm balances this handicap out and yields steady performance in small feature spaces

(2 ≤ p < 32 features). If the necessary orientational components are encoded in the original RSK-

SFA basis functions (p≥ 32), both algorithms perform comparable as they span (almost) the same

approximation space. We conclude that the modified RSK-SFA algorithm is the superior continuous

basis function construction scheme, irrespective of feature space size p.

5.6.1 COMPARISON IN TRUE STATE SPACE X

To confirm the above effect is due to the difference in the observed metric and the diffusion metric

constructed by SFA, we run the same experiment with Z≈ X. For this purpose we applied all basis

function construction algorithms on robot coordinates. The true state space X is supposed to be

equipped with a diffusion metric, which should have a constant distance between successive states.

We thus divided the spatial coordinates by an average movement of 30cm and the robots orientation

by the average rotation of 45◦. The kernel width was chosen σ = 2 to allow sufficient overlap.
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Figure 10: The recorded robot trajectories of a control policy learned by LSPI using RSK-SFA

features. The plot shows 40 trajectories with random starting positions and orientation

(dark triangles), aiming to hit the circular goal area. The numbers indicate the number

of steps the robot required to reach the goal.

The right plot of Figure 9 shows the navigation performance of the learned LSPI policy. Due

to the suitability of the observation space, a relative small number41 of basis functions of p ≥ 128

suffices for an almost perfect navigation performance with all algorithms. However, relative ve-

locities influence the RSK-SFA solution as well, which renders the original algorithm (crosses)

almost useless and demonstrates its sensitivity to the sampling policy. The modified algorithm (cir-

cles) performs best here as well, but demonstrates an advantage only in very small feature spaces

(2 ≤ p < 32). Together with the good performance of SK-PCA (triangles), which slightly outper-

forms the state-of-the-art method kNN-PVF (squares), this can be seen as evidence that methods

based on Euclidean distances in Z ≈ X, which are already close to diffusion distances, suffice to

learn a good policy in this setup.

5.6.2 CONCLUSION

The results presented in this subsection provide ample evidence for the hypothesis that SFA can con-

struct better approximation spaces for LSPI than PVF or PCA, but also demonstrates its sensitivity

to the sampling policy. We have empirically shown that the novel modified RSK-SFA algorithm

outperforms all continuous basis function construction schemes reviewed for this article. The ad-

vantage to baseline method PCA vanishes when the observations already conform to a diffusion

metric. This suggests that SFA performs essentially PCA based on diffusion rather than Euclidean

distances. It also implies an answer to our third question on Page 2090: LSPI performance is facili-

tated by approximation spaces that encode diffusion distances of a uniform random policy.

5.7 Visual Navigation-Robot Demonstration

A thorough reproduction of the experiments from Section 5.6 on a real robot is beyond the scope

of this article. Measuring the navigation performance of 200 test trajectories can not easily be

automated and requires an enormous amount of supervision. However, we demonstrate how our

41. Note that, in difference to the space of images, this observation space is three dimensional. Instead of (at least

potentially) dimensionality reduction, these basis functions form an overcomplete basis.
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key method, that is SFA in the form of RSK-SFA, performs on a real robot. After 10 LSPI iterations

with 128 RSK-SFA basis functions, the control policy achieved a success rate of 75% in two separate

tasks depicted in Figure 10. 17 out of 20 test trajectories hit a centered goal within 20 steps (left

plot) and 13 out of 20 trajectories reached the much farther goal area in the lower right corner (right

plot). The failed trajectories made at most one forward move and then started to oscillate between

right and left rotations. These oscillations also appeared often in successful trajectories whenever

the robot switched from one action to another. This can be seen in the large number of steps some

trajectories require to reach the goal area. We attribute these oscillations to approximation errors and

noise in the basis functions. Whenever the policy changes from one action to another, the respective

Q-values must be close-by and small deviations from the true value can drastically influence the

greedy action selection. If the wrongfully chosen action is a rotation, the correct reaction would be

to rotate back. We observed these never ending oscillations in simulations as well. The problem can

usually be diminished by adding more basis functions. The fact that the robot was sometimes able to

break the oscillation is an indicator for noise in images and motors. This behavior could have been

easily avoided by introducing some simple heuristics, for example “never rotate back” or “in doubt

select the previous action”. As this article investigates approximation spaces rather than optimizing

the visual task itself, we omitted those heuristics in our experiments. For practical implementations,

however, they should be taken under consideration.

6. Discussion

This section discusses implications of the presented results and points out open questions and po-

tential directions of future research.

6.1 SFA Features as Basis Functions for LSPI

Theoretical predictions in Section 4 cover value function estimation with LSTD for the current sam-

pling policy. When LSPI changes this policy, all statements become strictly invalid. Nonetheless,

the results in Sections 5.3 and 5.6 demonstrate the applicability of SFA features as basis functions

for LSPI. Both experiments also show that an importance sampling modification to SFA can yield

even better results. Maybe there exists a policy τ and a state-distribution ζ which are optimal (in

the sense of Definition 12) for at least all deterministic policies encountered during LSPI. In the

experiments this appeared to be a uniform policy and a uniform state-distribution, but we can not

claim any generality based on the presented evidence alone. We still want to suggest a possible

explanation:

Uniform τ and ζ might be an optimal training sets for LSPI. Koller and Parr (2000) proposed this

in light of a pathological 4-state chain MDP (similar to Section 5.2). LSTD weights the importance

of value approximation errors and predicts thus accurate Q-values according to ζ. Using steady state

distribution ξ of some sampling policyπ implies that decisions at often visited states should be more

reliable that those at seldom visited states. Take the optimal policy in a navigation task (like Section

5.3 or Section 5.4) as an example. Transition noise guarantees an ergodic Markov chain, but the

steady state distribution will concentrate almost all mass around the goal. As a result, Q-values far

away from the goal can be approximated almost arbitrarily bad and decisions become thus erratic.

This is not the intended effect. To solve the task, one needs to control the approximation error of

all states one will encounter until the task is complete. Without knowledge about certainty, every
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decision along the way might be equally important. A uniform ζ reflects this. A similar argument

can be made for a uniform τ in the context of policy iteration.

Future works might be able to identify the corresponding Radon-Nikodym derivatives dζ
dξ

: Z→
IR+ and dτ

dπ
: Z×A→ IR+ and use importance sampling as discussed in Section 3.5. Until then the

best approach appears to be sampling with a random policy and fine tuning with the modified SFA

algorithm presented in this article.

6.2 Optimal Basis Functions

The analysis in Section 4.3 introduces the concept of optimal basis functions (Definition 12, Page

2088) to construct approximation spaces for LSTD with SFA. However, Theorem 13, Page 2089,

implies that SFA features are only optimal for sampling policy π. This optimality is lost when

policy iteration varies π, but optimizing the basis functions w.r.t. policy has no analytic solution

and appears not feasible. Besides the question of feasibility, there are alternatives to the definition

of optimal basis functions in Section 4.3. Here we suggest three possibilities:

1. Given one task m = (X,A,P,R) only, the optimal basis functions for LSPI encode the true

value function vπm(·) of m with all possible policies π ∈Ω, that is

inf
φ∈L2(Z,ξ)

IE

[
∥
∥
∥vπm− Π̂φ

ξ
[vπm]

∥
∥
∥

2

ξ

∣
∣
∣ π ∼ ω(·)

]

.

As LSPI is based on a dictionary of transitions, however, the distribution ξ of the weighted

projection operator Π̂φ

ξ
corresponds to the sampling distribution instead of steady state distri-

bution of policy π.

2. Definition 12 minimizes the mean approximation error over all expected task. An alternative

would be to minimize the worst case bound instead, that is

inf
φ∈L2(Z,ξ)

(

sup
m∈M,π∈Ω

∥
∥
∥vπm− Π̂φ

ξ
[vπm]

∥
∥
∥

2

ξ

)

.

3. The presented weighted Euclidean norm projection Π̂φ

ξ
is the most commonly used choice.

However, Guestrin et al. (2001) have proposed an efficient algorithm based on supremum

norm projection Π̂φ
∞ for approximation of the updated value function B̂π[v](·). It is straight-

forward to derive a bound analogous42 to Tsitsiklis and Van Roy (1997) and thus to define a

matching optimality criterion

inf
φ∈L2(Z,ξ)

(

sup
m∈M,π∈Ω

∥
∥
∥vπm− Π̂φ

∞[v
π
m]
∥
∥
∥

∞

)

.

As with the criterion of Definition 12, it might not be feasible to solve these optimization problems

in practice. Future works could find feasible approximations thereof, though.

42. One needs to show that Π̂
φ
∞ [·] is a non-expansion and B̂π [·] a contraction in ‖ · ‖∞ (Bertsekas, 2007).
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6.3 Sparse Subset Selection

Results in Section 5.5 suggest that sparse subsets uniformly distributed in X (rather than Z) support

the best basis functions for LSPI. One possible explanation is the effect of the sparse subset dis-

tribution χ : B(X)→ [0,1] onto the objective. In limit of an infinite subset of an infinite Markov

chain, extracted features φi(z) =
∫

χ(ds)αi(s)κ(z,s) = 〈αi,κ(z, ·)〉χ,∀z ∈ Z, are determined by

coefficient functions αi ∈ L2(X,χ). To determine these functions, RSK-SFA therefore approximates

generalized eigenfunctions in L2(X,χ), which are strongly affected by norm ‖ · ‖χ. Discrete SFA,

on the other hand, represents every state by one unique variable, which corresponds to a uniform

distribution χ in X. It is easy to see that a uniform χ preserves the optimization problem best. Se-

lecting a subset uniformly in Z, however, does not generally yield a uniform χ in X, due to the

difference in Euclidean and diffusion distances. Results presented in Sections 5.3 and 5.6 demon-

strate how sensitive the LSPI performance based on SFA features is to sampling policy and sampling

state-distribution. Non-uniform χ will probably decrease performance similarly. It seem therefore

reasonable to attribute the results of Section 5.5 to the above effect.

Nonetheless, this raises two question of practical concern:

1. how can we select sparse subsets uniformly in X and

2. how can we guarantee uniform support43 in Z?

The first question is for sparse kernelized RL algorithms (e.g., Engel et al., 2003; Xu, 2006) of

utmost importance as the reported problem will most likely affect them as well. Future works must

derive such an algorithm, maybe based on slowness or diffusion distances.

The related radial basis function networks (RBF, see, e.g., Haykin, 1998) have found an em-

pirically answer to the second question: each support vector si is assigned an individual kernel

width σi relative to the distance to its neighbors. For the Hilbert spaces of all kernels κ(·, ·) holds

Hκ ⊂ L2(Z,ξ) and one could thus perform inner products between Gaussian kernel functions of

different width44 in L2(Z,ξ). However, the math necessary to pose kernel SFA in this framework is

quite advanced and calls for further research.

6.4 Visual Policies for Robots

Visual tasks are an interesting field of research as they expose elemental weaknesses in current RL

approaches, for example the different Euclidean distances in observation and ideal approximation

spaces discussed in this article. For applications in the field of robotics, however, the assumption of

isometry between observations and states reaches its limits.

On the one hand, partial observability of the environment (POMDPs, Kaelbling et al., 1998)

will jumble the observed transition structure and therefore all discussed feature construction meth-

ods.45 This could be avoided by including partial histories of observations. For example, predictive

state representations (PSR, Littman et al., 2001; Wingate, 2012) can construct sufficient statistics of

43. Areas in Z with less support vectors si will have an overall lower output of kernel functions and will thus exhibit

worse generalization. This effect can be quantized for sample z ∈ Z by the approximation error of the corresponding

kernel function, that is, inf
a∈IRm

‖κ(·,z)−∑
i

aiκ(·,si)‖H, and is called the support of z.

44. Note that 〈κa(·,si),κb(·,s j)〉ξ =
∫

ξ(dz)κa(z,si)κb(z,s j) has an analytic solution if ξ is the uniform distribution,

because the product of two Gaussian functions is a Gaussian function as well.

45. Basis construction might work well in a POMDP if applied on beliefs instead of observations, though.
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observation history to solve the task without extensive knowledge of the underlying POMDP. Ex-

tensions to continuous state and observation spaces are rare (Wingate and Singh, 2007) and linear

approximation not straight forward. Additionally, any traditional metric over histories will proba-

bly not reflect diffusion distances very well and thus perform suboptimal in techniques like LSPI

(see our conclusion in Section 5.6). Therefore, the potential of feature construction techniques like

optimal basis functions (Section 4.3) for PSR appear tremendous and should be investigated further.

Setting partial observability aside, on the other hand, every natural variable influencing the

image will be treated as part of state space X, for example angle and brightness of illumination, non-

stationary objects, the view out of the window, etc. The resulting state space X grows exponentially

in the number of these independent variables, as every combination of variables is a unique state.

Besides encoding mostly useless information, this yields two problems for the method presented in

this article: (i) the whole state space X must be sampled by the RL agent, which will eventually

take too much time, and (ii) the basis functions must support the whole space, for example, a

subset for sparse kernel methods must uniformly cover X (see Sections 5.5 and 6.3), which will

eventually require too many computational resources. Both problems can not be resolved by current

kernel methods to construct basis functions and/or standard linear RL approaches. Factored MDP

approaches in combination with computer vision methods have the potential to solve this dilemma,

though.

Using an array of highly invariant image descriptors (e.g., SIFT, Lowe, 1999), object recognition

and position estimates (e.g., SLAM, Smith et al., 1990; Davison, 2003), the observation space Z

can become much more regular. Smart choices of descriptors, for example, reacting to the window

frame and not the view outside, will even make them invariant to most state dimensions in X. If

the descriptors include short-term memory, then the presented method could even be applied in a

POMDP setup. However, an application of standard kernel methods takes the similarity between

all descriptors at once into account and would therefore still require sampling and support on the

whole space X. Factorizing basis functions φi(·) = ∏ jψi j(·), on the other hand, have full domain

Z but are a product of multiple functions ψi j(·) with a domain of only a few descriptors. Integrals

over Z break down into the product of multiple low dimensional integrals, which would each only

require limited amount of sampling and support. If those factorized basis functions approximate the

optimal basis functions discussed in Section 4.3 sufficiently close, factored MDP algorithms can

be applied (Koller and Parr, 1999; Guestrin et al., 2001; Hauskrecht and Kveton, 2003; Guestrin

et al., 2004). Future works must develop both the factorizing basis function construction method

and some adequate factored linear RL algorithm to exploit them.

7. Summary

This article investigates approximation spaces for value estimation, in particularly the role of the

metric in these spaces. This is relevant because this metric influences the Euclidean L2 approxima-

tion error minimized by least-squares temporal difference learning (LSTD). We hypothesize that

an ideal Euclidean metric for LSTD should encode diffusion distances, which reflect similar fu-

tures analogous to values. Furthermore, slow-feature analysis (SFA) constructs the best subspace-

invariant approximation spaces for LSTD. To verify these hypotheses we compare Krylov bases,

proto-value functions (PVF), principal component analysis (PCA) and SFA (see Section 3) theo-

retically and experimentally. We also derive a novel importance sampling modification to the SFA
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algorithm to compensate for sampling imbalances of SFA. The novel algorithm showed excellent

performance in Section 5.

Our theoretical analysis in Section 4 compares Krylov bases with SFA. We argue that the latter

is a generalization of PVF and can construct typical subspace-invariant approximation spaces. Our

analysis yields impressive statements for MDPs which are actually subspace-invariant under PVF

or SFA. For example, Corollary 9 (Page 2086) shows a dramatically improved bound on the LSTD

approximation error and Theorem 11 (Page 2087) gives a lower bound on the improvement thereof

by adding another feature. However, compatible MDPs are not very common: SFA features are

subspace-invariant for all MDPs with a self-adjoint transition operator and PVF are for all MDPs

with a transition kernel visiting all neighbors uniformly. Note that the latter set is a subset of

former. We argue further that real-valued subspace-invariant features can only be obtained for

MDPs with self-adjoint transition operators. Both SFA and PVF can thus be interpreted as self-

adjoint approximations of arbitrary MDPs, as empirical results in Section 5.1 demonstrate. This

interpretation is formally supported by Theorem 13 (Page 2089). It states that SFA minimizes a

mean bound over all tasks in the same environment, which means an arbitrary but fixed transition

kernel and all possible reward functions. However, all above results hold only for the sampling

policy.

It is therefore an empirical question how the discussed approximation spaces will fare when

least-squares policy iteration (LSPI) changes the policy. We ask in Section 5:

• How well does LSTD estimate the value function of a given Markov chain? We predicted in

Section 4.4 and verified in Sections 5.1 to 5.3: “SFA can provide better approximation spaces

for LSTD than PVF”.

• How good is the performance of policies learned by LSPI based on a random policy? Our

empirical conclusion of Sections 5.3 and 5.6 is “[Modified] SFA can construct better approx-

imation spaces for LSPI than PVF”.

• How does this performance depend on the approximation space metric? The connection

between diffusion distance and approximation error suggested itself in Sections 4.1 and 4.2.

We empirically verified in Section 5.6: “LSPI performance is facilitated by approximation

spaces that encode diffusion distances of a uniform random policy” because “SFA essentially

performs PCA based on diffusion distances”.

We see both theoretical and empirical results as evidence supporting our hypotheses. There

are still too many open questions to be certain, like the undesirable dependence on the sampling

distribution and other issues discussed in Section 6. However, especially the good performance

with LSPI inspires hope and calls for further research.
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Appendix A. Proofs of Section 4

For an introduction into the terminology see Section 2. The equivalency sign ≡ is used to indicate

that two optimization problems are solved by the same function.

Lemma 3 (repeated): Let ξ denote the steady state distribution of ergodic transition kernel Pπ,

which has a self-adjoint transition operator P̂π = (P̂π)∗ : L2(Z,ξ)→ L2(Z,ξ). The corresponding

diffusion distance equals the Euclidean distance in the space spanned by ψt
i(·) := λt

iφi(·),∀i ∈ IN,

where λi ∈ IR and φi ∈ L2(Z,ξ) are the eigenvalues and eigenfunctions of P̂π, that is

dt(x,y) = ‖ψt(x)−ψt(y)‖2 , ∀x,y ∈ Z ,∀t ∈ IN\{0} .

Proof The diffusion distance dt(x,y) between states x and y is defined as the mean squared differ-

ence of the probability distributions after t steps (see Page 2084):

dt(x,y) :=
∥
∥µt

x−µt
y

∥
∥

ξ
.

Under the formal restrictions mentioned of Assumption 1, Page 2083, µt
x ∈ L2(Z,ξ),∀t ∈ IN \ {0},

and one can rewrite the inner product with arbitrary functions f ∈ L2(Z,ξ):

〈µt
x, f 〉ξ =

∫
ξ(dy)

(
µt

x(y)
)

f (y) =
∫
(Pπ)t(dy|x) f (y) = (P̂π)t [ f ](x) ,

where (P̂π)t denotes t successive applications of the transition operator P̂π in L2(Z,ξ).

d2
t (x,y) = 〈µt

x,µ
t
x〉ξ−2〈µt

x,µ
t
y〉ξ + 〈µt

y,µ
t
y〉ξ

〈µt
x,µ

t
y〉ξ =

∫
(Pπ)t(dz|x)µt

y(z) = (P̂π)t
[
µt

y

]
(x) .

P̂π is specified to be self-adjoint and due to the Hilbert-Schmidt theorem (e.g., Theorem 4.2.23 in

Davies, 2007) holds for eigenfunctions P̂π[φi](·) = λiφi(·), and 〈φi,φ j〉ξ = δi j,∀i, j ∈ IN:

P̂π[ f ](x) =
∞

∑
i=0

〈 f ,φi〉ξ λiφi(x) , ∀x ∈ Z , ∀ f ∈ L2(Z,ξ) .

Applying this t times, we can write

(P̂π)t [µt
y](x) =

∞

∑
i=0

φi(x)λt
i 〈µt

y,φi〉ξ =
∞

∑
i=0

φi(x)λt
i (P̂

π)t [φi](y)

=
∞

∑
i, j=0

φi(x)λt
i λt

jφ j(y)〈φi,φ j〉ξ
︸ ︷︷ ︸

δi j

= ψt(x)⊤ψt(y) .

Therefore the diffusion distance dt(x,y) can be written as

d2
t (x,y) =ψ

t(x)⊤ψt(x)−2ψt(x)⊤ψt(y)+ψt(y)⊤ψt(y) = ‖ψt(x)−ψt(y)‖2
2 .
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Lemma 4: Let Pπ be an ergodic transition kernel in Z with steady state distribution ξ. The

kernel induced by adjoint transition operator (P̂π)∗ in L2(Z,ξ) is ξ-almost-everywhere an ergodic

transition kernel with steady state distribution ξ.

Proof We first show that for any linear operator Â : L2(Z,ξ)→ L2(Z,ξ) with kernel A : Z×B(Z)→
IR+, that is, Â[ f ](x) =

∫
A(dy|x) f (y), ξ-almost-everywhere (ξ-a.e.) in Z holds

〈 f , Â[1]〉ξ = 〈 f ,1〉ξ , ∀ f ∈ L2(Z,ξ)
︸ ︷︷ ︸

(i)

⇔
∫

A(dy|x) = 1, ξ-a.e.
︸ ︷︷ ︸

(ii)

where 1(x) = 1,∀x ∈ Z, is the constant function in L2(Z,ξ).
Let’s assume the induction (i)⇒ (ii) is not true, that is, (i) is true, but there exists a Borel set

with non-zero measure ξ of states x ∈ Z that violate (ii). This set can be split up in
∫

A(dy|x) >
1,∀x ∈ B+ ∈ B(Z), and

∫
A(dy|x) < 1,∀x ∈ B− ∈ B(Z), with ξ(B+ ∪B−) > 0. Let furthermore

f ∈ L2(Z,ξ) be defined as

f (x) =







1 , if x ∈ B+

−1 , if x ∈ B−
0 ,otherwise

,

which must adhere to claim (i):

〈 f , Â[1]〉ξ =
∫

B+
ξ(dx)

∫
A(dy|x)− ∫

B− ξ(dx)
∫

A(dy|x)
>

∫
B+

ξ(dx)− ∫
B− ξ(dx) = 〈 f ,1〉ξ .

This is a contradiction and proves (i)⇒ (ii). The induction (i)⇐ (ii) is trivial, which proves

(i)⇔ (ii).
Now we show that (i) holds for (P̂π)∗, which is the adjoint operator to P̂π.

〈 f ,(P̂π)∗[1]〉ξ = 〈P̂π[ f ],1〉ξ =
∫ ∫

ξ(dx)Pπ(dy|x)
︸ ︷︷ ︸

ξ(dy) (ergodicity)

f (y) = 〈 f ,1〉ξ , ∀ f ∈ L2(Z,ξ) .

This proves that the kernel of (P̂π)∗ is a transition kernel ξ-almost-everywhere in Z, which means

the kernel adheres to (ii). Ergodicity can be proven using the same techniques as above:

〈1, Â[ f ]〉ξ = 〈1, f 〉ξ , ∀ f ∈ L2(X,ξ) ⇔ ξ(B) =
∫

A(B|x)ξ(dx) , ∀B ∈B(X) .

〈1,(P̂π)∗[ f ]〉ξ = 〈1, f 〉ξ, ∀ f ∈ L2(X,ξ), and therefore the transition kernel of (P̂π)∗ is ergodic with

steady state distribution ξ.

Lemma 5: In the limit of an infinite ergodic Markov chain drawn by transition kernel Pπ in Z

with steady state distribution ξ holds S( f ) = 2〈 f ,(Î− P̂π)[ f ]〉ξ,∀ f ∈ L2(Z,ξ) .
Proof Due to a theorem of Jensen and Rahbek (2007) we can ensure that the empirical mean of

functions over sequences of states converges in the limit to its expectation:

S( f ) = lim
n→∞

1
n

n−1

∑
t=0

(

f (xt+1)− f (xt)
)2

=
∫∫ (

f (y)− f (x)
)2

Pπ(dy|x)ξ(dx)

= 〈 f , f 〉ξ−2〈 f , P̂π[ f ]〉ξ +
∫

f 2(y)
∫

Pπ(dy|x)ξ(dx)
︸ ︷︷ ︸

ξ(dy) due to ergodicity

= 2〈 f ,(Î− P̂π)[ f ]〉ξ .
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Theorem 7: On average over all reward functions rπ : Z→ IR drawn from a white noise func-

tional ρ, the squared norm of a Krylov basis {φK
i }

p
i=1 from an ergodic transition kernel Pπ encodes

squared diffusion distances based on P̂π up to horizon p−1, that is

d2
t (x,y) = IE

[∥
∥φK(x)−φK(y)

∥
∥2

̺

∣
∣
∣r

π ∼ ρ
]

, ∀x,y ∈ Z , ∃̺ ∈ (IR+)p, ∀t ∈ {1, . . . , p−1} .

Proof Let ξ denote the steady state distribution of transition kernel Pπ. Given a reward function

rπ ∈ L2(Z,ξ), a Krylov feature can be posed in terms of functions µt
x ∈ L2(Z,ξ) (see Definition 1,

Page 2083, and the Proof of Lemma 3), that is

φK
i (x) := (P̂π)i−1[rπ](x) =

∫
(Pπ)i−1(dy|x)rπ(y) = 〈µi−1

x ,rπ〉ξ , ∀x ∈ Z .

One can use a property of white noise functionals (Footnote 25, p. 2085) to prove the theorem.

IE
[∥
∥φK(x)−φK(y)

∥
∥2

̺

]

=
p

∑
i=1

̺i IE
[(
〈µi−1

x −µi−1
y ,rπ〉ξ

)2
]

=
p

∑
i=1

̺i

∥
∥
∥µi−1

x −µi−1
y

∥
∥
∥

2

ξ
=

p

∑
i=1

̺i d2
i−1(x,y) .

̺ ∈ (IR+)p can be chosen freely; all diffusion distances with t < p are therefore encoded.

Lemma 8: Let {φi}p
i=1 denote any p SFA features from a MDP with self-adjoint transition

operator, then the LSTD fixed point fπ = Π̂φ

ξ

[
B̂π[ fπ]

]
and the projection of true value function

vπ = B̂π[vπ] coincide, that is

fπ(x) = Π̂φ

ξ
[vπ](x) =

p

∑
i=1

〈rπ,φi〉ξ τi φi(x) , ∀x ∈ Z , τi :=
(
1−γ+ γ

2 S(φi)
)−1

.

Proof Let ψi ∈ L2(Z,ξ) denote the (due to the Hilbert-Schmidt theorem orthonormal) eigenfunc-

tions of P̂π and λi the corresponding eigenvalues, that is, P̂π[ψi] = λiψi. {ψi}∞
i=1 is a full basis of

L2(Z,ξ) and thus rπ = ∑∞
i=1〈rπ,ψi〉ξψi with φi =ψi,∀i≤ p and 〈φi,ψ j〉ξ = δi j. From this we can

conclude Π̂φ

ξ
[ψi] = φi,∀i ≤ p, and Π̂φ

ξ
[ψi] = 0,∀i > p. Due to the geometric series and Lemma 5

also holds ∑∞
t=0γ

tλt
i = (1−γλi)

−1 = τi. Therefore,

Π̂φ

ξ
[vπ] =

∞

∑
t=0

γt Π̂φ

ξ

[

(P̂π)t [rπ]
]

=
∞

∑
i=1

〈rπ,ψi〉ξ
∞

∑
t=0

γt Π̂φ

ξ

[

(P̂π)t [ψi]
]

=
p

∑
i=1

〈rπ,φi〉ξφi

∞

∑
t=0

γtλt
i =

p

∑
i=1

〈rπ,φi〉ξ τiφi ,

fπ = Π̂φ

ξ

[
B̂π[ fπ]

]
=

∞

∑
t=0

γt
(

Π̂φ

ξ
[P̂π]

)t[
Π̂φ

ξ
[rπ]
]

=
p

∑
i=1

〈rπ,φi〉ξφi

∞

∑
t=0

γtλt
i .
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Theorem 11: Let ξ be the steady state distribution on Z of a MDP with policy π and a self-

adjoint transition operator in L2(Z,ξ). Let further Φp = {φi}p
i=1 be any set of p SFA features and

vπ ∈ L2(Z,ξ) the true value of the above MDP. The improvement of the LSTD solution f (p) :=

Π̂
Φp

ξ

[
B̂π[ f (p)]

]
by including the p’th feature is bounded from below by

∥
∥
∥vπ− f (p−1)

∥
∥
∥

ξ
−
∥
∥
∥vπ− f (p)

∥
∥
∥

ξ
≥ 1−γ

2

〈rπ,φp〉2ξ
‖rπ‖ξ

τ 2
p , τp :=

(
1−γ+ γ

2 S(φp)
)−1

.

Proof Let {φi}∞
i=1 denote the extension of Φp to a full orthonormal basis of L2(Z,ξ), that is,

f (·) = ∑∞
i=1〈 f ,φi〉ξφi(·), ∀ f ∈ L2(Z,ξ). Lemma 8 shows that f (p) = Π̂

Φp

ξ
[vπ],∀p ∈ IN,

∥
∥
∥vπ− Π̂

Φp−1

ξ
[vπ]

∥
∥
∥

2

ξ
−
∥
∥
∥vπ− Π̂

Φp

ξ
[vπ]

∥
∥
∥

2

ξ
=
∥
∥
∥

∞

∑
i=p

〈vπ,φi〉ξφi

∥
∥
∥

2

ξ
−
∥
∥
∥

∞

∑
i=p+1

〈vπ,φi〉ξφi

∥
∥
∥

2

ξ
= 〈vπ,φp〉2ξ.

Note further that 〈vπ,φp〉2ξ = 〈rπ,φp〉2ξ τ 2
p , and that one can bound the norm of vπ:

∥
∥
∥vπ

∥
∥
∥

ξ
=
∥
∥
∥

∞

∑
t=0

γt (P̂π)t [rπ]
∥
∥
∥

ξ
≤

∞

∑
t=0

γt
∥
∥
∥(P̂π)t [rπ]

∥
∥
∥

ξ
≤

∞

∑
t=0

γt
∥
∥
∥rπ
∥
∥
∥

ξ
=

1

1−γ
∥
∥
∥rπ
∥
∥
∥

ξ
.

The first equality follows from the proof of Lemma 14, the first inequality from the property of

norms, the last inequality from Lemma 15 and the last equality from the geometric series. Using

the identity a2−b2 = (a−b)(a+b) and inequality ‖vπ− Π̂
Φp

ξ
[vπ]‖ξ ≤ ‖vπ‖ξ,

∥
∥
∥vπ− f

∥
∥
∥

ξ
−
∥
∥
∥vπ− f ′

∥
∥
∥

ξ
=

∥
∥vπ− f

∥
∥2

ξ
−
∥
∥vπ− f ′

∥
∥2

ξ
∥
∥vπ− f

∥
∥

ξ
+
∥
∥vπ− f ′

∥
∥

ξ

≥
〈vπ,φp〉2ξ
2 ‖vπ‖ξ

≥ 1−γ
2

〈rπ,φp〉2ξ
‖rπ‖ξ

τ 2
p ,

where f := f (p−1) and f ′ := f (p).

Theorem 13: For any infinite ergodic Markov chain with steady state distribution ξ over state

space Z, SFA selects features from function set F ⊂ L2(Z,ξ) that minimize an upper bound on the

optimality criterion of Definition 12 for sampling policy π and discount factor γ > 0, under the

assumption that the mean-reward functions rπ : Z→ IR are drawn from a white noise functional in

L2(Z,ξ).

Proof Lemma 14 shows that for all 0 ≤ γ < 1 the operator (Î− γP̂π) : L2(Z,ξ)→ L2(Z,ξ) is

invertible. Let Θ̂π denote this inverse operator. For any mean reward function rπ ∈ L2(Z,ξ) the

corresponding true value function vπr ∈ L2(Z,ξ) can be determined analytically: vπr (x) = rπ(x)+
γP̂π[vπr ](x) = Θ̂π[rπ](x),∀x ∈ Z. According to the assumptions, the mean reward functions rπ ∼ ρ

are distributed as a white noise functional, which implies

∫
〈 f ,rπ〉2ξ ρ(drπ) = 〈 f , f 〉ξ , ∀ f ∈ L2(Z,ξ) .
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We will now show that the SFA objective minimizes an upper bound on Definition 12 and thus also

minimizes the bound of Tsitsiklis and Van Roy (1997).

inf
φ∈(F)p

IE

[∥
∥
∥vπr − Π̂φ

ξ
[vπr ]

∥
∥
∥

2

ξ

∣
∣
∣r

π ∼ ρ

]

≡ sup
φ∈(F)p

IE

[

〈vπr ,Π̂φ

ξ
[vπr ]〉ξ

∣
∣
∣r

π ∼ ρ

]

≡ sup
φ∈(F)p

p

∑
i=1

IE
[

〈φi, Θ̂
π[rπ]〉2ξ

∣
∣rπ ∼ ρ

]

s.t.〈φi,φ j〉ξ = δi j , ∀i, j (Ci j:=δi j)

≡ sup
φ∈(F)p

p

∑
i=1

∥
∥
∥(Θ̂π)∗[φi]

∥
∥
∥

2

ξ
s.t.〈φi,φ j〉ξ = δi j , ∀i, j (assumption)

≡ inf
φ∈(F)p

p

∑
i=1

∥
∥
∥

(
Î−γ(P̂π)∗

)
[φi]
∥
∥
∥

2

ξ
s.t.〈φi,φ j〉ξ = δi j , ∀i, j (lemma 16)

≤ inf
φ∈(F)p

p

∑
i=1

(

(1+γ2)〈φi,φi〉ξ
︸ ︷︷ ︸

1

−2γ〈φi, P̂
π[φi]〉ξ

)

s.t.〈φi,φ j〉ξ = δi j , ∀i, j (lemmas 15&4)

≡ inf
φ∈(F)p

−2γ
p

∑
i=1

〈φi, P̂
π[φi]〉ξ s.t.〈φi,φ j〉ξ = δi j , ∀i, j

(∗)
≡ inf

φ∈(F)p
2

p

∑
i=1

〈φi,(Î− P̂π)[φi]〉ξ s.t.
〈φi,φ j〉ξ = δi j , ∀i, j

〈φi,1〉ξ = 0 , ∀i (γ>0)

≡ inf
φ∈(F)p

p

∑
i=1

S(φi) s.t.
〈φi,φ j〉ξ = δi j , ∀i, j

〈φi,1〉ξ = 0 , ∀i (Lemma 5).

The equivalency marked (∗) holds because the infimum is the same for all γ > 0. In the limit

γ→ 1, however, (Î−γP̂π) is not invertible. The fist (constant) right eigenfunction of P̂π must thus

be excluded by the zero mean constraint. The last equation is the SFA optimization problem, which

therefore minimizes an upper bound on the optimality criterion of Definition 12.

Lemma 14 For an ergodic transition operator P̂π in L2(Z,ξ) with steady state distribution ξ and

0≤ γ < 1, the operator (Î−γP̂π) is invertible. Let Θ̂π denote the inverse,

∥
∥(Î−γP̂π)

[
Θ̂π[ f ]

]
− f
∥
∥

ξ
= 0 , ∀ f ∈ L2(Z,ξ) .

Proof Let (P̂π)t denote the composition of t operators P̂π with (P̂π)0 = Î and let Θ̂π :=
lim
n→∞

∑n−1
t=0 γ

t(P̂π)t , then ∀ f ∈ L2(Z,ξ):

∥
∥
∥

(

Î−γP̂π
)[

Θ̂π[ f ]
]
− f

∥
∥
∥

ξ
= lim

n→∞

∥
∥
∥

(

Î−γP̂π
)[n−1

∑
t=0
γt(P̂π)t [ f ]

]

− f

∥
∥
∥

ξ

= lim
n→∞

∥
∥
∥

(

Î−γn(P̂π)n
)

[ f ]− f

∥
∥
∥

ξ
= lim

n→∞
γn
∥
∥
∥(P̂π)n[ f ]

∥
∥
∥

ξ
≤ lim

n→∞
γn ‖ f‖ξ = 0 .

The inequality holds because Lemma 15 shows that P̂π is a non-expansion and the last equality

because all f ∈ L2(Z,ξ) are bounded from above, that is, ‖ f‖ξ < ∞.
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Lemma 15 An ergodic transition operator P̂π in L2(Z,ξ) with steady state distribution ξ is a non-

expansion, defined as ∥
∥
∥P̂π[ f ]

∥
∥
∥

ξ
≤
∥
∥
∥ f

∥
∥
∥

ξ
, ∀ f ∈ L2(Z,ξ) .

Proof Due to Jensens inequality46 we have

∥
∥P̂π[ f ]

∥
∥2

ξ
= 〈P̂π[ f ], P̂π[ f ]〉ξ =

∫
ξ(dx)

(∫
Pπ(dy|x) f (y)

)2

≤
∫ ∫

ξ(dx)Pπ(dy|x)
︸ ︷︷ ︸

ξ(dy) due to ergodicity

f 2(y) = 〈 f , f 〉ξ =
∥
∥ f
∥
∥2

ξ
, ∀ f ∈ L2(Z,ξ) .

Lemma 16 For any invertible linear operator Â : L2(Z,ξ)→ L2(Z,ξ) holds

sup
f∈L2(Z,ξ),
〈 f , f 〉ξ=1

∥
∥
∥Â[ f ]

∥
∥
∥

ξ
≡ inf

f∈L2(Z,ξ),
〈 f , f 〉ξ=1

∥
∥
∥Â−1[ f ]

∥
∥
∥

ξ
.

Proof The operator norm of an operator Â in L2(Z,ξ) is defined as

‖Â‖ξ := sup
f∈L2(Z,ξ)

{‖Â[ f ]‖ξ

‖ f‖ξ

∣
∣ f 6= 0

}

= sup
f∈L2(Z,ξ)

{

‖Â[ f ]‖ξ

∣
∣‖ f‖ξ = 1

}

.

Using the one-to-one transformation f ← Â−1[ f ] in the equivalency marked (∗),

sup
f∈L2(Z,ξ),
〈 f , f 〉ξ=1

∥
∥
∥Â[ f ]

∥
∥
∥

ξ
≡ ‖Â‖ξ ≡ sup

f∈L2(Z,ξ)

{‖Â[ f ]‖ξ

‖ f‖ξ

∣
∣ f 6= 0

}

≡ inf
f∈L2(Z,ξ)

{ ‖ f‖ξ

‖Â[ f ]‖ξ

∣
∣ f 6= 0

}

(∗)
≡ inf

f∈L2(Z,ξ)

{‖Â−1[ f ]‖ξ

‖ f‖ξ

∣
∣ f 6= 0

}

≡ inf
f∈L2(Z,ξ),
〈 f , f 〉ξ=1

∥
∥
∥Â−1[ f ]

∥
∥
∥

ξ
.
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