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Abstract

Maximum Variance Unfolding is one of the main methods for (nonlinear) dimensionality reduction.

We study its large sample limit, providing specific rates of convergence under standard assumptions.

We find that it is consistent when the underlying submanifold is isometric to a convex subset, and

we provide some simple examples where it fails to be consistent.
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1. Introduction

One of the basic tasks in unsupervised learning, aka multivariate statistics, is that of dimensional-

ity reduction. While the celebrated Principal Components Analysis (PCA) and Multidimensional

Scaling (MDS) assume that the data lie near an affine subspace, modern approaches postulate that

the data are in the vicinity of a submanifold. Many such algorithms have been proposed in the past

decade, for example, Isomap (Tenenbaum et al., 2000), Local Linear Embedding (LLE) (Roweis and

Saul, 2000), Laplacian Eigenmaps (Belkin and Niyogi, 2003), Manifold Charting (Brand, 2003),

Diffusion Maps (Coifman and Lafon, 2006), Hessian Eigenmaps (HLLE) (Donoho and Grimes,

2003), Local Tangent Space Alignment (LTSA) (Zhang and Zha, 2004), Maximum Variance Un-

folding (Weinberger et al., 2004), and many others, some reviewed in Van der Maaten et al. (2008)

and Saul et al. (2006).

Although some variants exist, the basic setting is that of a connected domain D ⊂ R
d isometri-

cally embedded in Euclidean space as a submanifold M ⊂ R
p, with p > d. We are provided with

data points x1, . . . ,xn ∈ R
p sampled from (or near) M and our goal is to output y1, . . . ,yn ∈ R

d that

can be isometrically mapped to (or close to) x1, . . . ,xn.

A number of consistency results exist in the literature. For example, Bernstein et al. (2000) show

that, with proper tuning, geodesic distances may be approximated by neighborhood graph distances

when the submanifold M is geodesically convex, implying that Isomap asymptotically recovers the

isometry when D is convex. When D is not convex, it fails in general (Zha and Zhang, 2003). Very

close in spirit to what we do here, Zha and Zhang (2007) introduce and study a continuum version of

Isomap. In accordance with the discrete version, they show that their Continuum Isomap is able to
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recover an isometry when the manifold is isometric to a convex domain in some lower-dimensional

Euclidean space. To justify HLLE, Donoho and Grimes (2003) show that the null space of the

(continuous) Hessian operator yields an isometric embedding. See also Ye and Zhi (2012) for related

results in a discrete setting. Smith et al. (2008) prove that LTSA is able to recover the isometry, but

only up to an affine transformation. We also mention other results in the literature which show

that, as the sample size increases, the output the algorithm converges to is an explicit continuous

embedding. For instance, a number of papers analyze how well the discrete graph Laplacian based

on a sample approximates the continuous Laplace-Beltrami operator on a submanifold (Belkin and

Niyogi, 2005; von Luxburg et al., 2008; Singer, 2006; Hein et al., 2005; Giné and Koltchinskii, 2006;

Coifman and Lafon, 2006), which is intimately related to the Laplacian Eigenmaps. However, such

convergence results do not guaranty that the algorithm is successful at recovering the isometry when

one exists. In fact, as discussed in detail by Goldberg et al. (2008) and Perrault-Joncas and Meila

(2012), many of them fail in very simple settings.

In this paper, we analyze Maximum Variance Unfolding (MVU) in the large-sample limit. We

are only aware of a very recent work of Paprotny and Garcke (2012) that establishes that, under

the assumption that D is convex, MVU recovers a distance matrix that approximates the geodesic

distance matrix of the data. Our contribution is the following. In Section 2, we prove a convergence

result, showing that the optimization problem that MVU solves converges (both in solution space

and value) to a continuous version defined on the whole submanifold. The basic assumption here

is that the submanifold M is compact. In Section 3, we derive quantitative convergence rates, with

mild additional regularity assumptions. In Section 4, we consider the solutions to the continuum

limit. When D is convex, we prove that MVU recovers an isometry. We also provide examples

of non-convex D where MVU provably fails at recovering an isometry. We also prove that MVU

is robust to noise, which Goldberg et al. (2008) show to be problematic for algorithms like LLE,

HLLE and LTSA. Some concluding remarks are in Section 5.

2. From Discrete MVU to Continuum MVU

In this section we state and prove a qualitative convergence result for MVU. This result applies with

only minimal assumptions and its proof is relatively transparent. What we show is that the (discrete)

MVU optimization problem converges to an explicit continuous optimization problem when the

sample size increases. Although this convergence does not imply a dimensionality reduction per se,

the continuous optimization problem is amenable to scrutiny with tools from analysis and geometry,

and that will enable us to better understand (in Section 4) when MVU succeeds, and when it fails,

at recovering an isometry to a Euclidean domain when it exists.

Let us start by recalling the MVU algorithm (Weinberger and Saul, 2006; Weinberger et al.,

2004, 2005). We are provided with data points x1, . . . ,xn ∈R
p. Let ‖ ·‖ denote the Euclidean norm.

Let Yn,r be the (random) set defined by

Yn,r =
{

y1, . . . ,yn ∈ R
p : ‖yi − y j‖ ≤ ‖xi − x j‖ when ‖xi − x j‖ ≤ r

}

.

Having chosen a neighborhood radius r > 0, MVU solves the following optimization problem:
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DISCRETE MVU

Maximize E(Y ) :=
1

n(n−1)

n

∑
i=1

∑
j 6=i

‖yi − y j‖2, over Y = (y1, . . . ,yn)
T ∈ R

n×p,

subject to Y ∈ Yn,r. (1)

When the data points are sampled from a distribution µ with support M, our main result in this

section is to show that, when M is sufficiently regular and r = rn → 0 sufficiently slowly, the discrete

optimization problem converges to the following continuous optimization problem:

CONTINUUM MVU

Maximize E( f ) :=
∫

M×M
‖ f (x)− f (x′)‖2µ(dx)µ(dx′), over f : M → R

p,

subject to f is Lipschitz with ‖ f‖Lip ≤ 1.

‖ f‖Lip denotes the smallest Lipschitz constant of a function f . It is important to realize that the

Lipschitz condition is with respect to the intrinsic metric on M (i.e., the metric inherited from the

ambient space R
p), defined as follows: for x,x′ ∈ M, let

δM(x,x′) = inf{T : ∃γ : [0,T ]→ M, 1-Lipschitz, with γ(0) = x and γ(T ) = x′}.

When M is compact, the infimum is attained. In that case, δM(x,x′) is the length of the shortest

continuous path on M starting at x and ending at x′, and (M,δM) is a complete metric space, also

called a length space in the context of metric geometry (Burago et al., 2001). Then f : M → R
p is

Lipschitz with ‖ f‖Lip ≤ L if

‖ f (x)− f (x′)‖ ≤ LδM(x,x′), ∀x,x′ ∈ M. (2)

For any L > 0, denote by FL the class of Lipschitz functions f : M → R
p satisfying (2).

One of the central condition is that M is sufficiently regular that the intrinsic metric on M is

locally close to the ambient Euclidean metric.

Regularity assumption. There is a non-decreasing function c : [0,∞)→ [0,∞) such that c(r)→ 0

when r → 0, such that, for all x,x′ ∈ M,

δM(x,x′)≤
(

1+ c(‖x− x′‖)
)

‖x− x′‖. (3)

This assumption is also central to Isomap. Bernstein et al. (2000) prove that it holds when M is

a compact, smooth and geodesically convex submanifold (e.g., without boundary). In Lemma 4, we

extend this to compact, smooth submanifolds with smooth boundary, and to tubular neighborhoods

of such sets. The latter allows us to study noisy settings.

Note that we always have

‖x− x′‖ ≤ δM(x,x′). (4)

Let S1 denote the set of functions that are solutions of Continuum MVU. We state the following

qualitative result that makes minimal assumptions.
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Theorem 1 Let µ be a (Borel) probability distribution with support M ⊂ R
p, which is connected,

compact and satisfying (3), and assume that x1, . . . ,xn are sampled independently from µ. Then, for

rn → 0 sufficiently slowly, we have

sup{E(Y ) : Y ∈ Yn,rn
}→ sup{E( f ) : f ∈ F1}, (5)

and for any solution Ŷn = (ŷ1, . . . , ŷn) of Discrete MVU,

inf
f∈S1

max
1≤i≤n

‖ŷi − f (xi)‖→ 0, (6)

almost surely as n → ∞.

Thus Discrete MVU converges to Continuum MVU in the large sample limit, if M satisfies

the crucial regularity condition (3) and other mild assumptions. In Section 3, we provide explicit

quantitative bounds for the convergence results (5) and (6) at the very end, under some additional

(though natural) assumptions. In Section 4, we focus entirely on Continuum MVU, with the goal of

better understanding the functions that are solutions to that optimization problem. Because of (6),

we know that the output of Discrete MVU converges in a strong sense to one of these functions.

The rest of the section is dedicated to proving Theorem 1. We divide the proof into several parts

which we discuss at length, and then assemble to prove the theorem.

2.1 Coverings and Graph Neighborhoods

For r > 0, let Gr denote the undirected graph with nodes x1, . . . ,xn and an edge between xi and x j

if ‖xi − x j‖ ≤ r. This is the r-neighborhood graph based on the data. Remember that we consider

Discrete MVU with r = rn → 0 as the sample size n → ∞. For the result to hold, it is essential that

Grn
be connected, for otherwise sup{E(Y ) : Y ∈ Yn,rn

}= ∞, while sup{E( f ) : f ∈ F1} is finite. The

latter comes from the fact that, for any f ∈ F1,

E( f )≤
∫

M×M
δM(x,x′)2µ(dx)µ(dx′)≤ diam(M)2,

where we used (2) in the first inequality, and diam(M) is the intrinsic diameter of M, that is,

diam(M) := sup
x,x′∈M

δM(x,x′).

Recall that the only assumptions on M made in Theorem 1 are that M is compact, connected, and

satisfies (3), and this implies that diam(M)< ∞. Indeed, as a compact subset of Rp, M is bounded,

hence supx,x′∈M ‖x− x′‖< ∞. Reporting this in (3) immediately implies that diam(M)< ∞.

That said, we ask more of (rn) than simply having Grn
connected. For η > 0, define

Λ(η) = {∀x ∈ M,∃i = 1, . . . ,n : ‖x− xi‖ ≤ η},

which is the event that x1, . . . ,xn forms an η-covering of M.

Connectivity requirement. rn → 0 in such a way that

∞

∑
n=1

P(Λ(λnrn)
c)< ∞, for some sequence λn → 0. (7)
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Since M is the support of µ, there is always a sequence (rn) that satisfy the Connectivity re-

quirement. For η > 0, we say that z1, . . . ,zN ∈ M is η-packing (for the Euclidean metric) if it is a

maximal collection of points such that ‖zi − z j‖ > η for all i 6= j, meaning there is no other point

z ∈ M such that ‖z− zi‖ > η for all i. By definition then, an η-packing z1, . . . ,zN ∈ M is also an

η-covering, in the sense that, for all z ∈ M, there is i ∈ {1, . . . ,N} such that ‖z− zi‖ ≤ η. (Note that

not all η-coverings are η-packings.) Let Nη denote the maximum cardinality of an η-packing of M.

By compactness of M, Nη < ∞ for any η > 0. Let pη = min j µ(B(z j,η)), where B(z,η) denotes the

Euclidean ball centered at z and of radius η > 0. Since M is the support of µ, µ(B(z,η))> 0 for any

z ∈ M and any η > 0. Hence, pη > 0 for any η > 0. We have

P(Λ(2η)c) = P(there exists x ∈ M : ∀i = 1, . . . ,n, ‖x− xi‖> 2η )

≤ P(there is j such that B(z j,η) is empty of data points)

≤
Nη

∑
j=1

P(B(z j,η) is empty of data points)

≤ Nη(1− pη)
n.

Let ηn = inf{η > 0 : Nη(1− pη)
n ≤ 1/n2} ; the sequence 1/n2 is chosen here for the simplicity of

the exposition, but more general sequence can be considered, as will become apparent at the end of

the paragraph.

Since pη > 0 for all η> 0, ηn → 0. To see this, let η⋆ = diam(M). Clearly, for all η≥η⋆, pη = 1,

which implies that the set of η > 0 such that Nη(1− pη)
n ≤ 1/n2 is non-empty. In particular, for all

n ≥ 1, we have ηn ≤ η⋆. Now, let ε > 0 be fixed. Since pε > 0, there exists an integer nε such that

Nε(1− pε)
n ≤ 1/n2 for all n ≥ nε, so that ηn ≤ ε for all n ≥ nε. Since ε is arbitrary, this proves that

the sequence (ηn) converges to 0 as n tends to infinity.

With such a choice of (ηn), we have ∑n≥1P(Λ(2ηn)
c)≤ ∑n≥1 1/n2 < ∞. Therefore, if we take

rn =
√

ηn, it satisfies the Connectivity requirement. In Section 3.2 we derive a quantitative bound

on rn that guaranty (7) under additional assumptions. Note that the sequence (1/n2) in the definition

of ηn can be replaced by any summable decreasing sequence.

The rationale behind the requirement on (rn) is the same as in Bernstein et al. (2000): it allows

to approximate each curve on M with a path in Grn
of nearly the same length. We use this in the

following subsection.

2.2 Interpolation

Assuming that the sampling is dense enough that Λ(η) holds, we interpolate a set of vectors Y ∈Yn,r

with a Lipschitz function f ∈ F1+O(η/r). Formally, we have the following.

Lemma 1 Assume that Λ(η) holds for some η ≤ r/4. Then any vector Y = (y1, . . . ,yn) ∈ Yn,r is of

the form Y = ( f (x1), . . . , f (xn)) for some f ∈ F1+6η/r.

We prove this result. The first step is to show that this is at all possible in the sense that

‖yi − y j‖ ≤
(

1+6η/r
)

δM(xi,x j), ∀i, j. (8)

This shows that the map g : {x1, . . . ,xn}→R
p defined by g(xi) = yi for all i, is Lipschitz (for δM and

the Euclidean metrics) with constant L = 1+ 6η/r. We apply a form of Kirszbraun’s Extension—

Lang and Schroeder (1997, Theorem B) or Brudnyi and Brudnyi (2012, Theorem 1.26)—to extend

g to the whole M into f ∈ F1+6η/r.
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Therefore, let’s turn to proving (8). The arguments are very similar to those in Bernstein et al.

(2000). If δM(xi,x j)≤ r, then, by (4), ‖xi − x j‖ ≤ r, which implies that

‖yi − y j‖ ≤ ‖xi − x j‖ ≤ δM(xi,x j).

Now suppose that δM(xi,x j) > r. Let γ be a path in M connecting xi to x j of minimal length

l = δM(xi,x j). Split γ into N arcs of lengths l1 = r/2 plus one arc of length lN+1 < l1, so that

l

l1
−1 ≤ N ≤ l

l1
.

Denote by xi = x′0,x
′
1, . . . ,x

′
N ,x

′
N+1 = x j the extremities of the arcs along γ.

For k= 1, . . . ,N, let tk ∈ argmint ‖x′k−xt‖. Assuming Λn(η) holds, for all k we have δM(x′k,xtk)≤
η, so that

‖xtk − xtk−1
‖ ≤ δM(xtk ,xtk−1

)≤ δM(x′k,x
′
k−1)+2η ≤ l1 +2η ≤ r/2+2(r/4) = r.

Hence, because Y = (y1 . . . ,yn) ∈ Yn,r,

‖ytk − ytk−1
‖ ≤ l1 +2η.

Similarly, for the last arc, recalling that xtN+1
= x j, we have δM(x j,xtN )≤ lN+1 +η < l1 +η < r, and

therefore

‖ytN+1
− ytN‖ ≤ lN+1 +η.

Consequently,

‖yi − y j‖ ≤ N(l1 +2η)+(lN+1 +η)

= Nl1 + lN+1 +(2N +1)η

= l +(2N +1)η.

We have

(2N +1)η ≤
(

2
l

l1
+1

)

η ≤ l
3η

l1
= l

6η

r
,

and so (8) holds.

2.3 Bounds on The Energy

We call E the energy functional. For a function f : {x1, . . . ,xn} → R
p, let

Yn( f ) = ( f (x1), . . . , f (xn))
T ∈ R

n×p. Assume that Λ(η) holds η ≤ r/4. Then Lemma 1 implies

that any Y ∈ Yn,r is equal to Yn( f ) for some f ∈ F1+6η/r. Hence,

sup
Y∈Yn,r

E(Y )≤ sup
f∈F1+6η/r

E(Yn( f )). (9)

Recall the function c(r) introduced in (3), and assume that r > 0 is small enough that c(r)< 1.

For f ∈ F1−c(r), and for any i, j such that ‖xi − x j‖ ≤ r, we have

‖ f (xi)− f (x j)‖ ≤ (1− c(r))δM(xi,x j)≤ (1− c(r))(1+ c(‖xi − x j‖))‖xi − x j‖.
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Since the function c is non-decreasing, c(‖xi − x j‖)≤ c(r), and so

‖ f (xi)− f (x j)‖ ≤
(

1− c(r)2
)

‖xi − x j‖ ≤ ‖xi − x j‖.

Consequently, Yn( f ) ∈ Yn,r, implying that

sup
Y∈Yn,r

E(Y )≥ sup
f∈F1−c(r)

E(Yn( f )). (10)

As a result of (9) and (10), we have
∣

∣ sup
Y∈Yn,r

E(Y )− sup
f∈F1

E( f )
∣

∣≤ sup
1−c(r)≤L≤1+6η/r

∣

∣ sup
f∈FL

E(Yn( f ))− sup
f∈F1

E( f )
∣

∣. (11)

We have
∣

∣ sup
f∈FL

E(Yn( f ))− sup
f∈FL

E( f )
∣

∣≤ sup
f∈FL

∣

∣E(Yn( f ))−E( f )
∣

∣,

and applying the triangle inequality, we arrive at
∣

∣ sup
f∈FL

E(Yn( f ))− sup
f∈F1

E( f )
∣

∣≤ sup
f∈FL

∣

∣E(Yn( f ))−E( f )
∣

∣+
∣

∣ sup
f∈FL

E( f )− sup
f∈F1

E( f )
∣

∣.

Since FL = LF1 and E(L f ) = L2E( f ), we have
∣

∣ sup
f∈FL

E( f )− sup
f∈F1

E( f )
∣

∣≤ |L2 −1| sup
f∈F1

E( f )≤ |L2 −1|diam(M)2,

and

sup
f∈FL

∣

∣E(Yn( f ))−E( f )
∣

∣= L2 sup
f∈F1

∣

∣E(Yn( f ))−E( f )
∣

∣. (12)

Consequently,
∣

∣ sup
f∈FL

E(Yn( f ))− sup
f∈F1

E( f )
∣

∣≤ L2 sup
f∈F1

∣

∣E(Yn( f ))−E( f )
∣

∣+ |L2 −1|diam(M)2.

Reporting this inequality in (11) on the event Λ(η) with η ≤ r/4, we have
∣

∣ sup
Y∈Yn,r

E(Y )− sup
f∈F1

E( f )
∣

∣≤ (1+6η/r)2 sup
f∈F1

∣

∣E(Yn( f ))−E( f )
∣

∣+β(r,η)
(

2+β(r,η)
)

diam(M)2,

(13)

where β(r,η) := max(c(r),6η/r).
Finally, we show that E is continuous (in fact Lipschitz) on F1 for the supnorm. For any f and

g in F1, and any x and x′ in M, we have:
∣

∣‖ f (x)− f (x′)‖2 −‖g(x)−g(x′)‖2
∣

∣

≤ ‖ f (x)− f (x′)−g(x)+g(x′)‖ ‖ f (x)− f (x′)+g(x)−g(x′)‖
≤

[

‖ f (x)−g(x)‖+‖ f (x′)−g(x′)‖
][

‖ f (x)− f (x′)‖+‖g(x)−g(x′)‖
]

≤ 4‖ f −g‖∞ diam(M).

The first inequality is that of Cauchy-Schwarz. Hence,
∣

∣E( f )−E(g)
∣

∣≤ 4‖ f −g‖∞ diam(M), (14)

and
∣

∣E(Yn( f ))−E(Yn(g))
∣

∣≤ 4‖ f −g‖∞ diam(M). (15)
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2.4 More Coverings and the Law of Large Numbers

The last step is to show that the supremum of the empirical process (12) converges to zero. For

this, we use a packing (covering) to reduce the supremum over F1 to a maximum over a finite set of

functions. We then apply the Law of Large Numbers to each difference in the maximization.

Fix x0 ∈ M and define

F 0
1 = { f ∈ F1 : f (x0) = 0}.

Note that f ∈ F1 if, and only if, f − f (x0) ∈ F 0
1 , and by the fact that E( f + a) = E( f ) for any

function or vector f and any constant a ∈ R
p, we have

sup
f∈F1

∣

∣E(Yn( f ))−E( f )
∣

∣= sup
f∈F 0

1

∣

∣E(Yn( f ))−E( f )
∣

∣.

The reason to use F 0
1 is that it is bounded in supnorm. Indeed, for f ∈ F 0

1 , we have

‖ f (x)‖= ‖ f (x)− f (x0)‖ ≤ δM(x,x0)≤ diam(M), ∀x ∈ M.

Let N∞(F
0

1 ,ε) denote the covering number of F 0
1 for the supremum norm, that is, the minimal

number of balls that are necessary to cover F 0
1 , and let f1, . . . , fN ∈ F1 be an ε-covering of F 0

1

of minimal size N := N∞(F
0

1 ,ε). Since F 0
1 is equicontinuous and bounded, it is compact for the

topology of the supremum norm by the Arzelà-Ascoli Theorem, so that N∞(F
0

1 ,ε) < ∞ for any

ε > 0.

Fix f ∈ F 0
1 and let k be such that ‖ f − fk‖ ≤ ε. By (14) and (15), we have

|E(Yn( f ))−E( f )| ≤ |E(Yn( f ))−E(Yn( fk))|+ |E(Yn( fk))−E( fk)|+ |E( fk)−E( f )|
≤ 8diam(M)‖ f − fk‖∞ + |E(Yn( fk))−E( fk)|
= 8diam(M)ε+ |E(Yn( fk))−E( fk)| .

Thus,

sup
f∈F1

∣

∣E(Yn( f ))−E( f )
∣

∣≤ 8diam(M)ε+max{|E(Yn( fk))−E( fk)| : k = 1, . . . ,N∞(F
0

1 ,ε)}. (16)

The Law of Large Numbers (LLN) imply that, for any bounded f , E(Yn( f )) → E( f ), almost

surely as n → ∞. Indeed,

E(Yn( f )) =
n2

n(n−1)

1

n2 ∑
i, j

‖ f (xi)− f (x j)‖2

=
2n

n−1





1

n
∑

i

‖ f (xi)‖2 −
∥

∥

∥

∥

∥

1

n
∑

i

f (xi)

∥

∥

∥

∥

∥

2




→ 2E‖ f (x)‖2 −2‖E f (x)‖2 = E( f ), almost surely as n → ∞,

by the LLN applied to each term. Therefore, when ε > 0 is fixed, the second term in (16) tends to

zero almost surely, and since ε > 0 is arbitrary, we conclude that

sup
f∈F1

∣

∣E(Yn( f ))−E( f )
∣

∣→ 0, in probability, as n → ∞. (17)
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2.5 Large Deviations of the Sample Energy

To show an almost sure convergence in (17), we need to refine the bound on the supremum of the

empirical process (12). For this, we apply Hoeffding’s Inequality for U-statistics (Hoeffding, 1963),

which is a special case of (de la Peña and Giné, 1999, Theorem 4.1.8).

Lemma 2 (Hoeffding’s Inequality for U-statistics) Let φ : M×M →R be a bounded measurable

map, and let {xi : i ≥ 1} be a sequence of i.i.d. random variables with values in M. Assume that

E[φ(x1,x2)] = 0 and that b := ‖φ‖∞ < ∞, and let σ2 = Var(φ(x1,x2)). Then, for all t > 0,

P

[

1

n(n−1) ∑
1≤i6= j≤n

φ(xi,x j)> t

]

≤ exp

(

− nt2

5σ2 +3bt

)

.

Let f ∈ F1. To bound the deviations of E(Yn( f )), we apply this result with φ(x,x′) = ‖ f (x)−
f (x′)‖2 −E( f ). Then,

E(Yn( f ))−E( f ) =
1

n(n−1) ∑
i6= j

φ(xi,x j).

By construction, E[φ(x1,x2)] = 0. Since f is Lipschitz with constant 1, for any x and x′ in M, ‖ f (x)−
f (x′)‖2 ≤ diam(M)2 and E( f )≤ diam(M)2. Hence ‖φ‖∞ ≤ diam(M)2, and Var(φ(x1,x2))≤‖φ‖2

∞ ≤
diam(M)4. Applying Lemma 2 (twice), we deduce that, for any ε > 0,

P(|E(Yn( f ))−E( f )|> ε)≤ 2exp

(

− nε2

5diam(M)4 +3diam(M)2ε

)

. (18)

Using (18) in (16), coupled with the union bound, we get that

P

(

sup
f∈F1

∣

∣E(Yn( f ))−E( f )
∣

∣> 9εdiam(M)

)

≤ N∞(F
0

1 ,ε) ·2exp

(

− nε2

5diam(M)2 +3ε

)

. (19)

Clearly, the RHS is summable for every ε > 0 fixed, so the convergence in (17) happens in fact with

probability one, that is,

sup
f∈F1

∣

∣E(Yn( f ))−E( f )
∣

∣→ 0, almost surely, as n → ∞.

2.6 Convergence in Value: Proof of (5)

Assume rn satisfies the Connectivity requirement, and that n is large enough that we have

max(c(rn),6λn)< 1. When Λ(λnrn) holds, by (13), we have

∣

∣ sup
Y∈Yn,r

E(Y )− sup
f∈F1

E( f )
∣

∣≤ (1+6λn)
2 sup

f∈F1

∣

∣E(Yn( f ))−E( f )
∣

∣+3max
(

c(rn),6λn

)

diam(M)2,

while when Λ(λnrn) does not hold, since the energies are bounded by diam(M)2, we have

∣

∣ sup
Y∈Yn,r

E(Y )− sup
f∈F1

E( f )
∣

∣≤ 2diam(M)2.
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Combining these inequalities, we deduce that
∣

∣ sup
Y∈Yn,r

E(Y )− sup
f∈F1

E( f )
∣

∣ ≤ 3max
(

c(rn),6λn

)

diam(M)21IΛ(λnrn)

+2diam(M)21IΛ(λnrn)c

+(1+6λn)
2 sup

f∈F1

∣

∣E(Yn( f ))−E( f )
∣

∣. (20)

Almost surely, the sum of the first two terms on the RHS tends to 0 by the fact that c(r)→ 0 when

r → 0, and (7) since rn satisfies the Connectivity requirement. The third term tends to 0 by (17).

Hence, (5) is established.

2.7 Convergence in Solution: Proof of (6)

Assume rn satisfies the Connectivity requirement, and that n is large enough that λn ≤ 1/2. Let Ŷn

denote any solution of Discrete MVU. When Λ(λnrn) holds, there is f̂n ∈ F1+6λn
such that Ŷn =

Yn( f̂n). Note that the existence of the interpolating function f̂n holds on Λ(λnrn) for each fixed

n, and that this does not imply the existence of an interpolating sequence ( f̂n)n≥1. That said, for

each ω in the event liminfn Λ(λnrn), there exists a sequence f̂n(.;ω) and an integer n0(ω) such that

Ŷn =Yn( f̂n) for all n≥ n0(ω), that is, the sequence is interpolating a solution of Discrete MVU for all

n large enough. In addition, when rn satisfies the Connectivity requirement, then with probability

one, Λ(λnrn)
c holds for only finitely many n’s by the Borel-Cantelli lemma, implying that, with

probability one, Λ(λnrn) holds infinitely often.

In fact, without loss of generality, we may assume that f̂n ∈ F 0
1+6λn

⊂ F 0
4 . Since F 0

4 is equicon-

tinuous and bounded, it is compact for the topology of the supnorm by the Arzelà-Ascoli Theorem.

Hence, any subsequence of f̂n admits a subsequence that converges in supnorm. And since F 0
L

increases with L and F 0
1 = ∩L>1F 0

L , any accumulation point of ( f̂n) is in F 0
1 .

In fact, if we define S 0
1 = S1 ∩F 0

1 , then all the accumulation points of ( f̂n) are in S 0
1 . Indeed,

we have

E( f̂n) = E( f̂n)−E(Yn( f̂n))+E(Yn( f̂n)),

with
∣

∣E( f̂n)−E(Yn( f̂n))
∣

∣≤ sup
f∈F1

∣

∣E(Yn( f ))−E( f )
∣

∣→ 0,

by (17), and

E(Yn( f̂n)) = sup
Y∈Yn,rn

E(Y )→ sup
f∈F1

E( f ),

by (5), almost surely as n → ∞. Hence, if f∞ = limk f̂nk
, by continuity of E on F 0

4 , we have

E( f∞) = lim
k

E( f̂nk
) = sup

f∈F1

E( f ),

and given that f∞ ∈ F 0
1 , we have f∞ ∈ S 0

1 by definition.

The fact that ( f̂n) is compact with all accumulation points in S 0
1 implies that

inf
f∈S 0

1

‖ f̂n − f‖∞ → 0, (21)

and since we have max1≤i≤n ‖ŷi − f (xi)‖= ‖ f̂n(xi)− f (xi)‖ ≤ ‖ f̂n − f‖∞, this immediately implies

(6). The convergence in (21) is a consequence of the following simple result.
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Lemma 3 Let (an) be a sequence in a compact metric space with metric δ, that has all its accumu-

lation points in a set A. Then

inf
a∈A

δ(an,a)→ 0.

Proof If this is not the case, then there is ε > 0 such that, infa∈A δ(an,a)≥ ε for infinitely many n’s,

denoted n1 < n2 < · · · . The space being compact, (ank
) has at least one accumulation point, which

is in A by assumption. However, by construction, (ank
) cannot have an accumulation point in A.

This is a contradiction.

3. Quantitative Convergence Bounds

We obtained a general, qualitative convergence result for MVU in the preceding section and now

specify some of the supporting arguments to obtain quantitative convergence speeds. This will re-

quire some (natural) additional assumptions on µ and M. While the proof of a result like Theorem 1

is necessarily complex, we endeavored in making it as transparent and simple as we could. The

present section is more technical, and the reader might choose to first read Section 4 to learn about

the solutions to Continuum MVU, which imply consistency (and inconsistencies) for MVU as a

dimensionality-reduction algorithm.

We consider two specific types of sets M:

• Thin sets. M is a d-dimensional compact, connected, C2 submanifold with C2 boundary (if

nonempty). In addition, M ⊂ M⋆, where M⋆ is a d-dimensional, geodesically convex C2

submanifold.

• Thick sets. M is a compact, connected subset that is the closure of its interior and has a C2

boundary.

The ambient space is R
p. Note that our results are equally valid for piecewise smooth sets. Thin

sets are a model for noiseless data, where that the data points are sampled from a submanifold. Note

that they may have holes and boundaries. And thick sets are a model for noisy data, where that the

data points are sampled from the vicinity of a submanifold.

An important example of thick sets are tubular neighborhoods of thin sets. For a set A ⊂R
p and

η > 0, the η-neighborhood of A is the set of points in R
p within Euclidean distance η of A, and is

denoted B(A,η). The reach of a set A ⊂ R
p is defined in Federer (1959) as the largest η such that,

for any x ∈ B(A,η) there is a unique point a ∈ A closest to x. We denote by ρ(A) the reach of A.

Note that any thin set A has positive reach, which bounds its radius of curvature from below. While

for any thick set A, ∂A is a thin set without boundary, for any η < ρ(A), B̄(A,η) is a thick set, with

boundary having reach ≥ ρ(A)−η.

In what follows, C and Ck denote constants that depend only on p and d, which may change

with each appearance.

3.1 The Regularity Condition

The first thing we do is specify the function c in (3). When M is a thin set, we define rM =
min

(

ρ(M⋆),ρ(∂M)
)

, where by convention ρ( /0)=∞. And when M is a thick set, we let rM = ρ(∂M).
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The following result seems valid when rM = ρ(M) in both cases, but the proof seems much more

involved.

Lemma 4 Whether M is a thin or a thick set, (3) is valid with

c(r) =
4r

rM

1I{r<rM/2}+1I{r≥rM/2}.

Proof We borrow results from Niyogi et al. (2008). Let x,x′ ∈ M such that ‖x− x′‖ ≤ rM/2.

First, suppose that M is thick. Consider the (straight) line segment joining these two points.

If this segment is included in M, then δM(x,x′) = ‖x− x′‖. Otherwise, it intersects ∂M in at least

two points; among these points, let z be the closest to x and z′ the closest to x′. Since ∂M has no

boundary, it is geodesically convex, so that there is a geodesic on ∂M, denoted ξ, joining z and

z′. Niyogi et al. (2008, Prp. 6.3) applies since ‖z− z′‖ ≤ ‖x− x′‖ ≤ rM/2 ≤ ρ(∂M)/2, and ρ(∂M)
coincides with the condition number of ∂M as defined in Niyogi et al. (2008)—and denoted by τ

there. Hence, if ℓ is the length of ξ, we have

ℓ≤ ρ(∂M)−ρ(∂M)

√

1− 2‖z− z′‖
ρ(∂M)

≤ ‖z− z′‖+4‖z− z′‖2/rM, (22)

using the fact that
√

1− t ≥ 1− t/2− t2 for all t ∈ [0,1] and rM ≤ ρ(∂M). Let γ be the path made of

ξ concatenated with the segments [xz] and [z′x′]. If L is the length of γ, we have

L = ‖x− z‖+‖z′− x′‖+ ℓ

≤ ‖x− z‖+‖z′− x′‖+‖z− z′‖+4‖z− z′‖2/rM

≤ ‖x− x′‖+4‖x− x′‖2/rM,

using the fact that x,z,z′,x′ are in that order on the line segment joining x and x′. This concludes the

proof when M is thick.

When M is thin, we distinguish two cases. Either there is a geodesic joining x and x′, and Niyogi

et al. (2008, Prp. 6.3) is directly applicable. Otherwise, M is not geodesically convex. Let γ⋆ be a

geodesic on M⋆ joining x and x′. Necessarily, it hits the boundary ∂M in at least two points. Let

z, z′, ξ and ℓ be defined as before. We again have (22). Let (xz)⋆ and (z′x′)⋆ denote the arcs along

γ⋆ joining x and z, and z′ and x′, respectively. Applying Niyogi et al. (2008, Prp. 6.3) to each arc,

which is possible since rM ≤ ρ(M⋆), we also have

length((xz)⋆)≤ ‖x− z‖+4‖x− z‖2/rM, length((z′x′)⋆)≤ ‖z′−x′‖+4‖z′−x′‖2/rM.

Let γ be the curve made of concatenating these two arcs and ξ, and let L denote its length. We have

L = length((xz)⋆)+ length((z′x′)⋆)+ ℓ

≤ ‖x− z‖+ 4‖x− z‖2

rM

+‖z′− x′‖+ 4‖z′− x′‖2

rM

+‖z− z′‖+ 4‖z− z′‖2

rM

≤ ‖x− x′‖+ 4‖x− x′‖2

rM

.

This concludes the proof when M is thin.
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3.2 Covering Numbers and a Bound on the Neighborhood Radius

At what speed can we have rn → 0 and still have (7) hold? This question is of practical importance,

since the neighborhood radius may affect the output of MVU in a substantial way. Computationally,

it is preferable to have rn small, so there are fewer constraints in (1). However, we already explained

that rn needs to be large enough that, at the very minimum, the resulting neighborhood graph is

connected. In fact, we required the stronger condition (7).

To keep the exposition simple, we assume that µ is comparable to the uniform distribution on

M, that is, we assume that there is a constant α > 0 such that

µ(B(x,η))≥ αvold(B(x,η)∩M), ∀x ∈ M,∀η > 0, (23)

where vold denotes the d-dimensional Hausdorff measure and d denotes the Hausdorff dimension

of M. We need the following result. Let ωd be the volume of the d-dimensional unit ball.

Lemma 5 Whether M is thin or thick, there is C > 0 such that, for any η ≤ rM and any x ∈ M,

vold(B(x,η)∩M)≥C ηd .

Proof It suffices to prove the result for x ∈ M \∂M and for η small enough.

Thick set. We first assume that M is thick. Take x ∈ M and η < rM. If dist(x,∂M) ≥ η, then

B(x,η) ⊂ M and the result follows immediately. Otherwise, let u be the metric projection of x

onto ∂M, and define z = x+(η/4)(x−u)/‖x−u‖. By the triangle inequality, B(z,η/4)⊂ B(x,η).
Also, by Federer (1959, Theorem 4.8), u is also the metric projection of z ∈ M onto ∂M, so that

dist(z,∂M) = ‖z − u‖ = ‖x − u‖+ η/4 > η/4. And, necessarily, z ∈ M, for otherwise the line

segment joining z to x would intersect ∂M, and any point on that intersection would be closer to z

than u is, which cannot be. Therefore, B(z,η/4)⊂ B(x,η)∩M and the result follows immediately.

Thin set. We now assume that M is thin. For y ∈ M, let Ty be the tangent subspace of M at y and

let πy denote the orthogonal projection onto Ty. Because M is a C2 submanifold, for every y ∈ M,

there is εy > 0 such that πy is a C2 diffeomorphism on Ky := B(y,εy)∩M, with π−1
y being 2-Lipschitz

on πy(Ky)—the latter comes from the fact that Dyπy is the identity map and z → Dzπy is continuous.

Since M is compact, there is y1, . . . ,ym ∈ M, with m < ∞, such that M ⊂ ∪ jB(y j,ε j/2). Let ε =
min j εy j

, which is strictly positive. Let y be among the y j’s such that x ∈ B(y,ε j/2). Assuming that

η < ε/2, we have that B(x,η)⊂ B(y,ε j). Let U := B(y,ε j), K = Ky, T = Ty and π = πy for short.

We first show that, if ∂M ∩K 6= /0 and W := π(∂M ∩K), then ρ(W ) ≥ ρ(∂M). Indeed, for any

z,z′ ∈ K, we have

dist(π(z′)−π(z),Tan(W,π(z)))≤ dist(z′− z,Tan(∂M,z))≤ 1

2ρ(∂M)
‖z′− z‖2,

where the first inequality follows from the facts that Tan(W,π(z)) = π(Tan(∂M,z)) and that π is

1-Lipschitz, and the second inequality from Federer (1959, Theorem 4.18) applied to ∂M. In turn,

Federer (1959, Theorem 4.17) applied to W implies that ρ(W )≥ ρ(∂M).

We can now reason as we did for thick sets, but with a twist. To be sure, let a = π(x) and notice

that B(a,η)∩T = π(B(x,η))⊂ π(U) since B(x,η)⊂U . If dist(a,W )≥ η/2, B(a,η/2)∩T ⊂ π(K).
If dist(a,W )< η/2, let b be the metric projection of a onto W and define c = a+(η/8)(a−b)/‖a−
b‖. Arguing exactly as we did for thick sets, we have that B(c,η/8)∩T ⊂ B(a,η/2)∩π(K). Let
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L = π−1(B(c,η/8)∩T ). Note that L ⊂ π−1(B(a,η/2)∩T )∩K ⊂ B(x,η)∩K ⊂ B(x,η)∩M, since

π is injective on K and π−1 is 2-Lipschitz on π(K). In addition, since π is 1-Lipschitz on K, we have

vold(L)≥ vold(π(L)) = vold(B(c,η/8)∩T ). This immediately implies the result.

When (23) is satisfied, and M is either thin or thick, we can provide sharp rates for rn. Just as we

did in Section 2.1, we work with coverings of M. Let N (M,η) denote the cardinality of a minimal

η-covering of M for the Euclidean norm.

Lemma 6 Suppose η ≤ rM. When M is thick,

N (M,η)≤C volp(M)η−p;

and when M is thin and 0 ≤ σ < ρ(M),

N (B(M,σ),η)≤C vold(M)max(σ,η)p−dη−p.

The constant C depends only on p and d.

Proof Suppose M is thick and let z1, . . . ,zNη an η-packing of M of size Nη := N (M,η). Since

B(zi,η/2)∩B(z j,η/2) = /0 when i 6= j, we have

volp(M)≥ ∑
j

volp(B(z j,η/2)∩M)≥ NηCpηp,

where Cp is the constant in Lemma 5. The bound on Nη follows.

Suppose M is thin. When σ ≤ η/4, let z1, . . . ,zNη/4
an (η/4)-packing of M. Then by the trian-

gle inequality, B(M,σ) ⊂ ∪ jB(z j,η/2), and therefore N (B(M,σ),η) ≤ Nη/4. When σ ≥ η/4, let

z1, . . . ,zN be an (η/4)-packing of B(M,σ−η/4). Since B(zi,η/8)∩B(z j,η/8) = /0 when i 6= j, and

B(zi,η/8)⊂ B(M,σ), we have

volp(B(M,σ))≥ ∑
j

volp(B(z j,η/8)) = Nωp(η/8)p.

Hence, N ≤ ω−1
p (η/8)−p volp(B(M,σ)). By Weyl’s volume formula for tubes (Weyl, 1939), we

have volp(B(M,σ))≤C1 vold(M)σp−d for a constant C1 depending on p and d. Then the result fol-

lows from the fact that, by the triangle inequality, B(M,σ)⊂∪ jB(z j,η/2), so that N (B(M,σ),η)≤
N.

We are now ready to take a closer look at (7). Let ηn be defined as in Section 2.1. By (23) and

Lemma 5, we have pη ≥ C1αηd , and we have N (M,η) ≤ C2η−d by Lemma 6, where C1 and C2

depend only on M. Hence,

N (M,η)(1− pη)
n ≤C2η−d

(

1−C1αηd
)n ≤C2η−de−nC1αηd ≤ 1

n2
,

when

ηd ≥ (C1αn)−1 log
(

C2η−dn2
)

.

We deduce that any rn ≫ r†
n := (log(n)/n)1/d satisfies (7) with any λn → 0 such that λn ≫ r†

n/rn.
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3.3 Packing Numbers of Lipschitz Functions on M

It appears necessary to provide a bound for N∞(F
0

1 ,η). For this, we follow the seminal work of

Kolmogorov and Tikhomirov (1961) on entropy bounds for classical functions classes (including

Lipschitz classes). We provide details for completeness.

Lemma 7 For any M compact, connected subset of Rp satisfying (3), there is a constant C such

that

logN∞(F
0

1 ,η)≤C (log(1/η)+N (M,η/C)),

for all 0 < η ≤ 1.

Proof Take 0 < ε ≤ 1/
√

p and let C0 = 2
√

p(2 + c(2)). For j = ( j1, . . . , jp) ∈ Z
p, let Q j =

∏
p
s=1[ js ε,( js + 1)ε). Let J = { j : Q j ∩ M 6= /0}, which we see as a subgraph of the lattice for

the 2p-nearest neighbor topology.

Note that |J| ≤ C1N (M,ε). Indeed, let e1, . . . ,e2p be the vertices of the unit hypercube of Rp

and let Zs = es +(2Z)p. Also, let Z0 = (2Z)p. By construction, Z1, . . . ,Z2p is a partition of Zp.

Therefore, there is s (say s = 1) such that |J ∩Zs| ≥ |J|/2p. For each j ∈ J ∩Z1, pick x j ∈ Q j ∩M.

By construction, for any j 6= j′ both in J ∩Z1, ‖x j − x j′‖ > 2ε, so |J ∩Z1| is smaller than the 2ε-

packing number of M, which is smaller than the ε-covering number of M.

Note also that ∪ jQ j is connected because M is. Let π1, . . . ,πℓ be a sequence covering J and

such that Qπs
and Qπs−1

are adjacent. A depth-first construction gives a sequence π of length at most

ℓ≤C2|J|, since each Q j has a constant number (= 2p) of adjacent hypercubes.

Let y1, . . . ,ym be an enumeration of the ε-grid (εZ∩ [−diam(M),diam(M)])p. Note that m ≤
C3ε−p and that, for each s there are at most C4 indices t such that ‖ys − yt‖ ≤C0ε.

Consider the class G of piecewise-constant functions g : M → R
p of the form g(x) = yt j

for all

x ∈ Q j ∩M and such that ‖yt j
− ytk‖ ≤ C0ε when Q j and Qk are adjacent. This is a subclass of the

class of functions of the form g(x) = ytπ( j)
for all x ∈ Qπ( j) and such that ‖ytπ( j)

−ytπ( j−1)
‖ ≤C0ε. The

cardinality of the larger class is at most mCℓ−1
4 , since there are m possible values for ytπ(1) and then,

at each step along π, there at most C4 choices. Therefore,

log |G | ≤ logm+ ℓ logC4

≤ log(C3)+ p log(1/ε)+C2C1N (M,ε) log(C4)

≤ C5(log(1/ε)+N (M,ε)).

For each j, choose z j ∈ Q j ∩M. Take any f ∈ F 0
1 . For each j, let t j be such that ‖ f (z j)−yt j

‖ ≤√
pε and let g be defined by g(x) = yt j

for all x ∈ Q j. Suppose Q j and Qk are adjacent, so that

‖z j − zk‖ ≤ 2
√

pε ≤ 2. By the triangle inequality, (2) and (3), we have

‖yt j
− ytk‖ ≤ ‖ f (z j)− f (zk)‖+‖yt j

− f (z j)‖+‖ytk − f (zk)‖
≤ (1+ c(‖z j − zk‖))‖z j − zk‖+

√
pε+

√
pε

≤ (1+ c(2))2
√

pε+2
√

pε

= C0ε.

so that g ∈ G . Moreover, for x ∈ Q j ∩M,

‖g(x)− f (x)‖= ‖yt j
− f (z j)‖+‖ f (z j)− f (x)‖ ≤ √

pε+(1+ c(
√

pε))
√

pε ≤ (2+ c(1))
√

pε.
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The result follows from choosing ε = η/((2+ c(1))
√

p).

In particular, if M is thin or thick, we have

logN∞(F
0

1 ,η)≤Cη−d,

by Lemma 6 (applied with σ = 0 with M is thin) and Lemma 7. Recall that d is the intrinsic

dimension of M.

3.4 Quantitative Convergence Bound

From (19) and Lemma 7, there is a constant C > 0 such that

P

(

sup
f∈F1

∣

∣E(Yn( f ))−E( f )
∣

∣>Cn−1/(d+2)

)

≤ exp(−n−d/(d+2)).

Using this fact in (20), together with Lemma 4 and the order of magnitude for rn derived in Sec-

tion 3.2, leads to a bound on the rate of convergence in (5) via the Borel-Cantelli Lemma.

Theorem 2 Suppose that M is either thin or thick, of dimension d, and that (23) holds. Assume that

rn → 0 such that rn ≫ r†
n := (log(n)/(αn))1/d and take any an → ∞. Then, with probability one,

∣

∣sup{E(Y ) : Y ∈ Yn,rn
}− sup{E( f ) : f ∈ F1}

∣

∣≤ an

(

rn +
r†

n

rn

+n−1/(d+2)
)

,

for n large enough.

We speculate that this convergence rate is not sharp and that the first term in brackets can be

replaced by r2
n. Indeed, we believe the result (Niyogi et al., 2008, Prop. 6.3) for approximating

geodesics distances is not rate-optimal, leading to a loose Lemma 4, while we anticipate that, in

fact, c(r) = O(r2).
Unfortunately, we do not have a quantitative bound on the rate of convergence of the solutions

in (6).

4. Continuum MVU

Now that we established the convergence of Discrete MVU to Continuum MVU, we study the latter,

and in particular its solutions. We mostly focus on the case where M is isometric to a Euclidean

domain.

Isometry assumption. We assume that M is isometric to a compact, connected domain D ⊂ R
d .

Specifically, there is a bijection ψ : M → D satisfying δD(ψ(x),ψ(x
′)) = δM(x,x′) for all x,x′ ∈ M.

As a glimpse of the complexity of the notion of isometry, and also for further reference, consider

a domain D as above. Then the canonical inclusion ι of D in R
d is not necessarily an isometry

between the metric spaces (D,δD) and (Rd ,‖ · ‖). To see this, let x and x′ be two points of D. Let γ

be a shortest path connecting x to x′ in D. Suppose that ι : (D,δD)→ (Rd ,‖·‖) is an isometry. Then,

L(ι◦ γ) = L(γ) = δD(x,x
′) = ‖ι(x)− ι(x′)‖. So the image path ι◦ γ is a shortest path connecting ι(x)

to ι(x′), hence a segment. Since this segment lies in ι(D) = D, and since this holds for any pair of

1762



ON THE CONVERGENCE OF MAXIMUM VARIANCE UNFOLDING

points x,x′ in D, this implies that D is convex. Conversely, if D is convex, the canonical inclusion ι

is an isometry.

We start by showing that, in the case where M is isometric to a convex domain, then MVU

recovers this convex domain modulo a rigid transformation, so that MVU is consistent is that case.

The last part of the section is dedicated to a perturbation analysis that shows two things. First, that

Continuum MVU changes slowly with the amount of noise, up to a point. And second, that when

M is isometric to a domain that is not convex, MVU may not recover this domain. We provide some

illustrative examples of that.

In the following, we identify R
d with R

d ×{0}p−d ⊂ R
p.

4.1 Consistency under the Convex Assumption

If we assume that D is convex, then MVU recovers D up to a rigid transformation, in the following

sense. Recall that S1 is the solution space of Continuum MVU.

Theorem 3 Suppose that M is isometric to a convex subset D⊂R
d with isometry mapping ψ : M →

D, and that (23) holds. Then

S1 = {ζ◦ψ : ζ ∈ Isom(Rp)}.

Proof Note first that, since D is convex, its intrinsic distance coincides with the Euclidean distance

of Rd , that is, δD = ‖ · ‖. For all f in F1, we have

E( f ) =
∫

M×M
‖ f (x)− f (x′)‖2µ(dx)µ(dx′)

≤
∫

M×M
δM(x,x′)2µ(dx)µ(dx′)

=
∫

M×M
δD(ψ(x),ψ(x

′))2µ(dx)µ(dx′)

=
∫

M×M
‖ψ(x)−ψ(x′)‖2µ(dx)µ(dx′)

=
∫

D×D
‖z− z′‖2(µ◦ψ−1)(dz)(µ◦ψ−1)(dz′),

while

E(ψ) =
∫

D×D
‖z− z′‖2(µ◦ψ−1)(dz)(µ◦ψ−1)(dz′).

So

sup
f∈F1

E( f ) = E(ψ) =
∫

D×D
‖z− z′‖2(µ◦ψ−1)(dz)(µ◦ψ−1)(dz′).

Hence ψ ∈ S1, and since E(ζ◦ψ) = E(ψ) for any isometry ζ : Rp → R
p,

{ζ◦ψ : ζ ∈ Isom(Rp)} ⊂ S1.

Now let f : M → R
p be a function in F1 so that ‖ f (x)− f (x′)‖ ≤ δM(x,x′) for any points x and

x′ in M. Suppose that f is not an isometry. Then there exists two points x and x′ in M such that

‖ f (x)− f (x′)‖< δM(x,x′).
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By continuity of f , there exists a nonempty open subset U of M ×M containing (x,x′) such that

‖ f (z)− f (z′)‖< δM(z,z′) for all (z,z′) in U . In addition, µ(U)> 0 by (23). Consequently

E( f ) =
∫

M×M\U
‖ f (x)− f (x′)‖2µ(dx)µ(dx′)+

∫
U
‖ f (x)− f (x′)‖2µ(dx)µ(dx′)

<
∫

M×M
δM(x,x′)2µ(dx)µ(dx′)

= sup
f∈F1

E( f ).

So any function f in F1 which is not an isometry onto its image does not belong to S1.

At last, since for any isometry f in S1, the map f ◦ψ−1 : Rp → R
p is an isometry, there exists

some isometry ζ ∈ Isom(Rp) such that f = ζ◦ψ, and we conclude that

{ζ◦ψ : ζ ∈ Isom(Rp)}= S1.

In conclusion, MVU recovers the isometry when the domain D is convex. Note that this is also

the case of Isomap.

4.2 Noisy Setting

When the setting is noisy, with noise level σ ≥ 0, x1, . . . ,xn are sampled from µσ, a (Borel) proba-

bility distribution on R
p with support Mσ := B̄(M,σ), that is, Mσ is composed of all the points of

R
p that are at a distance at most σ from M. To speak of noise stability, we assume that µσ converges

weakly when σ → 0. Let F1,σ denote the class of 1-Lipschitz functions on Mσ, and so on. Our

simple perturbation analysis is plainly based on the fact that E is continuous with respect to the

noise level, in the following sense. This immediately implies that MVU is tolerant to noise.

Lemma 8 Let M ⊂R
p be of positive reach ρ(M)> 0 and assume that µσ → µ0 weakly when σ → 0.

Then as σ → 0, we have

sup
f∈F1,σ

Eσ( f )→ sup
f∈F1

E( f ), (24)

and

sup
f∈S1,σ

inf
g∈S1

sup
x∈Mσ

inf
z∈M

‖ f (x)−g(z)‖→ 0. (25)

Proof The metric projection π : B(M,ρ(M))→ M with π(x) = argmin{‖x− x′‖ : x′ ∈ M}, is well-

defined and 1-Lipschitz (Federer, 1959, Theorem 4.8).

Consider any sequence σm → 0 with σm < ρ(M) for all m ≥ 1, and let fm ∈ S 0
1,σm

. Let gm

denote the restriction of fm to M. Since (gm) ⊂ F 0
1 and F 0

1 is compact for the supnorm, it admits

a convergent subsequence. Assume (gm) itself is convergent, without loss of generality. Then

gm → g⋆, with g⋆ ∈ F 0
1 . For x ∈ B(M,ρ(M)), define f⋆(x) = g⋆(π(x)). Then for x ∈ Mσm

, we have

‖ f⋆(x)− fm(x)‖ ≤ ‖g⋆(π(x))−gm(π(x))‖+‖ fm(π(x))− fm(x)‖
≤ ‖g⋆−gm‖∞ +‖π(x)− x‖
≤ ‖g⋆−gm‖∞ +σm,
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since fm ∈ F1,σm
and the segment [π(x),x] ⊂ Mσm

. The latter is due to ‖π(x)− x‖ ≤ σm and

B(π(x),σm)⊂Mσm
, both by definition. Hence, as functions on Mσm

, we have ‖ f⋆(x)− fm(x)‖∞ → 0,

that is,

sup
x∈Mσm

‖ f⋆(x)− fm(x)‖→ 0.

By (14), again applied to functions on Mσm
for a fixed m, we have

∣

∣Eσm
( fm)−Eσm

( f⋆)
∣

∣ ≤ 4‖ f⋆(x)− fm(x)‖∞diam(Mσm
)

≤ 4‖ f⋆(x)− fm(x)‖∞diam(B(M,ρ(M)))

→ 0,

and since f⋆ does not depend on m and is bounded, we also have

Eσm
( f⋆)→ E( f⋆) = E(g⋆)≤ sup

F1

E . (26)

Hence

sup
F1,σm

Eσm
= Eσm

( fm)

= E( f⋆)+Eσm
( f⋆)−E( f⋆)+Eσm

( fm)−Eσm
( f⋆)

≤ sup
F1

E +Eσm
( f⋆)−E( f⋆)+Eσm

( fm)−Eσm
( f⋆),

and we deduce that

lim
m→∞

sup
F1,σm

Eσm
≤ sup

F1

E ,

and since this is true for all sequences σm → 0 (and m large enough), we have

lim
σ→0

sup
F1,σ

Eσ ≤ sup
F1

E .

For the reverse relation, choose g ∈ S1 and for x ∈ B(M,ρ(M)) define f (x) = g(π(x)). As above,

let σm → 0 with σm ≤ ρ(M). Then f ∈ F1,σm
by composition, so that

Eσm
( f )≤ sup

F1,σm

Eσm
.

On the other hand,

Eσm
( f )→ E( f ) = E(g) = sup

F1

E .

Hence,

sup
F1

E ≤ lim
σ→0

sup
F1,σ

Eσ.

This concludes the proof of (24).

Equation (25) is now proved based on (24) in the same way (6) is proved based on (5), by

contradiction. To be sure, assume (25) is not true. Then it is also not true for S 0
1,σ and S 0

1 . Hence,

there is ε > 0, a sequence σm → 0 and fm ∈ S 0
1,σm

such that

inf
g∈S 0

1

sup
x∈Mσm

inf
z∈M

‖ fm(x)−g(z)‖ ≥ ε,
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for infinitely many m’s. Without loss of generality, we assume this is true for all m. For each m, let

gm be the restriction of fm to M. Then, taking a subsequence if needed, gm → g⋆ ∈ F 0
1 in supnorm.

As before, define f⋆(x) = g⋆(π(x)) for x ∈ B(M,ρ(M)). Following the same arguments, we have

sup
x∈Mσm

‖ f⋆(x)− fm(x)‖→ 0.

We also see that, necessarily, g⋆ ∈ S0
1, for otherwise the inequality in (26) would be strict and this

would imply that (24) does not hold. Hence

sup
x∈Mσm

‖ f⋆(x)− fm(x)‖ ≥ sup
x∈Mσm

inf
z∈M

‖ fm(x)−g⋆(z)‖ ≥ inf
g∈S 0

1

sup
x∈Mσm

inf
z∈M

‖ fm(x)−g(z)‖.

This leads to a contradiction. Hence the proof of (25) is complete.

4.3 Inconsistencies

We provide two emblematic situations where MVU fails to recover D. They are both consequences

of MVU’s robustness to noise. In both cases, we consider the simplest situation where M = D ⊂R
2

and µ is the uniform distribution. Note that ψ is the identity function in this case, that is, ψ(x) = x,

and the Isometry Assumption is clearly satisfied. We use the same notation as in Section 4.2 and let

µσ denote the uniform distribution on Mσ. Nonconvex without holes. Suppose M0 ⊂ R
2 is a curve

homeomorphic to a line segment, but different from a line segment, and for σ > 0, let Mσ be the

(closed) σ-neighborhood of M0. We show that there is a numeric constant σ0 > 0 such that, when

σ < σ0, ψ does not maximize the energy Eσ. To see this, we use Lemma 8 to assert that S1,σ → S1,0

in the sense of (25), and that ψ /∈ S1,0, because S1,0 is made of all the functions that map M to a line

segment isometrically. So there is σ0 > 0 such that ψ /∈ S1,σ for all σ < σ0. This also implies that

no rigid transformation of R2 is part of S1,σ. If we now let D = M = Mσ for some 0 < σ < σ0, we

see that we do not recover D up to a rigid transformation.

Convex boundary and convex hole. Let Ka denote the axis-aligned ellipse of R
2 with semi-

major axis length equal to a and perimeter equal to 2π. Note that, necessarily, 1 ≤ a < π/2, with

the extreme cases being the unit circle (a = 1) and the interval [−π/2,π/2] swept twice (a = π/2).

Denote by b = b(a) the semi-minor axis length of Ka, implicitly defined by

∫ 2π

0

√

a2 sin2 t +b2 cos2 t dt = 2π.

We have

F(a) :=
∫

Ka

‖x‖2dx =
∫ 2π

0

(

a2 cos2 t +b2 sin2 t
)

√

a2 sin2 t +b2 cos2 t dt.

This daunting expression is much simplified when a = 1, in which case it is equal to 2π, and when

a = π/2, in which case it is equal to π2/12. Since the former is larger than the latter, and F is

continuous in a, there is a⋆ such that, for a > a⋆, F(a)< F(1). (We actually believe that a⋆ = 1.)

Fix a ∈ (a⋆,π/2) and let M0 = Ka = φ−1(K1), where φ : R2 → R
2 sends x = (x1,x2) to φ(x) =

(x1/a,x2/b). Note that K1 is the unit circle. By the previous calculations and our choice for a, the

identity function ψ is not part of S1,0, since

E0(ψ) =
1

π

∫
M0

‖x‖2dx =
1

π
F(a)<

1

π
F(1) = 2 =

1

π

∫
M0

‖φ(x)‖2dx = E0(φ).
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As before, let Mσ be the (closed) σ-neighborhood of M0. Again, there is a numeric constant σ0 > 0

such that, when σ < σ0, ψ does not maximize the energy Eσ, and we conclude again that if D =
M = Mσ, MVU does not recover D up to a rigid transformation.

5. Discussion

We leave behind a few interesting problems.

• Convergence rate for the solution(s). We obtained a convergence rate for the energy in The-

orem 2, but no corresponding result for the solution(s). Such a result necessitates a fine

examination of the speed at which the energy decreases near the space of maximizing func-

tions.

• Flattening property of MVU. Assume that M satisfies the Isometry Assumption. Though we

showed that MVU is not always consistent in the sense that it may not recover the domain

D up to a rigid transformation, we believe that MVU always flattens the manifold M in this

case, meaning that it returns a set S which is a subset of some d-dimensional affine subspace.

If this were true, it would make MVU consistent in terms of dimensionality reduction!

• Solution space in general. As pointed out by Paprotny and Garcke (2012), and as we showed

in Theorem 1, characterizing the solutions to Continuum MVU is crucial to understanding

the behavior of Discrete MVU. In Theorem 3, we worked out the case where M is isometric

to a convex set. What can we say when M is isometric to a sphere? Is MVU able to recover

this isometry? This question is non-trivial even when M is isometric to a circle. In fact,

showing that the energy over ellipses (of same perimeter) is maximized for a circle is not

straightforward, as seen in Section 4.3.

We speculate that a similar analysis would show that (Discrete) Isomap (Tenenbaum et al., 2000)

converges to Continuum Isomap (Zha and Zhang, 2007). We are curious about the correspondence

between Continuum Isomap and Continuum MVU.

Acknowledgments

This work was partially supported by a grant from the National Science Foundation (NSF DMS

09-15160) and by a grant from the French National Research Agency (ANR 09-BLAN-0051-01).

We are grateful to two anonymous referees for their helpful comments and for pointing out some

typos.

References

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.

Neural Computation, 15(16):1373–1396, 2003.

M. Belkin and P. Niyogi. Towards a theoretical foundation for laplacian-based manifold methods. In

Peter Auer and Ron Meir, editors, Learning Theory, volume 3559 of Lecture Notes in Computer

Science, pages 835–851. Springer Berlin / Heidelberg, 2005. ISBN 978-3-540-26556-6.

1767



ARIAS-CASTRO AND PELLETIER

M. Bernstein, V. De Silva, J.C. Langford, and J.B. Tenenbaum. Graph approximations to geodesics

on embedded manifolds. Technical report, Technical report, Department of Psychology, Stanford

University, 2000.

M. Brand. Charting a manifold. Advances In Neural Information Processing Systems, pages 985–

992, 2003.

A. Brudnyi and Y. Brudnyi. Methods Of Geometric Analysis In Extension And Trace Problems.

Volume 1, volume 102 of Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel,
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