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Abstract

The main theme of this paper is to develop a novel eigenvalue optimization framework for learning
a Mahalanobis metric. Within this context, we introduce a novel metric learning approach called
DML-eigwhich is shown to be equivalent to a well-known eigenvalue optimization problem called
minimizing the maximal eigenvalue of a symmetric matrix (Overton, 1988; Lewis and Overton,
1996). Moreover, we formulateLMNN (Weinberger et al., 2005), one of the state-of-the-art metric
learning methods, as a similar eigenvalue optimization problem. This novel framework not only
provides new insights into metric learning but also opens new avenues to the design of efficient
metric learning algorithms. Indeed, first-order algorithms are developed for DML-eig and LMNN
which only need the computation of the largest eigenvector of a matrix per iteration. Their conver-
gence characteristics are rigorously established. Various experiments on benchmark data sets show
the competitive performance of our new approaches. In addition, we report an encouraging result
on a difficult and challenging face verification data set called Labeled Faces in the Wild (LFW).

Keywords: metric learning, convex optimization, semi-definite programming, first-order methods,
eigenvalue optimization, matrix factorization, face verification

1. Introduction

Distance metrics are fundamental concepts in machine learning since a proper choice of a metric
has crucial effects on the performance of both supervised and unsupervised learning algorithms.
For example, the k-nearest neighbor (k-NN) classifier depends on a distance function to identify
the nearest neighbors for classification. The k-means algorithm depends on the pairwise distance
measurements between examples for clustering, and most information retrieval methods rely on a
distance metric to identify the data points that are most similar to a given query. Recently, learning
a distance metric from data has been actively studied in machine learning (Bar-Hillel et al., 2005;
Davis et al., 2007; Goldberger et al., 2004; Rosales and Fung, 2006; Shen et al., 2009; Torresani and
Lee, 2007; Weinberger et al., 2005; Weinberger and Saul, 2008; Xinget al., 2002; Ying et al., 2009).
These methods have been successfully applied to many real-world application domains including
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information retrieval, face verification, image recognition (Chopra et al., 2005; Guillaumin et al.,
2009; Hoi et al., 2006) and bioinformatics (Kato and Nagano, 2010; Vert et al., 2007).

Most metric learning methods attempt to learn a distance metric from side informationwhich
is often available in the form of pairwise constraints, that is, pairs ofsimilar data points and pairs
of dissimilardata points. The information of similarity or dissimilarity between a pair of examples
can easily be collected from the label information in supervised classification. For example, we can
reasonably let two samples in the same class be a similar pair and samples in the distinct classes be a
dissimilar pair. In semi-supervised clustering, a small amount of knowledge isavailable concerning
pairwise (must-link or cannot-link) constraints between data items. This side information delivers
the message that a must-link pair of samples is a similar pair and a cannot-link one isa dissimilar
pair. A common theme in metric learning is to learn a distance metric such that the distance between
similar examples should be relatively smaller than that between dissimilar examples.Although the
distance metric can be a general function, the most prevalent one is the Mahalanobis metric defined
by dM(xi ,x j) =

√
(xi−x j)⊤M(xi−x j) whereM is a positive semi-definite (p.s.d.) matrix.

In this work we restrict our attention to learning a Mahalanobis metric fork-nearest neigh-
bor (k-NN) classification. However, the proposed methods below can easily be adapted to metric
learning for semi-supervised k-means clustering. Our main contribution is summarized as follows.
Firstly, we introduce a novel approach calledDML-eig mainly inspired by the original work of
Xing et al. (2002). Although our ultimate target is similar to theirs, our methods are essentially
different. In particular, we can show our approach is equivalent to a well-known eigenvalue op-
timization problem calledminimizing the maximal eigenvalue of a symmetric matrix(Lewis and
Overton, 1996; Overton, 1988). We further show that the above novel optimization formulation can
also be extended to LMNN (Weinberger et al., 2005) and low-rank matrix factorization for collab-
orative filtering (Srebro et al., 2004). Secondly, in contrast to the full eigen-decomposition used
in many existing approaches to metric learning, we will develop novel approximate semi-definite
programming (SDP) algorithms for DML-eig and LMNN which only need the computation of the
largest eigenvector of a matrix per iteration. The algorithms combine and develop the Frank-Wolfe
algorithm (Frank and Wolfe, 1956; Hazan, 2008) and Nesterov’s smoothing techniques (Nesterov,
2005). Finally, its rigorous convergence characteristics will also be established, and experiments
on various UCI data sets and benchmark face data sets show the competitiveness of our new ap-
proaches. In addition, we report an encouraging result on a challenging face verification data set
called Labeled Faces in the Wild (Huang et al., 2007).

The paper is organized as follows. In Section 2, we propose our new approach (DML-eig)
for distance metric learning and show its equivalence to the well-known eigenvalue optimization
problem. In addition, a generalized eigenvalue-optimization formulation will be established for
LMNN and low-rank matrix factorization for collaborative filtering (Srebroet al., 2004). In Section
3, based on eigenvalue optimization formulations of DML-eig and LMNN, we develop novel first-
order algorithms. Their convergence rates are successfully established. Section 4 discusses the
related work. In Section 5, our proposed methods are compared with the state-of-the-art methods
through extensive experiments. The last section concludes the paper.

2. Metric Learning Model and Equivalent Formulation

We begin by introducing useful notations. LetNn = {1,2, . . . ,n} for any n ∈ N. The space of
symmetricd timesd matrices will be denoted bySd and the cone of p.s.d. matrices is denoted by
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S
d
+. For anyX,Y ∈ R

d×n, we denote the inner product inSd by 〈X,Y〉 := Tr (X⊤Y) whereTr (·)
denotes the trace of a matrix. The standard norm in Euclidean space is denoted by‖ · ‖.

Throughout the paper, the training data is given byz := {(xi ,yi) : i ∈ Nn} with input xi =
(x1

i ,x
2
i , . . . ,x

d
i ) ∈ R

d, class labelyi (not necessary binary) and later on we use the conventionXi j =
(xi − x j)(xi − x j)

⊤. Then, for anyM ∈ S
d
+, the associated Mahalanobis distance betweenxi andx j

can be written asd2
M(xi ,x j) = (xi−x j)

⊤M(xi−x j) = 〈Xi j ,M〉. Let S index the similar pairs andD
index the dissimilar pairs. For instance, if(xi ,x j) is a similar pair we denote it byτ = (i, j) ∈ S , and
write Xi j asXτ for simplicity.

Given a set of pairwise distance constraints, the target of metric learning isto find a distance
matrix M such that the distance between the dissimilar pairs is large and the distance between the
similar pairs is small. There are many possible criteria to realize this intuition. Our model is mainly
inspired by Xing et al. (2002) where the authors proposed to maximize the sum of distances between
dissimilar pairs, while maintaining an upper bound on the sum of squared distances between similar
pairs. Specifically, the following criterion was used in Xing et al. (2002):

maxM∈Sd
+

∑(i, j)∈D dM(xi ,x j)

s.t. ∑(i, j)∈S d2
M(xi ,x j)≤ 1.

(1)

An iterative projection method was proposed to solve the above problem. However, it usually takes
a long time to converge and the algorithm needs the computation of the full eigen-decomposition of
a matrix in each iteration.

In this paper, we propose to maximize the minimal squared distances between dissimilar pairs
while maintaining an upper bound for the sum of squared distances betweensimilar pairs, that is,

maxM∈Sd
+

min(i, j)∈D d2
M(xi ,x j)

s.t. ∑(i, j)∈S d2
M(xi ,x j)≤ 1.

(2)

Now, letXS = ∑(i, j)∈S Xi j we can rewrite problem (2) as follows:

maxM∈Sd
+

minτ∈D〈Xτ,M〉

s.t. 〈XS ,M〉 ≤ 1.
(3)

This problem is obviously a semi-definite programming (SDP) since it is equivalent to

maxM∈Sd
+

t

s.t. 〈Xτ,M〉 ≥ t, ∀τ = (i, j) ∈D,
〈XS ,M〉 ≤ 1.

In contrast to problem (1), the objective function and the constraints in (3) are linear with respect to
(w.r.t.) M. As shown in the next subsection, this simple but important property1 plays a critical role
in formulating problem (2) as an eigenvalue optimization problem. This equivalent formulation is
key to the design of efficient algorithms in Section 3.

The generation of the pairwise constraints plays an important role in learninga metric. If labels
are known then the learning setting is often referred to as supervised metriclearning which can

1. One might consider replacing the objective∑(i, j)∈D dM(xi ,x j ) in problem (1) by∑(i, j)∈D d2
M(xi ,x j ). This would also

lead to a simple linear constraint and linear objective function. However, as mentioned in Xing et al. (2002), it would
result inM always being rank 1 (i.e., the data are always projected onto a line).
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further be divided into two categories: theglobal metric learningand thelocal metric learning.
The global approach learns the distance metric in a global sense, that is, tosatisfy all the pairwise
constraints simultaneously. The original model in Xing et al. (2002) is a global method which used
all the similar pairs (same labels) and dissimilar pairs (distinct labels). The localapproach is to
learn a distance metric only using local pairwise constraints which usually outperforms the global
methods as observed in many previous studies. This is reasonable in the case of learning a metric
for the k-NN classifiers since k-NN classifiers are influenced most by thedata items that are close to
the test/query examples. Since we are mainly concerned with learning a metric for k-NN classifier,
the pairwise constraints for DML-eig are generated locally, that is, the similar/dissimilar pairs are
k-nearest neighbors. The details can be found in the experimental section.

2.1 Equivalent Formulation as Eigenvalue Optimization

In this section we establish a min-max formulation of problem (3), which is finally shown to be
equivalent to an eigenvalue optimization problem calledminimizing the maximal eigenvalue of sym-
metric matrices(Lewis and Overton, 1996; Overton, 1988).

For simplicity of notation, for anyX ∈ S
d, we denote its maximum eigenvalue ofX ∈ S

d by
λmax(X). Let D be the number of dissimilar pairs and the simplex is denoted by

△= {u∈ R
D : uτ ≥ 0, ∑

τ∈D
uτ = 1}.

We also denote thespectrahedronby

P = {M ∈ S
d
+ : Tr (M) = 1}.

Now we can show problem (3) is indeed an eigenvalue optimization problem.

Theorem 1. Assume that XS is invertible and, for anyτ∈D, let X̃τ =X−1/2
S

XτX
−1/2
S

. Then, problem
(3) is equivalent to the following problem

max
S∈P

min
u∈△

∑
τ∈D

uτ〈X̃τ,S〉, (4)

which can further be written as an eigenvalue optimization problem:

min
u∈△

max
S∈P
〈∑

τ∈D
uτX̃τ,S〉= min

u∈△
λmax

(
∑

τ∈D
uτX̃τ

)
. (5)

Proof. Let M∗ be an optimal solution of problem (3) and̃M∗ = M∗

〈XS ,M∗〉
. Then, we have〈XS ,M̃∗〉= 1

and
min
τ∈D
〈Xτ,M̃

∗〉= min
τ∈D
〈Xτ,M

∗〉/〈XS ,M
∗〉 ≥min

τ∈D
〈Xτ,M

∗〉,

since〈XS ,M∗〉 ≤ 1. This implies thatM̃∗ is also an optimal solution. Consequently, problem (3) is
equivalent to, up to a scaling constant,

arg max
M∈Sd

+

{min
τ∈D
〈Xτ,M〉 : 〈XS ,M〉= 1}. (6)

Noting that minτ∈D〈Xτ,M〉 = minu∈△∑τ∈D uτ〈Xτ,M〉, the desired equivalence between (4) and (3)

follows by changing variableS= X1/2
S

MX1/2
S

in formulation (6).
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Also, note from Overton (1988) that maxM∈P 〈X,M〉 = λmax(X). By the min-max theorem,
problem (4) can further be written by a well-known eigenvalue optimization problem:

min
u∈△

max
M∈P
〈∑

τ∈D
uτX̃τ,M〉= min

u∈△
λmax

(
∑

τ∈D
uτX̃τ

)
.

This completes the proof of the theorem.

The problem of minimizing the maximal eigenvalue of a symmetric matrix is well-known which
has important applications in engineering design, see Overton (1988); Lewis and Overton (1996).
Hereafter, we refer to metric learning formulation (3) (equivalently (4) or(5)) asDML-eig .

We end this subsection with two remarks. Firstly, Theorem 1 assumes thatXS is invertible. In
practice, this can be achieved by enforcing a small ridge to the diagonal ofthe matrixXS , that is,
XS ←− XS + δ Id whereId is the identity matrix andδ > 0 is a very small ridge constant. Without
loss of generality, we assume thatXS is positive definite throughout the paper. Secondly, when the
dimensiond of the input space is very large, the computation ofX−1/2

S
could be time-consuming.

Instead of directly inverting the matrix, one can use the Cholesky decomposition which is faster and
numerically more stable. Indeed, the Cholesky decomposition tells us thatXS = LL⊤ whereL is a
lower triangular matrix with strictly positive diagonal entries. Hence, in (6) wecan letS= L⊤ML
(i.e., M = (L−1)⊤SL−1) and Theorem 1 still holds true if we redefine, for anyτ = (i, j) ∈ D, that
X̃τ = (L−1(xi − x j))(L−1(xi − x j))

⊤. Therefore, it suffices to compute{L−1xi : i ∈ Nn} which can
efficiently be obtained by solving linear system of equations (e.g., using the operationL \ xi in
MATLAB).

2.2 Eigenvalue Optimization for LMNN

Weinberger et al. (2005) proposed the large margin nearest neighborclassification (LMNN) which is
one of the state-of-the-art metric learning methods. In analogy to the aboveargument for DML-eig,
we can also formulate LMNN as a generalized eigenvalue optimization problem.

Formulation (3) used the pairwise constraints in the form of similar/dissimilar pairs. In contrast,
LMNN aims to learn a metric using the relative distance constraints which are presented in the form
of triplets. With a little abuse of notation, we denote a triplet byτ = (i, j,k) which means thatxi is
similar tox j andx j is dissimilar toxk. Then, denote the set of triplets byT which can be specified
based on label information (e.g., see Section 5). Given a setS of similar pairs and a setT of triplets,
the target of LMNN is to learn a distance metric such that k-nearest neighbors always belong to the
same class while examples from different classes are separated by a large margin. In particular, let
XS = ∑(i, j)∈S (xi−x j)(xi−x j)

⊤ andCτ = Xjk−Xi j , then LMNN can be rewritten as

minM,ξ (1− γ)∑τ∈T ξτ + γTr (XSM)
s.t. 1−〈Cτ,M〉 ≤ ξτ,

M ∈ S
d
+,ξτ ≥ 0, ∀τ = (i, j,k) ∈ T ,

(7)

whereγ ∈ [0,1] is a trade-off parameter.
Let T be the number of triplets, that is, the cardinality of the triplet setT . We can establish the

following equivalent min-max formulation of LMNN. A similar result with a quite different proof
has also been given in Baes and Bürgisser (2009) for a certain class of SDP problems.
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Lemma 2. LMNN formulation (7) is equivalent to

max
M∈Sd

+,ξ≥0

{
min

τ
(ξτ + 〈Cτ,M〉) : γTr (XSM)+(1− γ)∑

τ
ξτ = 1

}
. (8)

Proof. Write the LMNN formulation (7) as

minM,ξ (1− γ)∑τ∈T ξτ + γTr (XSM)
s.t. 〈Cτ,M〉+ξτ ≥ 1,

M ∈ S
d
+,ξτ ≥ 0, ∀τ = (i, j,k) ∈ T .

(9)

The condition that〈Cτ,M〉+ ξτ ≥ 1 for anyτ ∈ T is identical to minτ∈T 〈Cτ,M〉+ ξτ ≥ 1. Hence,
problem (7) is further equivalent to

minM,ξ (1− γ)∑τ∈T ξτ + γTr (XSM)
s.t. minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ ≥ 1,

M ∈ S
d
+,ξ≥ 0.

(10)

Since the objective function and the constraints are linear w.r.t. variable(M,ξ), the optimal solution
for (10) must be attained on the boundary of the feasible domain, that is, minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ =
1. Consequently, problem (10) is identical to

minM,ξ (1− γ)∑τ∈T ξτ + γTr (XSM)
s.t. minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ = 1,

M ∈ S
d
+,ξ≥ 0.

(11)

Let Ω =
{
(M,ξ) : minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ ≥ 0,M ∈ S

d
+,ξ≥ 0

}
. We first claim that (11) is equiv-

alent to

min
M,ξ

{
(1− γ)∑τ∈T ξτ + γTr (XSM)

minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ
: (M,ξ) ∈Ω

}
. (12)

To see this equivalence, letφ1 be the optimal value of problem (11) andφ2 be the optimal value of
problem (12). Suppose that(M∗,ξ∗) be an optimal solution of problem (12). Letδ∗ =
minτ=(i, j,k)∈T 〈Cτ,M∗〉+ξ∗τ and denote(M̃∗, ξ̃∗) = (M∗/δ∗,ξ∗/δ∗). Then, for anyM ∈ Sd

+ andξ≥ 0
satisfying minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ = 1,

(1− γ)∑τ∈T ξτ + γTr (XSM) = (1−γ)∑τ∈T ξτ+γTr (XSM)
minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ

≥ φ2 =
(1−γ)∑τ∈T ξ∗τ+γTr (XSM∗)
minτ=(i, j,k)∈T 〈Cτ,M∗〉+ξ∗τ

= (1− γ)∑τ∈T ξ̃∗τ + γTr (XSM̃∗)≥ φ1,

where the last inequality follows from the fact that minτ=(i, j,k)∈T 〈Cτ,M̃∗〉+ ξ̃∗τ = 1. Since the above
inequality holds true for anyM ∈ S

d
+ andξ≥ 0 satisfying minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ = 1, we finally

get thatφ1 ≥ φ2 ≥ φ1, that is,φ1 = φ2 and, moreover(M̃∗, ξ̃∗) is an optimal solution of problem
(11). This completes the equivalence between (11) and (12).

Now, rewrite problem (12) as

min
M,ξ

{( minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ

(1− γ)∑τ∈T ξτ + γTr (XSM)

)−1
: (M,ξ) ∈Ω

}
,
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which is further equivalent to

max
M,ξ

{
minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ

(1− γ)∑τ∈T ξτ + γTr (XSM)
: (M,ξ) ∈Ω

}
. (13)

Using exactly the same argument of proving the equivalence between (11)and (12), one can show
that the above problem (13) is equivalent to

max
M,ξ

{
min

τ=(i, j,k)∈T
〈Cτ,M〉+ξτ : (1− γ) ∑

τ∈T
ξτ + γTr (XSM) = 1,(M,ξ) ∈Ω

}
. (14)

Now consider problem (14) without the restriction(M,ξ) ∈Ω, that is,

max
M,ξ

{
min

τ=(i, j,k)∈T
〈Cτ,M〉+ξτ : (1− γ) ∑

τ∈T
ξτ + γTr (XSM) = 1,M ∈ S

d
+, ξ≥ 0

}
. (15)

Let M̃ = 0 andξ̃τ =
1

(1−γ)T for anyτ which obviously satisfies the restriction condition of problem

(15), that is,(1− γ)∑τ∈T ξ̃τ + γTr (XSM̃) = 1. Then,

maxM,ξ

{
minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ : (1− γ)∑τ∈T ξτ + γTr (XSM) = 1,M ∈ S

d
+, ξ≥ 0

}

≥minτ=(i, j,k)∈T 〈Cτ,M̃〉+ ξ̃τ =
1

(1−γ)T > 0,

which means that any optimal solution for problem (15) automatically satisfies(M,ξ) ∈ Ω. Con-
sequently, problem (15) is equivalent to (14). Combining this with the equivalence between (11),
(12), (13) and (14) finally yields the equivalence between problem (15) and the primal formulation
(7) of LMNN. This completes the proof of the lemma.

Using the above min-max representation for LMNN, it is now easy to reformulate LMNN as a
generalized eigenvalue optimization as we will do below. With a little abuse of notation, denote the
simplex by△= {u∈ R

T : ∑τ∈T uτ = 1, uτ ≥ 0}.

Theorem 3. Assume that XS is invertible and, for anyτ ∈ T , let C̃τ = X−1/2
S

CτX
−1/2
S

. Then, LMNN
is equivalent to the following problem

max
S,ξ

{
min
u∈△

∑
τ∈T

uτ
(
ξτ + 〈C̃τ,S〉

)
: (1− γ)ξ⊤1+ γTr (S) = 1,S∈ S

d
+, ξ≥ 0

}
, (16)

where1 is a column vector with all entries one. Moreover, it can further be written asa generalized
eigenvalue optimization problem:

min
u∈△

max
( 1

1− γ
umax,

1
γ

λmax
(
∑

τ∈T
uτC̃τ

))
, (17)

where umaxis the maximum element of the vector(uτ : τ ∈ T ).

Proof. Note that minτ=(i, j,k)∈T

(
〈Cτ,M〉+ξτ

)
=minu∈△uτ

(
〈Cτ,M〉+ξτ

)
.Combing this with Lemma

2 implies that LMNN is equivalent to

max
M,ξ

{
min
u∈△

∑
τ∈D

uτ
(
ξτ + 〈Cτ,M〉

)
: (1− γ)ξ⊤1+ γTr (XSM) = 1,M ∈ S

d
+, ξ≥ 0

}
.

7
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LettingS= X1/2
S

MX1/2
S

yields the equivalence between (8) and (16).
By the min-max theorem, problem (16) is equivalent to

min
u∈△

{
max
S,ξ

∑
τ∈D

uτ
(
ξτ + 〈C̃τ,S〉

)
: (1− γ)ξ⊤1+ γTr (S) = 1,S∈ S

d
+, ξ≥ 0

}
. (18)

To see the equivalence between (18) and (17), observe that

max
{

∑τ∈D uτ
(
ξτ + 〈C̃τ,S〉

)
: (1− γ)ξ⊤1+ γTr (S) = 1,S∈ S

d
+, ξ≥ 0

}

= max
{

1
1−γ ∑

τ∈D
uτξτ +

1
γ 〈∑

τ∈D
uτC̃τ,S〉 : ξ⊤1+Tr (S) = 1,S∈ S

d
+, ξ≥ 0

}

= max
(

1
1−γumax, 1

γ λmax
(
∑

τ∈D
uτC̃τ

))
,

where the last equality follows from the fact that the above maximization problem is a linear pro-
gramming w.r.t. (S,ξ) and, for anyA ∈ S

d, max{〈A,B〉 : B ∈ S
d
+, Tr (B) ≤ 1} = λmax(A). This

completes the proof of the theorem.

Since we have formulated LMNN as an eigenvalue optimization problem in the above theorem,
hereafter we refer to formulation (16) (equivalently (17)) asLMNN-eig . The above eigenvalue
optimization formulation is not restricted to metric learning problems. It can be extended to other
machine learning tasks if their SDP formulation is similar to that of LMNN. Maximum-margin
matrix factorization (Srebro et al., 2004) is one of such examples. Its eigenvalue optimization
formulation can be found in Appendix A.

3. Eigenvalue Optimization Algorithms

In this section we develop efficient algorithms for solving DML-eig and LMNN-eig. We can di-
rectly employ the entropy smoothing techniques (Nesterov, 2007; Baes andBürgisser, 2009) for
eigenvalue optimization which, however, needs the computation of the full eigen-decomposition per
iteration. Instead, we propose a new first-order method by developing and combining the smooth-
ing techniques (Nesterov, 2005) and Frank-Wolfe algorithm (Frank and Wolfe, 1956; Hazan, 2008),
which will only involve the computation of the largest eigenvector of a matrix.

3.1 Approximate Frank-Wolfe Algorithm for DML-eig

By Theorem 1, DML-eig is identical to problem:

max
S∈P

f (S) = max
S∈P

min
u∈△

∑
τ∈D

uτ〈X̃τ,S〉. (19)

To this end, for a smoothing parameterµ> 0, define

fµ(S) = min
u∈△

∑
τ∈D

uτ〈X̃τ,S〉+µ ∑
τ∈D

uτ lnuτ.

We use the smoothed problem maxS∈P fµ(S) to approximate problem (19).
It is easy to see that

fµ(S) =−µln
(
∑

τ∈D
e−〈X̃τ,S〉/µ),

8
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Input:
· smoothing parameterµ> 0 (e.g., 10−5)
· tolerance valuetol (e.g., 10−5)
· step sizes{αt ∈ (0,1) : t ∈ N}

Initialization: Sµ
1 ∈ S

d
+ with Tr (Sµ

1) = 1
for t = 1,2,3, . . . do
· Zµ

t = argmax
{

fµ(St)+ 〈Z,∇ fµ(S
µ
t )〉 : Z ∈ S

d
+, Tr (Z) = 1

}
, that is,Zµ

t = vv⊤

wherev is the maximal eigenvector of matrix∇ fµ(S
µ
t )

· Sµ
t+1 = (1−αt)S

µ
t +αtZ

µ
t

· if | fµ(S
µ
t+1)− fµ(S

µ
t )|< tol thenbreak

Output: d×d matrixSµ
t ∈ S

d
+

Table 1: Approximate Frank-Wolfe Algorithm for DML-eig

and

∇ fµ(S) =
∑τ∈D e−〈X̃τ,S〉/µX̃τ

∑τ∈D e−〈X̃τ,S〉/µ
.

Since fµ is a smooth function, we can prove that its gradient is Lipschitz continuous.

Lemma 4. For any S1,S2 ∈ P , then

‖∇ fµ(S1)−∇ fµ(S2)‖ ≤Cµ‖S1−S2‖,

where Cµ = 2maxτ∈D ‖X̃τ‖
2/µ.

Proof. It suffices to see‖∇2 fµ(S)‖ ≤ 2maxτ∈D ‖X̃τ‖
2/µ. To this end,

∇2 fµ(S) =
(∑τ∈D e−〈X̃τ,S〉/µX̃τ)

⊗
(∑τ∈D e−〈X̃τ,S〉/µX̃τ)

µ
(

∑τ∈D e−〈X̃τ,S〉/µ
)2 − ∑τ∈D e−〈X̃τ,S〉/µX̃τ

⊗
X̃τ

µ∑τ∈D e−〈X̃τ,S〉/µ
:= I + II ,

whereX
⊗

Sdenotes the tensor product of matricesX andS. We can estimate the termI as follows:

‖I‖ ≤

(
∑τ∈D e−〈X̃τ,S〉/µ‖X̃τ‖

)(
∑τ∈D e−〈X̃τ,S〉/µ‖X̃τ‖

)

µ
(
∑τ∈D e−〈X̃τ,S〉/µ

)2 ≤
1
µ

max
τ∈D
‖X̃τ‖

2,

where, in the above inequality, we used the fact that‖S
⊗

X‖ ≤ ‖X‖‖S‖ for any X,S∈ S
d. The

second termII can be similarly estimated:

‖II ‖ ≤max
τ∈D
‖X̃τ‖

2/µ.

Putting them together yields the desired result.

The pseudo-code to solve DML-eig is described in Table 1 which is a generalization of Frank-
wolfe algorithm (Frank and Wolfe, 1956) which originally applies to the context of minimizing a
convex function over a feasible polytope. Hazan (2008) first extended the original Frank-Wolfe
algorithm to solve SDP over the spectrahedronP = {M : M ∈ S

d
+,Tr (M) = 1}. Recall thatD is the

cardinality ofD, that is, the number of dissimilar pairs. Then, we have the following convergence
result.

9
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Lemma 5. For any0< µ≤ 1, let {Sµ
t : t ∈ N} be generated by the algorithm in Table 1 and Cµ be

defined in Lemma 4. Then we have that

max
S∈P

fµ(S)− fµ(S
µ
t+1)≤Cµα2

t +(1−αt)
(
max
S∈P

fµ(S)− f (Sµ
t )
)
.

Proof. By the definition ofCµ in Lemma 4, we have

fµ(S
µ
t+1)≥ fµ(S

µ
t )+αt〈∇ fµ(S

µ
t ),Zt−Sµ

t 〉−Cµα2
t . (20)

Since f is concave, for anyS∈ P there holds

〈∇ fµ(S
µ
t ),Zt−Sµ

t 〉 ≥ 〈∇ fµ(S
µ
t ),S−Sµ

t 〉 ≥ fµ(S)− f (Sµ
t ),

which implies that
〈∇ fµ(S

µ
t ),Zt−Sµ

t 〉 ≥max
S∈P

fµ(S)− fµ(S
µ
t ).

Substituting the above inequality into (20) yields the desired result.

For simplicity, letRt = maxS∈P fµ(S)− fµ(S
µ
t ). If αt ∈ (0,1] for any t ≥ t0 with somet0 ∈ N,

then by Lemma 5 and a simple induction, for anyt ≥ t0 there holds

Rt+1≤Cµ

t

∑
j=t0

t

∏
k= j+1

(1−αk)α2
j +

t

∏
j=t0

(1−α j)Rt0. (21)

Combining this inequality and some ideas in Ying and Zhou (2006), one can establish sufficient
conditions on the stepsizes{αt : t ∈ N} such that limt→∞ fµ(S

µ
t ) = minS∈P fµ(S).

Theorem 6. For any fixed µ> 0, let {Sµ
t : t ∈ N} be generated by the algorithm in Table 1. If the

step sizes satisfy that

∑
t∈N

αt = ∞, lim
t→∞

αt = 0, (22)

then
lim
t→∞

fµ(S
µ
t ) = max

S∈P
fµ(S).

The detailed proof of the above theorem is given in Appendix B. Typical examples of step sizes
satisfying condition (22) are{αt = t−θ : t ∈ N} with 0< θ ≤ 1. For the particular caseθ = 1, by
Lemma 5 we can prove the following result.

Theorem 7. For any0 < µ≤ 1, let {Sµ
t : t ∈ N} be generated by Table 1 with step sizes given by

{αt = 2/(t +1) : t ∈ N}. Then, for any t∈ N we have that

max
S∈P

fµ(S)− fµ(S
µ
t )≤

8maxτ∈D ‖X̃τ‖
2

µt
+

4lnD
t

. (23)

Furthermore,

max
S∈P

f (S)− f (Sµ
t )≤ 2µlnD+

8maxτ∈D ‖X̃τ‖
2

µt
+

8lnD
t

.

10
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Proof. It is easy to see, for anyS∈ P that

| f (S)− fµ(S)| ≤ µmax
u∈△

∑
τ∈D

(−uτ lnuτ)≤ µlnD.

Let S∗ = argmaxS∈P f (S) andSµ
∗ = argmaxS∈P fµ(S). Then, for anyt ∈ N,

maxS∈P f (S)− f (Sµ
t ) = [ f (S∗)− fµ(S∗)]+ [ fµ(S∗)−maxS∈P fµ(S)]

+[ fµ(S
µ
∗)− fµ(S

µ
t )]+ [ fµ(S

µ
t )− f (Sµ

t )]
≤ [ f (S∗)− fµ(S∗)]+ [ fµ(S

µ
∗)− fµ(S

µ
t )]+ [ fµ(S

µ
t )− f (Sµ

t )]
≤ 2µlnD+[ fµ(S

µ
∗)− fµ(S

µ
t )]

= 2µlnD+[maxS∈P fµ(S)− fµ(S
µ
t )].

Hence, it suffices to prove (23) by induction. Indeed, fort = 1, we have that

maxS∈P fµ(S)− fµ(S
µ
1) ≤ fµ(S

µ
∗)+µsupu∈△(∑τ∈D(−uτ lnuτ))

≤maxS∈P minu∈△∑τ∈D uτ〈X̃τ,S〉+µlnD
≤maxS∈P minu∈△∑τ∈D uτ‖X̃τ‖‖S‖+µlnD
≤minu∈△∑τ∈D uτ‖X̃τ‖+µlnD
≤minu∈△

[
∑τ∈D uτ +∑τ∈D uτ‖X̃τ‖

2
]
+µlnD

≤ 1+maxτ∈D ‖X̃τ‖
2+µlnD,

which obviously satisfies (23) witht = 1. Suppose the inequality (23) holds true for somet > 1.
Now by Lemma 5,

Rt+1 ≤Cµα2
t +(1−αt)Rt

≤
4Cµ

(t+1)2 +
t−1
t+1

(4Cµ

t + 4lnD
t

)

≤ 4(Cµ+ lnD)
(

1
(t+1)2 +

t−1
(t+1)t

)
≤

4(Cµ+lnD)
t+1 ,

where the second inequality follows from the induction assumption. This proves the inequality (23)
for all t ∈ N which completes the proof of the theorem.

By the above theorem, for anyε > 0, then µ = ε
4lnD and the iteration numbert ≥

64(1+maxτ∈D ‖X̃τ‖
2) lnD/ε2 yields that maxS∈P f (S)− f (Sµ

t ) ≤ ε. The time complexity of the
approximate first-order method for DML-eig is ofO

(
d2/ε2

)
.

3.2 Approximate Frank-Wolfe Algorithm for LMNN-eig

We can easily extend the above approximate Frank-Wolfe algorithm to solve the eigenvalue opti-
mization formulation of LMNN-eig (formulation (16) or (17)). To this end, let

f (S,ξ) = min
u∈△

∑
τ∈D

uτ
(
ξτ + 〈C̃τ,S〉

)
.

Then, problem (16) is identical to

max
{

f (S,ξ) : (1− γ)∑
τ

ξτ + γTr (S) = 1,S∈ S
d
+, ξ≥ 0

}
.

11



Y ING AND L I

Input:
· smoothing parameterµ> 0 (e.g., 10−5)
· tolerance valuetol (e.g., 10−5)
· step sizes{αt ∈ (0,1) : t ∈ N}

Initialization: Sµ
1 ∈ S

d
+ with Tr (Sµ

1) = 1 andξµ
1≥ 0

for t = 1,2,3, . . . do
· (Zµ

t ,β
µ
t ) = argmax

{
〈Z,∂Sfµ(S

µ
t ,ξ

µ
t )〉+ξ⊤∂ξ fµ(S

µ
t ,ξ

µ
t ) : Z ∈ S

d
+, ξ≥ 0

(1− γ)ξ⊤1+ γTr (Z) = 1
}

· (Sµ
t+1,ξ

µ
t+1) = (1−αt)(S

µ
t ,ξ

µ
t )+αt(Z

µ
t ,β

µ
t )

· if | fµ(S
µ
t+1,ξ

µ
t+1)− fµ(S

µ
t ,ξ

µ
t )|< tol thenbreak

Output: d×d matrixSµ
t ∈ S

d
+ and slack variablesξµ

t

Table 2: Approximate Frank-Wolfe Algorithm for LMNN-eig

In analogy to the smooth techniques applied to DML-eig, we approximatef (S,ξ) by the following
smooth function:

fµ(S,ξ) = min
u∈△

∑
τ∈D

uτ(ξτ + 〈C̃τ,S〉)+µ ∑
τ∈D

uτ lnuτ.

One can easily see that

fµ(S,ξ) =−µln
(
∑

τ∈T
e−(〈C̃τ,S〉+ξτ)/µ).

and its gradient function is given by

∇Sfµ(S,ξ) =
∑τ∈T e−(〈C̃τ,S〉+ξτ)/µC̃τ

∑τ∈T e−(〈C̃τ,S〉+ξτ)/µ
,

and
∂ fµ(S,ξ)

∂ξτ
=

e−(〈C̃τ,S〉+ξτ)/µ

∑τ∈T e−(〈C̃τ,S〉+ξτ)/µ
.

The approximate Frank-Wolfe algorithm for LMNN-eig is exactly the same as DML-eig in
Table 1. The pseudo-code is listed in Table 2. The key step of the algorithm isto compute the
following problem:

(Zµ
t ,β

µ
t ) = argmax

{
〈Z,∂Sfµ(S

µ
t ,ξ

µ
t )〉+ξ⊤∂ξ fµ(S

µ
t ,ξ

µ
t ) : Z ∈ S

d
+, ξ≥ 0

(1− γ)ξ⊤1+ γTr (Z) = 1
}
.

Equivalently, one needs to solve, for anyA∈ S
d andβ ∈ R

T , the following problem:

(Z∗,ξ∗) = argmax
{
〈Z,A〉+ξ⊤β : Z ∈ S

d
+, ξ≥ 0,(1− γ)ξ⊤1+ γTr (Z) = 1

}
. (24)

Let βmax = βτ∗ with τ∗ ∈ T andv∗ is the largest eigenvector ofA. Then, problem (24) is a linear
programming and its optimal value is either

max
{

ξ⊤β : (1− γ)ξ⊤1= 1,ξ≥ 0
}
=

βmax
1− γ

,

12
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or

max
{
〈Z,A〉 : γTr (Z) = 1,Z ∈ S

d
+

}
=

λmax(A)
γ

.

The optimal solution of problem (24) is given as follows. Ifλmax(A)
γ >=

βmax
1−γ , thenZ∗ = v∗(v∗)⊤

γ
wherev∗ is the largest eigenvector of matrixA andξ∗ = 0. Otherwise,Z∗ = 0 and theτ∗-th element
of ξ∗ equals 1

1−γ , that is, (ξ∗)τ∗ =
1

1−γ and the other entries ofξ∗ all zeros. In analogy to the

arguments for Theorem 7, for step sizes{αt =
2

t+1 : t ∈N} one can exactly prove the time complexity
of LMNN-eig isO(d2/ε2).

4. Related Work and Discussion

There is a large amount of work on metric learning including distance metric learning for k-means
clustering (Xing et al., 2002), relevant component analysis (RCA) (Bar-Hillel et al., 2005), max-
imally collapsing metric learning (MCML) (Goldberger et al., 2004), neighborhood component
analysis (NCA) (Goldberger et al., 2004) and an information-theoretic approach to metric learning
(ITML) (Davis et al., 2007) etc. We refer the readers to Yang and Jin (2007) for a nice survey on
metric learning. Below we discuss some specific metric learning models which areclosely related
to our work.

Xing et al. (2002) developed the metric learning model (2) to learn a Mahalanobis metric for
k-means clustering. The main idea is to maximize the distance between points in the dissimilarity
set under the constraint that the distance between points in the similarity set is upper-bounded. A
projection gradient method is employed to obtain the optimal solution. Specifically,at each iteration
the algorithm takes a gradient ascent step of the objective function and then projects it back to the
set of constraints and the cone of the p.s.d. matrices. The projection to the p.s.d. cone needs the
computation of the full eigen-decomposition with time complexityO(d3). The projection gradient
method usually takes a large number of iterations to become convergent. It is worth mentioning that
the metric learning model proposed in Xing et al. (2002) is a global method in thesense that the
model aggregates all similarity constraints together as well as all dissimilarity constraints. In con-
trast to Xing et al. (2002), DML-eig aims to maximize the minimal distance between dissimilar pairs
instead of maximizing the summation of their distances. Consequently, DML-eig would intuitively
force the dissimilar samples to be far more separated from similar samples. This intuition may
account for the superior performance of DML-eig which will be shown soon in the experimental
section.

Weinberger et al. (2005) developed a large margin framework to learn a Mahalanobis distance
metric for k-nearest neighbor (k-NN) classification (LMNN). The main intuition behind LMNN is
that k-nearest neighbors always belong to the same class while examples from different classes are
separated by a large margin. In contrast to the global method (Xing et al., 2002), LMNN is a local
method in the sense that only triplets from the k-nearest neighbors are used. Our method DML-eig
is a local method which only uses the similar pairs and dissimilar pairs from k-nearest neighbors.

Since everyM ∈ S
d
+ can be factored asM = AA⊤ for someA ∈ R

d×d, LMNN becomes an
unconstrained optimization problem with an unconstrained variableA. Weinberger et al. (2005)
used this idea and proposed to use the sub-gradient method to obtain the optimal solution. Since the
modified problem w.r.t. variableA is generally not convex, the sub-gradient method would lead to
local minimizers. For some special SDP problems, it was shown in Burer and Monteiro (2003) that

13
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such dilemma will not happen. Specifically, Burer and Monteiro (2003) considered the following
SDPs:

min
{

Tr (CM) : Tr (AiM) = bi , i = 1, . . . ,m,M ∈ S
d
+

}
. (25)

It was proved that ifA∗ is a local minimum of the modified problem:

min
{

Tr (CAA⊤) : Tr (AiAA⊤) = bi , i = 1, . . . ,m,A∈ R
d×d

}
,

thenM∗ = A∗(A∗)⊤ is a global minimum of the primal problem (25). However, since the hinge loss
is not smooth, it is unclear how their proof can be adapted to the case of LMNN.

Rosales and Fung (2006) proposed the following element-sparse metric learning for
high-dimensional data sets

min
M∈Sd

+

∑
t=(i, j,k)∈T

(1+x⊤i j Mxi j −x⊤k jMxk j)++ γ ∑
ℓ,k∈Nd

|Mℓk|. (26)

In order to solve the optimization problem, they further proposed to restrictM to the space of
diagonal dominancematrices which reduces formulation (26) to a linear programming problem.
Such a restriction would only result in a sub-optimal solution.

Shalev-Shwartz et al. (2004) developed an appealing online learning model for learning a Ma-
halanobis distance metric. In each time, given a pair of examples the p.s.d. distance matrix is
updated by a rank-one matrix which only needs the time complexityO(d2). However, since the
pairs of similarly labeled and differently labeled examples are usually of order O(n2), the online
learning procedure takes many rank-one matrix updates. Jin et al. (2009) established generalization
bounds for large margin metric learning and proposed an adaptive way to adjust the step sizes of
the online metric learning method in order to guarantee the output matrix in each step is positive
semi-definite. Since the pairs of similarity and dissimilarity are usually of orderO(n2) wheren is
the sample number, the online learning procedure generally needs many matrixupdates.

Shen et al. (2009) recently employed the exponential loss for metric learning which can be
written by

min
M∈Sd

+

∑
τ=(i, j,k)∈T

e〈Cτ,M〉+Tr (M),

whereT is the triplet set andCτ = (xi−x j)(xi−x j)
⊤− (x j−xk)(x j−xk)

⊤ for anyτ = (i, j,k) ∈ T .
A boosting-based algorithm called BoostMetric was developed which is based on the idea that
each p.s.d. matrix can be decomposed into a linear positive combination of trace-one and rank-
one matrices. The algorithm is essentially a column-generation scheme which iteratively finds the
linear combination coefficients of the current basis set of rank-one matrices and then update the
basis set of trace-one and rank-one matrices. The updating of rank-one and trace-one matrix only
involves the computation of the largest eigenvector which is of time complexityO(d2). However,
the number of linear combination for the p.s.d. matrix can be infinite and the convergence rate of
this column-generation algorithm is not clear.

Recently, Guillaumin et al. (2009) proposed a metric learning model with logistic regression
loss which is referred to as LDML. Promising results were reported in its application to face ver-
ification problems. LDML employed the gradient descent algorithm to obtain theoptimal solu-
tion. However, in order to reduce the computational time, the algorithm ignoredthe positive semi-
definiteness of the distance matrix which would only lead to a suboptimal solution.
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Data No. n d ♯class ♯ T ♯D

Wine 1 178 13 3 1134 378
Iris 2 150 4 3 954 315

Breast 3 569 30 2 3591 1197
Diabetes 4 768 8 2 4842 1614

Waveform 5 5000 21 3 3150 1050
Segment 6 2310 19 7 14553 4851
Optdigits 7 2680 64 10 24120 8040

Face 8 400 2576 40 2520 840
USPS 9 9298 256 10 58626 19542

Table 3: Description of data sets n is the number of samples and d is the dimensionality. For AT&T
face data set, we use PCA to reduce its dimension to 64.

5. Experiments

In this section we compare our proposed methodDML-eig andLMNN-eig with a few methods:
the method proposed in Xing et al. (2002) denoted byXing, LMNN (Weinberger et al., 2005)
and its accelerated versionmLMNN (Weinberger and Saul, 2008),ITML (Davis et al., 2007),
BoostMetric (Shen et al., 2009) and the baseline algorithm that uses the standard Euclidean distance
denoted byEuc. For all the data sets we have setk = 3 for nearest neighbor classification. The
trade-off parameters in ITML, LMNN and LMNN-eig are tuned via three-fold cross validation.
The smoothing parameter for DML-eig and LMNN-eig is set to beµ = 10−4 and the maximum
iteration for DML-eig, BoostMetric, LMNN-eig is set to be 103.

We first run experiments on 9 data sets, that is, 1) wine, 2) iris, 3) Breast-Cancer, 4) the Indian
Pima Diabetes, 5) Waveform, 6) Segment, 7) Optdigits, 8) AT&T Face data set2 and 9) USPS. The
statistics of data sets summarized in Table 3. All experimental results are obtained by averaging
over 10 runs (except 1 run for USPS due to its large size). For each run, we randomly split the data
sets 70% for training and 30% for test validation. We have used the same mechanism in Weinberger
et al. (2005) to generate training triplets. Briefly speaking, for each training point xi , k nearest
neighbors that have same labels asyi (targets) as well ask nearest neighbors that have different
labels fromyi (imposers) are found. Fromxi and its corresponding targets and imposers, we then
construct the set of similar pairsS (same labels) and the set of dissimilar pairsD (distinct labels),
and the set of tripletsT . As mentioned above, the original formulation in Xing et al. (2002) used all
pairwise constraints. We emphasize here, for fairness of comparison (especially the running time
comparison), that all methods including the Xing’s method used the same set ofsimilar/dissimilar
pairs generated locally as above.

Finally we will apply the developed models and algorithms on a large and challenging face
verification data set calledLabeled Faces in the Wild(LFW).3 It contains 13233 labeled faces of
5749 people, for 1680 people there are two or more faces. Furthermore, the data is challenging
and difficult due to face variations in scale, pose, lighting, background,expression, hairstyle, and
glasses, as the faces are detected in images in the wild, taken from Yahoo! News.

2. Data sets can be found athttp://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html.
3. Data set can be found athttp://vis-www.cs.umass.edu/lfw/index.html.
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Euc. Xing LMNN ITML BoostMetric DML-eig LMNN-eig

1 3.46(3.60) 4.04(4.00) 3.08(2.07) 1.15(2.07) 2.31(2.18) 1.35(1.30) 2.88(1.87)
2 5.11(2.58) 6.67(3.11) 4.22(1.95) 4.44(2.57) 3.56(2.52) 3.11(1.15) 4.00(2.30)
3 6.47(1.33) 8.18 (1.58) 5.35(1.43) 6.82(1.57) 3.82(1.55) 3.53(0.88) 4.94(1.28)
4 31.09(2.03) 32.09 (3.56) 29.70(3.20) 29.96(2.97) 26.78(2.12) 27.71(3.93) 31.13(2.24)
5 18.87(0.65) 16.43(1.00) 18.61(0.72) 15.94(0.83) 16.86(0.90) 15.33(0.80) 18.49(0.21)
6 5.61(0.92) 5.26(0.60) 3.69(0.70) 5.02(0.70) 4.21(0.48) 2.97(0.55) 3.61(0.83)
7 1.67(0.24) 1.57(0.28) 1.37(0.25) 1.46(0.29) 1.38(0.33) 1.45(0.22) 1.43(0.42)
8 6.67(1.67) 7.75(0.69) 2.08(1.53) 2.42(2.17) 2.25(1.25) 1.67(1.24) 1.67(1.76)
9 3.05 - 2.98 3.92 3.34 3.66 3.13

Table 4: Average test error (%) of different metric learning methods (standard deviation are in
parentheses). The best performance is denoted in bold type. The notation “–” means
that the method does not converge in a reasonable time.

data Xing LMNN/mLMNN ITML BoostMetric LMNN-eig DML-eig

1 1.00 0.87/1.01 4.63 0.49 0.30 0.23
2 2.41 0.57/0.62 3.56 0.10 0.92 0.43
3 3.08 2.71/0.75 4.54 2.04 3.71 3.18
4 2.45 1.73/1.03 3.95 0.20 6.78 0.03
5 231.33 8.83/5.54 7.83 11.36 36.95 1.45
6 109.13 1.73/4.25 61.55 9.06 5.06 1.76
7 59.24 24.81/15.92 37.42 93.73 86.38 2.67
8 182.56 5.54/1.50 40.38 60.31 18.42 2.58
9 – 723.49/454.21 726.88 694.84 572.04 52.48

Table 5: Average running time (seconds) of different methods. The notation “–” means that the
method does not converge in a reasonable time.

5.1 Generalization and Running Time

As we can see from Table 4, DML-eig consistently improves k-NN classification using Euclidean
distance on most data sets. Hence, learning a Mahalanobis metric from training data does lead
to improvements in k-NN classification. Also, we can see that DML-eig is competitive with the
state-of-the-art methods: LMNN, ITML and BoostMetric. Indeed, DML-eig outperforms other
algorithms on 5 out of 9 data sets. As expected, LMNN-eig performs similarly or slightly better
than LMNN since these two models are essentially the same. In Table 5, we list theaverage CPU
time of different algorithms. We can see that the method proposed in Xing et al.(2002) generally
needs more time since it needs the full eigen-decomposition of a matrix per iteration. DML-eig,
BoostMetric and LMNN are among the fastest algorithms while LMNN-eig is slower than LMNN
and mLMNN in most cases. The accelerated version mLMNN is faster than LMNN.

On the left-hand side of Figure 1, we plot the running time versus the reduced dimension by
principal component analysis (PCA) for AT&T data set. We can observe that LMNN, BoostMetric,
LMNN-eig and DML-eig are faster than ITML and Xing’s method. When the dimension is low,
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LMNN, BoostMetric, LMNN-eig and DML-eig are similar. As the dimension increases, DML-eig
and mLMNN are faster. On this data set, LMNN-eig runs slower than mLMNN. The reason could
be that mLMNN used the techniques of ball trees and employed only an activeset of triplets per
iteration. Our algorithms have not been combined with the techniques of ball trees and are imple-
mented in MATLAB and better improvements are expected if used in C/C++. On theright-hand side
of Figure 1, we also plot the test errors of various methods across different PCA dimensions. Al-
most every method performs better than the baseline method using the standardEuclidean distance
metric. DML-eig performs slightly better than other methods. We observe that, with increasing
PCA dimensions, DML-eig, BoostMetric and ITML yield relatively stable performance across dif-
ferent PCA dimensions. In contrast, the performance of other baseline methods such as LMNN and
Xing’s method varied as the PCA dimensions changed.
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Figure 1: Performance on AT&T Face data set. Left figure: running time (seconds) versus PCA
dimension. Right figure: test error (%) versus PCA dimension; the pink lineis the per-
formance of k-NN classifier (k= 3) using the standard Euclidean distance.

5.2 Application to Face Verification

In this experiment we investigate our proposed method (DML-eig) for faceverification. The task
of face verification is to determine whether two face images are from the same identity or not. It is
a highly active area of research and finds application in access control,image search, security and
many other areas. The large variation in lighting, pose, expression etc. ofthe face images poses
great challenges to the face verification algorithms. Inference that is based on the raw pixels of
the image data or features extracted from the images is usually unreliable as thedata show large
variation and are high-dimensional.

Metric learning provides a viable solution by comparing the image pairs based on the metric
learnt from the face data. Here we evaluate our new metric learning method using a large scale face
database—Labeled Faces in the Wild (LFW) (Huang et al., 2007). There are a total of 13233 images
and 5749 people in the database. These face images are automatically captured from news articles
on the web. Recently it has become a benchmark to test new face verificationalgorithms (Wolf
et al., 2008; Guillaumin et al., 2009; Wolf et al., 2009; Taigman et al., 2009; Pinto et al., 2011).
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The images we used are in gray scale and aligned in two ways. One is “funneled” (Huang et al.,
2007) and the other is “aligned” using a commercial face alignment softwareby Taigman et al.
(2009). These images are divided into ten folds where the subject identitiesare mutually exclusive.
In each fold, there are 300 pairs of images from the same identity and another 300 pairs of images
from different identities. We followed the standard procedure for training and test in the technical
report of Huang et al. (2007). The performance of the algorithms is evaluated by average (and
standard error of ) correct verification rate and the ROC curve of the 10-fold cross validation test.

We investigated several descriptors (features) from face images in this experiment. As for the
“funneled” images, we used SIFT descriptors computed at the fixed facial key-points (e.g., corners
of eyes and nose). These data are available from Guillaumin et al. (2009). We focus on the SIFT
descriptor to evaluate our algorithm as it provides a fair comparison to Guillaumin et al. (2009). To
compare with the state-of-the-art methods in face verification, we further investigated three types
of features for the “aligned” images: 1) raw pixel data by concatenating the intensity value of each
pixel in the image; 2) Local Binary Patterns (LBP) (Ojala et al., 2002); and3) LBP’s variation,
three-Patch Local Binary Patterns (TPLBP) (Wolf et al., 2008). The original dimensionality of the
features is quite high (3456∼ 12000) so we reduced the dimension using PCA. These descriptors
were tested with both their original value and the square root of them (Wolf et al., 2008, 2009;
Guillaumin et al., 2009).

There are two configuration for forming the training sets. One is “restrictedconfiguration”:
only same/not-same labels are used during training and no information about the actual names of
the people (class labels) in the image pairs should be used. In the past, most of the published work
on this data set using the restricted protocol (e.g., Guillaumin et al., 2009; Wolf et al., 2009; Pinto
et al., 2011). Another is “unrestricted configuration”: all available information including the names
of the people in the images can be used for training. So far there are only twopublished results on
the unrestricted configuration (Guillaumin et al., 2009; Taigman et al., 2009).Here we mainly focus
on the restricted configuration.

LMNN and BoostMetric are not applicable in this restricted configuration setting since they
need label information to generate the triplet set. Therefore, we only compared our DML-eig
method with LDML (Guillaumin et al., 2009) and ITML (Davis et al., 2007). For each of the
ten-fold cross-validation test, we use the data from 2700 pairs of images from the same identities
and another 2700 pairs of images from the different identities to learn a metric. Then test it using
the other 600 image pairs. The performance is evaluated using accurate verification rate .

Table 6 illustrates the performances of our algorithm and ITML and LDML. The best verifica-
tion rate of DML-eig is 81.27%. It outperforms LDML (77.50%) and ITML (76.20%) in their best
settings. Note that the performance of DML-eig is consistently better than LDML and ITML in
each PCA dimension.

By varying the dimension of principal components of the SIFT descriptor, the performance of
DML-eig of the 10-fold cross validation test is plotted in Figure 2. The best performance is achieved
when the dimension of principal components is 100. So we fix this dimension forSIFT feature in
the following experiment. As mentioned in Guillaumin et al. (2009), the peak performance in a
specific PCA dimension is due to the limit of training samples. The PCA dimension achieving the
best performance is 35 for LDML and 55 for ITML. This number for DML-eig is 100 which is larger
than that of both LDML and ITML. It shows that the DML-eig metric is less prone to overfitting
than both LDML and ITML.
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Method PCA Dim. Original Square Root

ITML 35 0.7537±0.0158 0.7627±0.0161
LDML 35 0.7660±0.0070 0.7750±0.0050

DML-eig 35 0.7742±0.0213 0.7793±0.0214

ITML 40 0.7618±0.0125 0.7643±0.0121
LDML 40 – –

DML-eig 40 0.7752±0.0198 0.7838±0.0195

ITML 55 0.7530±0.0185 0.7557±0.0187
LDML 55 0.7280±0.0060 0.7280±0.0040

DML-eig 55 0.7900±0.0189 0.7938±0.0163

ITML 100 0.7340±0.0250 0.7403±0.0216
LDML 100 – –

DML-eig 100 0.8055±0.0171 0.8127±0.0230

Table 6: Performance comparison on LFW database in the restricted configuration (mean verifica-
tion accuracy and standard error of the mean of 10-fold cross validationtest) with only
SIFT descriptors. “Square Root” means the features preprocessed by taking square root
before fed into metric learning method. The result of LDML is cited from Guillaumin
et al. (2009) where it was reported that the best result of LDML is achieved with PCA
dimension 35. Our result of ITML is very similar to that reported in Guillaumin et al.
(2009).

Method Accuracy

High-Throughput Brain-Inspired Features, aligned (Pinto et al., 2011)0.8813±0.0058
LDML + Combined, funneled (Guillaumin et al., 2009) 0.7927±0.0060

DML-eig + Combining four descriptors (this work) 0.8565±0.0056

Table 7: Performance comparison of DML-eig and other state-of-the-art methods in the restricted
configuration (mean verification rate and standard error of the mean of 10-fold cross val-
idation test) based on combination of different types of descriptors. The descriptors vary
in different study. The best result up to date is achieved using sophisticated large scale
feature search (Pinto et al., 2011).

Besides the SIFT descriptor, we also investigated to combine it with other threetypes of de-
scriptors aforementioned. Following Wolf et al. (2008); Guillaumin et al. (2009), we combine the
distance scores from 4 different descriptors using a linear Support Vector Machine (SVM). The
performance of DML-eig is compared to the other state-of-the-art methods inTable 7 and Figure
3. Note that each of these published results use its own learning technique and different feature
extraction approaches which makes the conclusion hard to draw.
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Figure 2: Performance of DML-eig, ITML and LDML metric by varying the dimension of the prin-
cipal components using SIFT descriptor. The result of LDML is copied from Guillaumin
et al. (2009).

The best result reported to date is 88.13% in restricted configuration which performs sophis-
ticated large scale feature search (Pinto et al., 2011). This work used multiple complimentary
representations which are derived through training set augmentation, alternative face comparison
functions, and feature set searches with a varying number of model layers. These individual feature
representations are then combined using kernel techniques. The resultsby other state-of-the-art
methods are also based on different descriptors (Guillaumin et al., 2009; Wolf et al., 2009). The
best result achieved by DML-eig is 85.65%, which is close to the other state-of-the-art approaches.
In addition, we note that the performance of DML-eig based on the single SIFT descriptor (81.27%
in Table 6) is better than that of LDML based on 4 types of descriptors (79.27% in Table 7). The
ROC curves of different methods are depicted in Figure 3. We can see that DML-eig outperforms
ITML and LDML while it is suboptimal to the best up-to-date method (Pinto et al., 2011) which,
however, employed sophisticated feature search method.

Finally, the performance of DML-eig metric may be further improved by exploring different
number of nearest neighbors and different types of descriptors such as those used in Pinto et al.
(2011), making it a competitive candidate for the task of face verification.
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Figure 3: ROC curve of DML-eig and other the state of arts methods for face verification on LFW
data set.

6. Conclusion

The main theme of this paper is to develop a new eigenvalue-optimization framework for metric
learning. Within this context, we first proposed a novel metric learning modelwhich was shown to
be equivalent to a well-known eigenvalue optimization problem (Overton, 1988; Lewis and Over-
ton, 1996). This appealing optimization formulation was further extended to LMNN (Weinberger
et al., 2005) and maximum margin matrix factorization (Srebro et al., 2004). Then, we developed
efficient first-order algorithms for metric learning which only involve the computation of the largest
eigenvector of a matrix. Their convergence rates were rigorously established. Finally, experiments
on various data sets have shown that our proposed approach is competitive with state-of-the-art met-
ric learning methods. In particular, we reported promising results on the Labeled Faces in the Wild
(LFW) data set.

In future we will exploit the extension of the above eigenvalue optimization framework to other
machine learning tasks such as spectral graph cuts and semi-definite embedding (Weinberger et al.,
2004). Another direction for investigation is to develop a kernelized version of DML-eig using the
techniques in Jain et al. (2010). Finally, we will also investigate the performance of our methods
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on the LFW data set in the unrestricted configuration setting, and embed the technique of ball trees
(Weinberger and Saul, 2008) into our algorithms to further increase the computational speed.
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Appendix A. Eigenvalue Optimization for Maximum-margin Matri x Factorization

Another important problem is low-rank matrix completion which recently has attracted much atten-
tion. This line of research involves computing a large matrix with a nuclear-norm (summation of
singular values) regularization and the optimization problem here also consists of an SDP. Such tasks
include multi-task feature learning (Argyriou et al., 2006) and low-rank matrix completion (Bach,
2008; Candes and Recht, 2008; Srebro et al., 2004). It has successful applications to collaborative
filtering for predicting customers’ preferences to products, where the matrix’s rows and columns
respectively identify the “customers” and “products”, and a matrix entry encodes customers’ pref-
erence of a product (e.g., Netflix data set,http://www.netflixprize.com/).

Similar eigenvalue optimization formulation can be developed for maximum-margin matrix
factorization (MMMF) for collaborative filtering (Srebro et al., 2004). Given a partially labeled
Yia ∈ {±1} with ia ∈ S, the target of MMMF is to learn a large matrixX ∈ R

m×n where each entry
Xia indicates the preference of the customeri for producta. The following large margin model was
proposed in Srebro et al. (2004) to learnX:

minX ∑ia∈Sξia + γ‖X‖∗
s.t. 1−YiaXia ≤ ξia,

ξia ≥ 0, ∀ia ∈ S,

where‖X‖∗ is the nuclear norm ofX, that is, the summation of its singular values. The above model
was further formulated as an SDP problem:

minM γTr (M)+∑ia∈Sξia

M =
( A X

X⊤ B

)
∈ S

(m+n)
+ ,

YiaXia +ξia ≥ 1, ∀ia ∈ S.

(27)

Let ei be a column vector with itsi-th element one and all others zero, then we haveMi(m+a) =Xia =

〈Cia,M〉 with Cia = eie⊤(m+a). Consequently, the constraint condition in problem (27) can be written
as minia∈S〈Yia,Cia〉+ ξia ≥ 1. Using exact arguments for proving Theorem 3, we can formulate
MMMF as an eigenvalue optimization problem.

Theorem 8. MMMF formulation (27) is equivalent to

max
{

min
u∈△

∑
ia∈S

uia
(
ξia + 〈YiaCia,M〉

)
: ξ⊤1+ γTr (M) = 1,M ∈ S (m+n)

+ , ξ≥ 0
}
.
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In particular it is equivalent to the following eigenvalue optimization problem:

min
u∈△

max
(

umax,
1
γ

λmax
(
∑
ia∈S

uiaYiaCia
))

. (28)

As mentioned above, MMMF (27) is a standard SDP. Indeed, Srebro et al. (2004) proposed to
employ standard SDP solvers (e.g., CSDP Borchers, 1999) to obtain the optimal solution. However,
such generic solvers are only able to handle problems with about a hundredusers and a hundred
items. The eigenvalue-optimization formulation potentially provides more efficientalgorithms for
MMMF. Since the paper mainly focuses on metric learning, we leave its empiricalimplementation
for future study.

Appendix B. Proof of Theorem 6

In this appendix we give the proof of Theorem 6. The spirit of the proofis very close to that
of Theorem 1 in Ying and Zhou (2006) where similar conditions on step sizeswere derived to
guarantee the convergence of stochastic online learning algorithms in reproducing kernel Hilbert
spaces.

Proof of Theorem 6.According to the assumption (22) on the step size, we can assume that, for
any t ≥ t0, thatαt ≤ 1/2. Hence, the inequality (21) holds true. We will estimate the terms on the
left-hand side of (21) one by one.

For the second term on the righthand side of (21), observe that∏t
j=t0(1 − α j) ≤

exp
{
−∑t

j=t0 α j
}
→ 0 ast → ∞. Therefore, for anyε > 0 there exists somet1 ∈ N such that the

second term on the righthand side of (21) is bounded byε whenevert ≥ t1.
To deal with the first term on the righthand side of (21), we use the assumption lim j→∞ α j = 0

and know that there exists somej(ε) such thatα j ≤ ε for every j ≥ j(ε). Write

t

∑
j=t0

α2
j

t

∏
k= j+1

(1−αk) =
j(ε)

∑
j=t0

α2
j

t

∏
k= j+1

(1−αk)+
t

∑
j= j(ε)+1

α2
j

t

∏
k= j+1

(1−αk). (29)

Since j(ε) is fixed, we can find somet2 ∈ N such that for eacht ≥ t2, there holds∑t
j=t(ε)+1 α j ≥

∑t2
j= j(ε)+1 α j ≥ log j(ε)

4ε . It follows that for each 1≤ j ≤ j(ε), there holds∏t
k= j+1(1− αk) ≤

exp
{
−∑t

k= j+1 αk
}
≤ exp

{
−∑t

k= j(ε)+1 αk
}
≤ 4ε

j(ε) . This in connection with the boundα j ≤ 1/2
for eachj ≥ t0 tells us that the first term of (29) is bounded as

t(ε)

∑
j=t0

α2
j

t

∏
k= j+1

(1−αk)≤
4ε
j(ε)

j(ε)

∑
j=t0

α2
j ≤ ε.

The second term on the righthand side of (29) is dominated byε∑t−1
j= j(ε)+1 α j ∏t

k= j+1(1−αk).
Noting the fact thatα j = 1− (1−α j) implies

t

∑
j= j(ε)+1

α j

t

∏
k= j+1

(1−αk) =
t

∑
j= j(ε)+1

[ t

∏
k= j+1

(1−αk)−
t

∏
k= j

(1−αk)
]

=
[
1−

t

∏
k= j(ε)+1

(1−αk)
]
≤ 1.
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Therefore, whent ≥ max{t1, t2}, combining the estimation with inequality (21), we haveRt+1 ≤
(1+Cµ)ε. This proves the theorem.
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