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Abstract

We present NrSample, a framework for program synthesis in inductive logic programming. NrSam-

ple uses propositional logic constraints to exclude undesirable candidates from the search. This is

achieved by representing constraints as propositional formulae and solving the associated constraint

satisfaction problem. We present a variety of such constraints: pruning, input-output, functional

(arithmetic), and variable splitting. NrSample is also capable of detecting search space exhaustion,

leading to further speedups in clause induction and optimality. We benchmark NrSample against

enumeration search (Aleph’s default) and Progol’s A∗ search in the context of program synthesis.

The results show that, on large program synthesis problems, NrSample induces between 1 and 1358

times faster than enumeration (236 times faster on average), always with similar or better accuracy.

Compared to Progol A∗, NrSample is 18 times faster on average with similar or better accuracy

except for two problems: one in which Progol A∗ substantially sacrificed accuracy to induce faster,

and one in which Progol A∗ was a clear winner. Functional constraints provide a speedup of up

to 53 times (21 times on average) with similar or better accuracy. We also benchmark using a

few concept learning (non-program synthesis) problems. The results indicate that without strong

constraints, the overhead of solving constraints is not compensated for.

Keywords: inductive logic programming, program synthesis, theory induction, constraint satis-

faction, Boolean satisfiability problem

1. Introduction

Inductive logic programming (ILP) is a branch of machine learning that represents knowledge as

first-order horn clauses. By using its expressive relational representation, it can overcome limi-

tations inherent in propositional representations (Russell et al., 1996). ILP can be used for both

concept learning and program synthesis, as the knowledge representation is at the same time declar-

ative and procedural (Blackburn et al., 2006; Sterling and Shapiro, 1994).1 In other words, induced

solutions can both be regarded as human readable descriptions and as executable programs. An-

other advantage of ILP is its rigorous foundation in logic, making it suitable for theoretical analysis

(Nienhuys-Cheng and de Wolf, 1997; Plotkin, 1970, 1971). A comprehensive survey of the ILP

research field and its applications can be found in Muggleton et al. (2012).

1. In this paper, we use the term concept learning to refer to non-program synthesis problems, although program syn-

thesis problems could also be considered concept learning problems.
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State-of-the-art ILP systems such as Progol and Aleph use the technique of inverse entailment to

induce theories (Muggleton, 1995; Srinivasan, 2001). Inverse entailment works by first constructing

a bottom clause, from which all clauses that subsume it (or are supersets of it) become candidates.

The search space hence becomes a lattice structure with a partial generality order, with the bodyless

clause as top element and bottom clause as bottom element.

Mode declarations, as introduced in Muggleton (1995), may be used to constrain the search

space further by specifying which variables are input and output, as well as requiring variables to

be of a certain type. This input-output specification implicitly defines a logical constraint on the

chaining of literals as the clause is computed from left to right. We describe mode declarations in

Section 2.2.1. Mode declarations can be user provided or automatically constructed by analyzing

the examples (McCreath and Sharma, 1995).

Inverse entailment is the method of constructing a lower bound on the search space. How-

ever, it does not force a certain ordering on the search. Thus various search strategies exist; some

well known ones are Progol’s A∗ search (Muggleton, 1995), QG/GA (Muggleton and Tamaddoni-

Nezhad, 2008), Aleph’s enumeration (its default) (Srinivasan, 2001), and simulated annealing (Ser-

rurier et al., 2004). What all these methods share in common is that the candidate generation mech-

anism employed is not adapted to avoid creation of candidates that violate the mode declarations.

The mode declaration types are automatically handled by the bottom clause construction algorithm,

but correct input-output chaining may be violated since candidates contain a subset of the bottom

clause’s literals. Such candidates are intended to be omitted by the syntactic bias a user provides us-

ing mode declarations, and should hence be considered redundant. One approach, taken by Aleph’s

enumeration, is to check input-output validity of the candidate before evaluation, but this still incurs

the overhead of having to construct the candidate. Another approach, taken by algorithms using

refinement operators, such as Progol’s A∗, is to be indifferent about input-output violated candi-

dates, evaluating all generated candidates. This is due to the fact that top-down (or bottom-up)

searches may have to expand undesirable candidates in order to reach desirable ones. Both these

approaches suffer from wasted computations as candidates in the search space violating the given

mode declarations are still generated (and even evaluated).

In this paper, we present NrSample (“Non-redundant Sampling Algorithm”), a general con-

straint satisfaction framework for ILP that ensures only candidates that conform to mode declara-

tions are generated. NrSample is implemented (along side other algorithms we use in our bench-

marks) in our ILP system Atom.2 This is to be contrasted with the aforementioned approaches,

whereby a candidate is first generated and then tested for mode declaration correctness. We shall

refer to candidates that are correct with respect to their mode declarations as mode conformant.

We achieve mode conformance by representing the input-output logic given by the mode dec-

larations as propositional clauses (Russell et al., 1996). By solving the accompanying Boolean

satisfiability problem (SAT), we obtain new candidates that by construction necessarily satisfy all

constraints, and thus are mode conformant.

Moreover, other constraints naturally arise as a result of pruning the search space. Whenever

a candidate is consistent (covers no negative examples), so are all specializations. Whenever a

candidate is inconsistent (covers at least one negative example), so are all generalizations. As

we will show, such pruning constraints are also easily represented as propositional clauses. More

conventional approaches may use memorization to avoid evaluating candidates more than once, but

2. Source code available at http://ahlgren.info/research/atom, mirror available at

http://www.ee.cityu.edu.hk/~syyuen/Public/Code.html.
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the candidates may still be constructed multiple times. We shall refer to candidates that violate the

constraints (mode declarations, pruning, or any other constraints) as invalid, and the rest as valid.

We represent our constraints as propositional clauses. Any SAT solver may then be used to solve

the constraints and obtain a model representing a valid candidate. For efficiency, we use the Chaff

algorithm (Moskewicz et al., 2001), which forms the basis of many state-of-the-art DPLL-based

algorithms (Davis-Putnam-Logemann-Loveland algorithm) (Davis et al., 1962). Various selection

strategies may be used within the SAT solver to guide the search into interesting regions early. By

using a complete SAT solver (all DPLL-based algorithms are complete), any search strategy is also

guaranteed to terminate as soon as all non-redundant candidates have been explored.

A survey and discussion of program synthesis in ILP can be found in Flener and Yılmaz (1999).

Constraints have been used in ILP before, although not to constrain the bottom clause literals.

Constraint logic programming with ILP (Sebag and Rouveirol, 1996) turns negative examples into

constraints, primarily as a means of dealing with numerical constraints. Theta-subsumption with

constraint satisfaction (Maloberti and Sebag, 2004) uses constraints to speed up theta-subsumption

testing (during coverage). Condensed representations (De Raedt and Ramon, 2004) are used to deal

with redundancies in frequent Datalog queries. In the context of theory induction, schemata may

be used to guide the construction of logic programs (Flener et al., 2000). Our framework differs

from all the above in that the constraints specify which of a bottom clause’s literals must be (or may

not be) present in any candidate. The constraints are thus propositional in nature, and relative to a

computed bottom clause. Our approach attempts to minimize the amount of redundant candidates

constructed.

This paper is organized as follows. First, we describe propositional constraints and candidate

generation in Section 2. Next, Section 3 describes our search algorithm that uses these constraints.

In Section 4, we perform benchmarks to test our hypothesis that NrSample can outperform generate-

and-test methods, in particular when the search space is large. Finally, Section 5 concludes the

paper.

2. Propositional Constraints and SAT Solving

Although our framework enables the use of arbitrary propositional constraints to define redundan-

cies during an ILP search for candidates, we will present two common instances of such constraints.

Firstly, NrSample constrains candidate generation to only those that conform to the mode dec-

larations. Secondly, it prunes too general or specific solutions after each evaluation: which depends

on whether the candidate is consistent or inconsistent.

NrSample achieves non-redundancy by storing all the constraints as propositional formulae.

Candidate solutions during a search contain a subset of the bottom clause’s literals (for the subsump-

tion order, we discuss variable splitting in Section 2.4). Hence, each candidate can be represented

as a bit string where bit bi signifies occurrence of body literal at position i or lack thereof. Seen

from a slightly different perspective, we represent the occurrence or non-occurrence of a literal at

position i in the bottom clause by a propositional variable bi and ¬bi, respectively. With respect

to a bottom clause, there is thus a one-to-one correspondence between each Boolean assignment

and candidate solution. The propositional constraints correspond to the syntactic bias induced by

the user generated mode declarations and the search lattice pruning. The idea is that a solution

is evaluated for coverage if and only if it corresponds to a propositional model for the constraints

(a variable assignment that makes all constraints true). This enables us to invoke a SAT solver to

3651



AHLGREN AND YUEN

retrieve models for the constraints, which are then easily converted into candidate solutions. After

each candidate is evaluated, pruning constraints related to generality order redundancies are added.

In the following sections, we describe how we create new constraints and retrieve models from

the constraint database.

2.1 Clauses and Propositional Formulae

We start by defining the notion of a search space candidate.

Definition 1 Let B be a definite clause (a clause with a head). A clause C is a candidate from B if

and only if C’s head is the same as B’s head, and C’s body is a subsequence of B’s body.

Here, B is intended to be the bottom clause, and C a clause that is created by possibly removing body

literals of B. Note that B itself is a candidate from B. Usually, we are only interested in candidates

from a specific bottom clause, in which case we omit the reference to B. Note also that the definition

of subsequence forces the body literals of C to appear in the same order as those of B.

Example 1 With bottom clause B = h(X ,Y ) ← q1(X ,Z),q2(Z,Y ),q3(X ,Y,Z), the clause

C = h(X ,Y ) ← q1(X ,Z),q3(X ,Y,Z) is a candidate from B since they have the same head and

(q1(X ,Z),q3(X ,Y,Z)) is a subsequence of (q1(X ,Z),q2(Z,Y ),q3(X ,Y,Z)). D = h(X ,Y ) ←
q3(X ,Y,Z),q1(X ,Z) is however not a candidate from B, since the sequence (q3(X ,Y,Z),q1(X ,Z))
is not a subsequence of (q1(X ,Y ),q2(Y,Z),q3(X ,Y,Z)).

Definition 1 defines a search space lattice of candidates spanned by subset order.3 The more

general subsumption order can be explored using variable splitting, as discussed in Section 2.4.

To create a one-to-one correspondence between first-order horn clauses and propositional for-

mulae with respect to a bottom clause, we represent each literal of the bottom clause from left to

right as propositional variables b1,b2, . . . ,bn, where n is the number of literals in the body of the

bottom clause. Given a clause C which has some of the body literals in B, the propositional formula

for C is then the conjunction of all propositional variables in B with positive sign if they occur in C

and negative sign otherwise.

Definition 2 Let C be a candidate from B, where B has n body literals. The propositional formula

for C is PB
C =

∧n
i=1 li, where li = bi if C contains the ith literal in B, and li = ¬bi otherwise. We write

PC when there is no confusion about which bottom clause we are referring to.

Note that PC is a conjunction of all literals b1, . . . ,bn, where n is the number of body literals

in B. In particular, non-occurrence of a literal has to be specified with its corresponding negative

propositional literal. This way, each propositional formula has precisely one model, corresponding

to the candidate itself.

Example 2 Continuing from our previous example, PB
C = b1∧¬b2∧b3 and PB

B = b1∧b2∧b3.

The purpose of representing clauses as propositional formulae (with respect to some bottom clause)

is that we can solve the formulae to acquire a model, which can then trivially be converted into a

candidate.

3. Technically, by subsequence order, but as we do not consider re-orderings, there is no risk of confusion.
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Definition 3 Let B be a clause with n body literals, FB a propositional formula containing a subset

of the propositional variables {b1, . . . ,bn}, and M a model for FB. The propositional formula (from

B) generated by M is:

PB
M =

n∧

i=1

li, where li =

{

bi if M(bi) = true

¬bi if M(bi) = f alse
.

If M generates the propositional formula PC, C is the candidate (from B) generated by M.

Example 3 Let B be defined as in Example 1 and FB = b1∧ (b2∨b3). Then M = {b1 = true,b2 =
f alse,b3 = true} is a model for FB. The propositional formula generated by M is b1 ∧¬b2 ∧ b3.

The candidate generated by M is h(X ,Y )← q1(X ,Z),q3(X ,Y,Z).

Usually, we are not only interested in what candidate a specific model generates, but rather, all

candidates generated by all models of a propositional formula.

Definition 4 Let B be a clause with n body literals and FB a propositional formula. The propo-

sitional formulae generated by FB are the propositional formulae generated by all models of FB.

The candidates (from B) generated by FB are the candidates corresponding to those propositional

formulae.

Example 4 Let B and FB be as in the previous example. In all models of FB, b1 is true, and at least

one of b2,b3 is true. This gives 3 models for FB, and the propositional formulae generated by FB

are b1∧ b2∧¬b3, b1∧¬b2∧ b3, and b1∧ b2∧ b3. The candidates generated by FB are h(X ,Y )←
q1(X ,Z),q2(Z,Y ), h(X ,Y )← q1(X ,Z),q3(X ,Y,Z), and h(X ,Y )← q1(X ,Z),q2(Z,Y ),q3(X ,Y,Z),
respectively. Intuitively, the formula FB tells us that a candidate must have the first literal (q1(X ,Z))
and at least one of the two that follow it. By looking at all models for FB, we can retrieve these

candidates explicitly.

Our constraints are represented as a propositional formula (more specifically, a conjunction of

clauses, as we will see later). The constraints represent which candidates are allowed, so we start

with the constraint true to allow any candidate from B. To retrieve an allowed (non-redundant)

candidate, we compute a model for the constraints using our SAT solver. This model then generates

our candidate solution as of Definition 3. The set of all allowed candidates are those generated by

our constraints as of Definition 4.

Example 5 As an example of how constraints work, assume we want an algorithm that never gener-

ates a previously evaluated candidate. For each candidate C, PC is the corresponding propositional

formula. Since our constraints specify the set of allowed candidates through its models, adding ¬PC

will prevent candidate C (and only C) from being generated again.

Now we show which constraints to add in order to prevent mode violations and redundancies

that occur due to the generality order. The latter includes blocking out already visited candidates as

in the example above, but prunes more of the search space.
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2.2 Mode Declaration Constraints

Intuitively, mode declarations show where the inputs and outputs of a literal are located, and which

types it takes. The bottom clause is then constructed using the mode declarations so that no literal

is introduced until all its inputs have been instantiated by previous literals. Here we briefly explain

mode declarations, referring the reader to Muggleton (1995) for a more general description.

2.2.1 MODE DECLARATIONS EXPLAINED

A mode declaration is a specification that limits the usage of variables (in the literals of clauses) to

some specific type (for example, numbers or lists) and specify whether they will be used as input or

output. Input variables need to be instantiated (computed) by a previous literal in the sequence of

body literals, or by the head. Output variables occurring in body literals do not have any restrictions:

they may or may not have been previously instantiated. Output variables in the head need to be

instantiated by the body, or by an input variable to the head.

Mode declarations are used to restrict the number of literals in the bottom clause—by requiring

input-instantiation—as well as providing computational speedup, by restricting attention to only the

relevant data types. These aspects are being taken care of by the bottom clause construction algo-

rithm. We introduce the syntax and semantics of mode declarations using an example of program

synthesis.

Example 6 Consider the mode declaration modeh(∗,member(−constant,+list)). modeh refers to

the head of a clause, as opposed to an atom used in the body. The first argument to modeh—where

the asterisk is located—is where the maximum number of query answers is specified. This is known

as the recall. The asterisk specifies that there is no upper limit (infinitely many), which is clearly

the case for list membership, as there is no bound on the number of elements it may contain. When

querying for the parents of a person, clearly the recall can be set to two (and for grandparents, to

four). Recall does not interfere with our constraint framework: they can be used or ignored, and

we will therefore make no further mention of them in this paper. The mode declaration declares a

predicate member/2 (the 2 specifies the arity), and when it is used in the head of a clause, it outputs

a constant (indicated by the minus sign) and requires a list as input (indicated by the plus sign).

Thus we expect member(E, [3,5]) to be a valid query, since the list [3,5] is used as input. On the

other hand, the query member(3,L) is invalid, since L is not instantiated.

Now consider adding the mode declaration modeb(∗,+list = [−constant|− list]). This declares

=/2 as a body literal (modeb) with a list on the left hand side as input, to obtain the head and tail of

the list as outputs on the right hand side. Intuitively, this mode declaration introduces a predicate

useful for splitting a list into its head and tail.

In conjunction with the modeh declaration above, we may now generate the mode conformant

clause member(E,L)← L = [E|T ], which is the proper base case definition of list membership. The

occurrence of L in the head is as input (given by the modeh declaration), so L is already instantiated

in the body literal as required. Also, E in the head is required to be output, a requirement fulfilled

by the body literal as it instantiates E.

An example of a clause that is not mode conformant is member(E,L)← X = [E|T ], since X is

not an input type (it has not previously been instantiated). Another example of a non-conformant

clause is member(E,L)← L = [H|T ], this time because E is declared to be an output variable, but

never instantiated (we obtain no meaningful answer to a query such as member(E, [2]), since E is

never computed in the clause).
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Mode declarations can also be used to restrict the search itself, since candidates, by containing

subsequences of the bottom clause’s literals, may break an input-output chain. The next example

illustrates this.

Example 7 Assume we have computed bottom clause

member(A,B)← B = [C|D],member(A,D),member(C,B)

from an example. The mode declarations are

modeh(∗,member(+const,+clist)),
modeb(∗,+clist = [−const|− clist]),and

modeb(∗,member(+const,+clist)).

In this case, A and B are both already instantiated in the head, as specified by the mode declarations

(the plus signs).

The clause member(A,B)← member(A,D) is a candidate, albeit not a mode conformant one,

since D is never instantiated before appearing in the body literal (as required by the third mode

declaration). We would need to include the bottom clause literal B = [C|D] first, as it is the only

literal that would instantiate D. Including both, we would then have the proper recursive clause for

list membership:

member(A,B)← B = [C|D],member(A,D).

In this case we get a simple rule of the form “if the bottom clause’s second body literal is included

in a candidate, so must the first”. In general we may have more than one possible instantiation,

and literals may contain more than one input variable, making the rules more complex. In the next

section, we work through the logic of mode declarations in detail.

2.2.2 MODE DECLARATIONS AS PROPOSITIONAL CLAUSES

A candidate is obtained from the bottom clause by taking a subsequence of the bottom clause’s

body literals and copying the head. As we have seen in Example 7, there is no guarantee that a

randomly chosen candidate will respect the mode declarations. A common solution to this is to

check for validity before evaluating a candidate. Our goal is to avoid the generation of unnecessary

candidates in the first place.

For our purposes, there are two aspects of input-output chaining that affect the constraints:

1. Each body literal input must be instantiated from previous body literal outputs or from inputs

to the head (inputs to the head are instantiated by the query).

2. The head outputs must be instantiated from head inputs or body literal outputs.

Definition 5 Let C be a clause with n body literals. Let Ii and Oi be the set of input and output

variables of the ith literal, respectively (as defined by the mode declarations). Denote the input and

output variables of h by Ih and Oh, respectively. C is input-instantiated if and only if for all v ∈ Ii,

we have v ∈ Ih or v ∈ Ok for some k < i. C is output-instantiated if and only if, for all v ∈ Oh,

we have v ∈ Ih or v ∈ Ok for some k. C is mode conformant if and only if C is both input- and

output-instantiated.
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Example 8 With mode declarations modeh(∗,h(+any,−any)), modeb(∗,q1(+any,−any)) and

modeb(∗,q2(+any,−any)), the clause C = h(X ,Z)← q1(X ,Y ),q2(Y,X) is input-instantiated, since

X in q1(X ,Y ) grabs its input from the head input, and Y in q2(Y,X) grabs its input from the out-

put of q1(X ,Y ) (which appears before q2(Y,X)). It is however not output-instantiated, since the

head output Z does not grab output from any output of the body literals (and is not in the head

as input). Essentially, this means that in a query such as h(5,Ans), the 5 will be “propagated”

through all literals (C is input-instantiated), but our query variable Ans will not be bound (C is not

output-instantiated). The clause D = h(X ,Z)← q1(Y,Z) is output-instantiated since Z in the head

grabs output from q1(Y,Z), but not input-instantiated since Y in q1(Y,Z) is not instantiated. The

clause E = h(X ,Z)← q1(X ,Y ),q2(Y,Z) is both input- and output-instantiated, and hence mode

conformant. Finally, F = h(X ,Z)← q1(A,B) is neither input- nor output-instantiated.

Lemma 6 Given mode declarations, a bottom clause is always input-instantiated but not necessarily

output-instantiated.

Proof Input-instantiation is a direct consequence of the way in which the bottom clause is con-

structed: we only add body literals when all their inputs have been instantiated by the head or

previous body literals. To see that a bottom clause may not be output-instantiated, it is enough

to consider a mode head declaration in which the output does not correspond to any body lit-

eral outputs: modeh(∗,h(+type1,−type2)), modeb(∗,b(+type1,−type1)). With type definitions

type1(a)∧ type2(b), example h(a,b) and background knowledge b(a,a), we get the bottom clause

B = h(X ,Y )← b(X ,X). B is indeed input-instantiated (X is instantiated in the head), but not output-

instantiated since Y has no instantiation.

Our implementation of mode constraints is straightforward. We simply mimic the logic behind

Definition 5. Informally, for each input variable v of a literal qi(. . .), we require that it appears in at

least one previous literal (as output) or the head (as input). Since the bottom clause head is always

present in a candidate, no constraints apply when an input can be caught from the head. For each

output variable v of the head that is not also an input to the head, we require that it appears in at

least one output variable in a body literal.

Definition 7 Let B be a bottom clause with n body literals. Let Ii and Oi be the input and output

variables of body literal i (as given by the mode declarations), respectively. Similarly, denote by Ih

and Oh the input and output variables of the head (as given by the modeh declaration), respectively.

The mode constraints F of bottom clause B is a conjunction of clauses, constructed as follows:

1. For each v ∈ Ii, v 6∈ Ih, include clause {¬bi}∪{b j : j < i,v ∈ O j}.

2. For each v ∈ Oh, v 6∈ Ih, include clause {b j : v ∈ O j, j ∈ {1, . . . ,n}}.

3. No other clauses are included.

Note that if an output variable of B’s head cannot be instantiated by any body literals, F will contain

the empty clause (generated by the second rule) and therefore be inconsistent. This is correct, since

no candidate from B will be output-instantiated.

The following theorem, which we prove in Appendix A, shows that our mode constraints are

sound and complete.
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Theorem 8 Let F be a propositional formula for the mode constraints of B. Let C be a candidate

from B. F generates C if and only if C is mode conformant.

Proof See Appendix A.

2.3 Pruning Constraints

A candidate solution C is typically evaluated by comparing it against the set of all positive and

negative examples. If the candidate covers a negative example, it is said to be inconsistent, otherwise

consistent. Since our search lattice defines a subset order on the literals, where the top element is the

empty clause and the bottom element is the bottom clause, the generality order is the subset order

for body literals.

Definition 9 Let C and D be candidates from B. We say that C is more general than D (with respect

to B) if and only if C’s body is a subsequence of D’s body. We write C ⊆B D, omitting B whenever

the bottom clause is clear from context. If C is more general than D, D is more specific than C.

The following is a trivial consequence of the subset relation.

Lemma 10 Let G and S be candidates. If G⊆ S, then G =⇒ S. The converse does not necessarily

hold.

Proof The subset relation is a special case of subsumption, for which the implication is well known

(Nienhuys-Cheng and de Wolf, 1997). An application of self-resolution to any recursive clause

demonstrates that the converse does not hold.

It follows that if G ⊆ S, G covers at least as many examples as S. In particular, if S covers a nega-

tive example and is thus inconsistent, all generalizations also cover that negative example, and are

therefore also inconsistent. Since inconsistent solutions are of no interest to us, all generalizations

of an inconsistent clause are redundant. On the other hand, if G covers no negative examples (G is

consistent) and p positive examples, no specialization S can cover more than p positive examples.

Hence the specializations of a consistent clause are redundant.

We would like to store information about which regions have been pruned during our search, so

there will never be any redundant evaluation with respect to the subset order. To achieve this, we

need to know what the pruning formulae look like. We start with an example.

Example 9 Let us say that B = h(X)← q1(X),q2(X),q3(X),q4(X) and C = h(X)← q3(X),q4(X).
If C is inconsistent, all generalizations will also be inconsistent. We can represent C by the bit

string 0011, where a 0 or 1 at position i indicates absence or presence of literal i, respectively.

All generalizations of C are given by clauses that do not contain q1(X) and q2(X), so we can

represent them using the schema 00∗∗. Logically, this corresponds to ¬b1 ∧¬b2. Conversely, all

specializations of C are given by clauses that contain q3(X) and q4(X), so their schema is ∗∗11.

Logically, this is the propositional formula b3 ∧ b4. This suggests the conjunction of all literals in

C give all specializations, whereas the negated conjunction of all literals missing in C gives all

generalizations.

Next, we define such formulae.
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Definition 11 Let C be a candidate from B. For any candidate X from B, let VX be all the proposi-

tional variables corresponding to the first-order body literals of B that occur in X. The propositional

formula for all generalizations of C is

PB
↑C =

∧

bi∈VB−VC

¬bi.

The propositional formula for all specializations of C is

PB
↓C =

∧

bi∈VC

bi.

We may then prove that our informal derivations are sound and complete.

Theorem 12 Let C be a candidate from B.

1. ¬P↑C generates G if and only if G is not a generalization of C.

2. ¬P↓C generates S if and only if S is not a specialization of C.

Proof See Appendix B.

The theorem is used in the following way: After evaluating a candidate C for coverage, we

know whether it is consistent or inconsistent. If C is inconsistent, we prune all generalizations P↑C.

This is done by inserting the requirement that no candidate generated by P↑C is allowed: ¬P↑C =∨
b j∈VB−VC

b j. Similarly, if C is consistent, we add ¬P↓C =
∨

bi∈VC
¬bi. Note that the constraints are

always propositional clauses.

Example 10 If B = h(X)← q1(X),q2(X),q3(X),q4(X) and C = h(X)← q2(X),q3(X), all gen-

eralizations of C are given by ¬b1 ∧¬b4 and all specializations by b2 ∧ b3. If C turns out to be

inconsistent, all generalizations are also inconsistent, so we add the constraint b1 ∨ b4. In partic-

ular, since any model either sets b1 or b4 to true, both C and the empty clause (top element) are

excluded. If C turns out to be consistent, all specializations cover no more positive examples, so we

add the constraint ¬b2 ∨¬b3. Any model now sets b2 or b3 to f alse, which, for example, blocks

both C and the bottom clause.

2.4 Variable Splitting Constraints

Atom’s and Progol’s bottom clause construction assumes that equivalent ground terms are related

when lifting instances. For example, when lifting

h(x,z)← b1(x,y),b2(y,z)

the two occurrences of y are assumed to be more than a coincidence:

h(X ,Z)← b1(X ,Y ),b2(Y,Z).

Most of the time, this is not a problem since there will eventually be an example that reveals

the coincidentally linked terms. However, Tamaddoni-Nezhad and Muggleton (2009) provide an

example of a half adder, which cannot be induced with this restriction. Progol’s A* solves this by
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variable splitting during its search, but this method does not work when we represent clauses as

binary strings, or, as in our case, propositional formulae. The solution, also taken by the Aleph

ILP system (Srinivasan, 2001), is then to let the bottom clause represent these equality assumptions

(variable splitting may also add many more literals to the bottom clause, but this will not affect our

constraints).

As an optimization, we can ensure that no redundant candidates are generated due to these

equalities, so we add constraints requiring that a variable splitting equality is used in at least one

other literal. Since an added equality X = Y matters only if both X and Y occur in the formula, we

get the following variable splitting constraints.

Definition 13 Let C be a candidate from B with a (possibly empty) prefix subsequence of k variable

splitting equalities Vi =Wi, i = 1, . . . ,k (Vi is a different variable from Wi). Let BVi
,BWi

be the set of

variables corresponding to literals in C that are not variable splitting equalities (i > k) and contain

Vi and Wi, respectively. For each bi, i = 1, . . . ,k, we add two variable splitting constraints:

1. {¬bi}∪BVi
, and

2. {¬bi}∪BWi
.

Note that input- and output-instantiation constraints will be added to the constraint database in the

form of mode constraints; the equality constraints need only specify when equalities are redundant.

Example 11 Let B be the bottom clause

h(X ,Y )←V =W,q2(X ,V ),q3(Y,W ),q4(X ,Y ).

If C is a candidate from B containing the literal V = W, we require that both the variables V and

W occur in C (other than as equalities generated from bottom clause construction). V occurs in the

second literal and W in the third, so our propositional constraints are {¬b1,b2} and {¬b1,b3}.

For instance, this prevents the candidate h(X ,Z)← X = Y,b2(X ,A),b3(A,Z) from being gen-

erated, as the equality is redundant since Y is never used. Instead, only the logically equivalent

candidate obtained by removing the equality will be generated: h(X ,Z)← b2(X ,A),b3(A,Z).

2.5 Functional Constraints

Many predicates have the property that their truth value does not matter, only what they compute

as output. We call such predicates functional. In particular, when chaining arithmetic operations as

predicates, we are not concerned with their truth values, but only about obtaining a numeric output

from inputs. (The predicate must also be pure, that is, free of any side effects, at least as far as can

be measured by other predicates in use.)

The idea is that for functional predicates, we require that at least one of its output variables

occur in another literal.

Example 12 The is/2 operator computes an arithmetic expression given by its second argument

and unifies the result with its first argument. With mode declaration

modeb(1, is(−Real,+Expr), [ f unctional])
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we declare it functional. Then,

average(X ,Y,A)← S is X +Y,Ais S/2

is a viable candidate to evaluate since the output S is used to compute the average of X and Y , and

A is used as the final answer that is instantiated by the head. However,

average(X ,Y,A)← S isX +Y,DisY −X ,Ais S/2

is logically equivalent but should not be a viable candidate, since the output D is never used (it

occurs only as a singleton). Since the is-operator is always true when the left hand side variable

is uninstantiated, ‘DisY −X’ is a useless operation and the redundant candidate may safely be

blocked from consideration.

Definition 14 Let B be a bottom clause with n literals. A modeb declaration for a predicate can

declare it a functional predicate. If the ith literal of B is declared a functional predicate, and none of

its outputs occur in the head (as input or output), we define its corresponding functional constraint

to be the propositional clause:

{¬bi}∪{bx : x ∈ {1,2, . . . ,n}∧ x 6= i∧Oi∩ (Ix∪Ox) 6= /0}.

If one or more of the ith literal’s outputs occur in the head, no constraint is generated (clearly the

predicate is always useful then).

Essentially, functional predicates filter out clauses which only have an effect through their pred-

icate’s truth value. Note that functional predicates are not required to have an effect on literals

appearing later: its outputs may also be compared with previous known values, whether it may

be inputs or outputs. Note that a functional predicate always generates at most one propositional

clause, since we only require that at least one of its output variables occurs in another literal.

Example 13 Elaborating more on Example 12, consider the bottom clause

B = average(X ,Y,A)← S isX +Y,DisY −X ,Ais D+X ,Ais S/2.

If we declare the predicate is/2 as functional, one constraint we would obtain is {¬b2,b3}. In-

tuitively, the constraint reflects the fact that if the second literal is used (DisY −X), then D must

appear elsewhere since otherwise the literal does nothing useful in functional terms. The only other

occurrence of D is in the third literal, so b2 −→ b3. With this constraint, our candidate C from the

previous example would never be generated, since the model for C sets b2 to true and b3 to f alse.

Another constraint we would get is {¬b1,b4}. This constraint is due to the output S in the first

literal, which must be used in its only other occurrence, the fourth literal. This one does however

not prevent C, as b4 is true in C’s model.

We do not get any constraints from the third and fourth literal output A; this is because A already

occurs in the head.
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3. NrSample: Constraint-Based Induction

NrSample’s search algorithm is simple: after a bottom clause has been constructed, the mode con-

straints are generated. The SAT solver is then invoked to acquire a valid candidate, which is then

evaluated. Pruning constraints are then added based on the candidate’s consistency/inconsistency.

The procedure of invoking the SAT solver to obtain candidates proceeds until a termination crite-

rion is triggered (usually the maximum number of nodes to explore) or the search space is exhausted

with respect to the constraints (no model can be acquired).

The induction procedure follows a sequential covering algorithm: The first available example is

used to construct a bottom clause, leading to a space of possible candidates. If a viable candidate

can be found from this search space, all positive examples it covers are removed. If no candidate is

found, the example itself is moved to the generalized theory. This process repeats until all positive

examples are covered. The bottom clause construction algorithm is equivalent to Progol’s and is

somewhat involved; we refer the reader to Muggleton (1995) for a detailed description. Briefly, it

uses the mode declarations to compute the set of ground truths and lift them to variable instances.

Each ground truth then becomes a body literal in the bottom clause. Pseudo-code for NrSample is

given in Algorithm 1.

1. While there is a positive example available:

2. Generate bottom clause from the example.

3. Generate mode constraints.

4. While no termination criterion is satisfied:

5. Call SAT solver to retrieve a model for the constraints.

6. If no model can be retrieved, terminate search (exhaustion).

7. Convert model into a (valid) candidate.

8. Evaluate candidate (using any evaluation function).

9. Update best-so-far candidate.

10. Generate pruning constraints based on evaluation.

11. Pick best candidate, remove cover (sequential covering).

Algorithm 1: NrSample’s Search Algorithm.

In the following sections we focus on important details of SAT solving, search order, and maxi-

mum clause lengths (step 5), as well as efficient candidate evaluation (step 8).

3.1 Solving the Constraint Database

Note that all the constraints presented in Section 2 are in disjunctive form; in other words, they

are propositional clauses. Each constraint represents a logical requirement for what needs to be

satisfied, so our constraint database is a conjunction of clauses. Hence our database is in conjunctive

normal form (CNF), which allows us to invoke many well studied SAT solvers without the need for

CNF conversion (Russell et al., 1996).

For the general case, the Boolean satisfiability problem is known to be NP-complete (Cook,

1971). It may however not be clear that our SAT problems are NP-complete since the constraints

contain regularities not assumed in the general case. By Definition 7, all mode declarations have

at most one negative literal (that is, they are dual horn clauses). Satisfiability is hence decidable
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in linear time (Dowling and Gallier, 1984). The pruning constraints, on the other hand, have all

positive or all negative literals by Definition 11, leading to NP-completeness (Schaefer, 1978).

In practice, SAT has been extensively researched and high performance algorithms for quickly

solving real world cases of the Boolean satisfiability problem exist. Chaff (Moskewicz et al., 2001)

is a well known algorithm upon which many modern state-of-the-art SAT solvers are based, claiming

to be able to solve problems with millions of variables.4

To ensure termination within a reasonable amount of time, we also provide a maximum number

of literal assignments for the SAT solver. Our default value is 50000.

We will address the issue of SAT overhead from an empirical point of view in Section 4, but

there is a point to be made about the NP-completeness of pruning constraints. The fact that finding

a non-redundant candidate solution is NP-complete is not a flaw of our approach, but expresses

the difficulty of constructing non-redundant solutions in ILP (with respect to pruning). Although

not always true, insofar as this difficulty translates into low probabilities of randomly sampling a

non-redundant candidate, algorithms that are indifferent about pruning constraints are no better off.

In such cases, then, our algorithm would simply stop searching (due to the literal assignment limit,

by default 50000), whereas other algorithms are likely to sample redundant candidates, therefore

wasting time.5

3.2 Selection Strategies and Traversal Order

Since our approach relies on using a SAT solver to retrieve valid candidates, the search strategy—

that is, the traversal order for candidate generation—is itself embedded into the SAT solver’s model

construction.

A model is a (propositional) assignment of truth values to all literals which satisfies all con-

straints. DPLL-based SAT solvers are a class of complete model builders (Russell et al., 1996;

Davis et al., 1962). They construct models by first selecting an unassigned literal and assigning it

either to true or false (according to some selection strategy), then propagating the effects of this

assignment to all propositional clauses in the database. Propagation of an assignment bi = true

works as follows: all clauses containing the literal bi are removed (since they are now covered),

and all clauses containing its negation ¬bi will have that literal removed (since that literal is not

covered). When assigning bi = f alse, the role of bi and ¬bi are simply interchanged. Clauses that

now only contain one literal—called unit clauses—indicate a definite assignment, so its effects are

also propagated to all clauses.

When no more propagations are possible, either all literals have been assigned and we have a

model, or we have reached a new choice point where any unassigned literal may be assigned true or

false (again, this is handled by a selection strategy).

In what follows, we will assume that the DPLL-based algorithm follows the traditional tech-

nique of backtracking to the first literal that has not been tried both ways (that is, has not previously

been assigned both to true and false). This is known as chronological backtracking; the case of

non-chronological backtracking will be treated later.

Propagation may produce an empty clause, signifying a contradiction. This triggers a process

of backtracking through the stack of assignments, searching for the most recent assigned literal that

4. This claim is made on Chaff’s official webpage, http://www.princeton.edu/~chaff/zchaff.html. Visited on

2012-08-14.

5. The argument that DPLL-based SAT solvers can get stuck in entire subtrees with no solution, whereas the solution is

readily available in a sibling branch, is not valid when random restarts are employed.
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has not been tried with both assignments. This literal’s assignment is then flipped, and we re-enter

the process of propagating, backtracking, and selecting literals.

Freedom to pick any unassigned literal and assign it either true or false corresponds to choosing

a literal from the bottom clause and deciding whether to include it or not (recall that a proposi-

tional literal bi correspond to the ith first-order literal of the bottom clause). The restriction imposed

by DPLL-based solvers comes from the fact that, if our choices of literals fail to satisfy the con-

straints, we may not change the assignments arbitrarily, but rather, must let the SAT solver flip all

assignments (in reverse chronological order) that have not been tried both ways first.

Example 14 Consider making the sequence of assignments (b3 = true,b1 = f alse,b8 = true), upon

which the database is inconsistent (the empty clause was generated at the point where we assigned

b8 = true). This corresponds to choosing that the third and eighth literal of the bottom clause

should be included in the candidate, whereas the first should not. The remaining literals have

yet to be specified for inclusion/exclusion. If we had full freedom to choose any search strategy,

we may for example want to start from scratch and exclude the third literal, not caring about the

first and eighth. DPLL’s backtracking algorithm prevents us from doing so however: it will first

attempt to flip the last made assignment b8 = true into b8 = f alse, thus producing the sequence

(b3 = true,b1 = f alse,b8 = f alse). This makes it clear that we have no say in what the third,

first, and eighth literal should be until the DPLL algorithm has backtracked to those choice points.

Propagation may also force certain assignments, but this is desirable since it is this mechanism

that excludes invalid candidates. After propagation, we are free to select any of the remaining

unassigned literals in our next choice point, and assign it to either true or false.

Example 14 is a simplification, as modern DPLL-based algorithms do not necessarily flip the

last literal not tried both ways. Instead, they may go back further, to an older choice point and flip

its literal, known as non-chronological backtracking or backjumping. This affects the predictability

of the search (the example above is no longer valid), but it remains true that we have full freedom to

select an assignment when, and only when, a choice point is reached. Chaff (Moskewicz et al., 2001)

uses backjumping, but for a predictable search order, our algorithm uses chronological backtracking.

Some simple selection strategies include randomly assigning a literal, or always selecting the

literal that occurs the most often in the database. Chaff introduced an efficient selection strategy

known as VSIDS (Variable State Independent Decaying Sum) (Moskewicz et al., 2001). Which

strategy would do best for ILP depends on the problem domain.

As we will see later, our benchmarks compare NrSample’s performance against an algorithm

that emulates its traversal path without using propositional constraints. Hence it must be reason-

ably easy for the emulation to also emulate the selection strategy without such constraints. This

excludes VSIDS, as it explicitly depends on counting occurrences of propositional literals in the

constraint database. Our selection strategy is to assign the literals in reverse order, to false first:

(bn = f alse,bn−1 = f alse, . . . ,b1 = f alse). This way, we always start with the top element, and

backtracking starts flipping b1 before b2, b2 before b3, and so on.

Example 15 If we assume that no backtracking occurs until the last assignment, we can visualize

the sequence of candidates generated according to the aforementioned selection strategy (assigning

literals to falsehood in reverse order). In bit string notation (0 signifies false and 1 true), with a

bottom clause containing 3 literals, this sequence is: (000,100,010,110,001,101,011,111). The

first candidate, 000, comes from assigning the literals to false in reverse order: (b3 = 0,b2 =

3663



AHLGREN AND YUEN

0,b1 = 0). We then backtrack, flipping the last made assignment b1 = 0 into b1 = 1. This gives the

assignment (b3 = 0,b2 = 0,b1 = 1), that is, the candidate 100. Next, b1 has been tried both ways,

so we remove the assignment. b2 is now flipped, so we have the partial assignment (b3 = 0,b2 = 1).
Since we always start by assigning to falsehood, we then add b1 = 0, obtaining the assignment

(b3 = 0,b2 = 1,b1 = 0), and thus the candidate 010. This process continues until all candidates

have been tried. Note that in practice, the assignments are unlikely to always reach the last literal

before backtracking occurs due to the presence of constraints.

Note that the restrictions imposed by DPLL-based SAT solvers are due to its backtracking mech-

anism, which is used to ensure completeness. It is also possible to use non-DPLL-based SAT solvers

(Selman et al., 1995) with NrSample, for which no restrictions are imposed regarding literal selec-

tion strategy. However, care must be taken to ensure termination when no model is available: a

timeout may be used when a solution cannot be found after a certain amount of time has elapsed or

a maximum number of literal assignments tried. This ensures termination but not completeness.

That we can never have full control of search order traversal using our propositional constraints

is clear, since the very reason for using them is to prevent certain candidates from being generated.

However, it is in part possible to overcome limitations of DPLL-based backtracking by directing

the search to desirable regions. This can be achieved by inserting a constraint to specify that re-

gion. When all candidates have been depleted, we negate this constraint, which forces the SAT

solver to explore the complement region. This process can be done recursively, further partitioning

subregions. We call such temporary constraints regional constraints.

Example 16 Assume we want to start by exploring all candidates containing only a subset of the

first 3 literals. The regional constraint is then ¬b4 ∧¬b5 ∧ . . .∧¬bn, which translates into propo-

sitional clauses {¬b4},{¬b5}, . . . ,{¬bn}. Once the search space has been exhausted, we negate

this formula to obtain the complement region: b4∨ b5∨ . . .∨ bn. While exploring any of these two

regions, we can apply the same principle to further partition regions into subregions.

Care must be taken to treat regional constraints differently, as failure to satisfy them does not nec-

essarily mean that no valid candidate exists: it only specifies that this subregion has been fully

explored; what remains is now the complement region.

3.3 Maximum Clause Lengths

ILP systems give users the option to alter default parameters related to theory induction. For exam-

ple, Progol allows users to set a limit on the number of iterations in the bottom clause construction,

as well as on the maximum number of candidates to be evaluated (per bottom clause). These limits

do not interfere with NrSample’s constraint framework, since bottom clause construction is sepa-

rated from search.

However, it is useful to also restrict the number of body literals allowed in any candidate solu-

tion during the search.6 Although this restriction could be implemented as propositional constraints

in NrSample, it is tedious to do so as each combination that is not allowed has to be specified explic-

itly. For example, with a bottom clause containing n = 4 body literals, the following formulae are

needed to restrict all its candidates to at most c = 2 of those: {¬b1,¬b2,¬b3}∧{¬b1,¬b2,¬b4}∧

6. This is achieved using the query set(c,N) in Progol and set(clauselength,N) in Aleph.
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{¬b1,¬b3,¬b4}∧{¬b2,¬b3,¬b4}. In general, we need to specify that no clause with c+ 1 liter-

als is allowed, so we get
(

n
c+1

)

constraints. A more efficient way to implement this restriction is

to do so in the SAT solver itself. Since the Chaff algorithm works by assigning a truth value to a

propositional variable and unit propagating the implied assignments, we keep track of the number of

variables assigned true at all times. Whenever the limit is exceeded, backtracking occurs, ensuring

that we never generate a solution with more than c positive assignments. As this is a non-standard

feature of DPLL solvers, we have embedded our own implementation of the Chaff algorithm into

NrSample.

Moreover, we generalize this technique so that our algorithm stores a mapping of which literals

were generated from what mode declarations during bottom clause construction, and then keep

track of how many times a mode declaration has been used during SAT solving. This enables us to

specify upper bounds on the number of times a certain mode may be used in a candidate solution,

a feature which is particularly useful to prevent large number of recursive literals in a predicate.

This is implemented by using an extended mode declaration modeb(Recall,Atom,Max_Occurs) in

which the third argument Max_Occurs specifies the maximum number of times a literal generated

from this mode can occur in any candidate solution. Note that the bottom clause may still contain

more occurrences, although not all of them may be used at the same time in a candidate. A search

strategy based on this idea was proposed in Camacho (2000), where the number of occurrences of a

predicate is progressively incremented.

3.4 Lexicographic Evaluation Function

The quality of a candidate is computed using an evaluation function. Different evaluation functions

are possible. For example, if the number of positive and negative examples covered is P and N

respectively, and L is the number of literals in the body of the candidate, Progol’s A∗ computes the

fitness as P−N − L−E, where E is the fewest literals needed to get an input-output connected

clause.7 By default, Aleph uses the evaluation function P/T , where T is the total number of exam-

ples to be evaluated.

NrSample’s default evaluation function assumes that our quality measure obeys a lexicographic

ordering for (P,−L). That is, (P1,−L1)< (P2,−L2) if and only if P1 < P2 or P1 = P2 and L2 < L1.

Intuitively, this states that (consistent) candidates are first compared by coverage, and only when

they cover equally much are they compared by number of literals (fewer literals is better). We

never insert an inconsistent candidate into the knowledge base, regardless of search algorithm. If no

consistent candidate is found, we add the example itself to the knowledge base.

With respect to our quality measure, there are two observations that will reduce the number of

examples evaluated.

First, consistency of a candidate is defined solely in terms of negative example coverage; there

is hence no need to evaluate any positive examples to determine consistency. Since we never add an

inconsistent candidate, there is no need to evaluate positive example coverage when the candidate

is inconsistent. Thus all candidates should first be evaluated for negative coverage, and never for

positive whenever they turn out to be inconsistent. Negative coverage evaluation can stop as soon

as we detect one covered negative example.8

7. This corresponds to the number of positive assignments in a minimal model for the mode constraints.

8. More generally, with noise tolerance T , we stop after covering T negative examples. For T = 0 we have the noise

free setting.
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Second, we may safely abort positive coverage computation when there are not enough positive

examples left for a candidate to beat the best-so-far. For example, if we have a best-so-far candidate

that covers 20 out of 50 positive examples, and our candidate under evaluation covers 3 out of the

first 34 examples, we may safely abort the last 16 examples since, even if they were all covered, it

would still only amount to 3+ 16 = 19 which is less than the already 20 previously covered. This

optimization is possible since we need not consider clause lengths when two clauses have different

coverage.

4. Experimental Results

Our benchmarks have two purposes.

First, we want to directly measure the effects of using propositional constraints in NrSample.

Put differently, we would like to know whether producing, storing, and solving propositional con-

straints provides any real benefit over simply generating each candidate and then checking whether

it conforms to the input-output specification and is logically non-redundant. To this end, we use

an algorithm called emulate_nrsample, which searches for candidates in exactly the same order as

NrSample, but without using constraints. Since both NrSample and emulate_nrsample traverse the

search space in identical ways, comparing their execution time effectively measures the performance

difference between solving the constraints and discarding invalid candidates.

Second, we want to measure NrSample with well established algorithms. Here we turn to the

more general question of how useful NrSample is as an induction algorithm. To answer this, we

compare NrSample against Progol’s A∗ and Aleph’s enumeration search. For a fair comparison, all

algorithms are implemented in our ILP system Atom, using the same libraries and backend.

4.1 The Search Algorithms

Progol’s A∗ is best-first search applied to ILP using the evaluation function P−N−L−T where

P and N are the number of positive and negative examples covered, respectively, L the number of

body literals in the clause, and T the minimum number of literals needed to get an output instantiated

candidate.

Enumeration search constructs the candidates of the search lattice level by level starting from

the top. First, the top element is created, followed by all candidates with one body literal, then all

candidates with two body literals, and so on. Seen as bit strings (si)
n
1, where 1s indicate that literal

bi from the bottom clause is used, we start with the candidate corresponding to bit string “11. . . 00”,

the number of 1s corresponding to the current level as described above, and take previous permuta-

tions until we reach “00. . . 11”. In other words, in each layer we start by generating the candidate

containing all leftmost literals of the bottom clause (as many as the depth we are considering), and

cycle through all permutations until we reach the candidate that has all right-most literals.

Enumeration search uses the same evaluation function as NrSample, with all optimizations as

described in Section 3. Progol’s A∗ cannot use any of these optimization as the heuristic needs to

know the precise number of positive and negative examples covered in order to decide which nodes

to expand.

The search strategy used by NrSample assigns right-most literals to false first (that is, in the

sequence bn,bn−1, . . . ,b1), so that the top element is explored first. It will then start flipping assign-

ments in reverse order, so that b1 will be assigned true first, then b2, etc. For details, see Section 3.2,

and, in particular, Example 15. We use no random restarts, making our algorithm deterministic.
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emulate_nrsample generates each candidate in turn and then checks for mode and input-output

conformance. When all invalid candidates have been discarded, the traversal order is the same as

that of NrSample. Thus emulate_nrsample avoids the overhead of solving constraints, at the expense

of potentially generating a large amount of unnecessary candidates.9

4.2 Test Problems and Data Sets

All comparisons are done using a set of well known ILP problems.

Three concept learning problems are used: ANIMALS, GRAMMAR, and TRAIN. These are taken

from the data set in the Progol 4.4 distribution.10

ANIMALS is a classification problem: a list of animals is to be divided into mammals, fishes,

reptiles, and birds. GRAMMAR presents examples of well formed and ill formed sentences, as well

as a tiny dictionary of words grouped by word classes. The goal is to learn phrase structure rules.

TRAIN is a binary classification problem: trains are either eastbound or westbound, depending on

properties of their cars. The goal is to determine these dependencies.

Our remaining tests are program synthesis problems: MEMBER, SORTED, REVERSE, LENGTH,

ADD, APPEND, SUBLIST.11 MEMBER learns conventional Prolog list membership. SORTED is

a unary predicate determining whether a list is sorted or not. REVERSE is true if and only if its

second argument—a list—is a reversed form of its first (the relation is symmetric, but this is not

exploited). LENGTH determines the number of elements in a list. The lists contain integers, which

confuses the learning algorithms as it is not clear that the integer value of the list elements have

nothing to do with the list length. This makes the problem significantly harder to solve. ADD

defines formal addition in Peano arithmetic between two natural numbers. They are represented

using the successor function (for example, integer 3 is represented as s(s(s(0)))). APPEND defines

list concatenation. Finally, SUBLIST defines the ordered subset relation for lists: sublist([],A),
sublist([A|B], [A|C])← sublist(B,C), sublist(A, [B|C])← sublist(A,C).

Each of the program synthesis problems come in two variants. In the first variant, we use a set

of predicates that is particularly well suited to each concept. For example, for APPEND, this would

be operations to construct and deconstruct lists. Tables 8 and 9 in Appendix C shows the number

of positive and negative examples, as well as mode declarations, for all problems. We refer to

these problems—including the concept learning problems ANIMALS, GRAMMAR, and TRAIN—as

the small problems.

In the second variant, we use a fixed set of predicates across all program synthesis problems.

That is, we include mode declarations that allow for constructing and deconstructing lists, compar-

ing/ordering integers, and performing elementary arithmetic on numbers. The precise definition of

this primitive set of predicates is given in Appendix D. We refer to these problems as the large prob-

lems, and distinguish them from the small problems by using a prefix “L:”. For example, MEMBER

refers to the small problem and L:MEMBER to the large problem. As the primitive set is primarily

9. From a technical point of view, emulate_nrsample does not actually generate candidates as clauses, but rather, as a

set representing which literals from the bottom clause each candidate is made up of. This is enough to check whether

it is mode and input-output conformant. If the candidate is valid, the full candidate is generated and checked for

coverage. This improves the performance of emulate_nrsample. The same optimization is used for enumeration.

Progol’s A∗ does not check for input-output conformance of candidates, as it may need to expand invalid nodes to

reach valid ones.

10. Available in the distribution of Progol 4.4 at

http://www.doc.ic.ac.uk/~shm/Software/progol4.4/progol4_4.tar.gz. Visited on 2012-08-14.

11. Distributed with Atom’s source code, see previous footnote.

3667



AHLGREN AND YUEN

intended for list and integer manipulation, the concept learning problems are not included in the

large problems.

As the large problems use a fixed set of predicates—of which many predicates are intended for

arithmetic computations, and thus functional in nature—we take the opportunity to test NrSample

with functional constraints (NrSFun) against NrSample without functional constraints (NrS). Func-

tional predicates are described in Section 2.5, and all functional predicates in the primitive set (see

Appendix D) have the keyword “functional” in their modeb declaration. For NrSFun, this generates

functional constraints, whereas NrS simply ignores the keyword.

The large amount of primitive predicates causes a combinatorial explosion of possibilities,

thereby creating very large bottom clauses. We believe these large data sets better correspond to

practical use of program synthesis, as the primitive predicates are general enough to induce all

aforementioned concepts without any tweaking.

For each program synthesis problem, we generate 10 data sets. Each has its own (independently

generated) positive and negative examples. We now describe how the examples in each of these

data sets are generated.

All tests except ADD involve lists. Thus we need an algorithm to sample lists. We assume the

lists hold a finite number of constants as elements. First, we note that the sample space is infinite, as

lists can get arbitrarily long. Second, except for a finite subset, lists of increasing sizes necessarily

must have diminishing probabilities.12 This is also reasonable, since we expect simple observations

(short lists) to be more common than elaborate ones. We first define the length L of a sampled list

to be geometrically distributed with success probability 0.25: P(L = k) = 0.75k ·0.25. This makes

sampling short lists more likely than long lists but puts no upper bound on the length of a list. For

each of the L positions, we uniformly sample for a single digit constant ({0,1, . . . ,9}).

With our list generator, the positive examples are generated in the obvious way: for a positive

example of MEMBER, sample a list and randomly pick an element of the list. For a negative ex-

ample, sample a list not containing all domain elements and randomly pick an element not in the

list. For APPEND, randomly sample two lists, and then append them to obtain the appended list.

For a negative example, randomly sample three lists, and verify that the third is not obtained by

appending the first and second. Also, we ensure no duplicate examples are generated.

For the ADD problem, we sample uniformly from {0,1,2,3,4}, providing the first 5 · 5 = 25

ground instances as positive examples. The reason for limiting formal addition to small examples is

due to a depth limit of h = 30 when performing queries: each application of the successor function

requires one call, so the largest number that can be handled by queries is 30. Such computational

limits are necessary to make ILP problems tractable; all limits used in our benchmarks are listed in

Section 4.3. L:ADD is different from ADD in that it does not represent numbers using the successor

function but using lists of zeros. The length of the list is the number to be represented, that is, 3 is

represented as [0,0,0]. This is because the primitive set in the large problems was primarily chosen

with list manipulation in mind.

The concept learning data sets—ANIMALS, GRAMMAR, and TRAIN—are taken from Progol

without modifications. For each of these three problems, we consider 10 different random orderings

of the examples. Since the greedy sequential covering algorithm depends on the order of the positive

examples, this affects the results.

12. Give the lists an enumeration and let pn be the probability of sampling list n. ∑ pn = 1, which implies pn→ 0.

3668



PROGRAM SYNTHESIS IN ILP USING CONSTRAINT SATISFACTION

4.3 Cross Validation

We consider two measures of the quality of an algorithm: how accurate the solution is, and the

time it takes to generate a solution (execution time). Our benchmarks are performed using cross

validation.

On the concept learning problems—ANIMALS, GRAMMAR, and TRAIN—which contain few

positive examples, we perform leave-one-out experiments.

On the program synthesis problems, we use hold-out validation with 10 different data sets.

Accuracy is computed as the fraction of all correct predictions among all predictions made.

For the sake of tractability, we also impose some computational limits to all benchmarked algo-

rithms. During bottom clause construction, a maximum of i = 3 iterations are performed. For each

bottom clause constructed, a maximum of n = 1000 (valid) candidates are explored. Candidates are

restricted to a maximum clause length of c = 4. For each query, we use a recursion depth limit of

h = 30 and maximum resolution limit of r = 10000. A time limit of t = 600 seconds is imposed on

any induction. Upon reaching this time limit, the entire induction aborts, although post processing

is still necessary to ensure all remaining examples are put back into the knowledge base. Except

for the time limit, these restrictions are commonly used in Progol and Aleph (the values, of course,

depend on the problem domain).

Progol A∗ evaluates all candidates, regardless of mode declarations—this is necessary in order

to choose the best node to expand in the search lattice. Aleph’s enumeration explicitly states that the

invalid candidates are to be ignored, as the following quotation from the Aleph homepage shows:

With these directives Aleph ensures that for any hypothesised clause

of the form H:- B1, B2, ..., Bc:

Input variables.

Any input variable of type T in a body literal Bi appears

as an output variable of type T in a body literal that appears before Bi,

or appears as an input variable of type T in H.

Output variables.

Any output variable of type T in H appears as an output variable

of type T in Bi.

Without the time limit t, this algorithm may thus end up stuck in almost infinite generate-and-

test loops when the number of valid candidates is small.

NrSample also needs a limit to ensure tractability while solving its propositional constraints: we

set a limit of 50000 literal assignments per model constructed (equivalently: for each constructed

candidate). When this limit is reached, the algorithm simply gives up the current bottom clause

search, adds the example, and resumes sequential covering.

All benchmarks are performed on an Intel Core i7 (4× 2.4 GHz) with 8 GB of RAM. All

displayed numerical results are rounded to 3 decimals. For easier readability, trailing zeros are not

shown (that is, we write “1” rather than “1.000”).
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Test ANrS AEm AA∗ AE AEm/ANrS AA∗/ANrS AE/ANrS

ANIMALS 0.9 0.9 0.952 0.971 1 1.058 1.079

GRAMMAR 0.981 0.981 0.952 1 1 0.970 1.019

TRAIN 1 1 0.9 1 1 0.9 1

MEMBER 0.983 0.983 0.935 0.983 1 0.951 1

SORTED 0.911 0.911 0.894 0.911 1 0.981 1

REVERSE 0.818 0.818 0.816 0.818 1 0.998 1

LENGTH 0.672 0.672 0.665 0.672 1 0.990 1

ADD 0.922 0.691 0.778 0.928 0.749 0.844 1.007

APPEND 0.804 0.411 0.783 0.590 0.511 0.974 0.734

SUBLIST 0.891 0.891 0.836 0.887 1 0.938 0.996

Table 1: Accuracy for Small Data Sets.

4.4 Results for Small Data Sets

Table 1 displays the accuracy of each algorithm as well as comparative ratios. A denotes Accuracy

(defined in Section 4.3), with index NrS for NrSample, Em for emulate_nrsample, A∗ for Progol’s

A∗, and E for enumeration. Since higher accuracy is better, the ratios compare favorably to Nr-

Sample when they are less than 1. Table 2 displays execution time—denoted T and measured in

seconds—as well as comparative ratios. As lower execution time is better, a ratio larger than 1 is

favorable to NrSample.

It is also interesting to know how often NrSample exhausts all valid candidates from search

spaces. NrSample manages to exhaust all search spaces except REVERSE (95% exhausted), ADD

(80%), and APPEND (60%). This suggests that—at least for NrSample—APPEND is the most diffi-

cult problem, followed by ADD and REVERSE.

As expected, NrSample has the same accuracy as emulate_nrsample on all small data sets ex-

cept APPEND and ADD, where the latter times out. This is due to the fact that emulate_nrsample

explores the same candidates as NrSample, provided no time out occurs. For the tests where emu-

late_nrsample did not time out, it sometimes completed the induction slightly faster than NrSample

(ANIMALS, MEMBER, SORTED, LENGTH, and, most notably, TRAIN). On the tests with largest

search spaces—APPEND, ADD, and REVERSE—NrSample performed substantially better than its

emulated counterpart: 33, 4.5, and 9.4 times better, respectively.

As NrSample relies on input-output constraints, it is informative to divide the experimental

results into concept learning—ANIMALS, GRAMMAR, and TRAIN—and program synthesis (all

other problems).

On the concept learning problems, NrSample does not display any notable improvements over

Progol A∗ and enumeration. In particular, NrSample is substantially slower than both on the TRAIN

problem: 1/0.07≈ 14 times slower than Progol’s A∗ although with better accuracy, and 1/0.016≈
63 times slower than enumeration with same accuracy. On the other hand, NrSample is 63 times

faster than Progol’s A∗ on GRAMMAR; indeed, it is the fastest algorithm on this problem, with

comparable accuracy.

We note that accuracy on the concept learning problems is not always perfect (with any algo-

rithm), despite their relative simplicity. This is because there are too few examples to always induce

the correct definitions, even with leave-one-out. For example, in one instance of ANIMALS, all def-
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Test TNrS TEm TA∗ TE TEm/TNrS TA∗/TNrS TE/TNrS

ANIMALS 0.021 0.018 0.057 0.018 0.857 2.714 0.857

GRAMMAR 0.018 0.021 1.133 0.021 1.167 62.944 1.167

TRAIN 2.575 1.438 0.18 0.04 0.558 0.070 0.016

MEMBER 0.163 0.156 28.637 0.156 0.957 175.687 0.957

SORTED 0.134 0.129 47.667 0.128 0.963 355.724 0.955

REVERSE 0.135 0.127 4.228 0.356 9.407 31.319 2.637

LENGTH 1.161 1.098 256.512 1.101 0.946 220.941 0.948

ADD 131.979 600.003 215.898 59.742 4.546 1.636 0.453

APPEND 18.088 600.019 43.082 600.027 33.172 2.382 33.173

SUBLIST 26.232 50.538 376.864 23.499 1.927 14.367 0.896

Table 2: Execution Time in seconds for Small Data Sets.

initions are correct except one, which is too general: class(A, f ish)←− has_legs(A,0). The correct

definition cannot be induced as the (only) example we need is being held out for validation.

Comparing NrSample against Progol A∗ and enumeration on the program synthesis problems,

we see that NrSample has better accuracy on all tests (except a tiny difference in favor of enumer-

ation on ADD). It is also substantially faster than Progol’s A∗ on all problems, ranging from 1.6
to 356 times faster. It is slightly slower than enumeration on most tests: the exceptions are ADD,

where enumeration is 1/0.453 = 2.2 times faster, REVERSE, where NrSample is 2.6 times faster,

and APPEND, where NrSample is 33 times faster.

4.5 Results for Large Data Sets

The large data sets test five algorithms: NrSample with functional constraints (NrSFun), NrSample

without functional constraints (NrS), Emulated NrSample (Em), Progol’s A∗ (A∗), and enumeration

E.

Table 3 shows accuracy on all problems, Table 4 shows accuracies compared with NrSFun.

Since higher accuracy is better, lower values are in favor of NrSFun. Table 5 shows execution time,

and Table 6 shows execution time compared with NrSFun. Since lower execution time is better,

higher values are in favor of NrSFun.

The proportions of search spaces fully exhausted by NrSFun and NrS are given in Table 7.

As pointed out earlier, NrSample detects exhaustion due to the unsatisfiability of its constraints,

saving execution time. The results suggest that the most difficult problem in this regard is APPEND,

followed by SUBLIST. SORTED and LENGTH are relatively difficult for NrS, which exhaust 60%

and 70% respectively, whereas NrsFun fully exhaust all search spaces of both those problems.

As can be seen, NrSample with functional constraints induces with similar or better time perfor-

mance compared to NrSample without functional constraints: on average 21 times faster. Notably,

NrSFun is 11 times faster on MEMBER, 53 times faster on LENGTH, and 80 times faster on SORTED.

All performance gains come without any accuracy penalty: accuracy is similar or better on all prob-

lems. Moreover, NrSFun is substantially more accurate on SUBLIST: 80% versus 48%.

Next, we note that emulate_nrsample times out on all data sets. As a result, it has worse execu-

tion time and accuracy compared to NrSample on all problems, demonstrating that the propositional

framework is necessary for efficient constraint solving.
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Test ANrSFun ANrS AEm AA∗ AE

L:MEMBER 0.99 0.981 0.333 0.935 0.472

L:SORTED 0.834 0.827 0.027 0.397 0.72

L:REVERSE 0.555 0.555 0.349 0.562 0.411

L:LENGTH 0.665 0.663 0.335 0.413 0.366

L:ADD 0.83 0.808 0.676 0.784 0.83

L:APPEND 0.932 0.942 0.333 0.708 0.372

L:SUBLIST 0.803 0.478 0.352 0.826 0.517

Table 3: Accuracy for Large Data Sets.

Test ANrS/ANrSFun AEm/ANrSFun AA∗/ANrSFun AE/ANrSFun

L:MEMBER 0.991 0.336 0.944 0.477

L:SORTED 0.992 0.032 0.476 0.863

L:REVERSE 1 0.629 1.013 0.741

L:LENGTH 0.997 0.504 0.621 0.55

L:ADD 0.973 0.814 0.945 1

L:APPEND 1.011 0.357 0.76 0.399

L:SUBLIST 0.595 0.438 1.029 0.644

Table 4: Relative Accuracy for Large Data Sets.

Continuing, NrSFun is approximately as accurate or better than Progol A∗ on all problems.

NrSFun is substantially faster, with a speedup of between 7 and 45 times on all problems except

APPEND and SUBLIST. On APPEND, A∗ substantially sacrificed accuracy (71% versus 93%) to

induce 8 times faster. Only on SUBLIST is the advantage uncontested, as A∗ has both better execution

time and slightly better accuracy (3.6 times faster with 83% versus 80% accuracy). On average,

NrSFun is 18 times faster than A∗.

Finally, NrSFun has substantially better accuracy than enumeration on all problems except ADD,

where they are tied. NrSFun also has substantially better performance, ranging from 1 to 1358 times

faster. On average, NrSFun is 236 times faster than enumeration.

Test TNrSFun TNrS TEm TA∗ TE

L:MEMBER 5.432 61.345 600.009 123.998 575.604

L:SORTED 4.964 397.797 600.012 109.236 251.13

L:REVERSE 0.442 0.43 600.016 3.258 600.02

L:LENGTH 4.427 232.445 600.01 197.314 571.642

L:ADD 8.843 25.73 600.004 256.356 20.817

L:APPEND 171.736 169.064 600.018 21.267 600.019

L:SUBLIST 584.989 600.031 600.012 160.673 600.017

Table 5: Execution Time in Seconds for Large Data Sets.
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Test TNrS/TNrSFun TEm/TNrSFun TA∗/TNrSFun TE/TNrSFun

L:MEMBER 11.293 110.458 22.827 105.965

L:SORTED 80.136 120.873 22.006 50.59

L:REVERSE 0.973 1357.502 7.371 1357.511

L:LENGTH 52.506 135.534 44.571 129.126

L:ADD 2.91 67.851 28.99 2.354

L:APPEND 0.984 3.494 0.124 3.494

L:SUBLIST 1.026 1.026 0.275 1.026

Table 6: Relative Time Execution for Large Data Sets.

Test NrSFun NrS

L:MEMBER 0.9 0.85

L:SORTED 1 0.6

L:REVERSE 0.95 0.95

L:LENGTH 1 0.7

L:ADD 1 1

L:APPEND 0 0

L:SUBLIST 0.05 0

Table 7: Proportion Search Spaces Fully Exhausted.

5. Conclusions

We have provided a novel framework for non-redundant candidate construction in inductive logic

programming (ILP), using propositional constraints relative to a bottom clause. In particular, we

have treated the case of using search space pruning constraints, mode constraints (input-output

constraints), and functional constraints, showing substantial speedups in program synthesis. Other

algorithms embed pruning in some form, either implicitly through their search method—typically

using refinement operators (Nienhuys-Cheng and de Wolf, 1997)—or explicitly, such as through

memorization. However, they lack a mechanism to directly construct valid candidate solutions

based on such constraints, leading to significant overhead in trial-and-error candidate generation.

We compared NrSample to Progol’s A∗ and Aleph’s enumeration search. On the small program

synthesis tests, NrSample outperformed both Progol A∗ and enumeration on accuracy. Enumeration

was marginally faster than NrSample on most tests; the exceptions are ADD, where enumeration was

2.2 times faster, REVERSE, where NrSample was 2.6 times faster, and APPEND, where NrSample

was 33 times faster. NrSample was also substantially faster than A∗, ranging from 1.6 to 356 times

faster.

On the large program synthesis tests, NrSample with functional constraints (NrSFun) always

outperformed enumeration—ranging from 1 to 1358 times faster—as its naive search space traver-

sal is often unable to find good solutions (it times out). NrSFun is on average 236 times faster, with

substantially better accuracy on all large problems. Progol’s A∗ also has severe difficulties keeping

up with NrSample in induction speed: NrSFun is on average 18 times faster than Progol’s A∗, al-

ways with similar or better accuracy. Progol’s A∗ is only faster on two tests: APPEND and SUBLIST.

However, on APPEND, Progol’s A∗ substantially trades accuracy for faster induction speed: accu-
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racy is 71% versus 93%, for a performance gain of 8 times faster. SUBLIST is the only test in which

it is a clear winner: it is 3.6 times faster with similar accuracy.

On the concept learning problems, NrSample does not seem to offer any advantage over more

conventional algorithms. This is expected, as there are fewer input-output constraints to exploit.

Therefore, NrSample’s overhead of using a SAT solver is never compensated for. Input-output

constraints can however occur in concept learning problems, and the TRAIN problem is an example

as to how: it specifies that we may only attach cars in one direction, that is, from train name to its

cars, not from cars to train name. With more such constraints, NrSample may offer an advantage.

Moreover, it is possible to automatically generate mode declarations by inspecting the examples

(McCreath and Sharma, 1995). This may create artificial but useful input-output constraints that

speedup induction for arbitrary problems.

We also showed that NrSample’s constraint mechanism is not easily replaced without a SAT

solver: NrSample always has at least as good accuracy as its emulated counterpart, emulate_nrsample.

In particular, emulate_nrsample is unable to keep up with NrSample on the large problems, consis-

tently timing out on every data set.

Functional constraints (see Section 2.5) provide a significant performance advantage: NrSFun

is always similar or faster than NrS, with similar or better accuracy. On average, NrSFun is 21

times faster than NrS.

We have shown that mode constraints are linear time solvable, whereas pruning constraints are

NP-complete (see Section 3.1). Most SAT instances are—despite their NP-completeness—easy to

solve in practice. As we have previously argued, the difficulty of finding non-redundant solutions is

not limited to our algorithm, but rather, an inherent property of non-redundancy. Any algorithm not

considering constraints may in such cases be unlikely to stumble upon a non-redundant solution.

We have shown how regional constraints—constraints used to direct the search to certain re-

gions of the search space before others—allow for control over search order within our constraint

framework (see Section 3.2).

Our constraint satisfaction approach is generalizable to problems with noise by simply modi-

fying the definition of consistency so as to allow it to cover a user specified number of negative

examples (instead of 0).

Our SAT solver is deterministic. In applications where this is undesirable, it is possible to use

a non-deterministic selection strategy (for example, random literal assignment). Another source of

randomness comes from setting a non-zero probability for random restarts. In both cases, pruning

constraints still ensure that no redundant candidate is generated.
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Appendix A. Proof of Mode Constraint Correctness

In this appendix we prove Theorem 8, which establishes that the mode constraints reflect Defini-

tion 5.
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First, we show that the mode constraints only generate mode conformant candidates (sound-

ness).

Theorem 15 Let F be a propositional formula for the mode constraints of B. Let C be a candidate

from B. If F generates C, then C is mode conformant.

Proof Assume C is not mode conformant. Let PB = l1∧ . . .∧ ln where li = bi or li = ¬bi. We have

two cases: (1) C is not input-instantiated, or (2) C is not output-instantiated.

(1) A literal bi in C has an uninstantiated input variable v. However, B is input-instantiated by

Lemma 6, so v ∈ Ih, or v ∈ Ok for some k < i and bk is not a body literal of C (since otherwise v

would be instantiated). Now, v ∈ Ih is impossible because then C would have v instantiated by its

head input, as C and B have the same head. Let k1, . . . ,ks be the indices for body literals in B for

which v ∈ Oks
, ks < i. By Definition 7, F contains a clause c = {¬bi,bk1

, . . . ,bks
}. Since C contains

bi but none of the preceding bk j
, the model MC for C has MC(bi) = true and MC(bk j

) = f alse for all

bk j
, j = 1, . . . ,s, so MC does not satisfy c. Hence MC is not a model for F .

(2) The head of C has an uninstantiated output variable v. Partition b1, . . . ,bn into two sets: Bv

for the bk’s that satisfy v ∈ Ok, and B¬v for the rest. All literals of PC are in B¬v, so PC is a conjunc-

tion of literals where each literal of Bv is negative. Hence for the model MC for PC, MC(bi) = f alse

for all bi ∈ Bv. But by Definition 7, F contains the clause
∨

bi∈Bv
bi, so MC is not a model for F .

Next, we show that the mode constraints can generate any mode conformant candidate (complete-

ness).

Theorem 16 Let F be a propositional formula for the mode constraints of B. Let C be a candidate

from B. If C is mode conformant, then F generates C.

Proof Assume C is mode conformant and let MC be the model for PC = ls1
∧ . . .∧ lsk

. Then

MC(lsi
) = true for all i = 1, . . . ,k. Let f be a clause in F . Either f has the form {¬bn,bx1

,bx2
, . . .}

or {bx1
,bx2

, . . .}.
The first form appears when bn has an input variable v that is not an output of B’s head. bx j

are

the literals preceding bn (x j < n) in which v appears as output. If bn does not appear in C, MC(bn) =
f alse and the clause is satisfied. If bn appears in C, we note that since C is mode conformant, v

appears in a previous body literal or the head. But it cannot appear in the head of C, since it is the

same as the head of B. So v must be the output of a literal in C that appears before bn, that is, one of

the bx j
. Hence MC(bx j

) = true for this particular j, and the clause is satisfied.

The second form appears when the head of B has an output variable v. If the clause is empty, B

has no body literal that outputs v, so no candidate from B is mode conformant either, contradicting

our assumption that C is mode conformant. Now v appears in the head of C, again because it is

the same as the head of B. Let bx1
, . . . ,bxk

be the literals of the non-empty clause. Since C is mode

conformant, v appears as output in a literal bx j
, j = 1, . . . ,k, and hence MC(bx j

) = true. Therefore

the clause is satisfied.

Appendix B. Proof of Pruning Constraint Correctness

In this appendix, we prove Theorem 12, establishing the correctness of NrSample’s pruning con-

straints.

The next lemma will be needed in our correctness proof.
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Lemma 17 Let C and D be candidates from B. If C ⊆D, all the negative literals of PD occur in PC.

Proof If C ⊆ D, all the body literals of C occur in D, so b j ∈ PC =⇒ b j ∈ PD . Let ¬bi ∈ PD. If

bi ∈ PC, then bi ∈ PD, a contradiction. Since PC contains all literals of b1, . . . ,bn, we have ¬bi ∈ PC.

The following theorem shows that ¬P↑C and ¬P↓C block the intended regions and no more.

Theorem 18 Let C be a candidate from B.

1. ¬P↑C generates G if and only if G is not a generalization of C.

2. ¬P↓C generates S if and only if S is not a specialization of C.

Proof (1) Assume G⊆C. If PC has no negative literal, ¬P↑C = f alse, and the claim follows trivially.

So assume PC has negative literals c̄1, . . . c̄k. Since G ⊆ C, c̄1, . . . c̄k are negative literals in PG by

Lemma 17. The model for G thus has MG(ci) = f alse for all i = 1, . . . ,k. But ¬P↑C = {c1, . . . ,ck},
so it is false in MG. For the converse, assume G 6⊆ C. Then there is a positive literal b ∈ PG with

¬b ∈ PC. Let MG be the model for PG: for all gi ∈ PG, MG(gi) = true, and for all negative ḡ j ∈ PG,

MG(g j) = f alse. Note that MG(b) = true. Since ¬P↑C is a clause containing b , it is true under MG.

(2) Assume C ⊆ S. If PC has no positive literal, ¬P↓C = f alse, and the claim follows trivially.

So assume PC has positive literals c1, . . . ,ck. Assume MS is a model for PS. Since C ⊆ S, c1, . . . ,ck

are also in PS, so MS(ci) = true for all i = 1, . . . ,k. But ¬P↓C = {¬c1, . . . ,¬ck}, so it is false in MS.

For the converse, assume C 6⊆ S. Then there is a positive literal b ∈ PC with ¬b ∈ PS. Let MS be the

model for PS: for all positive si ∈ PS, MS(si) = true, and for each negative ¬s j ∈ PS, MS(s j) = f alse.

Note that MS(b) = f alse. Since ¬P↓C contains ¬b , MS is a model for ¬P↓C.

Appendix C. Small Data Sets Details

Table 8 and 9 show the number of examples and mode declarations used in concept learning and

program synthesis problems, respectively. Note that the number of examples in each data set is

not necessarily indicative of complexity. For example, TRAIN has only 5 positive and 5 negative

examples, but is harder to learn than Animals and Grammar. The complexity of a problem depends

mainly on the mode declarations used for the body, as they give the set of all possible predicates to

be used when constructing the bottom clause.

Appendix D. Primitive Set of Predicates

What follows are the definitions of the primitive set used in the large data set experiments (those

prefixed by “L:”).

:- modeb(1,nil(+list))?

:- modeb(1,+list = [-nonlist|-list],[functional])?

:- modeb(1,-list = [+nonlist|+list],[functional])?

:- modeb(1,listify(+nonlist,-list),[functional])?

listify(X,[X]).
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Data Set P N Mode Declarations

animal 16 42

modeh(1,class(+animal,#class))
modeb(1,has_milk(+animal))
modeb(1,has_gills(+animal))
modeb(1,has_covering(+animal,#covering))
modeb(1,has_legs(+animal,#nat))
modeb(1,homeothermic(+animal))
modeb(1,has_eggs(+animal))
modeb(1,not has_milk(+animal))
modeb(1,not has_gills(+animal))
modeb(∗,habitat(+animal,#habitat))
modeb(1,class(+animal,#class))

grammar 14 7

modeh(1,s(+wlist,−wlist))
modeb(1,det(+wlist,−wlist))
modeb(∗,np(+wlist,−wlist))
modeb(∗,vp(+wlist,−wlist))
modeb(1, prep(+wlist,−wlist))
modeb(1,noun(+wlist,−wlist))
modeb(1,verb(+wlist,−wlist))

train 5 5

modeh(1,eastbound(+train))
modeb(100,has_car(+train,−car))
modeb(1,notopen(+car))
modeb(1,notlong(+car))
modeb(1, long(+car))
modeb(1,open(+car))
modeb(1,double(+car))
modeb(1, jagged(+car))
modeb(1,shape(+car,−shape))
modeb(1, load(+car,−shape,−int1))
modeb(1,wheels(+car,−int1))
modeb(1, in f ront(+car,−car))

Table 8: Concept Learning Data Sets.
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Data Set P N Mode Declarations

member 100 50

modeh(∗,member(+const,+clist))
modeb(1,+any = #any)
modeb(1,+clist = [−const|− clist])
modeb(∗,member(+const,+clist))

sorted 100 50

modeh(1,sorted(+clist))
modeb(1,+const =<+const)
modeb(1,+clist = [−const|− clist])
modeb(1,+clist = [])
modeb(1,sorted(+clist))

reverse 100 50

modeh(1,reverse(+clist,−clist))
modeb(1,reverse(+clist,−clist))
modeb(1,+clist = [−const|− clist])
modeb(1,+clist = [])
modeb(1,append(+clist, [+const],−clist))

length 100 50

modeh(1, length(+clist,+int))
modeh(1, length(+clist,−int))
modeb(1,−intis+ int +1)
modeb(1,+intis#int)
modeb(1, length(+clist,−int))
modeb(1,+int = 0)
modeb(1,+clist = [])
modeb(1,+clist = [−const|− clist])

add 25 50

modeh(∗,add(+snum,+snum,−snum))
modeb(1,+snum = 0)
modeb(1,−snum =+snum)
modeb(1,dec(+snum,−snum))
modeb(1, inc(+snum,−snum))
modeb(1,add(+snum,+snum,−snum))

append 100 50

modeh(1,append(+list,+list,−list))
modeb(1,+list = [])
modeb(1,+const =+const)
modeb(1,+list = [−const|− list])
modeb(1,−list = [+const|+ list])
modeb(1,append(+list,+list,−list))

sublist 100 50

modeh(1,sublist(+clist,+clist))
modeb(1,+clist = [−const|− clist])
modeb(1,+clist = [])
modeb(1,sublist(+clist,+clist))

Table 9: Program Synthesis Data Sets.
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nil([]).

nonlist(X) :- constant(X), X \= [].

list([]).

list([H|T]) :- nonlist(H), list(T).

:- modeb(1,inc(+number,-number),[functional])?

:- modeb(1,-number is +number + +number,[functional])?

:- modeb(1,neg(+number,-number),[functional])?

:- modeb(1,inv(+number,-number),[functional])?

:- _ is X+Y prevents _ is Y+X?

:- prevent neg(X,X)?

:- prevent inv(X,X)?

inc(X,Y) :- Y is X+1.

neg(X,Y) :- Y is -X.

inv(X,Y) :- Y is 1/X.

:- modeb(1,+number =:= +number)?

:- modeb(1,+number =\= +number)?

:- modeb(1,+number < +number)?

:- modeb(1,+number =< +number)?

:- prevent X =:= X? % reflexivity

:- X =:= Y prevents Y =:= X? % symmetry

:- prevent X =\= X?

:- X =\= Y prevents Y =\= X?

:- prevent X =< X?

We explain the operators prevent/1 and prevents/2 with examples. They are used during bottom

clause construction, and are thus not specific to our benchmarked algorithms. Both operators are

intended to prevent certain ground truths from occurring in the bottom clause (or their corresponding

lifted instances). Example 17 illustrates its use. Similar ideas can be found in Fonseca et al. (2004).

Example 17 The clause ‘prevent p(X ,X)’ ensures that no bottom clause of the form p(X ,X) oc-

curs, where matching is done so that X unifies with ground terms. So p(a,b) is not allowed with

this rule, but p(a,a) is. The instance prevent X =< X simply prevents trivial comparisons.

As a matter of technicality, when using lifted bottom clauses, that is, with mode declarations,

variables in the bottom clause must be treated as ground terms. For example, the prevent rule X = X

should not match with bottom clause literal Y = 0, as what we have in mind is to prevent trivial

unifications of identical terms. By treating unlifted bottom clause literals (that is, ground truths),

this problem does not arise.

Example 18 With the rule ‘prevent p(X ,X)’ from Example 17, the literal p(A,B) is fails to match,

since it is first grounded to p(cA,cB), and unification then fails. Thus the literal p(A,B) will not

be prevented from appearing. On the other hand, p(A,A) will be prevented, since it is treated as

p(cA,cA).
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Example 19 The clause ‘p(X ,Y ) prevents q(Y,X)’ ensures that the literal q(Y,X) does not occur

if p(X ,Y ) occurs as a previous literal in the bottom clause. Again, unification is used for matching,

so that repeated variable occurrences matter. The instance used in our primitive set:

_ is X+Y prevents _ is Y+X

simply exploits the commutativity of addition: if we have X +Y (we do not care about the output

variable), we do not need the addition Y +X in the bottom clause.
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