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Abstract

A supervised topic model can use side information such as ratings or labels associated with doc-

uments or images to discover more predictive low dimensional topical representations of the data.

However, existing supervised topic models predominantly employ likelihood-driven objective func-

tions for learning and inference, leaving the popular and potentially powerful max-margin principle

unexploited for seeking predictive representations of data and more discriminative topic bases for

the corpus. In this paper, we propose the maximum entropy discrimination latent Dirichlet alloca-

tion (MedLDA) model, which integrates the mechanism behind the max-margin prediction models

(e.g., SVMs) with the mechanism behind the hierarchical Bayesian topic models (e.g., LDA) un-

der a unified constrained optimization framework, and yields latent topical representations that are

more discriminative and more suitable for prediction tasks such as document classification or re-

gression. The principle underlying the MedLDA formalism is quite general and can be applied

for jointly max-margin and maximum likelihood learning of directed or undirected topic models

when supervising side information is available. Efficient variational methods for posterior inference

and parameter estimation are derived and extensive empirical studies on several real data sets are

also provided. Our experimental results demonstrate qualitatively and quantitatively that MedLDA

could: 1) discover sparse and highly discriminative topical representations; 2) achieve state of the

art prediction performance; and 3) be more efficient than existing supervised topic models, espe-

cially for classification.

Keywords: supervised topic models, max-margin learning, maximum entropy discrimination,

latent Dirichlet allocation, support vector machines

1. Introduction

Probabilistic latent aspect models such as the latent Dirichlet allocation (LDA) model (Blei et al.,

2003) have recently gained much popularity for stratifying a large collection of documents by pro-

jecting every document into a low dimensional space spanned by a set of bases that capture the

semantic aspects, also known as topics, of the collection. An LDA model posits that each document

is an admixture of latent topics, of which each topic is represented as a unique unigram distribution
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over a given vocabulary. The document-specific admixture proportion vector θθθ, also known as the

topic vector, is modeled as a latent Dirichlet random variable, and can be regarded as a low dimen-

sional representation of the document in a topical space. This low dimensional representation can

be used for downstream tasks such as classification, clustering, or merely as a tool for structurally

visualizing the otherwise unstructured document collection.

The original LDA is an unsupervised model and is typically built on a discrete bag-of-words

representation of input contents, which can be text documents (Blei et al., 2003), images (Fei-Fei

and Perona, 2005), or even network entities (Airoldi et al., 2008). However, in many practical ap-

plications, we can easily obtain useful side information besides the document or image contents.

For example, when online users post their reviews for products or restaurants, they usually associate

each review with a rating score or a thumb-up/thumb-down opinion; web sites or pages in the pub-

lic Yahoo! Directory1 can have their categorical labels; and images in the LabelMe (Russell et al.,

2008) database are organized by a visual ontology and additionally each image is associated with a

set of annotation tags. Furthermore, there is an increasing trend towards using online crowdsourc-

ing services (such as Amazon Mechanical Turk2) to collect large collections of labeled data with a

reasonably low price (Snow et al., 2008). Such side information often provides useful high-level or

direct summarization of the content, but it is not directly used in the original LDA or models alike to

influence topic inference. One would expect that incorporating such information into latent aspect

modeling could guide a topic model towards discovering secondary or non-dominant, albeit seman-

tically more salient statistical patterns (Chechik and Tishby, 2002) that may be more interesting or

relevant to the user’s goal, such as prediction on unlabeled data.

To explore this potential, developing new topic models that appropriately capture side infor-

mation mentioned above has recently gained increasing attention. Representative attempts include

supervised topic model (sLDA) (Blei and McAuliffe, 2007), which captures real-valued document

rating as a regression response; multi-class sLDA (Wang et al., 2009), which directly captures dis-

crete labels of documents as a classification response; and discriminative LDA (DiscLDA) (Lacoste-

Julien et al., 2008), which also performs classification, but with a mechanism different from that of

sLDA. All these models focus on the document-level side information such as document categories

or review rating scores to supervise model learning. More variants of supervised topic models can

be found in a number of applied domains, such as the aspect rating model (Titov and McDonald,

2008) for predicting ratings for each aspect of a hotel and the credit attribution model (Ramage

et al., 2009) that associates each word with a label. In computer vision, several supervised topic

models have been designed for understanding complex scene images (Sudderth et al., 2005; Fei-Fei

and Perona, 2005; Li et al., 2009). Mimno and McCallum (2008) also proposed a topic model for

considering document-level meta-data, for example, publication date and venue of a paper.

It is worth pointing out that among existing supervised topic models for incorporating side infor-

mation, there are two classes of approaches, namely, downstream supervised topic model (DSTM)

and upstream supervised topic model (USTM). In a DSTM the response variable is predicted based

on the latent representation of the document, whereas in an USTM the response variable is being

conditioned on to generate the latent representation of the document. Examples of USTM3 include

DiscLDA and the scene understanding models (Sudderth et al., 2005; Li et al., 2009), whereas

1. Yahoo directory can be found at http://dir.yahoo.com/.

2. Amazon Mechanical Turk can be found at https://www.mturk.com/.

3. The model presented by Mimno and McCallum (2008) is also an upstream model for incorporating document meta-

features.
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sLDA is an example of DSTM. Another distinction between existing supervised topic models is

the training criterion, or more precisely, the choice of objective function in the optimization-based

learning. The sLDA model is trained by maximizing the joint likelihood of the content data (e.g.,

text or image) and the responses (e.g., labeling or rating), whereas DiscLDA is trained by maximiz-

ing the conditional likelihood of the responses given contents. To the best of our knowledge, all the

existing supervised topic models are trained by optimizing a likelihood-based objective; the highly

successful margin-based objectives such as the hinge loss commonly used in discriminative models

such as SVMs have never been employed.

In this paper, we propose maximum entropy discrimination latent Dirichlet allocation (MedLDA),

a supervised topic model leveraging the maximum margin principle for making more effective use

of side information during estimation of latent topical representations. Unlike existing supervised

topic models mentioned above, MedLDA employs an arguably more discriminative max-margin

learning technique within a probabilistic framework; and unlike the commonly adopted two-stage

heuristic which first estimates a latent topic vector for each document using a topic model and then

feeds them to another downstream prediction model, MedLDA integrates the mechanism behind the

max-margin prediction models (e.g., SVMs) with the mechanism behind the hierarchical Bayesian

topic models (e.g., LDA) under a unified constrained optimization framework. It employs a com-

posite objective motivated by a tradeoff between two components—the negative log-likelihood of

an underlying topic model which measures the goodness of fit for document contents, and a measure

of prediction error on training data. It then seeks a regularized posterior distribution of the predic-

tive function in a feasible space defined by a set of expected margin constraints generalized from the

SVM-style margin constraints. The resultant inference problem is intractable; to circumvent this,

we relax the original objective by using a variational upper bound of the negative log-likelihood

and a surrogate convex loss function that upper bounds the training error. Our proposed approach

builds on earlier developments in maximum entropy discrimination (MED) (Jaakkola et al., 1999;

Jebara, 2001) and partially observed maximum entropy discrimination Markov network (PoMEN)

(Zhu et al., 2008), but is significantly different and more powerful. In MedLDA, because of the

influence of both the likelihood function over content data (e.g., text or image) and margin con-

straints induced by the side information, the discovery of latent topics is therefore coupled with the

max-margin estimation of model parameters. This interplay can yield latent topical representations

that are more discriminative and more suitable for supervised prediction tasks, as we demonstrate

in the experimental section.

In fact, the methodology we develop in this paper generalizes beyond learning topic models; it

can be applied to perform max-margin learning for various types of graphical models, including di-

rected Bayesian networks, for example, LDA, sLDA and topic models with different priors such as

the correlated topic models (Blei and Lafferty, 2005), and undirected Markov networks, for example,

exponential family harmoniums (Welling et al., 2004) and replicated softmax (Salakhutdinov and

Hinton, 2009) (See Section 4 for an extensive discussion). In this paper, we focus on the scenario of

downstream supervised topic models, and we present several concrete examples of MedLDA that

build on the original LDA to learn “discriminative topics” that allow more salient topic proportion

vector θθθ to be inferred for every document, evidenced by a significant improvement of accuracy of

both regression and classification of documents based on the θθθ resulted from MedLDA, over the

θθθ resulted from either the vanilla unsupervised LDA or even sLDA and alike. We also present an

efficient and easy-to-implement variational approach for inference under MedLDA, with a running

time comparable to that of an unsupervised LDA and lower than other likelihood-based supervised
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Figure 1: Graphical illustration of (Left) unsupervised LDA (Blei et al., 2003); and (Right) super-

vised LDA (Blei and McAuliffe, 2007).

LDAs. This advantage stems from the fact that MedLDA can directly optimize a margin-based loss

instead of a likelihood-based one, and thereby avoids dealing with the normalization factor resul-

tant from a full probabilistic generative formulation (e.g., sLDA), which generally makes learning

harder.

The remainder of this paper is structured as follows. Section 2 introduces the preliminaries that

are needed to present MedLDA. Section 3 presents MedLDA models for both regression and clas-

sification, together with efficient variational algorithms. Section 4 discusses the generalization of

MedLDA to other topic models. Section 5 presents empirical studies of MedLDA. Finally, Section

6 concludes this paper with future research directions discussed. Part of the materials of this paper

build on conference proceedings presented earlier in Zhu et al. (2009); Zhu and Xing (2010).

2. Preliminaries

We begin with a brief overview of the fundamentals of topic models, support vector machines, and

the maximum entropy discrimination formulism (Jaakkola et al., 1999), which constitute the major

building blocks of the proposed MedLDA model.

2.1 Unsupervised and Supervised Topic Models

Latent Dirichlet allocation (LDA) (Blei et al., 2003) is a hierarchical Bayesian model that projects

a text document into a latent low dimensional space spanned by a set of automatically learned

topical bases. Each topic is a multinomial distribution over M words in a given vocabulary. Let

w = (w1, . . . ,wN) denote the vector of words appearing in a document (for notation simplicity,

we suppress the indexing subscript of N and assume that all documents have the same length N);

assume the number of topics to be an integer K, where K can be manually specified by a user or via

cross-validation; and let βββ = [βββ1, . . . ,βββK ] denote the M×K matrix of topic distribution parameters,

of which each βββk parameterizes a topic-specific multinomial word distribution. Under an LDA, the

likelihood of a document d corresponds to the following generative process:

1. Draw a topic mixing proportion vector θθθd according to a K-dimensional Dirichlet prior:

θθθd |ααα ∼ Dir(ααα);

2. For the n-th word in document d, where 1 ≤ n ≤ N,

(a) draw a topic assignment zdn according to θθθd : zdn|θθθd ∼ Mult(θθθd);

(b) draw the word instance wdn according to zdn: wdn|zdn,βββ ∼ Mult(βββzdn
),
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where zdn is a K-dimensional indicator vector (i.e., only one element is 1; all others are 0), an

instance of the topic assignment random variable Zdn. With a little abuse of notations, we use βββzdn

to denote the topic that is selected by the non-zero element of zdn.

According to the above generative process, an unsupervised LDA defines the following joint

distribution for a corpus D that contains D documents:

p({θθθd ,zd},W|ααα,βββ) =
D

∏
d=1

p(θθθd |ααα)
( N

∏
n=1

p(zdn|θθθd)p(wdn|zdn,βββ)
)

,

where W , {w1; · · · ;wD} denotes all the words in D , and zd , {zd1; · · · ;zdN}. To estimate the

unknown parameters (ααα,βββ), and to infer the posterior distributions of latent variables {θθθd ,zd}, an

EM procedure is developed to maximize the marginal data likelihood4 p(W|ααα,βββ). As we have

stated, θθθd represents the mixing proportion over K topics for document d, which can be treated as

a low-dimensional representation of the document. Moreover, since the posterior of zdn represents

the probability distribution that word n is assigned to one of the K topics; the average topic assign-

ment z̄d , 1
N ∑n zdn can also be treated as a representation of the document, as commonly done in

downstream supervised topic models (Blei and McAuliffe, 2007; Wang et al., 2009).

Due to intractability of the likelihood p(W|ααα,βββ), approximate inference algorithms based on

variational (Blei et al., 2003) or Markov Chain Monte Carlo (MCMC) (Griffiths and Steyvers, 2004)

methods have been widely used for parameter estimation and posterior inference under LDA. We

focus on variational inference in this paper. The following variational bound for unsupervised LDA

will be used later. Let q({θθθd ,zd}) represent a variational distribution that approximates the true

model posterior p({θθθd ,zd}|ααα,βββ,W), one can derive a variational bound Lu(q;ααα,βββ) for the likeli-

hood under unsupervised LDA:

Lu(q;ααα,βββ) ,−Eq[log p({θθθd ,zd},W|ααα,βββ)]−H (q({θθθd ,zd})) (1)

≥− log p(W|ααα,βββ),

where H (q) , −Eq[logq] is the entropy of q. By making some independence assumption (e.g.,

mean field) about q, Lu(q) can be efficiently optimized (Blei et al., 2003).

As we have stated, the unsupervised LDA described above does not use side information for

learning topics and inferring topic vectors θθθ. In order to consider side information appropriately for

discovering more predictive representations, supervised topic models (sLDA) (Blei and McAuliffe,

2007) introduce a response variable Y to LDA for each document, as shown in Figure 1. For

regression, where y ∈ R, the generative process of sLDA is similar to LDA, but with an additional

step—draw a response variable: y|zd,ηηη,δ
2 ∼ N (ηηη⊤z̄d ,δ

2) for each document d, where ηηη is the

regression weight vector and δ2 is a noise variance parameter. Then, the joint distribution of sLDA

is:

p({θθθd ,zd},y,W|ααα,βββ,ηηη,δ2) =
D

∏
d=1

p(θθθd |ααα)
( N

∏
n=1

p(zdn|θθθd)p(wdn|zdn,βββ)
)

p(yd |ηηη
⊤z̄d ,δ

2), (2)

4. We restrict ourselves to treat βββ as unknown parameters, as done in Blei and McAuliffe (2007) and Wang et al. (2009).

Extension to a Bayesian treatment of βββ (i.e., by putting a prior over βββ and inferring its posterior) can be easily done

both in LDA as shown in the literature (Blei et al., 2003) and in the MedLDA proposed here based on the regularized

Bayesian inference framework (Zhu et al., 2011b). But a systematical discussion is beyond the scope of this paper.

2241



ZHU, AHMED AND XING

where y , {y1; · · · ;yD}. In this case, the joint likelihood is p(y,W|ααα,βββ,ηηη,δ2). Given a new docu-

ment, the prediction is the expected response value

ŷ , E[Y |w,ααα,βββ,ηηη,δ2] = ηηη⊤
E[Z̄|w,ααα,βββ,δ2], (3)

where the average topic assignment random variable Z̄ , 1
N ∑n Zn (z̄ is an instance of Z̄), and the ex-

pectation is taken with respect to the posterior distribution of Z , {Z1; · · · ;ZN}. However, exact in-

ference is again intractable, and one can use the following variational upper bound L s(q;ααα,βββ,ηηη,δ2)
for supervised sLDA for approximate inference:

L s(q;ααα,βββ,ηηη,δ2) ,−Eq[log p({θθθd ,zd},y,W|ααα,βββ,ηηη,δ2)]−H (q({θd,zd})) (4)

≥− log p(y,W|ααα,βββ,ηηη,δ2).

By changing the model of generating Y , sLDA can deal with other types of response variables,

such as discrete ones for classification (Wang et al., 2009) using the multi-class logistic regression

p(y|ηηη,z) =
exp(ηηη⊤

y z̄)

∑y′ exp(ηηη⊤
y′ z̄)

, (5)

where ηηηy is the parameter vector associated with class label y. However, posterior inference in an

sLDA classification model can be more challenging than that in the sLDA regression model. This is

because the non-Gaussian probability distribution in Equation (5) is highly nonlinear of ηηη and z and

its normalization factor can make the topic assignments of different words in the same document

strongly coupled. Variational methods were successfully used to approximate the normalization

factor (Wang et al., 2009), but they can be computationally expensive as we shall demonstrate in the

experimental section.

DiscLDA (Lacoste-Julien et al., 2008) is yet another supervised topic model for classification.

DiscLDA is an upstream supervised topic model and as such the unknown parameter is the transfor-

mation matrix that is used to generate the document latent representations conditioned on the class

label; and this transformation matrix is learned by maximizing the conditional marginal likelihood

of the text given class labels.

This progress notwithstanding, to the best of our knowledge, current developments of super-

vised topic models have been solely built on a likelihood-driven probabilistic inference paradigm.

The arguably sometimes more powerful max-margin based techniques widely used in learning dis-

criminative models have not been exploited to learn supervised topic models. The main goal of this

paper is to systematically investigate how the max-margin principe can be exploited inside a topic

model to learn topics that are better at discriminating documents than current likelihood-driven

learning achieves while retaining semantic interpretability as the later allows. For this purpose, be-

low we briefly review the max-margin principle underlying a major technique built on this principle,

the support vector machines.

2.2 Support Vector Machines

Max-margin methods, such as support vector machines (SVMs) (Vapnik, 1998) and max-margin

Markov networks (M3N) (Taskar et al., 2003), have been successfully applied to a wide range of

discriminative problems such as document categorization and handwritten character recognition. It

has been shown that such methods enjoy strong generalization guarantees (Vapnik, 1998; Taskar
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et al., 2003). Depending on the nature of the response variable, the max-margin principle can be

exploited in both classification and regression. Below we use document rating prediction as an

example to recapitulate the ideas behind support vector regression (SVR) (Smola and Schölkopf,

2003), which we will shortly leverage to build our first instance of max-margin topic model.

Let D = {(x1,y1), · · · ,(xD,yD)} be a training set, where x ∈ X are inputs such as document-

feature vectors, and y ∈ R are response values such as user ratings. Using SVR, one obtains a

function h(x) ∈ F that makes at most ε deviation from the true response value y for each training

example, and at the same time is as flat as possible. One common choice of the function family F

is linear functions, that is, h(x;ηηη) = ηηη⊤f(x), where f = { f1, · · · , fI} is a vector of feature functions

fi : X → R, and ηηη is the corresponding weight vector. Formally, the linear SVR finds an optimal

linear function by solving the following constrained optimization problem:

P0(SVR) : min
ηηη,ξξξ,ξξξ

∗

1

2
‖ηηη‖2

2 +C
D

∑
d=1

(ξd +ξ∗d)

∀d, s.t. :







yd −ηηη⊤f(xd) ≤ ε+ξd

−yd +ηηη⊤f(xd) ≤ ε+ξ∗d
ξd ,ξ

∗
d ≥ 0

,

where ‖ηηη‖2 ,
√

ηηη⊤ηηη is the ℓ2-norm; ξξξ and ξξξ
∗

are slack variables that tolerate some errors in the

training data; ε is a precision parameter; and C is a positive regularization constant. Problem P0

can be equivalently formulated as a regularized empirical loss minimization, where the loss is the

so-called ε-insensitive loss (Smola and Schölkopf, 2003).

Under a standard SVR, P0 is a quadratic programming (QP) problem and can be easily solved

in a Lagrangian dual formulation. Samples with non-zero lagrange multipliers are called support

vectors, as in the SVM classification model. There exist several free packages for solving standard

SVR, such as SVM-light (Joachims, 1999). We will use these methods as a sub-routine in our

proposed approach, as we will detail in the sequel.

2.3 Maximum Entropy Discrimination

To unite the principles behind topic models and SVR, namely, Bayesian inference and max-margin

learning, we employ a formalism known as maximum entropy discrimination (MED) (Jaakkola

et al., 1999; Jebara, 2001), which learns a distribution of all possible regression/classification models

that belong to a particular parametric family, subject to a set of margin-based constraints. For

instance, the MED regression model, or simply MEDr, learns a distribution q(ηηη) through solving

the following optimization problem:

P1(MEDr) : min
q(ηηη),ξξξ,ξξξ

∗
KL(q(ηηη)‖p0(ηηη))+C

D

∑
d=1

(ξd +ξ∗d)

∀d, s.t. :







yd −E[ηηη]⊤f(xd) ≤ ε+ξd

−yd +E[ηηη]⊤f(xd) ≤ ε+ξ∗d
ξd ,ξ

∗
d ≥ 0

,

where p0(ηηη) is a prior distribution over the parameters and KL(p‖q),Ep[log(p/q)] is the Kullback-

Leibler (KL) divergence.
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As studied in Jebara (2001), this MED problem leads to an entropic-regularized posterior dis-

tribution of the SVR coefficients, q(ηηη); and the resultant predictor ŷ = Eq(ηηη)[h(x;ηηη)] enjoys several

nice properties and subsumes the standard SVR as special cases when the prior p0(η) is standard

normal (Jebara, 2001). Moreover, as shown in Zhu and Xing (2009); Zhu et al. (2011a), with dif-

ferent choices of the prior over ηηη, such as a sparsity-inducing Laplace or a nonparametric Dirichlet

process, the resultant q(ηηη) can exhibit a wide variety of characteristics and are suitable for diverse

utilities such as feature selection or learning complex non-linear discriminating functions. Finally,

the recent developments of the maximum entropy discrimination Markov network (MaxEnDNet)

(Zhu and Xing, 2009) and partially observed MaxEnDNet (PoMEN) (Zhu et al., 2008) have ex-

tended the basic MED to the much broader scenarios of learning structured prediction functions

with or without latent variables.

To apply the MED idea to learn a supervised topic model, a major difficulty is the presence

of heterogeneous latent variables in the topic models, such as the topic vector θθθ and topic indica-

tor Z. In the sequel, we present a novel formalism called maximum entropy discrimination LDA

(MedLDA) that extends the basic MED to make this possible, and at the same time discovers latent

discriminating topics present in the study corpus based on available discriminant side information.

3. MedLDA: Maximum Margin Supervised Topic Models

Now we present a new class of supervised topic models that explicitly employ labeling information

in the context of document classification or regression, under a unified statistical framework that

jointly optimizes over the cross entropy between a user supplied model prior and the aimed model

posterior, and over the margin of ensuing predictive tasks based on the learned model. This is

to contrast conventional heuristics that first learn a topic model, and then independently train a

classifier such as SVM using the per-document topic vectors resultant from the first step as inputs.

In such a heuristic, the document labels are never able to influence the way topics can be learned,

and the per-document topic vectors are often found to be not strongly predictive (Xing et al., 2005).

3.1 Regressional MedLDA

We first consider the scenario where the numerical-valued rating of documents in the corpus is

available, and our goal is to learn a supervised topic model specialized at predicting the rating of

new documents through a regression function. We call this model a Regressional MedLDA, or

simply, MedLDAr.

Instead of learning a point estimate of regression coefficient ηηη as in sLDA or SVR, we take

the more general Bayesian-style (i.e., an averaging model) approach as in MED and learn a joint

distribution5 q(ηηη,z) in a max-margin manner. For prediction, we take a weighted average over all

the possible models (represented by ηηη) and latent topical representations z, or more precisely, an

expectation of the prediction over q(ηηη,z), which is similar to that in Equation (3), but now over both

ηηη and Z, rather than only over Z:

ŷ , E[Y |w,ααα,βββ,δ2] = E[ηηη⊤Z̄|w,ααα,βββ,δ2]. (6)

Now, the question underlying the prediction rule (6) is how we can devise an appropriate objec-

tive function as well as constraints to learn a q(·) that leverages both the max-margin principle (for

5. In principle, we can perform Bayesian-style estimation for other parameters, like δ2. For simplicity, we only consider

ηηη as a random variable in this paper.
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strong predictivity) and the topic model architecture (for topic discovery). Below we begin with a

simple reformulation of the sLDA that makes this possible.

3.1.1 MAX-MARGIN TRAINING OF SLDA

Without loss of generality, we let q(ηηη,z) =
∫

θθθ q(ηηη)q(z,θθθ|ηηη), where q(ηηη) is the learned distribution

of the predictive regression coefficient, and q(z,θθθ|ηηη) is the learned distribution of the topic elements

of the documents analogous to an sLDA-style topic model, but estimated from a different learning

paradigm that leverages margin-based supervised training. As reviewed in Section 2.1, two good

templates for q(z,θθθ|ηηη) can be the original LDA or sLDA. For brevity, here we present a regres-

sional MedLDA that uses the supervised sLDA as the underlying topic model. As we shall see in

Section 3.2 and Appendix B, the underlying topic model can also be an unsupervised LDA.

Let p0(ηηη) denote a prior distribution of ηηη, then MedLDAr defines a joint distribution

p(ηηη,{θθθd ,zd},y,W|ααα,βββ,δ2) = p0(ηηη)p({θθθd ,zd},y,W|ααα,βββ,ηηη,δ2),

where the second factor has the same form as Equation (2) for sLDA, except that now ηηη is a random

variable and follows a prior p0(ηηη). Accordingly, the likelihood p(y,W|ααα,βββ,δ2) is an expectation of

the likelihood of sLDA under p0(ηηη), which makes it even harder than in sLDA to directly optimize.

Therefore, we choose to optimize a variational upper bound of the log-likelihood. We will discuss

other approximation methods in Section 4.

Let q(ηηη,{θθθd ,zd}) be a variational approximation to the posterior p(ηηη,{θθθd ,zd}|ααα,βββ,δ
2,y,W).

Then, an upper bound6 Lbs(q;ααα,βββ,δ2) of the negative log-likelihood is

Lbs(q;ααα,βββ,δ2) ,−Eq[log p(ηηη,{θθθd ,zd},y,W|ααα,βββ,δ2)]−H (q(ηηη,{θθθd ,zd}))

= KL(q(ηηη)‖p0(ηηη))+Eq(ηηη)[L
s]. (7)

We can see that the bound is also an expectation of sLDA’s variational bound L s in Equation (4). To

derive Equation (7), we should note that the variational distribution for sLDA is “conditioned on” its

model parameters, which include ηηη. Similarly, the distribution q in Lbs depends on the parameters

(ααα,βββ,δ2). For notation clarity, we have omitted the explicit dependence on parameters in variational

distributions.

Based on the MED principle and the variational bound in Equation (7), we define the learning

problem of MedLDAr as follows:

P2(MedLDA
r) : min

q,ααα,βββ,δ2,ξξξ,ξξξ
∗
Eq(ηηη)[L

s(q;ααα,βββ,δ2)]+KL(q(ηηη)‖p0(ηηη))+C
D

∑
d=1

(ξd +ξ∗d)

∀d, s.t. :







yd −E[ηηη⊤Z̄d ] ≤ ε+ξd

−yd +E[ηηη⊤Z̄d ] ≤ ε+ξ∗d
ξd,ξ

∗
d ≥ 0,

where ξξξ,ξξξ
∗

are slack variables, and ε is a precision parameter as in SVR. The margin constraints

in P2 are of the same form as those in P0, but in an expectation version because both the topic

assignments Z and parameters ηηη are latent random variables in MedLDAr.

6. “bs” stands for “Bayesian Supervised”.
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It is easy to verify that at the optimum, at most one of ξd and ξ∗d can be non-zero and ξd +ξ∗d =
max(0, |yd −E[ηηη⊤Z̄d ]|−ε), which is known as ε-insensitive loss (Smola and Schölkopf, 2003), that

is, if the current prediction ŷ as in Equation (6) does not deviate from the true response value too

much (i.e., less than ε), there is no loss; otherwise, a linear loss will be penalized. Mathemati-

cally, problem P2 can be equivalently written as a loss minimization problem without using slack

variables:

min
q,ααα,βββ,δ2

Lbs(q;ααα,βββ,δ2)+C
D

∑
d=1

max(0, |yd −E[ηηη⊤Z̄d ]|− ε), (8)

where the variational bound Lbs plays two roles—regularization and maximum likelihood estima-

tion. Specifically, as shown in Equation (7), Lbs decomposes into two parts. The first part of

KL-divergence is an entropic regularizer for q(ηηη); and the second term is an expected bound of the

data likelihood, as we have discussed. Therefore, problem P2 is a joint maximum margin learning

and maximum likelihood estimation (with appropriate regularization), and the two components are

coupled by sharing latent topic assignments Z and parameters ηηη.

The rationale underlying MedLDAr is that: by minimizing an integrated objective function, we

aim to find a latent topical representation and a document-rating prediction function which, on one

hand, can predict accurately on unseen data with a sufficient margin, and on the other hand, can

explain the data well (i.e., minimizing a variational bound of the negative log-likelihood). The max-

margin learning and topic discovery procedure are coupled together via the constraints, which are

defined on the expectations of model parameters ηηη and latent topical assignments Z. This interplay

will yield a topical representation that could be more suitable for prediction tasks, as explained

below and verified in experiments.

3.1.2 VARIATIONAL APPROXIMATION ALGORITHM FOR MEDLDAr

Minimizing Lbs is intractable. Here, we use mean field methods (Jordan et al., 1999) widely em-

ployed in fitting LDA and sLDA to efficiently obtain an approximate q for problem P2. Specifically,

we assume that q is a fully factorized mean-field approximation to p:

q(ηηη,{θθθd ,zd}) = q(ηηη)
D

∏
d=1

q(θθθd |γγγd)
N

∏
n=1

q(zdn|φφφdn),

where γγγd is a K-dimensional vector of Dirichlet parameters and each φφφdn parameterizes a multino-

mial distribution over K topics. It is easy to verify that:

E[Zdn] = φφφdn, and E[ηηη⊤Z̄d ] = E[ηηη]⊤(
1

N

N

∑
n=1

φφφdn).

Now, we develop a coordinate descent algorithm to solve the equivalent “unconstrained” for-

mulation (8). The algorithm is outlined in Algorithm 1 and detailed below.

(1) Solve for (ααα,βββ,δ2) and q(ηηη): When q({θθθd ,zd}) is fixed, this substep (in an equivalent con-

strained form) is to solve

min
q(ηηη),ααα,βββ,δ2,ξξξ,ξξξ

∗
Eq(ηηη)[L

s(q;ααα,βββ,δ2)]+KL(q(ηηη)‖p0(ηηη))+C
D

∑
d=1

(ξd +ξ∗d) (9)
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Algorithm 1 Variational MedLDAr

1: Input: corpus D = {(y,W)}, constants C and ε, and topic number K.

2: Output: Dirichlet parameters γγγ, posterior distribution q(ηηη), parameters ααα, βββ and δ2.

3: repeat

4: for d = 1 to D do

5: Update γγγd as in Equation (13).

6: for n = 1 to N do

7: Update φφφdn as in Equation (14).

8: end for

9: end for

10: Solve the dual problem D2 to get q(ηηη), µ̂µµ and µ̂µµ∗.

11: Update βββ using Equation (10), and update δ2 using Equation (11). Optimize ααα with gradient

descent or fix ααα as 1/K times the ones vector.

12: until convergence

∀d, s.t. :















yd −E[ηηη⊤Z̄d ]≤ ε+ξd , (µd)
−yd +E[ηηη⊤Z̄d ]≤ ε+ξ∗d , (µ∗d)

ξd ≥ 0, (vd)
ξ∗d ≥ 0, (v∗d),

where {µd ,µ
∗
d,vd,v

∗
d} are lagrange multipliers. Since the margin constraints are not dependent

on (ααα,βββ,δ2), we can solve for them using the same procedure as in sLDA, when q(ηηη) and

q({θθθd ,zd}) are given. Specifically, for ααα, the same gradient descent method as in Blei et al.

(2003) can be applied; for βββ, the update equations are the same as for sLDA:

βkw ∝
D

∑
d=1

N

∑
n=1

I(wdn = w)φk
dn, (10)

where I(·) is an indicator function that equals to 1 if the condition holds; otherwise 0; and for

δ2, the update rule is similar as that of sLDA but in an expected version, because ηηη is a random

variable:

δ2 =
1

D

(

y⊤y−2y⊤E[A]E[ηηη]+E[ηηη⊤
E[A⊤A]ηηη]

)

, (11)

where E[ηηη⊤
E[A⊤A]ηηη] = tr(E[A⊤A]E[ηηηηηη⊤]), and A is a D×K matrix whose rows are the vectors

Z̄⊤
d .

Solving for q(ηηη) can be done using Lagrangian methods, but it is a bit more delicate. For

brevity, we postpone the details of this step after we have finished presenting the overall proce-

dure. We denote the optimum lagrange multipliers by (µ̂µµ, µ̂µµ∗) and the optimum slack variables

by (ξ̂ξξ, ξ̂ξξ
∗
).

(2) Solve for q({θθθd ,zd}): By fixing q(ηηη) and (ααα,βββ,δ2), this substep (in an equivalent constrained

form) is to solve

min
q({θθθd ,zd}),ξξξ,ξξξ

∗
Eq(ηηη)[L

s(q;ααα,βββ,δ2)]+C
D

∑
d=1

(ξd +ξ∗d) (12)
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∀d, s.t. :







yd −E[ηηη⊤Z̄d ]≤ ε+ξd

−yd +E[ηηη⊤Z̄d ]≤ ε+ξ∗d
ξd,ξ

∗
d ≥ 0,

Since the constraints are not dependent on γγγd and q(ηηη) is also not directly connected with θθθd ,

we get the same update rule for γγγd as in sLDA:

γγγd = ααα+
N

∑
n=1

φφφdn. (13)

For q(zd), in theory, we can do the optimization to get the optimal solution of φφφ and the corre-

sponding optimal lagrange multipliers. But the full optimization would be expensive, especially

considering that this sub-step is within the most inner iteration loop and it would be performed

for many times. Here, we adopt an approximation strategy, which performs a single step update

of φφφ, rather than a full optimization. Note that this one-step approximation could lead to a slight

increase of the objective function during the iterations. Our empirical studies show that this

increase is usually within an acceptable range. More specifically, we fix (ξξξ,ξξξ
∗
) at (ξ̂ξξ, ξ̂ξξ

∗
) (the

optimum solution of the previous step) and set the lagrange multipliers to be (µ̂µµ, µ̂µµ∗). Then, we

have the closed-form update equation7

φφφdn ∝ exp
(

E[logθθθd |γγγd ]+ log p(wdn|βββ) +
yd

Nδ2
E[ηηη]−

2E[ηηη⊤φφφd,−nηηη]+E[ηηη◦ηηη]

2N2δ2

+
E[ηηη]

N
(µ̂d − µ̂∗d)

)

, (14)

where φφφd,−n , ∑i6=n φφφdi; ηηη ◦ηηη is the element-wise product; and the result of exponentiating a

vector is a vector of the exponentials of its corresponding components. Note that the first two

terms in the exponential are the same as those in LDA.

Remark 1 From the update rule of φφφ in Equation (14), we can see that the essential differences

between MedLDAr and sLDA lie in the last three terms in the exponential of φφφdn. Firstly, the third

and fourth terms are similar to those of sLDA, but in an expected version since we are learning the

distribution q(ηηη) instead of a point estimate of ηηη. The second-order expectations E[ηηη⊤φφφd,−nηηη] and

E[ηηη◦ηηη] mean that the co-variances of ηηη (See Corollary 3 for an example) affect the distribution over

topics. This makes our approach significantly different from a point estimation method, like sLDA,

where no expectations or co-variances are involved in updating φφφdn. Secondly, the last term is from

the max-margin regression formulation. For a document d, which lies on the decision boundary, that

is, a support vector, either µd or µ∗d is non-zero, and the last term biases φφφdn towards a distribution

that favors a more accurate prediction on the document. Moreover, the last term is fixed for words

in the document and thus will directly affect the latent representation of the document, that is, γγγd .

Therefore, the latent representation θθθd inferred under MedLDAr can be more suitable for supervised

prediction tasks. Our empirical studies further verify this, as we shall see in Section 5.

7. Before we update φφφ, (µ̂µµ, µ̂µµ∗) and (ξ̂ξξ, ξ̂ξξ
∗
) satisfy the optimal conditions (e.g., KKT conditions) of problem (12). So,

they are the initially optimal solutions. But after we have updated φφφ, the KKT conditions do not hold. This is the

reason why our strategy of not updating (µµµ,µµµ∗) and (ξξξ,ξξξ∗) could lead to a slight increase of the objective function.
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Now, we turn to the sub-step of solving for q(ηηη), as well as the slack variables and lagrange

multipliers. Specifically, we have the following result.

Proposition 2 For MedLDAr, the optimum solution of q(ηηη) has the form:

q(ηηη) =
p0(ηηη)

Z
exp

(

ηηη⊤
D

∑
d=1

(µ̂d − µ̂∗d +
yd

δ2
)E[Z̄d]−ηηη⊤E[A⊤A]

2δ2
ηηη
)

,

where E[A⊤A] = ∑D
d=1E[Z̄dZ̄⊤

d ], and E[Z̄dZ̄⊤
d ] =

1
N2 (∑

N
n=1 ∑m6=n φφφdnφφφ⊤

dm +∑N
n=1 diag{φφφdn}). The

lagrange multipliers (µ̂µµ, µ̂µµ∗) are the solution of the dual problem of (9):

D2 : max
µµµ,µµµ∗

− logZ − ε
D

∑
d=1

(µd +µ∗d)+
D

∑
d=1

yd(µd −µ∗d)

∀d, s.t. : µd ,µ
∗
d ∈ [0,C].

Proof (sketch) By setting the partial derivative of the Lagrangian functional over q(ηηη) equal to zero,

we can get the solution of q(ηηη). Plugging q(ηηη) into the Lagrangian functional and solving for the

optimal (vd ,v
∗
d) and (ξd,ξ

∗
d) as in the standard SVR to get the box constraints, we get the dual prob-

lem.

In MedLDAr, we can choose different priors to introduce some regularization effects. For the

standard normal prior, we have the following corollary:

Corollary 3 Assume the prior p0(ηηη) = N (0, I), where I is the identity matrix, then the optimum

solution of q(ηηη) is

q(ηηη) = N (λλλ,Σ),

where λλλ = Σ(∑D
d=1(µ̂d − µ̂∗d +

yd

δ2 )E[Z̄d]) is the mean and Σ = (I + 1/δ2
E[A⊤A])−1 is a K ×K co-

variance matrix. The dual problem D2 is now:

max
µµµ,µµµ∗

−
1

2
ωωω⊤Σωωω− ε

D

∑
d=1

(µd +µ∗d)+
D

∑
d=1

yd(µd −µ∗d) (15)

∀d, s.t. : µd ,µ
∗
d ∈ [0,C],

where ωωω = ∑D
d=1(µd −µ∗d +

yd

δ2 )E[Z̄d].

In the above Corollary, computation of Σ can be done robustly through Cholesky decomposition

of δ2I +E[A⊤A], an O(K3) procedure. Another example is the Laplace prior, which can lead to a

shrinkage effect (Zhu and Xing, 2009) that is useful in sparse problems. In this paper, we focus

on the normal prior and extension to the Laplace prior can be done similarly as in Zhu and Xing

(2009). For the standard normal prior, the dual optimization problem is a QP problem and can be

solved with any standard QP solvers, although they may not be so efficient. To leverage recent

developments in learning support vector regression models, we first prove the following corollary:
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Corollary 4 Assume the prior p0(ηηη) = N (0, I), then the mean λλλ of q(ηηη) in problem (9) is the

optimum solution of the following problem:

min
λλλ,ξξξ,ξξξ

∗

1

2
λλλ
⊤

Σ−1λλλ−λλλ
⊤(

D

∑
d=1

yd

δ2
E[Z̄d])+C

D

∑
d=1

(ξd +ξ∗d) (16)

∀d, s.t. :











yd −λλλ
⊤
E[Z̄d]≤ ε+ξd

−yd +λλλ
⊤
E[Z̄d]≤ ε+ξ∗d
ξd,ξ

∗
d ≥ 0

Proof See Appendix A for details.

The above primal form can be re-formulated as a standard SVR problem. Specifically, we do

Cholesky decomposition Σ−1 = U⊤U , where U is an upper triangular matrix with strict positive

diagonal entries. Let ννν = ∑D
d=1

yd

δ2E[Z̄d], and we define λλλ
′ = U(λλλ−Σννν); y′d = yd −ννν⊤ΣE[Z̄d]; and

xd = (U−1)⊤E[Z̄d]. Then, the above primal problem in Corollary 4 can be re-formulated as the

following standard form:

min
λλλ′,ξξξ,ξξξ

∗

1

2
‖λλλ

′‖2
2 +C

D

∑
d=1

(ξd +ξ∗d) (17)

∀d, s.t. :







y′d − (λλλ′)⊤xd ≤ ε+ξd

−y′d +(λλλ′)⊤xd ≤ ε+ξ∗d
ξd,ξ

∗
d ≥ 0

.

Then, we can solve the standard SVR problem using existing algorithms, such as the working

set selection algorithm implemented in SVM-light (Joachims, 1999), to get the dual parameters8 µ̂µµ

and µ̂µµ∗ (as well as slack variables ξ̂ξξ and ξ̂ξξ
∗
), which are needed to infer φφφ as defined in (14), and the

primal parameters λλλ
′
which we use to get λλλ by doing a reverse transformation since λλλ

′ =U(λλλ−Σννν)
as defined above. The other lagrange multipliers, which are not explicitly involved in topic inference

and estimation of q(ηηη), are solved according to KKT conditions.

3.2 Classificational MedLDA

Now, we present the MedLDA classification model, of which the discrete labels of the documents

are available, and our goal is to learn a supervised topic model specialized at predicting the labels

of new documents through a discriminant function. We call this model a Classificational MedLDA,

or simply, MedLDAc.

Denoting the discrete response variable by Y , for brevity, we only consider the multi-class

classification, where y takes values from a finite set C , {1,2, · · · ,J}. The binary case, where

C , {+1,−1}, can be easily defined based on a binary SVM and the optimization problem can be

solved similarly. For classification, if the latent topic assignments z , {z1; · · · ;zN} of all the words

in a document are given, we define the latent linear discriminant function

F(y,z,ηηη;w) = ηηη⊤
y z̄,

8. Not all existing solvers return the dual parameters µ̂µµ and µ̂µµ∗. SVM-light is one nice package that provides both primal

parameters λλλ′
and the dual parameters. Note that the above transformation from (16) to (17) is done in the primal

form and does not affect the solution of dual parameters of (15).
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where z̄ , 1/N ∑n zn, the same as in the case of MedLDA regression model; ηηηy is a class-specific

K-dimensional parameter vector associated with class y; and ηηη is a |C |K-dimensional vector by

stacking the elements of ηηηy. Equivalently, F can be written as F(y,z,ηηη;w) = ηηη⊤f(y, z̄), where

f(y, z̄) is a feature vector whose components from (y− 1)K + 1 to yK are those of the vector z̄ and

all the others are 0.

However, we cannot directly use the latent function F(y,z,ηηη;w) to make prediction for an ob-

served input w of a document because the topic assignments z are hidden variables. Here, we also

treat ηηη as a random vector and consider the general case to learn a distribution of q(ηηη). In order to

deal with the uncertainty of z and ηηη, similar to MedLDAr, we take the expectation over q(ηηη,z) and

define the effective discriminant function

F(y;w) = E[F(y,Z,ηηη;w)] = E[ηηη⊤f(y, Z̄)|ααα,βββ,w],

where Z , {Z1; · · · ;ZN} is the set of topic assignment random variables and Z̄ , 1/N ∑n Zn is the

average topic assignment random variable as defined before. Then, the prediction rule for multi-

class classification is naturally

ŷ = argmax
y∈C

F(y;w) = argmax
y∈C

E[ηηη⊤f(y, Z̄)|ααα,βββ,w]. (18)

Our goal here is to learn an optimal set of parameters (ααα,βββ) and distribution q(ηηη). As in

MedLDAr, we have the option of using either a supervised sLDA (Wang et al., 2009) or an unsuper-

vised LDA as a building block of MedLDAc to discover latent topical representations. However, as

we have discussed in Section 2.1 and shown by Wang et al. (2009) as well as Section 5.3.1, inference

under sLDA can be harder and slower because the probability model of discrete Y in Equation (5) is

highly nonlinear over ηηη and Z, both of which are latent variables in our case, and its normalization

factor strongly couples the topic assignments of different words in the same document. Therefore,

in this paper we focus on the case of using an LDA that only models the likelihood of document

contents W but not document label Y as the underlying topic model to discover latent represen-

tations Z. Even with this likelihood model, document labels can still influence topic learning and

inference because they induce margin constraints pertinent to the topical distributions. As we shall

see, the resultant MedLDA classification model can be easily and efficiently learned by using exist-

ing high-performance SVM solvers. Moreover, since the goal of max-margin learning is to directly

minimize a hinge loss (i.e., an upper bound of the empirical loss), we do not need a normalized

distribution model for response variables Y .

3.2.1 MAX-MARGIN LEARNING OF LDA FOR CLASSIFICATION

The LDA component inside the MedLDAc defines a likelihood function p(W|ααα,βββ) over the cor-

pus D , which is known to be intractable. Therefore, we choose to optimize its variational bound

Lu(q;ααα,βββ) in Equation (1), which facilitates efficient approximation algorithms. The integrated

problem of discovering latent topical representations and learning a distribution of classifiers is

defined as follows:

P3(MedLDAc) : min
q,q(ηηη),ααα,βββ,ξξξ

Lu(q;ααα,βββ)+KL(q(ηηη)||p0(ηηη))+
C

D

D

∑
d=1

ξd

∀d, y ∈ C , s.t. :

{

E[ηηη⊤∆fd(y)]≥ ∆ℓd(y)−ξd

ξd ≥ 0,
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where q denotes the variational distribution q({θθθd ,zd}); ∆ℓd(y) is a non-negative cost function (e.g.,

0/1 cost as typically used in SVMs) that measures how different the prediction y is from the true

class label yd ; ∆fd(y) , f(yd , Z̄d)− f(y, Z̄d); and ξξξ are slack variables.9 It is typically assumed that

∆ℓd(yd) = 0, that is, no cost for a correct prediction. Finally,

E[ηηη⊤∆fd(y)] = F(yd ;wd)−F(y;wd)

is the “expected margin” by which the true label yd is favored over a prediction y.

Note that we have taken a full expectation to define F(y;w), instead of taking the mode as

done in latent SVMs (Felzenszwalb et al., 2010; Yu and Joachims, 2009), because expectation is a

nice linear functional of the distributions under which it is taken, whereas taking the mode involves

the highly nonlinear argmax function for discrete Z, which could lead to a harder inference task.

Furthermore, due to the same reason to avoid dealing with a highly nonlinear discriminant function,

we did not adopt the method in Jebara (2001) either, which uses log-likelihood ratio to define the

discriminant function when considering latent variables in MED. Specifically, in our case, the max-

margin constraints of the standard MED would be

∀d, ∀y ∈ C , log
p(yd |wd,ααα,βββ)

p(y|wd,ααα,βββ)
≥ ∆ℓd(y)−ξd,

which are highly nonlinear due to the complex form of the marginal likelihood p(y|wd,ααα,βββ) =∫
θθθd

∑zd
p(y,θθθd ,zd|wd ,ααα,βββ). Our linear expectation operator is an effective tool to deal with latent

variables in the context of maximum margin learning. In fact, besides the present work, we have

successfully applied this operator to other challenging settings of learning latent variable structured

prediction models with nontrivial dependence structures among output variables (Zhu et al., 2008)

and learning nonparametric Bayesian models (Zhu et al., 2011b,a). These expected margin con-

straints also make MedLDAc fundamentally different from the mixture of conditional max-entropy

models (Pavlov et al., 2003), where constraints are based on moment matching, that is, empirical

expectations of features equal to their model expectations.

By setting ξξξ to their optimum solutions, that is, ξd = maxy(∆ℓd(y)−E[ηηη⊤∆fd(y)]), we can

rewrite problem P3 in the form of regularized empirical loss minimization

min
q,q(ηηη),ααα,βββ

Lu(q;ααα,βββ)+KL(q(ηηη)||p0(ηηη))+CR (q,q(ηηη)), (19)

where

R (q,q(ηηη)),
1

D

D

∑
d=1

max
y∈C

(∆ℓd(y)−E[ηηη⊤∆fd(y)])

is an upper bound of the training error of the prediction rule in Equation (18) and C is again the

regularization constant. However, different from MedLDAr, which uses a Bayesian supervised

sLDA as the underlying likelihood model, here the variational bound Lu does not contain a cross-

entropy term on q(ηηη) for its regularization (as in Lbs in Equation (7)). Therefore, we include the

KL-divergence in problem P3 as an explicit entropic regularizer for the distribution q(ηηη).

9. Since multi-class SVM is a special case of max-margin Markov networks, we follow the common conventions and

use the same notations as in structured max-margin methods (Taskar et al., 2003; Joachims et al., 2009).
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The rationale underlying MedLDAc is similar to that of MedLDAr, that is, we want to find latent

topical representations q({θθθd ,zd}) and a model parameter distribution q(ηηη) which on one hand tend

to predict as accurate as possible on training data, while on the other hand tend to explain the data

well. The two parts are closely coupled by the expected margin constraints.

3.2.2 VARIATIONAL ALGORITHM FOR MEDLDAc

As in MedLDAr, we make the fully-factorized mean field assumption that

q({θθθd ,zd}) =
D

∏
d=1

q(θθθd |γγγd)
N

∏
n=1

q(zdn|φφφdn),

where γγγd and φφφdn are variational parameters, having the same meaning as in MedLDAr. Then, we

have E[ηηη⊤f(y, Z̄d)] = E[ηηη]⊤f(y,1/N ∑N
n=1 φφφdn). We develop a similar coordinate descent algorithm

to solve the “unconstrained” formulation in (19). Since the constraints in P3 are not on γγγ, ααα or βββ,

their update rules are the same as in the case of MedLDAr and we omit the details here. Below,

we explain the optimization over q({zd}) and q(ηηη) and show the insights of the max-margin topic

model.

Optimize over q(ηηη): As in the case of regression, we have the following solution:

Corollary 5 When (ααα,βββ) and q({θθθd ,zd}) are fixed, the optimum solution q(ηηη) of MedLDAc in

problem P3 has the form:

q(ηηη) =
1

Z
p0(ηηη)exp

(

ηηη⊤(
D

∑
d=1

∑
y∈C

µ̂
y
dE[∆fd(y)])

)

,

where the lagrange multipliers µ̂µµ are the optimum solution of the dual problem:

D3 : max
µµµ
− logZ +

D

∑
d=1

∑
y∈C

µ
y
d∆ℓd(y)

∀d, s.t. :∑
y∈C

µ
y
d ∈ [0,

C

D
],

Again, we can choose different priors in MedLDAc for different regularization effects. We consider

the normal prior in this paper. For the standard normal prior p0(ηηη) = N (0, I), we can get: q(ηηη)
is a normal with a shifted mean, that is, q(ηηη) = N (λλλ, I), where λλλ = ∑D

d=1 ∑y∈C µ
y
dE[∆fd(y)], and

the dual problem D3 thus becomes the same as the dual problem of a standard multi-class SVM

(Crammer and Singer, 2001):

max
µµµ

−
1

2
‖

D

∑
d=1

∑
y∈C

µ
y
dE[∆fd(y)]‖

2
2 +

D

∑
d=1

∑
y∈C

µ
y
d∆ℓd(y) (20)

∀d, s.t. : ∑
y∈C

µ
y
d ∈ [0,

C

D
].

The primal form of problem (20) is

min
λλλ,ξξξ

1

2
‖λλλ‖2

2 +
C

D

D

∑
d=1

ξd

∀d, ∀y ∈ C , s.t. :

{

λλλ
⊤
E[∆fd(y)]≥ ∆ℓd(y)−ξd

ξd ≥ 0.

2253



ZHU, AHMED AND XING

Optimize over q({zd}): again, since q is fully factorized, we can perform the optimization on

each document separately. We have

φφφdn ∝ exp
(

E[logθθθd |γγγd ]+ log p(wdn|βββ)+
1

N
∑
y∈C

µ̂
y
dE[ηηηyd

−ηηηy]
)

, (21)

where we can see that the first two terms in Equation (21) are the same as in unsupervised LDA

(Blei et al., 2003), and the last term is due to the max-margin formulation of P3 and reflects our in-

tuition that the discovered latent topical representation is influenced by the margin constraints. For

those examples that are on the decision boundary, that is, support vectors, their associated lagrange

multipliers are non-zero and thus the last term acts as a regularizer that biases the model towards

discovering latent representations that tend to make more accurate prediction on these difficult ex-

amples. Moreover, this term is fixed for words in the document and thus will directly affect the

latent representation of the document (i.e., γγγd) and therefore leads to a discriminative latent repre-

sentation. As we shall see in Section 5, such an estimate is more suitable for the classification task:

for instance, MedLDAc needs much fewer support vectors than the max-margin classifiers that are

built on raw text or the topical representations discovered by LDA.

The above formulation of MedLDAc has a slack variable associated with each document. This

is known as the n-slack formulation (Joachims et al., 2009). Another equivalent formulation, which

can be more efficiently solved, is the so called 1-slack formulation. The 1-slack MedLDAc can be

written as follows

P4(1-slack MedLDAc) : min
q,q(ηηη),ααα,βββ,ξ

Lu(q)+KL(q(ηηη)||p0(ηηη))+Cξ

∀(ȳ1, · · · , ȳD), s.t. :

{

1
D ∑D

d=1E[ηηη
⊤∆fd(ȳd)] ≥

1
D ∑D

d=1 ∆ℓd(ȳd)−ξ

ξ ≥ 0.

By using the above developed variational algorithm and the cutting plane algorithm for solving the

1-slack as well as n-slack multi-class SVMs (Joachims et al., 2009), which is implemented in the

SVMstruct package,10 we can solve the 1-slack or n-slack MedLDAc model efficiently, as we shall

see in Section 5.3.1. SVMstruct provides the solutions of the primal parameters λλλ as well as the dual

parameters µµµ, which are needed to do inference.

4. MedTM: A General Framework

We have presented two variants of MedLDA for discovering predictive latent topical representations

of documents, as well as learning discriminating topics from the corpus; and we have shown that

the underlying topic model that defines data likelihood can be either a supervised or an unsuper-

vised LDA. In fact, the likelihood component of MedLDA can be any other form of generative topic

model, such as correlated topic models (Blei and Lafferty, 2005), or latent space Markov random

fields, such as exponential family harmoniums (Welling et al., 2004; Xing et al., 2005; Chen et al.,

2010). The same principle can also be applied to upstream latent topic models, which have been

widely used in computer vision applications (Sudderth et al., 2005; Fei-Fei and Perona, 2005; Zhu

et al., 2010). In this section, we formulate a general framework of applying the max-margin princi-

ple to learn discriminative latent topic models when supervising side information is available, and

we discuss more insights on developing approximate inference algorithms.

10. SVMstruct can be found at http://svmlight.joachims.org/svm\_multiclass.html.
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Formally, a maximum entropy discrimination topic model (MedTM) consists of two components—

an underlying topic model that fits observed data and a MED max-margin model that performs

prediction. In an MedTM, we distinguish two types of latent variables—we use ϒ to denote the

parameters of the model pertaining to the prediction task (e.g., ηηη in sLDA), and H to denote the

topic assignment and mixing variables (e.g., z and θθθ). Let Ψ denote the parameters of the under-

lying topic model (e.g., the Dirichlet parameter ααα and topics βββ). Then, p(D|Ψ) is the marginal

data likelihood of the corpus D , which may or may not include the supervising side information

depending on choice of specific form of the underlying topic model.

As discussed before, for a general topic model, p(D|Ψ) is intractable, therefore a generic vari-

ational method can be employed. Let q(ϒ,H) be a variational distribution to approximate the pos-

terior p(ϒ,H|D,Ψ). By the properties of KL-divergence, the following equality holds if we do not

make any restricting assumption of q(ϒ,H)

− log p(D|Ψ) = min
q(ϒ,H)

(

−Eq(ϒ,H)[log p(ϒ,H,D|Ψ)]−H (q(ϒ,H))
)

= min
q(ϒ,H)

(

Eq(ϒ)

[

−Eq(H|ϒ)[log p(H,D|Ψ,ϒ)]−H (q(H|ϒ))
]

+KL(q(ϒ)‖p0(ϒ))
)

,

where p0(ϒ) is the prior distribution of ϒ. Let us define

L t(q(H|ϒ);Ψ,ϒ),−Eq(H|ϒ)[log p(H,D|Ψ,ϒ)]−H (q(H|ϒ)).

Then, L t(q(H|ϒ);Ψ,ϒ) is the variational bound of the data likelihood associated with the underlying

topic model. For instance, when the underlying topic model is supervised sLDA, L t reduces to L s,

as we discussed in Equation (7). When the underlying topic model is unsupervised LDA, the corpus

D only contains document contents, and p(H,D|Ψ,ϒ) = p(H,D|Ψ). The reduction of L t to Lu

needs a simplifying assumption that q(ϒ,H) = q(ϒ)q(H) (in fact, much stricter assumptions on q

are usually needed to make the learning of MedLDAc tractable).

Mathematically, we define MedTM as solving the following entropic-regularized problem:

P5(MedTM) : min
q(ϒ,H),Ψ,ξξξ

Eq(ϒ)

[

L t(q(H|ϒ);Ψ,ϒ)
]

+KL(q(ϒ)‖p0(ϒ))+U(ξξξ)

s.t. : q(ϒ,H) satisfies the expected margin constraints.

where U is a convex function over slack variables, such as U(ξξξ) = C
D ∑d ξd in MedLDAc. As

we have discussed in Section 3.2.1, by using the linear expectation operator, our expected margin

constraints are different from and simpler than those derived using a log-likelihood ratio function in

the standard MED with latent variables (Jebara, 2001).

This formulation allows efficient approximate inference to be developed. In general, the diffi-

culty of solving the optimization problem of MedTM lies in two aspects. First, the data likelihood

or its equivalent variational form as involved in the objective function is generally intractable to

compute if we do not make any restricting assumption about q(ϒ,H). Second, the posterior infer-

ence (e.g., in LDA) as required in evaluating the margin constraints is generally intractable. Based

on recent developments on learning latent topic models, two commonly used approaches can be ap-

plied to get an approximate solution to P5(MedTM), namely, Markov Chain Monte Carlo (MCMC)

(Griffiths and Steyvers, 2004) and variational (Blei et al., 2003; Teh et al., 2006) methods. For

variational methods, which are our focus in this paper, we need to make some additional restricting

2255



ZHU, AHMED AND XING

assumptions, such as the commonly used mean field assumption, about the distribution q(ϒ,H).
Then, P5 can be efficiently solved with a coordinate descent procedure, similar to what we have

done for MedLDAr and MedLDAc. For MCMC methods, the difference lies in sampling from the

distribution q(ϒ,H) under margin constraints—evaluating the expected margin constraints is easy

once we obtain samples from the posterior. Several approaches were proposed to deal with the

problem of sampling from a distribution under some constraints such as Schofield (2007), Griffiths

(2002), Rodriguez-Yam et al. (2004) and Damien and Walker (2001) to name a few, and we plan to

investigate their suitability to our case in the future.

Finally, based on the recent extensions of MED to the structured prediction setting (Zhu and

Xing, 2009; Zhu et al., 2008), the basic principle of MedLDA can be similarly extended to perform

structured prediction, where multiple response variables are predicted simultaneously and thus their

mutual dependencies can be exploited to achieve globally consistent and optimal predictions. Like-

lihood based structured prediction latent topic models have been developed in different scenarios,

such as image annotation (He and Zemel, 2008) and statistical machine translation (Zhao and Xing,

2007). Extension of MedLDA to the structured prediction setting could provide a promising alter-

native for such problems.

5. Experiments

In this section, we provide qualitative as well as quantitative evaluation of MedLDA on topic esti-

mation, document classification and regression. For MedLDA and other topic models (except Dis-

cLDA whose implementation details are explained in footnote 14), we optimize the K-dimensional

Dirichlet parameters ααα using the Newton-Raphson method (Blei et al., 2003). For initialization, we

set φφφ to be uniform and each topic βββk to be a uniform distribution plus a very small random noise,

and the posterior mean of ηηη to be zero. We have published our implementation on the website:

http://www.ml-thu.net/∼jun/software.html. In all the experimental results, by default, we also report

the standard deviation for a topic model with five randomly initialized runs.

5.1 Topic Estimation

We begin with an empirical assessment of topic estimation by MedLDA on the 20 Newsgroups data

set with a standard list of stop words11 removed. The data set contains about 20,000 postings in

20 related categories. We compare with unsupervised LDA.12 We fit the data set to a 110-topic

MedLDAc model, which exploits the supervising category information, and a 110-topic unsuper-

vised LDA, which ignores category information.

Figure 2 shows the 2D embedding of the inferred topic proportions θθθ (approximated by the in-

ferred variational posterior means) by MedLDAc and LDA using the t-SNE stochastic neighborhood

embedding (van der Maaten and Hinton, 2008) method, where each dot represents a document and

each color-shape pair represents a category. Visually, the max-margin based MedLDAc produces a

better grouping and separation of the documents in different categories. In contrast, unsupervised

LDA does not produce a well separated embedding, and documents in different categories tend to

mix together. Intuitively, a well-separated representation is more discriminative for document cat-

egorization. This is further empirically supported in Section 5.2. Note that a similar embedding

11. Stop word list can be found at http://mallet.cs.umass.edu/.

12. We implemented LDA based on the public variational inference code by Dr. David Blei, using same data structures

as MedLDA for fair comparison.
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Figure 2: t-SNE 2D embedding of the topical representation by: MedLDAc (above) and unsuper-

vised LDA (below). The mapping between each index and category name can be found

in: http://people.csail.mit.edu/jrennie/20Newsgroups/.
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Class MedLDA LDA Average θ per class

comp.graphics

T 69 T 11 T 80 T 59 T 104 T 31

image graphics db image ftp card

jpeg image key jpeg pub monitor

gif data chip color graphics dos

file ftp encryption file mail video

color software clipper gif version apple

files pub system images tar windows

bit mail government format file drivers

images package keys bit information vga

format fax law files send cards

program images escrow display server graphics

sci.electronics

T 32 T 95 T 46 T 30 T 84 T 44

ground audio source power water sale

wire output rs ground energy price

power input time wire air offer

wiring signal john circuit nuclear shipping

don chip cycle supply loop sell

current high low voltage hot interested

circuit data dixie current cold mail

neutral mhz dog wiring cooling condition

writes time weeks signal heat email

work good face cable temperature cd

politics.mideast

T 30 T 40 T 51 T 42 T 78 T 47

israel turkish israel israel jews armenian

israeli armenian lebanese israeli jewish turkish

jews armenians israeli peace israel armenians

arab armenia lebanon writes israeli armenia

writes people people article arab turks

people turks attacks arab people genocide

article greek soldiers war arabs russian

jewish turkey villages lebanese center soviet

state government peace lebanon jew people

rights soviet writes people nazi muslim

misc.forsale

T 109 T 110 T 84 T 44 T 94 T 49

sale drive mac sale don drive

price scsi apple price mail scsi

shipping mb monitor offer call disk

offer drives bit shipping package hard

mail controller mhz sell writes mb

condition disk card interested send drives

interested ide video mail number ide

sell hard speed condition ve controller

email bus memory email hotel floppy

dos system system cd credit system

Figure 3: Top topics under each class as discovered by the MedLDA and LDA models.

was presented by Lacoste-Julien et al. (2008), where the transformation matrix in their model is

pre-designed. The results of MedLDAc in Figure 2 are automatically learned.

It is also interesting to examine the discovered topics and their relevance to class labels. In

Figure 3 we show the top topics in four example categories as discovered by both MedLDAc and

LDA. Here, the semantic meaning of each topic is represented by the first 10 high probability words.

To visually illustrate the discriminative power of the latent representations, that is, the topic

proportion vector θθθ of documents, we illustrate and compare the per-class distribution over topics

for each model at the right side of Figure 3. This distribution is computed by averaging the expected

topic vector of the documents in each class. We can see that MedLDAc yields sharper, sparser and

fast decaying per-class distributions over topics. For the documents in different categories, we
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Figure 4: The average entropy of θθθ over documents of different topic models on 20 Newsgroups

data.

can see that their per-class average distributions over topics are very different, which suggests that

the topical representations by MedLDAc have a good discrimination power. Also, the sharper and

sparser representations by MedLDAc can result in a simpler max-margin classifier (e.g., with fewer

support vectors), as we shall see in Section 5.2.1. All these observations suggest that the topical

representations discovered by MedLDAc have a better discriminative power and are more suitable

for prediction tasks (Please see Section 5.2 for prediction performance). This behavior of MedLDAc

is in fact due to the regularization effect enforced over φφφ as shown in Equation (21). On the other

hand, LDA seems to discover topics that model the fine details of documents, possibly at the cost

of achieving weaker discrimination power (i.e., it discovers different variations of the same topic

which results in a flat per-class distribution over topics). For instance, in the class comp.graphics,

MedLDAc mainly models documents in this class using two salient, discriminative topics (T69 and

T11) whereas LDA results in a much flatter distribution. Moreover, in the cases where LDA and

MedLDAc discover comparably the same set of topics in a given class (like politics.mideast and

misc.forsale), MedLDAc results in a sharper low dimensional representation.

A quantitative measure for the sparsity or sharpness of the distributions over topics is the en-

tropy. We compute the entropy of the inferred topic proportion for each document and take the

average over the corpus. Here, we compare MedLDAc with unsupervised LDA, supervised sLDA

for multi-class classification (multi-sLDA)13 (Wang et al., 2009) and DiscLDA14 (Lacoste-Julien

13. We thank the authors for providing their implementation, on which we made necessary slight modifications, for

example, improving the time efficiency and optimizing ααα.

14. DiscLDA is a conditional model that uses class-specific topics and shared topics. Since the code is not publicly

available, we implemented an in-house version by following the same strategy in the original paper and share K1

topics across classes and allocate K0 topics to each class, where K1 = 2K0, and we varied K0 = {1,2, · · ·}. We should

note here that Lacoste-Julien et al. (2008); Lacoste-Julien (2009) gave an optimization algorithm for learning the

topic structure (i.e., a transformation matrix), however since the code is not available, we resorted to one of the fixed

splitting strategies mentioned in the paper. Moreover, for the multi-class case, the authors only reported results using

the same fixed splitting strategy we mentioned above. For the number of iterations for training and inference, we

followed Lacoste-Julien (2009). Moreover, following Lacoste-Julien (2009) and personal communication with the

first author, we used symmetric Dirichlet priors on βββ and θθθ, and set the Dirichlet parameters at 0.01 and 0.1/(K0+K1),
respectively.
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et al., 2008). For DiscLDA, as in the original paper, we fix the transformation matrix and set it

to be diagonally sparse. We use the standard training/testing split15 to fit the models on training

data and infer the topic distributions on testing documents. Figure 4 shows the average entropy

of different models on testing documents when different topic numbers are chosen. For DiscLDA,

we set the class-specific topic number K0 = 1,2,3,4,5 and correspondingly K = 22,44,66,88,110.

We can see that MedLDAc yields the smallest entropy, which indicates that the probability mass

is concentrated on quite a few topics, consistent with the observations in Figure 3. In contrast, for

unsupervised LDA, the probability mass is more uniformly distributed on many topics (again con-

sistent with Figure 3), which results in a higher entropy. For DiscLDA, although the transformation

matrix is designed to be diagonally sparse, the distributions over the class-specific topics and shared

topics are flat. Therefore, the entropy is also high. Using automatically learned transition matrices

might improve the sparsity of DiscLDA.

5.2 Prediction Accuracy

In this subsection, we provide a quantitative evaluation of MedLDA on prediction performance for

both document classification and regression.

5.2.1 CLASSIFICATION

We perform binary and multi-class classification on the 20 Newsgroup data set. To obtain a baseline,

we first fit all the data to an LDA model, and then use the latent representation of the training16

documents as features to build a binary or multi-class SVM classifier. We denote this baseline by

LDA+SVM.

Binary Classification: As Lacoste-Julien et al. (2008) did, the binary classification is to distin-

guish postings of the newsgroup alt.atheism and the postings of the group talk.religion.misc. The

training set contains 856 documents with a split of 480/376 over the two categories, and the test

set contains 569 documents with a split of 318/251 over the two categories. Therefore, the naı̈ve

baseline that predicts the most frequent category for all test documents has accuracy 0.672.

We compare the binary MedLDAc with supervised LDA, DiscLDA, LDA+SVM, and the stan-

dard binary SVM built on raw text features. For supervised LDA, we use both the regression model

(sLDA) (Blei and McAuliffe, 2007) and the multi-class classification model (multi-sLDA) (Wang

et al., 2009). For the sLDA regression model, we fit it using the binary representation (0/1) of the

classes, and use a threshold 0.5 to make prediction. For MedLDAc, to see whether a second-stage

max-margin classifier can improve the performance, we also build a method of MedLDAc+SVM,

similar to LDA+SVM. For DiscLDA, we fix the transition matrix. Automatically learning the tran-

sition matrix can yield slightly better results, as reported by Lacoste-Julien (2009). For all the above

methods that use the class label information, they are fit ONLY on the training data.

We use the SVM-light (Joachims, 1999), which provides both primal and dual parameters, to

build SVM classifiers and to estimate the posterior mean of ηηη in MedLDAc. The parameter C is

chosen via 5 fold cross-validation during training from {k2 : k = 1, · · · ,8}. For each model, we run

the experiments for 5 times and take the average as the final results. The prediction accuracy of

different models with respect to the number of topics is shown in Figure 5(a). For DiscLDA, we

15. Split can be found at http://people.csail.mit.edu/jrennie/20Newsgroups/.

16. We use the training/testing split in http://people.csail.mit.edu/jrennie/20Newsgroups/.
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Figure 5: Classification accuracy of different models for: (a) binary and (b) multi-class classifica-

tion on the 20 Newsgroup data.

follow Lacoste-Julien et al. (2008) to set K = 2K0 +K1, where K0 is the number of class-specific

topics and K1 is the number of shared topics, and K1 = 2K0. Here, we set K0 = 1, · · · ,8,10.

We can see that the max-margin MedLDAc performs better than the likelihood-based down-

stream models, include multi-sLDA, sLDA, and the baseline LDA+SVM. The best performances of

the two discriminative models (i.e., MedLDAc and DiscLDA) are comparable. However, MedLDAc

is easier to learn and faster in testing, as we shall see in Section 5.3.2. Moreover, the different ap-

proximate inference algorithms used in MedLDAc (i.e., variational approximation) and DiscLDA

(i.e., Monte Carlo sampling methods) can also make the performance different. In our alterna-

tive implementation using collapsed variational inference (Teh et al., 2006) method for MedLDAc

(preliminary results in preparation for submission), we were able to achieve slightly better results.

However, the collapsed variational method is much more expensive. Finally, since MedLDAc al-

ready integrates the max-margin principle into its training, our conjecture is that the combination

of MedLDAc and SVM does not further improve the performance much on this task. We believe

that the slight differences between MedLDAc and MedLDAc+SVM are due to the tuning of regu-

larization parameters. For efficiency, we do not change the regularization constant C during training

MedLDAc. The performance of MedLDAc would be improved if we select a good C in different

iterations because the data representation is changing.

Multi-class Classification: We perform multi-class classification on 20 Newsgroups with all the

20 categories. The data set has a balanced distribution over the categories. For the test set, which

contains 7505 documents in total, the smallest category has 251 documents and the largest category

has 399 documents. For the training set, which contains 11269 documents, the smallest and the

largest categories contain 376 and 599 documents, respectively. Therefore, the naı̈ve baseline that

predicts the most frequent category for all the test documents has the classification accuracy 0.0532.

We compare MedLDAc with LDA+SVM, multi-sLDA, DiscLDA, and the standard multi-class

SVM built on raw text. We use the SVMstruct package with a cost function as ∆ℓd(y) , ℓI(y 6= yd)
to solve the sub-step of learning q(ηηη) and build the SVM classifiers for LDA+SVM. The parameter

ℓ is selected with 5 fold cross-validation.17 The average results as well as standard deviations over

17. The traditional 0/1 cost does not yield the best results. In most cases, the selected ℓ’s are around 16.

2261



ZHU, AHMED AND XING

0 1 4 8 12 16 20 24 28 32
0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

ℓ

A
c
c
u

ra
c
y

K=70

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

# 
su

pp
or

t v
ec

to
rs

SVM
LDA+SVM

MedLDAc−final

MedLDAc−avg

(b)

Figure 6: (a) Sensitivity to the cost parameter ℓ for the MedLDAc; and (b) the number of support

vectors for n-slack multi-class SVM, LDA+SVM, and n-slack MedLDAc. For MedLDAc,

we show both the number of support vectors at the final iteration and the average number

during training.

5 randomly initialized runs are shown in Figure 5(b). For DiscLDA, we use the same equation as in

Lacoste-Julien et al. (2008) to set the number of topics and set K0 = 1, · · · ,5. We can see that all the

supervised topic models discover more predictive topical representations for classification, and the

discriminative max-margin MedLDAc and DiscLDA perform comparably, slightly better than the

standard multi-class SVM (about 0.013± 0.003 improvement in accuracy). However, as we have

stated and will show in Section 5.3.2, MedLDAc is faster in testing than DiscLDA. As we shall see

shortly, MedLDAc needs much fewer support vectors than standard SVM.

Figure 6(a) shows the multi-class classification accuracy on the 20 Newsgroups data set for

MedLDAc with 70 topics. We show the results with ℓ manually set at 1,4,8,12, · · · ,32. We can see

that although the default 0/1-cost works well for MedLDAc, we can get better accuracy if we use

a larger cost for penalizing wrong predictions. The performance is quite stable when ℓ is set to be

larger than 8. The reason why ℓ affects the performance is that ℓ as well as C control: 1) the scale of

the posterior mean of ηηη and the Lagrangian multipliers µµµ, whose dot-product regularizes the topic

mixing proportions in Equation (21); and 2) the goodness of fit of the MED large-margin classifier

on the data (see Joachims et al., 2009, for another practical example that uses 0/ℓ-cost, where ℓ is

set at 100). For practical reasons, we only try a small subset of candidate C values in parameter

search, which can also influence the difference on performance in Figure 6(a). Performing very

careful parameter search on C could possibly shrink the difference. Finally, for a small ℓ (e.g., 1

for the standard 0/1-cost), we usually need a large C in order to obtain good performance. But our

empirical experience with SVMstruct shows that the multi-class SVM with a larger C (and smaller

ℓ) is typically more expensive to train than the SVM with a larger ℓ (and smaller C). That is one

reason why we choose to use a large ℓ.

Figure 6(b) shows the number of support vectors for MedLDAc, LDA+SVM, and the multi-class

SVM built on raw text features, which are high-dimensional (∼60,000 dimension for 20 Newsgroup

data) and sparse. Here we consider the traditional n-slack formulation of multi-class SVM and n-

slack MedLDAc using the SVMstruct package, where a support vector corresponds to a document-

label pair. For MedLDAc and LDA+SVM, we set K = 70. For MedLDAc, we report both the number

of support vectors at the final iteration and the average number of support vectors over all iterations.
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We can see that both MedLDAc and LDA+SVM generally need much fewer support vectors than the

standard SVM on raw text. The major reason is that both MedLDAc and LDA+SVM uses a much

lower dimensional and more compact representation for each document. Moreover, MedLDAc

needs (about 4 times) fewer support vectors than LDA+SVM. This could be because MedLDAc

make use of both text contents and the supervising class labels in the training data and its estimated

topics tend to be more discriminative when being used to infer the latent topical representations

of documents, that is, using these latent representations by MedLDAc, the documents in different

categories are more likely to be well-separated, and therefore the max-margin classifier is simpler

(i.e., needs fewer support vectors). This observation is consistent with what we have observed on the

per-class distributions over topics in Figure 3. Finally, we observed that about 32% of the support

vectors in MedLDAc are also the support vectors in multi-class SVM on the raw features.

5.2.2 REGRESSION

We first evaluate MedLDAr on the movie review data set used by Blei and McAuliffe (2007), which

contains 5006 documents and comprises 1.6M words, with a 5000-term vocabulary chosen by tf-idf.

The data set was compiled from the one provided by Pang and Lee (2005). As Blei and McAuliffe

(2007) did, we take logs of the response values to make them approximately normal. We compare

MedLDAr with unsupervised LDA, supervised sLDA, MedLDAr
p—a MedLDA regression model

which uses unsupervised LDA as the underlying topic model (Please see Appendix B for details),

and the linear SVR that uses the empirical word frequency as input features. For LDA, we use

its low dimensional representation of documents as input features to a linear SVR and denote this

method by LDA+SVR. The evaluation criterion is predictive R2 (pR2), which is defined as one minus

the mean squared error divided by the data variance (Blei and McAuliffe, 2007), specifically,

pR2 = 1−
∑D

d=1(yd − ŷd)
2

∑D
d=1(yd − ȳ)2

,

where yd and ŷd are the true and estimated response values of document d, respectively; and ȳ is the

mean of true response values on the whole data set. When we report pR2, by default it is computed

on the testing data set. Note that the naı̈ve baseline that predicts the mean response value for all

documents (i.e., ∀d, ŷd = ȳ) will have 0 on pR2. Any method that have a positive pR2 performs

better than the naı̈ve baseline.

Figure 7 shows the average results as well as standard deviations over 5 randomly initialized

runs, together with the per-word likelihood. For MedLDA and SVR, we fix the precision ε = 1e−3

and select C via cross-validation during training. We can see that the supervised MedLDA and

sLDA can get better results than unsupervised LDA, which ignores supervised responses during

discovering topical representations, and the linear SVR regression model. By using max-margin

learning, MedLDAr can get slightly better results than the likelihood-based sLDA, especially when

the number of topics is small (e.g., ≤ 15). Indeed, when the number of topics is small, the latent

representation of sLDA alone does not result in a highly separable problem, thus the integration

of max-margin training helps in discovering a more discriminative latent representation using the

same number of topics. In fact, the number of support vectors (i.e., documents that have at least

one non-zero lagrange multiplier) decreases dramatically at T = 15 and stays nearly the same for

T > 15, which with reference to Equation (14) explains why the relative improvement over sLDA

decreased as T increases. This behavior suggests that MedLDAr can discover more predictive latent

structures for difficult, non-separable regression problems.
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Figure 7: Predictive R2 (left) and per-word likelihood (right) of different models on the movie re-

view data set.

For the two variants of MedLDA regression models, we can see an obvious improvement of

MedLDAr over MedLDAr
p. This is because for MedLDAr

p, the update rule of φ does not have the

third and fourth terms of Equation (14). Those terms make the max-margin estimation and latent

topic discovery attached more tightly.

We also build another real data set of hotel review rating18 by randomly crawling hotel reviews

from TripAdvisor,19 where each review is associated with a global rating score and five aspect rating

scores for the aspects20—Value, Rooms, Location, Cleanliness, and Service. This data set is very

interesting and can be used for many data mining tasks, for example, extracting the textual mentions

of each aspect. Also, the rich features in reviews can be exploited to discover interesting latent

structures with a conditional topic model (Zhu and Xing, 2010). In these experiments, we focus on

predicting the global rating scores for reviews. To avoid too short and too long reviews, we only keep

those reviews whose character length is between 1500 and 6000. On TripAdvisor, the global ratings

rank from 1 to 5. We randomly select 1000 reviews for each rating and the data set consists of 5000

reviews in total. We uniformly partition it into training and testing sets. By removing a standard list

of stopping words and those terms whose count frequency is less than 5, we build a dictionary with

12000 terms. Similarly, we take logarithm to make the response approximately normal. Figure 8(a)

shows the predictive R2 of different methods. Here, we also compare with the hidden topic Markov

model (HTMM) (Gruber et al., 2007), which assumes the words in the same sentence have the same

topic assignment. We use HTMM to discover latent representations of documents and use SVR to

do regression. On this data set, we see a clear improvement of the supervised MedLDAr compared

to sLDA. The performance of unsupervised LDA (with a combination with SVR) is generally very

unstable. The HTMM is more robust but its performance is worse than those of the supervised

topic models. Finally, a linear SVR on empirical word frequency achieves a pR2 of about 0.56,

comparable to the best performance that can be achieved by MedLDAr.

Figure 8(b) shows the number of support vectors for MedLDAr, the standard SVR built on

empirical word frequency, and the two-stage approach LDA+SVR. For MedLDAr, we report both

18. The data set is available at http://www.ml-thu.net/˜jun/ReviewData.htm.

19. TripAdvisor can be found at http://www.tripadvisor.com/.

20. The website is subject to change. Our data set was built in December, 2009.

2264



MEDLDA: MAXIMUM MARGIN SUPERVISED TOPIC MODELS

0 5 10 15 20 25
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

# Topics

pR
2

MedLDAr

sLDA
HTMM+SVR
LDA+SVR
SVR

(a)

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

# 
su

pp
or

t v
ec

to
rs

SVR
LDA+SVR

MedLDAr−final

MedLDAr−avg

(b)

Figure 8: (a) Predictive R2 of different models on the hotel review data set; and (b) the number of

support vectors for SVR, LDA+SVR, and MedLDAr. For MedLDAr, we show both the

number of support vectors at the final iteration and the average number during training.

the number of support vectors at the last iteration and the average number of support vectors during

training. Here, we set K = 10 for LDA and MedLDAr. Again, we can see that MedLDAr needs

fewer support vectors than SVR and LDA+SVR. In contrast, LDA+SVR needs about the same

number of support vectors as SVR. This observation suggests that the topical representations by

the supervised MedLDAr are more suitable for learning a simple max-margin predictor, which is

consistent with what we have observed in the classification case.

5.2.3 WHEN AND WHY SHOULD MEDLDA BE PREFERRED TO SVM? A DISCUSSION AND

SIMULATION STUDY

The above results show that the MedLDA classification model works comparably or slightly better

than the SVM classifiers built on raw input features; and for the two regression problems, MedLDA

outperforms the support vector regression model (i.e., SVR) on one data set while they are compa-

rable on the other data set. These results raise the question “when should we choose MedLDA?”

Our answers are as follows.

First of all, MedLDA is a topic model. Besides making prediction on unseen data, one major

function of MedLDA is that it can discover semantic patterns underlying complex data, and facil-

itate dimensionality reduction (and compression) of data. In contrast, SVM models are more like

black box machines which take raw input features and find good decision boundaries or regression

curves; but they are incapable of discovering or considering hidden structures of complex data, and

performing dimensionality reduction.21 Our main goal of including SVM/SVR into our compari-

son of predictive accuracy is indeed to demonstrate that dimensionality reduction and information

extraction from raw data via MedLDA does not cause serious loss (if at all) predictive information,

which is not the case for many alternative probabilistic or non-probabilistic information extractors

21. Some strategies like sparse feature selection can be incorporated to make an SVM more interpretable in the original

feature space. But this is beyond the scope of this paper.
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(e.g., LDA or LSI). As an integration of SVM with LDA, MedLDA performs both predictive and

exploratory tasks simultaneously. So, the first selection rule is: if we want to disclose some un-

derlying patterns and extract a lower dimensional semantic-preserving representation of raw data

besides doing prediction, MedLDA should be preferred to SVM.

Second, even if our goal is focusing on prediction performance, MedLDA should also be consid-

ered as one competitive alternative. As shown in the above experiments, our simulation experiments

below, as well as the follow-up works (Yang et al., 2010; Wang and Mori, 2011; Li et al., 2011),

depending on the data and problems, max-margin supervised topic models can outperform SVM

models, or they are comparable if no gains on predictive performance are obtained. There are sev-

eral possible reasons for the comparable (not dramatically superior) classification performance we

obtained on the 20 Newsgroups data:

(1) The fully factorized mean field inference method could potentially lead to inaccurate estimates.

We have tried more sophisticated inference methods such as collapsed variational inference and

collapsed Gibbs sampling,22 both of which could lead to superior prediction performance (e.g.,

about 4 percent improvement over SVM on multi-class classification accuracy);

(2) The much lower dimensional topical representations could be too compact, compared to the

original high-dimensional inputs. A clever combination (e.g., concatenation with appropriate

re-scaling of different features) of the discovered latent topical representations and the original

input features could potentially improve the performance, as demonstrated in Wang and Mori

(2011) for image classification.

To further substantiate the claimed advantages of MedLDA over SVM for admixed (i.e., multi-

topical) data such as text and image, we conduct some simulation experiments to empirically study

when MedLDA can perform well. We generate the observed word counts from an LDA model

with K topics. The Dirichlet parameters are ααα = (1, . . . ,1). For the topics, we randomly draw

βkn ∝ Beta(1,1), where ∝ means that we need to normalize βββk to be a distribution over the terms in

a given vocabulary. We consider three different settings of binary classification with a vocabulary of

500 terms. The document lengths for each setting are randomly draw from a Poisson distribution,

whose mean parameter is L, that is,

∀d, Nd ∼ Poisson(L).

(1) Setting 1: We set K = 40. We randomly draw the class label for document d from a distribution

model

p(yd = 1|θθθd) =
1

1+ exp{−ηηη⊤θθθd}
, where ηηηk ∼ N (0,0.1).

In other words, the class labels are solely influenced by the latent topic representations. There-

fore, the true model that generates the labeled data follows the assumptions of sLDA and

MedLDA. We set L = 25,50,150,300,500.

(2) Setting 2: We set K = 150. We randomly draw the class label for document d from a distribution

model

p(yd = 1|θθθd) =
1

1+ exp{−(ηηη⊤
1 θθθd +ηηη⊤

2 wd)}
, where ηηηi j ∼ N (0,0.1), i = 1,2.

22. Sampling methods for MedLDA can be developed by using Lagrangian methods. But a full discussion on this topic

is beyond the scope.
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In other words, the true model that generates the labeled data does not follow the assumptions

of sLDA. The class labels are influenced by the observed word counts. In fact, due to the law

of conservation of belief (i.e., the total probability mass of a distribution must sum to one), the

influence of θθθ would be generally weaker than that of w in determining the true class labels. We

set L = 50,100,150,200,250.

(3) Setting 3: Similar as in setting 2, but we improve the influence of θθθ on class labels by using

larger weights ηηη1. Specifically, we sample the weights

ηηη1 j ∼ K ×N (0,0.1) and ηηη2 j ∼ N (0,0.1).

We set L = 50,100,150,200,250,300,350.

In summary, the first two settings generally represent two extremes where the true model matches

the assumptions of MedLDA or SVM, while Setting 3 is somewhat in the middle place between

Setting 1 and Setting 2. Since the synthetic words do not have real meanings, below we focus on

presenting the prediction performance, rather than visualizing the discovered topic representations.

Figure 9 shows the classification accuracy of MedLDAc, the SVM classifiers built on word

counts, and the MedLDAc models using both θθθ and word counts to learn classifiers23 at each itera-

tion step of solving for q(ηηη). We can see that for Setting 1, where the true model that generates the

data matches the assumptions of MedLDA (and sLDA models too) well, we can achieve significant

improvements compared to the SVM classifiers built on raw input word counts for all settings with

various average document lengths. In contrast, for Setting 2, where the true model largely violates

the assumptions of MedLDA (in fact, it matches the assumptions of SVM well), we generally do not

have much improvements. But still, we can have comparable performance. For the middle ground

in Setting 3, we have mixed results. When the average document length is small (e.g., ≤ 250), which

means the influence of word counts on class labels is weak, MedLDAc can improve a lot over SVM.

But when the influence of word counts gets bigger (e.g., L ≥ 300), using the low dimensional topic

representations tends to be insufficient to get good performance. Translating to empirical text anal-

ysis, MedLDA will be particularly helpful when analyzing short texts, such as abstracts, reviews,

users comments, and user status updates, which are nowadays the dominant forms of user texts on

social media.

In all the three settings, we can see that a naı̈ve combination of both latent topic representations

and input word counts could improve the performance in some cases, or at least it will produce

comparable performance with the better model between MedLDAc and SVM. Finally, comparing

the three settings, we can see that for Setting 2, since the true class labels heavily depend on the

input word counts, increasing the average document length L generally improves the classification

performance of all models. In other words, the classification problems become easier because of

more discriminant information is provided as L increases. In contrast, we do not have the similar

observations in the other two settings because the true labels are heavily (or solely in Setting 1)

determined by θθθ, whose dimensionality is fixed.

The last reason that we think MedLDA should be considered as an important novel development

with one root being from SVM because it presents one of the first successful attempts, in the partic-

ular context of Bayesian topic models, towards pushing forward the interface between max-margin

learning and Bayesian generative modeling. As further demonstrated in others’ work (Yang et al.,

23. We simply concatenate the two types of features without considering the scale difference.
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Figure 9: Classification accuracy of different methods in (a) Setting 1; (b) Setting 2; and (c) Setting

3.

2010; Wang and Mori, 2011; Li et al., 2011) as well as our recent work on regularized Bayesian

inference (Zhu et al., 2011b,a), the max-margin principle can be a fruitful addition to “regularize”

the desired posterior distributions of Bayesian models for performing better prediction in a broad

range of scenarios, such as image annotation, classification, multi-task learning, etc.

5.3 Time Efficiency

In this section, we report empirical results on time efficiency in training and testing. All the follow-

ing results are achieved on a standard desktop with a 2.66GHz Intel processor. We implement all

the models in C++ language, without any special optimization of the code.

5.3.1 TRAINING TIME

Figure 10 shows the average training time of different models together with standard deviations on

both binary and multi-class classification tasks with 5 randomly initialized runs. Here, we do not

compare with DiscLDA because learning the transition matrix is not fully implemented by Lacoste-
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Figure 10: Training time (CPU seconds in log-scale) of different models with respect to the number

of topics for both (Left) binary and (Right) multi-class classification.

Julien (2009), but we will compare the testing time with it. From the results, we can see that for

binary classification, MedLDAc is more efficient than multi-class sLDA and is comparable with

LDA+SVM. The slowness of multi-class sLDA is because the normalization factor in the distribu-

tion model of y strongly couples the topic assignments of different words in the same document.

Therefore, the posterior inference is slower than that of unsupervised LDA and MedLDAc which

uses unsupervised LDA as the underlying topic model. For the sLDA regression model, it takes even

more training time because of the mismatch between its normal assumption and the non-Gaussian

binary response variables, which prolongs the E-step. In contrast, MedLDAc does not have such a

normal assumption.

For multi-class classification, the training time of MedLDAc is mainly dependent on solving

a multi-class SVM problem. Here, we implemented both 1-slack and n-slack versions of multi-

class SVM (Joachims et al., 2009) for solving the sub-problem of estimating q(ηηη) and Lagrangian

multipliers in MedLDAc. As we can see from Figure 10, the MedLDAc with 1-slack SVM as the

sub-solver can be very efficient, comparable to unsupervised LDA+SVM. The MedLDAc with n-

slack SVM solvers is about 3 times slower. Similar to the binary case, for the multi-class supervised

sLDA (Wang et al., 2009), because of the normalization factor in the category probability model

(i.e., a softmax function), the posterior inference on different topic assignment variables (in the

same document) are strongly correlated. Therefore, the inference is (about 10 times) slower than

that on unsupervised LDA and MedLDAc which takes an unsupervised LDA as the underlying

topic model. For regression, the training time of MedLDAr is comparable to that of sLDA, while

MedLDAr
p is more efficient.

We also show the time spent on inference (i.e., E-step) and the ratio it takes over the total training

time for different models in Figure 11(a). We can clearly see that the difference between 1-slack
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Figure 11: (a) The inference time (CPU seconds in linear scale) and total training time for learning

different models, as well as the ratio of inference time over total training time. For

MedLDAc, we consider both the 1-slack and n-slack formulations; for LDA+SVM, the

SVM classifier is by default the 1-slack formulation; and (b) Testing time (CPU seconds

in log-scale) of different models with respect to the number of topics for multi-class

classification.

MedLDAc and n-slack MedLDAc is on the learning of SVMs (i.e., M-step). Both methods have

similar inference time. We can also see that for LDA+SVM and multi-sLDA, more than 95% of the

training time is spent on inference, which is very expensive for multi-sLDA. Note that LDA+SVM

takes a longer inference time than MedLDAc. This is because we use more data (both training and

testing) to learn unsupervised LDA. The SVM classifiers built on raw input word count features

are generally much more faster than all the topic models. For instance, it takes about 230 seconds

to train a 1-slack multi-class SVM on the 20 Newsgroups training data, or about 1000 seconds to

train a n-slack multi-class SVM on the same training set; both are faster than the fastest topic model

1-slack MedLDAc. This is reasonable because SVM classifiers do not spend time on inferring the

latent topic representations.

5.3.2 TESTING TIME

Figure 11(b) shows the average testing time with standard deviation on 20 Newsgroup testing data

with 5 randomly initialized runs. We can see that MedLDAc, multi-class sLDA and unsupervised

LDA are comparable in testing time, faster than that of DiscLDA. This is because all the three

models of MedLDAc, multi-class sLDA and LDA are downstream models (See the Introduction

for definition). In testing, they do exactly the same tasks, that is, to infer the overall latent topical

representation and do prediction with a linear model. Therefore, they have comparable testing

time. However, DiscLDA is an upstream model, for which the prediction task is done with multiple

times of doing inference to find the category-dependent latent topical representations. Therefore,

in principle, the testing time of an upstream topic model is about |C | times slower than that of its

downstream counterpart model, where C is the finite set of categories. The results in Figure 11(b)
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show that DiscLDA is roughly about 20 times slower than other downstream models. Of course, the

different inference algorithms can also make the testing time different.

6. Conclusions and Discussions

We have presented maximum entropy discrimination LDA (MedLDA), a supervised topic model

that uses the discriminative max-margin principle to estimate model parameters such as topic dis-

tributions underlying a corpus, and infer latent topical vectors of documents. MedLDA integrates

the max-margin principle into the process of topic learning and inference via optimizing one single

objective function with a set of expected margin constraints. The objective function is a tradeoff

between the goodness of fit of an underlying topic model and the prediction accuracy of the resul-

tant topic vectors on a max-margin classifier. We provide empirical evidence as well as theoretical

insights, which appear to demonstrate that this integration could yield predictive topical represen-

tations that are suitable for prediction tasks, such as regression and classification. We also present

a general formulation of learning maximum entropy discrimination topic models, which allows

any form of likelihood based topic models to be discriminatively trained. Although the general

max-margin framework can be approximately solved with different methods, we concentrate on de-

veloping efficient variational methods for MedLDA in this paper. Our empirical results on movie

review, hotel review and 20 Newsgroups data sets demonstrate that MedLDA is an attractive super-

vised topic model, which can achieve state of the art performance for topic discovery and prediction

accuracy while needs fewer support vectors than competing max-margin methods that are built on

raw text or the topical representations discovered by unsupervised LDA.

MedLDA represents the first step towards integrating the max-margin principle into supervised

topic models, and under the general MedTM framework presented in Section 4, several improve-

ments and extensions are in the horizon. Specifically, due to the nature of MedTM’s joint optimiza-

tion formulation, advances in either max-margin training or better variational bounds for inference

can be easily incorporated. For instance, the mean field variational upper bound in MedLDA can

be improved by using the tighter collapsed variational bound (Teh et al., 2006) that achieves re-

sults comparable to collapsed Gibbs sampling (Griffiths and Steyvers, 2004). Moreover, as the

experimental results suggest, incorporation of a more expressive underlying topic model enhances

the overall performance. Therefore, we plan to integrate and use other underlying topic models

like the fully generative sLDA model in the classification case. However, as we have stated, the

challenge in developing fully supervised MedLDA classification model lies in the hard posterior

inference caused by the normalization factor in the category distribution model. Finally, advance in

max-margin training would also results in more efficient training.
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Appendix A. Proof of Corollary 4

In this section, we prove the corollary 4.

Proof Since the variational parameters (γγγ,φφφ) are fixed when solving for q(ηηη), we can ignore the

terms in Lbs that do not depend on q(ηηη) and get the function

Lbs
[q(ηηη)], KL(q(ηηη)‖p0(ηηη))−∑

d

Eq[log p(yd|Z̄d,ηηη,δ
2)]

= KL(q(ηηη)‖p0(ηηη))+
1

2δ2

(

Eq(ηηη)[ηηη
⊤
E[AA⊤]η−2ηηη⊤

D

∑
d=1

ydE[Z̄d]]
)

+ c,

where c is a constant that does not depend on q(ηηη).

Let U(ξξξ,ξξξ
∗
) =C ∑D

d=1(ξd +ξ∗d). Suppose (q0(ηηη),ξξξ0,ξξξ
∗
0) is the optimal solution of P1, then we

have: for any feasible (q(ηηη),ξξξ,ξξξ
∗
),

Lbs
[q0(ηηη)]

+U(ξξξ0,ξξξ
∗
0)≤ Lbs

[q(ηηη)]+U(ξξξ,ξξξ
∗
).

From Corollary 3, we conclude that the optimum predictive parameter distribution is q0(ηηη) =
N (λλλ0,Σ), where Σ = (I + 1/δ2

E[A⊤A])−1 does not depend on q(ηηη). Since q0(ηηη) is also normal,

for any distribution24 q(ηηη) = N (λλλ,Σ), with several steps of algebra it is easy to show that

Lbs
[q(ηηη)] =

1

2
λλλ
⊤(I +

1

δ2
E[A⊤A])λλλ−λλλ

⊤(
D

∑
d=1

yd

δ2
E[Z̄d])+ c′ =

1

2
λλλ
⊤

Σ−1λλλ−λλλ
⊤(

D

∑
d=1

yd

δ2
E[Z̄d])+ c′,

where c′ is another constant that does not depend on λλλ.

Thus, we can get: for any (λλλ,ξξξ,ξξξ
∗
), where

(λλλ,ξξξ,ξξξ
∗
) ∈ {(λλλ,ξξξ,ξξξ

∗
) : yd −λλλ

⊤
E[Z̄d]≤ ε+ξd; − yd +λλλ

⊤
E[Z̄d]≤ ε+ξ∗d ; and ξξξ,ξξξ

∗
≥ 0 ∀d},

we have

1

2
λλλ
⊤
0 Σ−1λλλ0 −λλλ

⊤
0 (

D

∑
d=1

yd

δ2
E[Z̄d])+U(ξξξ0,ξξξ

∗
0)≤

1

2
λλλ
⊤

Σ−1λλλ−λλλ
⊤(

D

∑
d=1

yd

δ2
E[Z̄d])+U(ξξξ,ξξξ

∗
),

which means the mean of the optimum posterior distribution under a Gaussian MedLDA is achieved

by solving a primal problem as stated in the Corollary.

24. Although the feasible set of q(ηηη) in P1 is much richer than the set of normal distributions with the covariance matrix

Σ, Corollary 3 shows that the solution is a restricted normal distribution. Thus, it suffices to consider only these

normal distributions in order to learn the mean of the optimum distribution.
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Appendix B. Max-Margin Learning of the Vanilla LDA for Regression

In Section 3.1, we have presented the MedLDA regression model that uses supervised sLDA (Blei

and McAuliffe, 2007) to discover latent topic assignments Z and document-level topical represen-

tations θθθ. The same principle can be applied to perform joint maximum likelihood estimation and

max-margin training for unsupervised LDA (Blei et al., 2003), which does not directly model side

information such as user ratings y. In this section, we present this MedLDA model, which will be

referred to as MedLDAr
p. As in MedLDAc, we assume that the supervised side information y is

given, even though not included in the joint likelihood function defined in LDA.25

A naı̈ve approach to using unsupervised LDA for supervised prediction tasks (e.g., regression)

is a two-stage procedure: 1) using unsupervised LDA to discover the latent topical representations

of documents; and 2) feeding the low-dimensional topical representations into a regression model

(e.g., SVR) for training and testing. This de-coupled approach can be rather sub-optimal because the

side information of documents (e.g., rating scores of movie reviews) is not used in discovering the

low-dimensional representations and thus can result in a sub-optimal representation for prediction

tasks. Below, we present MedLDAr
p, which integrates an unsupervised LDA for discovering topics

with the SVR for regression. The inter-play between topic discovery and supervised prediction will

result in more discriminative latent topical representations, similar as in MedLDAr.

When the underlying topic model is unsupervised LDA, the likelihood is p(W|ααα,βββ), the same

as in MedLDAc. For regression, we apply the ε-insensitive support vector regression (SVR) (Smola

and Schölkopf, 2003) approach as before. Again, we learn a distribution q(ηηη). The prediction rule

is the same as in Equation (6). The integrated learning problem is

P6(MedLDA
r
p) : min

q,q(ηηη),ααα,βββ,ξξξ,ξξξ
∗

Lu(q;ααα,βββ)+KL(q(ηηη)||p0(ηηη))+C
D

∑
d=1

(ξd +ξ∗d)

∀d, s.t. :







yd −E[ηηη⊤Z̄d ] ≤ ε+ξd

−yd +E[ηηη⊤Z̄d ] ≤ ε+ξ∗d
ξd ,ξ

∗
d ≥ 0

,

where the KL-divergence is a regularizer that biases the estimate of q(ηηη) towards the prior. In

MedLDAr, this KL-regularizer is implicitly contained in the variational bound Lbs as shown in

Equation (7). The constrained problem is equivalent to the “unconstrained” problem by removing

slack variables:

min
q,q(ηηη),ααα,βββ

Lu(q;ααα,βββ)+KL(q(ηηη)||p0(ηηη))+C
D

∑
d=1

max(0, |yd −E[ηηη⊤Z̄d ]|− ε) (22)

Variational Algorithm: For MedLDAr
p, the unconstrained optimization problem (22) can be

similarly solved with a coordinate-descent algorithm as in the case of MedLDAr. Specifically, we

assume that q({θθθd ,zd}) = ∏D
d=1 q(θθθd |γγγd)∏N

n=1 q(zdn|φφφdn), where the variational parameters γγγ and

φφφ have the same meanings as in MedLDAr. Then, we alternately solve for each variable and get a

variational algorithm which is similar to that of MedLDAr.

25. One could argue that this design is unreasonable because with y one should only consider sLDA. But we study fitting

the vanilla LDA using y in an indirect way described below because of the popularity and historical importance of

this scheme in many applied domains.
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Solve for (ααα,βββ) and q(ηηη): the update rules of ααα and βββ are the same as in the MedLDAr. The

parameter δ2 is not used here. By using Lagrangian methods, we get that

q(ηηη) =
p0(ηηη)

Z
exp

(

ηηη⊤
D

∑
d=1

(µ̂d − µ̂∗d)E[Z̄d]
)

and the dual problem is the same as D2. Again, we can choose different priors to introduce some

regularization effects. For the standard normal prior: p0(ηηη)=N (0, I), the posterior is also a normal:

q(ηηη) = N (λλλ, I), where λλλ = ∑D
d=1(µ̂d − µ̂∗d)E[Z̄d] is the mean. This identity covariance matrix is

much simpler than the covariance matrix Σ as in MedLDAr, which depends on the latent topical

representation Z. Since I is independent of Z, the prediction model in MedLDAr
p is less affected by

the latent topical representations. Together with the simpler update rule (23), we can conclude that

the coupling between the max-margin estimation and the discovery of latent topical representations

in MedLDAr
p is looser than that of MedLDAr. The looser coupling will lead to inferior empirical

performance as we show in Section 5.2.

For the standard normal prior, the dual problem is a QP problem:

max
µµµ,µµµ∗

−
1

2
‖λλλ‖2

2 − ε
D

∑
d=1

(µd +µ∗d)+
D

∑
d=1

yd(µd −µ∗d)

∀d, s.t. : µd ,µ
∗
d ∈ [0,C],

Similarly, we can derive its primal form, which is as a standard SVR problem:

min
λλλ,ξξξ,ξξξ

∗

1

2
‖λλλ‖2

2 +C
D

∑
d=1

(ξd +ξ∗d)

s.t. ∀d :











yd −λλλ
⊤
E[Z̄d]≤ ε+ξd

−yd +λλλ
⊤
E[Z̄d]≤ ε+ξ∗d
ξd,ξ

∗
d ≥ 0.

Now, we can leverage recent developments in support vector regression (e.g., the public SVM-light

package) to solve either the dual problem or the primal problem.

Solve for q({θθθd ,zd}): We have the same update rule for γγγ as in MedLDAr. By using the similar

one-step approximation strategy, we have:

φφφdn ∝ exp
(

E[logθθθd |γγγd ]+ log p(wdn|βββ)+
E[ηηη]

N
(µ̂d − µ̂∗d)

)

, (23)

Again, we can see that how the max-margin constraints in P6 regularize the procedure of discovering

latent topical representations through the last term in Equation (23). Specifically, for a document

d, which lies around the decision boundary, that is, a support vector, either µ̂d or µ̂∗d is non-zero,

and the last term biases φφφdn towards a distribution that favors a more accurate prediction on the

document. However, compared to Equation (14), we can see that Equation (23) is simpler and

does not have the complex third and fourth terms of Equation (14). This simplicity suggests that

the latent topical representation is less affected by the max-margin estimation (i.e., the prediction

model’s parameters).
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