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Abstract

This paper studies the construction akfinemenkernel for a given operator-valued reproducing
kernel such that the vector-valued reproducing kernelétilspace of the refinement kernel con-
tains that of the given kernel as a subspace. The study ivated from the need of updating the
current operator-valued reproducing kernel in multi-teeskening when underfitting or overfitting
occurs. Numerical simulations confirm that the establistefitiement kernel method is able to
meet this need. Various characterizations are provideddbas feature maps and vector-valued
integral representations of operator-valued reprodu&emels. Concrete examples of refining
translation invariant and finite Hilbert-Schmidt operatatued reproducing kernels are provided.
Other examples include refinement of Hessian of scalardattanslation-invariant kernels and
transformation kernels. Existence and properties of dpesalued reproducing kernels preserved
during the refinement process are also investigated.

Keywords: vector-valued reproducing kernel Hilbert spaces, opernatued reproducing kernels,
refinement, embedding, translation invariant kernels sté@sof Gaussian kernels, Hilbert-Schmidt
kernels, numerical experiments

1. Introduction

Machine learning designs algorithms for the purpose of inferring from famitpirical data a func-
tion dependency which can then be used to understand or predictaenesf new data. Past
research has mainly focused on single task learning problems wherenttt®futo be learned is
scalar-valued. Built upon the theory of scalar-valued reproducinueke (Aronszajn, 1950), kernel
methods have proven useful in single task learning §&cipf and Smola, 2002; Shawe-Taylor and
Cristianini, 2004; Vapnik, 1998). The approach might be justified in thieswFirstly, as inputs for
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learning algorithms are sample data, requiring the sampling process to bes&eatvis inevitable.
Thanks to the existence of an inner product, Hilbert spaces are theoflaesmed vector spaces
that we can handle best. These two considerations lead immediately to the rfatgmnaalucing
kernel Hilbert spaces (RKHS). Secondly, a reasonable learniregreeis expected to make use of
the similarity between a new input and the existing inputs for prediction. Inmetugts provide

a natural measurement of similarities. It is well-known that a bivariate fumesi@ scalar-valued
reproducing kernel if and only if it is representable as some inner ptarfithe feature of inputs
(Schdlkopf and Smola, 2002). Finally, finding a feature map and taking the inmoelupt of the
feature of two inputs are equivalent to choosing a scalar-valueddegirtg kernel and performing
function evaluations of it. This brings computational efficiency and giugls to the important “ker-
nel trick” (Scholkopf and Smola, 2002) in machine learning. For references on singlécetsing
and scalar-valued RKHS, we recommend Aronszajn (1950), Cuckiesarale (2002), Cucker and
Zhou (2007), Evgeniou et al. (2000), $tkopf and Smola (2002), Shawe-Taylor and Cristianini
(2004) and Vapnik (1998); Zhang et al. (2009).

In this paper, we are concerned with multi-task learning where the functibe teconstructed
from finite sample data takes range in a finite-dimensional Euclidean spacere generally, a
Hilbert space. Motivated by the success of kernel methods in single t&sirg, it was proposed
in Evgeniou et al. (2005) and Micchelli and Pontil (2005) to develop #lgois for multi-task
learning in the framework of vector-valued RKHS. We attempt to contributestthiory of vector-
valued RKHS by studying a special embedding relationship between tworuwedteed RKHS.
We shall briefly review existing work on vector-valued RKHS and the @ased operator-valued
reproducing kernels. The study of vector-valued RKHS dates backdddR (1957). The notion
of matrix-valued or operator-valued reproducing kernels was alsonalotén Burbea and Masani
(1984). References Mukherjee and Wu (2006), Mukherjee and 2@06) and Ying and Campbell
(2008) were devoted to learning a multi-variate function and its gradient sinealtsly. Reference
Carmeli et al. (2006) established the Mercer theorem for vector-vaRkddS and characterized
those spaces with elements beipgntegrable vector-valued functions. Various characterizations
and examples of universal operator-valued reproducing kernets pvevided in Caponnetto et al.
(2008) and Carmeli et al. (2010). The latter (Carmeli et al., 2010) alamiged basic operations
of operator-valued reproducing kernels and extended the Bocliaeaaterization of translation
invariant reproducing kernels to the operator-valued case.

The purpose of this paper is to study the refinement relationship of tworwesdteed reproduc-
ing kernels. We say that a vector-valued reproducing kernel is aereént of another kernel of
such type if the RKHS of the first kernel contains that of the latter one agarlsubspace and their
norms coincide on the smaller space. The precise definition will be given imetktesection after
we provide necessary preliminaries on vector-valued RKHS. The studgtisated by the need of
updating a vector-valued reproducing kernel for multi-task machineileamhen underfitting or
overfitting occurs. Detailed explanations of this motivation will be presentédemext section.
Mathematically, a thorough understanding of the refinement relationshigésti to the estab-
lishment of a multi-scale decomposition of vector-valued RKHS, which in turneddbndation
for extending multi-scale analysis (Daubechies, 1992; Mallat, 1989) twekenethods. In fact, a
special refinement method by a bijective mapping from the input space toptesifles such a
decomposition. As the procedure is similar to the scalar-valued case, avémefrested authors to
Xu and Zhang (2007) for the details. The notion of refinement of sealared kernels was initiated
and extensively investigated by the first two authors (Xu and Zhang,, 2009). Therefore, a gen-
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REFINEMENT OF OPERATORVALUED REPRODUCINGKERNELS

eral principle we shall follow is to briefly mention or even completely omit argum#rat are not
essentially different from the scalar-valued case. As we proceed wveitbttialy, it will become clear
that nontrivial obstacles in extending the scalar-valued theory to veatoed RKHS are mainly
caused by the complexity in the vector-valued integral representation op#rator-valued repro-
ducing kernels under investigation, by the complicated form of the featupemaalved, which is

also operator-valued, and by the infinite-dimensionality of the output Spamsne occasions.

To be more specific, we would personally regard the following results to tikemetically
nontrivial: Theorem 11 of characterizing the refinement of kernelsdéfiby the integral of scalar-
valued kernels with respect to an operator-valued measure, Propdsitidistudying the refinement
of positive operators, Lemma 13 of proving the disjointness of the RKHSaolation-invariant
kernels of different types, and Theorem 21 about the refinememité fililbert-Schmidt kernels.
Besides, compared to the scalar-valued case in Xu and Zhang (2@@8pris 5.2 and 5.3 about the
refinement of Hessian kernels and transformation kernels are unigpi8eation 7 of numerical ex-
periments is novel. By contrast, the discussion of general charactenzatial finite-dimensional
RKHS in Section 3, refinement of kernels defined by the integral of tmevalue kernels with
respect to a scalar-valued measure in Section 4.1, and Section 6 abeuisteace of refinement
and properties preserved by the refinement process can be vievegitherstrivial extensions or
not of sufficient mathematical depth. We also remark that every vecloed@®KHS is isometri-
cally isomorphic to a scalar-valued RKHS on an extended input spacé(epesition 6 below).
However, this does not mean that the question of studying refinementecétop-valued kernels
can be trivially reduced to that about scalar-valued kernels. The ispmetcedure will usually
make the resulting scalar-valued kernel and extended input space gamnglifficult to analyze.
Moreover, favorable properties such as translation invariance andriHfichmidt structure of the
original kernels are generally lost in the process. Therefore, apamtkent study of the refinement
of operator-valued kernels is necessary and challenging.

This paper is organized as follows. We shall introduce necessary prafigsron vector-valued
RKHS and motivate our study from multi-tasking learning in the next sectiorSelection 3, we
shall present three general characterizations of the refinement mekaifidoy examining the differ-
ence of two given kernels, the feature map representation of kernelsha associated kernels on
the extended input space. Recall that most scalar-valued reprockeringls are represented by
integrals. In the operator-valued case, we have two types of integnasentations: the integral
of operator-valued reproducing kernels with respect to a scalaedaheasure, and the integral
of scalar-valued reproducing kernels with respect to an operatoed/aneasure. As a key part of
this paper, we shall investigate in Section 4 specifications of the genexalatérizations when
the operator-valued reproducing kernels are given by such integmnaBection 5, we present con-
crete examples of refinement by looking into translation-invariant opevatoed kernels, Hessian
of a scalar-valued kernels, Hilbert-Schmidt kernels, etc. Section 6 spatsally the existence of
nontrivial refinements and desirable properties of operator-valygddacing kernels that can be
preserved during the refinement process. In Section 7, we perfoem ttumerical simulations to
show the effect of the refinement kernel method in updating operalioedraieproducing kernels
for multi-task learning. Finally, we conclude the paper in Section 8.
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2. Kernel Refinement

To explain our motivation from multi-task learning in details, we first recall #fnition of operator-
valued reproducing kernels. Throughout the paper, w&lahd A denote a prescribed set and a
separable Hilbert space, respectively. We shall Xathe input space and the output space. To
avoid confusion, elements X andA will be denoted by, y, andg, n, respectively. Unless specifi-
cally mentioned, all the normed vector spaces in the paper are over th€ fiélcomplex numbers.
Let £L(A) be the set of all the bounded linear operators froto A, and £, (A) its subset of those
linear operatord\ that are self-adjoint and positive, namely,

(Ag,§)An >0forall € A,

where(-,-)a is the inner product on. The adjoint ofA € L(A) is denoted byA*. An L(A)-valued
reproducing kernebn X is a functionK : X x X — L(A) such thak(x,y) = K(y,x)* for all x,y € X,
and such that for akt; € X, &; e A, j e Ny :={1,2,...,n},neN,

i i(K(Xjan)EhEk)A > 0. (1)
J=1k=1

For eachZ(A\)-valued reproducing kern&l on X, there exists a unique Hilbert space, denoted by
Hy, consisting ofA-valued functions oiX such that

K(x,-)& € H for all xe X and& € A 2

and
(F(X),&)n = (f,K(X,-)&) 4 forall f € H¢, xc X, and € A. (3)

It is implied by the above two properties that the point evaluation at racK:
Ox(f) :=f(x), fek

is continuous fromHx to A. In other words #Hx is a/A-valued RKHS. We call it the RKHS df.
Conversely, for each-valued RKHS onX, there exists a uniqué(A)-valued reproducing kernel
K onX that satisfies (2) and (3). For this reason, we alsokc#tle reproducing kernel (or kernel for
short) of Hx . The bijective correspondence betweg\ )-valued reproducing kernels andvalued
RKHS is central to the theory of vector-valued RKHS.

Given two L(A)-valued reproducing kernel§, G on X, we shall investigate in this paper the
fundamental embedding relationshifx < % in the sense thati C #g and for all f € H,
|| 1|34 = || || 54 Here,||-||4y denotes the norm of a normed vector spazeWe callG arefinement
of K if there does holdHk < #s. Such a refinement is said to be nontriviaGf K.

We motivate this study from the kernel methods for multi-task learning andtiiermulti-scale
decomposition of vector-valued RKHS. Let= {(xj,&;) : j € Nn} € X x A be given sample data.
A typical kernel method infers frorathe minimizerf, of

.1 h
mip 13 00653, 105) + 00 ). @
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whereK is a selected.(A)-valued reproducing kernel oK, C a prescribed loss functiorg a
positive regularization parameter, apd regularizer. The ideal predictdg : X — A that we are
pursuing is the one that minimizes

E(f):= C(x,&, f(§))dP
XX\

among all possible functionsfrom X to A. HereP is an unknown probability measure &nx A
that dominates the generation of data fridm A. We wish thatE( f,) — E( ) can converge to zero
in probability as the numberof sampling points tends to infinity. Whether this will happen depends
heavily on the choice of the kernKl. The error£(f;) — E(fp) can be decomposed into the sum
of the approximation errorandsampling error(Schlkopf and Smola, 2002; Vapnik, 1998). The
approximation error occurs as we search the minimizer in a restricted sahdidate functions,
namely, #. It becomes smaller a&i enlarges. The sampling error is caused by replacing the
expectatiornE( f) of the loss functiorC(x, &, f(§)) with the sample mean

1 n
HZ XJaEJ’ )

By the law of large numbers, the sample mean converges to the expectatiobaitity asn — o
for a fixed f € H¢. However, asf, varies according to changes in the sample datae need
a uniform version of the law of large number @i in order to well control the sampling error.
Therefore, the sampling error usually increasesHasenlarges, or to be more precisely, as the
capacityof # increases.

By the above analysis, we might encounter two situations after the choige 0f/8)-valued
reproducing kerneK:

— overfitting, which occurs when the capacity is too large, forcing the minimizer obtained
from (4) to imitate artificial function dependency in the sample data, and thusngcathe
sampling error to be out of control;

— underfitting, which occurs whe#i is too small for the minimizer of (4) to describe the de-
sired function dependency implied in the data, and thus failing in boundingpgirexamation
error.

When one of the above situations happens, a remedy is to modify the reprgdkernel. Specifi-
cally, one might want to find anothe¥(A)-valued reproducing kern@ such that/ < #g when
there is underfitting, or such thais; < #k when there is overfitting. We see that in either case, we
need to make use of the refinement relationship. We shall verify in the Egirséhrough extensive
numerical simulations that the refinement kernel method is indeed able to @@awidppropriate
update of an operator-valued reproducing kernel when underfittingesfitting occurs.

Before moving on to the characterization of refinement of operator-dakmoducing kernels,
we collect here notations that will be frequently used in the rest of therp@pey will also be (or
have been) defined when first used.

— X: ageneral input space,

— A\: a Hilbert space, serving as the output space,
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— || - |la: the norm on a Hilbert or Banach spae

W: a Hilbert space, usually serving as the feature space of reprodkeingls,

— L(N): the space of bounded linear operators fraro A,

— L (N): the set of self-adjoint and positive bounded linear operators fkdmA,
— L(N,W): the space of bounded linear operators fraro 7/,

— K,G: L(N)-valued reproducing kernels,

— Hg, Hg: the RKHS of kernel&, G, respectively,

— Hx = Hg: Gis arefinement oK, namely,H C Hg and||f| 4, = ||| for all f € H,
— X: the extended input spadex A,

— K: the scalar-valued kernel (11) associated with'gn)-valued kerneK,

— W,Vv: scalar-valued or operator-valued measures,

— |Y|: the variation (19) of a measuge

— (Q, F,W): a measure space,

— U =v: means thaftis the restriction off on some measurable set,

— L%(Q,B,dy): the Hilbert space (16) of square integratflevalued functions orf with re-
spect to the measuge

— L%(Q,dp): the Hilbert space of scalar-valued square integrable functior® with respect
to the measurg,

— L*(Q,dp): the Banach space of essentially bounded measurable functidswvith respect
to the measurg,

— A < B: see (29) for this refinement relation of two positive operators,

— B(RY,A): the set of all theL, (A\)-valued measures of bounded variation ondragebra of
Borel subsets iiR¢,

- Ve, Ys: the continuous pan. and singular parys in the Lebesgue decomposition (38) of a
Borel measurg,

— L¢, L the continuous and singular parts (39) of a translation-invariant kerne
— A® W: the tensor product of two Hilbert spacésand W/,

— V/A: the square root of a positive bounded linear operator

96



REFINEMENT OF OPERATORVALUED REPRODUCINGKERNELS

3. General Characterizations

The relationship between the RKHS of the sum of two operator-valueddaping kernels and
those of the summand kernels has been made clear in Theorem 1 on pddreddak (1957). Our
first characterization of refinement is a direct consequence of thik.res

Proposition 1 Let K, G be twoL(A)-valued reproducing kernels on X. Thfy < #g if and only
if G—Kis an L(A)-valued reproducing kernel on X aitk N Hg_k = {0}. If Hx < H thenHg_k
is the orthogonal complement 8k in .

Every reproducing kernel has a feature map representation. Sphyific is an £L(A\)-valued
reproducing kernel oiX if and only if there exists a Hilbert spac®’ and a mappingb : X —
L(N\, W) such that

K(x,y) = @(y)*®(x), xyeX, (5)

whereL(A, W) denotes the set of bounded linear operators ffota W, and®(y)* is the adjoint
operator of®(y). We call® afeature mapf K. The following lemma is useful in identifying the
RKHS of a reproducing kernel given by a feature map representdijon (

Lemma 2 If K is an L(A)-valued reproducing kernel on X given by (5) then
Hg ={P(-)'u:ue W}
with inner product
(D()U, D(-)"V) 4 = (PoU,PoV)qy, uve W,
where R is the orthogonal projection oft onto
Wy :=Span P(x)& : xe X, § € A}.

The second characterization can be proved using Lemma 2 and the sammeaigwith those
for the scalar-valued case (Xu and Zhang, 2007).

Theorem 3 Suppose that (A)-valued reproducing kernels K and G are given by the feature maps
®: X — LA, W) andd' : X — L(A, W), respectively. Assume thatp = W and Wy, = W'.
Then# < g if and only if there exists a bounded linear operator T fréthi to 7/ such that

Td' (x) = d(x) for all x € X,

and the adjoint operator T: W — W is isometric. In this case, G is a nontrivial refinement of K
if and only if T is not injective.

To illustrate the above useful results, we shall present a concrete Exaimpng at refining
L(N)-valued reproducing kerneks with a finite-dimensional RKHS. A simple observation is made
regarding such a kernel.

Proposition 4 A A-valued RKHSH is of finite dimension & N if and only if there exists anxn
hermitian and strictly positive-definite matrix A and n linearly independenttiomgg; : X — A,
j € Nj such that

KxYE= % > AkE X)ad(y), Xy€eX, EeA. (6)
J=1k=1
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Proof Assume thatH is n dimensional with orthogonal basf®; : j € Ny}. AsK(x,-)§ € H for
allxe X, & € A\, there exist functions; : X x A — C such that

n
KXY)E = ci(&Xei(y), xyeX, E€A.
=1
Since{q; : j € Ny} is a basis forH, each functionf € # has the form

n
f=Y djg;, d; €C, jeN,.
JZlJJ i n

Clearly, ||f]| := (z?zlyd”z)l/z is @a norm on#. It is equivalent to the original one ofik as
dim# < . It is implied that there exists son@> 0 such that

Zl\cj (&) < CIK(x,)&]1 7 = C(K(x.X)E &) < ClEIRIK(XX)]. (7)
J:

Obviously, for eachx € X andj € Ny, ¢j(-,x) is a linear functional om\. This together with (7)
implies thatc;(-,x) are bounded linear functionals &n By the Riesz representation theorem, there
existsyj : X — A\, j € N, such that

¢j (&%) = (& Wj(¥)a-

We conclude thaK has the form

Z E lIJ] /\(pj )’ X,yGX, EE/\ (8)

Since{q; : j € Np} is an orthogonal basis fokk, by (3),
(Ea qJJ (X))/\ = (K(X’ )E?cpj)?‘ﬂ( = (E?cpj (X))/\a E € /\7 xe X.

It follows thaty; = ¢, j € Ny. Substituting this into (8) yields that
n
ZE(p] /\(p] )XayEX)EEA)

which indeed is a special form of (6).
Conversely, assume thisthas the form (6). We sets := 12(Ny,) := {c= (¢j: j € Ny) € C"}
with inner product

n n
= CidAik.
2,2, G9Ax

Introduce® : X — L(A, Wp) by setting®(x) := ((&,@;(X))a : j € Np). Direct computations show
that

n n
:Z Z(PJ JUAjk, U= (Uj : j € Ny) € Wh.
j=1k=1
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Thus, we see thd{(x,y) = ®(y)*P(x), X,y € X, implying thatK is an L(A)-valued reproducing
kernel. By the linear independence @f, j € Ny, spaq®(x)¢ : x € X, § € A} = Wa. We hence
apply Lemma 2 to get that

He ={P(-)"u:uec Wp} =spaf@;: j € Np},
which is of dimensiom. |
By the above proposition, we lefj, j € Ny, be linearly independent functions frokito A,

wherem > n are fixed positive integers. L& andB be n x n andm x m hermitian and strictly
positive-definite matrices, respectively. We defiiby (6) in terms of matrixA andG by

= Z Z k(& @ (X))A®(y), X,y € X (9)
J: :

and shall investigate conditions fGrto be a refinement df.

Proposition 5 Let K, G be defined by (6) and (9), respectively. Thgn< g if and only if Bt is
an augmentation of A, namely, q(l = Ajj}, J, k€ Np. In particular, if K, G have the form

KX y)E= > aj(&@(x)agi(y), Gxy)&= % (& a())a(y)

JENR keENm

for some positive constants,ax, then#x < #Hg if and only if g = bj, j € Ny.. In both cases if
Hy¢ = Hg then G is a nontrivial refinement of K if and only if:mn.

Proof It suffices to prove the first claim. We observe tKatG have the feature spacet = 13(N,)
and %' = 13(Ny,), respectively, with feature maps

D(X)E:=((§,9;(x))a 1 ] € Np), P'(X)& 1= ((€, (X)) : kENpy), xe X, & € A.
Suppose that =< #gs, then by Theorem 3, there exists a bounded linear opefatol’ — W
with properties as described there. It can be represented by ammatrix D as

(TP'(XE); = Z Dik(& &(X))a = (& @(X))a, XEX,EEN, (10)

which implies thaD = [I,,, 0], wherel, denotes the x n identity matrix. The adjoint operatdr*
of T is then represented by

T*u:Bl[ 'g‘ ] u, ueC".
SinceT* is isometric, we get that
(T*U, T*V) g = (U, V) g,

which has the form
A

Vi[A,0B ‘BB { A

}u:\ﬁAu, u,veC"

99



ZHANG, XU AND ZHANG

We derive from the above equation that

[A,O]Bl[ Q ] =A

Therefore B~ is an augmentation g&k—. Conversely, if this is true thefi : W' — 9 defined by
Tu = [Ih,0)u, U € C™

satisfies the two properties in Theorem 3. As a reSiflt < #g. [ |

It is worthwhile to point out that the above characterization is indeperufehe Hilbert space
A.

Unlike the previous two characterizations, the third one comes as a sunefisey us that
theoretically we are able to reduce our consideration to the scalar-vadged ¢

Introduce for eaclC(A)-valued reproducing kern&l on X a scalar-valued reproducing kernel
K on theextended input space .= X x A by setting

K((%,8),(¥,n)) := (KX Y)EN)A, XYEX, ENEA. (11)
By (1), K is indeed positive-definite.

Proposition 6 There holds# = }l&; if and only if H; < Hz. Furthermore, G is a nontrivial
refinement of K on X if and only @ is a nontrivial refinement df on X.

Proof We first explore the close relationship betwednand #;. By (3),
K((%,8), (%:n)) = (KOY)E N)A = (K(%, )& K (Y, )N) g,
which provides a natural feature may X — % of K
P((x,&)) :=K(x,-)&, xeX, e

The density conditiony = Hy is clearly satisfied by (3). We hence obtain by (2) that every
function f in #H is of the form

f(x,&) := (f(x),&)A for somef €

with y
IFll2 = 11l -
Similar observations can be made ab&t

It follows immediately thatHy < Hg if H« < Hg. On the other hand, suppose tifgt < Hs.
Then for eachf € # there exists someg € #g such that

(F(x),&)n = f(x.&) =§(x.&) = (9(x),&)a forall xe X, £ A (12)

and N
[ 1l = [[ll2 = 16l 2 = 19l 355-
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Equation (12) implies that = g. Therefore Hx < Hg. |

It appears by Proposition 6 that we do not have to bother studying mefintof operator-valued
reproducing kernels. Although the strategy sometimes does simplify the prothle difficulty is
generally not reduced significantly. Instead, the result might be viesegdiasferring the complex-
ity to the input space. Moreover, desirable properties such as trandtatamance of the original
kernels might be lost in the process. As a result, an independent sttlay operator-valued case
remains necessary and challenging.

4. Integral Representations

We shall characterize in this section the refinement of operator-valuedlkelefined by two kinds
of integral representations: the integral of operator-valued kernidiisrespect to a scalar-valued
measure, and the integral of scalar-valued kernels with respect tceaatopvalued measure. The
characterizations to be established are crucial to the study of this papergsuseful operator-
valued kernels are of an integral representation. Typical exampleslanttie important translation-
invariant operator-valued kernels and hessian kernels to be caedidethe next section. We
also point out in advance the difference in the refinement for the two kihdstegral represen-
tations. Firstly, the first refinement corresponds to the same feature rdagiflerent measures,
while the other when the Radon-Nikodym property is engaged has diffeeature maps and the
same measure. The arguments of the proofs and the obtained resultsearaeslifferent. The
characterization of the first kind of refinement can be viewed as a dti@ighrd generalization of
that obtained in Xu and Zhang (2009), while the other one is mathematicallyiviahtr

This section will be built on the theory of vector-valued measures and aige@fBerberian,
1966; Diestel and Uhl, 1977). Necessary preliminaries on the subjectsenaitplained in sufficient
details.

4.1 Operator-valued Kernels With Respect to Scalar-valued Measuse

Let us first introduce integration of a vector-valued function with resfmeg scalar-valued measure.
Let ¥ be ac-algebra of subsets of a fixed €t u a finite nonnegative measure ¢n andB a
Banach space. We are concerned wWitivalued functions 0. A function f : Q — B is said to be
simpleif

n
=3 axe, (13)
=1

for some finitely manya; € B8 and pairwise disjoint subsef§ € ¥, j € N,. Afunctionf : Q — B
is calledu-measurabléf there exists a sequence Bfvalued simple function$, on Q such that

M}n | fa(t) — f(t)[|g =0forp—a.e.t € Q,
where— a.e. stands for “everywhere except for a set of zermeasure”. Finally, aB-valued

function f on Q is calledp-Bochner integrabléf there exists a sequence of simple functidgs
Q — B such that

O AOEGIPEFOR (14)
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The integral of a simple functioh of the form (13) on an¥ € F with respect talis defined by
n
/ fdu:= % aju(ENE).
E &

In general, suppose thétis ap-Bochner integrable function froM2 to B, that is, (14) holds true.
Then it is obvious that for eadh € 7, J¢ fodp, n € N form a Cauchy sequence # Therefore,

/fdu:: im [ f.dp
E n—e Jg

The resulting integraJ fdpis an element irB.
It is known that g+-measurable functiof : Q — B is Bochner integrable if and only if

[ 110 ladhtt) < +oo.
Q

This provides a way for us to comprehend the integgaldp in the most needed case whérs
L(N)-valued. If B = L(A) then we have for eadh € ¥ that

(/E fduE,n>A = [, Enen (15)

Clearly, the right hand side above defines a sesquilinear forfaxoi which is bounded as

Lt08madu| < [ 110lcndhd) [Elnlnln

where|| - || ,(a) is the operator norm o (A). As a result, (15) gives an equivalent way of defining
the integral/c fdpas a bounded linear operator Ar(Conway, 1990).

We introduce another notation before returning to reproducing kerelsote byl 2(Q, B,dy)
the Banach space of all tpemeasurable functionk: Q — B such that

1/2
Ilasan = ( [ 1FOBM0) <o (16)

When3 = C, L?(Q,C, dy) will be abbreviated as?(Q, dy). WhenB is a Hilbert spacd,?(Q, B, d)
is also a Hilbert space with the inner product

(1.9c@adn = [ (F(0.00)a000). 1,9€L7(Q,5,du.

The discussion in this section by far can be found in Diestel and Uhl {1977

Let u,v be two finite nonnegative measures orv-algebra¥ of subsets ofQ. To intro-
duce our£L(A)-valued reproducing kernels, we also I8t be a Hilbert space ang a mapping
from X x Q to L(A, W) such that for each € X, @(x,-) belongs to both.?(Q, L(A, W), dy) and
L2(Q, L(A, W),dv). We shall investigate conditions that enstiie < Hg where

KOey) = [ o) o tdutt), xyeX 1)
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and
G(xy) = [ @yt @xtadv(), xyeX. (18

where@(y,t)* is the adjoint operator af(y,t). Note thatK,G are well-defined as the integrand is
Bochner integrable with respect to bqtlandv. For instance, we observe by the Cauchy-Schwartz
inequality for allx,y € X that

/Q|!(P(y>t)*<P(X,t)|!L<A)du(t) S/H(p(yvt)*HL(‘W,A)H(p(xvt)HL(A,‘W)du(t)

= Q||<P(yat)HL(/\7W)H(P(X,t)HL(/\,W)dH(t)
< N1y Mz, con,w).aw 9% )Lz, n, ), dpy -

An alternative of expressing, G is for all x,y € X, §,n € A that

R(068) () = (K& = | (@0 DE 000 i)

and

G((x8), (9:M)) = (GO Y& = | (@0CDZ @ ON)apaV(0).

WhenA = W = C, a characterization of =< #g in terms ofp,v has been established in
Xu and Zhang (2009). The relation, between the two measures, whichallenged is absolute
continuity. We say thafi is absolutely continuousvith respect tov if for all E € #, v(E) =0
impliesp(E) = 0. In this case, by the Radon-Nikodym theorem (see, Rudin, 1988, 1i2t) for
scalar-valued measures, there exists a nonnegaiiweegrable function, denoted li/dv, such
that

WE) = %(t)dv(t) forallE € 7.
Edv
We writep < v if W is absolutely continuous with respectiuanddp/dv € {0,1} v —a.e. Thus,
M= v if and only if nis the restriction off on some measurable setin
WhenA = W = C, it was proved in Theorem 8 of Xu and Zhang (2009) that if Sp@R,-) :
x € X} is dense in both?(Q,dy) andL?(Q,dv) thenG is a refinement oK if and only if < v. If
H =<V thenGis a nontrivial refinement df if and only if v(Q) > u(Q).

Theorem 7 Let K, G be given by (17) and (18). Bpan{@(x,-)§ : x € X, & € A} is dense in both
L2(Q, W,dy) and L2(Q, W, dv) then Hg < Hg if and only if u=< v. In this case, the refinement G
of K is nontrivial if and only ifv(Q) — u(Q) > 0.

Proof WhenW = C, as a direct consequence of Theorem 8 in Xu and Zhang (2029% Hg if
and only ifu < v. The result hence follows from Proposition 6. WhBhis a general Hilbert space,
it can be proved by arguments similar to those in Xu and Zhang (2009). |
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4.2 Scalar-valued Kernels with Respect to Operator-valued Measuge

Again, B is a Banach space anl denotes ar-algebra consisting of subsets of a fixed QetA
B-valued measure off is a function from¥ to B that is countably additive in the sense that for
every sequence of pairwise disjoint sBisc 7, j € N

u<U Ej> =3 WE),
where the series converges in the nornBofEvery B-valued measurg on ¥ comes with a scalar-
valued measurgy| on ¥ defined by

[W(E) :==sup [u(F)lls, EcZ, (19)
P Fecp

where the supremum is taken over all partitighef E into countably many pairwise disjoint mem-
bers of #. We call |y| the variation of p and shall only work with these vector-valued measures
p that are ofbounded variationthat is, || (Q) < +c. We note that vanishes on sets of zefp|
measure. It implies thatis absolutely continuous with respect|fg in the sense that

lim E)=0.
\u(E)IHOM( )

The only type of integration that we shall need is to integrate a boufideteasurable scalar-
valued function with respect to A-valued measure of bounded variation. DenotdByQ. d|y|)
the Banach space of essentially bound@edneasurable functions dd with the norm

[fllie@au) ==inf{a=0:|u/({|f| >a}) =0}.
For a simple functiorf : Q — C of the form

n
f=7> aixe,
=1

wherea; € C andE; are pairwise disjoint members fh, we define

n
fdu:= S aju(E;iNE), E€ F.
/E H gl jH(EjNE) F

‘/fdu
E

Therefore, the map sending a simple functioto [ fdpcan be uniquely extended to a bounded
linear operator fronbL”(Q,d|p|) to B. The outcome of the application of the resulting operator on
a generalf € L*(Q,d|y|) is still denoted by/g fdp This is how theB-valued integral is defined.

It is time to present the second type of reproducing kernels defined tyyatiten:

K(cy)i= [ Woeydut). xyeX. (20)

wherep is an L, (A)-valued measure off of bounded variation, an® is a scalar-valued func-
tion such that¥(-,-,t) is a scalar-valued reproducing kernelXror all t € Q and for allx,y € X,
W(x,y,-) is bounded andF -measurable. We verify that (20) indeed definesdn)-valued repro-
ducing kernel.

Clearly,

<[ FlL= (. [MI(E)-
B
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Proposition 8 With the above assumptions Bhand p, the function K defined by (20) is a&qA)-
valued reproducing kernel on X.

Proof Fix finite x; € X and&; € A, j € Ny. For anye > 0, there exist simple functions
m
fj7k = z O kIXE j,kE Np
=1

such that
WX}, %, ) = fikllie(@du) <& J,keNn. (21)

Here,a ;x| € C andE are pairwise disjoint sets iff with |p|(E/) > 0, | € Ny, By (21) and the
definition of integration in this section,

Z Z (X}, %) &5 Ek)A Z Zl<</g fj,kdu> Ej,zk)/\

We may choose by (21) for eatle N, somet; € E; such that

n 2
<el@)(3 ) @
i=

|W(xj,%,t) — | <€

Letting

n

W(x;j, %, 1) (M(ENEj, Ek)A,

M3

1k=1l

A

we get by the above equation that
fi d i - S i —y i ,t E i

glkzl(</9 I M) 4 Ek)/\ lek;gl’aj'k’l 0, X 1S Zn ,

<eS S S IME)] oo & InlExln < (@ (z\w).

Combining (22) and (23) yields that

(23)

3 3 (Kot 80n S <269 3 18 ) (24)

SinceW(-,-,t) is a scalar-valued reproducing kernel ¥n [W(xj,Xq,t) : j,k € Np] is a positive
semi-definite matrix for eache Ny, So are{(U(E )€, &k)a @ j,k € Nn|, | € Nyasp(E ) € L (A).
By the Schur product theorem (see, for example, Horn and Johih@8h, page 309), the Hadamard
product of two positive semi-definite matrices remains positive semi-defingeobféin by this fact
thatS > 0, which together with (24), and the fact tieatan be arbitrarily small, proves (1). B

To investigate the refinement relationship, we shall consider a simplifietbrest (20) that
covers a large class of operator-valued reproducing kernelsp Détx Q — C be such thag(x, -)
is a boundedF -measurable function for everyc X and such that

span{@(x,-) : x € X} = L2(Q, dy) for any finite nonnegative measwen ¥ . (25)
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We shall see by the concrete examples in the next section that the deswssnesement (25) is not
too restricted in applications. The kernels we shall consider are

KOey) = [ @c@yiidu). xyeX (26)

and

G(va) ::/Q(D(X,t)(p(y,t)dV(t), Xy € X, (27)

wherep,v are two L, (A)-valued measures ofi of bounded variation. By Proposition &, G
are L(N\)-valued reproducing kernels ox. Our idea is to use the Radon-Nikodym property of
vector-valued measures to study the refinement property.

Let B be a Banach space agd finite nonnegative measure gn We say that &B-valued
measure on 7 of bounded variation has tHeadon-Nikodym propertyith respect toy if there is
ay-Bochner integrable functioh : Q — £, (A) such that for alE € F

p(E) = /E dy.

Apparently, this could only be true whens absolutely continuous with respecttd-or this reason,
we also say that the spa@ehas the Radon-Nikodym property with respecytbevery B-valued
measure of bounded variation that is absolutely continuous with respdtasthe Radon-Nikodym
property with respect tg. Moreover,B is said to have the Radon-Nikodym property if it has it with
respect to any finite nonnegative measure on any measure gpace
Strikingly different from the scalar-valued case, a Banach sffogay not have the Radon-

Nikodym property. For instance, the Banach spagef all sequences := (a; € C: j € N) with

lim |aj| =0

joo
under the norma||¢, := sup{|a;| : j € N} does not have the property with respect to the Lebesgue
measure (see, Diestel and Uhl, 1977, page 60). Consequently, ttee/5@8) does not have the
Radon-Nikodym property whef is infinite-dimensional. To see this, sinfeis separable we let
{ej : j € N} be an orthonormal basis fév. Denote byZo(A) the set of all the operatofs € L(A)
such that

Te =aje;, jeN

for somea € cp. One sees thafT || () = [af|c, (Conway, 1990). As a result,o(A) is a closed
subspace of (A\) that is isometrically isomorphic tw. Sincecy does not have the Radon-Nikodym
property, neither doeso(A\). A Banach space has the Radon-Nikodym property if and only if each
of its closed linear subspaces does (Diestel and Uhl, 1977). By thigfat},does not have Radon-
Nikodym property.

We shall focus on the situation where this desired property holds. For@gareflexive Banach
spaces have the Radon-Nikodym property (Diestel and Uhl, 1977apptications A is usually
finite-dimensional. In this case&,(A) is of finite dimension as well. Any two norms on a finite-
dimensional Banach space are equivalent and a finite-dimensigngl can be endowed with a
norm that makes it a Hilbert space. It yields tidt\) is reflexive. The conclusion is that whén
is finite-dimensional L(A) does have the Radon-Nikodym property. Another way of overcoming
the difficulty is to confine to a subclass af\), for example, to the Schatten class (Birman and
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Solomjak, 1987). Denote for each compact operatar L(A) by s;(T), j € N, the nonnegative
square root of thg-th largest eigenvalue of*T. It is called thej-th singular numberof T. For
p € (1,4), the p-th Schatten classp(A) consists of all the compact linear operatdrs L(A)
with the norm

® 1/p
Tllson) = <zl(s,-(T))p> < .
i=

The p-th Schatten clasS,(A) is a reflexive Banach space and hence has the Radon-Nikodym prop-
erty. Whenp = 2, $(A) is the class of Hilbert-Schmidt operators and

0 1/2
Mo = ( 3 17aln)
=1

We shall not go into further details about the Radon-Nikodym propentyerésted readers are
referred to Chapter Il of Diestel and Uhl (1977) and the refereticerein.

The assumption we shall need is that there exists a finite nhonnegative mgasutf such
that bothu andv have the Radon-Nikodym property with respeciytdn other words, there exist
y-Bochner integrable functiors,, 'y : Q — £, (A) such that

p(E):/El'udy and v(E):/EFde forallEe 7. (28)

Such two functions exist i := |y + |[v| andp,v take values in the-th Schatten class of (A),
1< p< oo

Suppose tha, G are given by (26) and (27), whegep, v satisfy (25) and (28). Our purpose is
to investigateHx < Hg. To this end, let us first identifyf; and #z. We shall only present results
for #; as those forHz have a similar form.

Lemma 9 The RKHSH; consists of functionssFof the form
Ff (sz) = /Q(ru<t)f(t)aE)A(P(Xat)dV(t)a Xe X7 E € /\7

where f can be an arbitrary element from the Hilbert spaek of y-measurable functions fro
to A such that

1/2
11 = ([ Cu01 0.1 nev0) <o
Moreover,||F || s, = || |4y, for all f € 7.

Proof We observe for alk,y € X andg,n € A that

R(068), () = | @Ox 0D (Mu(DE M)dy(t).
Thus, we may choos#/, as a feature space f&. The associated feature mayp : X x A — W), is
then selected as

D%, &) (1) :==@(x,1)E, teQ.
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We next verify the denseness condition tisgar{ ®,(x,§) : x e X, § € A} = Mj,. Suppose that
f € M}, is orthogonal tab,(x, &) for all x € X andg € A, that is,

/Q(I'uf(t),ﬁ)/\(p(x,t)dy(t) =0forallxe X, & e A.

By (25),
(Fu(t)f(t),)A=0y—a.e.

As this holds for an arbitrar§ € A, I'y(t) f(t) =0y—a.e. Itimplies thaf[f|,; = 0. The result
now follows immediately from Lemma 2. |

For two operator$\,B € L, (A\), we write A < Bif for all & € A there exists somg € A such
that

AE = Bn and(Ag, &) = (Bn,n)a. (29)

We make a simple observation about this special relationship between twodperators.
Let ker(A) and rar{A) be the kernel and range &f respectively. If rafA) is closed then a8
is self-adjoint, there holds the direct sum decomposition

N\ =ker(A) @ran(A). (30)

Thus, A is bijective and bounded from r@A) to ran(A). By the open mapping theorem, it has a
bounded inverse on rgA), which we denote b2,

Proposition 10 Suppose that B € L, (A) have closed range. ThenAB if and only if
ran(A) C ran(B) (31)
and
PeaB t=A"lonran(A), (32)
where B A denotes the orthogonal projection frarn(B) to ran(A). Particularly, if A is onto then

A< Bifand only if A= B.

Proof Let A, B have closed range. Suppose first tAat B. Then (31) clearly holds true. Set for
each¢ € ran(A)
ne == B1AZ.

Clearly, the mapping — n; is linear from rar{A) to ran(B). Thus, we have for arbitrar§, &’ € A
that

(AE +AE,E +E&)A = (BNeig,Nerre)a = (BNe +BNg,Ner +Ne)as

which implies that
Re(AE'/, E)/\ = Re(Bl’]E/, r]z)/\

A textbook trick yields that for alg, &’ € ran(A),
(Aélvz.)/\ = (an/a nE)/\ = (AEI7 r]E)/\
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We hence obtain thdt—n; € ker(A) for all & € ran(A). Consequently,
AE — ABIAE = AZ — Ane =0 for all € € ran(A),

from which (32) follows.
On the other hand, suppose that (31) and (32) hold true. Then weelfimoeaclt, € A

n:=B7lAL
and verify thatBn = A¢ and
(Bn,n)a = (AL, B7AE)A = (AL, Ps aB TAE)A = (AE,ATAE)A = (AL, E)A.

Finally, if Ais onto then by (31), rafA) = ran(B) = A. According to (30), botiA andB are in-
jective. Therefore, they possess a bounded inverse dhimplies thatPs 4 is the identity operator
on/\. By Equation (32)A = B. The proof is complete. |

We are ready to present the main result of this section.

Theorem 11 Let K, G be given by (26) and (27), whepey, v satisfy (25) and (28). Thefk < #s
ifand only ifl, < Ty y—a.e.

Proof By Proposition 6 and Lemma %k =< Hg if and only if for all f € %, there exists some
g € ‘W, such that

L ru@1 .20 0ev0) = [ (Mg L0 DAY forall xe X, A (39
and
LU f O F©)nev® = [ (Fut)a(0).gt)advie). (34
By the denseness condition (25), (33) holds true if and only if
(Fu®) (1), &A= (Tv(t)g(t),&)a fory—a.e.t € Qand all§ € A,

which is equivalent to
M) f(t) =Ty(t)g(t) fory—a.ete Q. (35)
We conclude thatHx < #g if and only if for every f € M}, there exists somg € W, such that
Equations (34) and (35) hold true.
Suppose thdt, < Ty y—a.e. Then clearly, for eache 7}, we can find a functiog: Q — A
which is definedi-almost everywhere and satisfies (35) and

(Fu®) F (1), F(0)a = (My(t)9(),9(t)n for y—aet € Q.

The above equation implies (34). Therefaf, < Hg.

On the other hand, suppose that we can find for everyit}, somegs € W, satisfying (34) and
(35). The functiorgs can be chosen so that— g is linear from7y, to W,. A trick similar to that
used in Lemma 9 enables us to obtain from (34) and (35) that

/Q(I'u(t)f’(t), f(t) — g (t))ady(t) = O for all f € M),
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Letting f’ := @(x, )& for arbitraryx € X andg € A in the above equation and invoking (25), we have
that

Mut)(f(t) —gs(t)) =0fory—a.et € Q.
By the above equation and (35), we getyemlmost everyt € Q that

(Fu()gr (1), 91 (t))a = (Mu®) F (1), 91 () = (F(1), Fu(®)gr (t)a = (F(1), Tu®) F (1) = (Tu®) F ), f(t))A-

Since (35) and the above equation are true for an arbifraryi}, ', <I'y, y—a.e. |

5. Examples

We present in this section several concrete examples of refinement¢@topvalued reproducing
kernels. They are built on the general characterizations establishesllastiiwo sections.

5.1 Translation Invariant Reproducing Kernels

Letd € NandK be anz(A)-valued reproducing kernel &f. We say thaK is translation invariant
if for all x,y,a € RY
K(x—a,y—a) =K(xy).

A celebrated characterization due to Bochner (1959) states that evetiynuwous scalar-valued
translation invariant reproducing kernel & must be the Fourier transform of a finite nonneg-
ative Borel measure oRY, and vice versa. This result has been generalized to the operatedvalu
case (Berberian, 1966; Carmeli et al., 2010; Fillmore, 1970). Spdbjifiaacontinuous functiorK
from R x RY to £(A) is a translation invariant reproducing kernel if and only if it has the form

KOcy) = [ & dut), xye R, (36)

for somep € B(RY,A\), the set of all theL, (A)-valued measures of bounded variation on ¢he
algebra of Borel subsets R°. Let G be the kernel given by

G(xy) = [ &% Vdv(t), xye RS, (37)

wherev € B(RY,A). The purpose of this subsection is to charactefige< Hg in terms of, v.
To this end, we first investigate the structure of the RKHS of a translatiomiamta’ (A)-valued
reproducing kernel.

Letybe an arbitrary measure #(RY, A) andL the associated translation invariant reproducing
kernel defined by

L(xy) = /R 80 dy(), xyeR™

There exists a decompositionpivith respect to the Lebesgue meastdxen RY (Diestel and Uhl,
1977) as follows:

Y=Yc+VYs (38)
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whereye, s are the unique measures®#{RY, A) such thaty, is absolutely continuous with respect
to dx, and for each continuous linear functiomabn L(A), the scalar-valued measukgs anddx
are mutually singular. It follows from this decomposition of measures a deasitign of L:

L= LC + LS7

where
Lo(xy) = [ €5 taye(t), Lalxy) = [ M ays(t), xye B (39)
R R

Ouir first observation is thaf_is the orthogonal direct sum gf, . and# .. Two lemmas are needed
to prove this useful fact.

Lemma 12 Let L., Ls be given by (39). Then for &l A and xy € RY
Latx &8 = | & Vidy(t). a=cors (40)
wherey, ¢ is a scalar-valued Borel measure & defined for each Borel set € RY by

Yag(E) := (Ya(E)&,&)n, a=cors

Proof Letae {c,s},& € A\, x,y € RY, ands, be a sequence of simple functions®hthat converges
to d*Ytin L®(RY,dx). Then

i ((/]R wva) EvE)A = (La(X )&, E)n.

By definition, we have for eache N that

A@o((éd%dVa>E,E>A=/Rd3wd\/a,z-

As
im [ svag = [ &%V idyae (o).
we conclude from the previous two equations that (40) holds true. |

Lemma 13 There holdsH N #H = {0}.
Proof We introduce for each € A two scalar-valued translation invariant reproducing kernels on
RY by setting

Aa(xvy) = (La(xv)/)f.,E)A, X,y e Rdv ac {C,S}-

By Lemma 12, we have the alternative representationdd@ndAs
Aa(X,y) = /d XYy, ¢ (1), x,yeR?, a=cors.
R
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By the Lebesgue decomposition nfy.¢ is absolutely continuous with respect da while ys¢
anddx are mutually singular. As a consequengg, N #a, = {0} by Lemma 17 in Xu and Zhang
(2009).

Letac {c,s}. By (3),

Aa(x,Y) = (La(X, )& La(¥,-)E) 5, XY ER.
A feature map foA;, may hence be chosen as
®a(X) := La(x,)&, xeRY
with the feature space beiff ,. We identify by Lemma 2 that
Hay = {(F(-),0)n: Fea,}. (41)

Assume thatH . N H . # {0}. Then there exist nontrivial functiorlse %, andg'e #_ such
that f = §. As a result, there exists sorfie= A such that(f(-),&)a is not the trivial function. By
equation (41)

(f()vz)/\ = (g()va)/\ € "7{% mg{o\sa

contradicting the fact thata, N Ha, = {0}. [

Theorem 14 The spaceH,_is the orthogonal direct sum o . and # , namely,H, = H P H ..

Proof The result follows directly from Lemma 13 and Proposition 1. |

We are now in a position to study the refinement relationsiip< #g, whereK, G are defined
by (36) and (37). Firstly, the task can be separated into two related oceslang to the Lebesgue
decomposition of measurgsv.

Proposition 15 There holdstk < Hg if and only if Hk, < Hg, and Hx, < Hg,.

Proof By Theorem 14 % = Hx P Hx, and Hg = Ho, P Hg,. Therefore, if Hx, < Hg, and
Hy, = Ho, thenHy < Ho.

On the other hand, suppose ti¥fd < 7. Let f € k.. Thenf € H and || (|5 = | ]|
SinceHx < Hg, there existg € Hg, andh € Hg, such that

f=g+h

and
1F13, = 1112, = llg+hl2, = lgliZ,, +IIhlZ -

Therefore, to show thatk, < Hg, it suffices to show thalh = 0. Assume thah # 0. Note that
f —g € Hk +c, (Pedrick, 1957), we get that

Ho+c, N Ho, # {0} (42)
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However,
(Ke+Go)(6y) = [ "W Md(eve) (1), xye R

andy + V¢ is absolutely continuous with respectdr Thus, Equation (42) contradicts Lemma 13.
The contradiction proves thatk, < #g.. Likewise, one can prove thatkx < .. [ ]

By Proposition 15, we shall stud§, < #Hg, and Hx, < Hg, separately. We shall restrict
ourselves to the case when the measures correspondiig dnd G; have the Radon-Nikodym
property with respect to the Lebesgue measure and the measurepaodiag toKs and G5 are
discrete. Specifically, the kernels to be considered are of the followiegjadorms:

Ke(xy) = [ @V a0t Gelxy) i= [ &6Vt xyeR!  (43)
and

Ks(oy)i= 5 e0VUA; Go(xy) = § e0V%By, xyeRY
j€lr ke,

Here,d1, 9, are twodxBochner integrable functions frold to £, (A), {tj: j € J1} and{tx 1k €
J,} are countable sets of pairwise distinct point&Rfh andA,, Bj are nonzero operators ifi (A\)
such that

Z A2y < oo, z I1Bkl| £(n) < +oo.
jed1 kel
The following characterization is a direct consequence of Theorem 11.

Proposition 16 Let K., G be given by (43). Thefik, < #g, if and only ifp1(t) < ¢2(t) for almost
every te RY except for a subset iRY of zero Lebesgue measure.

Proof As ¢1,¢, aredx-Bochner integrable,
L1050l it < oo, j=1.2
Define a finite nonnegative Borel measyrmn RY by setting for each Borel subsgtin RY

WE) == [ 103(0)Lcin + [9200)Lcin .

Evidently,K¢, G; have the form

Ke(xy) = [ @XVratay(t), Gotxy) = [ @V Ma(tay(t), xye R,

where forj = 1,2,

[01(O) [l Lea) + 1920 L(n)’
0, otherwise.

rjt) = { by if ([ @1t L) + 1020 Ln) > O,

It is also clear that spa@*! : x € RY} is dense irL?(RY,dy). By Theorem 11Hc < Hg, if and
onlyif M1 <Iay—a.e. Notethall1(t) <T,(t)ifandonly ifd1(t) < Po(t). If ¢1 < 2 dx—a.e. then
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N <T,y—a.e. ag is absolutely continuous with respect to the Lebesgue measure. On the other
hand, suppose that <, y—a.e. Set

E:={t e R :[[1(t)l| cip) + [D2(t)] (n) > O}

Fort € ES, ¢1(t) = ¢2(t) = 0, and thusp4(t) < d2(t). Assume that there exists a Borel subset
F C RY with a positive Lebesgue measure on whigfft) £ ¢»(t). ThenF C E. We reach that
y(F) > 0andry(t) A ,(t) fort € F, contradicting the fact that; <", y—a.e. [ |

ForKs, Gs, we have the following result.

Proposition 17 There holdsHk, < Hg, if and only if
(1) {tj:jeli} C{tk:kela};

(2) for each je Ji1, Aj = Bj. Here, re-indexing by condition (1) if necessary, we may assume that
J1 C o

Proof Introduce a discrete scalar-valued Borel meagutet is supported ofitj : j € J1} U {t«:
k € Jo} by setting

A £n) + 1Bkl (ny, k€ TNz,
Y({t}) :== 9 11Bkllznys ke J2\J1,
Al £n) ke J1\Jz.
We also let A 8
Falty) = J , j€Jrandla(ty) = k , ke ls.
A= gy STl =gy e

They are discrete&(/\)-valued functions supported dm; : j € J1} and{tx : k € J»}, respectively.
We reach the following integral representation:

Ks(xy) = /]R @XM dy(t) andGs(x,y) = /]R EEIre(tdy(t), xye R

By Theorem 11, < Hg, if and only if Ta < 'g y—a.e. Itis straightforward to verify that the
latter is equivalent to conditions (1)-(2). |

5.2 Hessian of Scalar-valued Reproducing Kernels

Propositions 16 and 17 were established based on Theorem 11. Inldbéctan, we shall consider
special translation invariant reproducing kernels and establish thaatheration of refinement
using Theorem 7.

Let k be a continuously differentiable translation invariant reproducing kem&¢. We con-
sider the following matrix-valued functions

2

0k .
K(X7y) = D)z(yk(X,y) = W(Xay) : Jake Nd , XY € Rd' (44)
Xj =¥k
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To ensure thak is an £(C%)-valued reproducing kernels di®, we make use of the Bochner
theorem to get some finite nonnegative Borel meaguneR? such that

Kxy) = [ @Vdu), xye R (45)

and impose the requirement that
/ ttTdu(t) < +oo. (46)
Rd

One sees by the Lebesgue dominated convergence theorem that
K(xy) = [ " tTap), xye R, (47)
R

where we viewt € RY as ad x 1 vector and™ denotes its transpost, t,, ..., tq]. By the general
integral representation (17) of operator-valued reproducing keidelefined by (44) is a (CY)-
valued reproducing kernel diY. Matrix-valued translation invariant reproducing kernels of the
form (44) are useful for the development of divergence-freaeddamethods for solving some spe-
cial partial differential equations (see, for example, Lowitzsh, 200&ndand, 2009, and the refer-
ences therein). Another class of kernels constructed from the Hesfsdestalar-valued translation
invariant reproducing kernel is widely applied to the learning of a multitarianction together
with its gradient simultaneously (Mukherjee and Wu, 2006; Mukherjee 4, Z2006; Ying and
Campbell, 2008). Such applications make use of kernels of the form

T Kxy) (D)
Kxy) = [ nkxy) D2k | (48)

One sees that under condition (46)
Koy) = [ @ p(t)p(t) duit), xye RS,
R

where
p(t) = [L,ity,ita, ..., itg]", t € RY.

We aim at refining matrix-valued reproducing kernels of the forms (4d)(48) in this subsection.
Specifically, we lev be another finite nonnegative Borel measuré&8rsatisfying

/R ) ttTdv(t) < 4o (49)
and define fox,y € R4

i(X—y)- . -~ . ) 0 ) ¥
a(x,y) = /Rde'( Vidu(t), G(x,y) = D)Z(yg(x,y), G(x,y) := D?(;)Ex)j))/) (Désé?x?/;; . (50)

Our purpose is to characteriz& < #g and #g < #gs in terms ofk, g andp, v.

Theorem 18 Let pv be finite nonnegative Borel measures Bf satisfying (46) and (49), and
k,g defined by (45) and (50). Then®, K,G are matrix-valued translation invariant reproducing
kernels oriRY. The four relationshipsk < Hg, He = Hg, He < Hy, and p= v are equivalent.
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Proof By Theorem 7 or a result in Xu and Zhang (2008}, < Hy if and only if p < v. We shall
show by Theorem 7 thatik < #g if and only if p < v. The equivalence oty < #Hg andp < v can
be proved similarly. Set

o(xt) =T, xteR%

Then for eaclx,t € RY, ¢(x,t) is a linear functional front9 to C. We observe by (47) that (17) holds
true. So does (18). To apply Theorem 7, it remains to verify that fpan-)€ : x € RY, & € €9}
is dense in the Hilbert spa¢&(RY,dy), which is straightforward. The claim follows immediately
from Theorem 7. |

5.3 Transformation Reproducing Kernels

Let us consider a particular class of matrix-valued reproducing kewfalse universality was stud-
ied in Caponnetto et al. (2008). The kernels we shall construct aredroinput spacX to output
space\ = C", wheren € N. To this end, we lek,g be two scalar-valued reproducing kernels on
another input spacé andT, be mappings fronX toY, p € N;. Set

K(va) = [k(Tan TqY) : paq S Nn]a G<X7y) = [g(Tan TqY) : paq € Nn]a vae X. (51)

Itis known that, G defined above are indeegd C")-valued reproducing kernels (Caponnetto et al.,
2008). This also becomes clear in the proof below. We are interested inridéions for# < Hg
to hold.

Proposition 19 Let K, G be defined by (51). Thetk < #g if and only if 7 < Hyg, whereE, g are
the restriction of kg on nglTp(X). In particular, if

UTe(X)=Y (52)
p=1

thenHx < Hg if and only if H < Hy.

Proof Itis legitimate to assume that (52) holds true as otherwise, we may réplayceg:lTp(X),
andk, g by k, g, respectively.
Choose arbitrary feature maps and feature spagesy — ¢4 for k and®, : Y — W5 for g
such that
spar;(Y) = W, j=1.2 (53)
By Proposition 6Hx < Hg if and only if Hz < Hz. We observe for akk,y € X and&,n € C" that
n n

R(068),0em) = (KOey)&mer = 5 5 €Ty Ty
p=1d=

= Z z Epm(¢1(TpX),¢l(Tqy))W1

=}

= Z g Pq)l(TPX) )

r]q(Dl(TQY))
p=1 g=1

MWL
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Thus,®1 : X x C" — %4 defined by
~ n
ch(X7E) = Z qu)l(TpX)> Xe Xa E € Cn
p=1

is a feature map foK. We next verify that spafd;(x,&) : x e X, &€ € C"} is dense ini4. Assume
thatu € M/ is orthogonal to this linear span, that is,

n
(u, Z quDl(Tpx)) =0forallxe X, & e C".
p=1 WL

Then we havgu, ®1(TpX)) 4, = 0 for allx € X andp € Np. It follows from (52) and (53) that = 0.
Similar facts hold foiG.

By Lemma 2,H; < Hg if and only if for everyu € M4, there existy € M5 such that

<u, Ioiéptbl(Tpx)>

— (v, i EpcDZ(Tpx)> for all x € X (54)
p=1

W]_ WZ

and
Ul g1 = [IV[[ 905 (55)

Recall also that < #g if and only if for all u € M4 there exists somee ) satisfying (55) and
(U, ®1(Y)) g1, = (V, P2(Y)) g forally €Y. (56)
Clearly, (56) implies (54). Conversely, if (54) holds true then we get that
(U, P1(TpX)) gp1 = (V, P2(TpX)) g4, for all x e X andp € Ny,

which together with (52) implies (56). We conclude thgt < Hg if and only if #H < H. [ |

A more general case of refinement of transformation reproducinglkseisidiscussed below. It
can be proved by arguments similar to those for the previous proposition.

Proposition 20 Let T,, S, be mappings from X to Y anddbe scalar-valued reproducing kernels
onY. Define

K(xy) := [K(Tpx, Tgy) : p,d € Np], G(x,y) = [9(Spx, Ky) : p,q € Ny], xyeX.

Suppose that for all g Ny, span{k(Tyx,-) : x € X} and span{g(Spx,-) : x € X} are dense in
and #Hy, respectively. Themtk < #g if and only if}&p = %p for all p € N, where

kp(%,Y) := K(TpX, Tpy), Gp(X,Y) :=0(Sp%, Spy), Xy € X,
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5.4 Finite Hilbert-Schmidt Reproducing Kernels

We consider refinement of finite Hilbert-Schmidt reproducing kernels irstifisection. LeB;,C;
be invertible operators i, (A), n < me N, and¥j, j € Ny, be scalar-valued reproducing kernels
on the input spack. Define

K(x ZBLIJ XY), ZC, X,y € X. (57)

By the general integral representation (20) and Propositidf, & above are.(A)-valued repro-
ducing kernels oiX. To ensure that representation (57) can not be further simplified, allevabrk
under the assumption that

Hiy, m}@j = {0} for all j € Ny, (58)

where

$j = Wy.
keNm\{j}

Theorem 21 Let K,G be defined by (57), where; ; € L, (A) are invertible and¥j, j € Np,
are scalar-valued reproducing kernels on X satisfying (58). THen< # if and only if B = C;,
j € Np.

Proof We first find a feature map fo€ andG. Let@; : X — W/ be an arbitrary feature map f&#;
such that spag;(X) is dense i/}, and denote b\ ® %/, the tensor product of Hilbert spacas
and W, j € Nm. The spacé\ @ W is a Hilbert space with the inner product

ERUNOV)aga == (E,NAUV) g, ENEA, UVE W,

Set 7 the orthogonal direct sum &f® W/, j € N, whose inner product is defined by
n
((€j®uj:jeNy),(Nj@V;:jeN)) Z (&j,nj)a(uj,vj) W &,njeN, uj,vie W, jeN,.

We claim thatd : X x A — 7/ defined by

= (V/BiE@@j(x): ] €Np), xeX, E€A

is a feature map fok. Here,/B;, the square root a@;, is the the unique operatéin L, (A) such
thatA? = Bj. We verify for allx,y € X andé§,n € A that

(G(E), = S (VB VEA®0, 0 )y = 3 (BIEMAW, ()
2

1 =1

(K(va)Evn) - K((Xaz)v( y:n ))

We next show that the denseness condition

span{P(x,§): xe X, Ee N} =W (59)
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is satisfied. To this end, suppose that we haye A ® W, j € N, such that
n
((wj:j€eNy),® Z (Wj, /Bj& @ @j (X)) ey, = 0 forallx € X andg € A. (60)

Let{g :i €I} and{fi: ke J;} be an orthonormal basis férand 7/, respectively. Thetig ® f :

i € ke J;} is an orthonormal basis féx @ %/j. Note that althougfi or J; might be uncountable,

for eachg € A, ue W) andw € A®@ W), the seti € I : (€,@)) # 0}, {ke I : (u, fi) 4y # 0} and
{(0,]) e IxJj: (We® fi)agm # O} are all countable. By resorting to these orthonormal bases,
we see that

Wi, VBIED G (X)) = > > (W),8 @ fidacm (&, v/BiE)A(fi, @ (X)) ay

keljiel

One verifies by the Cauchy-Schwartz inequality that

> (Wj,8 @ fidasm (6, v/Bj&)af
keJjiel

converges in#;. As a consequencéw;,/B;§ Q@ () remw, € Hy,. This together with (60)
implies by the assumption (58) that

(Wi, v/Bj€ @ j(X))aem; = 0 forall j € Ny, xe X andg € A.
The above equation can be equivalently formulated as
<z Z(Wjaa®fk /\@WJ v/ Bi&)a i, @5 (x ) =0
keJjiel J
By the denseness @ (X) in W/,

Z(Wj,a® fk),\®wj(a,\/BTE)/\ =0forall j € Ny, ke Jj and€ € A.

1€l
We thus have for al|] € N, andk € Jj that 3 (wj, & ® fi)ag & = 0, which implies
(Wj,a@m‘k),\@%/j =0forallje Ny, ke Jj,iecl

Thereforew; = 0 for all j € Nj,. Equation (59) hence holds true. Similar facts holdGor

By Proposition 6,4 < #g is equivalent toHy < Hg, which by the above discussion and
Lemma 2 holds true if and only if for alvj € A® W, j € N, there exist uniquav;"e A W,
j € N such that

3 5 VB O()nc = 3 (91, /CiEE @ (X)neoy forall § € Aandxe X (61)
i= i=

and .
Z Wi, Wi = Y (Wi, Wi ag- (62)
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Letw; € A®@ W, j € N, be given. IfBj =C; for j € N, then we sewj :=w; for j € N, andwj =0
for n+1 < j <m. Clearly, such a choice satisfies Equations (61) and (62). Therefares .
Conversely, suppose th#fk < Hg. Then for the special choiog; := & ®@uj, §j € A\, uj € W,
j € Np, there existsvj e A® W, | € Ny, satisfying (61) and (62). Aw;is unique by the denseness

of the feature map fo6s, we must havew; = (,/C; 71w/BjEj) ®uj for j € Ny, andwj = 0 for
n+ 1< j <m. This together with (62) yields that

Z(Ejf A(Uj, Uj Z\FC 1\/721’ AU}, Uj) ;-
= =1

By successively making; @ u; # 0 and§k @ ux = 0 fork € Ny \ {j}, for j € Ny, we reach that

(€1,€)n = (v/BiC; 1 y/Bj&;,&j)a forall §j € Aandj € N,

As | /B,-Cj*l1 /Bj is hermitian, it equals the identity operator An It follows thatB; = C; for alll
j € Njb. The proof is complete. [ |

As a corollary of Theorem 21, we obtain an orthogonal decompositicitof

Corollary 22 Let K be defined by (57), wherg Bre invertible and¥;, j € N, satisfy (58). Then
n
}4-( = @%j‘“j
j=1
and

Z, BY, <,7‘[Zk+1|3LIJ for k€ Np_1.

A simplest case of (57) occurs whéfy, is of dimension 1 fofj € Ny, which is covered below.

Corollary 23 Let Bj,Cc € L, (A) be invertible for je N, and ke N, andy : X — C, ke Ny, be
linearly independent. Set

y)i= ilBi‘“i(X)LPJ(Y)a G(x,y) := kg Celik(X)Wk(y), X,y € X.
I= =1

Then#Hx < Hg ifand only if B =C;j forall j € N.

More generally, we might consid&t, G defined by two distinct classes of linearly independent
functions fromX to C. The result below can be proved using arguments similar to those for@eor
21.

Proposition 24 Letn< me Ny, Bj,C € L, (A) be invertible for je N, and ke N, and{y; : j €
Np} and{¢k : k € Ny} be two classes of linearly independent functions from X.tSet

y)i=) Biw;(X)Wj(y), G(xy):= > Cdk(X)k(y), xy€X.
=1 K=1
Then# =< #g if and only if
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(1) wj € span{¢k: ke N} forall j € Np;

(2) the coefficientd j < C in the linear span

m
WUi=SAjid, jeN
j I; i n

satisfy
m
z )\j|)\k|C|71 = 5j7kBF1 forall j,k € Np.
I=1

We close this section with several concrete examples of finite Hilbert-Schepididucing ker-
nels of the form described in Corollary 23 and Proposition 24:

e polynomial kernels:
n
= ZX“J' YIBj, X,y€ RY
=1

wherea ; are multi-indices an®@; are invertible operators in, (A), or

n

Kxy) =y (x-y)PBj, xyeR
=1

wheref3; are nonnegative integers.

e exponential kernels:
n

Koy =5 VB, xye R
=1

wheret; € RY.

6. Existence

This section is devoted to the existence of nontrivial refinement of operateed reproducing
kernels. Most of the results to be presented here are straightforweedsens of those in the
scalar-valued case (Xu and Zhang, 2009).

Let X be the input space arfdbe a Hilbert space. The reproducing kernels under consideration
are L(/N\)-valued.

Proposition 25 There does not exist a nontrivial refinement of/ai\)-valued reproducing kernel
K on X if and only if# = AX, the set of all the functions from X o, If the cardinality of X is
infinite then every_(A)-valued reproducing kernel on X has a nontrivial refinement.

Surprisingly, nontrivial results about the existence appear whisrof finite cardinality.

Proposition 26 Let X consist of finitely many pointg,xj € N for some nc N,. A necessary
condition for an£(A)-valued reproducing kernel on X to have no nontrivial refinements is tha

n n

K(xj,%)&j,&)a > Oforall & € A, j € Ny with Z I€lla > 0. (63)
J:lk:l

121



ZHANG, XU AND ZHANG

A sufficient condition for K to have no nontrivial refinements is that
n n
J: :

for some constarit > 0. Consequently, i\ is finite-dimensional then K does not have a nontrivial
refinement if and only if (63) holds true.

Proof Suppose that there exi&t e A, j € Ny, at least one of which is nonzero, such that

Z Z X]a EJ>E|<)

J]=1k=1

This implies that
n
3 K

We get by (3) that for alf €

Jil(f(xj)azj)/\ = <f,iK(xj,-)Ej)%< -0

As a consequencé does not contain the functioh: X — A taking valuesf (xj) = &; for j € Np,.
By Proposition 25, there exist nontrivial refinementsKoon X.

Suppose that (64) holds true for some positive congtaAssume that is a proper subset of
AX. Then there exists some nonzero vedtu: k € N,) € A" orthogonal ta( f (x) : k € Np) in A"
forall f € 7. Letting f = y7_; K(xj,-)&; yields that

n

D> D (KXx)&j,&)a = Y (FO4),&)n =0,

j=1k=1 k=1
contradicting (64).

We complete the proof by pointing out that whanis finite-dimensional, (63) and (64) are
equivalent. |

It is worthwhile to note that wheA is infinite-dimensional, condition (63) might not be sulffi-
cient forK to not have a nontrivial refinement. We give a concrete example to illustiate th

Let X be a singletor{x}, A := ¢?(N) consisting of square-summable sequences indexéd, by
andK (xg,x;) be the operatof on ¢?(N) defined by

Ta:= (i‘ D eN), ac (3(N).

Apparently,T € £, (¢2(N)) and condition (63) is satisfied. Létc #. Then there exist, € ¢*(N),
n € N such thaK(x, -)a, converges td in #x. Being a Cauchy sequencei, {K(x,-)an:ne N}
satisfies

i . i . 2 e
im_ 1K ()20 —K(x,-Jaml%, =0.
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By (3),
HK(Xv )an - K(Xv )amHig(

(K(%,-)(an —am),K(X,-) (an — am) ) 2
(K(X,X) (@ —am),an —am) 2 = (T (a8 — am), @ — am) 2w

Combining the above two equations yiellT a, converges to somiec /2(N,,). We now have for
eachc € /?(N) that

X
X

(f(x>7C)ZZ(N) - (f7 K<X7 )C)ﬂ'ﬁ( = AR(K(Xa )am K(X7 )C)}&
= lim (K(x,X)@n, €)2y) = lim (Tan, €)i2v)
= rl]m(\/faq, \/fC)gZ(N) = (b, ﬁC)EZ(N)
= (VTh,0) 2,

which implies thatf (x) = +/Th. Since this is true for an arbitrary functidnc %, the function

g: X — A defined by
1
g(x) := (j U eN)

is not in Hy. Thus,K has a nontrivial refinement oX.

In the process of refining an operator-valued reproducing kerrislugually desirable to pre-
serve favorable properties of the original kernel. We shall show tisistfeasible as far as continu-
ity and universality of operator-valued reproducing kernels areermedl. LetX be a metric space
andK an L(A)-valued reproducing kernel that is continuous frm X to £L(A) when the latter is
equipped with the operator norm. Then one sees#fatonsists of continuous functions fros
to A. For each compact subsgtC X, denote byC(Z,\) the Banach space of all the continuous
functions fromZz to A with the norm

[fllcza) =max|[f(X)[la, feC(2AN).
XeZ

Following Micchelli et al. (2006) and Caponnetto et al. (2008), wealuniversal kernebn X if
for all compact set C X and all continuous functions: X — A there exist

fo€ span{K(x,-)¢:xe€ Z, £ e A}, neN,

such that
r!i_r)"jx,H fo—fllciza) = 0.

In other wordsK is universal if for all compact subsesC X, the closure of spafK(x, )¢ : x e
z, & € N} in C(Z,N) equals the whose spacgZ,A\).

For the preservation of continuity, we have the following affirmative resuftpse proof is
similar to the scalar-valued case (Xu and Zhang, 2009).

Proposition 27 Let X be a metric space with infinite cardinality. Then every continuoys)-
valued reproducing kernel on X has a nontrivial continuous refinémen

The following lemma about universality has been proved in Caponnetto €0418), and in
Micchelli et al. (2006) in the scalar-valued case. We provide a simplifiedfgirere.
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Lemma 28 Let K be a continuoug (A)-valued reproducing kernel on X with the feature map
representation (5), whe® : X — L(A, W) is continuous. Then for each compact subBe&t X,

span{K(x,-)&:xe Z, E e A} = {P(-)*u:ue W},
where the closures are relative to the normdaz, A\).

Proof All the closures to appear in the proof are relative to the nor@(ig,\). Let K5 be the
restriction ofK on Z. Then the restriction ob on Z remains a feature map fé;. By Lemma 2,

Hy, ={P(-)'urue W} (65)
It hence suffices to show that
span(K(x,-)E:xe Z, E e A} =span{Kz(x,-)E :xe€ 2, E€ A} = Hy...
As spanfKz(x,-)& :xe Z, § € N} C H,,
span{Kz(x,-)E:xe 2, E€ A} C Hy... (66)

On the other hand, for eadhe #, there existf, € span{Kz(x,-)§ : x € Z, & € A}, ne€ N that
converges tof in the norm of H,. It follows that f, converges tof in the norm of C(Z,N).
Therefore,f € span{Kz(x,-)& : x € Z, § € A}, implying that

Hy, Cspan(Kz(x,-)E:xe Z, Ee A} (67)
Combining Equations (65), (66), and (67) proves the result. |

The following positive result about universality can be proved by LemBar®l arguments
similar to those used in Proposition 14 of Xu and Zhang (2009).

Proposition 29 Let X be a metric space and K a continuaig\)-valued reproducing kernel on
X. Then every continuous refinement of K on X remains universal.

7. Numerical Experiments

We present in this final section three numerical experiments on the applicdti@iinement of
operator-valued reproducing kernels to multi-task learning. Supposégtiga function from the
input spaceX to the output spaca that we desire to learn from its finite sample dét®;,&;) : j €
Nm} € X x A. Heremis the number of sampling points and

& = fo(Xj)+9j, j €Nn

whered; € A is the noise dominated by some unknown probability measure. To deal withitee no
and have an acceptable generalization error, we use the following regtizn network

1 m
min = f(xi)—&il12a +0l f||2,, 68
fewm,;” (%) = &jlla+ ol Fl% (68)
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whereK is a chosem\-valued reproducing kernel ok. Our experiments will be designed so that
underfitting and overfitting both have the chance to occur. To echo with thigations in Section
2, when underfitting happens in the first experiment, we shall find a reéineG of K aiming
at improving the performance of the minimizer of (68) in prediction. On the dtlaad, when
overfitting appears in the second experiment, we shall then findalued reproducing kernélon
X such thatH =< #g with the same purpose.

Before moving on to the experiments, we make a remark on how (68) canhm solrhe
issue has been understood in the work by Micchelli and Pontil (2005) sa¥ehatK is strictly
positive-definitef for all finite y; € X, j € Np, and for alln; € A, j € Np all of which are not zero

p P
S S (K(yj,y0n;,na > 0.
j=1k=1

If K is strictly positive-definite then the minimizdg of (68) has the form

m
fic = 5 K(xj,-)n; (69)
=1
wheren;’'s satisfy
m
> KX Xxj)nk+monj =§&;, j€Nn. (70)
K=1
7.1 Experiment 1: Underfitting
The vector-valued function to be learned from finite examples is from the sgaceX = [—1,1]

to output spacé = R", wheren € N. Specifically, it has the form
fo(X) 1= [ak|x— b + cke 9 k Nn} , xe[-1,1], (71)

wherea,b,c,d are constant vectors to be randomly generated. ThE@")-valued reproducing
kernel that we shall use in the regularization network (68) is a Gaussraelk

_v2
K(x,y) = Sexp(—(x 2y)

) ) X7y e R?

whereSe £, (R") is strictly positive-definite. It can be identified by Lemma 2 that function&gin
are of the formy/Sy wherev is anR"-valued function whose components come from the RKHS
Hg of the scalar-valued Gaussian kernel

(x—y)?
2

G(xy) = exp(— ) , X,yeR. (72)

Thus, each component gfSvis from Hg. The functionfy to be approximated is defined by (71).
As |x—by| is not even continuously differentiable, functions from the RKHS of thessen kernel

(72) with a fixed variance may not well approximédte Underfitting is hence expected. If this is
indeed observed then a remedy is to use the refineméhgofen by

2
G(x,y) := Sexp(—(xzy)> +T(A+xy)3 xyeR,
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whereT € L, (R") is also strictly positive-definite. The RKHS of the scalar-valued polynomial
kernel(1+ xy)® clearly does not have a nontrivial intersection with the RKHS of the sealaied
Gaussian kernel. Thus, by Corollary 22« < #g, namely,G is a nontrivial refinement oK.
Furthermore, as low order polynomials are added, the ability for functiofigimo approximate
the function|x — by| is expected to be superior to those#y. We perform extensive numerical
simulations to confirm these conjectures.

The dimensiom will be chosen from{2,4,8,16}. The numbem of sampling points will be
set to be 30. The sampling points j € Ny, will be randomly sampled from-1, 1] by the uniform
distribution and the outputg are generated by

& = fo(Xj) +9j, j € Np, (73)

whered; are vectors whose components will be randomly generated by the unifsimitation on
[—9, 8] with d being the noise level selected frdf1,0.3,0.5}. For each dimensione {2,4, 8,16}

and noise levebd € {0.1,0.3,0.5}, we run 50 simulations. In each of the simulations, we do the
followings:

1. the components of the coefficient vectary, c,d in the functionfy given by (71) are ran-
domly generated by the uniform distribution @n3], [—1,1], [-2,2], and[0, 3], respectively;

2. the sampling points are randomly sampled friem, 1] by the uniform distribution and the
outputs; are then generated by (73);

3. the matriceSandT are given byS= A’A andT = B'B whereA, B aren x n real matrices
whose components are randomly sampled ffior8] by the uniform distribution;

4. we then solve the minimizdi of (68) by (69) and (70);

5. for the refinement kern&, we also obtairfg as the minimizer of

1 m
min = f(xi)—&ila+0]f|2., 74
fe%mglﬂ (%)) = &jlla + ol fll5 (74)

6. the regularization parameters in (68) and (74) are optimally chosentdbé¢halative square
approximation errors

I - folPdt A fe(t) — fo(t) 2t
BT Rt T Aot (75)

are minimized, respectively.

We call (Ex, Eg) obtained in each simulation an instance of approximation errors. Hence, we
have 50 instances for each pair @f d). They are said to form a group. There are 12 groups
of instances of approximation errors. For edahd), we shall calculate the mean and standard
deviation of the differenc&yx — g in the corresponding group as a measurement of the difference
in the performance of learning schemes (68) and (74). Before that,rsutfienstances should be
excluded. Although we do not know the distributionsf and Eg, we shall use the three-sigma
rule in statistics. In other words, we regard an instarfe £g) as an outlier if the deviation afx

126



REFINEMENT OF OPERATORVALUED REPRODUCINGKERNELS

n=2

n=4

n=8

n=16

(0.1024,0.0084
(0.0091,0.0081

(0.0215,0.0182
(0.4095,0.0034

(0.0230,0.0070
(0.0513,0.0091

(0.0712,0.0015
(0.0364,0.0124

6=01 (0.4128,0.0006 (0.1554,0.0011

(0.6783,0.0025 (0.1464,0.0026

(0.0286,0.0228) (0.0663,0.0321) (0.0407,0.0194) (0.1592,0.0018
0=0.3 | (0.4811,0.0020) (0.1892,0.0041) (0.1809,0.0023) (0.0309,0.0127

(0.1674,0.0095

(0.0229,0.0099

(0.2053,0.0020
(0.1267,0.0034
(0.0669,0.0465

(0.0377,0.0376
(0.3547,0.0033

(0.2445,0.0028
(0.2762,0.0020
(0.0119,0.0264

(0.1612,0.0043
(0.0541,0.0081

Table 1: Outliers of instances of approximation errgfg, £c). An instance(‘Ex, i) is consid-
ered to be an outlier if the deviation of one of its components to the respectaeiméhe
group is more than three times the standard deviation of the group. Outlidistedan an
independent table because they should be excluded from the calculati@roean and
standard deviation of the approximation errors. Another reason is tHatgathem will
make the plot of the approximation errors highly disproportional.

or ‘Eg to their respective mean in the group exceeds three times their respeatidarstdeviation.
There are 32 outliers among the entire 600 instances, which are listed belaianl.

We make a few observations from Table 1. Firsflys is smaller thanEx except for only one
instance. For a large portion of the outliers, the approximation &i¢as considerably large (larger
than 10%), a sign of underfitting of the kern€l Those instances are of the greatest interest to us
as we desire to see if the refinement kei@etan make a remedy when underfitting does happen.
We see from Table 1 that for all of those outliers, the refinement k&radvays brings down the
relative approximation error to be less than 1%. The improvement broygbtfr other instances
is also significant. The observations indicate that (74) performs sigrifydagtter in learning the
function (71) from finite examples than (68). For further comparisoncampute the mean and
standard deviation of the differen@ — E¢ of the approximation errors after excluding the above
outliers. The results are tabulated in Table 2 below. Note that a positive @aibhe mean implies
that (74) performs better than (68). It is worthwhile to point out that anadiitfe rest 568 instances
excluding the outliers, there are only 33 whéig is larger thanEx. The largest value ofg — Ex
is 0.0020. Therefore, we conclude that for all thred), (74) is superior to (68), and the larger the
standard deviation in Table 2 is, the greater improvement the refinemest &ebnings.

We shall also plot the 12 groups of approximation errBgs Eg for a visual comparison. To
this end, we take out the instances for whigk is too large to have an appropriate range in the
vertical axes in the figures. Therefore, Figures 1 and 2 are notrfidbeiment of the improvement
of (74) over (68). Nevertheless, one sees that the improvementHtirbyghe refinement kern&
in these relatively well-behaved instances is still dramatic.
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n=2 n=4 n=8 n=16

5—01 0.0098 | 0.0139 | 0.0160 | 0.0108
" 1(0.0182)| (0.0335)| (0.0241)| (0.0135)
5— 0.3 0.0076 | 0.0141 | 0.0143 | 0.0188
"7 1 (0.0144)| (0.0245)| (0.0208)| (0.0259)
5— 05 0.0054 | 0.0127 | 0.0103 | 0.0091
(0.0121)| (0.0307)| (0.0186)| (0.0102)

Table 2: The mean and standard deviation (in parentheseg) ef £s. The outliers of instances
listed in Table 1 are not counted toward these calculations. If they werdattte im-
provement brought by the refinement ker@ealvould have been more dramatic.

—o— kernel K —S— kernel K
n=20=0.1 —— kernel G 0.08 —=— kernel G

0.03 T T T T T T (‘D T T T T

: M\D@o@aﬁ
0
0 10

Figure 1: Relative approximation errog, £ forn=2,4 andd=0.1,0.3,0.5. The outliers listed
in Table 1 are not plotted here as they would make the figure highly disiampel:

7.2 Experiment 2: Overfitting
The target function we consider in the second experiment is

ay

= | @ W kEN ~1,1 76
17250 bz %€ €Nn|, xe[-11], (76)

fo(X)

where the components of the vectarb, ¢,d € R" will be randomly sampled by the uniform distri-
bution from[1,4], [0, 3], [-2, 2], and[0, 2] respectively in the numerical simulations. The dimension
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N —6S— kernel K L. —c— kernel K
n=3,0=0.1 —x—kernel G n=16,6=0.1 —x— kernel G
T T T T T T T T - T T T ]

Figure 2: Relative approximation errof, Eg for n = 8,16 andd = 0.1,0.3,0.5. The outliers
listed in Table 1 are not plotted in the figure here.

nwill be chosen from{2,4,8,16}. We fixm:= 20 and shall sample the inputs j € Ny, randomly
by the uniform distribution from—1,1]. Similarly, the outputs; € R", j € Ny, will be generated
by (73) where the noise level is to be selected ff@rd, 0.3,0.5}.

In the first step, we substitute the sample dd#q, &;) : j € Nm} into the regularization network
(68) with the following kernel

Y
K(xy):= Sexp(— (x 2y)

>+T(1+xy)18, xy€[-1,1], (77)
whereS= A'/AandT = B'Bwith A, B beingn x n real-matrices whose components will be randomly
sampled by the uniform distribution froft, 2]. The target function (76) contains translations of the

Runge function
1

1+ 25¢2°
It is well-known that approximating the Runge function by high order patyiab interpolations
leads to overfitting. One sees by (70) that the regulation network (68) rhigmegarded as a
regularized interpolation. Note also that the order of the polynomial k&mr(&l7) is 18, which is
close to the numben = 20 of sampling points. Overfitting is hence expected. When this occurs,
we propose to reduce the order of the polynomial kernel by considering

xe[-1,1].

L(x,y) = Sexp<—(x_2y)2> +Tki <1k8> (xy)¥, xye[-1,1].
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0=01

0=03

0=05

n=2

(0.9000, 0.7843)

(2.9906,1.3509)

(1.8065, 0.8044),(1.1332, 0.3213)
(19.6416, 7.6578)

n=4

(8.2450,5.8717)
(1.6654,2.0466)
(18.9615,12.0513
(0.9536, 1.0998)

(1.1760,0.1354)
(0.4591, 0.7845

(4.6316,7.0497),(2.0850,1.3204)
(2.4657,1.1386)
(5.7967,0.6122)
(5.1196,2.6692)

n=8

(0.9102,1.3862)
(1.2233,0.9489)
(0.6711,0.2249)

(1.3517, 1.8339)
(0.8450,0.2605)
(0.3571, 0.7221)
(2.2403, 2.0108)
(5.6153,5.0954)
(2.0763,1.3718)
(2.2567,1.4024)

(0.6369, 0.3698),(0.6945,0.2878)
(2.2371, 2.4008)
(1.0738,0.4172)
(1.0561,0.3067)
(0.6791,1.0980)
(3.6689,3.9566)
(1.1238,0.2467)

n=16

(4.4905, 5.8886)
(7.9187, 4.3445)
(2.1619, 0.5061)
(17.5145, 13.7894

(26.0758,7.6125
(1.2255, 0.3181)
(0.5140, 0.1817)
(2.4289, 1.9022)

(73.0854,42.6904),(1.6070, 1.422
(3.2674, 2.2622),(2.1632, 1.7059)
(2.8067, 0.5791),(9.0120, 3.5443)
(0.6064, 0.3365),(4.0484 , 0.4220
(1.0064, 0.8287)

Table 3: Outliers of instances of relative approximation er@is, £, ).

By Corollary 22, #_ < Hy, namely,K is a refinement of.. We shall demonstrate by numerical
simulations that

m

l m
min = f(x;j)—&i|>+o| fl|2
min ,ZlH (xj) —&;ll 11154

(78)

outperforms (68) with the kernel (77). To this end, we shall conduetarical experiments similar

to those in the last subsection. ligtandf_ be the minimizer of (68) and (78), respectively. We shall

measure the performance by the relative square approximation ég@sdZ, , which are defined

in the same way as (75). For each pai(0f3), wheren € {2,4,8,16} andd € {0.1,0.3,0.5}, we

run 20 numerical simulations where the regularization parametars to be chosen so thak and

F, are minimized, respectively. As in the first experiment, we shall calculate tha ared standard

deviation ofE¢x andE_ in each group after taking out some outliers. We shall also plot the relative

errors for comparison. The results are shown below in the form of tablés$igures.
We have more outliers compared to the first experiment. Using fewer sammints @nd

approximating the Runge function by polynomials both contributes to this. Wenabshat for

the majority of these outlierg; is significantly smaller tharkx, showing improvement of learn-

ing scheme (78) over (68). For further comparison, we shall computeéam and variances of

Ex — ‘F and plot the relative approximation erratg andZ, for the rest of instances.

A positive value of the mean in Table 4 implies that (78) performs better thanl{@8observed
that kernelL brings improvement for all the choices ofe {2,4,8,16} andé € {0.1,0.3,0.5}.
We also remark that among all the 188 instances counted in Table 4, theyelw/@2 for which
i > Ex. The mean and standard deviation®f — Zx for these 32 instances are0264 and
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n=2 n=4 n=8 n=16

5—01 0.0289 | 0.0511 | 0.0173 | 0.0157
(0.0846)| (0.0587)| (0.0779)| (0.0146)

5— 0.3 0.0404 | 0.0661 | 0.0671 | 0.0657
(0.0922)| (0.0705)| (0.0929)| (0.0918)

5— 05 0.0629 | 0.0130 | 0.0484 | 0.0625
" 1(0.1098)| (0.0233)| (0.0758)| (0.0821)

Table 4: The mean and standard deviation (in parenthese®) ef £, . The outliers of instances
listed in Table 3 are not counted toward these calculations. If they werdattte im-
provement brought by the refinement ker@ealvould have been more dramatic.

—6S— kernel K
—<— kernel L

—c— kernel K
n=4,=0.1 — % Kernel L
0.4 T T T 0.4 T T T T T

T T
\\
031 \
\
0.2F ‘ \ /Q
// \‘ \
/ \ \@‘\‘J

031

0.2

0.1r 0.1r

Figure 3: Relative approximation erroix, £ forn=2,4 andd=0.1,0.3,0.5. The outliers listed
in Table 3 are not plotted here as they will make the figure highly dispropoltiona

0.0306. We conclude that compared to (68), (78) improves the perforntamsiderably in learn-
ing the function (76).

7.3 Experiment 3: Impact of Irrelevant Signals

Suggested by one of the anonymous reviewers, we shall examine the iofipaietevant signals
in the refinement kernel method. More specifically, we plan to apply theeretnt kernel method
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—&— kernel K
—>— kernel L

—6— kernel K
n=238,0=0.1 —— kernel L

n=16,6=0.1

0.2

0.151

\ i 0.05F

! . . . . . . . 7 .
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Figure 4: Relative approximation errof, %, for n= 8,16 andd = 0.1,0.3,0.5. The outliers
listed in Table 3 are not plotted here.

0=0.1 0=0.3 6=05

(0.0164, 0.0083
(0.2930, 0.0044
(0.0074, 0.0076

(0.1760,0.0074)
(0.0415, 0.0189
(0.1464, 0.0254)

(0.1550, 0.0049
(0.0837, 0.0302

Table 5: Outliers of instances of relative approximation er(ais, £g).

to the learning a vector-valued function whose components might be imeléN@avoid repetition
and save space, we shall consider the underfitting case only and limifaorsimensiomn = 4.
The instance investigated here is the functigof the form (71), where we shall set =a;, =c¢; =
¢, = 0. Thus, the first two components are irrelevant with the last two compoa€tigs We then
proceed with the same simulation procedures as those in experiment 1.

We obtain 3 groups of relative approximation erf@i, £z) corresponding to the noise level
0=0.1,0.3,0.5. As in experiment 1, we first list all the outliers by the three-sigma rule ifeTab
below.

We observe from Table 5 that under the impact of irrelevant signals, gtherabove outliers,
Ec is smaller tharEx except for only one instand®.0074 0.0076). In 4 instances of the outliers,
Ex is larger than 14%, while the refinement ker@edlways brings down the relative approximation
error to be less than 3%. In the overall 150 instances of relative ajppatian errors computed,
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5=01 ] 6=03 | 6=05
0.0077 | 0.0114 | 0.0117
(0.0131)| (0.0257)| (0.0205)

n=4

Table 6: The mean and standard deviation (in parenthese®) ef £s. The outliers of instances
listed in Table 5 are not counted toward these calculations. If they werdattte im-
provement brought by the refinement ker@alvould have been more dramatic.
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Figure 5: Relative approximation erraf , £g for n=4 andd = 0.1,0.3,0.5. The outliers listed
in Table 5 are not plotted here as they would make the figure highly dispropai

there are only 13 instances whefig is smaller tharEs. For all these instance% are of the same
magnitude level withEx, showing competitive performance. For further comparison, we compute
the mean and standard deviation of the differefige- ‘Eg after the above outliers are excluded.
The results are shown in Table 6 below.

Finally, we plot the 3 groups of relative approximation erréys E¢ for a visual comparison
after the outliers in Table 5 are excluded.

We conclude from Tables 5, 6 and Figure 5 that for the learning probtemidered in this
subsection, the refinement kernel method works well under the impacelzviant signals.
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8. Conclusion and Discussion

The refinement relationship between two operator-valued reproduemeglk provides a promising
way of updating kernels for multi-task machine learning when overfitting oemditthg occurs.
We establish several general characterizations of the refinementmskipo Particular attention
has been paid to the case when the kernels under investigation have ravedwal integral repre-
sentation, the most general form of operator-valued reproducimgeleerBy the characterizations,
we present concrete examples of refining the translation invarianttop@edued reproducing ker-
nels, Hessian of the scalar-valued Gaussian kernel, and finite Hilblenti@coperator-valued re-
producing kernels. Three numerical experiments confirm the potengfilnsss of the proposed
refinement method in updating kernels for multi-task learning. We plan to ineg¢stige effect of
the method by real application data in another occasion.

We discuss three issues that might deserve future research attentierfirsttone concerns
about the computational saving brought by the refinement kernel megwhose a minimizer in
an RKHS resulting from a particular learning algorithm is already computéduibos out to be
unsatisfactory due to underfitting. When the kernel corresponding tBK¢S is refined, instead
of running the algorithm from the scratch in the updated RKHS, we are evorglif the original
minimizer can be made use of in order to reduce computational costs. In thestaed case,
it has been shown that this can be done for the classical regularizatiworke (Xu and Zhang,
2009). For the vector-valued case, one would need to carefully hamelleomplexity brought
by the high dimension of the output space in order to establish a similar anallsées.second
question is whether a multi-resolution analysis for vector-valued RKHS eachieved by using
the refinement kernel method. Our initial thinking and impression is that theagipin Xu and
Zhang (2007) of using a bijective self-mapping of the input space caaried over without much
difficulty. Finally, we look at the requirement in the definition of refinement tha norm on the
RKHS of the refinement kernel should coincide with that in the RKHS of tigiral kernel. As
seen by the results in Section 5 and those in Xu and Zhang (2009), thig stwadition poses a
serious restriction in searching for refinement kernels. A remedy is tah&stwo norms to be
equivalent in the smaller space or to even just focus on the inclusion reldfitudy along this
direction has been done for scalar-valued kernels (Zhang and 28ad). It is shown there that
this relaxation brings more freedom and choices in choosing kernelsffoement. Vector-valued
counterparts are yet to be investigated. This approach also connegi®palar way of updating
kernels pointed out by one of the reviewers, which is to tune a parametexd@mple, the variance
in the Gaussian kernel, the degree in a polynomial kernel, etc.) in the kéttie@ugh this practice
seldom corresponds to a refinement, it does sometimes fall into the apmmaitered in Zhang
and Zhao (2011). Examples include the exponential kernels, the inmell§guadrics, the B-spline
kernels, and the polynomial kernels (Zhang and Zhao, 2011).
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