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Abstract

Optimizing multivariate performance measure is an important task in Machine Learning. Joachims

(2005) introduced a Support Vector Method whose underlying optimization problem is commonly

solved by cutting plane methods (CPMs) such as SVM-Perf and BMRM. It can be shown that CPMs

converge to an ε accurate solution in O
(

1
λε

)
iterations, where λ is the trade-off parameter between

the regularizer and the loss function. Motivated by the impressive convergence rate of CPM on

a number of practical problems, it was conjectured that these rates can be further improved. We

disprove this conjecture in this paper by constructing counter examples. However, surprisingly, we

further discover that these problems are not inherently hard, and we develop a novel smoothing

strategy, which in conjunction with Nesterov’s accelerated gradient method, can find an ε accu-

rate solution in O∗
(

min
{

1
ε ,

1√
λε

})

iterations. Computationally, our smoothing technique is also

particularly advantageous for optimizing multivariate performance scores such as precision/recall

break-even point and ROCArea; the cost per iteration remains the same as that of CPMs. Empiri-

cal evaluation on some of the largest publicly available data sets shows that our method converges

significantly faster than CPMs without sacrificing generalization ability.

Keywords: non-smooth optimization, max-margin methods, multivariate performance measures,

Support Vector Machines, smoothing

1. Introduction

Recently there has been an explosion of interest in applying machine learning techniques to a num-

ber of application domains, much of which has been fueled by the phenomenal success of binary

Support Vector Machines (SVMs). At the heart of SVMs is the following regularized risk mini-

∗. Xinhua Zhang is now working at the Machine Learning Group of NICTA, Canberra, Australia.

c©2012 Xinhua Zhang, Ankan Saha and S.V.N. Vishwanathan.



ZHANG, SAHA AND VISHWANATHAN

mization problem:

min
w

J(w) =
λ

2
‖w‖2 +Remp(w). (1)

Here Remp is the so-called empirical risk (see below), 1
2
‖w‖2

is the regularizer, λ > 0 is a scalar

which trades off the importance of the empirical risk and the regularizer. Given a training set with

n examples X := {(xi,yi)}n
i=1 where xi ∈ R

p and yi ∈ {±1}, the empirical risk Remp minimized by

SVMs is the average of the hinge loss:

Remp(w) :=
1

n

n

∑
i=1

max(0,1− yi 〈w,xi〉), (2)

where 〈·, ·〉 denotes the Euclidean dot product.

Binary SVMs optimize classification accuracy, while many application areas such as Natural

Language Processing (NLP) frequently use more involved multivariate performance measures such

as precision/recall break-even point (PRBEP) and area under the Receiver Operating Characteristic

curve (ROCArea). Joachims (2005) proposed an elegant SVM based formulation for directly op-

timizing these performance metrics. In his formulation, the empirical risk Remp in (1) is replaced

by

Remp(w) := max
z∈{−1,1}n

[

∆(z,y)+
1

n

n

∑
i=1

〈w,xi〉(zi − yi)

]

. (3)

Here, ∆(z,y) is the multivariate discrepancy between the correct labels y := (y1, . . . ,yn)
⊤ and a

candidate labeling z := (z1, . . . ,zn)
⊤ ∈ {±1}n

. In order to compute the multivariate discrepancy for

PRBEP we need the false negative and false positive rates, which are defined as

b = ∑
i∈P

δ(zi =−1) and c = ∑
j∈N

δ(z j = 1), respectively.

Here δ(x) = 1 if x is true and 0 otherwise, while P and N denote the set of indices with positive

(yi = +1) and negative (yi = −1) labels respectively. Furthermore, let n+ = |P |, n− =
∣
∣N
∣
∣. With

this notation in place, ∆(zzz,yyy) for PRBEP is defined as

∆(zzz,yyy) =

{

b/n+ if b = c

−∞ otherwise
. (4)

ROCArea, on the other hand, measures how many pairs of examples are mis-ordered. Denote

m = n+n−. Joachims (2005) proposed using the following empirical risk, Remp, to directly optimize

the ROCArea:1

Remp(w) =
1

m
max

z∈{0,1}m

[

∑
i∈P

∑
j∈N

zi j

[

1−w⊤(xi −x j)
]
]

. (5)

We will call the regularized risk minimization problem with the PRBEP loss (3) as the PRBEP-

problem and with the ROCArea loss (5) as the ROCArea-problem respectively. As is obvious,

1. The original formulation uses 1−2w⊤(xi −x j), and we rescaled it to simplify our presentation in the sequel.
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both these problems entail minimizing a non-smooth objective function which is not additive over

the data points. Fortunately, cutting plane methods (CPMs) such as SVM-Perf (Joachims, 2006)

and BMRM (Teo et al., 2010) can be used for this task. At each iteration these algorithms only

require a sub-gradient of Remp, which can be efficiently computed by a separation algorithm with

O(n logn) effort for both (3) and (5) (Joachims, 2005). In this paper, we will work with BMRM as

our prototypical CPM, which, as Teo et al. (2010) point out, includes SVM-Perf as a special case.

CPMs are popular in Machine Learning because they come with strong convergence guarantees.

The tightest upper bound on the convergence speed of BMRM, which we are aware of, is due to Teo

et al. (2010). Theorem 5 of Teo et al. (2010) asserts that BMRM can find an ε-accurate solution of

the regularized risk minimization problem (1) with non-smooth empirical risk functions such as (3)

and (5) after computing O( 1
λε) subgradients. This upper bound is built upon the following standard

assumption:

Assumption 1 (A1) The subgradient of Remp is bounded, that is, at any point w, there exists a

subgradient ggg ∈ ∂Remp(w) such that ‖ggg‖ ≤ G < ∞.

In practice the observed rate of convergence of BMRM is significantly faster than predicted by the-

ory. Therefore, it was conjectured that perhaps a more refined analysis might yield a tighter upper

bound (Teo et al., 2010). Our first contribution in this paper is to disprove this conjecture under

assumption A1. We carefully construct PRBEP and ROCArea problems on which BMRM requires

at least Ω(1/ε) iterations to converge for a fixed λ. It is worthwhile emphasizing here that due

to the specialized form of the objective function in (1), lower bounds for general convex function

classes such as those studied by Nesterov (2003) and Nemirovski and Yudin (1983) do not apply. In

addition, our examples stick to binary classification and are substantially different from the one in

Joachims et al. (2009) which requires an increasing number of classes.

This result leads to the following natural question: do the lower bounds hold because the PRBEP

and ROCArea problems are fundamentally hard, or is it an inherent limitation of CPM? In other

words, does there exist a solver which solves the PRBEP and ROCArea problems by invoking the

separation algorithm for fewer than O( 1
λε) times?2 We provide partial answers. To understand

our results one needs to understand another standard assumption that is often made when proving

convergence rates:

Assumption 2 (A2) Each xi lies inside an L2 (Euclidean) ball of radius R, that is, ‖xi‖ ≤ R.

Clearly assumption A2 is more restrictive than A1, because ‖xxxi‖ ≤ R implies that for all www, any

subgradient of Remp has L2 norm at most 2R in both (3) and (5). Our second contribution in this

paper is to show that the O( 1
λε) barrier can be broken under assumption A2, while making a similar

claim just under assumption A1 remains an open problem. In a nutshell, our algorithm approximates

(1) by a smooth function, which in turn can be efficiently minimized by using either accelerated

gradient descent (Nesterov, 1983, 2005, 2007) or a quasi-Newton method (Nocedal and Wright,

2006). This technique for non-smooth optimization was pioneered by Nesterov (2005). However,

applying it to multivariate performance measures requires special care. We now describe some

relevant details and point out technical difficulties that one encounters along the way.

2. We want the rates to be better in both λ and in ε.
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1.1 Nesterov’s Formulation

Let A be a linear transform and assume that we can find a smooth function g⋆µ(A
⊤w) with a Lipschitz

continuous gradient such that
∣
∣Remp(w)−g⋆µ(A

⊤w)
∣
∣≤ µ for all w. It is easy to see that

Jµ(w) :=
λ

2
‖w‖2 +g⋆µ(A

⊤w) (6)

satisfies
∣
∣Jµ(w)− J(w)

∣
∣ ≤ µ for all w. In particular, if we set µ = ε/2 and find a w′ such that

Jµ(w
′) ≤ minw Jµ(w)+ ε/2, then it follows that J(w′) ≤ minw J(w)+ ε. In other words, w′ is an ε

accurate solution for (1).

By applying Nesterov’s accelerated gradient method to Jµ(w) one can find an ε-accurate solution

of the original nonsmooth problem (1) after querying the gradient of g⋆µ(A
⊤w) at most

O∗
(√

D‖A‖min

{
1

ε
,

1√
λε

})

(7)

number of times (Nesterov, 1983, 2005).3 Here ‖A‖ is the matrix norm of A, which is defined

as ‖A‖ = maxuuu,vvv:‖uuu‖=‖vvv‖=1 uuu⊤Avvv =
√

λmax(A⊤A), with λmax denoting the maximum eigenvalue of

A, when the norm considered is the Euclidean norm. Furthermore, D is a geometric constant that

depends solely on gµ and is independent of ε, λ, or A. Compared with the O( 1
λε) rates of CPMs, the

1√
λε

part in (7) is already superior. Furthermore, many applications require λ ≪ ε and in this case

the 1
ε part of the rate is even better. Note that CPMs rely on λ

2
‖w‖2

to stabilize each update, and it

has been empirically observed that they converge slowly when λ is small (see, e.g., Do et al., 2009).

Although the above scheme is conceptually simple, the smoothing of the objective function in

(1) has to be performed very carefully in order to avoid dependence on n, the size of the training set.

The main difficulties are two-fold. First, one needs to obtain a smooth approximation g⋆µ(A
⊤w) to

Remp(w) such that
√

D‖A‖ is small (ideally a constant). Second, we need to show that computing

the gradient of g⋆µ(A
⊤w) is no harder than computing a subgradient of Remp(w). In the sequel we

will demonstrate how both the above difficulties can be overcome. Before describing our scheme in

detail we would like to place our work in context by discussing some relevant related work.

1.2 Related Work

Training large SV models by using variants of stochastic gradient descent has recently become

increasingly popular (Bottou, 2008; Shalev-Shwartz et al., 2007). While the dependence on ε and λ

is still Ω( 1
λε) or worse (Agarwal et al., 2009), one gets bounds on the computational cost independent

of n. However, stochastic gradient descent can only be applied when the empirical risk is additively

decomposable, that is, it can be written as the average loss over individual data points like in (2).

Since the non-linear multivariate scores such as the ones that we consider in this paper are not

additively decomposable, this rules out the application of online algorithms to these problems.

Traditionally, batch optimizers such as the popular Sequential Minimal Optimization (SMO)

worked in the dual (Platt, 1998). However, as List and Simon (2009) show, for the empirical risk

(2) based on hinge loss, if the matrix which contains the dot products of all training instances

3. For completeness we reproduce relevant technical details from Nesterov (1983) and Nesterov (2005) in Appendix A.
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(also known as the kernel matrix) is not strictly positive definite, then SMO requires O(n/ε) iter-

ations with each iteration costing O(np) effort. However, when the kernel matrix is strictly posi-

tive definite, then one can obtain an O(n2 log(1/ε)) bound on the number of iterations, which has

better dependence on ε, but is prohibitively expensive for large n. Even better dependence on ε

can be achieved by using interior point methods (Ferris and Munson, 2002) which require only

O(log(log(1/ε)) iterations, but the time complexity per iteration is O(min{n2 p, p2n}).

Recently, there has been significant research interest in optimizers which directly optimize (1)

because there are some distinct advantages (Teo et al., 2010). Chapelle (2007) observed that to

find a w which generalizes well, one only needs to solve the primal problem to very low accuracy

(e.g., ε ≈ 0.001). In fact, to the best of our knowledge, Chapelle (2007) introduced the idea of

smoothing the objective function to the Machine Learning community. Specifically, he proposed

to approximate the binary hinge loss by a smooth Huber’s loss and used the Newton’s method

to solve this smoothed problem. This approach yielded the best overall performance in the Wild

Competition Track of Sonnenburg et al. (2008) for training binary linear SVMs on large data sets.

A similar smoothing approach is proposed by Zhou et al. (2010), but it is also only for hinge loss.

However, the smoothing proposed by Chapelle (2007) for the binary hinge loss is rather ad-

hoc, and does not easily generalize to (3) and (5). Moreover, a function can be smoothed in many

different ways and Chapelle (2007) did not explicitly relate the influence of smoothing on the rates

of convergence of the solver. In contrast, we propose principled approaches to overcome these

problems.

Of course, other smoothing techniques have also been explored in the literature. A popular

approach is to replace the nonsmooth max term by a smooth log-sum-exp approximation (Boyd

and Vandenberghe, 2004). In the case of binary classification this approximation is closely related

to logistic regression (Bartlett et al., 2006; Zhang, 2004), and is equivalent to using an entropy

regularizer in the dual. However, as we discuss in Section 3.1.2 this technique yields exorbitantly

large
√

D‖A‖ in the bound (7) when applied to optimize multivariate performance measures.

1.3 Notation And Paper Outline

We assume a standard setup as in Nesterov (2005). Lower bold case letters (e.g., w, µµµ) denote

vectors, wi denotes the i-th component of w, 0 refers to the vector with all zero components, eeei is

the i-th coordinate vector (all 0’s except 1 at the i-th coordinate) and ∆k refers to the k dimensional

simplex. Unless specified otherwise, ‖·‖ refers to the Euclidean norm ‖w‖ :=
√

〈www,www〉. We denote

R := R∪{∞}, and [t] := {1, . . . , t}. g⋆ stands for the Fenchel dual of a function g, and ∂g(www) is the

subdifferential of g at www (the set of all subgradients of g at www).

In Section 2, we first establish the lower bounds on the rates of convergence of CPMs when

used to optimize the regularized risk of PRBEP and ROCArea. To break this lower bound, our

proposed strategy constructs a smoothed surrogate function g⋆µ(A
⊤w), and the details are given in

Section 3. We will focus on efficiently computing the gradient of the smooth objective function in

Section 4. Empirical evaluation is presented in Section 5, and the paper concludes with a discussion

in Section 6.
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1.4 Improvement On Earlier Versions Of This Paper

This paper is based on two prior publications of the same authors: Zhang et al. (2011a) at NIPS

2010 and Zhang et al. (2011b) at UAI 2011, together with a technical report (Zhang et al., 2010).

Major improvements have been made on them, which include:

• New lower bounds for PRBEP and ROCArea losses (see Sections 2.2 and 2.3 respectively).

• Significantly simplified algorithms for computing the gradient of smoothed objectives for

both PRBEP and ROCArea losses (See Sections 4.1 and 4.2 respectively).

• Empirical evaluation on some of the largest publicly available data sets including those from

the Pascal Large Scale Learning Workshop in Section 5 (Sonnenburg et al., 2008)

• Open source code based on PETSc (Balay et al., 2011) and TAO (Benson et al., 2010) pack-

ages made available for download from Zhang et al. (2012).

2. Lower Bounds For Cutting Plane Methods

BMRM (Teo et al., 2010) is a state-of-the-art cutting plane method for optimizing multivariate per-

formance scores which directly minimizes the non-smooth objective function J(www). At every itera-

tion, BMRM replaces Remp by a piecewise linear lower bound R
cp
k and obtains the next iterate wk by

optimizing

wk := argmin
www

Jk(w) :=
λ

2
‖w‖2 +R

cp
k (w), where R

cp
k (w) := max

i∈[k]
〈w,ai〉+bi. (8)

Here ai ∈ ∂Remp(wi−1) denotes an arbitrary subgradient of Remp at wi−1 and bi = Remp(wi−1)−
〈wi−1,ai〉. The piecewise linear lower bound is successively tightened until the gap

εk := min
0≤t≤k

J(wt)− Jk(wk) (9)

falls below a predefined tolerance ε.

Since Jk in (8) is a convex objective function, the optimal wwwk can be obtained by solving its dual

problem, which is a quadratic programming problem with simplex constraints. We refer the reader

to Teo et al. (2010) for more details. The overall procedure of BMRM is summarized in Algorithm

1. Under Assumption A1, Teo et al. (2010) showed that BMRM converges at O( 1
λε) rates:

Theorem 3 Suppose Assumption 1 holds. Then for any ε < 4G2/λ, BMRM converges to an ε accu-

rate solution of (1) as measured by (9) after at most the following number of steps:

log2

λJ(0)

G2
+

8G2

λε
−1.

2.1 Lower Bound Preliminaries

Since most rates of convergence found in the literature are upper bounds, it is important to rigorously

define the meaning of a lower bound with respect to ε, and to study its relationship with the upper

bounds. At this juncture it is also important to clarify an important technical point. Instead of
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Algorithm 1: BMRM.

Input: A tolerance level of function value ε.

1 Initialize: www0 to arbitrary value, for example, 0. Let k = 1.

2 while TRUE do

3 Pick arbitrary subgradient of Remp at wk−1: ak ∈ ∂Remp(wk−1).
4 Let bk = Remp(wk−1)−〈wk−1,ak〉.
5 Solve wk = argminw Jk(w) = argminw

{
λ
2
‖w‖2 +maxi∈[k] {〈w,ai〉+bi}

}

.

6 if min0≤t≤k J(wt)− Jk(wk)< ε then return wwwk. else k = k+1.

minimizing the objective function J(w) defined in (1), if we minimize a scaled version cJ(w) this

scales the approximation gap (9) by c. Assumption A1 fixes this degree of freedom by bounding

the scale of the objective function.

Given a function f ∈F and an optimization algorithm A, suppose {wk} are the iterates produced

by some algorithm A when minimizing some function f . Define T (ε; f ,A) as the first step index k

when wk becomes an ε accurate solution:4

T (ε; f ,A) = min{k : f (wk)−minwww f (www)≤ ε} .

Upper and lower bounds are both properties for a pair of F and A. A function κ(ε) is called an

upper bound of (F ,A) if for all functions f ∈ F and all ε > 0, it takes at most order κ(ε) steps for

A to reduce the gap to less than ε, that is,

(UB) ∀ ε > 0,∀ f ∈ F , T (ε; f ,A)≤ κ(ε).

On the other hand, we define lower bounds as follows. κ(ε) is called a lower bound of (F ,A) if for

any ε > 0, there exists a function fε ∈ F depending on ε, such that it takes at least κ(ε) steps for A

to find an ε accurate solution of fε:

(LB) ∀ ε > 0,∃ fε ∈ F , s.t. T (ε; fε,A)≥ κ(ε).

Clearly, this lower bound is sufficient to refute upper bounds or to establish their tightness. The size

of the function class F affects the upper and lower bounds in opposite ways. Suppose F ′ ⊂ F .

Proving upper (resp. lower) bounds on (F ′,A) is usually easier (resp. harder) than proving upper

(resp. lower) bounds for (F ,A). Since the lower bounds studied by Nesterov (2003) and Nemirovski

and Yudin (1983) are constructed by using general convex functions, they do not apply here to our

specialized regularized risk objectives.

We are interested in bounding the primal gap of the iterates wk: J(wk)−minwww J(www). Data sets

will be constructed explicitly whose resulting objective J(w) will be shown to satisfy Assumption

A1 and attain the lower bound of BMRM. We will focus on the Remp for both the PRBEP loss in (3)

and the ROCArea loss in (5).

4. The initial point also matters, as in the best case one can just start from the optimal solution. Thus the quantity of

interest is actually T (ε; f ,A) := maxw0
min{k : f (wk)−minwww f (www)≤ ε, starting point being w0}. However, without

loss of generality we assume some pre-specified way of initialization.
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2.2 Construction Of Lower Bound For PRBEP Problem

Given ε > 0, let n = ⌈1/ε⌉+ 1 and construct a data set {(xxxi,yi)}n
i=1 as follows. Set c =

√
2

4
, and

let eeei denote the i-th coordinate vector in R
n+2 (p = n + 2). Let the first example be the only

positive example: y1 = +1 and xxx1 = cneee2. The rest n− 1 examples are all negative: yi = −1 and

xxxi =−cneee3 − cneeei+2 for i ∈ [2,n]. This data set concretizes the Remp in (3) as follows:

Remp(www) = max
zzz∈{−1,1}n

[

∆(zzz,yyy)+
1

n
〈www,xxx1〉(z1 −1)+

1

n

n

∑
i=2

〈www,xxxi〉(zi +1)

︸ ︷︷ ︸

:=ϒ(zzz)

]

.

Setting λ = 1, we obtain the overall objective J(www) in (1). Now we have the following lower

bound on the rates of convergence of BMRM.

Theorem 4 Let www0 = eee1+2ceee2+2ceee3. Suppose running BMRM on the above constructed objective

J(www) produces iterates w1, . . . ,wk, . . .. Then it takes BMRM at least
⌊

1
5ε

⌋
steps to find an ε accurate

solution. Formally,

min
i∈[k]

J(wi)−min
www

J(www)≥ 1

4

(
1

k
− 1

n−1

)

for all k ∈ [n−1],

hence min
i∈[k]

J(wi)−min
www

J(www)> ε for all k <
1

5ε
.

Proof The crux of our proof is to show

wwwk = 2ceee2 +2ceee3 +
2c

k

k+3

∑
i=4

eeei, for all k ∈ [n−1]. (10)

We prove it by induction. Initially at k = 1, we note

1

n
〈www0,xxx1〉= 2c2 =

1

4
, and

1

n
〈www0,xxxi〉=−2c2 =−1

4
, ∀ i ∈ [2,n]. (11)

Since there is only one positive example, zzz can only have two cases. If zzz = yyy (i.e., correct labeling

with b = 0), then ϒ(zzz) = ϒ(yyy) = 0. If zzz misclassifies the only positive example into negative (i.e.,

b = 1), then ∆(zzz,yyy) = b
n+

= 1. Since PRBEP forces c = b = 1, there must be one negative example

misclassified into positive by zzz. By (11), all i ∈ [2,n] play the same role in ϒ(zzz). Without loss

of generality, assume the misclassified negative example is i = 2, that is, zzz = (−1,1,−1,−1, . . .).
It is easy to check that ϒ(zzz) = 1+ 2

n
[−〈www0,xxx1〉+ 〈www0,xxx2〉] = 0 = ϒ(yyy), which means such zzz is a

maximizer of ϒ(zzz). Using this zzz, we can derive a subgradient of Remp(www0):

aaa1 =
2

n
(−xxx1 + xxx2) =−2ceee2 −2ceee3 −2ceee4 and b1 = 0−〈aaa1,www0〉= 4c2 +4c2 = 1,

www1 = argmin
www

{
1

2
‖www‖2 + 〈aaa1,www〉+b1

}

= 2ceee2 +2ceee3 +2ceee4.

Next assume (10) holds for steps 1, . . . ,k (k ∈ [n−2]). Then at step k+1 we have

1

n
〈wwwk,xxx1〉= 2c2 =

1

4
, and

1

n
〈wwwk,xxxi〉=

{

−2c2 − 2c2

k
=− 1

4
− 1

4k
∀ i ∈ [2,k+1]

−2c2 =− 1
4
, ∀ i ≥ k+2

.
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Again consider two cases of zzz. If zzz = yyy then ϒ(zzz) = ϒ(yyy) = 0. If zzz misclassifies the only positive

example into negative, then ∆(zzz,yyy) = 1. If zzz misclassifies any of i ∈ [2,k+ 1] into positive, then

ϒ(zzz) = 1+ 2
n
[−〈wwwk,xxx1〉+ 〈wwwk,xxxi〉] = − 1

2k
< ϒ(yyy). So such zzz cannot be a maximizer of ϒ(zzz). But

if zzz misclassifies any of i ≥ k+2 into positive, then ϒ(zzz) = 1+ 2
n
[−〈wwwk,xxx1〉+ 〈wwwk,xxxi〉] = 0 = ϒ(yyy).

So such zzz is a maximizer. Pick i = k+2 and we can derive from this zzz a subgradient of Remp(wwwk):

aaak+1 =
2

n
(−xxx1 + xxxk+2) =−2ceee2 −2ceee3 −2ceeek+4, bk+1 = 0−〈aaak+1,wwwk〉= 4c2 +4c2 = 1,

wwwk+1 = argmin
www

Jk+1(www)=argmin
www

{
1

2
‖www‖2+ max

i∈[k+1]
{〈aaai,www〉+bi}

}

=2ceee2+2ceee3+
2c

k+1

k+4

∑
i=4

eeei.

To verify the last step, note 〈aaai,wwwk+1〉+bi =
−1

2(k+1) for all i∈ [k+1], and so ∂Jk+1(wwwk+1) = {wwwk+1+

∑k+1
i=1 αiaaai : ααα ∈ ∆k+1} ∋ 0 (just set all αi =

1
k+1

). So (10) holds for step k+1. (End of induction.)

All that remains is to observe J(wwwk) =
1
4
(2+ 1

k
) while minwww J(www)≤ J(wwwn−1) =

1
4
(2+ 1

n−1
), from

which it follows that J(wwwk)−minwww J(www)≥ 1
4
( 1

k
− 1

n−1
).

Note in the above run of BMRM, all subgradients aaak have norm

√
3
2

which satisfies Assumption 1.

2.3 Construction Of Lower Bound For ROCArea Problem

Next we consider the case of ROCArea. Given ε > 0, define n = ⌊1/ε⌋ and construct a data set

{(xxxi,yi)}n+1
i=1 with n+1 examples as follows. Let eeei be the i-th coordinate vector in R

n+2 (p= n+2).

The first example is the only positive example with y1 = +1 and xxx1 =
√

neee2. The rest n examples

are all negative, with yi =−1 and xxxi =−neeei+1 for i ∈ [2,n+1]. Then the corresponding empirical

risk for ROCArea loss is

Remp(www) =
1

n

n+1

∑
i=2

max{0,1−〈www,xxx1 − xxxi〉}=
1

n

n+1

∑
i=2

max{0,1−〈www,
√

neee2 +neeei+1
︸ ︷︷ ︸

:=uuui

〉}.

By further setting λ = 1, we obtain the overall objective J(www) in (1). It is easy to see that

the minimizer of J(www) is w∗ = 1
2

(
1√
n
eee2 +

1
n ∑n+2

i=3 eeei

)

and J(w∗) = 1
4n

. In fact, simply check that

〈w∗,uuui〉= 1 for all i, so ∂J(w∗)=
{

w∗−∑n
i=1 αi

(
1√
n
eee2 + eeei+2

)

: αi ∈ [0,1]
}

, and setting all αi =
1
2n

yields the subgradient 0. Then we have the following lower bound on the rates of convergence for

BMRM.

Theorem 5 Let w0 = eee1 +
1√
n
eee2. Suppose running BMRM on the above constructed objective J(www)

produces iterates w1, . . . ,wk, . . .. Then it takes BMRM at least
⌊

2
3ε

⌋
steps to find an ε accurate

solution. Formally,

min
i∈[k]

J(wi)− J(w∗) =
1

2k
+

1

4n
for all k ∈ [n],hence min

i∈[k]
J(wi)− J(w∗)> ε for all k <

2

3ε
.

Proof The crux of the proof is to show that

wwwk =
1√
n

eee2 +
1

k

k+2

∑
i=3

eeei, ∀ k ∈ [n]. (12)
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We prove (12) by induction. Initially at k = 1, we note that 〈www0,uuui〉= 1 for all i ∈ [2,n+1]. Hence

we can derive a subgradient and www1:

aaa1 =−1

n
uuu2 =− 1√

n
eee2 − eee3, b1 =−〈aaa1,www0〉=

1

n
,

www1 = argmin
www

{
1

2
‖www‖2 + 〈aaa1,www〉+b1

}

=−aaa1 =
1√
n

eee2 + eee3.

So (12) holds for k = 1. Now suppose it hold for steps 1, . . . ,k (k ∈ [n−1]). Then for step k+1 we

note

〈wwwk,uuui〉=
{

1+ n
k

if i ≤ k

1 if i ≥ k+1
.

Therefore we can derive a subgradient and compute wwwk+1:

aaak+1 =−1

n
uuuk+2 =− 1√

n
eee2 − eeek+3, bk+1 =−〈aaak+1,wwwk〉=

1

n
,

wwwk+1 = argmin
www

{ 1

2
‖www‖2 + max

i∈[k+1]
{〈aaai,www〉+bi}

︸ ︷︷ ︸

:=Jk+1(www)

}

=− 1

k+1

k+1

∑
i=1

aaai =
1√
n

eee2 +
1

k+1

k+3

∑
i=3

eeei.

This minimizer can be verified by noting that 〈wwwk+1,aaai〉+ bi = − 1
k+1

for all i ∈ [k + 1], and so

∂Jk+1(wwwk+1) = {wwwk+1 +∑k+1
i=1 αiaaai : ααα ∈ ∆k+1} ∋ 0 (just set all αi =

1
k+1

). So (12) holds for step

k+1. (End of induction.)

All that remains is to observe J(wwwk) =
1
2
( 1

n
+ 1

k
).

As before, in the above run of BMRM, all subgradients aaak have norm (1+ 1
n
)1/2 which satisfies

Assumption 1.

3. Reformulating The Empirical Risk

In order to bypass the lower bound of CPMs and show that the multivariate score problems can

be optimized at faster rates, we propose a smoothing strategy as described in Section 1.1. In this

section, we will focus on the design of smooth surrogate functions, with emphasis on the consequent

rates of convergence when optimized by Nesterov’s accelerated gradient methods (Nesterov, 2005).

The computational issues will be tackled in Section 4.

In order to approximate Remp by g⋆µ we will start by writing Remp(w) as g∗(A⊤w) for an ap-

propriate linear transform A and convex function g. Let the domain of g be Q and d be a strongly

convex function with modulus 1 defined on Q. Furthermore, assume minααα∈Q d(ααα) = 0 and denote

D = maxααα∈Q d(ααα). In optimization parlance d is called a prox-function. Set

g⋆µ = (g+µd)⋆.

Then by the analysis in Appendix A, we can conclude that g⋆µ(A
⊤w) has a Lipschitz continuous

gradient with constant at most 1
µ
‖A‖2

. In addition,

∣
∣
∣g

⋆
µ(A

⊤w)−Remp(w)
∣
∣
∣≤ µD. (13)
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Choosing µ = ε/D, we can guarantee the approximation is uniformly upper bounded by ε.

There are indeed many different ways of expressing Remp(w) as g⋆(A⊤w), but the next two

sections will demonstrate the advantage of our design.

3.1 Contingency Table Based Loss

Letting S k denote the k dimensional probability simplex, we can rewrite (3) as:

Remp(w) = max
zzz∈{−1,1}n

[

∆(zzz,yyy)+
1

n

n

∑
i=1

〈w,xxxi〉(zi − yi)

]

(14)

= max
ααα∈S 2n ∑

zzz∈{−1,1}n

αzzz

(

∆(zzz,yyy)+
1

n

n

∑
i=1

〈w,xxxi〉(zi − yi)

)

(15)

= max
ααα∈S 2n ∑

zzz∈{−1,1}n

αzzz∆(zzz,yyy)−
2

n

n

∑
i=1

yi 〈w,xxxi〉
(

∑
zzz:zi=−yi

αzzz

)

.

Note from (14) to (15), we defined 0 · (−∞) = 0 since ∆(zzz,yyy) can be −∞ as in (4). Introduce

βi = ∑zzz:zi=−yi
αzzz. Then βi ∈ [0,1] and one can rewrite the above equation in terms of βββ:

Remp(w) = max
βββ∈[0,1]n

{

−2

n

n

∑
i=1

yi 〈w,xxxi〉βi −g(βββ)

}

(16)

where g(βββ) :=− max
ααα∈A(βββ)

∑
zzz∈{−1,1}n

αzzz∆(zzz,yyy). (17)

Here A(βββ) is a subset of S 2n

defined via A(βββ) =
{

ααα s.t. ∑zzz:zi=−yi
αzzz = βi for all i

}
. Indeed, this

rewriting only requires that the mapping from ααα ∈ S 2n

to βββ ∈ Q := [0,1]n is surjective. This is clear

because for any βββ ∈ [0,1]n, a pre-image ααα can be constructed by setting:

αzzz =
n

∏
i=1

γi, where γi =

{

βi if zi =−yi

1−βi if zi = yi

.

Proposition 6 g(βββ) defined by (17) is convex on βββ ∈ [0,1]n.

Proof Clearly A(βββ) is closed for any βββ ∈ Q. So without loss of generality assume that for any βββ

and βββ
′

in [0,1]n, the maximum in (17) is attained at ααα and ααα′ respectively. So ∑zzz:zi=−yi
αzzz=βi and

∑zzz:zi=−yi
α′

zzz =β′
i. For any ρ ∈ [0,1], consider βββ

ρ
:= ρβββ+(1−ρ)βββ′

. Define αααρ := ρααα+(1−ρ)ααα′.
Then clearly αααρ satisfies

∑
zzz:zi=−yi

α
ρ
zzz = ρβi +(1−ρ)β′

i = β
ρ
i .

Therefore αααρ is admissible in the definition of g(βββρ) (17), and

g(βββρ)≤−∑
zzz

α
ρ
zzz ∆(zzz,yyy) =−ρ∑

zzz

αzzz∆(zzz,yyy)− (1−ρ)∑
zzz

α′
zzz∆(zzz,yyy)

= ρg(βββ)+(1−ρ)g(βββ′).

which establishes the convexity of g.

Using (16) it immediately follows that Remp(w) = g⋆(A⊤w) where A is a p-by-n matrix whose i-th

column is −2
n

yixxxi,.
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3.1.1
√

D‖A‖ FOR OUR DESIGN

Let us choose the prox-function d(βββ) as 1
2
‖βββ‖2

. Then D = maxβββ∈[0,1]n d(βββ) = n
2
. Define A =

−2
n
(y1xxx1, . . . ,ynxxxn) and M be a n-by-n matrix with Mi j = yiy j

〈
xxxi,xxx j

〉
. Clearly, A⊤A= 4

n2 M. Because

we assumed that ‖xxxi‖ ≤ R, it follows that |Mi j| ≤ R2. The norm of A can be upper bounded as

follows:

‖A‖2=λmax(A
⊤A)=

4

n2
λmax(M)≤ 4

n2
tr(M)≤ 4

n2
·nR2=

4R2

n
. (18)

Hence

√
D‖A‖ ≤

√
n

2

2R√
n
=
√

2R.

This constant upper bound is highly desirable because it implies that the rate of convergence in (7)

is independent of the size of the data set (n or p). However, the cost per iteration still depends on n

and p.

3.1.2 ALTERNATIVES

It is illuminating to see how naive choices for smoothing Remp can lead to excessively large values

of
√

D‖A‖. For instance, using (14), Remp(w) can be rewritten as

Remp(w) = max
zzz∈{−1,1}n

1

n

[

n∆(zzz,yyy)+
n

∑
i=1

〈w,xxxi〉(zi − yi)

]

= max
ααα∈Q

∑
zzz∈{−1,1}n

αzzz

(

n∆(zzz,yyy)+
n

∑
i=1

〈w,xxxi〉(zi − yi)

)

.

where Q refers to the 2n dimensional simplex scaled by 1
n
: Q =

{
ααα : αz ∈ [0,n−1] and ∑zzz αzzz =

1
n

}
.

Defining A as a p-by-2n matrix whose zzz-th column is given by ∑n
i=1 xxxi(zi − yi) and writing

h(ααα) =

{

−n∑zzz∈{−1,1}n ∆(zzz,yyy)αzzz if ααα ∈ Q

+∞ otherwise
,

we can express Remp as

Remp(w) = max
ααα∈Q

[〈

A⊤w,ααα
〉

−h(ααα)
]

= h⋆(A⊤w). (19)

Now let us investigate the value of
√

D‖A‖. As Q is a scaled simplex, a natural choice of prox-

function is

d(ααα) = ∑
zzz

αzzz logαzzz +
1

n
logn+ log2.

Clearly, d(ααα) is a strongly convex function in Q with modulus of strong convexity 1 under the L1

norm (see, e.g., Beck and Teboulle, 2003, Proposition 5.1). In addition, d(ααα) is minimized when ααα

is uniform, that is, αzzz =
1

n2n for all zzz, and so

min
ααα∈Q

d(ααα) = 2n 1

n2n
log

1

n2n
+

1

n
logn+ log2 = 0.
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Therefore d(ααα) satisfies all the prerequisites of being a prox-function. Furthermore, d(ααα) is

maximized on the corner of the scaled simplex, for example, αyyy =
1
n

and αzzz = 0 for all zzz 6= yyy. So

D = max
ααα∈Q

d(ααα) =
1

n
log

1

n
+

1

n
logn+ log2 = log2. (20)

Finally, denoting the z-th column of A as A:zzz, we can compute ‖A‖ as

‖A‖= max
u:‖u‖=1,v:∑zzz|vzzz|=1

u⊤Av = max
v:∑zzz|vzzz|=1

‖Av‖= max
z

‖A:z‖

= max
z

∥
∥
∥
∥
∥

n

∑
i=1

xxxi(zi − yi)

∥
∥
∥
∥
∥
≤ 2

n

∑
i=1

‖xxxi‖ ≤ 2nR. (21)

Note this bound is tight because ‖A‖ = 2nR can be attained by setting xxxi = Reee1 for all i, in which

case the maximizing zzz is simply −yyy. Eventually combining (20) and (21), we arrive at
√

D‖A‖ ≤ 2nR
√

log2.

Thus if we re-express Remp by using this alternative form as in (19),
√

D‖A‖ will scale as Θ(nR)
which grows linearly with n, the number of training examples.

3.2 ROCArea Loss

We rewrite Remp(w) from (5) as:

1

m
max

zi j∈{0,1} ∑
i∈P

∑
j∈N

zi j[1−w⊤(xi−x j)] =
1

m
max

βββ∈[0,1]m ∑
i∈P

∑
j∈N

βi j

[

1−www⊤(xxxi − xxx j)
]

. (22)

The above empirical risk can be identified with g⋆(A⊤w) by setting

g(βββ) =

{

− 1
m ∑i, j βi j if βββ ∈ [0,1]m

+∞ elsewhere
,

and letting A be a p-by-m matrix whose (i j)-th column is − 1
m
(xxxi − xxx j). This g is a linear function

defined over a convex domain, and hence clearly convex.

3.2.1
√

D‖A‖ FOR OUR DESIGN

Choose prox-function d(βββ) = 1
2 ∑i, j β2

i j. By a simple calculation, D = maxβββ d(βββ) = m
2

. As before,

define A to be a matrix such that its (i j)-th column Ai j = − 1
m
(xxxi − xxx j) and M be a m-by- m matrix

with M(i j)(i′ j′) =
〈
xxxi − xxx j,xxxi′ − xxx j′

〉
. Clearly, A⊤A = 1

m2 M. Because we assumed that ‖xxxi‖ ≤ R, it

follows that |Mi j| ≤ 4R2. The norm of A can be upper bounded as follows:

‖A‖2=λmax(A
⊤A)=

1

m2
λmax(M)≤ 1

m2
tr(M)≤ 1

m2
·4mR2=

4R2

m
.

Therefore

√
D‖A‖ ≤

√
m

2
· 2R√

m
=
√

2R. (23)

This upper bound is independent of n and guarantees that the rate of convergence is not affected by

the size of the data set.
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3.2.2 ALTERNATIVES

The advantage of our above design of g⋆(A⊤www) can be seen by comparing it with an alternative

design. In (22), let us introduce

γi = ∑
j∈N

βi j, i ∈ P , and γ j = ∑
i∈P

βi j, j ∈ N .

Then clearly γγγ ∈ B := {γi ∈ [0,n−],γ j ∈ [0,n+]}. However this map from βββ ∈ [0,1]m to γγγ ∈ B is

obviously not surjective, because the image γγγ should at least satisfy ∑i∈P γi = ∑ j∈N γ j.
5 So let us

denote the real range of the mapping as A and A ⊆ B . Now rewrite (22) in terms of γγγ:

Remp(www) =
1

m
max
γγγ∈A

{

∑
i∈P

γiwww
⊤(−xxxi)+ ∑

j∈N

γ jwww
⊤xxx j + ∑

i∈P

γi + ∑
j∈N

γ j

}

= g⋆(A⊤www), where g(γγγ) =

{

− 1
m ∑i∈P γi +

1
m ∑ j∈N γ j if γγγ ∈ A

+∞ elsewhere
,

and A is a p-by-n matrix whose i-th column is − 1
m

xxxi (i ∈ P ) and j-th column is 1
m

xxx j ( j ∈ N ).

Choose a prox-function d(γγγ) = 1
2
‖γγγ‖2

. Then we can bound ‖A‖ by R
m

√
n similar to (18) and

bound D by

D = max
γγγ∈A

d(γγγ)≤ max
γγγ∈B

d(γγγ) =
1

2

(
n2
+n−+n+n2

−
)
.

Note that the ≤ here is actually an equality because they have a common maximizer: γi = n−
for all i ∈ P and γ j = n+ for all j ∈ N (which is mapped from all βi j = 1). Now we have

√
D‖A‖ ≤ 1√

2

√

n2
+n−+n+n2

−
R

m

√
n =

R√
2

√

(n++n−)2

n+n−
.

This bound depends on the ratio between positive and negative examples. If the class is balanced

and there exist constants c+,c− ∈ (0,1) such that n+ ≥ c+n and n− ≥ c−n, then we easily derive√
D‖A‖ ≤ R√

2c+c−
which is a constant. However, if we fix n− = 1 and n+ = n−1, then

√
D‖A‖ will

scale as Θ(
√

n). In contrast, the bound in (23) is always a constant.

4. Efficient Evaluation Of The Smoothed Objective And Its Gradient

The last building block required to make our smoothing scheme work is an efficient algorithm to

compute the smoothed empirical risk g⋆µ(A
⊤w) and its gradient. By the chain rule and Corollary

X.1.4.4 of Hiriart-Urruty and Lemaréchal (1996), we have

∂

∂w
g⋆µ(A

⊤w) = Aβ̂ββ where β̂ββ = argmax
βββ∈Q

〈

βββ,A⊤w
〉

−g(βββ)−µd(βββ). (24)

Since g is convex and d is strongly convex, the optimal β̂ββ must be unique. Two major difficulties

arise in computing the above gradient: the optimal β̂ββ can be hard to solve (e.g., in the case of

contingency table based loss), and the matrix vector product in (24) can be costly (e.g., O(n2 p)
for ROCArea). Below we show how these difficulties can be overcome to compute the gradient in

O(n logn) time.

5. Note that even adding this equality constraint to the definition of B will still not make the map surjective.
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4.1 Contingency Table Based Loss

Since A is a p×n dimensional matrix and β̂ββ is a n dimensional vector, the matrix vector product in

(24) can be computed in O(np) time. Below we focus on solving β̂ββ in (24).

To take into account the constraints in the definition of g(βββ), we introduce Lagrangian multipli-

ers θi and the optimization in (24) becomes

g⋆µ(A
⊤w) = max

βββ∈[0,1]n

{

−2

n

n

∑
i=1

yi 〈w,xxxi〉βi −
µ

2

n

∑
i=1

β2
i (25)

+ max
ααα∈S 2n

[

∑
zzz

αzzz∆(zzz,yyy)+ min
θθθ∈Rn

n

∑
i=1

θi

(

∑
zzz:zi=−yi

αzzz −βi

)]}

⇔ min
θθθ∈Rn

{

max
ααα∈S 2n ∑

zzz

αzzz

[

∆(zzz,yyy)+∑
i

θiδ(zi =−yi)

]

+ max
βββ∈[0,1]n

n

∑
i=1

(−µ

2
β2

i −
(

2

n
yi 〈w,xxxi〉+θi

)

βi

)}

⇔ min
θθθ∈Rn

{

max
zzz

[

∆(zzz,yyy)+∑
i

θiδ(zi =−yi)

]

︸ ︷︷ ︸

:=q(zzz,θθθ)

+
n

∑
i=1

max
βi∈[0,1]

[−µ

2
β2

i −
(

2

n
yi 〈w,xxxi〉+θi

)

βi

]

︸ ︷︷ ︸

:=hi(θi)

}

. (26)

The last step is because all βi are decoupled and can be optimized independently. Let

D(θθθ) := max
zzz

q(zzz,θθθ)+
n

∑
i=1

hi(θi),

and θ̂θθ be a minimizer of D(θθθ): θ̂θθ ∈ argminθθθ D(θθθ). Given θ̂θθ and denoting

ai =
−2

n
yi 〈w,xxxi〉 , (27)

we can recover the optimal β(θ̂i) from the definition of hi(θ̂i) as follows:

β̂i = βi(θ̂i) =







0 if θ̂i ≥ ai

1 if θ̂i ≤ ai −µ
1
µ
(ai − θ̂i) if θ̂i ∈ [ai −µ,ai]

.

So, the main challenge that remains is to compute θ̂θθ. Towards this end, first note that:

∇θi
hi(θi) =−βi(θi) and ∂θθθq(zzz,θθθ) = co

{

δzzz : zzz ∈ argmax
zzz

q(zzz,θθθ)

}

.

Here δzzz := (δ(z1 =−y1), . . . ,δ(zn =−yn))
⊤ and co(·) denotes the convex hull of a set. By the first

order optimality conditions 0 ∈ ∂D(θ̂θθ), which implies that

β̂ββ ∈ co

{

δzzz : zzz ∈ argmax
zzz

q(zzz,θθθ)

}

. (28)
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We will henceforth restrict our attention to PRBEP as a special case of contingency table based

loss ∆. A major contribution of this paper is a characterization of the optimal solution of (26), based

on which we propose an O(n logn) complexity algorithm for finding θ̂θθ exactly. To state the result,

our notation needs to be refined. We will always use i to index positive examples (i ∈ P ) and j to

index negative examples ( j ∈ N ). Let the positive examples be associated with xxx+i , y+i (= 1), a+i ,

θ̂+
i , β̂+

i , and h+i (·), and the negative examples be associated with xxx−j , y−j (= −1), a−j , θ̂−
j , β̂−

j , and

h−j (·). Given two arbitrary scalars θ+ and θ−, let us define θθθ = θθθ(θ+,θ−) by setting θ+
i = θ+ for all

i ∈ P and θ−
j = θ− for all j ∈ N . Finally define f : R 7→ R as follows

f (θ) = ∑
i∈P

h+i (θ)+ ∑
j∈N

h−j

(−1

n+
−θ

)

.

Then f is differentiable and convex in θ. Now our result can be stated as

Theorem 7 The problem (26) must have an optimal solution which takes the form θθθ(θ+,θ−) with

θ++ θ− = −1
n+

. Conversely, suppose θ++ θ− = −1
n+

, then θθθ(θ+,θ−) is an optimal solution if, and

only if, ∇ f (θ+) = 0.

Remark 8 Although the optimal θθθ to the problem (26) may be not unique, the optimal βββ to the

problem (25) must be unique as we commented below (24).

4.1.1 PROOF OF THEOREM 7

We start with the first sentence of Theorem 7. Our idea is as follows: given any optimal solution θ̂θθ,

we will construct θ+ and θ− which satisfy θ++θ− = −1
n+

and D(θθθ(θ+,θ−))≤ D(θ̂θθ).

First θ̂θθ must be in R
n because D(θθθ) tends to ∞ when any component of θθθ approaches ∞ or −∞.

Without loss of generality, assume n+ ≤ n−, θ̂+
1 ≥ θ̂+

2 ≥ . . ., and θ̂−
1 ≥ θ̂−

2 ≥ . . .. Define θ̂+
0 = θ̂−

0 = 0,

and consider the phase transition point

k := max

{

0 ≤ i ≤ n+ : θ̂+
i + θ̂−

i +
1

n+
> 0

}

,

based on which we have three cases: k = 0, 1 ≤ k ≤ n+−1, and k = n+.

Case 1: 1 ≤ k ≤ n+− 1. Then there must exist θ+ ∈ [θ̂+
k+1, θ̂

+
k ] and θ− ∈ [θ̂−

k+1, θ̂
−
k ] such that

θ++θ− = −1
n+

. Denote θθθ′ := θθθ(θ+,θ−) and it suffices to show D(θθθ′)≤ D(θ̂θθ). Since θ++θ− = −1
n+

,

it is easy to see maxzzz q(zzz,θθθ′) = 0, and so

D(θθθ′) = ∑
i∈P

h+i (θ
+)+ ∑

j∈N

h−j (θ
−).

To get a lower bound of D(θ̂θθ), consider a specific zzz where z+i =−1 for 1 ≤ i ≤ k, z+i = 1 for i > k,

z−j = 1 for 1 ≤ j ≤ k, and z−j =−1 for j > k. Then we have

D(θ̂θθ)≥ k

n+
+

k

∑
i=1

θ+
i +

k

∑
j=1

θ−
j + ∑

i∈P

h+i (θ
+
i )+ ∑

j∈N

h−j (θ
−
j ).
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Using θ++θ− = −1
n+

, we can compare:

D(θ̂θθ)−D(θθθ′)≥
k

∑
i=1

[
h+i (θ

+
i )−h+i (θ

+)+θ+
i −θ+

]
+

k

∑
j=1

[

h−j (θ
−
j )−h−j (θ

−)+θ−
j −θ−

]

+
n+

∑
i=k+1

[
h+i (θ

+
i )−h+i (θ

+)
]
+

n−

∑
j=k+1

[

h−j (θ
−
j )−h−j (θ

−)
]

. (29)

It is not hard to show all terms in the square bracket are non-negative. For i ≤ k and j ≤ k, by

definition of θ+ and θ−, we have θ+
i ≥ θ+ and θ−

j ≥ θ−. Since the gradient of h+i and h−j lies in

[−1,0], so by Rolle’s mean value theorem we have

h+i (θ
+
i )−h+i (θ

+)+θ+
i −θ+ ≥ (−1)(θ+

i −θ+)+θ+
i −θ+ = 0,

h−j (θ
−
j )−h−j (θ

−)+θ−
j −θ− ≥ (−1)(θ−

j −θ−)+θ−
j −θ− = 0.

For i ≥ k and j ≥ k, by definition we have θ+
i ≤ θ+ and θ−

j ≤ θ−, and so h+i (θ
+
i ) ≥ h+i (θ

+) and

h−j (θ
−
j )≥ h−j (θ

−). By (29) we conclude D(θ̂θθ)≥ D(θθθ′).

Case 2: k = n+. Then define θ− = θ−
n+

and θ+ = −1
n+

−θ−. Since k = n+ so θ+ < θ+
n+

. The rest

of the proof for D(θ̂θθ)≥ D(θθθ(θ+,θ−)) is exactly the same as Case 1.

Case 3: k = 0. This means θ+
i + θ−

i + 1
n+

≤ 0 for all 1 ≤ i ≤ n+. Then define θ+ = θ+
1 and

θ− = −1
n+

− θ+. Clearly, θ− ≥ θ−
1 . The rest of the proof for D(θ̂θθ) ≥ D(θθθ(θ+,θ−)) is exactly the

same as Case 1 with k set to 0.

Next we prove the second sentence of Theorem 7. We first show necessity. Denote θθθ′ :=
θθθ(θ+,θ−), and Y := argmaxzzz q(zzz,θθθ′). By the definition of PRBEP, any zzz ∈ Y must satisfy

∑
i∈P

δ(z+i =−1) = ∑
j∈N

δ(z−j = 1). (30)

Since θθθ′ is an optimizer of D(θθθ), so 0 ∈ ∂D(θθθ′). Hence by (28), there must exist a distribution

α(zzz) over zzz ∈ Y such that

∇h+i (θ
+) =− ∑

zzz∈Y :z+i =−1

α(zzz), ∀i ∈ P and ∇h−j (θ
−) =− ∑

zzz∈Y :z−j =1

α(zzz), ∀ j ∈ N .

Therefore

∑
i∈P

∇h+i (θ
+) =−∑

i∈P
∑

zzz∈Y :z+i =−1

α(zzz) =− ∑
zzz∈Y

α(zzz)∑
i∈P

δ(z+i =−1)

by (30)
= − ∑

zzz∈Y

α(zzz) ∑
j∈N

δ(z−j = 1) =− ∑
j∈N

∑
zzz∈Y :z−j =1

α(zzz) = ∑
j∈N

∇h−j (θ
−).

Finally, we prove sufficiency. By the necessity, we know there is an optimal solution θ̂θθ =
θθθ(θ+,θ−) which satisfies θ++ θ− = −1

n+
and ∇ f (θ+) = 0. Now suppose there is another pair η+

and η− which also satisfy η++η− = −1
n+

and ∇ f (η+) = 0. Letting θθθ′ = θθθ(η+,η−), it suffices to

show that D(θθθ′) = D(θ̂θθ). Since θ++θ− = η++η− = −1
n+

, so

max
zzz

q(zzz, θ̂θθ) = max
zzz

q(zzz,θθθ′) = 0. (31)

Since f is convex and ∇ f (θ+) = ∇ f (η+) = 0, so both θ+ and η+ minimize f (θ) and so f (θ+) =
f (η+). In conjunction with (31), we conclude D(θθθ′) = D(θ̂θθ). �
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4.1.2 AN O(n logn) COMPLEXITY ALGORITHM FOR SOLVING (26) UNDER PRBEP

We now design an O(n logn) complexity algorithm which, given {ai} from (27), finds an optimal

solution θ̂θθ exactly. By Theorem 7, it suffices to find a root of the gradient of f :

∇ f (θ) = g+(θ)−g−
(−1

n+
−θ

)

where g+(θ) := ∑
i∈P

∇h+i (θ) and g−(θ) := ∑
j∈N

∇h−j (θ).

Clearly, g+ and g− are piecewise linear. g+ only has 2n+ kink points: {a+i ,a
+
i −µ : i ∈ P} and

we assume they are sorted decreasingly as τ+1 ≥ . . .≥ τ+2n− . Similarly, g− only has 2n− kink points:

{a−j ,a
−
j −µ : j ∈ N } and we assume they are sorted decreasingly as τ−1 ≥ . . .≥ τ−2n− . Further define

τ+0 = τ−0 = ∞ and τ+2n++1 = τ−2n−+1 =−∞.

Our main idea is to find a+,b+,a−,b− which satisfy i) g+ is linear in [a+,b+] and g− is linear in

[a−,b−]; and ii) there exists θ+ ∈ [a+,b+] and θ− ∈ [a−,b−] such that θ++θ− = −1
n+

and g+(θ+) =

g−(θ−). Once this is done, we can find θ+ and θ− by solving a linear system

θ++θ− =
−1

n+
,

g+(a+)+
g+(a+)−g+(b+)

a+−b+
(θ+−a+) = g−(a−)+

g−(a−)−g−(b−)
a−−b−

(θ−−a−). (32)

The idea of finding a+,b+,a−,b− is to detect the sign switch of “some” function. Our frame-

work can be divided into two stages:

• First, we find a sign switching interval [τ+i ,τ
+
i−1] such that ∇ f (τ+i ) ≤ 0 and ∇ f (τ+i−1) ≥ 0.

Formally, since f (τ+2n++1) = limθ→−∞ ∇ f (θ) =−n+ and f (τ+0 ) = limθ→∞ ∇ f (θ) = n−, there

must be a cross point i ∈ {1, . . . ,1+ 2n+} such that ∇ f (τ+i ) ≤ 0 and ∇ f (τ+i−1) ≥ 0. We set

a+ = τ+i and b+ = τ+i−1.

• Second, within [a+,b+] where c := −1
n+

− τ+i−1 and d := −1
n+

− τ+i , we find a sign switching

interval [τ−j ,τ
−
j−1] such that ∇ f (−1

n+
− τ−j ) ≥ 0 and ∇ f (−1

n+
− τ−j−1) ≤ 0. Formally, suppose

τ−p ≥ . . . ≥ τ−q are in [c,d]. Define a decreasing array by χ−
0 = d, χ−

1 = τ−q , . . . , χ−
m = τ−r ,

χ−
m+1 = c. Since ∇ f (−1

n+
− χ−

0 ) = ∇ f (τ+i ) ≤ 0 and ∇ f (−1
n+

− χ−
m+1) = ∇ f (τ+i−1) ≥ 0, there

must be a cross point j ∈ {1, . . . ,m+1} such that ∇ f (−1
n+

−χ−
j )≥ 0 and ∇ f (−1

n+
−χ−

j−1)≤ 0.

We set a− = χ−
j and b− = χ−

j−1.

Then a+,b+,a−,b− are guaranteed to have the desired property. We formalize the idea in Algorithm

2. Since ∇ f (τ+0 ) = n−, it simply finds the smallest i ≥ 1 such that ∇ f (τ+i ) ≤ 0. Similarly, since

∇ f (−1
n+

−χ−
0 )≤ 0, it just finds the smallest j ≥ 1 such that ∇ f (−1

n+
−χ−

j )≥ 0.

Algorithm 2 requires an efficient way to evaluate g+ and g−. To this end, we design Algorithm

3 for computing g+, while the case for g− can be handled in sheer analogy. One key observation

made from Algorithm 2 is that the location where g+ is evaluated grows monotonically in the first

and second stage. Therefore, our algorithm only needs to ensure that the total cost of evaluating g+

in both stages is O(n+).
Our idea to achieve this is to maintain an anchor point i ∈ {1, . . . ,2n+}, together with the slope

s and intercept/bias b of g+ in the interval [τ+i+1,τ
+
i ]. Whenever a query point θ is given, we move i
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Algorithm 2: Find a+,b+,a−,b− to facilitate finding θ+ and θ− via solving (32).

Input: Arrays {τ+i : 0 ≤ i ≤ 2n++1} and {τ−j : 0 ≤ j ≤ 2n−+1}.

Output: a+,b+,a−,b− which satisfy the desired conditions.

1 for i = 1, . . . ,1+2n+ do

2 g+i = g+(τ+i ), g−i = g−
(
−1
n+

− τ+i

)

;

3 if g+i −g−i ≤ 0 then break;

4 Let c = −1
n+

− τ+i−1, d = −1
n+

− τ+i . Suppose τ−q ≥ . . .≥ τ−r are in [c,d];

5 Define a decreasing array χ−
0 = d, χ−

1 = τ−q , . . . , χ−
m = τ−r , χ−

m+1 = c (m = r−q+1).

6 for j = 1, . . . ,m+1 do

7 g+j = g+
(
−1
n+

−χ−
j

)

, g−j = g−(χ−
j );

8 if g+j −g−j ≥ 0 then break;

9 return a+ = τ+i , b+ = τ+i−1, a− = χ−
j , b− = χ−

j−1;

Figure 1: Example of evaluating g+. At τ+i , s = 3 and b = −2. g+(θ) can be computed by −2+
3(θ− τ+i ). At τ+i+1, s = 2 and b =−3.

to the largest possible value such that θ ∈ (τ+i+1,τ
+
i ] and compute g+(θ) by b+ s(θ− τ+i ). In other

words, when θ > τ+i , we need to decrement i; and when θ ≤ τ+i+1 we increment i. An example is

given in Figure 1.

The key operation here is how to update s and b when sliding i. We say i is a head if τ+i
corresponds to some a+k (rather than a+k − µ). Otherwise we say i is a tail. We initialize by setting

i = 1, s = 1 and b = 0. Then the update rule falls in four cases:

• Increment i and i′ = i+1 is a head: update by s′ = s+1, and b′ = b+ s · 1
µ
(τ+i′ − τ+i ).

• Increment i and i′ = i+1 is a tail: update by s′ = s−1 and b′ = b+ s · 1
µ
(τ+i′ − τ+i ).

• Decrement i to i′ = i−1, and i is a head: update by s′ = s−1 and b′ = b− s′ · 1
µ
(τ+i − τ+i′ ).

• Decrement i to i′ = i−1, and i is a tail: update by s′ = s+1 and b′ = b− s′ · 1
µ
(τ+i − τ+i′ ).

Since the query point grows monotonically, the anchor point i only needs to slide monotonically

too. Hence the total computational cost in each stage is O(n+). It is also not hard to see that i can be

initialized to i = 2n+, with s = 0 and b =−n+. Finally, suppose we store {a+i ,a
+
i −µ} by an array

A with A[2k−1] = a+k and A[2k] = a+k −µ, and the sorting is performed only in terms of the index

of A. Then an index i of A is a head (corresponds to some a+k ) if an only if i is odd.

3641



ZHANG, SAHA AND VISHWANATHAN

Algorithm 3: Compute g+(θ).

Input: A query point θ.

Output: g+(θ).
1 Initialize: i = 1, s = 1, b = 0. Given {ai}, do this only once at the first call of this function.

Other initializations are also fine, for example, i = 2n+, with s = 0 and b =−n+.

2 while TRUE do

3 if τ+i ≥ θ then

4 if τ+i+1 < θ then return b+ s · 1
µ
(θ− τ+i );

5 else

6 b = b+ s · 1
µ
(τ+i+1 − τ+i ), i = i+1;

7 if i is a head then s = s+1; else s = s−1;

8 else

9 if i == 1 then return 0;

10 if i is a head then s = s−1; else s = s+1;

11 i = i−1, b = b− s · 1
µ
(τ+i+1 − τ+i );

4.2 ROCArea Loss

For the ROCArea loss, given the optimal β̂ββ in (24) one can compute

∂

∂w
g⋆µ(A

⊤w) =
1

m
∑
i, j

β̂i j(xxx j − xxxi) =− 1

m

[

∑
i∈P

xxxi

(

∑
j∈N

β̂i j

)

︸ ︷︷ ︸

:=γi

− ∑
j∈N

xxx j

(

∑
i∈P

β̂i j

)

︸ ︷︷ ︸

:=γ j

]

.

If we can efficiently compute all γi and γ j, then the gradient can be computed in O(np) time.

Given β̂i j, a brute-force approach to compute γi and γ j takes O(m) time. We exploit the structure

of the problem to reduce this cost to O(n logn), thus matching the complexity of the separation

algorithm in Joachims (2005). Towards this end, we specialize (24) to ROCArea and write

g⋆µ(A
⊤w) = max

βββ

(

1

m
∑
i, j

βi jw
⊤(xxx j − xxxi)+

1

m
∑
i, j

βi j −
µ

2
∑
i, j

β2
i j

)

. (33)

Since all βi j are decoupled, their optimal value can be easily found:

β̂i j = median(1,a j −ai,0)

where ai =
1

µm

(

w⊤xxxi −
1

2

)

, and a j =
1

µm

(

w⊤xxx j +
1

2

)

. (34)

Below we give a high level description of how γi for i ∈ P can be computed; the scheme for

computing γ j for j ∈ N is identical. We omit the details for brevity.

For a given i, suppose we can divide N into three sets M +
i , Mi, and M −

i such that

• j ∈ M +
i =⇒ 1 < a j −ai, hence β̂i j = 1.
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Algorithm 4: Compute γi, si, ti for all i ∈ P .

Input: Two arrays {ai : i ∈ P} and
{

a j : j ∈ N
}

sorted increasingly: ai ≤ ai+1 and

a j ≤ a j+1.

Output: {γi,si, ti : i ∈ P}.

1 Initialize: s = t = 0, k = j = 0

2 for i in 1 to n+ do

3 while j < n− AND a j+1 < ai do

4 j = j+1; s = s−a j; t = t −a2
j

5 while k < n− AND ak+1 ≤ ai +1 do

6 k = k+1; s = s+ak; t = t +a2
k

7 si = s, ti = t, γi = (n−−1− k)− (k− j)ai + s

• j ∈ Mi =⇒ a j −ai ∈ [0,1], hence β̂i j = a j −ai.

• j ∈ M −
i =⇒ a j −ai < 0, hence β̂i j = 0.

Let si = ∑ j∈Mi
a j. Then, clearly

γi = ∑
j∈N

β̂i j = |M +
i |+ ∑

j∈Mi

a j −|Mi| ai = |M +
i |+ si −|Mi| ai.

Plugging the optimal β̂i j into (33) and using (34), we can compute g⋆µ(A
⊤w) as

g⋆µ(A
⊤w) = µ∑

i j

β̂i j(a j −ai)−
µ

2
∑
i j

β̂2
i j = µ

(

∑
j∈N

a jγ j − ∑
i∈P

aiγi

)

− µ

2
∑
i j

β̂2
i j.

If we define ti := ∑ j∈Mi
a2

j , then ∑i j β̂2
i j can be efficiently computed via

∑
j

β̂2
i j =

∣
∣M +

i

∣
∣+ ∑

j∈Mi

(a j −ai)
2 =

∣
∣M +

i

∣
∣+
∣
∣Mi

∣
∣a2

i −2aisi + ti, ∀ i ∈ P .

In order to identify the sets M +
i , Mi, M −

i , and compute si and ti, we first sort both {ai : i ∈ P}
and

{
a j : j ∈ N

}
. We then walk down the sorted lists to identify for each i the first and last indices

j such that a j − ai ∈ [0,1]. This is very similar to the algorithm used to merge two sorted lists,

and takes O(n−+ n+) = O(n) time and space. The rest of the operations for computing γi can be

performed in O(1) time with some straightforward book-keeping. The whole algorithm is presented

in Algorithm 4 and its overall complexity is dominated by the complexity of sorting the two lists,

which is O(n logn).

5. Empirical Evaluation

We used 24 publicly available data sets and focused our study on two aspects: the reduction in

objective value as a function of CPU time, and generalization performance. Since the objec-

tive functions we are minimizing are strongly convex, all optimizers will converge the same so-

lution (within numerical precision) and produce the same generalization performance eventually.
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Therefore, what we are specifically interested in is the rate at which the objective function and

generalization performance decreases. We will refer to our algorithm as SMS, for Smoothing

for Multivariate Scores. As our comparator we use BMRM. We downloaded BMRM from http:

//users.rsise.anu.edu.au/˜chteo/BMRM.html, and used the default settings in all our experi-

ments.

5.1 Data Sets

Table 1 summarizes the data sets used in our experiments. adult9, astro-ph, news20, real-sim,

reuters-c11, reuters-ccat are from the same source as in Hsieh et al. (2008). aut-avn is from

Andrew McCallum’s home page,6 covertype is from the UCI repository (Frank and Asuncion,

2010), worm is from Franc and Sonnenburg (2008), kdd99 is from KDD Cup 1999,7 while web8,

webspam-u, webspam-t,8 as well as the kdda and kddb9 are from the LibSVM binary data col-

lection.10 The alpha, beta, delta, dna, epsilon, fd, gamma, ocr, and zeta data sets were all

obtained from the Pascal Large Scale Learning Workshop website (Sonnenburg et al., 2008). Since

the features of dna are suboptimal compared with the string kernels used by Sonnenburg and Franc

(2010), we downloaded their original DNA sequence (dna string).11 In particular, we used a

weighted degree kernel and two weighted spectrum kernels (one at position 1-59 and one at 62-141,

corresponding to the left and right of the splice site respectively), all with degree 8. Following Son-

nenburg and Franc (2010), we used the dense explicit feature representations of the kernels, which

amounted to 12,670,100 features.

For dna string and the data sets which were also used by Teo et al. (2010) (indicated by an

asterisk in Table 1), we used the training test split provided by them. For the remaining data sets we

used 80% of the labeled data for training and the remaining 20% for testing. In all cases, we added

a constant feature as a bias.

5.2 Optimization Algorithms

Optimizing the smooth objective function Jµ(w) using the optimization scheme described in Nes-

terov (2005) requires estimating the Lipschitz constant of the gradient of the g⋆µ(A
⊤w). Although

it can be automatically tuned by, for example, Beck and Teboulle (2009), extra cost is incurred

which slows down the optimization empirically. Therefore, we chose to optimize our smooth ob-

jective function using L-BFGS, a widely used quasi-Newton solver (Nocedal and Wright, 1999).

We implemented our smoothed loss using PETSc12 and TAO,13 which allow the efficient use of

large-scale parallel linear algebra. We used the Limited Memory Variable Metric (lmvm) variant of

6. The data set can be found at http://www.cs.umass.edu/˜mccallum/data/sraa.tar.gz.

7. The data set can be found at http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

8. webspam-u is the webspam-unigram and webspam-t is the webspam-trigram data set. Original data set can be found

at http://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html.

9. These data sets were derived from KDD CUP 2010. kdda is the first problem algebra 2008 2009 and kddb is the

second problem bridge to algebra 2008 2009.

10. The data set can be found at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html.

11. The data set can be found at http://sonnenburgs.de/soeren/projects/coffin/splice_data.tar.xz.

12. The software can be found at http://www.mcs.anl.gov/petsc/petsc-2/index.html. We compiled an opti-

mized version of PETSc (--with-debugging=0) and enabled 64-bit index to run for large data sets such as dna and

ocr.

13. TAO can be found at http://www.mcs.anl.gov/research/projects/tao.
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data set n p s(%) n+ :n− data set n p s(%) n+ :n−
adult9* 48,842 123 11.3 0.32 alpha 500,000 500 100 1.00

astro-ph* 94,856 99,757 0.08 0.31 aut-avn* 71,066 20,707 0.25 1.84

beta 500,000 500 100 1.00 covertype* 581,012 6.27 M 22.22 0.57

delta 500,000 500 100 1.00 dna 50.00 M 800 25 3e−3

dna string 50.00 M 12.7 M n.a. 3e−3 epsilon 500,000 2000 100 1.00

fd 625,880 900 100 0.09 gamma 500,000 500 100 1.00

kdd99* 5.21 M 127 12.86 4.04 kdda 8.92 M 20.22 M 2e−4 5.80

kddb 20.01 M 29.89 M 1e−4 6.18 news20* 19,954 7.26 M 0.033 1.00

ocr 3.50 M 1156 100 0.96 real-sim* 72,201 2.97 M 0.25 0.44

reuters-c11* 804,414 1.76 M 0.16 0.03 reuters-ccat* 804,414 1.76 M 0.16 0.90

web8* 59,245 300 4.24 0.03 webspam-t 350,000 16.61 M 0.022 1.54

webspam-u 350,000 254 33.8 1.54 worm* 1.03 M 804 25 0.06

zeta 500,000 800.4 M 100 1.00

Table 1: Summary of the data sets used in our experiments. n is the total number of examples, p

is the number of features, s is the feature density (% of features that are non-zero), and

n+ :n− is the ratio of the number of positive vs negative examples. M denotes a million. A

data set is marked with an asterisk if it is also used by Teo et al. (2010).

L-BFGS which is implemented in TAO. Open-source code, as well as all the scripts used to run our

experiments are available for download from Zhang et al. (2012).

5.3 Implementation And Hardware

Both BMRM and SMS are implemented in C++. Since dna and ocr require more memory than was

available on a single machine, we ran both BMRM and SMS with 16 cores spread across 16 machines

for these two data sets. As dna string employs a large number of dense features, it would cost a

prohibitively large amount of memory. So following Sonnenburg and Franc (2010), we (repeatedly)

computed the explicit features whenever it is multiplied with the weight vector www. This entails

demanding cost in computation, and therefore we used 32 cores. The other data sets were trained

with a single core. All experiments were conducted on the Rossmann computing cluster at Purdue

University,14 where each node has two 2.1 GHz 12-core AMD 6172 processors with 48 GB physical

memory per node.

5.4 Experimental Setup

We used λ ∈
{

10−2,10−4,10−6
}

to test the performance of BMRM and SMS under a reasonably

wide range of λ. In line with Chapelle (2007), we observed that solutions with higher accuracy do

not improve the generalization performance, and setting ε = 0.001 was often sufficient. Accord-

ingly, we could set µ = ε/D as suggested by the uniform deviation bound (13). However, this esti-

mate is very conservative because in (13) we used D as an upper bound on the prox-function, while

in practice the quality of the approximation depends on the value of the prox-function around the

optimum. On the other hand, a larger value of µ proffers more strong convexity in gµ, which makes

14. The cluster information is at http://www.rcac.purdue.edu/userinfo/resources/rossmann.
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data set
PRBEP ROCArea

data set
PRBEP ROCArea

BMRM SMS BMRM SMS BMRM SMS BMRM SMS

adult9 43.32 0.40 1.13 0.19 alpha 3595 183.6 802.3 135.4

astro-ph 119.0 48.8 11.8 4.02 aut-avn 2.22 1.77 0.92 0.61

beta 1710 24.4 644.0 46.5 covertype 36.24 7.33 42.73 5.71

delta n.a. 36.03 n.a. 44.20 dna n.a. n.a. 12140 561.5

dna string n.a. n.a. >30000 27514 epsilon 1716.1 804.5 1182.4 718.4

fd 943.2 154.0 1329.8 327.5 gamma 14612 26.5 8902.0 47.5

kdd99 63.5 152.1 204.9 31.0 kdda n.a. 19204 n.a. 6108

kddb n.a. 19363 n.a. 10592 news20 6921.2 429.5 1.51 8.8

ocr 893.1 105.9 921.6 98.0 real-sim 1.19 3.52 8.50 2.16

reuters-c11 45.5 46.1 28.7 10.4 reuters-ccat 328.2 162.8 145.0 31.9

web8 4.35 1.26 10.4 0.59 webspam-t 17271 5681.2 5751.9 1805.4

webspam-u 57.8 29.5 58.8 8.47 worm 2058.6 30.4 1901.4 20.2

zeta 679.1 293.4 579.8 386.7

Table 2: Summary of the wall-clock time taken by BMRM and SMS to find a solution which is

within 1% of the minimal regularized risk. All numbers are in seconds, and are obtained

from the λ which yields the optimal test performance. There are a few n.a. which are

explained in Section 5.5.

g∗µ smoother and hence Jµ easier to optimize. Empirically, we observed that setting µ = 10 · ε/D

allows SMS to find an ε accurate solution in all cases.

5.5 Results

In Figures 2 to Figure 26 we plot the evolution of the non-smooth objective J(w) (1) as a function of

CPU time as well as the generalization performance on the test set for both BMRM and SMS. For a

fair comparison the time taken to load the data is excluded for both algorithms. Note that the x-axis

on the plots scales logarithmically. The figures also indicate the generalization performance upon

convergence, and the best performance among all values of λ is highlighted in boldface.

Across a variety of data sets, for both PRBEP and ROCArea problems, SMS reduces the non-

smooth objective J(w) significantly faster than BMRM for all values of λ. For large values of λ

(e.g., λ = 10−2) the difference in performance is not dramatic, but the test performance of both

methods is always inferior. This is because most of the data sets we use in our experiments contain

a large number of training examples, and hence require very mild regularization. For instance,

the optimal generalization performance is obtained by λ = 10−6 in 40 out of the 48 experiments,

by λ = 10−4 in 14 experiments, and λ = 10−2 in only 2 experiments (there are 8 ties). For low

values of λ we find that BMRM which sports a O
(

1
λε

)
rate of convergence slows down significantly.

In contrast, SMS is not only able to gracefully handle small values of λ but actually converges

significantly faster. To summarize the results, we present in Table 2 the wall-clock time that BMRM

and SMS take to minimize the regularized risk to 1% relative accuracy, that is, find www∗ such that

J(www∗) ≤ 1.01 ·minwww J(www). In many cases, SMS is 10 to 100 times faster than BMRM in achieving

the same relative accuracy. Also see the detailed discussion of the results below.
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We also studied the evolution of the PRBEP and ROCArea performance on the test data. It

is clear that in general a lower value in J(www) results in better test performance, which confirms

the effectiveness of the SVM model. This correlation also translates the faster reduction of the

objective value into the faster improvement of the generalization performance. On most data sets,

the intermediate models output by SMS achieve comparable (or better) PRBEP and ROCArea scores

in time orders of magnitude faster than those generated by BMRM. These results can be explained

as follows: Since BMRM is a CPM, only the duality gap is guaranteed to decrease monotonically.

This does not translate to reduction in the primal objective value. Consequently, we observe that

sometimes the primal objective and generalization performance of BMRM seemingly gets “stuck”

for many iterations. In contrast, our smoothing scheme uses L-BFGS which enforces a descent

condition, and hence we observe a monotonic decrease in objective value at every iteration.15

5.5.1 DETAILED DISCUSSION OF THE RESULTS

On the adult9 data set (Figure 2), the value of λ that yields the optimal test PRBEP is 10−6 (panels

(c) and (f)). 100 seconds are needed by BMRM to complete training (i.e., minimize the regularized

risk J(www) to the desired accuracy and achieve stably optimal test PRBEP), while SMS needs only

0.5 seconds. For ROCArea, the optimal λ is 10−4 (panels (h) and (k)), in which case it takes SMS

just 0.3 seconds for training, compared with the 2 seconds required by BMRM.

On the covertype data set (Figure 7), the optimal λ is 10−6 for both PRBEP and ROCArea. In

PRBEP-problem (panels (c) and (f)), SMS is able to find the optimal regularized risk in 15 seconds,

while BMRM takes about 55 seconds. The optimal test PRBEP is stably achieved by SMS in 10

seconds, while that costs BMRM about 7 times longer (80 seconds). The superiority on ROCArea is

even more evident (panels (i) and (l)). SMS takes only 10 seconds to complete training for ROCArea,

while BMRM requires 60 seconds. In addition, between 1 second and 10 seconds, BMRM seems to

be stuck by a plateau where it is collecting cutting planes to construct a refined model before being

able to reduce the regularized risk further.

On the delta data set (Figure 8), the optimal λ is again 10−6 for both PRBEP and ROCArea. In

both cases, BMRM fails to converge to the optimal solution within 9 hours’ runtime and is terminated

(panels (c), (f), (i), (l), and the “n.a.” for delta in Table 2). In contrast, SMS optimizes the objective

and attains the optimal test PRBEP and ROCArea in only 40 seconds. If we also pay attention to the

sub-optimal values of λ, that is, 10−2 and 10−4, it is clear that SMS again optimizes the regularized

risk and test performance much faster. In fact, the time required by SMS to output the optimal test

performance is about only 1% of that of BMRM (panels (d), (e), (j), (k)). Similar phenomena are

observed on the gamma data set (Figure 13).

ocr is another data set where SMS demonstrates a clear edge over BMRM (Figure 18). The

optimal test PRBEP and ROCArea are both attained at λ = 10−6. Training for PRBEP costs BMRM

1000 seconds, while SMS takes only 10% as much time (panels (c) and (f)). As for ROCArea, the

training time required by BMRM is 10 times of that of SMS. Similar striking advantage of SMS is

also manifested on the fd data set (Figure 12). As one can clearly read from panels (c), (f), (i), and

(l), SMS completes training for PRBEP in only 150 seconds, 15% of the time needed by BMRM. On

ROCArea, training costs SMS 200 seconds, as opposed to 800 seconds for BMRM.

15. L-BFGS enforces monotonic decrease only on the smoothed objective Jµ(www), while what we are plotting is J(www).
However, empirically we observe that J(www) is always monotonically decreasing.
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On the two reuters data sets, the advantage of SMS is also manifested. On reuters-c11

(Figure 20), the model achieves about 50% test PRBEP (panel (f)). Since the data set is imbalanced

with the ratio of the number of positive versus negative examples being 0.03, this performance is

probably not vacuous. SMS and BMRM perform similarly in minimizing the regularized risk (panel

(c)), while the test PRBEP fluctuates too much making it hard to tell which method is better (panel

(f)). Regarding ROCArea, SMS is clearly faster in reducing the regularized risk (panel (i)), but in

terms of test ROCArea it is only slightly faster than BMRM (panel (l)). The advantage of SMS is

much clearer on the reuters-ccat data set (Figure 21), whose class ratio is 0.9. With λ = 10−6

which yields the optimal PRBEP, SMS completes training in about 110 seconds, while BMRM takes

400 seconds (panel (c) and (f)). For ROCArea, the optimal λ is again 10−6 and 30 seconds are

needed by SMS to complete training, compared with the 100 seconds required by BMRM (panels (i)

and (l)).

Let us look at another pair of similar data sets: webspam-u and webspam-t. On webspam-u

(Figure 24), SMS demonstrates clear superiority over BMRM. The optimal test PRBEP and RO-

CArea are both achieved at λ = 10−6, which outperforms the result of λ = 10−4 by 0.72% and

0.73% respectively (panels (f) and (l)). As far as ROCArea is concerned, SMS completed training in

9 seconds, while BMRM takes 30 seconds (panels (i) and (l)). In the PRBEP-problem (panels (c) and

(f)), training takes 250 seconds for SMS, while the time cost for BMRM is doubled (500 seconds).

Very similar results are observed on webspam-t (Figure 23) which differs from webspam-u by using

a trigram class of features. On PRBEP, the regularized risk is minimized by SMS in 6,500 seconds

(panels (c)), while BMRM requires approximately three times more CPU time (20,000 seconds). The

optimal test PRBEP is achieved by SMS in 2,000 seconds (panel (f)), while BMRM takes double as

much time (4,000 seconds). Similarly on ROCArea (panels (i) and (l)), SMS is three times more

efficient than BMRM, taking 2,000 seconds to minimize the regularized risk (versus 7,000 seconds

by BMRM), and 7,000 seconds to optimize the test ROCArea (versus 25,000 seconds by BMRM).

In the PRBEP-problem for kdda and kddb, BMRM is stuck half way because its inner solver for

quadratic programming does not converge even after a large number of iterations, and is terminated

after running for 9 hours. Hence we mark “n.a.” in Table 2. We tried both the QR-LOQO and

the Dai Fletcher solvers provided by BMRM, but they both got stuck. However, SMS had no

trouble solving the PRBEP-problem efficiently. Turning our attention to the ROCArea-problems,

the optimal λ is 10−6 for both kdda and kddb. Here BMRM optimizes the objective very slowly and

cannot get close to the optimal solution within 9 hours, hence terminated. SMS again solves the

ROCArea-problems efficiently. Note when λ is large (10−4 and 10−2), BMRM does manage to find

the optimal solution for the ROCArea-problems within 9 hours, but SMS completes training in less

than a quarter of the time taken by BMRM.

As is to be expected in such extensive empirical evaluation, there are some anomalies. On the

dna data set (Figure 9), the ROCArea is learned very well (panels (j) to (l)), whereas the test PRBEP

is pretty poor (panels (d) to (f)). We have enforced the accuracy of regularized risk minimization

to very high: 10−5, but in panels (a) to (c), the objective value at convergence is still just slightly

below 1, a value which is trivially attained by www = 0. Hence we mark “n.a.” in Table 2. We tried

with smaller λ (e.g., 10−8 and 10−10) and got similar test PRBEP. It is noteworthy that dna is the

most skewed data set used in our experiment, with 333 times more negatives examples than positive

examples. BMRM also struggles on this data set, which leads us to believe that some other learning

models may be needed. Similar behavior is also observed on the dna string data set, which attains
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significantly higher test PRBEP and ROCArea than dna does, confirming the superiority of string

kernels.

On the beta data set (Figure 6), the optimal PRBEP and ROCArea are around 50% (panels (f)

and (l)). Since this data set contains the same number of positive and negative examples, a random

labeling of the test data will produce 50% PRBEP and ROCArea in expectation. So for this data set,

other modeling methods may be needed as well.

On kdd99 (Figure 14), the objective value is not well correlated with the test performance. For

example, although SMS is clearly faster than BMRM in reducing the regularized risk for ROCArea

(panels (g) to (i)), the test ROCArea is improved at similar rates by the two algorithms. In fact, the

test ROCArea of SMS in panel (l) is even worse. Likewise, SMS and BMRM perform similarly in

reducing the regularized risk for PRBEP as shown in panels (a) to (c), but irregular bumps in the

test PRBEP are observed on BMRM (panels (d) to (f)). Notice that at convergence, both algorithms

still match closely in the test performance.

5.5.2 THE INFLUENCE OF µ

Figures 27 to 29 show the performance of SMS under different values of µ with λ fixed to 10−6.

The complete results on all the 24 data sets are available at Zhang et al. (2012).

We tried µ = cµ · ε/D where cµ ∈ {1000,100,10}. It is clear that cµ = 10 can always find an ε

accurate solution in practice. This guarantee fails to hold when cµ is too large (e.g., 1000), although

in this case SMS sometimes converges faster and may also generalize well on test data. cµ = 100

often performs very similarly to cµ = 10.

5.5.3 COMPARISON WITH ACCELERATED GRADIENT METHOD

Motivated by the theoretical derivation of the rates of convergence, we tested the performance of

Nesterov’s accelerated gradient method (AGM) on our smooth objective. In particular, we used the

scheme in Nesterov (2007) which adaptively estimates the Lipschitz constant of the gradient. From

the results in Figure 30 to 32 where λ = 10−6 and cµ = 10, it is clear that AGM converges much

slower than L-BFGS. This is not surprising because L-BFGS, which is a second order method, can

estimate and use the curvature of the unconstrained and smooth objective. The full set of results on

all data sets are available at Zhang et al. (2012).

6. Conclusion And Discussion

The non-smoothness of the loss function is an important consideration for algorithms which employ

the kernel trick (Schölkopf and Smola, 2002). This is because such algorithms typically operate in

the dual, and the non-smooth losses lead to sparse dual solutions. In many applications such as

natural language processing, the kernel trick is not needed because the input data is sufficiently high

dimensional. However, now we need to tackle a non-smooth optimization problem in the primal.

In this paper we proposed efficient smoothing techniques to approximate the non-smooth function.

When combined with a smooth optimization algorithm, our technique outperforms state-of-the-art

non-smooth optimization algorithms for multivariate performance scores not only in terms of CPU

time but also in terms of generalization performance.

It is also worthwhile emphasizing here that optimization is a means to an end in Machine Learn-

ing, and smoothing is not the right approach for every non-smooth problem. For example, although
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(a) Obj value for PRBEP, λ = 10−2

1 0
− 1

1 0
0

0 .7 2

0 .7 9

0 .8 6

0 .9 3

1 .0 0

W all− c lo c k  tim e (s ec o n d s )

V
al

u
e 

o
f R

eg
u

la
riz

ed
 R

is
k

 

 

BMRM
SMS

(b) Obj value for PRBEP, λ = 10−4

1 0
− 1

1 0
0

1 0
1

1 0
2

0 .7 1

0 .7 9

0 .8 6

0 .9 3

1 .0 0

W all− c lo c k  tim e (s ec o n d s )

V
al

u
e 

o
f R

eg
u

la
riz

ed
 R

is
k

 

 

BMRM
SMS

(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 66.64
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(e) Test PRBEP, λ = 10−4, 67.05
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(f) Test PRBEP, λ = 10−6, 67.13
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4
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(i) Obj value for ROCArea, λ = 10−6
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(j) Test ROCArea, λ = 10−2, 90.21

1 0
− 1

1 0
0

8 5 .7 3

8 6 .9 7

8 8 .2 1

8 9 .4 5

9 0 .7 0

W all− c lo c k  tim e (s ec o n d s )

T
es

t R
O

C
A

re
a 

(%
)

 

 

BMRM
SMS

(k) Test ROCArea, λ = 10−4, 90.23
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(l) Test ROCArea, λ = 10−6, 90.17

Figure 2: Results for adult9. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(a) Obj value for PRBEP, λ = 10−2
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(b) Obj value for PRBEP, λ = 10−4
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(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 66.55
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(e) Test PRBEP, λ = 10−4, 78.00
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(f) Test PRBEP, λ = 10−6, 78.27
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(g) Obj value for ROCArea, λ = 10−2
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(i) Obj value for ROCArea, λ = 10−6
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(j) Test ROCArea, λ = 10−2, 61.84
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(k) Test ROCArea, λ = 10−4, 85.57
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(l) Test ROCArea, λ = 10−6, 86.12

Figure 3: Results for alpha. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(a) Obj value for PRBEP, λ = 10−2
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(b) Obj value for PRBEP, λ = 10−4
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(d) Test PRBEP, λ = 10−2, 90.30
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(e) Test PRBEP, λ = 10−4, 95.24
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(f) Test PRBEP, λ = 10−6, 99.95
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4
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(j) Test ROCArea, λ = 10−2, 98.25
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(k) Test ROCArea, λ = 10−4, 99.60
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(l) Test ROCArea, λ = 10−6, 100.00

Figure 4: Results for astro-ph. The optimal test performance among all values of λ is highlighted

in boldface in the sub-figure captions.
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(d) Test PRBEP, λ = 10−2, 97.20
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(e) Test PRBEP, λ = 10−4, 98.56
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(f) Test PRBEP, λ = 10−6, 97.93
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(g) Obj value for ROCArea, λ = 10−2

1 0
− 1

1 0
0

4 .3 8

5 .5 9

6 .8 0

8 .0 0

9 .2 1

W all− c lo c k  tim e (s ec o n d s )

V
al

u
e 

o
f R

eg
u

la
riz

ed
 R

is
k

 

 

BMRM
SMS

x  1 0− 2

(h) Obj value for ROCArea, λ = 10−4
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(j) Test ROCArea, λ = 10−2, 98.80
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(k) Test ROCArea, λ = 10−4, 99.79
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(l) Test ROCArea, λ = 10−6, 99.73

Figure 5: Results for aut-avn. The optimal test performance among all values of λ is highlighted

in boldface in the sub-figure captions.
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(a) Obj value for PRBEP, λ = 10−2
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(b) Obj value for PRBEP, λ = 10−4
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(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 49.88
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(e) Test PRBEP, λ = 10−4, 49.94
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(f) Test PRBEP, λ = 10−6, 50.04
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4
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(i) Obj value for ROCArea, λ = 10−6
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(j) Test ROCArea, λ = 10−2, 49.81
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(k) Test ROCArea, λ = 10−4, 50.07
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(l) Test ROCArea, λ = 10−6, 50.13

Figure 6: Results for beta. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(a) Obj value for PRBEP, λ = 10−2
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(b) Obj value for PRBEP, λ = 10−4
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(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 67.51
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(e) Test PRBEP, λ = 10−4, 68.78
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(f) Test PRBEP, λ = 10−6, 69.27
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(h) Obj value for ROCArea, λ = 10−4
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(j) Test ROCArea, λ = 10−2, 82.64
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(k) Test ROCArea, λ = 10−4, 83.87
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(l) Test ROCArea, λ = 10−6, 84.17

Figure 7: Results for covertype. The optimal test performance among all values of λ is highlighted

in boldface in the sub-figure captions.
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(a) Obj value for PRBEP, λ = 10−2
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(b) Obj value for PRBEP, λ = 10−4
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(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 78.54
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(e) Test PRBEP, λ = 10−4, 78.55

1 0
1

1 0
2

1 0
3

1 0
4

6 6 .7 8

7 0 .0 2

7 3 .2 6

7 6 .5 1

7 9 .7 5

W all− c lo c k  tim e (s ec o n d s )

T
es

t P
R

B
E

P
 (

%
)

 

 

BMRM
SMS

(f) Test PRBEP, λ = 10−6, 78.56
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4

1 0
1

1 0
2

1 0
3

1 0
4

3 .0 5

3 .8 9

4 .7 3

5 .5 7

6 .4 2

W all− c lo c k  tim e (s ec o n d s )

V
al

u
e 

o
f R

eg
u

la
riz

ed
 R

is
k

 

 

BMRM
SMS

x  1 0− 1

(i) Obj value for ROCArea, λ = 10−6
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(j) Test ROCArea, λ = 10−2, 86.71
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(k) Test ROCArea, λ = 10−4, 86.72
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(l) Test ROCArea, λ = 10−6, 86.72

Figure 8: Results for delta. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(a) Obj value for PRBEP, λ = 10−2
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(b) Obj value for PRBEP, λ = 10−4
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(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 29.14
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(e) Test PRBEP, λ = 10−4, 29.14
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(f) Test PRBEP, λ = 10−6, 29.14
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(h) Obj value for ROCArea, λ = 10−4
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(j) Test ROCArea, λ = 10−2, 95.99
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(k) Test ROCArea, λ = 10−4, 96.01
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(l) Test ROCArea, λ = 10−6, 96.01

Figure 9: Results for dna. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions. Both BMRM and our smoothing algorithm are run

with 16 processors.
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(b) Obj value for PRBEP, λ = 10−4
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(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 45.01
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(e) Test PRBEP, λ = 10−4, 53.91
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(f) Test PRBEP, λ = 10−6, 54.25
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(h) Obj value for ROCArea, λ = 10−4
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(i) Obj value for ROCArea, λ = 10−6
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(j) Test ROCArea, λ = 10−2, 92.57
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(k) Test ROCArea, λ = 10−4, 97.37
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(l) Test ROCArea, λ = 10−6, 97.66

Figure 10: Results for dna string. The optimal test performance among all values of λ is high-

lighted in boldface in the sub-figure captions. Both BMRM and our smoothing algorithm

are run with 32 processors.
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(a) Obj value for PRBEP, λ = 10−2
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(b) Obj value for PRBEP, λ = 10−4
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(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 77.16
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(e) Test PRBEP, λ = 10−4, 89.39
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(f) Test PRBEP, λ = 10−6, 89.80
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4
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(i) Obj value for ROCArea, λ = 10−6
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(j) Test ROCArea, λ = 10−2, 81.30
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(k) Test ROCArea, λ = 10−4, 95.47
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(l) Test ROCArea, λ = 10−6, 95.97

Figure 11: Results for epsilon. The optimal test performance among all values of λ is highlighted

in boldface in the sub-figure captions.
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(b) Obj value for PRBEP, λ = 10−4
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(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 73.84
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(e) Test PRBEP, λ = 10−4, 77.62
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(f) Test PRBEP, λ = 10−6, 82.06
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4
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(j) Test ROCArea, λ = 10−2, 91.79
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(k) Test ROCArea, λ = 10−4, 97.32
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(l) Test ROCArea, λ = 10−6, 97.71

Figure 12: Results for fd. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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1 0
1

1 0
2

1 0
3

1 0
4

4 .4 8

5 .7 1

6 .9 5

8 .1 9

9 .4 3

W all− c lo c k  tim e (s ec o n d s )

V
al

u
e 

o
f R

eg
u

la
riz

ed
 R

is
k

 

 

BMRM
SMS

x  1 0− 1
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(d) Test PRBEP, λ = 10−2, 80.07
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(e) Test PRBEP, λ = 10−4, 80.09
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(f) Test PRBEP, λ = 10−6, 80.09
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(j) Test ROCArea, λ = 10−2, 88.25
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(k) Test ROCArea, λ = 10−4, 88.25
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(l) Test ROCArea, λ = 10−6, 88.25

Figure 13: Results for gamma. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(f) Test PRBEP, λ = 10−6, 94.98
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(j) Test ROCArea, λ = 10−2, 97.78
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(k) Test ROCArea, λ = 10−4, 97.80
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(l) Test ROCArea, λ = 10−6, 95.28

Figure 14: Results for kdd99. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(f) Test PRBEP, λ = 10−6, 93.30
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(k) Test ROCArea, λ = 10−4, 84.41
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(l) Test ROCArea, λ = 10−6, 84.55

Figure 15: Results for kdda. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions. In the PRBEP-problem, BMRM fails because the the

inner QP solver does not converge even after a large number of iterations.
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(f) Test PRBEP, λ = 10−6, 93.30
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(j) Test ROCArea, λ = 10−2, 76.58
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(k) Test ROCArea, λ = 10−4, 82.95
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(l) Test ROCArea, λ = 10−6, 85.29

Figure 16: Results for kddb. The optimal test performance among all values of λ is highlighted

in boldface in the sub-figure captions. In the PRBEP-problem, BMRM fails because the

inner QP solver does not converge even after a large number of iterations.
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(e) Test PRBEP, λ = 10−4, 97.24
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(f) Test PRBEP, λ = 10−6, 97.24
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(j) Test ROCArea, λ = 10−2, 91.51
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(k) Test ROCArea, λ = 10−4, 99.51
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(l) Test ROCArea, λ = 10−6, 99.39

Figure 17: Results for news20. The optimal test performance among all values of λ is highlighted

in boldface in the sub-figure captions.
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(d) Test PRBEP, λ = 10−2, 72.40

1 0
1

1 0
2

7 3 .0 7

7 3 .6 9

7 4 .3 1

7 4 .9 3

7 5 .5 5

W all− c lo c k  tim e (s ec o n d s )

T
es

t P
R

B
E

P
 (

%
)

 

 

BMRM
SMS

(e) Test PRBEP, λ = 10− f l f f 4, 75.29

1 0
1

1 0
2

1 0
3

7 2 .1 6

7 3 .2 0

7 4 .2 5

7 5 .2 9

7 6 .3 4

W all− c lo c k  tim e (s ec o n d s )

T
es

t P
R

B
E

P
 (

%
)

 

 

BMRM
SMS

(f) Test PRBEP, λ = 10−6, 75.93
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(g) Obj value for ROCArea, λ = 10−2
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(j) Test ROCArea, λ = 10−2, 80.38
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(k) Test ROCArea, λ = 10−4, 83.10
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(l) Test ROCArea, λ = 10−6, 83.94

Figure 18: Results for ocr. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions. Both BMRM and our smoothing algorithm are run

with 16 processors.
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(e) Test PRBEP, λ = 10−4, 95.70
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(f) Test PRBEP, λ = 10−6, 94.14
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(k) Test ROCArea, λ = 10−4, 99.51
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(l) Test ROCArea, λ = 10−6, 99.58

Figure 19: Results for real-sim. The optimal test performance among all values of λ is highlighted

in boldface in the sub-figure captions.
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(j) Test ROCArea, λ = 10−2, 95.02
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(k) Test ROCArea, λ = 10−4, 96.49
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(l) Test ROCArea, λ = 10−6, 95.86

Figure 20: Results for reuters-c11. The optimal test performance among all values of λ is high-

lighted in boldface in the sub-figure captions.
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(d) Test PRBEP, λ = 10−2, 89.94
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(f) Test PRBEP, λ = 10−6, 94.44
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(j) Test ROCArea, λ = 10−2, 96.49
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(k) Test ROCArea, λ = 10−4, 98.28
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(l) Test ROCArea, λ = 10−6, 98.69

Figure 21: Results for reuters-ccat. The optimal test performance among all values of λ is

highlighted in boldface in the sub-figure captions.
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(d) Test PRBEP, λ = 10−2, 67.64
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(f) Test PRBEP, λ = 10−6, 79.56
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(j) Test ROCArea, λ = 10−2, 97.88
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(k) Test ROCArea, λ = 10−4, 98.86
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(l) Test ROCArea, λ = 10−6, 98.99

Figure 22: Results for web8. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(e) Test PRBEP, λ = 10−4, 98.62
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(f) Test PRBEP, λ = 10−6, 99.62
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(j) Test ROCArea, λ = 10−2, 97.21
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(k) Test ROCArea, λ = 10−4, 99.71

1 0
2

1 0
3

9 4 .9 5

9 6 .3 2

9 7 .6 9

9 9 .0 7

1 0 0 .4 4

W all− c lo c k  tim e (s ec o n d s )

T
es

t R
O

C
A

re
a 

(%
)

 

 

BMRM
SMS

(l) Test ROCArea, λ = 10−6, 99.94

Figure 23: Results for webspam-t. The optimal test performance among all values of λ is high-

lighted in boldface in the sub-figure captions.
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(d) Test PRBEP, λ = 10−2, 89.13
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(e) Test PRBEP, λ = 10−4, 93.73

1 0
0

1 0
1

1 0
2

8 9 .7 8

9 1 .0 8

9 2 .3 8

9 3 .6 8

9 4 .9 8

W all− c lo c k  tim e (s ec o n d s )

T
es

t P
R

B
E

P
 (

%
)

 

 

BMRM
SMS

(f) Test PRBEP, λ = 10−6, 94.45
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(j) Test ROCArea, λ = 10−2, 92.61
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(k) Test ROCArea, λ = 10−4, 96.56
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(l) Test ROCArea, λ = 10−6, 97.29

Figure 24: Results for webspam-u. The optimal test performance among all values of λ is high-

lighted in boldface in the sub-figure captions.
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(d) Test PRBEP, λ = 10−2, 85.45
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(e) Test PRBEP, λ = 10−4, 86.88
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(f) Test PRBEP, λ = 10−6, 86.94
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(j) Test ROCArea, λ = 10−2, 99.34

1 0
1

1 0
2

9 4 .4 0

9 5 .7 7

9 7 .1 3

9 8 .5 0

9 9 .8 7

W all− c lo c k  tim e (s ec o n d s )

T
es

t R
O

C
A

re
a 

(%
)

 

 

BMRM
SMS

(k) Test ROCArea, λ = 10−4, 99.37
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(l) Test ROCArea, λ = 10−6, 99.37

Figure 25: Results for worm. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(b) Obj value for PRBEP, λ = 10−4
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(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 55.59
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(e) Test PRBEP, λ = 10−4, 53.47
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(f) Test PRBEP, λ = 10−6, 86.98
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4
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(i) Obj value for ROCArea, λ = 10−6
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(j) Test ROCArea, λ = 10−2, 50.28
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(k) Test ROCArea, λ = 10−4, 51.41
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(l) Test ROCArea, λ = 10−6, 90.58

Figure 26: Results for zeta. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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Figure 27: cµ test: webspam-u
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Figure 28: cµ test: covertype
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(b) Test ROCArea

Figure 29: cµ test: adult9

it is easy to smooth the L1 norm regularizer, it is not recommended; the sparsity of the solution is an

important statistical property of these algorithms and smoothing destroys this property.

In future work we would like to extend our techniques to handle more complicated contin-

gency based multivariate performance measures such as the F1-score. We would also like to extend

smoothing to matching loss functions commonly used in ranking, where we believe our techniques

will solve a smoothed version of the Hungarian marriage problem.
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Figure 30: SMS vs AGM: webspam-u
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Figure 31: SMS vs AGM: covertype
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Figure 32: SMS vs AGM: adult9
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Appendix A. The Smoothing Procedure

The idea of the smoothing technique in Nesterov (2005) can be motivated by using the Theorem

4.2.1 and 4.2.2 in Hiriart-Urruty and Lemaréchal (1996).

Lemma 9 If f : Rn →R is convex and differentiable, and ∇ f is Lipschitz continuous with constant

L (called L-l.c.g), then f ⋆ is strongly convex with modulus 1
L

(called 1
L

-sc). Conversely, if f : Rn →
R∪{∞} is σ-sc, then f ⋆ is finite on R

n and is 1
σ -l.c.g.

Since g+µd is µ-sc, Lemma 9 implies g⋆µ is 1
µ
-l.c.g. By chain rule, one can show that g⋆µ(A

⊤w)

is Lµ-l.c.g where Lµ ≤ 1
µ
‖A‖2

. Further, the definition of Fenchel dual implies the following uniform

deviation bound:

g⋆µ(uuu) = max
ααα∈Q

{〈ααα,uuu〉−g(ααα)−µd(ααα)}







≤ max
ααα∈Q

{〈ααα,uuu〉−g(ααα)}= g⋆(uuu)

≥ max
ααα∈Q

{〈ααα,uuu〉−g(ααα)−µD}= g⋆(uuu)−µD

=⇒ g⋆(u)−µD ≤ g⋆µ(u)≤ g⋆(u), ∀ uuu ∈ R
n. (35)

Note that the derivation of (35) does not require g be convex, but the strong convexity of g+ µd

(required by Lemma 9) relies on the convexity of g. By (35), to find an ε accurate solution to J(w),
it suffices to set the maximum deviation µD < ε

2
(i.e., µ < ε

2D
), and then find a ε

2
accurate solution

to Jµ in (6). Initialize w to 0 and apply Nesterov’s accelerated gradient method in Nesterov (2007)

to Jµ, this takes at most

k = min

{√

4Lµ∆0

ε
, log

Lµ∆0

ε

/

log

(

1−
√

λ/Lµ

)}

number of steps where ∆0 = 1
2
‖w∗‖2

and w∗ is the minimizer of J(w). Each step involves one

gradient query of g⋆µ(A
⊤w) and some cheap updates. Plugging in Lµ ≤ 2D

ε ‖A‖2
and using log(1+

δ)≈ δ when δ ≈ 0, we get the iteration bound in (7).
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