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Abstract

Recently, Yuan et al. (2010) conducted a comprehensive comparison on software for L1-regularized

classification. They concluded that a carefully designed coordinate descent implementation CDN is

the fastest among state-of-the-art solvers. In this paper, we point out that CDN is less competitive

on loss functions that are expensive to compute. In particular, CDN for logistic regression is much

slower than CDN for SVM because the logistic loss involves expensive exp/log operations.

In optimization, Newton methods are known to have fewer iterations although each iteration

costs more. Because solving the Newton sub-problem is independent of the loss calculation, this

type of methods may surpass CDN under some circumstances. In L1-regularized classification,

GLMNET by Friedman et al. is already a Newton-type method, but experiments in Yuan et al.

(2010) indicated that the existing GLMNET implementation may face difficulties for some large-

scale problems. In this paper, we propose an improved GLMNET to address some theoretical and

implementation issues. In particular, as a Newton-type method, GLMNET achieves fast local con-

vergence, but may fail to quickly obtain a useful solution. By a careful design to adjust the effort for

each iteration, our method is efficient for both loosely or strictly solving the optimization problem.

Experiments demonstrate that our improved GLMNET is more efficient than CDN for L1-regularized

logistic regression.

Keywords: L1 regularization, linear classification, optimization methods, logistic regression,

support vector machines

1. Introduction

Logistic regression and support vector machines (SVM) are popular classification methods in ma-

chine learning. Recently, L1-regularized logistic regression and SVM are widely used because they

can generate a sparse model. Given a set of instance-label pairs (xi,yi), i = 1, . . . , l, xi ∈ Rn, yi ∈
{−1,+1}, an L1-regularized classifier solves the following unconstrained optimization problem:

min
w

f (w), (1)

where

f (w)≡ ‖w‖1 +L(w),
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‖ · ‖1 denotes the 1-norm, and L(w) indicates training losses

L(w)≡C
l

∑
i=1

ξ(w;xi,yi). (2)

For logistic regression and L2-loss SVM, we have the following loss functions.

ξlog(w;x,y) = log(1+ e−ywT x) and

ξsvm(w;x,y) = max(0,1− ywT x)2.
(3)

The regularization term ‖w‖1 is used to avoid overfitting the training data. The user-defined param-

eter C > 0 is used to balance regularization and loss terms. Different from the 2-norm regularization,

the 1-norm regularization gives a sparse solution of (1).

It is difficult to solve (1) because ‖w‖1 is not differentiable. Many optimization approaches

have been proposed and an earlier comparison is by Schmidt et al. (2009). Recently, Yuan et al.

(2010) made a comprehensive comparison among state-of-the-art algorithms and software for L1-

regularized logistic regression and SVM. For L1-regularized logistic regression, they compared

CDN (Yuan et al., 2010), BBR (Genkin et al., 2007), SCD (Shalev-Shwartz and Tewari, 2009), CGD

(Tseng and Yun, 2009), IPM (Koh et al., 2007), BMRM (Teo et al., 2010), OWL-QN (Andrew and

Gao, 2007). Lassplore (Liu et al., 2009), TRON (Lin and Moré, 1999), and GLMNET (Friedman

et al., 2010). Other existing approaches include, for example, Shevade and Keerthi (2003), Lee

et al. (2006) and Shi et al. (2010). Yuan et al. (2010) conclude that carefully designed coordinate

descent (CD) methods perform better than others for large sparse data (e.g., document data). As a

result, their CD method (called CDN) was included in a popular package LIBLINEAR as the solver

of L1-regularized logistic regression.

However, we point out in Section 2 that CDN becomes inefficient if the loss function is expensive

to compute. An example is L1-regularized logistic regression, where exp/log operations are more

expensive than other basic operations. We investigate this problem in detail to show that CDN suffers

from frequent loss-function computation.

In Section 3, we show that for expensive loss functions, Newton-type methods are more suit-

able. A Newton method needs not compute the loss function when finding the Newton direction,

which is the most time consuming part. Based on this point, we attempt to obtain an appropriate

Newton-type method for L1-regularized logistic regression. We introduce an existing Newton-type

algorithm GLMNET (Friedman et al., 2010). In Yuan et al.’s comparison, GLMNET, although in-

ferior to CDN, performs reasonably well. However, GLMNET failed to train some large-scale data

used in their experiments. In Sections 4 and 5, we improve GLMNET in theoretical and practical

aspects, respectively. We call the improved method newGLMNET. Based on the modification in

Section 4, we establish the asymptotic convergence of newGLMNET. By a careful design in Section

5 to adjust the effort for each iteration, newGLMNET is efficient for both loosely and strictly solving

the optimization problem. Note that our discussion in Sections 2–4 is generic to all differentiable

loss functions, although the focus is on logistic regression.

Experiments in Section 6 show that newGLMNET is more efficient than CDN, which was consid-

ered the state of the art for L1-regularized logistic regression. In particular, newGLMNET is much

faster for dense problems. While logistic regression is an example of problems with expensive

loss functions, to check the situation of cheap loss functions, in Section 7, we extend newGLM-

NET to solve L2-loss SVM. Experiments show that, contrary to logistic regression, CDN is slightly
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better. Therefore, our investigation in this work fully demonstrate that expensive loss functions

need a different design of training algorithms from that of cheap loss functions. Section 8 con-

cludes this work. A supplementary file including additional analysis and experiments is available at

http://www.csie.ntu.edu.tw/˜cjlin/papers/l1_glmnet/supplement.pdf.

Because the proposed newGLMNET is faster for logistic regression, we replace the CDN solver

in the package LIBLINEAR with newGLMNET after version 1.8. This paper is an extension of an

earlier conference paper (Yuan et al., 2011). In addition to a thorough reorganization of the main

results, more analysis and theoretical results are included.

2. Coordinate Descent (CD) Method and Its Weakness

CD is a commonly-used optimization approach by iteratively solving one-variable sub-problems.

For L1-regularized classification, past works (e.g., Genkin et al., 2007; Yuan et al., 2010) have

shown that CD methods can quickly obtain a useful model. In this section, we first discuss a specific

CD method called CDN (Yuan et al., 2010) and follow by showing its weakness.

2.1 CDN

At the kth iteration, a CD method cyclically selects a dimension j ∈ {1,2, . . . ,n} and solves the

following one-variable sub-problem.

min
d

f (wk, j +de j)− f (wk, j), (4)

where

f (wk, j +de j)− f (wk, j) = ‖wk, j +de j‖1−‖w
k, j‖1 +L(wk, j +de j)−L(wk, j).

In (4), we define

wk, j ≡ [wk+1
1 , . . . ,wk+1

j−1,w
k
j, . . . ,w

k
n]

T (5)

and the indicator vector

e j ≡ [0, . . . ,0
︸ ︷︷ ︸

j−1

,1,0, . . . ,0]T .

Let wk = wk,1 = wk−1,n+1 at the beginning of each iteration. If d is an optimal solution of (4), then

wk, j is updated to wk, j+1 by

w
k, j+1
t =

{

w
k, j
t +d if t = j,

w
k, j
t otherwise.

For logistic regression, the one-variable sub-problem (4) does not have a closed-form solution, so

Yuan et al. (2010) approximately solve it using the second-order approximation of L(wk, j−de j)−
L(wk, j).

min
d

∇ jL(w
k, j)d +

1

2
∇2

j jL(w
k, j)d2 + |wk

j +d|− |wk
j|. (6)

For logistic regression,

∇L(w) =C
l

∑
i=1

(τ(yiw
T xi)−1)yixi and ∇2L(w) =CXT DX , (7)
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Algorithm 1 CDN framework in Yuan et al. (2010). Some implementation details are omitted.

1. Given w1.

2. For k = 1,2,3, . . . // iterations

• For j = 1,2,3, . . . ,n // n CD steps

– Compute the optimum d of sub-problem (6) by (9).

– Find the step size λ̄ by (10).

– wk, j+1← wk, j + λ̄de j.

where τ(s) is the derivative of the logistic loss function log(1+ es):

τ(s) =
1

1+ e−s
,

D ∈ Rl×l is a diagonal matrix with

Dii = τ(yiw
T xi)

(
1− τ(yiw

T xi)
)
, (8)

and

X ≡






xT
1
...

xT
l




 ∈ Rl×n.

It is well known that (6) has a simple closed-form solution

d =







−
∇ jL(w

k, j)+1

∇2
j jL(w

k, j)
if ∇ jL(w

k, j)+1≤ ∇2
j jL(w

k, j)w
k, j
j ,

−
∇ jL(w

k, j)−1

∇2
j jL(w

k, j)
if ∇ jL(w

k, j)−1≥ ∇2
j jL(w

k, j)w
k, j
j ,

−w
k, j
j otherwise.

(9)

Because (9) considers a Newton direction, Yuan et al. (2010) refer to this setting as CDN (CD

method using one-dimensional Newton directions). For convergence, Yuan et al. follow Tseng and

Yun (2009) to apply a line search procedure. The largest step size λ ∈ {βi | i = 0,1, . . .} is found

such that λd satisfies the following sufficient decrease condition.

f (wk, j +λde j)− f (wk, j)≤ σλ
(

∇ jL(w
k, j)d + |wk

j +d|− |wk
j|
)

, (10)

where 0 < β < 1 and 0 < σ < 1 are pre-specified parameters.

The basic structure of CDN is in Algorithm 1. To make CDN more efficient, Yuan et al. have

considered some implementation tricks, but details are omitted here.

We discuss the computational complexity of CDN. While solving (6) by (9) takes a constant

number of operations, calculating ∇ jL(w
k, j) and ∇2

j jL(w
k, j) for constructing the sub-problem (6)

is expensive. From (7), we need O(nl) operations for obtaining wT xi,∀i. A common trick to make

CD methods viable for classification problems is to store and maintain wT xi,∀i. Yuan et al. (2010)

store ewT xi instead and update the values by

ewT xi ← ewT xi · eλ̄dxi j ,∀i, (11)
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Data set exp/log Total

epsilon 64.25 (73.0%) 88.18

webspam 72.89 (66.6%) 109.39

Table 1: Timing analysis of the first CD cycle of CDN. Time is in seconds.

where λ̄ is the step size decided by the line search procedure and d is the optimal solution of (6). If

ewT xi ,∀i are available, the evaluation of ∇ jL(w
k, j) and ∇2

j jL(w
k, j) in (6) and f (wk, j +λde j) in the

sufficient decrease condition (10) takes O(l) operations. Therefore, with n CD steps in one iteration,

the complexity of each iteration is:

n · (1+ # steps of line search) ·O(l). (12)

For sparse data, in (11), only ewT xi with xi j 6= 0 needs to be updated. Then, n ·O(l) in Equation (12)

can be reduced to O(nnz), where nnz is the total number of non-zero elements in X (i.e., training

data). In Algorithm 1, one CD iteration contains n CD steps to update w1, . . . ,wn as a cycle. This

concept of CD cycles will be frequently used in our subsequent analysis and experiments.

2.2 Weakness of CDN

Although CDN is reported as the best method in the comparison by Yuan et al. (2010), for the same

data set, CDN’s training time for logistic regression is more than L2-loss SVM. Motivated from this

observation, we point out that CDN suffers from expensive exp/log operations of logistic regression.

In Table 1, we conduct an experiment on two data sets, epsilon and webspam.1 We check the

proportion of time for exp/log operations in the first CD cycle of CDN. The results clearly show that

exp/log operations dominate the training time. We present results of more data sets in Section 6 and

have similar observations.

Exp/log operations occur in two places (11) and (10), each of which costs O(l). From (12), we

can see that the complexity of exp/log operations is the same as that of all operations.2 Because each

exp/log is much more expensive than a basic operation like multiplication, a significant portion of

running time is spent on exp/log operations.

3. GLMNET: A Method that Less Frequently Computes the Loss Function

Based on the observation in Section 2, to reduce the number of exp/log operations, we should

consider methods which less frequently compute the loss function. In this section, we identify such

methods and present one of them named GLMNET.

3.1 Algorithms that may Have Less Loss Computation

For logistic regression, exp/log operations occur in computing the function, gradient, and Hessian

of the loss. To avoid frequent exp/log operations, we hope an optimization method could conduct

enough basic (e.g., multiplication or division) operations between two function, gradient, or Hessian

1. Details of the data sets are in Section 6.1.

2. For binary-valued data, only eλ̄dxi j becomes eλ̄d in (11), so O(nl) exp/log operations can be reduced to O(n). This

has been pointed out in Huang et al. (2010).
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evaluations. However, these basic operations should also be useful for minimizing the optimization

problem. We find that methods involving second-order approximation of f (w) may fulfill the re-

quirements. At the kth iteration, consider the following sub-problem to find a direction d:

min
d

qk(d), (13)

where

qk(d)≡ ∇L(wk)T d+
1

2
dT Hkd+‖wk +d‖1−‖w

k‖1,

and Hk is either ∇2L(wk) or its approximation. Then, w is updated by

wk+1← wk +d. (14)

Between two iterations, Hk and ∇ f (wk) are constants, so (13) is a quadratic program without in-

volving exp/log operations. Further, (13) is not a trivial sub-problem to solve.

If Hk = ∇2L(wk), we have a Newton-type method that usually enjoys a small number of itera-

tions. At each iteration, obtaining ∇ f (wk) and ∇2 f (wk) via (8) requires at least O(nl) operations

because of calculating ∑l
i=1(τ(yiw

T x)−1)yixi. However, the number of exp/log operations is only

O(l). With the cost of solving the sub-problem (13), the total cost of one iteration is at least O(nl),
but only a small portion, O(l), is for exp/log computation. This situation is much better than CDN,

which requires O(nl) exp/log operations in O(nl) overall operations. An existing Newton-type

method for L1-regularized classification is GLMNET by Friedman et al. (2010). We will discuss its

details in Section 3.2.3

Note that CDN also applies second-order approximation for solving the one-variable sub-problem

(4). However, once a variable is changed in CDN, the gradient and Hessian become different. In

contrast, for GLMNET, gradient and Hessian remain the same while (13) is being solved. The reason

is that GLMNET applies second-order approximation on the whole objective function f (w). Such

differences explain why GLMNET needs less exp/log computation than CDN.

If we use an approximate Hessian as Hk, the analysis of O(l) exp/log operations versus at

least O(nl) total operations per iteration still holds.4 However, because minimizing qk(d) in (13)

becomes easier, exp/log operations may play a more important role in the whole procedure. In the

extreme situation, Hk is a constant diagonal matrix, so we have a gradient descent method. Existing

approaches of using such Hk include ISTA (Daubechies et al., 2004), FISTA (Beck and Teboulle,

2009), and others.

For L2-regularized logistic regression, Chang et al. (2008) have pointed out that Newton meth-

ods less frequently conduct exp/log operations than CD methods, but they did not conduct detailed

analysis and comparisons.

3.2 GLMNET

We pointed out in Section 3.1 that GLMNET is an existing Newton-type method for L1-regularized

classification. At each iteration, it solves the sub-problem (13) with Hk = ∇2L(wk) and updates

3. The GLMNET code by Friedman et al. (2010) supports using an approximate Hessian matrix, but here we consider

only the case of using the exact Hessian matrix.

4. We assume that obtaining an approximation of ∇2 f (wk) requires no more than O(l) exp/log operations.
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Algorithm 2 Basic framework of GLMNET (Friedman et al., 2010) for L1-regularized logistic re-

gression.

1. Given w1.

2. For k = 1,2,3, . . .
• Compute ∇L(wk) and ∇2L(wk) by (7).

• Obtain dk by solving sub-problem (13) by CD with certain stopping condition.

• wk+1 = wk +dk.

w by (14). Although many optimization methods can be applied to solve the sub-problem (13),

Friedman et al. (2010) consider a cyclic coordinate descent method similar to CDN in Section 2.1.

Indeed, it is simpler than CDN because (13) is only a quadratic problem. We use dp to denote the

CD iterates (cycles) for solving (13). Each CD cycle is now considered as an inner iteration of

GLMNET. Sequentially, dp’s values are updated by minimizing the following one-variable function.

qk(d
p, j + ze j)−qk(d

p, j)

= |wk
j +d

p
j + z|− |wk

j +d
p
j |+∇ jq̄k(d

p, j)z+
1

2
∇2

j jq̄k(d
p, j)z2, (15)

where the definition of dp, j is similar to wk, j of CDN in (5)

dp, j ≡ [dp−1
1 ,dp−1

2 , . . . ,dp−1
j−1 ,d

p
j , . . . ,d

p
n ]

T ,

and dp = dp,1 = dp−1,n+1. Further,

q̄k(d)≡ ∇L(wk)T d+
1

2
(d)T ∇2L(wk)d

represents the smooth terms of qk(d) and plays a similar role to L(w) for (1). We have

∇ jq̄k(d
p, j) = ∇ jL(w

k)+(∇2L(wk)dp, j) j and

∇2
j jq̄k(d

p, j) = ∇2
j jL(w

k).
(16)

Equation (15) is in the same form as (6), so it can be easily solved by (9). Because the one-variable

function is exactly minimized, line search is not required in the CD procedure. The basic structure

of GLMNET is in Algorithm 2.

Because an iterative procedure (CD method) is used to solve the sub-problem (13), GLMNET

contains two levels of iterations. A suitable stopping condition for the inner level is very important.

In Section 5.2, we will discuss GLMNET’s stopping conditions and make some improvements.

We analyze GLMNET’s complexity to confirm that it less frequently conducts exp/log opera-

tions. At each CD step, most operations are spent on calculating ∇ jq̄k(d
p, j) and ∇2

j jq̄k(d
p, j) in

(16). Note that ∇2
j jq̄k(d

p, j) = ∇2
j jL(w

k),∀ j can be pre-calculated before the CD procedure. For

∇ jq̄k(d
p, j), the first term ∇ jL(w

k) can also be pre-calculated. With (7), the second term is

(∇2L(wk)dp, j) j =C
n

∑
t=1

l

∑
i=1

XT
ji DiiXitd

p, j
t =C

l

∑
i=1

XT
ji Dii(Xdp, j)i.
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One cycle of n CD steps CDN GLMNET

Total # of operations dense data O(nl) O(nl)
sparse data O(nnz) O(nnz)

# exp/log operations dense data O(nl) ≤ O(l)
sparse data O(nnz) ≤ O(l)

Table 2: A comparison between CDN and GLMNET on the number of exp/log operations in one CD

cycle. We assume that in (12), the number of line search steps of CDN is small (e.g., one

or two). Note that in GLMNET, exp/log operations are needed in the beginning/end of an

outer iteration. That is, they are conducted once every several CD cycles. We make each

CD cycle to share the cost in this table even though a CD cycle in GLMNET involves no

exp/log operations.

If Xdp, j (i.e., xT
i dp, j,∀i) is maintained and updated by

(Xdp, j+1)i← (Xdp, j)i +Xi jz, ∀i, (17)

then calculating ∇ jq̄k(d) costs O(l) operations.5 Therefore, the CD method for (13) requires

O(nl) operations for one inner iteration (cycle) of n CD steps. (18)

The complexity of GLMNET is thus

#outer iters× (O(nl)+#inner iters×O(nl)),

where the first O(nl) is for obtaining items such as ∇ f (wk) before solving (13). We then compare

the number of exp/log operations in CDN and GLMNET. Because they both use CD, we check in

Table 2 that relative to the total number of operations of one CD cycle, how many exp/log operations

are needed. Clearly, CDN’s O(nl) exp/log operations are much more than GLMNET’s O(l). The

difference becomes smaller for sparse data because CDN’s O(nl) is reduced by O(nnz). From this

analysis, we expect that CDN suffers from many slow exp/log operations if data are dense and n is

not small. This result will be clearly observed in Section 6.

Although our analysis indicates that GLMNET is superior to CDN in terms of the number of

exp/log operations, experiments in Yuan et al. (2010) show that overall GLMNET is slower. The

final local convergence of GLMNET is fast, but it often spends too much time in early iterations.

Therefore, contrary to CDN, GLMNET does not quickly obtain a useful model. Further, GLMNET

failed to solve two large problems in the experiment of Yuan et al. (2010) and its theoretical conver-

gence is not guaranteed. In the next two sections, we will propose an improved GLMNET to perform

faster than CDN for logistic regression.

4. newGLMNET: An Improved GLMNET

As mentioned in Section 3.2, GLMNET lacks theoretical convergence properties. In this section,

we modify GLMNET to be a special case of a class of methods by Tseng and Yun (2009), so the

asymptotic convergence immediately follows. We refer to the improved algorithm as newGLMNET.

5. This is like how ewT xi , ∀i are handled in Section 2.1.
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The framework by Tseng and Yun (2009) for L1-regularized problems is a generalized coordi-

nate descent method. At each iteration, it selects some variables for update based on certain criteria.

An extreme situation is to update one variable at a time, so CDN in Section 2 is a special case. The

other extreme is to update all variables at an iteration. In this situation, Tseng and Yun’s method

considers a quadratic approximation the same as (13). However, for the convergence, they required

Hk in (13) to be positive definite. From (7), if X’s columns are independent, then ∇2L(wk) is posi-

tive definite. To handle the situation that ∇2L(wk) is only positive semi-definite, we slightly enlarge

the diagonal elements by defining

Hk ≡ ∇2L(wk)+νI , (19)

where ν > 0 is a small value and I ∈ Rn×n is an identity matrix.

In addition, for convergence Tseng and Yun (2009) require that line search is conducted. After

obtaining an optimal solution d of (13), the largest step size λ ∈ {βi | i = 0,1, . . .} is found such that

λd satisfies the following sufficient decrease condition.

f (wk +λd)− f (wk) (20)

≤ σλ
(
∇L(wk)T d+ γdT Hkd+‖wk +d‖1−‖w

k‖1

)
,

where 0 < β < 1, 0 < σ < 1, and 0 ≤ γ < 1. GLMNET does not conduct line search, so function

values of its iterations may not be decreasing. In newGLMNET we use (20) with γ = 0.

If the sub-problem (13) is exactly solved, we prove that because all conditions needed in Tseng

and Yun (2009, Theorems 1(e) and 3) are satisfied, line search is guaranteed to stop after a finite

number of step sizes. Further, for asymptotic convergence, we have that any limit point of {wk}
generated by newGLMNET is an optimal solution of (1); see the proof in Appendix A. For local

convergence rate, we prove in Appendix B that if the loss function L(w) is strictly convex,6 then the

objective function value converges at least linearly.

If we know that L(w) is strictly convex beforehand, we can directly use Hk = ∇2L(wk) without

adding νI . The same explanation in Appendix A implies both the finite termination of line search

and the asymptotic convergence. In this situation, we can obtain a better local quadratic conver-

gence. See details in the supplementary document, in which we modify the proof in Hsieh et al.

(2011) for L1-regularized Gaussian Markov random field.

4.1 Cost of Line Search

GLMNET does not conduct line search because of the concern on its cost. Interestingly, by the

following analysis, we show that line search in newGLMNET introduces very little extra cost. For

each step size λ tried in line search, we must calculate f (wk+λd). A direct implementation requires

O(nl) operations to obtain (wk+λd)T xi, ∀i= 1, . . . , l. If e(w
k)T xi ,∀i are available, we need only O(l)

by using Xd maintained by (17).

e(w
k+λd)T xi = e(w

k)T xi · eλ(Xd)i . (21)

Thus, the cost for finding f (wk +λd) is reduced to O(n+ l), where O(n) comes from calculating

‖wk +λd‖1. After the last λ is obtained in line search, we have e(w
k+1)T xi = e(w

k+λd)T xi ,∀i for the

next iteration. If only a small number of λ’s are tried, then the O(n+ l) cost is negligible because

the whole iteration costs at least O(nl) from earlier discussion.

6. For situations such as n > l, L(wk) is not strictly convex.
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Discussion in Section 3 indicated that in every O(nl) operations, GLMNET needs a much smaller

amount of exp/log operations than CDN. We will show that a similar situation occurs for the line-

search operations of newGLMNET and CDN. Note that line search is used in different places of

the two methods. For CDN, at each CD step for updating one variable, line search is needed. In

contrast, in newGLMNET, we conduct line search only in the end of an outer iteration. Following

the discussion in Section 2.1 and this section, for each step size λ tried in line search of CDN and

newGLMNET, the cost is O(l) and O(n+ l), respectively. If we distribute the line search cost of

newGLMNET to its inner CD cycles, we have that, for the same λ in one CD cycle,7 CDN costs

O(nl) and newGLMNET costs no more than O(n+ l). This difference is similar to that of exp/log

operations discussed in Section 3.

Because of CDN’s high cost on line search, Yuan et al. (2010) develop the following trick. By

deriving an upper-bound function δ(λ) such that

f (wk, j +λde j)− f (wk, j)≤ δ(λ), ∀λ≥ 0, (22)

they check first if

δ(λ)≤ σλ(∇ jL(w
k, j)d + |wk

j +d|− |wk
j|). (23)

This trick, used for each step size λ, is particularly useful if the above inequality holds at λ = 1. If

δ(λ) can be calculated in O(1), the O(l) cost for line search at a CD step is significantly reduced to

O(1). More details about this upper-bound function can be found in Fan et al. (2008, Appendix G).

In Section 6.2, we will conduct experiments to investigate the line search cost of CDN and

newGLMNET.

5. Implementation Issues of newGLMNET

Besides theoretical issues discussed in Section 4, in this section, we discuss some implementation

techniques to make newGLMNET an efficient method in practice.

5.1 Random Permutation of One-variable Sub-problems

To solve the sub-problem (13), a conventional CD method sequentially updates variables d1,d2, . . . ,
dn. Many past works (e.g., Chang et al., 2008; Hsieh et al., 2008; Yuan et al., 2010) have experi-

mentally indicated that using a random order leads to faster convergence. We adapt this strategy in

the CD procedure of newGLMNET to solve sub-problem (13).

5.2 An Adaptive Inner Stopping Condition

GLMNET contains two levels of iterations. An “outer iteration” corresponds to the process from

wk to wk+1, while the “inner” level consists of CD iterations for solving (13). For an algorithm

involving two levels of iterations, the stopping condition of the inner iterations must be carefully

designed. A strict inner stopping condition may cause the algorithm to take a prohibitive amount of

time at the first outer iteration. Alternatively, a loose inner condition leads to an inaccurate solution

of (13) and possibly lengthy outer iterations. GLMNET terminates the CD procedure by checking if

d is still significantly changed. That is, in the pth CD cycle to update d
p
1 , . . . ,d

p
n , the corresponding

7. For simplicity, we assume that this λ is tried in all n CD steps of the cycle.
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changes z1, . . . ,zn satisfy

max
j
(∇2

j jL(w
k) · z2

j)≤ εin, (24)

where εin is the inner stopping tolerance. For the outer stopping condition, similarly, GLMNET

checks if w is still significantly changed. Let wk+1 = wk + dk. GLMNET stops if the following

condition holds:

max
j
(∇2

j jL(w
k+1) · (dk

j )
2)≤ εout, (25)

where εout is the outer stopping tolerance. GLMNET uses the same value for inner and outer tol-

erances; that is, εin = εout. We find that if users specify a small εout, a huge amount of time may

be needed for the first outer iteration. This observation indicates that the inner tolerance must be

carefully decided.

For newGLMNET, we propose an adaptive inner stopping condition. The design principle is

that in the early stage, newGLMNET should behave like CDN to quickly obtain a reasonable model,

while in the final stage, newGLMNET should achieve fast local convergence by using Newton-like

directions. In the pth inner iteration p, we assume that dp,1, . . . ,dp,n are sequentially generated and

from dp, j to dp, j+1, the jth element is updated. We propose the following inner stopping condition.

n

∑
j=1

|∇S
jqk(d

p, j)| ≤ εin, (26)

where ∇Sq(d) is the minimum-norm subgradient at d.

∇S
jq(d)≡







∇ jq̄(d)+1 if w j +d j > 0,

∇ jq̄(d)−1 if w j +d j < 0,

sgn(∇ jq̄(d))max(|∇ jq̄(d)|−1,0) if w j +d j = 0.

From standard convex analysis,

∇qS(d) = 0 if and only if d is optimal for (13). (27)

Note that we do not need to calculate the whole ∇Sqk(d
p, j). Instead, ∇S

jqk(d
p, j) is easily available

via ∇ jq̄k(d
p, j) in (16).

If at one outer iteration, the condition (26) holds after only one cycle of n CD steps, then we

reduce εin by

εin← εin/4. (28)

That is, the program automatically adjusts εin if it finds that too few CD steps are conducted for

minimizing qk(d). Therefore, we can choose a large εin in the beginning.

We use an outer stopping condition similar to (26).

n

∑
j=1

|∇S
j f (wk)| ≤ εout. (29)

Like (27), ∇S f (w) = 0 is an optimality condition for (1). In (29), we choose 1-norm instead of

∞-norm because 1-norm is not determined by extreme values in ∇S
j f (wk), j = 1, . . . ,n. In (7),

∇ jL(w) can be seen as a function of xi j,∀i. It is expected that |∇S
j f (w)| is relatively large if the jth
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column of X has a larger norm than other columns. If using ∞-norm, the stopping condition may be

dominated by a large |∇S
j f (w)|; therefore, under a given εout, the total number of iterations may be

quite different for two feature-wisely norm-varying X’s. In contrast, the sum of violations should

be less sensitive to the different numeric ranges of X’s columns.

5.3 A Two-level Shrinking Scheme

Shrinking is a common technique to heuristically remove some variables during the optimization

procedure.8 That is, some w’s elements are conjectured to be already optimal, so a smaller opti-

mization problem is solved. GLMNET applies this technique on the sub-problem (13) by selecting a

working set J ⊂ {1, . . . ,n}. Sub-problem (13) becomes

min
d

qk(d) subject to d j = 0, ∀ j /∈ J. (30)

More precisely, at the kth iteration, GLMNET conducts the following loop to sequentially solve some

smaller sub-problems.

While (TRUE)

• Conduct one cycle of n CD steps. Let J include indices of d’s elements that still need to be

changed.

• If (24) holds, then break.

• Use CD to solve a sub-problem with the working set J until (24) holds.

The way to choose J in the above procedure is by checking if z = 0 is optimal for minz qk(d+ze j)−
qk(d).

For newGLMNET, we propose a heuristic shrinking scheme following its two-level structure: the

outer level removes some w’s elements so that a smaller sub-problem (13) similar to (30) is solved;

the inner level is applied to remove elements in d so that (13) becomes an even smaller sub-problem.

For each level, our setting is related to the shrinking implementation of CDN; see Yuan et al. (2010,

Section 4.1.2).

In the beginning of each outer iteration, we remove w j if

wk
j = 0 and −1+

Mout

l
< ∇ jL(w

k)< 1−
Mout

l
, (31)

where

Mout ≡max
(∣
∣∇S

1 f (wk−1)
∣
∣ , . . . ,

∣
∣∇S

n f (wk−1)
∣
∣

)

.

The conditions in (31) come from the optimality condition that an optimal solution w∗ of (1) satisfies

−1 < ∇ jL(w
∗)< 1 implies w∗j = 0.

Therefore, we conjecture that variables satisfying (31) are already optimal. Mout in (31) is used to

adjust the shrinking scheme from a conservative setting in the beginning to an aggressive setting in

the end. Our shrinking implementation differs from GLMNET’s in several aspects. First, by using

∇ f (wk) that is available in the beginning of the kth iteration, we do not conduct a special cycle of n

CD steps in GLMNET for selecting variables. Note that ∇S f (wk) can be easily obtained via ∇L(wk)

8. Shrinking is widely used in solving SVM optimization problems; see, for example, Joachims (1998) and Chang and

Lin (2011).
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Algorithm 3 Overall procedure of newGLMNET

• Given w1, εin, and εout. Choose a small positive number ν. Choose β ∈ (0,1), γ ∈ [0,1), and

σ ∈ (0,1).
• Let Mout← ∞.

• For k = 1,2,3, . . . // outer iterations

1. Let J←{1, . . . ,n}, M← 0, and M̄← 0.

2. For j = 1, . . . ,n
2.1. Calculate Hk

j j, ∇ jL(w
k) and ∇S

j f (wk).

2.2. If wk
j = 0 and |∇ jL(w

k)|< 1−Mout/l // outer-level shrinking

J← J\{ j}.
Else

M←max(M, |∇S
j f (wk)|) and M̄← M̄+ |∇S

j f (wk)|.
3. If M̄ ≤ εout

return wk.

4. Let Mout←M.

5. Get d and update εin by solving sub-problem (13) by Algorithm 4.

6. Compute λ = max{1,β,β2, . . .} such that λd satisfies (20).

7. wk+1 = wk +λd.

and is used for obtaining Mout of the next iteration.9 Second, (31) shrinks only zero elements and

uses an interval slightly smaller than (−1,1). Thus, newGLMNET is less aggressive than GLMNET

in removing variables.

For the inner shrinking scheme of newGLMNET, assume the previous CD cycle contains points

dp−1,1,. . . , dp−1,|Jp|, where elements in the set Jp = { j1, . . . , j|Jp|} were updated. Because Jp corre-

sponds to the remained variables, at the current cycle, sequentially j ∈ Jp is checked. An element j

is removed if

wk
j +d

p,t
j = 0 and −1+

Min

l
< ∇ jq̄k(d

p,t)< 1−
Min

l
, (32)

where t is the iteration index of the current cycle and

Min ≡max
(∣
∣∇S

j1
qk(d

p−1,1)
∣
∣ , . . . ,

∣
∣
∣∇S

j|Jp|
qk(d

p−1,|Jp|)
∣
∣
∣

)

.

If (32) does not hold, element j remains.10 After the set Jp has been processed, a smaller subset

Jp+1 is obtained and we move to the next CD cycle.11

The overall procedure of newGLMNET with two-level shrinking is shown in Algorithms 3 and

4. For theoretical properties, if the subproblem (13) is exactly solved, for any given outer stopping

tolerance, newGLMNET terminates in finite iterations. Further, any limit point of {wk} is an optimal

solution. More details are in the supplementary document.

5.4 The Overall Procedure of newGLMNET

We use Algorithms 3 to illustrate the overall procedure of newGLMNET. Steps 1–4 are for outer-

level shrinking and the stopping condition. In particular, in Step 2.2, M is used to calculate Mout

9. If k = 1, ∇S f (wk−1) is not available. We set Mout = ∞, so no variables are shrunk at the first outer iteration.

10. Note that in (32), t = 1, . . . , |Jp+1| instead of 1, . . . , |Jp|.

11. Similar to the way to initialize Mout, for the first CD cycle, we set Min = ∞.
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Algorithm 4 Inner iterations of newGLMNET with shrinking

• Given working set J, initial solution d, inner stopping condition εin, and a small positive

number ν from the outer problem.

• Let Min← ∞, T ← J, and d← 0.

• For p = 1,2,3, . . . ,1000 // inner iterations

1. Let m← 0 and m̄← 0.

2. For j ∈ T

– Let ∇2
j jq̄k(d) = Hk

j j. Calculate ∇ jq̄k(d) and ∇S
jqk(d).

– If wk
j +d j = 0 and |∇ jq̄k(d)|< 1−Min/l // inner-level shrinking

T ← T\{ j}.
Else

m←max(m, |∇S
jqk(d)|) and m̄← m̄+ |∇S

jqk(d)|.
d j← d j + argminz qk(d+ze j)−qk(d).

3. If m̄≤ εin

– If T = J // inner stopping

break.

Else // active set reactivation

T ← J and Min← ∞.

Else

– Min← m.

• If p = 1, then εin← εin/4.

in (31) for the outer-level shrinking, while M̄ is for calculating ∑n
j=1 |∇

S
j f (w)| in the outer stopping

condition (29). Step 5 obtains the Newton direction by a CD method, where details are shown in

Algorithm 4. Step 6 then conducts line search.

In Algorithm 4, besides the stopping condition (26), we set 1,000 as the maximal number of CD

cycles. Some ill-conditioned sub-problem (13) may take lengthy inner CD iterations to satisfy (26),

so a maximal number must be set. In the beginning of Algorithm 4, the working set J is obtained

from outer-level shrinking. Subsequently, in the inner CD iterations, J is further shrunk; see the

set T in Algorithm 4. Because each CD cycle goes through only elements in T , the inner stopping

condition (26) is also calculated using T . To ensure that sub-problem (13) with the working set J

has been accurately solved, if (26) holds on T , we reset T to J; see Step 3 of Algorithm 4. That

is, the inner iterations terminate only if the condition (26) holds on J or the maximal number of

iterations is reached. This way of resetting T to J has been used in LIBSVM (Chang and Lin, 2011,

Section 5.1).

In (28), we reduce the inner stopping tolerance εin if the stopping condition (26) holds after one

CD cycle. This is implemented in the last step of Algorithm 4.

6. Experiments on L1-regularized Logistic Regression

We investigate the performance of CDN, GLMNET, and newGLMNET on L1-regularized logistic

regression. All these methods can be easily extended to solve logistic regression with a bias term b:

min
w,b

‖w‖1 +C
l

∑
i=1

log(1+ e−yi(w
T xi+b)). (33)
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Data set
#data

#features
#nnz in #nnz per Sparsity

train test training instance C (%)

KDD2010-b 19,264,097 748,401 29,890,095 566,345,888 29 0.5 97.4

rcv1 541,920 135,479 47,236 39,625,144 73 4 76.9

yahoo-japan 140,963 35,240 832,026 18,738,315 133 4 99.0

yahoo-korea 368,444 92,110 3,052,939 125,190,807 340 4 99.1

news20 15,997 3,999 1,355,191 7,281,110 455 64 99.1

epsilon 400,000 100,000 2,000 800,000,000 2,000 0.5 44.9

webspam 280,000 70,000 16,609,143 1,043,724,776 3,727 64 99.9

gisette 6,000 1,000 5,000 29,729,997 4,955 0.25 72.9

Table 3: Data statistics, the parameter C selected after cross validation, and the model spar-

sity (%). Data sets are sorted by the number of nonzero elements per instance in the

training data. We conduct five-fold cross validation on the training set to select C in
{

2k | k =−4,−3, . . . ,6
}

. The model sparsity is the percentage of the number of zeros

in the final model w. #nnz denotes the number of nonzero elements.

Because the GLMNET implementation solves (33) instead of (1), in our comparison, (33) is used.

We do not consider other methods because in Yuan et al. (2010), CDN is shown to be the best for

sparse data.

Programs used in this paper are available at

http://www.csie.ntu.edu.tw/˜cjlin/liblinear/exp.html.

6.1 Data Sets and Experimental Settings

We use eight data sets in our experiments. Five of them (news20, rcv1, yahoo-japan, yahoo-korea,

and webspam) are document data sets, where news20 is a collection of news documents, rcv1 is an

archive of manually categorized news stories from Reuters, yahoo-japan and yahoo-korea are doc-

ument data from Yahoo!, and webspam includes web pages represented in trigram. The other three

data sets come from different learning problems: gisette is a handwriting digit recognition problem

from NIPS 2003 feature selection challenge; epsilon is an artificial data set for Pascal large scale

learning challenge in 2008; KDD2010-b includes student performance prediction data for a tutoring

system and is used for the data mining competition KDD Cup 2010. Each instance in document data

sets is normalized to a unit vector. For non-document data, features of gisette are linearly scaled

to the [−1,1] interval. Features of epsilon are scaled to N(0,1) and each instance is normalized to

a unit vector. Except yahoo-japan and yahoo-korea, all data sets and their detailed information are

publicly available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.

We prepare training and testing sets for each problem. For gisette and KDD2010-b, we use their

original training and test sets. For others, we randomly split data to one fifth for testing and the

remaining for training.

We choose the parameter C in (33) by five-fold cross validation on the training set. All methods

then solve (33) with the best C to obtain the model for prediction. Table 3 shows the statistics and

the best C of all data sets. We can clearly see that two data sets (epsilon and gisette) are very dense,

while others are sparse.
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Next, we describe software information and parameter settings in our experiments.

• CDN: this coordinate descent method is described in Section 2.1. In the line search procedure, we

use σ = 0.01 and β = 0.5. The C/C++ implementation is included in LIBLINEAR (version 1.7),

which is available at http://www.csie.ntu.edu.tw/˜cjlin/liblinear/oldfiles; see the

implementation document (Fan et al., 2008) for more details.

• GLMNET: this method is described in Section 3.2. GLMNET is implemented in Fortran with an R

interface. The source code (version 1.5.3) is available at http://cran.r-project.org/web/

packages/glmnet/. GLMNET uses the regularization parameter λ = 1/(Cl) instead of C. We

ensure that the equivalent settings have been made in our experiments.

• newGLMNET: this improved GLMNET is described in Sections 4 and 5. For the positive definite-

ness of Hk, we set ν = 10−12 in (19). To check the sufficient decrease condition (20), we use

β = 0.5, γ = 0, and σ = 0.01. We choose the initial εin = ‖∇
S f (w1)‖1. The C/C++ implementa-

tion is included in LIBLINEAR (version 1.8).

GLMNET offers an option to find a solution path {wC1 , . . . , wC∗} of an increasing parameter

sequence {C1, . . . ,C∗}. It applies a warm start technique so that the optimal solution of the previous

Ci−1 is used as the initial point for the current Ci. The number of outer iterations should be small

because of using a more accurate initial point. GLMNET authors suggest that finding a solution path

may be faster than solving a single optimization problem under a fixed C (Friedman et al., 2010,

Section 2.5). We refer to this approach as GLMNETpath and include it for comparison. By their

default setting, we consider a parameter sequence of length 100 starting from the smallest C1 such

that wC1 = 0. Given our desired parameter C∗, a geometric sequence is generated by a fixed ratio

between successive C values.

We set the initial w1 = 0 for all methods. All experiments are conducted on a 64-bit ma-

chine with Intel Xeon 2.0GHz CPU (E5504), 4MB cache, and 32GB main memory. We use GNU

C/C++/Fortran compilers and the optimization flag is properly set.

6.2 Running Time Comparison

We begin with checking the change of function values along the running time in Figure 1. Given a

stopping tolerance for running a solver, we can obtain a pair of (training time, function value). Using

a decreasing sequence of the stopping tolerances, we obtain several pairs and then draw a curve.12

The x-axis in Figure 1 is the log-scaled training time and the y-axis is the relative difference to the

optimal function value:
f (w)− f ∗

f ∗
,

where w is the solution under the specified tolerance and f ∗ is the optimal function value. Because

f ∗ is not available, we obtain an approximation by running newGLMNET with a small stopping

tolerance

εout = ε ·
min(#pos,#neg)

l
· ‖∇S f (w1)‖1, (34)

12. For GLMNET and newGLMNET, the tolerance means the outer tolerance εout in (25). Ranges of εout values used

for GLMNET and newGLMNET differ because their stopping conditions are not the same. Note that for GLMNET,

εout is not directly specified by users; instead, it is the product between a user-specified value and a constant. For

GLMNETpath, under any given εout, a sequence of problems (1) is solved.

2014



AN IMPROVED GLMNET FOR L1-REGULARIZED LOGISTIC REGRESSION

10
2

10
3

10
4

10
5

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Log-scaled Training Time (sec)

R
el

at
iv

e 
Fu

nc
tio

n 
V

al
ue

 D
iff

er
en

ce

 

 

CDN
GLMNET
newGLMNET
GLMNETpath

(a) KDD2010-b
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(b) rcv1
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(c) yahoo-japan
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(d) yahoo-korea
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(e) news20
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(f) epsilon
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(g) webspam
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(h) gisette

Figure 1: L1-regularized logistic regression: relative difference to the optimal function value versus

training time. Both x-axis and y-axis are log-scaled. GLMNET and GLMNETpath failed

to generate some results because of either memory problems or lengthy running time.
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(a) KDD2010-b
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(b) rcv1
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(c) yahoo-japan
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(d) yahoo-korea
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Figure 2: L1-regularized logistic regression: testing accuracy versus training time (log-scaled).
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where ε = 10−8, and #pos and #neg indicate the numbers of positive and negative labels in the

training set, respectively. The horizontal dotted line in Figure 1 indicates the relative function

difference by running CDN using LIBLINEAR’s default stopping tolerance with ε = 0.01 in (34).

The point where a method’s curve passes this horizontal line roughly indicates the time needed to

obtain an accurate enough solution.

From Figure 1, if the optimization problem is loosely solved using a large εout, CDN is faster

than newGLMNET and GLMNET. This result is reasonable because CDN uses a greedy setting to

sequentially update variables. In contrast, in each outer iteration, newGLMNET uses only a fixed Hk.

If using a smaller εout, newGLMNET surpasses CDN and achieves fast local convergence. For dense

data (epsilon and gisette), newGLMNET is always better than CDN. Take epsilon as an example. In

Figure 1(f), to reach the horizontal dotted line, newGLMNET is ten times faster than CDN. This huge

difference is expected following the analysis on the number of exp/log operations in Sections 2 and

3.

From results above the horizontal lines in Figure 1, we see that newGLMNET is faster than

GLMNET in the early stage. Recall that GLMNET sets εin = εout, while newGLMNET uses an adaptive

setting to adjust εin. Because a large εin is considered in the beginning, newGLMNET can compete

with CDN in the early stage by loosely solving (13). We use an example to further illustrate the

importance to properly choose εin. By running GLMNET with the default εout = 10−6 on news20

and rcv1, the training time is 20.10 and 758.82 seconds, respectively. The first outer iteration already

takes 6.99 seconds on news20 and 296.87 on rcv1. A quick fix is to enlarge the initial εin, but the

local convergence in the later stage may be slow. A better inner stopping condition should be

adaptive like ours so that the sub-problem (13) can be solved properly at each outer iteration.

In Figure 1, GLMNET and GLMNETpath failed to generate some results because of either mem-

ory problems or lengthy running time. This indicates that a careful implementation is very important

for large-scale problems. We also observe that GLMNETpath is not faster than GLMNET. Another

drawback of GLMNETpath is that it is hard to quickly obtain an approximate solution. That is,

regardless of εout specified, a sequence of problems (1) is always solved.

We further check the relationship between the testing accuracy and the training time. The com-

parison result, shown in Figure 2, is similar to that in Figure 1.

In summary, because of the proposed adaptive inner stopping condition, newGLMNET takes

both advantages of fast approximation in the early stage like CDN and of fast local convergence in

the final stage like GLMNET.

6.3 Analysis on Line Search

Recall in Section 4 we added a line search procedure in newGLMNET. To check if line search costs

much in newGLMNET, we report the average number of line search steps per outer iteration in Table

4. Clearly, in all cases, λ = 1 satisfies the sufficient decrease condition (20), so conducting line

search to ensure the convergence introduces very little cost. As a comparison, we also, respectively,

show the average numbers of updated variables and line search steps per cycle of CDN in the first

and second columns of the same table. Note that because a shrinking technique is applied to CDN,

the number of updated variables in one cycle is much smaller than the number of features. We see

that the number of line search steps is very close to the number of updated variables in a CD cycle.

Therefore, in most cases, (10) holds when λ = 1. Although line search in both CDN and newGLM-

NET often succeeds at the first step size λ = 1, from Section 4.1, their numbers of operations are
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Data set

CDN newGLMNET

#variables in #λ tried in # δ(λ) successfully #λ tried in an

a CD cycle line search applied in (23) outer iteration

KDD2010-b 630,455 630,588 622,267 1

rcv1 11,396 11,398 449 1

yahoo-japan 8,269 8,270 922 1

yahoo-korea 27,103 27,103 1,353 1

news20 6,395 6,396 2,413 1

epsilon 1,130 1,130 0 1

webspam 17,443 17,444 3,389 1

gisette 1,121 1,121 0 1

Table 4: Logistic regression: the average number of line search steps per CD cycle of CDN and per

outer iteration of newGLMNET. The data are collected by running CDN and newGLMNET

using the best C and the default stopping condition of LIBLINEAR.

very different. The O(nl) cost of CDN can be significantly reduced due to shrinking, but is still more

expensive than O(n+ l) of newGLMNET.

In Section 4.1, we mentioned an O(1)-cost upper-bound function δ(λ) to efficiently check (10)

in line search of CDN. In Table 4, we further report the average number of line search steps in a

CD cycle where this check is successfully applied. We see that the trick is particularly effective

on KDD2010-b; however, it helps in a limited manner on other data sets. For KDD2010-b, in addi-

tion to a small nnz/l, the faster line search is another possible reason why CDN is comparable to

newGLMNET; see Figure 1(a). For gisette and epsilon, the trick is not useful because the assumption

xi j ≥ 0, ∀i, j needed for deriving the upper-bound function does not hold.

6.4 Effect of Exp/log Operations

In Sections 2–3, we pointed out the difference between CDN’s O(nnz) and newGLMNET’s O(l)
exp/log operations per CD cycle. Figures 1–2 confirm this result because newGLMNET is much

faster for the two dense data (epsilon and gisette). We further extend Table 1 to compare the running

time of the first CD cycle in Table 5. For easy comparison, we deliberately sort data sets in all tables

of this section by nnz/l, which is the average number of non-zero values per instance. We expect

the ratio of time spent on exp/log operations gradually increases along with nnz/l, although this is

not very clearly observed in Table 5. The reason might be either that the number of data sets used

is small or other data characteristics affect the running time.

6.5 Approximate Exponential Operations for CDN

Because CDN suffers from slow exp/log operations, we tried to use the approximate exponentiation

proposed by Schraudolph (1999). However, we failed to speed up CDN because of erroneous nu-

merical results. One of the several possible reasons is that when d in (11) is small, the approximate

exp(dxi j) is inaccurate. The inaccurate exp(dxi j) makes | log(1+ e−wT x · e−dxi j)− log(1+ e−wT x)|
have a large relative error because the correct value is near zero with small d. We may encounter this

problem when calculating the function value difference needed by the sufficient decrease condition
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Data set
CDN newGLMNET

exp/log Total exp/log Total

KDD2010-b 21.72 (30.7%) 70.80 3.88 (6.9%) 56.50

rcv1 4.61 (73.8%) 6.25 0.12 (5.3%) 2.20

yahoo-japan 1.47 (70.9%) 2.08 0.03 (4.2%) 0.71

yahoo-korea 10.65 (66.3%) 16.06 0.08 (1.2%) 6.66

news20 0.21 (27.3%) 0.76 0.003 (0.5%) 0.60

epsilon* 64.25 (73.0%) 88.18 0.08 (0.7%) 11.62

webspam 72.89 (66.6%) 109.39 0.06 (0.1%) 41.10

gisette* 1.66 (66.8%) 2.49 0.002 (0.6%) 0.27

Table 5: Timing analysis of the first cycle of n CD steps. Time is in seconds. (*: dense data)

(10). In our experiment, the function-value difference using approximate exp/log operations tend

to be larger than the correct value; therefore, it is hard to find a step size λ̄ satisfying (10). Conse-

quently, if d is small when the current wk is near the optimal solution, line search terminates with

a very small step size λ̄ and results in bad convergence. Furthermore, because we update ewT x by

(11), the error is accumulated. Schraudolph (1999, Section 5) has mentioned that the approximation

may not be suitable for some numerical methods due to error amplification. We also tried differ-

ent reformulation of log(1+ e−wT x · e−dxi j)− log(1+ e−wT x), but still failed to use an approximate

exponential function.

6.6 Effect of Shrinking

Our investigation contains two parts. First, we investigate the effect of newGLMNET’s two levels

of shrinking by presenting results of only inner or outer level. Secondly, we compare the shrinking

strategies of GLMNET and newGLMNET. Because these two implementations differ in many places,

for a fair comparison, we modify newGLMNET to apply GLMNET’s shrinking strategy. The com-

parison results are presented in Figure 3. We can clearly see that all shrinking implementations are

better than the one without shrinking.

Results in Figure 3 show that the outer-level shrinking is more useful than the inner-level shrink-

ing. We suspect that the difference is due to that in the CD procedure for sub-problem (13), the

(inner-level) shrinking is done in a sequential manner. Thus, not only is Min not calculated based

on the gradient at the same point, but also variables are not removed together. In contrast, for the

outer-level shrinking, Mout is calculated by the gradient at wk−1 and all variables are checked to-

gether. Therefore, the outer-level shrinking is a more integrated setting for checking and removing

variables. The same explanation may also apply to the result that shrinking is slightly more effective

for newGLMNET than CDN; see Yuan et al. (2010, Figure 9) and Figure 3 here.

Regarding GLMNET’s shrinking strategy, it performs slightly better than the inner-level shrink-

ing of newGLMNET, but is worse than both the outer-level and the two-level settings.

7. Using newGLMNET to Solve Problems with Cheap Loss Functions

The analysis and experiments in previous sections have shown that newGLMNET is more efficient

than CDN for logistic regression. However, it is not clear if newGLMNET is superior when a loss
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Figure 3: Effect of two-level shrinking. “Inner only” (“Outer only”) indicates that only inner-level

(outer-level) shrinking is conducted.
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function can be calculated cheaply. In this section, we consider the L2-loss function in Equation (3)

and investigate the performance of newGLMNET in comparison with CDN. The CDN algorithm for

L2-loss SVM has been developed in Fan et al. (2008, Appendix F) and Yuan et al. (2010, Section

7).

We briefly describe how to apply newGLMNET to solve L2-loss SVM. The objective function

can be written as

f (w)≡ ‖w‖1 +C ∑
i∈I(w)

bi(w)2,

where

bi(w)≡ 1− yiw
T xi and I(w)≡ {i | bi(w)> 0}.

Similar to (2), we define

L(w)≡C ∑
i∈I(w)

bi(w)2.

The gradient of L(w) is

∇L(w) =−2C ∑
i∈I(w)

bi(w)yixi. (35)

Different from logistic loss, L(w) is not twice differentiable. Following Mangasarian (2002) and

Yuan et al. (2010), we consider the following generalized Hessian:

∇2L(w) = 2CXT DX , (36)

where D ∈ Rl×l is a diagonal matrix with

Dii =

{

1 if bi(w)> 0,

0 otherwise.

At the kth outer iteration, newGLMNET solves a quadratic sub-problem

min
d

qk(d), (37)

where

qk(d)≡ ‖w
k +d‖1−‖w

k‖1 + q̄k(d),

q̄k(d)≡ ∇L(wk)T d+
1

2
dT Hkd and Hk ≡ ∇2L(wk)+νI .

To minimize (37), we also use a CD procedure to sequentially minimize one-variable functions at

each inner iteration p.

qk(d
p, j + ze j)−qk(d

p, j) (38)

= |wk
j +d

p
j + z|− |wk

j +d
p
j |+∇ jq̄k(d

p, j)z+
1

2
∇2

j jq̄k(d
p, j)z2,

where from (35) and (36),

∇ jq̄k(d
p, j) = ∇ jL(w

k)+(Hkdp, j) j

=−2C ∑
i∈I(wk)

bi(w
k)yixi j +2C ∑

i∈I(wk)

(XT ) jiDii(Xdp, j)i +νd
p
j and

∇2
j jq̄k(d

p, j) = ∇2
j jL(w

k)+ν = 2C ∑
i∈I(wk)

x2
i j +ν.
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The CD procedure is almost the same as the one described in Section 3.2 for logistic regression. The

function in (38) can be exactly minimized by (9) and line search is not needed. Moreover, Xdp, j is

maintained by (17), so the cost per CD cycle is the same as that shown in (18).

7.1 Line Search and Asymptotic Convergence

At every outer iteration, after d is obtained by solving sub-problem (37), we need a line search

procedure to find the maximal λ ∈ {βi | i = 0,1, . . .} such that (20) is satisfied. Following the

discussion in Section 4.1, the computational bottleneck is on calculating (wk +λd)T xi,∀i. Similar

to the trick in Equation (21), we maintain bi(w
k), ∀i to save the cost. In line search, we use

bi(w
k +βtd) = 1− yi(w

k +βt−1d)T xi +(βt−1−βt)yi(Xd)i

= bi(w
k +βt−1d)+(βt−1−βt)yi(Xd)i

for calculating f (wk +βtd). The last bi(w
k +βtd) is passed to the next outer iteration as bi(w

k+1).

In Appendix C, we prove that newGLMNET for L2-loss SVM is an example of Tseng and Yun’s

framework, so the finite termination of line search holds and any limit point of {wk} is an optimal

solution.

7.2 Comparison with CDN

The analysis in Section 2 indicates that CDN needs more exp/log operations than newGLMNET. Ex-

periments in Section 6.4 confirm this analysis by showing that CDN is much slower than newGLM-

NET on dense data. However, the situation for L2-loss SVM may be completely different because

exp/log operations are not needed. Without this advantage, whether newGLMNET can still compete

with CDN is an interesting question. We will answer this question by experiments in Section 7.3.

Following the analysis in Section 4.1, the cost of line search is still much different between

CDN and newGLMNET for L2-loss SVM. For each cycle of n CD steps, the O(nl) cost is required in

CDN, while less than O(n+ l) is required in newGLMNET. For the high cost of line search in CDN,

Yuan et al. (2010) also find out an upper-bound function like (22), which can be obtained in O(1);
see Fan et al. (2008, Appendix F) for more details. If this trick succeeds at λ = 1 in every CD step

of a cycle, then the O(nl) cost is reduced to O(l). In Section 7.3, we check if this trick is useful.

7.3 Experiments

We compare CDN and newGLMNET under a similar experimental setting to that for logistic regres-

sion. Different from (33), we solve L2-loss SVM without a bias term b.13

We plot the relative difference to the optimal function value in Figure 4. The reference f ∗ is

obtained by running newGLMNET with a strict stopping tolerance εout = 10−8. Figure 5 presents the

testing accuracy along training time. We can clearly see that CDN is much faster than newGLMNET

in the early stage. While newGLMNET still enjoys fast local convergence, it catches up with CDN

only in the very end of the training procedure. This result is consistent with our analysis in Section

7.2 showing that newGLMNET loses the advantages of taking fewer exp/log operations.

In Table 6, we analyze the line search procedure by a setting like Table 4. Similar results

are observed: the sufficient decrease condition (20) always holds when λ = 1 for newGLMNET;

13. Earlier we solved problem (33) in order to compare with the GLMNET implementation by Friedman et al..
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Figure 4: L1-regularized L2-loss SVM: relative difference to the optimal function value versus

training time. Both x-axis and y-axis are log-scaled.
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Figure 5: L1-regularized L2-loss SVM: testing accuracy versus training time (log-scaled).
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Data set

CDN newGLMNET

#variables in #λ tried in # δ(λ) successfully #λ tried in an

a CD cycle line search applied in (23) outer iteration

KDD2010-b 246,318 248,151 124,175 1

rcv1 13,350 13,384 1,251 1

yahoo-japan 10,286 10,289 4,931 1

yahoo-korea 31,265 31,270 25,711 1

news20 7,688 7,838 1,461 1

epsilon 1,136 1,137 501 1

webspam 8,165 8,312 361 1

gisette 1,145 1,145 76 1

Table 6: L2-loss SVM: the average number of line search steps per CD cycle of CDN and newGLM-

NET. The data are collected by running CDN and newGLMNET using the best C and the

default stopping tolerance.

moreover, for CDN, λ = 1 is successful almost all the time. One difference is that the trick of using

an upper-bound function in CDN is slightly more effective for L2-loss SVM than logistic regression.

8. Discussions and Conclusions

In newGLMNET, a CD method is applied to solve the sub-problem (13). Using the property that CD

involves simple and cheap updates, we carefully adjust the stopping condition for sub-problems.

Then, newGLMNET is competitive with a CD method like CDN in the early stage, but becomes a

Newton method in the end. This design is similar to “truncated Newton” methods in optimization.

While CD seems to be a very good choice for solving the sub-problem, whether there are better

alternatives is an interesting future issue.

In Section 5, we proposed several implementation techniques for newGLMNET. For shrinking,

we consider thresholds Mout/l and Min/l in (31) and (32), respectively. These values are heuristi-

cally chosen. While it is difficult to find an optimal setting for all data sets, we hope to investigate

if the current thresholds are suitable.

Some recent works such as El Ghaoui et al. (2010) and Tibshirani et al. (2011) proposed rules

to cheaply eliminate features prior to the L1 training. Preliminary results in the supplementary

document show that training is more efficient if we can remove some zero variables beforehand.

How to efficiently and correctly identify these variables before training is an interesting future topic.

In our newGLMNET implementation, the sub-problem (13) is approximately solved by CD.

However, so far we only establish the convergence results of newGLMNET under the assumption

that the sub-problem (13) is exactly solved. In the future, we will strive to address this issue.

In this work, we point out that a state-of-the-art algorithm CDN for L1-regularized logistic re-

gression suffers from frequent exp/log operations. We then demonstrate that Newton-type methods

can effectively address this issue. By improving a Newton-type method GLMNET in both theoretical

and practical aspects, the proposed newGLMNET is more efficient than CDN for logistic regression.

The difference is huge for dense data. However, if a loss function is cheap to compute (e.g., L2 loss),
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CDN is still competitive. Based on this research work, we have replaced CDN with newGLMNET as

the solver of L1-regularized logistic regression in the software LIBLINEAR.
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Appendix A. Convergence of newGLMNET for L1-regularized Logistic Regression

We have explained that newGLMNET is in the framework of Tseng and Yun (2009). Thus, it is

sufficient to check conditions needed for their convergence result.

To have the finite termination of the line search procedure, Tseng and Yun (2009, Lemma 5)

require that there exists Λ > 0 such that

‖∇L(w1)−∇L(w2)‖ ≤ Λ‖w1−w2‖, ∀w1,w2 ∈ Rn (39)

and

Hk ≻ 0. (40)

Note that “A≻ B” indicates that A−B is positive definite.

Because L(w) is twice differentiable,

‖∇L(w1)−∇L(w2)‖ ≤ ‖∇
2L(w̃)‖‖w1−w2‖,

where w̃ is between w1 and w2. Furthermore, ‖∇2L(w̃)‖ is bounded:

‖∇2L(w̃)‖=C‖XT D(w̃)X‖ ≤C‖XT‖‖X‖. (41)

Note that D(w̃) is the diagonal matrix defined in (8) though here we denote it as a function of

w. The inequality in (41) follows from that all D(w̃)’s components are smaller than one. Thus,

Equation (39) holds with Λ = C‖XT‖‖X‖. For (40), Hk � νI ≻ 0 because we add νI to ∇2L(wk)
and ∇2L(wk) is positive semi-definite. With (39) and (40), the line search procedure terminates in

finite steps.

For the asymptotic convergence, Tseng and Yun (2009) further assume that there exist positive

constants λmin and λmax such that

λminI � Hk � λmaxI , ∀k. (42)

Since Hk = ∇2L(wk)+νI , clearly we can set λmin = ν. For the upper bound, it is sufficient to prove

that the level set is bounded. See the proof in, for example, Yuan et al. (2010, Appendix A).

Following Theorem 1(e) in Tseng and Yun (2009), any limit point of {wk} is an optimum of (1)

with logistic loss.
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Appendix B. Linear Convergence of newGLMNET for L1-regularized Logistic

Regression

To apply the linear convergence result in Tseng and Yun (2009), we show that L1-regularized logis-

tic regression satisfies the conditions in their Theorem 3 if the loss term L(w) is strictly convex (and

therefore w∗ is unique).

From Appendix A, we know L1-regularized logistic regression has the following properties.

1. ∇L(w) is Lipschitz continuous; see (39).

2. The level set is compact, and hence the optimal solution w∗ exists.

3. λminI � Hk � λmaxI , ∀k; see (42).

In addition to the above three conditions, Tseng and Yun (2009, Theorem 3) require that for all

ζ≥minw f (w), there exists T > 0,ε > 0, such that

T‖dI (w)‖ ≥ ‖w−w∗‖, ∀w ∈ {w | f (w)≤ ζ and ‖dI (w)‖ ≤ ε}, (43)

where dI (w) is the solution of (13) at w with H = I (Tseng and Yun, 2009, Assumption 2). We

prove (43) by following the approach in Tseng and Yun (2009, Theorem 4).

To simplify the notation, we denote dI ≡ dI (w). For all ζ > 0, we show that there exists T > 0

so that (43) is satisfied for all w with f (w) ≤ ζ. That is, a stronger result independent of ε is

obtained. We assume w is in the level set {w | f (w)≤ ζ} in the following proof. Because dI is the

solution of (13) with H = I , by checking the optimality condition,14 dI is also an optimal solution

of

min
d

(∇L(w)+dI )
T d+‖w+d‖1.

Therefore,

(∇L(w)+dI )
T dI +‖w+dI‖1 ≤ (∇L(w)+dI )

T (w∗−w)+‖w∗‖1. (44)

Besides, because w∗ minimizes f (w), the following inequality holds for all w and δ ∈ (0,1).

L(w∗+δ(w−w∗))−L(w∗)

δ
+‖w‖1−‖w

∗‖1 (45)

≥
L(w∗+δ(w−w∗))−L(w∗)+‖w∗+δ(w−w∗)‖1−‖w

∗‖1

δ
(46)

=
f (w∗+δ(w−w∗))− f (w∗)

δ

≥ 0,

where (46) is from the convexity of ‖ · ‖1. Take δ→ 0 and replace w with w+dI in (45). We get

0≤ ∇L(w∗)T (w+dI −w∗)+‖w+dI‖1−‖w
∗‖1. (47)

Adding (44) to (47) yields

(∇L(w)−∇L(w∗))T (w−w∗)+‖dI‖
2 ≤ (∇L(w∗)−∇L(w))T dI +dT

I
(w∗−w). (48)

14. For example, the minimal-norm subgradients of the two objective functions are the same at dI .
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Because the level set {w | f (w) ≤ ζ} is compact, a strictly convex L(w) is strongly convex in the

level set. That is, there exists an m > 0 such that

(∇L(w)−∇L(w∗))T (w−w∗)≥ m‖w−w∗‖2, ∀w ∈ {w | f (w)≤ ζ}.

Then we can relax (48) to

m‖w−w∗‖2 ≤ m‖w−w∗‖2 +‖dI‖
2 ≤ Λ‖w−w∗‖‖dI‖+‖dI‖‖w−w∗‖,

where Λ is the Lipschitz constant in (39). Dividing both sides by m‖w−w∗‖ generates

‖w−w∗‖ ≤
Λ+1

m
‖dI‖.

Then T = (Λ+ 1)/m satisfies condition (43). Therefore, all conditions in Tseng and Yun (2009,

Theorem 3) are satisfied, so linear convergence is guaranteed.

Appendix C. Convergence of newGLMNET for L1-regularized L2-loss SVM

Similar to Appendix A, we only check the conditions required by Tseng and Yun (2009). To have the

finite termination of line search, we need Equations (39) and (40), while for asymptotic convergence,

we need Equation (42). Following the same explanation in Appendix A, we easily have (39) and

(42). For (40), which means that ∇L(w) is globally Lipschitz continuous, a proof is in, for example,

Mangasarian (2002, Section 3). Therefore, any limit point of {wk} is an optimum of (1) with L2

loss by Theorem 1(e) in Tseng and Yun (2009).

Further, if the L2-loss function L(w) is strictly convex, (43) is satisfied with L2 loss following

the proof in Appendix B. Hence, {wk} converges to the unique optimum solution at least linearly.
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