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Abstract

The main theme of this paper is to develop a novel eigenvaitimmization framework for learning
a Mahalanobis metric. Within this context, we introduce aeglonetric learning approach called
DML-eigwhich is shown to be equivalent to a well-known eigenvalugnagation problem called
minimizing the maximal eigenvalue of a symmetric matrix €@ren, 1988; Lewis and Overton,
1996). Moreover, we formulateMNN (Weinberger et al., 2005), one of the state-of-the-art imetr
learning methods, as a similar eigenvalue optimizatiorbler. This novel framework not only
provides new insights into metric learning but also opens agenues to the design of efficient
metric learning algorithms. Indeed, first-order algorithane developed for DML-eig and LMNN
which only need the computation of the largest eigenvedtarroatrix per iteration. Their conver-
gence characteristics are rigorously established. Vamgaperiments on benchmark data sets show
the competitive performance of our new approaches. In iaddive report an encouraging result
on a difficult and challenging face verification data setazhllabeled Faces in the Wild (LFW).

Keywords: metric learning, convex optimization, semi-definite paogming, first-order methods,
eigenvalue optimization, matrix factorization, face fiedtion

1. Introduction

Distance metrics are fundamental concepts in machine learning since & phojee of a metric
has crucial effects on the performance of both supervised and emisgd learning algorithms.
For example, the k-nearest neighbor (k-NN) classifier depends dstande function to identify
the nearest neighbors for classification. The k-means algorithm depenthe pairwise distance
measurements between examples for clustering, and most information tetreth@ds rely on a
distance metric to identify the data points that are most similar to a given quergniie learning
a distance metric from data has been actively studied in machine learningii{det al., 2005;
Davis et al., 2007; Goldberger et al., 2004; Rosales and Fung, 2866;e8 al., 2009; Torresani and
Lee, 2007; Weinberger et al., 2005; Weinberger and Saul, 2008;eXialg, 2002; Ying et al., 2009).
These methods have been successfully applied to many real-world applidatimains including
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information retrieval, face verification, image recognition (Chopra et aD52Guillaumin et al.,
2009; Hoi et al., 2006) and bioinformatics (Kato and Nagano, 201Q;e¢ex., 2007).

Most metric learning methods attempt to learn a distance metric from side infornvétich
is often available in the form of pairwise constraints, that is, pairsmoflar data points and pairs
of dissimilardata points. The information of similarity or dissimilarity between a pair of examples
can easily be collected from the label information in supervised classific&@rexample, we can
reasonably let two samples in the same class be a similar pair and samples in toedastaes be a
dissimilar pair. In semi-supervised clustering, a small amount of knowledgaikble concerning
pairwise (must-link or cannot-link) constraints between data items. This sideriafion delivers
the message that a must-link pair of samples is a similar pair and a cannot-linkadegmilar
pair. A common theme in metric learning is to learn a distance metric such that thecdibtween
similar examples should be relatively smaller than that between dissimilar exarfitesugh the
distance metric can be a general function, the most prevalent one is tladviahis metric defined
by dw (Xi,Xj) = /(X% —X;) TM(x — Xj) whereM is a positive semi-definite (p.s.d.) matrix.

In this work we restrict our attention to learning a Mahalanobis metrickfoearest neigh-
bor (k-NN) classification. However, the proposed methods below csitydre adapted to metric
learning for semi-supervised k-means clustering. Our main contributiomisswized as follows.
Firstly, we introduce a novel approach callBdiL-eig mainly inspired by the original work of
Xing et al. (2002). Although our ultimate target is similar to theirs, our methodsasentially
different. In particular, we can show our approach is equivalent telitkmown eigenvalue op-
timization problem calledninimizing the maximal eigenvalue of a symmetric mafrewis and
Overton, 1996; Overton, 1988). We further show that the abovel mptenization formulation can
also be extended to LMNN (Weinberger et al., 2005) and low-rank matborfiaation for collab-
orative filtering (Srebro et al., 2004). Secondly, in contrast to the fgktredecomposition used
in many existing approaches to metric learning, we will develop novel appeatg semi-definite
programming (SDP) algorithms for DML-eig and LMNN which only need the cotation of the
largest eigenvector of a matrix per iteration. The algorithms combine antbgabe Frank-Wolfe
algorithm (Frank and Wolfe, 1956; Hazan, 2008) and Nesterov's grimgptechniques (Nesterov,
2005). Finally, its rigorous convergence characteristics will also béledtad, and experiments
on various UCI data sets and benchmark face data sets show the competiid our new ap-
proaches. In addition, we report an encouraging result on a chadtgfare verification data set
called Labeled Faces in the Wild (Huang et al., 2007).

The paper is organized as follows. In Section 2, we propose our npvoagh (DML-eig)
for distance metric learning and show its equivalence to the well-known\gigenoptimization
problem. In addition, a generalized eigenvalue-optimization formulation willgtebéshed for
LMNN and low-rank matrix factorization for collaborative filtering (Sreletaal., 2004). In Section
3, based on eigenvalue optimization formulations of DML-eig and LMNN, weidg novel first-
order algorithms. Their convergence rates are successfully establiSextion 4 discusses the
related work. In Section 5, our proposed methods are compared with teeo§tine-art methods
through extensive experiments. The last section concludes the paper.

2. Metric Learning Model and Equivalent Formulation

We begin by introducing useful notations. 8L = {1,2,...,n} for anyn € N. The space of
symmetricd timesd matrices will be denoted b§® and the cone of p.s.d. matrices is denoted by
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S¢. For anyX,Y € R%", we denote the inner product §f by (X,Y) := Tr(XTY) whereTr (-)
denotes the trace of a matrix. The standard norm in Euclidean space tediéyq - ||.

Throughout the paper, the training data is givenzoy= {(X,yi) : i € Np} with input x =
(X, %2, .. ,xid) € RY, class labey; (not necessary binary) and later on we use the convejjon
(% —Xj)(% —x;)T. Then, for anyM € S4, the associated Mahalanobis distance betwgandx;
can be written aslig; (i, xj) = (X — Xj) TM(x —X;) = (Xij,M). Let S index the similar pairs an®h
index the dissimilar pairs. For instance(Xf,x;) is a similar pair we denote it by= (i, j) € S, and
write Xjj asX; for simplicity.

Given a set of pairwise distance constraints, the target of metric learntodfiisd a distance
matrix M such that the distance between the dissimilar pairs is large and the distaneerée
similar pairs is small. There are many possible criteria to realize this intuition. Ouelrisoghainly
inspired by Xing et al. (2002) where the authors proposed to maximize thefdistances between
dissimilar pairs, while maintaining an upper bound on the sum of squaredabstbatween similar
pairs. Specifically, the following criterion was used in Xing et al. (2002):

MaXyecsd 3 (i,j)en M (X, X))

1
st Yijesda(ix) <1

An iterative projection method was proposed to solve the above problemevéowvit usually takes
a long time to converge and the algorithm needs the computation of the full éegemposition of
a matrix in each iteration.

In this paper, we propose to maximize the minimal squared distances betwsienildispairs
while maintaining an upper bound for the sum of squared distances betmeiar pairs, that is,

MaXycss  MiNG j)en di (%, X))

)
S.t. Z(Lj)é.s d,\ZA(Xi,Xj) <1
Now, letXs =3 (i j)es Xij we can rewrite problem (2) as follows:
MaXycsa  MiNien(Xe, M) 3)
st (Xs,M)<1.

This problem is obviously a semi-definite programming (SDP) since it is elguit/to

ma)?\/leSi t
s.t. (Xe,M) >t, Vi=(i,]) € D,
<X5>M> <1l

In contrast to problem (1), the objective function and the constraintg iaré3inear with respect to
(w.r.t.) M. As shown in the next subsection, this simple but important propptays a critical role
in formulating problem (2) as an eigenvalue optimization problem. This equivEdemulation is
key to the design of efficient algorithms in Section 3.

The generation of the pairwise constraints plays an important role in leaanmirggric. If labels
are known then the learning setting is often referred to as supervised theetming which can

1. One might consider replacing the objectiug j)c» dm (X, Xj) in problem (1) by (; j)ep d2,(xi,x;j). This would also
lead to a simple linear constraint and linear objective function. Howesenemtioned in Xing et al. (2002), it would
result inM always being rank 1 (i.e., the data are always projected onto a line).
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further be divided into two categories: tigdobal metric learningand thelocal metric learning
The global approach learns the distance metric in a global sense, thasasisty all the pairwise
constraints simultaneously. The original model in Xing et al. (2002) is a ghobthod which used
all the similar pairs (same labels) and dissimilar pairs (distinct labels). The dpgabach is to
learn a distance metric only using local pairwise constraints which usuallgidaims the global
methods as observed in many previous studies. This is reasonable inehef teerning a metric
for the k-NN classifiers since k-NN classifiers are influenced most bgldteeitems that are close to
the test/query examples. Since we are mainly concerned with learning a mekiblfo classifier,
the pairwise constraints for DML-eig are generated locally, that is, the sidigaimilar pairs are
k-nearest neighbors. The details can be found in the experimentalrsectio

2.1 Equivalent Formulation as Eigenvalue Optimization

In this section we establish a min-max formulation of problem (3), which is findlbyws to be
equivalent to an eigenvalue optimization problem cattédimizing the maximal eigenvalue of sym-
metric matricegLewis and Overton, 1996; Overton, 1988).

For simplicity of notation, for anX € S%, we denote its maximum eigenvalue Xfe S9 by
Amax(X). Let D be the number of dissimilar pairs and the simplex is denoted by

A={UeR”: k>0, Y u=1}.

€D

We also denote thgpectrahedrory
P={McS?:Tr(M)=1}.

Now we can show problem (3) is indeed an eigenvalue optimization problem.

Theorem 1. Assume that Xis invertible and, for any € D, Iet)N(T = X;l/ZXTXS_l/Z. Then, problem

(3) is equivalent to the following problem

maxmin ' u (X, S), (4)
SeP ue )

which can further be written as an eigenvalue optimization problem:

minmax( S U X, S = minA ( u)~<). 5
UEAS€T<TEZDTT > UeA maxTGZDrr ()

Proof. LetM* be an optimal solution of problem (3) aitt = % Then, we haveXs, M*> =1
and 7

min(Xg, M*) = min(Xg, M*) /(Xs,M*) > min(X;, M*),

€D €D €D
since(Xs,M*) < 1. This implies thatM* is also an optimal solution. Consequently, problem (3) is
equivalent to, up to a scaling constant,

arg max{mi1r)1<XT,M> i (Xs,M) =1}, (6)

Mesd 1€

Noting that miRcp (X, M) = mingea S1ep U (X, M), the desired equivalence between (4) and (3)

follows by changing variabl&= X;/ZMX}/2 in formulation (6).
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Also, note from Overton (1988) that maxy(X,M) = Amax(X). By the min-max theorem,
problem (4) can further be written by a well-known eigenvalue optimizatioblpm:

minmax( S U X;,M) = minAm x( u)?).
ueAMeLP<TGZD R > uep a reZ@ o

This completes the proof of the theorem. O

The problem of minimizing the maximal eigenvalue of a symmetric matrix is well-knowalwh
has important applications in engineering design, see Overton (1988is bed Overton (1996).
Hereafter, we refer to metric learning formulation (3) (equivalently (4pdy asDML-eig.

We end this subsection with two remarks. Firstly, Theorem 1 assumeX ¢lginvertible. In
practice, this can be achieved by enforcing a small ridge to the diagotia¢ ahatrixXs, that is,
Xs +— Xs + &l4 wherel g is the identity matrix an@d > 0 is a very small ridge constant. Without
loss of generality, we assume th&t is positive definite throughout the paper. Secondly, when the
dimensiond of the input space is very large, the compu'&ettior)(@a/2 could be time-consuming.
Instead of directly inverting the matrix, one can use the Cholesky decompositiich is faster and
numerically more stable. Indeed, the Cholesky decomposition tells uXghat_LL ™ whereL is a
lower triangular matrix with strictly positive diagonal entries. Hence, in (6ca letS= LML
(i.e.,M = (L71)TSLY) and Theorem 1 still holds true if we redefine, for an (i, j) € D, that
Xe = (L72(x —xj))(L~X(x —x;)) . Therefore, it suffices to compufe—2x; : i € Ny} which can
efficiently be obtained by solving linear system of equations (e.g., usinggletonL \ X in
MATLAB).

2.2 Eigenvalue Optimization for LMNN

Weinberger et al. (2005) proposed the large margin nearest neiglalssification (LMNN) which is
one of the state-of-the-art metric learning methods. In analogy to the abgument for DML-eig,
we can also formulate LMNN as a generalized eigenvalue optimization problem.

Formulation (3) used the pairwise constraints in the form of similar/dissimilar.gaicentrast,
LMNN aims to learn a metric using the relative distance constraints which asergesl in the form
of triplets. With a little abuse of notation, we denote a triplettby (i, j, k) which means tha; is
similar tox; andx; is dissimilar toxc. Then, denote the set of triplets Bywhich can be specified
based on label information (e.g., see Section 5). Given & s&similar pairs and a sef of triplets,
the target of LMNN is to learn a distance metric such that k-nearest neaighbvays belong to the
same class while examples from different classes are separated bg anagn. In particular, let
Xs = ¥ (i.j)es (X —Xj) (% —xj)" andCr = Xjk — Xij, then LMNN can be rewritten as

minM,E (1Y) Steq & +YTr (XsM)
Mesd & >0, vi=(i,j,k €T,

wherey € [0, 1] is a trade-off parameter.

Let T be the number of triplets, that is, the cardinality of the tripletBeiVe can establish the
following equivalent min-max formulation of LMNN. A similar result with a quite @ifént proof
has also been given in Baes andrgisser (2009) for a certain class of SDP problems.
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Lemma 2. LMNN formulation (7) is equivalent to

max {min(&; + (Ce, M)) 1 YTr (XsM) + (1) § & = 1}. ®)
MeStEg>0" T T

Proof. Write the LMNN formulation (7) as

minMﬁ (1—-Y) Steq & +YTr (XsM)
st (C,M)+& >1, (9)
Mesd & >0, vi=(i,j,k €7

The condition thatC;,M) + &; > 1 for anyt € 7 is identical to miRc+(C;,M) +&; > 1. Hence,
problem (7) is further equivalent to

miny ¢ (1_ Y) Steq & +YTr (XsM)
st min_;jker(C,M)+& > 1, (10)
Mestg>o0.

Since the objective function and the constraints are linear w.r.t. vari&blg), the optimal solution
for (10) must be attained on the boundary of the feasible domain, that is, mMigcs (Ci, M) +-& =
1. Consequently, problem (10) is identical to

miny, ¢ (1f Y) Srer & +YTr (XsM)
st min_gjker(C,M) +& =1, (11)
Mesd g>o0.

LetQ = {(M,&) : min._(; j er (Cr,M) + & > 0,M € S, > 0}. We first claim that (11) is equiv-

alentto
min{ (1—Y) Srer & + YT (XsM)
M.g minT:(i,j,k)E'T<CI’ M) +&
To see this equivalence, Igt be the optimal value of problem (11) apd be the optimal value of
problem (12). Suppose thdM*,£*) be an optimal solution of problem (12). L& =
Mine_ij ke (Co, M*) + & and denotéM*,€*) = (M*/3*,&"/&). Then, for anyM € S andg >0
satisfying miR_ j ke (Ci, M) +& =1,

S (M, ) EQ}. (12)

_ () Sreq &Y T (XsM) _ (1Y) Freq E4YTT (XsM¥)
(1-y) Zrer & VIV (XsM) = minr:(ijzer@n'\/l)vfﬁx ZPp= minr:(i.Ti)e‘Z‘(QvM*>iE?

=(1-y) Zreifé +yTr (XSM*) > @,

where the last inequality follows from the fact that Rip j ez (Cr, M*) +E§‘ = 1. Since the above
inequality holds true for anyl € S¢ andg > 0 satisfying mMiR_ j ke (Cr,M) +& = 1, we finally
get thatg; > @ > @, that is,q = @ and, moreove(l\ﬁ*,&*) is an optimal solution of problem
(11). This completes the equivalence between (11) and (12).

Now, rewrite problem (12) as

min
M,&

{< min_ j er (Ci, M) + &
(

1
1_V)ZT6TET+VTr(XSM)> :(M7E)€Q},

6
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which is further equivalent to
{ ming_ jyer (Cr, M) +&
(1=Y) Seq & +YTr (XsM)

Using exactly the same argument of proving the equivalence betweearfd@di12), one can show
that the above problem (13) is equivalent to

:(M,E)EQ}. (13)

mM%X{r:(m,iQeT<Q’M> & (1Y) T;ET +YTr (XsM) =1,(M,§) € Q}. (14)

Now consider problem (14) without the restrictigv, §) € Q, that is,

max{  min M (1- Tr(XsM)=1,MeS?, £>0}. 15
nax{,_min_,(CoM)+&: (1Y) 3 EryTrOM) LM est 22 0p. (15)
LetM = OandET ) for any 1 which obviously satisfies the restriction condition of problem
(15), that is(1— y)zre{réT yTr (XsM) = 1. Then,

max g { it j e (Ce. M) +& : (1-Y) Trer & +YTT (XM) = LM € 84, & > 0}
2minT(]k€T<Cf M>+Er )T>O

which means that any optimal solution for problem (15) automatically satidfie§) < Q. Con-
sequently, problem (15) is equivalent to (14). Combining this with the etprice between (11),
(12), (13) and (14) finally yields the equivalence between problemdid the primal formulation
(7) of LMNN. This completes the proof of the lemma. O

Using the above min-max representation for LMNN, it is now easy to refotiewsNN as a
generalized eigenvalue optimization as we will do below. With a little abuse of notatmote the
simplex byA = {UERT : Sicq Uy =1, U > 0}.

—1/2 ,—1/2

Theorem 3. Assume that Xis invertible and, for any € 7, letC; = X "G X, 7. Then, LMNN
is equivalent to the following problem
{mln Z U (& + Q,S}) C(1-y)E14yTr (9 =1,Ses?, &> 0}, (16)

€T

wherel is a column vector with all entries one. Moreover, it can further be writtea generalized
eigenvalue optimization problem:

. 1 1 ~
umelg max<ﬂuma)@ v)\max(rezf UTC[)>, a7

where ynaxis the maximum element of the vectoy: 1€ 7).
Proof. Note that min_ ; ez ((Cr,M) +&;) = Mingea U ((Cr,M) +-&;) . Combing this with Lemma
2 implies that LMNN is equivalent to

na max{min 3" uc (& + (Ce,M)) : (1-Y)E 1+VTr (%M) =1,M €54, € > 0}

€D
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LettingS= Xl/zMxl/2 yields the equivalence between (8) and (16).
By the min-max theorem, problem (16) is equivalent to
mig{max U (& + (G, 9) : (1—y)E 1+yTr (9 =1,Se 8¢, & > o}. (18)
ue

SE €D

To see the equivalence between (18) and (17), observe that

max{zTE@uT(ET + <C~3T,S>) C(L-y)ET1+yTr(S)=1,S€s9, &> 0}
_ max{ﬁ T wE+EH(Y wC. g 14 Tr(5) =158, £> o}
€D €D _
= maX(ﬁUmax, yAmax( Y UrCr)>a
€D

where the last equality follows from the fact that the above maximization prolde linear pro-
gramming w.r.t. (S &) and, for anyA € S, max{(A,;B) : B€ S, Tr(B) < 1} = Amax(A). This
completes the proof of the theorem. O

Since we have formulated LMNN as an eigenvalue optimization problem in thedbeorem,
hereafter we refer to formulation (16) (equivalently (17))LA4NN-eig. The above eigenvalue
optimization formulation is not restricted to metric learning problems. It can be@eteto other
machine learning tasks if their SDP formulation is similar to that of LMNN. Maximumeginar
matrix factorization (Srebro et al., 2004) is one of such examples. Its\gilyeEnoptimization
formulation can be found in Appendix A.

3. Eigenvalue Optimization Algorithms

In this section we develop efficient algorithms for solving DML-eig and LMRIY. We can di-

rectly employ the entropy smoothing techniques (Nesterov, 2007; BaeBiagdsser, 2009) for
eigenvalue optimization which, however, needs the computation of the full-eigeomposition per
iteration. Instead, we propose a new first-order method by developthganbining the smooth-
ing technigues (Nesterov, 2005) and Frank-Wolfe algorithm (Fradk/emife, 1956; Hazan, 2008),
which will only involve the computation of the largest eigenvector of a matrix.

3.1 Approximate Frank-Wolfe Algorithm for DML-eig
By Theorem 1, DML-eig is identical to problem:

f(S X 1
T = mqp 3wl @)

To this end, for a smoothing parameger 0, define

fu(S = m|n Z U (X, S) + 1 z Ue INUy.
re@ 1D
We use the smoothed problem rgax f,(S) to approximate problem (19).
It is easy to see that B
fu(S) = _p_ln( Z e‘(XTyS)/U)7
€D

8
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Input:
- smoothing parametgr> 0 (e.g., 10°)
- tolerance valugol (e.g., 10°)
- step sizeda; € (0,1) :t € N}
Initialization: S} € S with Tr(S)) =1
fort=1,2,3,...do
-zt =argmax{ fu(S) +(Z,0fu(F)) : Ze 4, Tr(Z) =1}, thatis,zt' = w'
wherev is the maximal eigenvector of matrixfy, (')
Fy = (1-a) g + ozt
i [fu(S 1) — fu(S)| < tol thenbreak
Output: d x d matrixs' € S¢

Table 1: Approximate Frank-Wolfe Algorithm for DML-eig

and - ~
_ ZTED e*<XT-,S>/UXT

zTea)e—<>~<nS>/u '
Sincef, is a smooth function, we can prove that its gradient is Lipschitz continuous.

01y

Lemma4. Forany §,$ € P, then

10fu(S) - RS <GS - S,
where G = 2maxco || X |2/
Proof. It suffices to sed/12f,(S)|| < 2maxeyp [|%:||2/1 To this end,

sz (S) — (ZTeDeiozT’S)/u)?r)®(Zte'De;<)~(T’S)/u)?r) _ ZTeDeiozTS/B)?T@)zT =+
" u(zm@e*O?LS)/u) HY rep e KuS/H ’

whereX @ Sdenotes the tensor product of matrieeandS. We can estimate the terhas follows:

e‘(XhS)/U X e‘OzT’SV“ X v
21eD [ TH)(zje@ . I TH) < }maXHXrHZ,
U(Zre@e%xﬂsvu) Hen

where, in the above inequality, we used the fact #f8® X|| < ||X||||S| for any X,Se S4. The
second ternil can be similarly estimated:

i<

1]} < max||X1?/m
€D

Putting them together yields the desired result. O

The pseudo-code to solve DML-eig is described in Table 1 which is a giézagion of Frank-
wolfe algorithm (Frank and Wolfe, 1956) which originally applies to the cxndé minimizing a
convex function over a feasible polytope. Hazan (2008) first extbtige original Frank-Wolfe
algorithm to solve SDP over the spectrahedfos {M : M € S4,Tr (M) = 1}. Recall thaD is the
cardinality of D, that is, the number of dissimilar pairs. Then, we have the following coenesy
result.
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Lemma 5. For any0 < u< 1, let {§': t € N} be generated by the algorithm in Table 1 andde
defined in Lemma 4. Then we have that

2
rge%xf“(S) — fu(§) < Cuaf + (1—0‘0(@6%”;1(5) - f(d)).
Proof. By the definition ofC, in Lemma 4, we have

fu(3u+1) > fu(gtl) + a0 fu(Su)aZt -9)- Cuo‘t2~ (20)

Sincef is concave, for ang € P there holds

(Ofu(d),z— &) > (Of(),5-F) = fu(9 — (),

which implies that

(Ofu(S), 2 - ) > maxfy(S) - fu(g).
Substituting the above inequality into (20) yields the desired result. Ol

For simplicity, letR = maxso f,(S) — fp(§). If or € (0,1] for anyt > tp with sometp € N,
then by Lemma 5 and a simple induction, for dny tg there holds

t

t t
Ri1<Ciy ] (1—Gk)a12+|_!(1_aj)Rto- (21)
j+1 j=to

j=tok=

Combining this inequality and some ideas in Ying and Zhou (2006), one capligistaufficient
conditions on the stepsizés : t € N} such that lin,e fu(§') = minsce fu(S).

Theorem 6. For any fixed > 0, let {S': t € N} be generated by the algorithm in Table 1. If the
step sizes satisfy that

O = oo, lima; =0, (22)

teN tve
then
fim (<) = maxfy(s).
The detailed proof of the above theorem is given in Appendix B. Typixatgples of step sizes

satisfying condition (22) aréo; =t~9:t € N} with 0 < 8 < 1. For the particular casg= 1, by
Lemma 5 we can prove the following result.

Theorem 7. For any0 < pu< 1, let {§':t € N} be generated by Table 1 with step sizes given by
{ay =2/(t+1) :t € N}. Then, for any £ N we have that

_ 8maxcyp %2 N 4InD.

maxfy(S) — fu(§) <

SeP pt t (23)

Furthermore,

8maxcp || X2 8InD
— < .
rge%xf(S) f(§) <2uinD+ ™ +—

10
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Proof. Itis easy to see, for ange P that

(S — fu(S)| < umaxz —UcInu) < pinD.
UEA ED

LetS. = argmaxc f(S) andS' = argmax.» f,(S). Then, for anyt € N,

maxser F(S) — () =[f(S. ) fu(S)] + [fu(S) — maxscp fu(S)]
+[fu(S) = fu()] + [fu(F) — F(F))]
<[f ( )— fu(S)]+ [fu(ﬁ) — fu()] + [fu(&) — £(F))]
< 2uinD + [fu(&) — fu(S)]

— 20D + [maves Tu(S) — fu(H))-

Hence, it suffices to prove (23) by induction. Indeed,tfer1, we have that

mavser Tu(S) — fu(S) < fu(S) + HSUR A (Srem(—UeInty)
< MaXscp MiNyep Y rep e <)£T’ S +uinD
< MaXsep MiNuea ¥ rep Ur[|%[[[Sl| +pIND
< MiNyea Yrep Ur[ X[ +HIND
< mingea [Zre@ Ur + ZTEDUTHXTH ] HInD
< 1+ maxeq | %%+ pinD,

which obviously satisfies (23) with= 1. Suppose the inequality (23) holds true for samel.
Now by Lemma 5,

R SCﬁgt (1-oy)R
u)2th+1(4(t:u+4|nD) “CorinD)
u+n

(t+
4
ACu+InD) (i + ) <~ 1

where the second inequality follows from the induction assumption. Thigprhe inequality (23)
for all t € N which completes the proof of the theorem. Ol

By the above theorem, for ang > 0, then u = ﬁ and the iteration numbet >
64(1+maxecop || % ||?) InD/e? yields that max.» f(S) — (") < &. The time complexity of the
approximate first-order method for DML-eig is 6fd?/€?).

3.2 Approximate Frank-Wolfe Algorithm for LMNN-eig

We can easily extend the above approximate Frank-Wolfe algorithm to s@weidgknvalue opti-
mization formulation of LMNN-eig (formulation (16) or (17)). To this end, let

(88 =min Y u(&+(Cr.S).

TGQ)

Then, problem (16) is identical to

max{ f(S&): (1-y) Y &+VYTr (S = 1,Se s, &> 0}.

11
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Input:

- smoothing parametegr> 0 (e.g., 10°)

- tolerance valugol (e.g., 10°)

- step sizeda; € (0,1) : t € N}
Initialization: S} € S with Tr (S)) = 1 and&} >0
fort=1,23,...do

- (Z,B) = argmax{(Z,0sfu(§" &) +E "o fu(d, &) : 2 €S, £ >0

(L-y)E 14+yTr (2) = 1}

' ($1+1, E&»l) = (l - at)(gla Etu) + at(ztu7 BIH)

i (S, & e) — (S, &) | < tol thenbreak
Output: d x d matrix§' € Si and slack variable&'

Table 2: Approximate Frank-Wolfe Algorithm for LMNN-eig

In analogy to the smooth techniques applied to DML-eig, we approxif@e;) by the following
smooth function:

WSE=min Y w(&+(C.9)+uY ulnu.

€D €D
One can easily see that

fu(S &) = —pin( Y e—((d,8>+zr)/p).
1eT

and its gradient function is given by

e (G +E)/E
DSfu(SE) _ ZTG‘T _ P«C[ ’
S rer € (CG9+E)/u

and )
0fu(S &) e~ ((Co9+&)/n

aET B zTGTei(<6[’S>+E'T)/u.

The approximate Frank-Wolfe algorithm for LMNN-eig is exactly the same EH_{2ig in
Table 1. The pseudo-code is listed in Table 2. The key step of the algorittoncismpute the
following problem:

(Z',Bt) =argmax (Z,0sfu(S'&)) +& o fu(S, &) : 2 €S, €20
(1-y)ET1+yTr (2) =1}.

Equivalently, one needs to solve, for afvge SY andp € RT, the following problem:
(z7,&) =argmax(Z,A)+&'B:Z2eS%, £>0,(1-y)& 1+yTr(Z) =1}. (24)

Let Bmax = By with T € 7 andv* is the largest eigenvector & Then, problem (24) is a linear
programming and its optimal value is either

max{& B:(1-y)E 1=1&>0} = ﬁnla;(,

12
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or
max{(Z,A) :yTr(2) =1,Z 8%} = W.

v’

The optimal solution of problem (24) is given as foIIows.Aﬁ“%)«A) >= BT}';‘X, thenz* =
wherev* is the largest eigenvector of matixand&* = 0. OtherwiseZ* = 0 and thetr*-th element

of & equalsl—fy, that is, (§)p = l—fy and the other entries &" all zeros. In analogy to the

arguments for Theorem 7, for step sies = t%l :t € N} one can exactly prove the time complexity
of LMNN-eig is O(d?/g?).

4. Related Work and Discussion

There is a large amount of work on metric learning including distance metricihgafor k-means
clustering (Xing et al., 2002), relevant component analysis (RCA)-fBgel et al., 2005), max-
imally collapsing metric learning (MCML) (Goldberger et al., 2004), neighbod component
analysis (NCA) (Goldberger et al., 2004) and an information-theorepicoggh to metric learning
(ITML) (Davis et al., 2007) etc. We refer the readers to Yang and J072for a nice survey on
metric learning. Below we discuss some specific metric learning models whiatogedy related
to our work.

Xing et al. (2002) developed the metric learning model (2) to learn a Mabligmetric for
k-means clustering. The main idea is to maximize the distance between points insingldigy
set under the constraint that the distance between points in the similarity ggteishounded. A
projection gradient method is employed to obtain the optimal solution. Specifizadigich iteration
the algorithm takes a gradient ascent step of the objective function amgtbgects it back to the
set of constraints and the cone of the p.s.d. matrices. The projection to ithe qgoee needs the
computation of the full eigen-decomposition with time complexitd®). The projection gradient
method usually takes a large number of iterations to become convergentoltismentioning that
the metric learning model proposed in Xing et al. (2002) is a global method isaihge that the
model aggregates all similarity constraints together as well as all dissimilarigtraoms. In con-
trast to Xing et al. (2002), DML-eig aims to maximize the minimal distance betwesimdiar pairs
instead of maximizing the summation of their distances. Consequently, DML-eitglwduitively
force the dissimilar samples to be far more separated from similar samples. fhi®immay
account for the superior performance of DML-eig which will be showarsin the experimental
section.

Weinberger et al. (2005) developed a large margin framework to learaleldnobis distance
metric for k-nearest neighbor (k-NN) classification (LMNN). The mainiiida behind LMNN is
that k-nearest neighbors always belong to the same class while exangphedifferent classes are
separated by a large margin. In contrast to the global method (Xing et @2),20MNN is a local
method in the sense that only triplets from the k-nearest neighbors ate@semethod DML-eig
is a local method which only uses the similar pairs and dissimilar pairs fromiestazeighbors.

Since everyM € S¢ can be factored abl = AAT for someA € R4, LMNN becomes an
unconstrained optimization problem with an unconstrained variAbl&/einberger et al. (2005)
used this idea and proposed to use the sub-gradient method to obtain thd sphirtian. Since the
modified problem w.r.t. variabl@ is generally not convex, the sub-gradient method would lead to
local minimizers. For some special SDP problems, it was shown in Burer amdelio (2003) that

13
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such dilemma will not happen. Specifically, Burer and Monteiro (2003}ickened the following
SDPs:
min{Tr(CM):Tr(AiM):bi,i:1,...,m,MeSi}. (25)

It was proved that ifA* is a local minimum of the modified problem:
min{Tr (CAAT) : Tr (AAAT) =bi,i=1,...,mAE RdXd},

thenM* = A*(A*) T is a global minimum of the primal problem (25). However, since the hinge loss
is not smooth, it is unclear how their proof can be adapted to the case oN.MN

Rosales and Fung (2006) proposed the following element-sparse metritintgafor
high-dimensional data sets

min Y (14 MXj —XMX) Y S M. (26)
MeSLt—(i,TkeT £,kENg

In order to solve the optimization problem, they further proposed to redtritd the space of
diagonal dominancenatrices which reduces formulation (26) to a linear programming problem.
Such a restriction would only result in a sub-optimal solution.

Shalev-Shwartz et al. (2004) developed an appealing online learningl fioodearning a Ma-
halanobis distance metric. In each time, given a pair of examples the p.s.dncdistatrix is
updated by a rank-one matrix which only needs the time complex{ty?). However, since the
pairs of similarly labeled and differently labeled examples are usually ofr adde?), the online
learning procedure takes many rank-one matrix updates. Jin et al.)(@8@®lished generalization
bounds for large margin metric learning and proposed an adaptive waljust ghe step sizes of
the online metric learning method in order to guarantee the output matrix in eqcls stesitive
semi-definite. Since the pairs of similarity and dissimilarity are usually of o@t{ef) wheren is
the sample number, the online learning procedure generally needs many upaltabes.

Shen et al. (2009) recently employed the exponential loss for metric Igawtiich can be
written by

min eCM 4 Tr (M),
MesS (i ThyeT

whereT is the triplet set an@; = (X — ;) (% —Xj) " — (Xj — %) (X; —X«) " foranyt = (i, j,k) € T.

A boosting-based algorithm called BoostMetric was developed which islbasehe idea that
each p.s.d. matrix can be decomposed into a linear positive combination obtracnd rank-
one matrices. The algorithm is essentially a column-generation scheme whatlvéigrfinds the
linear combination coefficients of the current basis set of rank-one restand then update the
basis set of trace-one and rank-one matrices. The updating of renkral trace-one matrix only
involves the computation of the largest eigenvector which is of time complexidy). However,
the number of linear combination for the p.s.d. matrix can be infinite and the Igemee rate of
this column-generation algorithm is not clear.

Recently, Guillaumin et al. (2009) proposed a metric learning model with logetiession
loss which is referred to as LDML. Promising results were reported in iticapion to face ver-
ification problems. LDML employed the gradient descent algorithm to obtairoptienal solu-
tion. However, in order to reduce the computational time, the algorithm igribeegdositive semi-
definiteness of the distance matrix which would only lead to a suboptimal solution.

14
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Data No. n d fclass| #7T 1D
Wine 1 178 | 13 3 1134 | 378
Iris 2 150 4 3 954 315
Breast 3 569 | 30 2 3591 | 1197
Diabetes | 4 768 8 2 4842 | 1614
Waveform| 5 | 5000| 21 3 3150 | 1050
Segment| 6 | 2310| 19 7 14553 | 4851
Optdigits | 7 | 2680 | 64 10 | 24120| 8040
Face 8 | 400 | 2576| 40 2520 | 840
USPS 9 | 9298| 256 10 | 58626| 19542

Table 3: Description of data sets n is the number of samples and d is the dinsitgidior AT&T
face data set, we use PCA to reduce its dimension to 64.

5. Experiments

In this section we compare our proposed metbddL-eig andLMNN-eig with a few methods:
the method proposed in Xing et al. (2002) denotedXyg, LMNN (Weinberger et al., 2005)
and its accelerated versianLMNN (Weinberger and Saul, 2008)TML (Davis et al., 2007),
BoostMetric (Shen et al., 2009) and the baseline algorithm that uses the standarccBodidtance
denoted byEuc. For all the data sets we have $et 3 for nearest neighbor classification. The
trade-off parameters in ITML, LMNN and LMNN-eig are tuned via thre&fcross validation.
The smoothing parameter for DML-eig and LMNN-eig is set topbe 104 and the maximum
iteration for DML-eig, BoostMetric, LMNN-eig is set to be 10

We first run experiments on 9 data sets, that is, 1) wine, 2) iris, 3) Bemster, 4) the Indian
Pima Diabetes, 5) Waveform, 6) Segment, 7) Optdigits, 8) AT&T Face dafeaset9) USPS. The
statistics of data sets summarized in Table 3. All experimental results are ablgireveraging
over 10 runs (except 1 run for USPS due to its large size). For eachveurandomly split the data
sets 70% for training and 30% for test validation. We have used the samamnigohn Weinberger
et al. (2005) to generate training triplets. Briefly speaking, for eachimigaipoint x;, k nearest
neighbors that have same labelsyagtargets) as well ak nearest neighbors that have different
labels fromy; (imposers) are found. From and its corresponding targets and imposers, we then
construct the set of similar paigs(same labels) and the set of dissimilar pairgdistinct labels),
and the set of tripletd”. As mentioned above, the original formulation in Xing et al. (2002) used all
pairwise constraints. We emphasize here, for fairness of comparispadally the running time
comparison), that all methods including the Xing’s method used the same Sgtilafr/dissimilar
pairs generated locally as above.

Finally we will apply the developed models and algorithms on a large and chisltefare
verification data set calledabeled Faces in the Wil(LFW).2 It contains 13233 labeled faces of
5749 people, for 1680 people there are two or more faces. Furthertherédata is challenging
and difficult due to face variations in scale, pose, lighting, backgroexpgkession, hairstyle, and
glasses, as the faces are detected in images in the wild, taken from Yaéas! N

2. Data sets can be foundHdtt p: / / ww. ¢l . cam ac. uk/ Resear ch/ DTJ at t ar chi ve/ f acedat abase. ht ni .
3. Data set can be foundlatt p: // vi s- wwv. ¢s. umass. edu/ | fw/i ndex. htni .
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| Euc. [ Xing | LMNN | [ITML [ BoostMetric] DML-eig | LMNN-eig
1] 3.46(3.60) | 4.04(4.00) | 3.082.07) | 1.15(2.07) | 2.31(2.18) | 1.351.30) | 2.88(1.87)
2| 511(258) | 6.67(3.11) | 422(1.95) | 444(257) | 356(252) | 3.11(1.15) | 4.00(2.30)
3| 6.47(1.33) | 8.18 (1.58) | 5.35(1.43) | 6.82(1.57) | 3.82(1.55) | 3.53(0.88) | 4.94(1.29)
4 | 31.09(2.03)| 32.09 (3.56)| 29.70(3.20)| 29.96(2.97)| 26.78(2.12)| 27.71(3.93)| 31.13(2.24)
5 | 18.87(0.65)| 16.43(1.00)| 18.61(0.72)| 15.94(0.83)| 16.86(0.90)| 15.33(0.80) 18.49(0.21)
6| 5.61(0.92) | 5.26(0.60) | 3.69(0.70) | 5.02(0.70) | 4.21(0.48) | 2.97(0.55) | 3.61(0.83)
7 | 1.67(0.24) | 1.57(0.28) | 1.37(0.25) | 1.46(0.29) | 1.38(0.33) | 1.45(0.22) | 1.43(0.42)
8| 6.67(1.67) | 7.75(0.69) | 2.08(1.53) | 2.42(2.17) | 2.25(1.25) | 1.67(1.24) | 1.67(1.76)
9 3.05 - 2.98 3.92 3.34 3.66 3.13

Table 4: Average test error (%) of different metric learning methodsdstal deviation are in
parentheses). The best performance is denoted in bold type. The ndtdtimeans
that the method does not converge in a reasonable time.

data | Xing [ LMNN/mLMNN [ ITML [ BoostMetric| LMNN-eig | DML-eig
1 1.00 0.87/1.01 4.63 0.49 0.30 0.23
2 241 0.57/0.62 3.56 0.10 0.92 0.43
3 3.08 2.71/0.75 4.54 2.04 3.71 3.18
4 2.45 1.73/1.03 3.95 0.20 6.78 0.03
5 231.33 8.83/5.54 7.83 11.36 36.95 1.45
6 109.13 1.73/4.25 61.55 9.06 5.06 1.76
7 59.24 24.81/15.92 37.42 93.73 86.38 2.67
8 182.56 5.54/1.50 40.38 60.31 18.42 2.58
9 - 723.49/454.21 | 726.88 694.84 572.04 52.48

Table 5: Average running time (seconds) of different methods. Thdiownt&" means that the
method does not converge in a reasonable time.

5.1 Generalization and Running Time

As we can see from Table 4, DML-eig consistently improves k-NN classidicaising Euclidean
distance on most data sets. Hence, learning a Mahalanobis metric fromdreatm does lead
to improvements in k-NN classification. Also, we can see that DML-eig is comyetitith the
state-of-the-art methods: LMNN, ITML and BoostMetric. Indeed, DWIlg-outperforms other
algorithms on 5 out of 9 data sets. As expected, LMNN-eig performs similarglightly better
than LMNN since these two models are essentially the same. In Table 5, we lastetege CPU
time of different algorithms. We can see that the method proposed in Xing @08R) generally
needs more time since it needs the full eigen-decomposition of a matrix per er&iL-eig,
BoostMetric and LMNN are among the fastest algorithms while LMNN-eig is sidinen LMNN
and mLMNN in most cases. The accelerated version mLMNN is faster thanNLMN

On the left-hand side of Figure 1, we plot the running time versus the rddiiceension by
principal component analysis (PCA) for AT&T data set. We can obseatd NN, BoostMetric,
LMNN-eig and DML-eig are faster than ITML and Xing’s method. When th@ehsion is low,
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LMNN, BoostMetric, LMNN-eig and DML-eig are similar. As the dimension in@es, DML-eig

and mLMNN are faster. On this data set, LMNN-eig runs slower than mLMN#& feason could
be that mMLMNN used the techniques of ball trees and employed only an aetiv triplets per
iteration. Our algorithms have not been combined with the techniques of bedldred are imple-
mented in MATLAB and better improvements are expected if used in C/C++. Qigtiitehand side
of Figure 1, we also plot the test errors of various methods acrossetiff@CA dimensions. Al-
most every method performs better than the baseline method using the standédéan distance
metric. DML-eig performs slightly better than other methods. We observe tlitht,increasing

PCA dimensions, DML-eig, BoostMetric and ITML yield relatively stable periance across dif-
ferent PCA dimensions. In contrast, the performance of other baselitm®dsesuch as LMNN and
Xing’s method varied as the PCA dimensions changed.

—4— DML-€ig
167 —— [TML

14k —>— BoostMetric
1 —&— PCA

1y —¥— Xing
10t LMNN
8" Ly P
—8— DML-¢ig
10’ ,’// —8— LMNN-¢ig | 5\ '
—p— Boost-metric|
ph = (
p ——[TML g —
o —§—Xing o ]
IS / mLMNN (4
L

L L
50 100 150 200 250 300 350 O20 50 100 150 200
PCA dimension PCA dimension

Test error

Running time

Figure 1. Performance on AT&T Face data set. Left figure: running tiraeofsds) versus PCA
dimension. Right figure: test error (%) versus PCA dimension; the pinkiditiee per-
formance of k-NN classifiek(= 3) using the standard Euclidean distance.

5.2 Application to Face Verification

In this experiment we investigate our proposed method (DML-eig) for ¥aciication. The task
of face verification is to determine whether two face images are from the samiycor not. It is

a highly active area of research and finds application in access cantegle search, security and
many other areas. The large variation in lighting, pose, expression ethe ¢dice images poses
great challenges to the face verification algorithms. Inference that élls the raw pixels of
the image data or features extracted from the images is usually unreliable detdhshow large
variation and are high-dimensional.

Metric learning provides a viable solution by comparing the image pairs bas#tkeanetric
learnt from the face data. Here we evaluate our new metric learning metimgdausirge scale face
database—Labeled Faces in the Wild (LFW) (Huang et al., 2007). Theeetatal of 13233 images
and 5749 people in the database. These face images are automaticallgd&otor news articles
on the web. Recently it has become a benchmark to test new face verifiadgmithms (Wolf
et al., 2008; Guillaumin et al., 2009; Wolf et al., 2009; Taigman et al., 200% Riral., 2011).
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The images we used are in gray scale and aligned in two ways. One is lddh iduang et al.,
2007) and the other is “aligned” using a commercial face alignment softaafaigman et al.
(2009). These images are divided into ten folds where the subject ideatiéesutually exclusive.
In each fold, there are 300 pairs of images from the same identity and ag0theairs of images
from different identities. We followed the standard procedure for trgiaind test in the technical
report of Huang et al. (2007). The performance of the algorithms ikatead by average (and
standard error of ) correct verification rate and the ROC curve of@H®eIltl cross validation test.

We investigated several descriptors (features) from face images inxghesiment. As for the
“funneled” images, we used SIFT descriptors computed at the fixed kagigooints (e.g., corners
of eyes and nose). These data are available from Guillaumin et al. (20@&9jocus on the SIFT
descriptor to evaluate our algorithm as it provides a fair comparison to Guilteet al. (2009). To
compare with the state-of-the-art methods in face verification, we furthiestigated three types
of features for the “aligned” images: 1) raw pixel data by concatenatm@itensity value of each
pixel in the image; 2) Local Binary Patterns (LBP) (Ojala et al., 2002); 3ndBP’s variation,
three-Patch Local Binary Patterns (TPLBP) (Wolf et al., 2008). Thgir@l dimensionality of the
features is quite high (3456 12000) so we reduced the dimension using PCA. These descriptors
were tested with both their original value and the square root of them (Waif.,e2008, 2009;
Guillaumin et al., 2009).

There are two configuration for forming the training sets. One is “restrictediguration”:
only same/not-same labels are used during training and no information akoatttral names of
the people (class labels) in the image pairs should be used. In the pastfitmaspoblished work
on this data set using the restricted protocol (e.g., Guillaumin et al., 2009; Wallf 2009; Pinto
et al., 2011). Another is “unrestricted configuration”: all available infation including the names
of the people in the images can be used for training. So far there are onputished results on
the unrestricted configuration (Guillaumin et al., 2009; Taigman et al., 26@9% we mainly focus
on the restricted configuration.

LMNN and BoostMetric are not applicable in this restricted configuration ge#ince they
need label information to generate the triplet set. Therefore, we only cechmar DML-eig
method with LDML (Guillaumin et al., 2009) and ITML (Davis et al., 2007). Fack of the
ten-fold cross-validation test, we use the data from 2700 pairs of imagestfre same identities
and another 2700 pairs of images from the different identities to learn a mé&lrén test it using
the other 600 image pairs. The performance is evaluated using accuifitaitren rate .

Table 6 illustrates the performances of our algorithm and ITML and LDMie Best verifica-
tion rate of DML-eig is 8127%. It outperforms LDML (750%) and ITML (7620%) in their best
settings. Note that the performance of DML-eig is consistently better thanlLBMI ITML in
each PCA dimension.

By varying the dimension of principal components of the SIFT descripterpéiformance of
DML-eig of the 10-fold cross validation test is plotted in Figure 2. The bedopmance is achieved
when the dimension of principal components is 100. So we fix this dimensidIFdr feature in
the following experiment. As mentioned in Guillaumin et al. (2009), the pealopadnce in a
specific PCA dimension is due to the limit of training samples. The PCA dimensioevaui the
best performance is 35 for LDML and 55 for ITML. This number for DMIg is 100 which is larger
than that of both LDML and ITML. It shows that the DML-eig metric is lessrgrdo overfitting
than both LDML and ITML.
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| Method || PCA Dim. | Original | Square Root |
ITML 35 0.7537+0.0158 | 0.7627+0.0161
LDML 35 0.7660+ 0.0070 | 0.77504+ 0.0050
DML-eig 35 0.7742+0.0213 | 0.7793+£0.0214
ITML 40 0.7618+0.0125| 0.7643+0.0121
LDML 40 — —
DML-eig 40 0.7752+0.0198 | 0.7838+0.0195
ITML 55 0.7530+0.0185| 0.75574+0.0187
LDML 55 0.7280+0.0060 | 0.7280+0.0040
DML-eig 55 0.7900+0.0189 | 0.7938+0.0163
ITML 100 0.7340+0.0250 | 0.7403+0.0216
LDML 100 - -
DML-eig 100 0.8055+0.0171| 0.8127+£0.0230

Table 6: Performance comparison on LFW database in the restricted warifign (mean verifica-
tion accuracy and standard error of the mean of 10-fold cross validegginhwith only
SIFT descriptors. “Square Root” means the features preprocegdadtibg square root
before fed into metric learning method. The result of LDML is cited from Guitiau
et al. (2009) where it was reported that the best result of LDML is aeklievith PCA
dimension 35. Our result of ITML is very similar to that reported in Guillauminlet a
(2009).

] Method | Accuracy |

High-Throughput Brain-Inspired Features, aligned (Pinto et al., 20118813+ 0.0058
LDML + Combined, funneled (Guillaumin et al., 2009) 0.7927+ 0.0060
DML-eig + Combining four descriptors (this work) 0.8565+ 0.0056

Table 7: Performance comparison of DML-eig and other state-of-thexethods in the restricted
configuration (mean verification rate and standard error of the meanfold @ross val-
idation test) based on combination of different types of descriptors. &herightors vary
in different study. The best result up to date is achieved using sopléstitarge scale
feature search (Pinto et al., 2011).

Besides the SIFT descriptor, we also investigated to combine it with othertifpes of de-
scriptors aforementioned. Following Wolf et al. (2008); Guillaumin et al0@0we combine the
distance scores from 4 different descriptors using a linear SupgatoMachine (SVM). The
performance of DML-eig is compared to the other state-of-the-art methotizbile 7 and Figure
3. Note that each of these published results use its own learning techmdudfierent feature
extraction approaches which makes the conclusion hard to draw.
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Figure 2: Performance of DML-eig, ITML and LDML metric by varying thiendnsion of the prin-
cipal components using SIFT descriptor. The result of LDML is copiethfGuillaumin
et al. (2009).

The best result reported to date is. B8 in restricted configuration which performs sophis-
ticated large scale feature search (Pinto et al., 2011). This work used Ilatipplimentary
representations which are derived through training set augmentatiomasilte face comparison
functions, and feature set searches with a varying number of modetlapeese individual feature
representations are then combined using kernel techniques. The tpsultiser state-of-the-art
methods are also based on different descriptors (Guillaumin et al., 2000eWWd., 2009). The
best result achieved by DML-eig is 85%, which is close to the other state-of-the-art approaches.
In addition, we note that the performance of DML-eig based on the sin§l€ & scriptor (8R27%
in Table 6) is better than that of LDML based on 4 types of descriptor2(?9 in Table 7). The
ROC curves of different methods are depicted in Figure 3. We can seBMiaeig outperforms
ITML and LDML while it is suboptimal to the best up-to-date method (Pinto et &1,12 which,
however, employed sophisticated feature search method.

Finally, the performance of DML-eig metric may be further improved by expipdifferent
number of nearest neighbors and different types of descriptois @authose used in Pinto et al.
(2011), making it a competitive candidate for the task of face verification.
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true positive rate
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Figure 3: ROC curve of DML-eig and other the state of arts methods fervadfication on LFW
data set.

6. Conclusion

The main theme of this paper is to develop a new eigenvalue-optimization frakné&vanetric
learning. Within this context, we first proposed a novel metric learning meteh was shown to
be equivalent to a well-known eigenvalue optimization problem (Overto88;19ewis and Over-
ton, 1996). This appealing optimization formulation was further extended tNNNWeinberger
et al., 2005) and maximum margin matrix factorization (Srebro et al., 2004n,We developed
efficient first-order algorithms for metric learning which only involve the catation of the largest
eigenvector of a matrix. Their convergence rates were rigorouslylisstad. Finally, experiments
on various data sets have shown that our proposed approach is corapdtti state-of-the-art met-
ric learning methods. In particular, we reported promising results on thelédlraces in the Wild
(LFW) data set.

In future we will exploit the extension of the above eigenvalue optimizatiandkaork to other
machine learning tasks such as spectral graph cuts and semi-definitedemgl@deinberger et al.,
2004). Another direction for investigation is to develop a kernelized vemsi®ML-eig using the
techniques in Jain et al. (2010). Finally, we will also investigate the periocenaf our methods
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on the LFW data set in the unrestricted configuration setting, and embed limiee of ball trees
(Weinberger and Saul, 2008) into our algorithms to further increase thpuational speed.
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Appendix A. Eigenvalue Optimization for Maximum-margin Matri x Factorization

Another important problem is low-rank matrix completion which recently hascitttlanuch atten-
tion. This line of research involves computing a large matrix with a nucleanrfsammation of
singular values) regularization and the optimization problem here also tofi SDP. Such tasks
include multi-task feature learning (Argyriou et al., 2006) and low-rank imatmpletion (Bach,
2008; Candes and Recht, 2008; Srebro et al., 2004). It has sfidcggplications to collaborative
filtering for predicting customers’ preferences to products, where thiexsaows and columns
respectively identify the “customers” and “products”, and a matrix entigodes customers’ pref-
erence of a product (e.g., Netflix data $et p: / / www. net f | i xpri ze. conl).

Similar eigenvalue optimization formulation can be developed for maximum-margin matrix
factorization (MMMF) for collaborative filtering (Srebro et al., 2004)ivéh a partially labeled
Yia € {£1} with ia € S the target of MMMF is to learn a large matri € R™" where each entry
Xia indicates the preference of the custornfar producta. The following large margin model was
proposed in Srebro et al. (2004) to lea¢n

mink  Yiaes&ia + Y| X||«
st 1-YiaXa < &a,
&a >0, ViaeS

where||X||. is the nuclear norm oX, that is, the summation of its singular values. The above model
was further formulated as an SDP problem:

miny YTt (M) + Siacséia

_ (A X ()
M_<XT B>€5+ ) (27)

YiaXia+é&ia > 1, Viae S
Lete be a column vector with itsth element one and all others zero, then we Myg, o) = Xia =
(Cia, M) with Ciz = ae(TmH). Consequently, the constraint condition in problem (27) can be written
as Minaes(Yia,Cia) + &ia > 1. Using exact arguments for proving Theorem 3, we can formulate

MMMF as an eigenvalue optimization problem.

Theorem 8. MMMF formulation (27) is equivalent to

max{[}gig_z uia(EiaJr (YiaCia,M>) ;§T1+yTr(M) =1Me 5im+n)7 > 0}.

iaes
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In particular it is equivalent to the following eigenvalue optimization problem:

min maX<Uma>c \1/7\max Ia%SU.aY.aC.a)) (28)

As mentioned above, MMMF (27) is a standard SDP. Indeed, Srebio(@084) proposed to
employ standard SDP solvers (e.g., CSDP Borchers, 1999) to obtaintthmabgolution. However,
such generic solvers are only able to handle problems with about a humskesiand a hundred
items. The eigenvalue-optimization formulation potentially provides more effiaigotithms for
MMMF. Since the paper mainly focuses on metric learning, we leave its empimpémentation
for future study.

Appendix B. Proof of Theorem 6

In this appendix we give the proof of Theorem 6. The spirit of the pieofery close to that
of Theorem 1 in Ying and Zhou (2006) where similar conditions on step sisze derived to
guarantee the convergence of stochastic online learning algorithms odueimg kernel Hilbert
spaces.

Proof of Theorem 6 According to the assumption (22) on the step size, we can assume that, for
anyt > to, thata; < 1/2. Hence, the inequality (21) holds true. We will estimate the terms on the
left-hand side of (21) one by one.

For the second term on the righthand side of (21), observe [ﬂf]@tto(l —aj) <
exp{— th:toaj} — 0 ast — «. Therefore, for ang > 0 there exists somg € N such that the
second term on the righthand side of (21) is bounded Wwhenevet > t;.

To deal with the first term on the righthand side of (21), we use the assumjptip.,..aj = 0
and know that there exists somi) such thati; < € for everyj > j(€). Write

t

Sincej(¢) is fixed, we can find some € N such that for each > t,, there holdsztj:t(s)+10(j >
th:j(s)HO‘i > Iog%. It follows that for each 1< j < j(g), there holdsﬂ}(:Hl(l— ay) <

exp{—Ti_j;+10k} < €xp{— T\ 110k} < - This in connection with the bound; < 1/2
for eachj > tp tells us that the f|rst term of (25) is bounded as

The second term on the righthand side of (29) is dominatedzijzlj(s)Hm |‘|}<:j+1(1— k).
Noting the fact thatt; = 1— (1—a;) implies

t t

aj H(l—ak): i [ﬁ 1—oay) — ﬁl ak}

i=i(e)+1 k=j+1 i=j(e)+1 k:J+1 k=]
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Therefore, when > max{ti,to}, combining the estimation with inequality (21), we haRg1 <
(1+Cy)e. This proves the theorem. O
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