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Abstract

PAC learning of unrestricted regular languages is long known to be a difficult problem. The class of

shuffle ideals is a very restricted subclass of regular languages, where the shuffle ideal generated by

a string u is the collection of all strings containing u as a subsequence. This fundamental language

family is of theoretical interest in its own right and provides the building blocks for other important

language families. Despite its apparent simplicity, the class of shuffle ideals appears quite difficult

to learn. In particular, just as for unrestricted regular languages, the class is not properly PAC

learnable in polynomial time if RP 6= NP, and PAC learning the class improperly in polynomial

time would imply polynomial time algorithms for certain fundamental problems in cryptography.

In the positive direction, we give an efficient algorithm for properly learning shuffle ideals in the

statistical query (and therefore also PAC) model under the uniform distribution.

Keywords: PAC learning, statistical queries, regular languages, deterministic finite automata,

shuffle ideals, subsequences

1. Introduction

Inferring regular languages from examples is a classic problem in learning theory. A brief sampling

of areas where various automata show up as the underlying formalism include natural language

processing (speech recognition, morphological analysis), computational linguistics, robotics and

control systems, computational biology (phylogeny, structural pattern recognition), data mining,

time series and music (Koskenniemi, 1983; de la Higuera, 2005; Mohri, 1996; Mohri et al., 2002;

Mohri, 1997; Mohri et al., 2010; Rambow et al., 2002; Sproat et al., 1996). Thus, developing

efficient formal language learning techniques and understanding their limitations is of a broad and

direct relevance in the digital realm.

Perhaps the currently most widely studied theoretical model of learning is Valiant’s PAC model,

which allows for a clean, elegant theory while retaining some measure of empirical plausibility

(Valiant, 1984). Since PAC learnability is characterized by finite VC-dimension and the concept
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class of n-state deterministic finite state automata (DFA) has VC-dimension Θ(n logn) (Ishigami

and Tani, 1997), the PAC learning problem is solved, in an information theoretic sense, by con-

structing a DFA on n states consistent with a given labeled sample. Unfortunately, as shown in

the works of Angluin (1978), Gold (1978) and Pitt and Warmuth (1993) under standard complexity

assumptions, finding small consistent automata is a computationally intractable task. Furthermore,

attempts to circumvent the combinatorial search over automata by learning with a different repre-

sentation class are thwarted by cryptographic hardness results. The papers of Pitt and Warmuth

(1990) and Kearns and Valiant (1994) prove the existence of small automata and “hard” distribu-

tions over {0,1}n so that any efficient learning algorithm that achieves a polynomial advantage over

random guessing will break various cryptographic hardness assumptions.

In a modified model of PAC, and with additional structural assumptions, a class of probabilistic

finite state automata was shown by Clark and Thollard (2004) and Palmer and Goldberg (2007) to

be learnable. If the target automaton and sampling distribution are assumed to be “simple”, efficient

probably exact learning is possible (Parekh and Honavar, 2001). When the learner is allowed to

make membership queries, it follows by the results of Angluin (1987) that DFAs are learnable in

this augmented PAC model.

The prevailing paradigm in regular language learning has been to make structural regularity as-

sumptions about the family of languages and/or the sampling distribution in question and to employ

a state merging heuristic. Indeed, over the years a number of clever and sophisticated combina-

torial approaches have been proposed for learning DFAs. Typically, an initial automaton or prefix

tree consistent with the sample is first created. Then, starting with the trivial partition with one

state per equivalence class, classes are merged while preserving an invariant congruence property.

The automaton learned is obtained by merging states according to the resulting classes. Thus, the

choice of the congruence determines the algorithm and generalization bounds are obtained from

the structural regularity assumptions. This rough summary broadly characterizes the techniques of

Angluin (1982), Oncina and Garcı́a (1992), Ron et al. (1998), Clark and Thollard (2004), Parekh

and Honavar (2001) and Palmer and Goldberg (2007), and until recently this appears to have been

the only general purpose technique available for learning finite automata.

More recently, Kontorovich et al. (2006), Cortes et al. (2007) and Kontorovich et al. (2008)

proposed a substantial departure from the state merging paradigm. Their approach was to embed

a specific family of regular languages (the piecewise-testable ones) in a Hilbert space via a kernel

and to identify languages with hyperplanes. A unifying feature of this methodology is that rather

than building an automaton, the learning algorithm outputs a classifier defined as a weighted sum

of simple automata. In subsequent work by Kontorovich and Nadler (2009) this approach was

extended to learning general discrete concepts. These results, however, provided only margin based

generalization guarantees, which are weaker than true PAC bounds.

A promising research direction is to investigate the question of efficient PAC learnability for

restricted subclasses of the regular sets. One approach is to take existing efficient PAC algorithms

in other domains, for example, for classes of propositional formulas over the boolean cube {0,1}n,

or classes of geometric concepts such as axis-aligned boxes in R
n, discretize the representation if

necessary, and consider the resulting sets of strings to be formal languages. If the languages have

finite cardinality, they are trivially regular, although they may or may not have succinct deterministic

finite state acceptors.

Another approach is to consider classes of regular languages defined by structural restrictions on

the automata or grammars that accept or generate them. Ergün et al. (1995) consider the learnability
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Figure 1: The canonical DFA for recognizing the shuffle ideal of u = aab over Σ = {a,b,c}, which

accepts precisely those strings that contain u as a subsequence.

of bounded-width branching programs, and show that there is an efficient algorithm to PAC learn

width-2 branching programs, though not properly, and an efficient proper PAC learning algorithm

for width-2 branching programs with respect to the uniform distribution. They also show that PAC

learning width-3 branching programs is as hard as PAC learning DNF formulas, a problem whose

status remains open.

In this paper we study the PAC learnability of another restricted class of regular languages, the

shuffle ideals. The shuffle ideal generated by a string u is the collection of all strings containing

u as a (not necessarily contiguous) subsequence (see Figure 1 for an illustration). Despite being a

particularly simple subfamily of the regular languages, shuffle ideals play a prominent role in formal

language theory. Their boolean closure forms the important family known as piecewise-testable

languages, defined and characterized by Simon (1975). The rich structure of this language family

has made it an object of intensive study, with deep connections to computability, complexity theory,

and semigroups (see the papers of Lothaire (1983) and Klı́ma and Polák (2008) and the references

therein). On a more applied front, the shuffle ideals capture some rudimentary phenomena in human

language morphology (Kontorovich et al., 2003).

In Section 3 we show that shuffle ideals of known length are exactly learnable in the statis-

tical query model under the uniform distribution, though not efficiently. Permitting approximate

learning, the algorithm can be made efficient; this in turn yields efficient proper PAC learning un-

der the uniform distribution. On the other hand, in Section 4 we show that the shuffle ideals are

not properly PAC learnable under general distributions unless RP=NP. In Section 5 we show that a

polynomial time improper PAC learning algorithm for the class of shuffle ideals would imply the

existence of polynomial time algorithms to break the RSA cryptosystem, factor Blum integers, and

test quadratic residuosity. These two negative results are analogous to those for general regular

languages represented by deterministic finite automata.

2. Preliminaries

Throughout this paper, we consider a fixed finite alphabet Σ, whose size will be denoted by s. We

assume s ≥ 2. The elements of Σ∗ will be referred to as strings with their length denoted by |·|; the

empty string is λ. The concatenation of strings u1 and u2 is denoted by u1 · u2 or u1u2. The string

u is a prefix of a string v if there exists a string w such that v = uw. Similarly, u is a suffix of v if

there exists a string w such that v = wu. We use exponential notation for repeated concatenation of

a string with itself, that is, un is the concatenation of n copies of u.

Define the binary relation ⊑ on Σ∗ as follows: u⊑ v holds if there is a witness~i= (i1 < i2 < .. . <
i|u|) such that vi j

= u j for all j ∈ [|u|]. When there are several witnesses for u ⊑ v, we may partially

order them coordinate-wise, referring to the unique minimal element as the leftmost embedding.

The unique maximal element is the rightmost embedding. If u ⊑ v then the leftmost span of u in v
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is the shortest prefix v1 of v such that u ⊑ v1 and the rightmost span of u in v is the shortest suffix v2

of v such that u ⊑ v2.

Formally, the (principal) shuffle ideal generated by u ∈ Σℓ is the regular language

X(u) = {x ∈ Σ∗ : u ⊑ x}= Σ∗u1Σ∗u2Σ∗ . . .Σ∗uℓΣ
∗

(an example is given in Figure 1). The shuffle ideal of string u consists of all strings v over the given

alphabet such that u ⊑ v. The term shuffle ideal comes from algebra (Lothaire, 1983; Păun, 1994)

and dates back to the paper of Eilenberg and Mac Lane (1953).

The following lemmas will be useful in the sequel. The first is immediate from the definitions;

the second formalizes the obvious method of determining whether u ⊑ v and finding a leftmost

embedding if so.

Lemma 1 Suppose u = u1u2u3 and v = v1v2v3 are strings such that u ⊑ v and v1 is the leftmost

span of u1 in v and v3 is the rightmost span of u3 in v. Then u2 ⊑ v2.

Lemma 2 Evaluating the relation u ⊑ x is feasible in time O(|x|).

Proof If u = λ, then u is certainly a subsequence of x. If u = au′ where a ∈ Σ, we search for the

leftmost occurrence of a in x. If there is no such occurrence, then u is certainly not a subsequence

of x. Otherwise, we write x = yax′, where y contains no occurrence of a; then u is a subsequence of

x if and only if u′ is a subsequence of x′, so we continue recursively with u′ and x′. The total time

for this algorithm is O(|x|).

We assume a familiarity with the basics of the PAC learning model, as defined in the textbook

of Kearns and Vazirani (1994). To recap, consider the instance space X = Σ∗, concept class C ⊆ 2X ,

and hypothesis class H ⊆ 2X . An algorithm L is given access to a labeled sample S = (Xi,Yi)
m
i=1,

where the Xi are drawn iid from some unknown distribution P over X and Yi = f (Xi) for some

unknown target f ∈ C , and produces a hypothesis h ∈ H . We say that L efficiently PAC learns C if

for any ε,δ > 0 there is an m0 ∈ N such that for all f ∈ C and all distributions P, the hypothesis hm

generated by L based on a sample of size m ≥ m0 satisfies

Pm[P({x ∈ X : hm(x) 6= f (x)})> ε]< δ;

moreover, we require that both m0 and L’s runtime be at most polynomial in ε−1, δ−1 and the sizes

of f and Xi. The learning is said to be proper if H = C and improper otherwise. If the learning

algorithm achieves ε = 0, the learning is said to be exact (Bshouty, 1997; Bshouty et al., 2005).

Most learning problems can be cleanly decomposed into a computational and an information

theoretic component. The information theoretic aspects of learning automata are well understood.

As mentioned above, the VC-dimension of a collection of DFAs grows polynomially with maximal

number of states, and so any small DFA consistent with the training sample will, with high proba-

bility, have small generalization error. For shuffle ideals, an even simpler bound can be derived. If

n is an upper bound on the length of the string u ∈ Σ∗ generating the target shuffle ideal, then our

concept class contains exactly
n

∑
ℓ=0

|Σ|ℓ = O(|Σ|n)
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members. Thus, with probability at least 1−δ, any shuffle ideal consistent with a sample of size m

will achieve a generalization error of

O

(

n log |Σ|− logδ

m

)

.

Hence, the problem of properly PAC learning shuffle ideals has been reduced to finding one

that is consistent with a given sample. This is shown to be computationally hard under adversarial

distributions (Theorem 7), but feasible under the uniform one (Theorem 6). Actually, our positive

result is somewhat stronger: since we show learnability in the statistical query (SQ) model of Kearns

(1998), this implies a noise tolerant PAC result. In addition, in Section 5 we show that the existence

of a polynomial time improper PAC learning algorithm for shuffle ideals would imply the existence

of polynomial time algorithms for certain cryptographic problems.

3. SQ Learning Under the Uniform Distribution

The main result of this section is that shuffle ideals are efficiently PAC learnable under the uniform

distribution. To be more precise, we are dealing with the instance space X = Σn endowed with

the uniform distribution, which assigns a weight of |Σ|−n to each element of X . Our learning

algorithm is most naturally expressed in the language of statistical queries (Kearns, 1998; Kearns

and Vazirani, 1994). In the original definition, a statistical query χ is a binary predicate of a random

instance-label pair, and the oracle returns the value Eχ, additively perturbed by some amount not

exceeding a specified tolerance parameter. We will consider a somewhat richer class of queries.

3.1 Constructing and Analyzing the Queries

For u ∈ Σ≤n and a ∈ Σ, we define the query χu,a(·, ·) by

χu,a(x,y) =

{

0, u 6⊑ x′

y(1{σ=a}−1{σ6=a}/(s−1)), u ⊑ x′

where x′ is the prefix of x of length (n−1), σ is the symbol in x following the leftmost embedding

of u and 1{π} represents the 0-1 truth value of the predicate π (recall that s = |Σ|). Our definition of

the query χu,a is legitimate because (i) it can be efficiently evaluated (Lemma 2) and (ii) it can be

expressed as a linear combination of O(1) standard binary queries (also efficiently computable). In

words, the function χu,a computes the mapping (x,y) 7→R as follows. If u is not a subsequence of x′,

χu,a(x,y) = 0. Otherwise, χu,a checks whether the symbol σ in x following the leftmost embedding

of u is equal to a, and, if x is a positive example (y =+1), returns 1 if σ = a, or −1/(s−1) if σ 6= a.

If x is a negative example (y =−1) then the signs of the values returned are inverted.

Suppose for now that the length L = |ū| of the target shuffle ideal ū is known. Our learning

algorithm uses statistical queries to recover ū ∈ ΣL one symbol at a time. It starts with the empty

string u = λ. Having recovered u = ū1, . . . , ūℓ, ℓ < L, we infer ūℓ+1 as follows. For each a ∈ Σ,

the SQ oracle is called with the query χu,a and a tolerance 0 < τ < 1 to be specified later. Our key

technical observation is that the value of Eχu,a effectively selects the next symbol of ū:

Lemma 3

Eχu,a =

{

+ 2
s
P(L,n,s), a = ūℓ+1

− 2
s(s−1)P(L,n,s), a 6= ūℓ+1
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where

P(L,n,s) =

(

n−1

L−1

)(

1

s

)L−1(

1−
1

s

)n−L

.

Proof Fix an unknown string ū of length L ≥ 1; by assumption, we have recovered in u = u1 . . .uℓ =
ū1 . . . ūℓ the first ℓ symbols of ū. Let u′ = ū0∞ be the extension of ū obtained by padding it on the

right with infinitely many 0 symbols (we assume 0 ∈ Σ).

Let X be a random variable representing the uniformly chosen sample string x. Let T be the

largest value for which u′1 . . .u
′
T is a subsequence of X . Let ξ =1{T≥L} be the indicator for the event

that X is a positive instance, that is, that ū1 . . . ūL = u′1 . . .u
′
L is a subsequence of X .

Observe that T has a binomial distribution:

T ∼ Binom(n,1/s);

indeed, as we sweep across X , each position Xi has a 1/s chance of being the next unused symbol of

u′. An immediate consequence of this fact is that Pr[ξ = 1] is exactly ∑n
k=L

(

n
k

)

(1/s)k(1−1/s)n−k.

Now fix ℓ < L and let Iℓ be defined as follows. If ℓ = 0 then Iℓ = 0, and if u1 . . .uℓ is not

a subsequence of X1 . . .Xn−1 then Iℓ = n− 1. Otherwise, Iℓ is the position of uℓ in the leftmost

embedding of u1 . . .uℓ in X1 . . .Xn−1. Then Iℓ + 1 is the position of σ as defined in (3.1), or n if

u1 . . .uℓ 6⊑ X1 . . .Xn−1.

We define two additional random variables, TA and TB. TA is the length of the longest prefix of

u′ that is a subsequence of X with XIℓ+1 excluded:

TA = max
{

t : u′1 . . .u
′
t ⊑ X1 . . .XIℓXIℓ+2 . . .Xn

}

.

Intuitively, TB is the length of the longest prefix of u′ with u′ℓ+1 excluded that is a subsequence of X

with XIℓ+1 excluded. Formally, let v1v2 . . . be the sequence u′1u′2 . . . with the element u′ℓ+1 excluded,

that is, vi = u′i if i ≤ ℓ and vi = u′i+1 if i ≥ ℓ+1.

TB = max{t : v1 . . .vt ⊑ X1...XIℓXIℓ+2...Xn} .

Like T , TA and TB are binomially distributed, but now

TA,TB ∼ Binom(n−1,1/s).

The reason is that we always omit one position in X (the one following uℓ if uℓ appears before Xn or

Xn if it does not), and for each other position, there is still an independent 1/s chance that it is the

next symbol in u′ (or u′ with u′ℓ+1 excluded.)

An important fact is that XIℓ+1 is independent of the values of TA and TB, though of course TA and

TB are not independent of each other. This is not immediately obvious: whether XIℓ+1 equals u′ℓ+1

or not affects the interpretation of later symbols in X . However, the probability that each symbol

XIℓ+2 . . . is the next unused symbol in u′ (or v) is still an independent 1/s whether XIℓ+1 consumes a

symbol of u′ (or v) or not. The joint distribution of TA and TB is not affected.

We now compute Eχu,a by averaging over the choices in the joint distribution of TA and TB. If

TA ≥ L, then ū is a subsequence of X1 . . .XIℓXIℓ+2 . . .Xn, and X is a positive example (y = +1) no

matter how XIℓ+1 is chosen. In this case, each symbol in Σ contributes 1 to the conditional expected

value with probability 1/s and − 1
s−1 with probability s−1

s
; the net contribution is 0.
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If X is a positive example, then ū is a subsequence of X and a leftmost embedding of ū in X

embeds u1 . . .uℓ in X1 . . .XIℓ and embeds uℓ+1 . . .uL in XIℓ+1 . . .Xn. Thus, no matter what symbol is

chosen for XIℓ+1, uℓ+2 . . .uL is a subsequence of XIℓ+2 . . .Xn, and TB must be at least L−1. Thus, if

TA ≥ L then TB ≥ L−1. Moreover, if TB < L−1, X must be a negative example (y =−1) no matter

how XIℓ+1 is chosen. In this case, the probability-(1/s) contribution of −1 is exactly offset by the

probability-
(

s−1
s

)

contribution of 1
s−1 , and the conditional expected value is 0.

Thus the only case in which there may be a non-zero contribution to the expected value is when

TA < L and TB ≥ L−1, that is, when the choice of XIℓ+1 may affect the label of X . The example X

is positive if and only if XIℓ+1 = ūℓ+1, which occurs if σ = ūℓ+1. Thus the conditional expectation

for a = ūℓ+1 is

1 ·Pr[σ = ūℓ+1]+
1

s−1
·Pr[σ 6= ūℓ+1] =

1

s
+

1

s−1
·

s−1

s
= 2/s.

For a 6= ūℓ+1, the conditional expectation is is − 2
s(s−1) . This can be computed directly by considering

cases, or by observing that the change to ∑a∈Σ χu,a(x) = 0 always, and that all a 6= ūℓ+1 induce same

expectation by symmetry.

Finally we need to determine Pr[TA < L∧TB ≥ L−1]. We may write

Pr[TB ≥ L−1∧TA < L] = Pr[TB ≥ L−1]−Pr[TB ≥ L−1∧TA ≥ L]

because TA ≥ L implies TB ≥ L−1,

Pr[TB ≥ L−1∧TA ≥ L] = Pr[TA ≥ L],

and thus

Pr[TB ≥ L−1∧TA < L] = Pr[TB ≥ L−1]−Pr[TA ≥ L].

Because TA and TB are binomially distributed, Pr[TB ≥ L−1∧TA < L] is

n−1

∑
i=L−1

(

n−1

i

)

(

1
s

)i (
1− 1

s

)n−1−i
−

n−1

∑
i=L

(

n−1

i

)

(

1
s

)i (
1− 1

s

)n−1−i

which is
(

n−1

L−1

)

(

1
s

)L−1 (
1− 1

s

)n−L
= P(L,n,s).

This concludes the proof of Lemma 3.

3.2 Specifying the Query Tolerance τ

The analysis in Lemma 3 implies that to identify the next symbol of ū ∈ ΣL it suffices to distin-

guish the two possible expected values of Eχu,a, which differ by (2/(s−1))P(L,n,s). If the query

tolerance is set to one third of this value, that is,

τ =
2

3(s−1)
P(L,n,s)

then s statistical queries for each prefix of ū suffice to learn ū exactly.
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Theorem 4 When the length L of the target string ū is known, ū is exactly identifiable with O(Ls)
statistical queries at tolerance τ = 2

3(s−1)P(L,n,s).

In the above SQ algorithm there is no need for a precision parameter ε because the learning is

exact, that is, ε = 0. Nor is there a need for a confidence parameter δ because each statistical query

is guaranteed to return an answer within the specified tolerance, in contrast to the PAC setting where

the parameter δ protects the learner against an “unlucky” sample.

However, if the relationship between n and L is such that P(L,n,s) is very small, then the

tolerance τ will be very small, and this first SQ algorithm cannot be considered efficient. If we

allow an approximately correct hypothesis (ε > 0), we can modify the above algorithm to use a

polynomially bounded tolerance.

Theorem 5 When the length L of the target string ū is known, ū is approximately identifiable to

within ε > 0 with O(Ls) statistical queries at tolerance τ = 2ε/(9(s−1)n).

Proof We modify the SQ algorithm to make an initial statistical query with tolerance ε/3 to estimate

Pr[ξ = 1], the probability that x is a positive example. If the answer is ≤ 2ε/3, then Pr[ξ = 1] ≤ ε

and the algorithm outputs a hypothesis that classifies all examples as negative. If the answer is

≥ 1−2ε/3, then Pr[ξ= 1]≥ 1−ε and the algorithm outputs a hypothesis that classifies all examples

as positive.

Otherwise, Pr[ξ = 1] and Pr[ξ = 0] are both at least ε/3, and the first SQ algorithm is used.

We now show that P(L,n,s) ≥ ε/(3n), establishing the bound on the tolerance. Let Q(L,n,s) =
(

n
L

)(

1
s

)L (
1− 1

s

)n−L
and note that Q(L,n,s) = (n/Ls)P(L,n,s). If L ≤ n/s then Q(L,n,s) is at least

as large as every term in the sum

Pr[ξ = 0] =
L−1

∑
k=0

(

n

k

)(

1

s

)k(

1−
1

s

)n−k

and therefore Q(L,n,s) ≥ ε/(3L) and P(L,n,s) ≥ ε/(3n). If L > n/s then Q(L,n,s) is at least as

large as every term in the sum

Pr[ξ = 1] =
n

∑
k=L

(

n

k

)(

1

s

)k(

1−
1

s

)n−k

and therefore P(L,n,s)≥ Q(L,n,s)≥ ε/(3n).

3.3 PAC Learning

The main result of this section is now obtained by a standard transformation of an SQ algorithm to

a PAC algorithm.

Theorem 6 The concept class C =
{

X(u) : u ∈ Σ≤n
}

is efficiently properly PAC learnable under

the uniform distribution.

Proof We assume that the algorithm receives as inputs n, L, ε and δ. Because there are only n+ 1

choices of L, a standard method may be used to iterate through them. We simulate the modified SQ
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algorithm by drawing a sample of labeled examples and using them to estimate the answers to the

O(Ls) calls to the SQ oracle with queries at tolerance τ = 2ε/(9(s− 1)n), as described by Kearns

(1998). According to the result of Kearns (1998, Theorem 1),

O

(

1

τ2
log

|C |

δ

)

= O

(

s2n2

ε2
(n logs− logδ)

)

examples suffice to determine correct answers to all the queries at the desired tolerance, with prob-

ability at least 1−δ.

Our learning algorithm and analysis are rather strongly tied to the uniform distribution. If this

assumption is omitted, it might now happen that Pr[TB ≥ L−1∧TA < L] is small even though positive

and negative examples are mostly balanced, or there might be intractable correlations between σ and

the values of TA and TB. It seems that genuinely new ideas will be required to handle nonuniform

distributions.

4. Proper PAC Learning Under General Distributions Is Hard Unless NP=RP

This hardness result follows a standard paradigm (see Kearns and Vazirani, 1994). We show that

the problem of deciding whether a given labeled sample admits a consistent shuffle ideal is NP-

complete. A standard argument then shows that any proper PAC learner for shuffle ideals can

be efficiently manipulated into solving the decision problem, yielding an algorithm in RP. Thus,

assuming RP 6= NP, there is no polynomial time algorithm that properly learns shuffle ideals.

Theorem 7 For any alphabet of size at least 2, given two disjoint sets of strings S,T ⊂ Σ∗, the

problem of determining whether there exists a string u such that u ⊑ x for each x ∈ S and u 6⊑ x for

each x ∈ T is NP-complete.

We first prove a lemma that facilitates the representation of n independent binary choices. Let

Σ = {0,1}, let n be a positive integer and define An to be the set of 2n binary strings described by

the regular expression

((00000+00100)11)n.

Define strings

v0 = 000100,

v1 = 001000,

d = 11,

and let Sn consist of the two strings

s0 = (v0d)n,

s1 = (v1d)n.
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Define the strings

y0 = 00010,

y1 = 01000,

z = 0000,

d0 = 1

and for each integer i such that 1 ≤ i ≤ n, define the strings

ti,0 = (v0d)i−1y0d(v0d)n−i,

ti,1 = (v0d)i−1y1d(v0d)n−i,

ti,2 = (v0d)i−1zd(v0d)n−i,

ti,3 = (v0d)i−1v0d0(v0d)n−i.

The strings ti,0, ti,1 and ti,2 are obtained from s0 by replacing occurrence i of v0 by y0, y1, and z,

respectively. The string ti,3 is obtained from s0 by replacing occurrence i of d by d0. Let Tn consist

of all the strings ti, j for 1 ≤ i ≤ n and 0 ≤ j ≤ 3.

The following lemma shows that the set of strings consistent with Sn and Tn is precisely the 2n

strings in An.

Lemma 8 Let Cn be the set of strings u such that u is a subsequence of both strings in Sn and not a

subsequence of any string in Tn. Then Cn = An.

Proof We first observe that for any positive integer m and any string u ∈ Am, the leftmost span of u

in (v0d)m is (v0d)m itself, and the leftmost span of u in (v1d)m is (v1d)m itself. For m = 1, we have

u = 0000011 or u = 0010011, while v0d = 00010011 and v1d = 00100011, and the result holds by

inspection. Then a straightforward induction establishes the result for m > 1. Similarly, for any

string u ∈ Am, the rightmost span of du in d(v0d)m is d(v0d)m itself, and the rightmost span of du

in d(v1d)m is d(v1d)m itself. In the base case we have du = 110000011 or du = 110010011, while

dv0d = 1100010011 and dv1d = 1100100011, and the result holds by inspection. A straightforward

induction establishes the result for m > 1.

Suppose u ∈ An. Then

u = u1du2d · · ·und,

where each ui is either 00000 or 00100. Clearly u ⊑ s0 and u ⊑ s1, because 00000 and 00100 are

subsequences of v0 and v1.

Consider a string ti,0 ∈ Tn. Suppose that u ⊑ ti,0. Divide u into three parts, u = u′uiu
′′, where u′

is u1d · · ·ui−1d and u′′ = dui+1 · · ·und. The leftmost span of u′ in ti,0 is (v0d)i−1, and the rightmost

span of u′′ in ti,0 is d(v0d)n−i, which implies that ui ⊑ y0 by Lemma 1. But ui is either 00000 or

00100 and y0 is 00010, which is a contradiction. So u is not a subsequence of ti,0. Similar arguments

show that u is not a subsequence of ti,1 or ti,2.

Now suppose u ⊑ ti,3. We divide u into parts, u = u′uidui+1u′′, where u′ = u1d · · ·ui−1d and

u′′ = dui+2 · · ·und. The leftmost span of u′ in ti,3 is (v0d)i−1 and the rightmost span of u′′ in ti,3 is

d(v0d)n−i−1. By Lemma 1, we must have

uidui+1 ⊑ v0d0v0.
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That is, at least one of the strings

000001100000,001001100000,000001100100,001001100100

must be a subsequence of 0001001000100, which is false, showing that u is not a subsequence of

ti,3. Thus u is not a subsequence of any string in Tn, and u ∈Cn. Thus An ⊆Cn.

For the reverse direction, suppose u ∈ Cn. We consider an embedding of u in s0 and divide u

into segments

u = u1d1u2d2 · · ·undn,

where for each i, ui ⊑ v0 and di ⊑ d. If for any i we have di ⊑ 1, then u ⊑ ti,3, a contradiction. Thus

di = 11 = d for every i. Similarly, if ui is a subsequence of y0, y1 or z, then u is a subsequence

of ti,0, ti,1, or ti,2, respectively, so we know that each ui is a subsequence of the string 000100, but

not a subsequence of the strings 00010, 01000, or 0000. It is not difficult to check that the only

possibilities for ui are

00000,00100,000100.

To eliminate the third possibility we use the fact that u is a subsequence of s1. Consider any string

w = w1dw2d · · ·wnd,

where wi = 000100 and each w j for j 6= i is either 00000 or 00100. We may divide w into parts

w = w′000100w′′ where w′ = w1d · · ·wi−1d and w′′ = dwi+1d · · ·wnd. If w ⊑ s1, then the leftmost

span of w′ in s1 is (v1d)i−1, and the rightmost span of w′′ in s1 is d(v1d)n−i, which by Lemma 1

means that 000100 must be a subsequence of v1 = 001000, a contradiction. Thus no such w is a

subsequence of s1, and we must have ui equal to 00000 or 00100 for all i, that is, u must be in An.

Thus Cn ⊆ An.

We now prove Theorem 7.

Proof To see that this decision problem is in NP, note that if S is empty, then any string of length

longer than the longest string in T satisfies the necessary requirements, so that the answer in this

case is necessarily “yes.” If S is nonempty, then no string longer than the shortest string in S can be

a subsequence of every string in S, so we need only guess a string w whose length is bounded by

that of the shortest string in S and check whether w is a subsequence of every string in S and of no

string in T , which takes time proportional to the sum of the lengths of all the input strings (Lemma

2).

To see that this problem is complete in NP, we reduce satisfiability of CNF formulas to this

question. Given a CNF formula φ over the n variables xi for 1 ≤ i ≤ n, we construct two sets of

binary strings S and T such that φ is satisfiable if and only if there exists a shuffle string u that is a

subsequence of every string in S and of no string in T . The set S is just the two strings s0 and s1 in

the set Sn. The set T is the strings in the set Tn together with additional strings determined by the

clauses of φ. By Lemma 8, the strings consistent with Sn and Tn are the 2n strings in An.

We use each u= u1du2d · · ·und in An to represent an assignment to the n variables xi by choosing

xi = 0 if ui is 00000 and xi = 1 if ui = 00100. We construct additional elements of T based on the

clauses of the formula φ to exclude any strings representing assignments that do not satisfy φ. For

example, if clause j of φ is

(x3 ∨ x6 ∨ x17),

1523



ANGLUIN, ASPNES, EISENSTAT AND KONTOROVICH

we add a string t j to T obtained from s0 by replacing occurrence 3 of v0 by 00000, replacing

occurrence 6 of v0 by 00100, and occurrence 17 of v0 by 00100, where we have chosen 00000 or

00100 to falsify the corresponding literal. The strings in An that are subsequences of t j are exactly

those that correspond to assignments that falsify clause j of φ, and adding t j to T eliminates these

strings from those consistent with S and T . By adding one string t j to T for each clause j of φ, we

ensure that the only strings u that are subsequences of both elements of S and not subsequences of

any element of T are exactly those elements of An that correspond to assignments that do not falsify

any clause of φ. Thus, there exists at least one string u that is a subsequence of both strings in S and

not a subsequence of any string in T if and only if φ is satisfiable.

Note that S contains two strings of length O(n), Tn contains 4n strings of length O(n), and T

additionally contains one string of length O(n) for each clause of φ, so the sizes of S and T are

polynomial in the size of φ. This completes the proof of Theorem 7.

5. Cryptographic Limitations on PAC Learning Shuffle Ideals

In this section we show that the problem of PAC learning any class of constant-depth, polynomial-

size threshold formulas is efficiently reducible to the problem of PAC learning shuffle ideals. Be-

cause for some constant depth, the class of polynomial-size threshold formulas of that depth are

capable of computing iterated product, the results of Kearns and Valiant (1994) imply that a polyno-

mial time PAC algorithm to learn them would imply polynomial time algorithms for certain funda-

mental problems in cryptography, namely, inverting RSA encryption, factoring Blum integers, and

testing quadratic residuosity. Thus, the class of shuffle ideals faces the same cryptographic limi-

tations on PAC learnability as demonstrated by Kearns and Valiant for the class of general regular

languages represented by deterministic finite automata.

A threshold function is a Boolean function with m inputs and a threshold t. Its output is 1 if at

least t of its inputs are 1 and 0 otherwise. Thus, an OR of m inputs is equivalent to a threshold func-

tion with threshold 1, and an AND of m inputs is equivalent to a threshold function with threshold

m. There are m+ 2 different threshold functions of m inputs, corresponding to t = 0,1, . . . ,m+ 1.

The threshold t = 0 computes the constant function 1, while the threshold t = m+ 1 computes the

constant function 0.

Given an integer m > 1, we define the class T (n,m,d) of threshold formulas over the variables

Vn = {x1,x2, . . . ,xn} of fan-in exactly m and depth d by induction on d as follows. The formulas of

depth d = 0 are the two constants 0 and 1 and the 2n literals xi and xi. For d > 0, the formulas of

depth d consist of a threshold function with m inputs applied to a sequence of m formulas of depth

d − 1. Note that a threshold function of m inputs can be used to compute a threshold function of

fewer inputs by insuring that the excess inputs are the constant function 0.

We can picture the elements of T (n,m,d) as ordered full m-ary trees of depth d whose internal

nodes are labeled by threshold functions, and whose leaves are labeled by constants or literals.

Thus, the total number of occurrences of constants or literals in a threshold formula of fan-in m and

depth d is O(md). If d is a fixed constant and m is bounded by a polynomial in n, the total size of

such a formula is bounded by a polynomial in n. The same is true if m is a fixed constant and d

is bounded by O(logn); in this case, the formulas compute functions in the class NC1 of constant

fan-in, logarithmic depth Boolean circuits.
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We now describe a reduction parameterized by d that maps each threshold formula f in T (n,m,d)
to a shuffle string rd( f ), and each assignment a to the variables Vn to an assignment string sd(a),
such that the assignment a satisfies f if and only if the shuffle string rd( f ) is a subsequence of the

assignment string sd(a). The string alphabet consists of the symbols 0 and 1 and a set of d + 1

delimiters: #0,#1, . . . ,#d .

The base case is d = 0, where f is a single constant 0 or 1 or a single literal xi or xi. In this case,

the shuffle string is

r0( f ) = y1#0y2#0 . . .yn#0,

where y j is defined as follows. If f = 0 then y j = 01 for all j, and if f = 1 then y j = λ for all j. If

f = xi then y j = λ for all j 6= i and yi = 1, while if f = xi then y j = λ for all j 6= i and yi = 0.

If the assignment a is given by a binary string a1a2 . . .an, indicating that xi is assigned the value

ai, then the string representing the assignment is just

s0(a) = a1#0a2#0 . . .an#0.

It is clear that r0( f ) is a subsequence of s0(a) if and only if the n occurrences of #0 in each string

are matched, and y j is a subsequence of a j for all j = 1,2, . . . ,n. For f = 0 we have y j = 01 for all

j, so this holds for no a. For f = 1 we have y j = λ for all j, and this holds for every a. If f is a

literal, then this holds if and only if yi = ai, that is, if and only if a satisfies f . Thus, when f is a

constant or a literal, r0( f ) is a subsequence of s0(a) if and only if a satisfies f .

In addition to defining the shuffle string and the assignment strings at each level, we also define

a slack string. For level 0, the slack string z0 is defined as follows.

z0 = (01#0)
n,

That is, z0 consists of n repetitions of the string 01#0. For level d, the slack string is designed to

ensure that rd( f ) is a subsequence of zd for any f ∈ T (n,m,d); this clearly holds at level d = 0.

For the inductive case d > 0, we assume that the construction has been defined for d −1 using

symbols 0, 1, and delimiters #0, . . . ,#d−1. Thus the level d delimiter, #d , has not yet been used.

Suppose f is a depth d threshold formula from T (n,m,d), that is,

f = θ( f1, f2, . . . , fm),

where each fi is a depth d −1 threshold formula and θ is a threshold function with threshold t. We

define the shuffle string

rd( f ) = u1u1u2u2 · · ·umum(#d)
2t ,

where for each i = 1,2, . . . ,m,

ui = rd−1( fi)#d.

That is, rd( f ) consists of two copies of the level d −1 code for fi, with each copy followed by the

delimiter #d , for i = 1,2, . . . ,m, followed by t pairs of the delimiter #d . Note that rd( f ) may contain

up to 4m+2 copies of #d .

Given an assignment a to the variables Vn, we define a level d assignment string

sd(a) = v2m,

where

v = sd−1(a)#dzd−1#d .
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That is, sd(a) is 2m copies of the string v consisting of the level d − 1 code for a, followed by #d ,

followed by the level d−1 slack string, followed by #d . Note that sd(a) contains exactly 4m copies

of #d .

Finally, the level d slack string is defined as follows.

zd = (zd−1#d)
4m+2.

A straightforward induction shows that for any threshold formula f in T (n,m,d), rd( f ) is a subse-

quence of zd , and for any assignment a to the variables, sd(a) is also a subsequence of zd .

Lemma 9 For all threshold formulas f in T (n,m,d) and assignments a to the variables in Vn, a

satisfies f if and only if rd( f ) is a subsequence of sd(a).

Proof This is proved by induction on d. For d = 0, the basis construction showed that for all

constants or literals f and assignments a, a satisfies f if and only if r0( f ) is a subsequence of s0(a).
Inductively assume that the construction works for d − 1. Suppose f is a depth d threshold

formula, that is,

f = θ( f1, f2, . . . , fm),

where each fi is a depth d −1 threshold formula and θ is a threshold function with threshold t. For

any index i and any assignment a let

ui = rd−1( fi)#d

and

v = sd−1(a)#dzd−1#d .

Because rd−1( fi) is a subsequence of the slack string zd−1, uiui is a subsequence of vv. Also, uiui is

a subsequence of v if and only if rd−1( fi) is a subsequence of sd−1(a), which holds if and only if a

satisfies fi, by the inductive assumption. If uiui is not a subsequence of v, then a leftmost embedding

of uiui in vv must match the first #d in uiui to the second #d in vv and the second #d in uiui to the

fourth #d in vv, thereby “consuming” all of vv for the embedding.

Suppose a satisfies f . Because θ is a threshold function with threshold t, there must be a set T

of at least t indices i such that a satisfies fi. By the inductive assumption, this means that rd−1( fi)
is a subsequence of sd−1(a) for each i ∈ T . For each i ∈ T , uiui is a subsequence of v. For i 6∈ T ,

uiui is a subsequence of vv but not of v. Thus we can find a leftmost embedding of rd( f ) in sd(a)
by consuming one copy of v from sd(a) for each i ∈ T and two copies for each i 6∈ T , using at most

2m− t copies, and leaving at least t copies, which allows us to embed the trailing sequence of 2t

delimiters #d in the remaining copies of v. Thus rd( f ) is a subsequence of sd(a).
Conversely, suppose that rd( f ) is a subsequence of sd(a), and consider a leftmost embedding.

Considering the segments uiui of rd( f ) from left to right, we see that the leftmost embedding con-

sumes one copy of v if a satisfies fi and two copies if a does not satisfy fi. Thus, if T is the set

of indices i such that a satisfies fi, then after embedding all m such segments, 2m−|T | copies of v

are consumed from sd(a), leaving |T | copies. Because the trailing 2t occurrences of #d in rd( f ) are

matched in the remaining portion of sd(a), we must have 2|T | ≥ 2t, and therefore a satisfies fi for

at least t indices i, that is, a satisfies f .

How long are the strings rd( f ) and sd(a)? Each is a subsequence of zd , and for m ≥ 2, the

length of zd is bounded by (10m)d(3n). This is polynomial in n if either d is a fixed constant and m
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is polynomial in n, or if m is a fixed constant and d = O(logn). In either case, the mapping from a

to sd(a) is computable in polynomial time, and we have the following results.

The first result assumes a polynomial time algorithm to learn shuffle ideals over some fixed

alphabet.

Theorem 10 Suppose for some positive integer d, there exists a polynomial time algorithm to PAC

learn shuffle ideals over an alphabet of size d + 2. Then for any polynomial p(n), there exists a

polynomial time algorithm to PAC learn the threshold formulas in T (n, p(n),d).

The second result assumes a polynomial time algorithm to learn shuffle ideals over an arbitrary

finite alphabet, where the dependence on the alphabet size must be at most exponential.

Theorem 11 Suppose there exists an algorithm to PAC learn shuffle ideals over arbitrary finite

alphabets that runs in time polynomial in n and Cs, where n is a bound on the length of examples,

s is the alphabet size and C is a fixed constant. Then for any constant K, there exists a polynomial

time algorithm to PAC learn the threshold formulas in T (n,2,K logn).

5.1 Example of the Construction of rd( f ) and sd(a)

We illustrate the construction for the formula

f = (x1 ∨ x2)∧ (x1 ∧ x3)

from T (3,2,2) and the assignment a = 001. To avoid subscripted delimiters, let #, $, and % stand

for #0, #1 and #2 respectively. For the base case we have the following.

r0(x1) = 1###,

r0(x1) = 0###,

r0(x2) = #0##,

r0(x3) = ##1#,

z0 = 01#01#01#.

The two subformulas of f have thresholds of 1 and 2 respectively.

r1(x1 ∨ x2) = 1###$1###$#0##$#0##$$$,

r1(x1 ∧ x3) = 0###$0###$##1#$##1#$$$$$,

z1 = (01#01#01#$)10.

For f the threshold is 2.

r2( f ) = ((1###$)2(#0##$)2)$$%)2((0###$)2(##1#$)2$$$$%)2%%%%,

z2 = ((01#01#01#$)10%)10.

The assignment strings for the assignment a = 001 are as follows.

s0(a) = 0#0#1#,

s1(a) = (0#0#1#$01#01#01#$)4,

s2(a) = ((0#0#1#$01#01#01#$)4%(01#01#01#$)10%)4.

Assignment a satisfies f and r2( f ) is a subsequence of s2(a).
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6. Discussion

We have shown that the class of shuffle ideals is not efficiently properly PAC learnable if RP 6=
NP, and is not efficiently improperly PAC learnable under certain cryptographic assumptions. On

the other hand, even with classification noise, efficient proper PAC learning of shuffle ideals is

possible under the uniform distribution. One technical question that remains is whether the results

in Section 5 can be proved for an alphabet of constant size (independent of d.) Another is whether

PAC learning shuffle ideals is as hard as PAC learning deterministic finite acceptors. Much remains

to be understood about the learnability of subclasses of the regular languages.
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Gheorghe Păun, editor. Mathematical Aspects of Natural and Formal Languages. World Scientific

Publishing Co., Inc., River Edge, NJ, USA, 1994. ISBN 9-8102-1914-8.

Leonard Pitt and Manfred K. Warmuth. Prediction-preserving reducibility. Journal of Computer

and System Sciences, 41(3):430–467, December 1990. ISSN 0022-0000. doi: 10.1016/0022-

0000(90)90028-J.

Leonard Pitt and Manfred K. Warmuth. The minimum consistent DFA problem cannot be ap-

proximated within any polynomial. Journal of the ACM, 40(1):95–142, January 1993. ISSN

0004-5411. doi: 10.1145/138027.138042.

1530



ON THE LEARNABILITY OF SHUFFLE IDEALS

Owen Rambow, Srinivas Bangalore, Tahir Butt, Alexis Nasr, and Richard Sproat. Creating a finite-

state parser with application semantics. In Proceedings of the 19th International Conference on

Computational Linguistics - Volume 2, COLING ’02, pages 1–5, Stroudsburg, PA, USA, 2002.

Association for Computational Linguistics. doi: 10.3115/1071884.1071910.

Dana Ron, Yoram Singer, and Naftali Tishby. On the learnability and usage of acyclic probabilistic

finite automata. Journal of Computer and System Sciences, 56(2):133–152, 1998. ISSN 0022-

0000. doi: 10.1006/jcss.1997.1555.

Imre Simon. Piecewise testable events. In Proceedings of the 2nd GI Conference on Automata

Theory and Formal Languages, pages 214–222, London, UK, 1975. Springer-Verlag. ISBN 3-

540-07407-4.

Richard Sproat, William Gale, Chilin Shih, and Nancy Chang. A stochastic finite-state word-

segmentation algorithm for Chinese. Computational Linguistics, 22(3):377–404, September

1996. ISSN 0891-2017.

Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,

November 1984. ISSN 0001-0782.

1531


