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Abstract

Sparsity-inducing multiple kernel Fisher discriminanabsis (MK-FDA) has been studied in the
literature. Building on recent advances in non-sparseipielkernel learning (MKL), we propose
a non-sparse version of MK-FDA, which imposes a genggalorm regularisation on the kernel
weights. We formulate the associated optimisation proldsra semi-infinite program (SIP), and
adapt an iterative wrapper algorithm to solve it. We thenuls, in light of latest advances in MKL
optimisation techniques, several reformulations anchoigtition strategies that can potentially lead
to significant improvements in the efficiency and scalapitit MK-FDA. We carry out extensive
experiments on six datasets from various application asrascompare closely the performance
of £, MK-FDA, fixed norm MK-FDA, and several variants of SVM-basikL (MK-SVM). Our
results demonstrate thgs MK-FDA improves upon sparse MK-FDA in many practical siioas.
The results also show that on image categorisation problgmdK-FDA tends to outperform its
SVM counterpart. Finally, we also discuss the connectiawben (MK-)FDA and (MK-)SVM,
under the unified framework of regularised kernel machines.

Keywords: multiple kernel learning, kernel fisher discriminant arsédy regularised least squares,
support vector machines

1. Introduction

Since their introduction in the mid-1990s, kernel methods ¢8apf and Smola, 2002; Shawe-
Taylor and Cristianini, 2004) have proven successful for many madeemaing problems, for
example, classification, regression, dimensionality reduction, clusteriegreRentative methods
such as support vector machine (SVM) (Vapnik, 1999; Shawe-TayldCristianini, 2004), kernel
Fisher discriminant analysis (kernel FDA) (Mika et al., 1999; Baudat Anouar, 2000), kernel
principal component analysis (kernel PCA) (8tiopf et al., 1999) have been reported to produce
state-of-the-art performance in numerous applications. Kernel methodsby embedding data
items in an input space (vector, graph, string, etc.) into a feature spatapplying linear methods
in the feature space. This embedding is defined implicitly by specifying an proeluct for the
feature space via a symmetric positive semidefinite (PSD) kernel function.

Itis well recognised that in kernel methods, the choice of kernel fundsicritically important,
since it completely determines the embedding of the data in the feature spaedly, Ithis em-
bedding should be learnt from training data. In practice, a relaxetbwens this very challenging
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problem is often considered: given multiple kernels capturing diffenéiet/s” of the problem, how
to learn an “optimal” combination of them. Among several others (Cristianiri,e2@02; Chapelle
et al., 2002; Bousquet and Herrmann, 2003; Ong et al., 2003), kiahek al. (2002, 2004) are one
of the pioneering works for this multiple kernel learning (MKL) problem.

Lanckriet et al. (2002, 2004) study a binary classification problem,thed key idea is to
learn a linear combination of a given set of base kernels by maximising themisetyveen the
two classes or by maximising kernel alignment. More specifically, suppasésagivenn mx m
symmetric PSD kernel matricd§;, j = 1,---,n, andmclass labelsy; € {1,-1},i=1,---,m. A
linear combination of tha kernels under afi; norm constraint is considered:

n
K=Y BiKj, 820, [Bll.=1,
j=1

whered = (By,---,Bn)T € R", and0is themdimensional vector of zeros. Geometrically, taking the
sum of kernels can be interpreted as taking the Cartesian product acfdbeiated feature spaces.
Different scalings of the feature spaces lead to different embeddintye alata in the composite
feature space. The goal of MKL is then to learn the optimal scaling of tharkeapaces, such that
the “separability” of the two classes in the composite feature space is maximised.

Lanckriet et al. (2002, 2004) propose to use the soft margin of SVl m&asure of separa-
bility, that is, to learn3 by maximising the soft margin between the two classes. One of the most
commonly used formulations of the resulting MKL problem is the following saddietgroblem:

1 n

; T T

maxmin—-y' a+ = ) a BiKi« 1
laxmin —y 2121 BiK; 1)
st. 'a=0, 0<y'a<Cl, >0, |B],<1,

wherea € R™, 1is themdimensional vector of oneg,is them dimensional vector of class labels,
C is a parameter controlling the trade-off between regularisation and emgairical andK; (x;, X’

is the dot product of thé" and thei’™ training examples in thé!" feature space. Note that in
Equation (1), we have replaced the constrgjéf, = 1 by ||3||; < 1, which can be shown to have
no effect on the solution of the problem, but allows for an easier genatials

Several alternative MKL formulations have been proposed (Lancétiet., 2004; Bach and
Lanckriet, 2004; Sonnenburg et al., 2006; Zien and Ong, 2007;tRadeononjy et al., 2008). These
formulations essentially solve the same problem as Equation (1), and difieimothe optimisa-
tion techniques used. The original semi-definite programming (SDP) formul@tanckriet et al.,
2004) becomes intractable whemis in the order of thousands, while the semi-infinite linear pro-
gramming (SILP) formulation (Sonnenburg et al., 2006) and the reduegliegt descent algorithm
(Rakotomamonjy et al., 2008) can deal with much larger problems.

Of particular interest to this article is the SILP formulation in Sonnenburg €2@06). The
authors propose to use a technique called column generation to solve thewdiich involves
dividing a SILP into an inner subproblem and an outer subproblem, amdatitey between solving
the two subproblems until convergence. A straightforward implementationlofimn generation
leads to a conceptually very simple wrapper algorithm, where finding the optinralthe inner
subproblem corresponds to solving a standard binary SVM. This meang #pper algorithm can
take advantage of existing efficient SVM solvers, and can be reasofadtlyor medium-sized
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problems already. However, as pointed out by Sonnenburg et al6)28@lving the whole SVM
problem to a high precision is unnecessary and therefore wasteful tvbevariable3 in the outer
subproblem is still far from the global optimum.

To remedy this, Sonnenburg et al. (2006) propose to optimiard3 in an interleaved manner,
by incorporating chunking (Joachims, 1988) into the inner subproblem k& idea of chunking,
and more generally decomposition techniques for SVM, is to freeze alldmbd subset o, and
solve only a small-sized subproblems of the SVM dual in each iteration. Botirey interleaved
algorithm in Sonnenburg et al. (2006) avoids the wasteful computatiorafiiole SVM dual, and
as a result has an improved efficiency over the wrapper algorithm. Merewith the interleaved
algorithm, only columns of the kernel matrices that correspond to the “&ctived variables need
to be loaded into memory, extending MKL'’s applicability to large scale problems.

The learning problem in Equation (1) imposes/amegularisation on the kernel weights. It has
been known that; norm regularisation tends to produce sparse solutiogss(R, 2001), which
means during the learning most kernels are assigned zero weights. nGionadly, sparsity is
favoured mainly for two reasons: it offers a better interpretability, andtéke process is more
efficient with sparse kernel weights. However, sparsity is not aldagsrable, since the informa-
tion carried in the zero-weighted kernels is lost. In Kloft et al. (2008) @odes et al. (2009),
non-sparse versions of MKL are proposed, wheré-anorm regularisation is imposed instead of
¢, norm. Kloft et al. (2009, 2011) later extended their work to use a gérigf@ > 1) norm regu-
larisation. To solve the associated optimisation problem, Kloft et al. (20bpoge extensions of
the wrapper and the interleaved algorithms in Sonnenburg et al. (2Gp@atavely. Experiments in
Kloft et al. (2008, 2009, 2011) show that the regularisation norm dangs significantly to the per-
formance of MKL, and confirm that in general a smaller regularisatiommmoduces more sparse
kernel weights.

Although many of the above references discuss general loss fun¢tianekriet et al., 2004;
Sonnenburg et al., 2006; Kloft et al., 2011), they have mainly beersiiogwon the binary hinge
loss. In this sense, the corresponding MKL algorithms are essentiallyylimaltiple kernel sup-
port vector machines (MK-SVMSs). In contrast to SVM, which maximises tifersargin, Fisher
discriminant analysis (FDA) (Fisher, 1936) maximises the ratio of projectdaden and within
class scatters. Since its introduction in the 1930s, FDA has stood the test oEtijmipped recently
with kernelisation (Mika et al., 1999; Baudat and Anouar, 2000) andiefffi implementation (Cai
et al., 2007), FDA has established itself as a strong competitor of SVM. Iy s@nparative stud-
ies, FDA is reported to offer comparable or even better performanceSWah (Mika, 2002; Cai
etal., 2007; Ye et al., 2008).

In Kim et al. (2006) and Ye et al. (2008), a multiple kernel FDA (MK-FD#&)ntroduced, where
an/; norm is used to regularise the kernel weights. As in the cage BK-SVM, ¢; MK-FDA
tends to produce sparse selection results, which may lead to a loss of itiarmia this paper,
we extend the work of Kim et al. (2006) and Ye et al. (2008) to a gerdgnabrm regularisation by
bringing latest advances in non-sparse MKL to MK-FDA. Our contributian be summarised as
follows:

e We provide a SIP formulation of, MK-FDA for both binary and multiclass problems, and
adapt the wrapper algorithm in Sonnenburg et al. (2006) to solve it. Bgidering recent
advances in large scale MKL techniques, we also discuss severajjssateat could signifi-
cantly improve the efficiency and scalability of the wrapper-badgedK-FDA. (Section 2)
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e We carry out extensive experiments on six datasets, including one Sgntlaaset, four
object and image categorisation benchmarks, and one computational bddtaget. We
confirm that as in the case 6f MK-SVM, in ¢, MK-FDA, a smaller regularisation norm in
general leads to more sparse kernel weights. We also show that biyregthe regularisation
norm p on an independent validation set, the “intrinsic sparsity” of the given tbtase
kernels can be learnt. As a result, using the learnt optimal n@im¢, MK-FDA offers
better performance than fixed norm MK-FDAs. (Section 3)

e We compare closely the performance/gfMK-FDA and that of several variants éf MK-
SVM, and show that on object and image categorisation datagetdik-FDA has a small
but consistent edge. In terms of efficiency, our wrapper-bésedK-FDA is comparable
to the interleaved’, MK-SVM on small/medium sized binary problems, but can be sig-
nificantly faster on multiclass problems. When compared against recenfipged MKL
techniques that define the state-of-the-art, such as SMO-MKL (Visaitivan et al., 2010)
and OBSCURE (Orabona et al., 2010), our MK-FDA also comparesuifatdy or similarly.
(Section 3)

e Finally, we discuss the connection between (MK-)FDA and (MK-)SVMpirthe perspec-
tives of both loss function and version space, under the unified frarkegiaegularised
kernel machines. (Section 4)

Essentially, our work builds on Sonnenburg et al. (2006), Ye et adgpand Kloft et al. (2011).
However, we believe the empirical findings of this paper, especially thetaéMK-)FDA tends
to outperform (MK-)SVM on image categorisation datasets, is importantyghst SVM and SVM
based MKL are widely accepted as the state-of-the-art classifier in mogeéiozegorisation sys-
tems. Finally, note that preliminary work to this article has been published msdyias conference
papers (Yan et al., 2009b,a, 2010). The aim of this article is to consolidateshks into an in-
tegrated and comprehensive account and to provide more experimesuéisrin support of the
proposed methodology.

2. £p Norm Multiple Kernel FDA

In this section we first present ol regularised MK-FDA for binary problems and then for multi-
class problems. In both cases, we first give problem formulation, tHee 8@ associated optimi-
sation problem using a wrapper algorithm. Towards the end of this sectioalsw discuss several
possible improvements over the wrapper algorithm in terms of time and memory caty)pie
light of recent advances in MKL optimisation technigues.

2.1 Binary Classification

Given a binary classification problem with training examples, our goal is to learn the optimal
kernel weights3 € R" for a linear combination ofi base kernels under ttfg (p > 1) constraint:

n
K=Y BiKj, B;>0, [BI5<1,
=1

where thep > 1 requirement is to ensure that the triangle inequality is satisfied &fylis a norm.
We define optimality in terms of the class separation criterion of FDA, that is, dratl&ernel
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weights3 are optimal, if the ratio of the projected between and within class scatters is makimise
In this paper we assume each kernel is centred in its feature spaceinGeatn be performed
implicitly (Scholkopf et al., 1999) byK; = PIZ,- P, whereP is them x m centring matrix defined as
P=1- %1- 17, Kj is the uncentred kernel matrix, ahds them x midentity matrix.

Let m" be the number of positive training examples, and = m— m* be that of negative
training examples. For a given kerri¢) let ¢(x;") be theit" positive training point in the implicit
feature space associated wikh@(x;") be thei negative training point in the feature space. Here
x;" andx;” can be thought of as training examples in some input spaceyp antthe mapping to the
feature space. Also let™ andu~ be the centroids of the positive examples and negative examples
in the feature space, respectively:

1 m

B ) = S )

The within class covariance matrices of the two classes are:
L T
e = 3 (o060t ) (w06 -7
1 m T
¢ = a3 (0061w ) (w00 )

The between class scat®y and within class scatt&, are then defined as:

L
m n:n (W —p ) (" —p)T, )

Sy=mCr+mC.

K=

The objective of single kernel FDA is to find the projection directirin the feature space that

e T . T_m_ . .
maX|m|sesv"&’T§';/"v‘c, or equwalently,%, whereSr = S§ + Sy is the total scatter matrix. In

practice a regularised objective function

w1 Sw
Jrpa(w) = —mm = 3
FoA(W) wT (Sr+Al)w @)
is maximised to improve generalisation and numerical stability (Mika, 2002),evhér a small
positive number.

From Theorem 2.1 of Ye et al. (2008), for a given kerdethe maximal value of Equation (3)

is: Ly
Jpoa=a'a—a' <I+)\K> a, (4)
where T
1 1 -1 -1
= = ... = _= ... _= RM
a <m+7 7m+ﬂm_7 7m_> e

contains the centred labels. On the other hand, Lemma 2.1 of Ye et al. (2208 that thev that
maximises Equation (3) also minimises the following regularised least squdrg%. (R

Jris(W) = [l@" (X)w —al* +Af[w]?, (5)
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and the minimum of Equation (5) is given by:

1 -1
Js=a (I + A|<> a. (6)

In Equation (5),0(X) = (@(x7),---,(X".),¢(X7), -+ ,@(x,)) are the (centred) training data in
the feature space such thgtX) T @(X) = K.

Due to strong duality, the minimal value of Equation (5) is equal to the maximal liis
Lagrangian dual problem, that is,

1 1 of
JRis= maxa a— o a+4)\ Ka,
or equivalently
. : 1 1
Jris= nll”( al a+4a a+ﬂa Ka> (7)

wherea € R™. By combining Equation (4), Equation (6) and Equation (7), it follows that th
maximal value of the FDA objective in Equation (3) is given by:

Jpoa=a'a+ min(—aTa—i—laTa—i—laTKa). (8)
a 4 4\

Now instead of a fixed single kernel, consider the case where the kéraah be chosen from
linear combinations of a set of base kernels. The kernel weights musghtarised somehow to
make sure Equation (8) remains meaningful and does not become arblaaydy In this paper, we
propose to impose af}, regularisation on the kernel weights for apy> 1, following Kloft et al.
(2009, 2011):

k_{K_ZB,-K,-:,azo,\guggl}. 9)
=1

Combining Equation (9) and Equation (8), and dropping the unimportarstaoia’ a, it can be
shown that the optima{ € K maximising Equation (4) is found by solving:

1
mﬂaxmln a a+4a a+—Za BiKja (10)

stﬁzQHM$§L

Note that putting arf,, constraint on3 or penalizingw by an/,, block norm are equivalent with
p=r/(2—r) (Szafranski et al., 2008). Whem= 1, we have the; MK-FDA discussed in Ye
et al. (2008); whilep = « leads tar = 2, and MK-FDA reduces to standard single kernel FDA with
unweighted concatenation of base feature spaces. In this papendipwe are interested in the
general case of any > 1.

Equation (10) is an optimisation problem with a quadratic objective and a @eptBrorder
constraint. We borrow the idea frofa MK-SVM (Kloft et al., 2009, 2011) and use second order
Taylor expansion to approximate the norm constraint:

ol ~ P 5 B3 o 2B e P = vie)
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whereﬁj is the current estimate @ in an iterative process, which will be explained in more detail
shortly. Substituting Equation (11) into Equation (10), we arrive at therpifigMK-FDA saddle
point problem:

1

mﬁaxmln —a' a+4a a+— Z a BJKJa (12)
st.3>0, v(B) <1l

In Sonnenburg et al. (2006), the authors propose to transformdéespdint problem similar

to Equation (12) to a semi-infinite program (SIP). A SIP is an optimisation prokéh a finite

number of variables € RY on a feasible set described by infinitely many constraints (Hettich and
Kortanek, 1993):

rrl(inf(x) s.t. g(x,u) >0 Yue U,

where U is an infinite index set. Following the similar arguments as in Sonnenburg e086)2
and Ye et al. (2008), we show in Theorem 1 that the saddle point prahl&auation (12) can also
be transformed into a SIP.

Theorem 1 Given a set of n kernel matrices K- - , Ky, the kernel weight@ that optimise Equa-
tion (12) are given by solving the following SIP problem:

rQ%x 0 (13)

1
s.t. —aa+4a a+—zaTBJKJa>6Va€Rm B>0 v(3)<1l

Proof Let a* be the optimal solution to the saddle point problem in Equation (12). By defining

. 1
0 :—aa+4a a—i——Za BiK;a*

as the minimum objective value achieveddy, we have

1 s
—a' at o a—i——Za BiKja >0

Va € R™ Now define
1
6 =min— —a' ot o a—l—fZa BiKja
and substitute it into Equation (12), the theorem is proved. |
We adapt the wrapper algorithm in Sonnenburg et al. (2006) to solvelhim &quation (13).

This algorithm is based on the column generation technique, where the bessis i divide a SIP
into an inner subproblem and an outer subproblem. The algorithm altebrettesen solving the
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Algorithm 1 A wrapper algorithm for solving the binady MK-FDA SIP in Equation (13)

Input: Kg,---,Kn, a 81 = —oo, [3 1/ij €.
Output: Learnt kernel weight8 = ([3 Bn )T
1. fort= - do
2: Computeam in Equation (15);
3 ComputeSY = —aTa® + JaWTa® + £ 57, a®T Bgt)Kja(t)
4: if\l—%\gsthen
5: break;
6. endif
7: Compute{e (1), 3t+1} in Equation (16), where(B3) is defined as in Equation (11) with
B=p0
8: end for

two subproblems until convergence. At stefhe inner subprobleno(step) identifies the constraint
that maximises the constraint violation f#®, 31} :

1
aV := argmin-a’ a+4a a+ ZaTB Kja. (14)

Note that the program in Equation (14) is nothing but the single kernel FD@&/&ual problem
using the current estimatgV) as kernel weights. Observing that Equation (14) is an unconstrained
quadratic programp V) is obtained by solving the following linear system (Ye et al., 2008):

( '+*ZB ) (15)

If oV satisfies constrainta’ ¥ + 7aWTa® + £ 50, a7 Bﬁt)Kja(t) >0 then{8V, 30} is
optimal. Otherwise, the constraint is added to the set of constraints and thn#haitgproceeds to
the outer subproblem of step

The outer subproblent(step) is also called the restricted master problem. Attsiepomputes
the optimal{8+V, 3(t+1)} in Equation (13) for a restricted subset of constraints:

{6+ g+ — argmae (16)
evﬂ
n
st. —a'al >+411a (r) i}\z TBiKja >0 vr=1---1t, >0, v(8) <1

Whenp =1, v(3) <1 reduces to a linear constraint. As a result, Equation (16) becomes a linear
program (LP) and thé, MK-FDA reduces to the; MK-FDA in Ye et al. (2008). Wherp > 1,
Equation (16) is a quadratically constrained linear program (QCLP) wi¢hguadratic constraint
v(B) <1 andt +nlinear constraints. This can be solved by off-the-shelf optimisation toolsasic
Mosek?! Note that at time, v(3) is defined as in Equation (11) witﬁ = B, that is, the current
estimate of3.

1. Mosek optimisation toolbox can be founchép://www.mosek.com
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Normalised maximal constraint violation is used as a convergence criteriba. alforithm
stops wherj1 — %| < ¢, whereSY ;= —aTa® + aWTa® + L350, a7 Bgt)Kja(t) ande is a
pre-defined accuracy parameter. This iterative wrapper algorithraoleimg the binaryl, MK-
FDA SIP is summarised in Algorithm 1. It is a special case of a set of semitenfinogramming
algorithms known as exchange methods, which are guaranteed to e(Mettjich and Kortanek,
1993). Finally, note that in line 4 of Algorithm 13(+1 can also be solved using the analytical
update in Kloft et al. (2011) that is adapted to FDA. However, in practieenatice that for MK-
FDA, such an analytical update tends to be numerically unstable wiedlose to 1.

2.2 Multiclass Classification

In this section we consider the multiclass case.dls the number of classes, amgbe the number
of training examples in th&" class. In multiclass FDA, the following objective is commonly
maximised (Ye et al., 2008):

Ivc_roa(W) = trace< <WT (Sr+Al )W) “wT SBW) : (17)

whereW is the projection matrix, the within class scat&y is defined in a similar way as in
Equation (2) but withc classes, and the between class scattedzis- @(X)HHT@(X)T, where
@ X) = (@(x1),0(x2),- -+ ,®Xm)) is the set ofm training examples in the feature space, &he-
(hy,ha, -+ he) is anm x ¢ matrix with h, = (hy, ---,hmi) T and

m—{ —Vim =k (18)
—/ m? if yi #£ k.
Similar to the binary case, using duality theory and the connection betweeraRDRLS, Ye

et al. (2008) show that the maximal value of Equation (17) is given by (@mtadditive constant
determined by the labels):

1 1

whereayx € R™for k=1,---,c. When choosing from linear combinations of a set of base kernels
with kernel weights regularised with &g norm, the optimal kernel weights are given by:

c

. 1
mgxn;lknk_l( hkak—|—4akak+4)\ ZakBJKJak> (29)

st. >0, [BIB<1.
We use again second order Taylor expansion to approximate the nostainhand arrive at the
multiclass/, MK-FDA saddle point problem:
- T 1 ¢ 12
mﬁaxrglknk:1 (—hk o+ el o+ 7y leak B,-Kjak>
st. 820, v(B) <1,
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Algorithm 2 A wrapper algorithm for solving the multiclagg MK-FDA SIP in Equation (20)

Input: Kg,---,Kn, a 81 = —oo, [3 1/ij €.
Output: Learnt kernel weight@ = ([3 Bn) .
1. fort=1,--- do

2: Computeal((t) in Equation (21);
OT

ComputeSY =3¢ (— hlal(:) +3ay al(<t) + ZTzlal(:)TB%t)KJal((t));
if |[1— %| < ethen
break;
end if
Compute{e (1) 3+ in Equation (22), where(3) is defined as in Equation (11) with
B=pY

8: end for

No g~

wherev(3) is defined as in Equation (11).
Again similar to the binary case, Equation (19) can be reformulated as a SIP:

max 0 20
na (20)

c

1
s.t. z< hf o+ = akak+ ZakBJKJak>>e Yok € R™, B3>0, v(B) <1,
=1 4

and the SIP can be solved using a column generation algorithm that is similardating 1. In
the inner subproblem, the only difference is that instead of one lineamsyktec linear systems
need to be solved, one for ealgh

<'+ZB ) ) (21)

Accordingly, the outer subproblem for computing the optif@dl*?, 3(t+1)} is adapted to work
with multiple classes:

(e(t-‘rl)”@(t-‘rl)) _ argma)e (22)
0.3
C n
st. kzl< hla(k>+%afj) 0 % Ii”TB,-K,-aS)) >0 Vr=1,--t
B >0, V(ﬂ) <1

Whenp = 1, Equation (22) reduces to an LP and our formulation reduces to thatehafe(2008).
For p > 1, Equation (22) is an QCLP with one quadratic constrainttand linear constraints, as
in the binary case. The iterative wrapper algorithm for solving the multidadsK-FDA SIP is
summarised in Algorithm 2.

2.3 Addressing Efficiency Issues

In this section we discuss several possible improvements over the wiaggeil/, MK-FDA
method proposed in the previous sections. In particular, we address tadmaemory complex-
ity issues, in light of recent advances in MKL optimisation techniques. We shat by exploiting
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the equivalence between kernel FDA and least squares SVM (LS$SMkens and Vandewalle,
1999), the interleaved method in Sonnenburg et al. (2006) and Kloft &CL1) can be applied
to MK-FDA. Furthermore, we demonstrate that the formulation in Vishwanathah (2010) that
tackles directly the MKL dual problem can also be adapted to work with M&FHBoth new for-
mulations discussed in this section are equivalent to previous ones in teleasrafkernel weights,
but can potentially lead to significant efficiency improvement. However, theteve describe these
new formulations only briefly, and do not show their efficiency in the expents section and their
implementation details, since these are not in the main scope of this paper. Ndtesais the fol-
lowing we focus only on multiclass formulations, as the corresponding biregg can be derived
in a very similar fashion, or as special cases.

2.3.1 INTERLEAVED OPTIMISATION OF THE SADDLE POINT PROBLEM

We consider the multiclass MKL problem for a general convex loss fun®ti@m, hix):

wjrknil.?ﬁk 1( Z +CiiV(Eik,hik)> (23)

Z W@ (xi) =&, Vi, Vi B8>0; (8|2 <1,
=1

HWJkH2

wherehy is as defined in Equation (18), and we have replaced the constidjf} < 1 equiva-
lently by [|3|[3 < 1. WhenV (&, hi) is the square l0s¥ (&ik, i) = % (& — hic)2, Equation (23)
is essentially multiclass multiple kernel regularised least squares (MK-RL&n be shown (see
Appendix A for details) that this multiclass MK-RLS can be reformulated asdhewing saddle
point problem:

C 1 n

minmax h! =¥ of BiK; 24

5 o k—1< kK Ok — akak ZZ kBJ Jak> ( )
1.

st. B8>0; [IBI5<

Making substitutionsx, — Sy and thenC — £, it directly follows that the MK-RLS in Equa-
tion (24) is equivalent to the MK-FDA in Equation(19). In the previoustises, we proposed to
use a conceptually very simple wrapper algorithm to solve it. However, iagepoout in Sonnen-
burg et al. (2006) and Kloft et al. (2011), such an algorithm has twadd&ntages: solving the
whole single kernel problem in the step is unnecessary therefore wasteful, and all kernels need
to be loaded into memory. These problems, especially the second one, aighflonit the scal-
ability of wrapper-based MKL algorithms. For example, 50 kernel matri€ssze 20000« 20000
would usually not fit into memory since they require approximately 149GB of mg(doft et al.,
2011).

Exploiting the fact that LSSVM, RLS and kernel FDA are equivalentKRif2002; Gestel et al.,
2002; Keerthi and Shevade, 2003), sequential minimal optimisation (SMO)itpes (Joachims,
1988) developed for LSSVM (Keerthi and Shevade, 2003; LopezSauykens, 2011) can be em-
ployed to remedy these problems. This effectively leads to an interleavedthig that is similar
to Algorithm 2 in Kloft et al. (2011), but applies to square loss instead ofrigéhloss. Such an
interleaved optimisation strategy allows for a very cheap update of a minimsétsabthe dual
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variablesay in eacha step, without having to have access to the whole kernel matrices, and as a
result extends the applicability of MK-FDA to large scale problems. We omiildetithe resulting
interleaved MK-FDA algorithm, the interested reader is referred to KeanithiShevade (2003) and
Lopez and Suykens (2011).

2.3.2 WORKING DIRECTLY WITH THE DUAL

The MK-FDA algorithms considered so far, including the wrapper methattha interleaved
method, are all based on the intermediate saddle point formulation Equatiprof2guivalently,
Equation(19). Recently, a “direct” formulation of MKL was proposed invisnathan et al. (2010),
where the idea is to eliminat@from the saddle point problem, and deal directly with the dual. Con-
sider again MKL with a general convex loss, but following Vishwanathaai.€2010) this time we
impose the norm constraint in the form of Tikhonov regularisation instehchabv regularisation:

c 2
- Z( Ml o3 viEeho) + S1al: (25)

Wik ik, =
Zwk(pJ =&y, Vi, vk, 3>0.

Note that the two formulations in Equation (25) and Equation (23) are dgnivan the sense that
for any givenC there exists @ (and vice versa) such that the optimal solutions to both problems are
identical (Kloft et al., 2011).

It can be shown (see Appendix B for details) that for the special chsquare loss, which
corresponds to MK-FDA/MK-RLS, the dual of Equation(25) is:

c [ n
max hiax — —af ak) H < aIKjak>
o k—1< ZC kzl j=1

whereq = % is the dual norm op, and once the optimaly are found by solving Equation (26),
the kernel weights are given by:

2
: (26)

q

1
p C

n
Bj = 2H<Z kz a-erjak)q> z -|I<-K10ék P,

Qal-
_Q

Equation (26) can be viewed as an extension of Equation (9) in Vishwamathal. (2010) to
multiclass problems. Another difference is that Equation (9) in Vishwanathaln(2010) considers
a hinge loss, while Equation (26) is for square loss. Similarly as in Vishwanahal. (2010), for
any p > 1, Equation (26) can be solved using an SMO type of algorithm, with the upalatéor
the minimal subset of dual variables adapted to work with square losstfiKead Shevade, 2003;
Lopez and Suykens, 2011). On the other hand, observing that Eq2@pis an unconstrained op-
timisation problem and the objective function is differentiable everywhare fo 1, an alternative
approach is the quasi-Newton descent methods, for example, the limited meanianyt (Liu and
Nocedal, 1989). In fact, Equation (26) can also be thought of astengrn of the smooth variant
of group Lasso considered in Kloft et al. (2011) to multiclass case. Nmtever that Equation (26)
has a term of; norm squared, while the smooth group Lasso formulation in Kloft et al. (P01
has a term ofq norm. This is a direct result of the fact that the two formulations use Tikhono
regularisation and Ilvanov regularisation oygmrespectively.
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3. Experiments

In this section we validate the usefulness of the propdgedK-FDA with experimental evidence
on six datasets. The experiments can be divided into four groups:

e We first demonstrate in Section 3.1 and 3.2 the different behaviour of #isegp MK-FDA
and a non-sparse version of MK-FDA&y(norm) on synthetic data and the Pascal VOC2008
object recognition dataset (Everingham et al., 2008). The goal o tfras experiments is
to confirm that/; and/, regularisations indeed lead to sparse and non-sparse kernel weights
respectively.

e Next in Section 3.3, 3.4 and 3.5 we carry out experiments on another thjee and image
categorisation benchmarks, namely, Pascal VOC2007 (Everinghdm28@v), Caltech101
(Fei-Fei et al., 2006), and Oxford Flowerl7 (Nilsback and Zisser2@@8). We show that
by selecting the regularisation nonpon an independent validation set, the intrinsic sparsity
of the given set of base kernels can be learnt. As a result, using timé¢ dgdiimal normp in
the proposed, MK-FDA offers better performance thah or /., MK-FDAs. Moreover, we
compare the performance 6f MK-FDA and that of several variants df, MK-SVM, and
show that on image categorisation problefp#1K-FDA tends to have a small but consistent
edge over its SVM counterpart.

¢ In Section 3.6 we further compafg MK-FDA and /, MK-SVM on the protein subcellular
localisation problem studied in Zien and Ong (2007) and Ong and Zien J200&his dataset
¢p MK-SVM outperforms/, MK-FDA by a small margin, and the results suggest that given
the same set of base kernels, the two MKL algorithms may favour slightly elifferorms.

e Finally, in Section 3.7, the training speed of our wrapper-bdgedK-FDA and severa¥l,
MK-SVM implementations is analysed empirically on a few small/medium sized problems,
where MK-FDA compares favourably or similarly against state-of-thdA#tlL techniques.

Among the six datasets used in the experiments, three of them (synthetic 8y@0C07) are
binary problems and the rest (Caltech101, Flowerl7, Protein) are mugtiotees. In our experi-
ments the wrapper-baség MK-FDA is implemented in Matlab with the outer-subproblem solved
using the Mosek optimisation toolbox. The code of uMK-FDA implementation is available on-
line.?2 Once the kernel weights have been learnt, we use a spectral regreased efficient kernel
FDA implementation (Cai et al., 2007; Tahir et al., 2009) to compute the optimpdqbi@n direc-
tions, the code of which is also available onlthén binary problems, we compafg MK-FDA
with two implementations of binary, MK-SVM, namely, MK-SVM Shogun (Sonnenburg et al.,
2006, 2010, and SMO-MKL (Vishwanathan et al., 201®)hile on multiclass problems, we com-
pare/, MK-FDA with two variants of multiclasg, MK-SVM: MK-SVM Shogun and MK-SVM
OBSCURE (Orabona et al., 2010; Orabona and Jie, 2011 poth ¢, MK-FDA and ¢, MK-SVM

2. The code of oufp MK-FDA is available atttp://www.featurespace.org

3. The code of spectral regression FDA can be fourtdt@t/www.zjucadcg.cn/dengcai/SR/index.html

4. Version 0.10.0 of the Shogun toolbox, the latest version as of the gritirthis paper, can be found hltp
/lwww.shogun-toolbox.org

5. The code of SMO-MKL is available dtttp://research.microsoft.com/en-us/um/people/manik Icode/
SMO-MKL/download.html

6. The code of OBSCURE can be founchtip://dogma.sourceforge.net
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Shogun, the stopping threshalds set to 104 unless stated otherwise. Parameters in MK-SVM
OBSCURE and SMO-MKL are set to default values unless stated otherwise

All kernels used in the experiments have been normalised. For the firsidigsets, due to the
kernel functions used, the kernel matrices are by definition sphericadipalised: all data points
lie on the unit hypersphere in the feature space. For the protein localisittaset, the kernels
are multiplicatively normalised following Ong and Zien (2008) and Kloft et 201(1) to allow
comparison with Kloft et al. (2011). After normalisation, the kernels are ti@atred in the feature
spaces, as required iy MK-FDA. Note that/, MK-SVM is not affected by centring. Kernels
used in the experiments (except for those in the simulation and in training sgpedments) are
also available onliné.

3.1 Simulation

We first perform simulation to illustrate the different behaviou¢pMK-FDA and a special case
of ¢/, MK-FDA, namely, the case gb = 2. We simulate two classes by sampling 100 points from
two 2-dimensional Gaussian distributions, 50 points from each. The mé#restwo distributions
in both dimensions are drawn from a uniform distribution between 1 and®trencovariances
of the two distributions are also randomly generated. A radial basis fun@@Bf) kernel is then
constructed using these 2-dimensional points. Similarly, 100 test pointarapged from the same
distributions, 50 from each, and an RBF kernel is built for the test poikexnel FDA is then
applied to find the best projection direction in the feature space and compugertr rate on the
test set. Figure 1 (a) gives 3 examples of the simulated points. It showduthab the parameters
used in the two Gaussian distributions, the two classes are heavily, budmptetely, overlapping.
As a result, the error rate given by single kernel FDA is around 0.43:thligktter than a random
guess.

The above process of mean/covariance generation, sampling, ared beeitding is repeated
times, resulting im training kernels (andh corresponding test kernels). Thes&aining kernels,
although generated independently, can be thought of as kernels phatecdifferent “views” of a
single binary classification problem. With this interpretation in mind, we appind/, MK-FDAs
to learn optimal kernel weights for this classification problem. We vary the eumfsom 5 to 50
at a step size of 5. For each valuerpf/; and/, MK-FDAs are applied and the resulting error
rates are recorded. This process is repeated 100 time for each valie cdmpute the mean and
standard deviation of error rates. The results for varioualues are plotted in Figure 1 (c).

Itis clear in Figure 1 (c) that as the number of kernels increases, thierates of both methods
drop. This is expected, since more kernels bring more discriminative infiammaAnother obser-
vation is that/; MK-FDA slightly outperformsl, MK-FDA when the number of kernels is 5, and
vice versa when the number of kernels is 10 or 15. When there are @6l&ethe advantage é$
MK-FDA becomes clear. As the number of kernels keeps increasing \isstae becomes more
and more evident.

The different behaviour of; and/, MK-FDAs can be explained by the different weights learnt
from them. Two typical examples of such weights, learnt usirg5 kernels andh = 30 kernels
respectively, are plotted in Figure 1 (b). It has been known thatorm regularisation tends to
produce sparse solutions gR®ch, 2001; Kloft et al., 2008). When kernels carry complementary
information, this will lead to a loss of information and hence degraded padoce. When the

7. The kernels can be downloadedp://www.featurespace.org
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Figure 1: Simulation: (a) Three examples of the two Gaussian distributionSCdimparing the
kernel weights learnt fromi; MK-FDA and ¢/, MK-FDA. Left: using 5 kernels. Right:
using 30 kernels. (c) Mean and standard deviation of error ratés MK-FDA and ¢
MK-FDA using various number of kernels.

number of kernels is sufficiently small, however, this effect does natroas can be seen in the
left plot of Figure 1 (b), when there are only 5 kernels, all of them getrero weights in botl#;
and/, MK-FDAs.

As the number of kernels increases, eventually there are enough ofdhtra over-selectiveness
of /1 regularisation to exhibit itself. As the right plot of Figure 1 (b) shows, wB8 kernels are
used, many of them are assigned zero weighté ByK-FDA. This leads to a loss of information.
By contrast, the weights learnt i3 MK-FDA are non-sparse, hence the better performance. Fi-
nally, it is worth noting that the sparsity of learnt kernel weights, whichiuwas the sparsity of
information in the kernel set, is not to be confused with the numerical spaifditye kernel matri-
ces. For example, when the RBF kernel function is used, the kernel esatmd not contain any
zero, regardless of the sparsity of kernel weights.

3.2 Pascal VOC2008

In this section, we demonstrate again the different behaviodr ahd/, MK-FDAs, but this time
on a real world dataset: the Pascal visual object classes (VOC) dal&98 development dataset.
The VOC challenge provides a yearly benchmark for comparison of totigessification methods,
with one of the most challenging datasets in the object recognition / image dassificommunity.
The VOC2008 development dataset consists of 4332 images of 20 dbjgst€ such as aeroplane,
cat, person, etc. The dataset is divided into a pre-defined trainingite2®l1 images and a
validation set with 2221 images. In our experiments, the training set is useédiioing and the
validation set for testing. VOC2008 test set is not used as the class labalstgublicly available.
Pascal VOC2008 is a multilabel dataset in the sense that each image can cuwitiple classes
of objects. To tackle this multilabel problem, the classification of the 20 objestetas treated as
20 independent binary problems. In our experiments, average pre@gr) (Snoek et al., 2006) is
used to measure the performance of each binary classifier. Averagjsipn is particularly suitable
for evaluating the performance of a retrieval system, since it emphasgesr manked relevant
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Figure 2: VOC2008: (a) Learnt kernel weightinMK-FDA and ¢, MK-FDA. “motorbike” class.
(b) MAPs of¢; MK-FDA and ¢, MK-FDA with various composition of kernel set.

instances. The mean of the APs of the 20 classes in the dataset, MAP, @sugedeasure of the
overall performance.

The SIFT descriptor (Lowe, 2004; Mikolajczyk and Schmid, 2005) gratial pyramid match
kernel (SPMK) (Grauman and Darrell, 2007; Lazebnik et al., 2006¢t6@n bag-of-words model
(Zhang et al., 2007; Gemert et al., 2008) are used to build base keffrredscombination of two
sampling strategies (dense sampling and Harris-Laplace interest poinitrggip colour variants
of SIFT descriptors (Sande et al., 2008), and 3 ways of dividing andritag spatial location grids
results in 2< 5 x 3 = 30 “informative” kernels. We also generate 30 sets of random vedar,
build 30 RBF kernels from them. These random kernels are then mixed withftreative ones,
to study how the properties of kernels affect the performande ahd/, MK-FDASs.

The number of kernels used in each run is fixed to 30. In the first rug,tba 30 random
kernels are used. In the following runs the number of informative keisétgereased and that of
random kernels decreased, until thé'3an, where all 30 kernels are informative. In each run, we
apply both/; and/, MK-FDAs to the 20 binary problems, compute the MAP for each algorithm,
and record the learnt kernel weights.

Figure 2 (a) plots the kernel weights learnt fréirMK-FDA and ¢, MK-FDA. In each subplot,
the weights of the informative kernels are plotted towards the left end aisé thiorandom ones
towards the right. We clearly observe again the “over-selective” betawef /1 norm: it sets the
weights of most kernels, including informative kernels, to zero. By cehtthe proposeé, MK-
FDA always assigns non-zero weights to the informative kernels. Hemv@MK-FDA is “under-
selective”, in the sense that it assigns non-zero weights to the randageiskdt is also worth noting
that the kernels that do get selected?bK-FDA are usually the ones that get highest weights in
/> MK-FDA.

The MAPs of both/; and/, MK-FDAs are shown in Figure 2 (b). In order to improve the
clarity of the interest region, in Figure 2 (b), the MAP of the first run, teatvhen all kernels are
random, is not plotted. In such a situation, both versions of MK-FDAscedo a chance classifier,
which has an MAP of around 0.007. It can be seen from Figure 2 (b)ab&xpected; MK-FDA
outperforms/, MK-FDA when the noise level is high and vice versa when the noise levelis lo
Another interpretation of this observation is that when the “intrinsic” spadditiie base kernels is
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high thenf; norm regularisation is appropriate, and vice versa. This suggests thatdén learn
this intrinsic sparsity of base kernels on a validation set, we will be able to fewhtst appropriate
regularisation nornp, and get improved performance over a fix norm MK-FDA. We validate this
idea in the next section.

3.3 Pascal VOC2007

Similar to Pascal VOC2008, Pascal VOC2007 is a multilabel object recoguititaset consisting
of the same 20 object categories. The dataset is divided into training, tiatidand test sets, with
2501, 2510 and 4952 images respectively. As in the case of VOC208&]dksification of the
20 object classes is treated as 20 independent binary problems, andsMia&d as a measure of
overall performance.

We generate 14 base kernels by combining 7 colour variants of locaiptess (Sande et al.,
2008) and two kernel functions, namely, SPMK (Lazebnik et al., 200&ufdan and Darrell, 2007)
and RBF kernel wittx? distance (Zhang et al., 2007). We first perform supervised dimerigiona
reduction on the descriptors to improve their discriminability, following Cai e{2011). The
descriptors with reduced dimensionality are clustered with k-means to ledewoods (Csurka
et al., 2004). The soft assignment scheme in Gemert et al. (2008) isni@nyed to generate a
histogram for each image as its representation. Finally, the two kerndldna@re applied to the
histograms to build kernel matrices.

We investigate the idea of learning the intrinsic sparsity of the base kerntlailg the regular-
isation normp on a validation set, using botly MK-SVM and ¢, MK-FDA. For both methods, we
learn the parametgron the validation set from 12 value§l,1+276,142751+27414+273 1+
272/1+2712,3 4,8 10°}. For/, MK-SVM, the regularisation paramet€ris learnt jointly with
p from 10 values that are logarithmically spaced ovef @ 27. Similarly, for ¢/, MK-FDA, the
regularisation parameteris learnt jointly with p from a set of 10 values that are logarithmically
spaced over 2 to 4*. The sets of values & and\ are chosen to cover the areas in the parameter
spaces that give the best performance for MK-SVM and MK-FDApeetvely.

Plotted in Figure 3 are the weights learnt on the training sép iIMK-FDA and ¢/, MK-SVM
with various p values for the “aeroplane” class. F&y MK-FDA, for each p value, the weights
learnt with the optimah value are plotted; while fof, MK-SVM, for eachp value, we show the
weights learnt with the optima value. It is clear that ap increases, in both MKL algorithms, the
sparsity of the learnt weights decreases. As expected, wheh® (practically infinity), the kernel
weights become ones, that 5, MK-FDA/MK-SVM produces uniform kernel weights. Note that
for the same nornp, the weights learnt ii, MK-FDA and ¢/, MK-SVM can be different. This is
especially evident whep is small. Note also that results reported in this section are obtained using
the Shogun implementation of MK-SVM, which is based on the saddle point fatiom of the
problem. The recently proposed SMO-MKL works directly with the dual@atbe more efficient,
especially on large scale problems. However, as discussed in Sectidhex8,two formulations
are equivalent and produce identical kernel weights. Consideringwki®nly present the results
of SMO-MKL in terms of training speed in Section 3.7.

Next, we plot in Figure 4 top-left the APs on the validation and test sets fofbih@’ class
with variousp values, using, MK-FDA, where again for eaclp value, the APs with tha value
that gives the best AP on the validation set are plotted. It is clear that theumwes match well,
which implies that learning in addition toA should help. Shown in the middle and right columns
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MK-SVM MK-FDA MK-SVM MK-FDA
a6l ale]s 0l ] 6l a]e] 6
aeroplane|| 78.8 | 79.6 | 79.6 || 79.9 | 79.5 | 80.9 din. table || 52.4 | 57.3 | 56.6 || 57.2 | 59.2 | 61.4
bicycle 63.4 | 65.0 | 64.7 || 64.7 | 67.6 | 67.8 dog 428 | 458 | 446 || 442 | 46.1 | 45.1
bird 573 | 61.0| 61.0|| 57.1 | 62.0 | 63.7 horse 789 | 80.6 | 80.6 || 80.0 | 81.1 | 81.0
boat 71.1| 70.1| 711 | 709 | 70.1 | 70.8 moterbike || 66.3 | 66.8 | 66.8 || 67.8 | 67.8 | 68.8
bottle 29.1| 29.9 | 29.7 || 275 | 29.7 | 29.4 person 86.7 | 88.0 | 88.0 || 86.8 | 88.1 | 88.8
bus 629 | 649 | 655 | 63.4| 66.1 | 66.1 pot. plant || 31.8 | 41.0 | 40.5 || 325 | 42.6 | 425
car 779 | 788 | 788 || 79.1 | 79.5 | 80.9 sheep 40.2 | 46.0 | 46.0 || 39.0 | 44.4 | 439
cat 56.7 | 56.4 | 57.1 || 57.1 | 56.9 | 58.3 sofa 44.0 | 43.8 | 44.0 || 435 | 43.7 | 459
chair 523 | 53.0 | 53.0 || 51.9 | 525 | 529 train 813 | 824 | 824 | 83.2| 842 | 851
cow 38.7 | 414 | 414 || 423 | 415 | 434 tvmonitor 53.3 | 53.7 | 53.7 || 52.5 | 54.1 | 56.9
table continued in the right column. MAP H 58.3‘ 60.3‘ 60.3 H 59_0‘ 60.8‘ 61.7

Table 1. VOC2007: Average precisions of six MKL methods

of the top row of Figure 4 are the learnt kernel weights with the optifpak } combination on the
training set and on the training + validation set, respectively. Since fortiing”“class the optimal
p found on the validation set is-£ 271, both sets of weights are non-sparse. For this particular
binary problem, the intrinsic sparsity of the set of base kernels is medium. Simtlaelypottom

row of Figure 4 shows the results for the “pottedplant” class. We agaieredshat the AP on the
validation set and that on the test set show similar patterns. Howeverefépaftedplant” class,

the optimalp on the validation set is found to be 8, which implies that the intrinsic sparsity of the

kernels is low.

When keeping the norrp fixed at 1, 16 and learning only th€/\ parameter, thé, MK-
SVM/MK-FDA reduces tof; and /., MK-SVM/MK-FDA, respectively. The APs and MAPs of
the six MKL methods are shown in Table 1. The results in Table 1 demonstratednaing the
regularisation nornp indeed improves the performance of MK-FDA. However, it is worth noting
that this improvement is achieved at a computational price of cross validatingnfadditional
parameter, the regularisation nopnin the case of MK-SVM, the learnt optimalyields the same
MAP as/, MK-SVM. However, this does not mean learnipgs not bringing anything, because
a priori we would not know that,, is the most appropriate norm. Instead, the conclusion we can
draw from the MK-SVM results is that the sparsity of the base kernelgrdior to MK-SVM, is
very low. Another observation from Table 1 is that in all three caégd.., and/, tuned, MK-FDA
outperforms MK-SVM on the majority of classes.

The pairwise alignment of the 14 kernel matrices w.r.t. the Frobenius dotgr¢@olub and
van Loan, 1996)A4(i, j) = m is plotted in Figure 5, where subplot (a) shows the alignment
of uncentred kernels and subplot (b) shows that of centred kerdmel alignment has been
used to analyse the property of a given kernel set (Nakajima et al., R0®fet al., 2011). We
argue, however, that kernel alignment by itself cannot reveal conhplte sparsity of a kernel
set. First of all, as shown in Figure 5 (a) and (b), centring the kerneiegeatchanges significantly
the alignment of the kernels. On the other hand, it is well known that cendideg not change
the effective weights learnt in MKL, since the shape of the data in the feapace is translation
invariant. Second, kernel alignment does not take into account laleemation. For a multilabel

dataset such as VOCO07, all object classes share the same set of imagess the same kernels),
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Figure 5: VOCO7: Alignment of the 14 kernels. (a) Spherically normalisathdds. (b) Spheri-
cally normalised and centred kernels. Note the scale difference betweandiplots as
indicated by the colorbars.

and the labels are different depending on which object class (i.e., whehytproblem) is being
considered. Itis clear from Table 1 that for bdthMK-FDA and /, MK-SVM, the sparsity of the
kernel set is class dependent. This means kernel alignment, which isradapendent, by itself
cannot be expected to identify the kernel set sparsity for all clasasteald, we hypothesise that
correlation analysis using projected labels (Braun et al., 2008) is pisobedye appropriate.

Finally, note that due to different parameter sets and different normatsaigthods used
(spherical normalisation in this paper while unit trace normalisation in Yan e2@l0), the re-
sults on VOCO07, Caltech101 and Flowerl7 reported in this paper are sligtiésedt from those
in Yan et al. (2010). However, the trends in the results remain the samallahclusions drawn
from the results remain unchanged.

3.4 Caltech101

In the following three sections, we compare the propdsellK-FDA with several variants of,
MK-SVM on multiclass problems. We start in this section with the Caltech101 olgeofgnition
dataset. Caltech101 is a multiclass object recognition benchmark with 101 oajegories. We
follow the popular practice of using 15 randomly selected images per clagsifaing, up to 50
randomly selected images per class for testing, and compute the averagecgaver all classes.
This process is repeated 3 times, and we report the mean of the avecagacas on the test set
that is achieved with the optimal paramet€rfor MK-SVM and A for MK-FDA). Validation is
omitted, as the training of multiclass MK-SVM Shogun on this dataset can bdireryonsuming.

We generate 10 kernels in a similar way as in the VOC2007 experiments. itioadd these
“informative” kernels, we also construct 10 RBF kernels from 10 sétammdom vectors. To test
the robustness of the MKL methods, we repeat the experiment 6 times. Weavitaonly the
informative kernels, and add two more random kernels in each subgague
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Figure 6: Caltech101: Accuracy comparison of three multiclass MKL methods

Two multiclass MK-SVM implementations are compared against multiclass MK-FBety,
MK-SVM Shogun, and the recently proposed online MK-SVM algorithm GBRE (Orabona
et al., 2010). For OBSCURE, the parameters are set to default vakeegptdor the MKL normp
and the regularisation parametr In our experimentsC andA are chosen from the same set of
values that are logarithmically spaced oveP 40 4*. We use the same set of fvalues as in the
VOCO7 experiments. Note however that in OBSCURE, the MKL n@rim specified equivalently
through the block norm, wherer = 2p/(p+1). Moreover, OBSCURE requires that> 1, so
p=r = 1inthe set ofp values is not used for OBSCURE.

The performance of the three MKL methods with various numbers of raridoamels is il-
lustrated in Figure 6, where we show results for gixalues, covering the spectrum from highly
sparsity-inducing norm, to uniform weighting. Whenis large, MK-SVM Shogun does not con-
verge within 24 hours, so its performance is not plotteddet 4 andp = 10°. We can see from
Figure 6 that, wherp is small, both MK-SVM OBSCURE and MK-FDA are robust to the added
noise, and MK-FDA has a marginal advantage over OBSCURE (e®Q03 whenp = 1+ 275).
Whenpis large, as expected, the performance of all three methods in gengratlde as the num-
ber of random kernels increases. However, MK-FDA does so maeefilly than OBSCURE. On
the other hand, both MK-FDA and MK-SVM OBSCURE outperform MK-S\8iogun by a large
margin on this multiclass problem.

3.5 Oxford Flowerl7

Oxford Flowerl7 is a multiclass dataset consisting of 17 categories ofrBowiéh 80 images per
category. This dataset comes with 3 predefined splits into training 40dmages), validation (1
20 images) and test (2720 images) sets. Moreover, Nilsback and Zisserman (2008) precomputed
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method ‘ accuracy and std. deq. parameters tuned on val. set
product 85.5+1.2 C
averaging 84.9+1.9 C
MKL (SILP) 85.2+ 1.5 c
MKL (Simple) 85.2+ 1.5 C
CG-Boost 84.8+2.2 C
LP-B 85.5+ 3.0 Cj,j=1,---,nandd < (0,1)
LP-B 85.4+2.4 Cj,j=1,---,nandd€ (0,1)
{p MK-SVM Shogun 86.0+ 2.4 p andC jointly
{p MK-SVM OBSCURE 85.6+ 0.0 p andC jointly
£p MK-FDA 87.24+ 1.6 p andA jointly

Table 2: Flowerl7: Comparison of ten kernel fusion methods.

7 distance matrices using various features, and the matrices are availib&®odve use these
distance matrices and follow the same procedure as in Gehler and Now62®) ( compute 7
kernels:Kj(xi, i) = exp(—Dj(xi,Xi’)/n;), wheren;j is the mean of the pairwise distances for the
jih feature.

Table 2 compareg, MK-SVM Shogun,/, MK-SVM OBSCURE,/, MK-FDA, and 7 kernel
combination techniques discussed in Gehler and Nowozin (2009). Not¢htse methods are
directly comparable since they share the same kernel matrices and the $tsnes, MK-SVM
Shogun,/, MK-SVM OBSCURE and/, MK-FDA, the parameterp, C andA are tuned on the
validation set from the same sets of values as in the Caltech101 experimentbe Bther seven
methods, the corresponding entries in the table are taken directly fromr@edi®&lowozin (2009),
where: “product” and “sum” refer to the two simplest kernel combination oathnamely, taking
the element-wise geometric mean and arithmetic mean of the kernels, respedtiély(SILP)”
and “MKL (Simple)” are essentially; MK-SVM; while “CG-Boost”, “LP-" and “LP-B” are three
boosting based kernel combination methods.

We can see from Table 2 that the boosting based methods, althoughgagarell on other
datasets in Gehler and Nowozin (2009), fail to outperform the baselineodwtiproduct” and
“averaging”. On the other hand, MK-FDA not only shows a considerable improvement over
all the methods discussed in Gehler and Nowozin (2009), but also cortmerboth/, MK-SVM
Shogun and, MK-SVM OBSCURE. Note that the optimal test accuracy over all combinatbns
parameters achieved by OBSCURE is comparable to that by MK-FDA. Hawihe performance
on the validation set and that on the test set do not match as well for OBE@S/Ror MK-FDA?
resulting in the lower test accuracy of OBSCURE. Parameters that neediindd on the validation
set in these methods are also compared in Table 2.

3.6 Protein Subsellular Localisation

In the previous three sections, we have shown that on both binary and nagltidigect recognition
problems,/, MK-FDA tends to outperforn?, MK-SVM by a small margin. In this section, we
further compare/, MK-FDA and ¢/, MK-SVM on a computational biology problem, namely, the
prediction of subcellular localisation of proteins (Zien and Ong, 2007; &wbZien, 2008).

8. The distance matrices can be foundtgt//www.robots.ox.ac.uk/ ~ vgglresearch/flowers/index.html
9. This is indicated by, for example, a lower Spearman or Kendall rarmelation coefficient.
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normp | 1 | 31| 1ens| &7 | 43 | 2 | 4 | 8 | 16 | o
wcsyy | 818 | 822 [ 820 | 821 | 843 [ 947 | 1100 | 1161 [ 1191 | 11.85
olant 4047 | £045 | +043 | £0.42 | +042 | £0.43 | +0.47 | +£0.49 | +055| +0.60
VK.FDA | 10-86 | 1102 | 10.96 [ 11.07 | 1085 | 1069 | 11.28 | 11.28 | 1104 | 1135
+042 | £043 | £0.46 | £0.43 | +043 | £0.37 | +045| +£0.45 | +043 | +0.46
wcsyy | 897 | 901 [ 908 | 910 [ 024 [ 943 | 977 [ 1005 [ 10.23 [ 10.33
nonpl 4026 | £0.25| 4026 | £0.27 | +029 | +0.32 | 4032 | +0.32 | +032| +0.31
VDA | 1093 | 1050 | 1091 [ 10.89 | 1084 | 1100 | 1212 | 1212 | 1181 | 1215
+031| £0.33 | +031| £0.32 | 4031 | +0.33 | 4041 | +0.41 | +038| +041
sy | 999 | 991 [ 987 [ 1001 1013 [ 1101 | 1220 | 1273 [ 1304 | 13.33
psortNeg +035| +£0.34 | £034| £0.34 | +033 | £0.32 | +032| +0.34 | +033| +0.35
VDA | 989 | 1007 | 095 [ 987 [ 975 | 074 | 1139 | 1125 | 1127 | 1150
+034| £0.36 | +035| £0.37 | +039 | £0.37 | +035| +£0.34 | +035| +0.35
sy | 1307 [ 1301 [ 1341 ] 1317 | 13.25 [ 14.68 | 1555 | 1643 | 17.36 | 17.63
psortPos +0.66 | +£0.63 | +0.67 | £0.62 | +0.61 | +£0.67 | +0.72 | +0.81 | +0.83 | +0.80
VDA | 1259 | 1816 | 13.07 [ 1334 | 1345 | 1363 | 1686 | 16.37 | 1656 | 16.94
+0.75| £0.80 | +0.80 | £0.80 | +£0.74 | £0.70 | +0.85 | £0.89 | +0.87 | +0.84

Table 3: Protein Subcellular Localisation: comparifigMK-FDA and /, MK-SVM w.r.t. pre-
diction error and its standard error. Prediction error is measured-as/érage MCC in
percentage.

The protein subcellular localisation problem contains 4 datasets, condiapao 4 different
sets of organisms: planplant), non-plant eukaryotesionpl)), Gram-positive jsortPo3 and Gram-
negative bacterigo6ortNeq. Each of the 4 datasets can be considered as a multiclass classification
problem, with the number of classes ranging between 3 and 5. For eadetd®&@ kernels that
capture diverse aspects of protein sequences are available Bhiedownload the kernel matri-
ces and follow the experimental setup in Kloft et al. (2011) to enable atdiogaparison. More
specifically, for each dataset, we first multiplicatively normalise the kerngieea. Then for each
of the 30 predefined splits, we use the first 20% of examples for testinthamdst for training.

In Kloft et al. (2011), the multiclass problem associated with each datasiciesmposed
into binary problems using the one-vs-rest strategy. This is not negessthe case of FDA,
since FDA by its natures handles both binary and multiclass problems in a pechdgshion.

For each dataset, we consider the same set of values for the m@snin Kloft et al. (2011):
{1,32/31,16/15,8/7,4/3,2,4,8,}. In Kloft et al. (2011), the regularisation constant C for MK-
SVM is taken from a set of 9 value§1/32,1/8,1/2,1,2,4,8,32,128}. In our experiments, the
regularisation constanitfor MK-FDA is also taken from a set of 9 values, and the values are loga-
rithmically spaced over 1@ to 1.

Again following Kloft et al. (2011), for eaclp/A combination, we evaluate the performance of
¢, MK-FDA w.r.t. average (over the classes) Matthews correlation coeiti¢dCC), and report in
Table 3 the average of-1MCC over 30 splits and its standard error. For ease of comparison, we
also show in Table 3 the performance/gMK-SVM as reported in Kloft et al. (2011).

10. The kernels can be downloadedigt://www.fml.tuebingen.mpg.de/raetsch/suppl/prots ubloc .
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Table 3 demonstrates that overall the performancg, ®IK-FDA lags behind that of , MK-
SVM, except onpsortNegand onpsortPos where it has a small edge. Another observation is
that the optimal nornp identified by MK-SVM does not necessarily agree with that by MK-FDA.
On psortPosthey are in close agreement and both methods favour sparsity-induaing.n@n
plant, nonplandpsortNeg on the other hand, the norms picked by MK-FDA are larger than those
picked by MK-SVM. Note, however, that this observation can be slightly mdstey, because on
the latter three datasets, the performance curvg MK-FDA is quite “flat” in the area of optimal
performance. As a result, the optimal norm estimated may not be stable.

3.7 Training Speed

In this section we provide an empirical analysis of the efficiency of the paapased, MK-FDA
and various implementations 6§ MK-SVM. We usep = 1 (or in some cases- 275, 1+27°9
andp = 2 as examples of sparse/non-sparse MKL respectivedpd study the scalability of MK-
FDA and MK-SVM w.r.t. the number of examples and the number of kernelbotim binary and
multiclass problems.

3.7.1 BNARY CASE: VOC2007

We first compare on the VOC2007 dataset the training speed of threg/ bitkdr methods: the
wrapper based binar§, MK-FDA in Section 2.1, the binary, MK-SVM Shogun implementa-
tion (Sonnenburg et al., 2006, 2010), and the SMO-MKL in Vishwanattaa. (2010). In the
experiments, interleaved optimisation and analytical upda@ak used for MK-SVM Shogun.

We first fix the number of training examples to 1000, and vary the numbegragls from 3 to
96. We record the time taken to learn the kernel weights, and averag&hevad binary problems.
Figure 7 (a) shows the training time of the six MKL algorithms as functions of tmaber of
kernels. Next, we fix the number of kernels to 14, and vary the humbexarhjgles from 75 to
4800. Similarly, in Figure 7 (b) we plot the average training time as functiorthkefiumber of
examples.

Figure 7 (a) demonstrates that for small/medium sized problems, when @yspatacing norm
is used, SMO-MKL is the most efficient; while whegn= 2, MK-FDA can be significantly faster
than the competing methods. On the other hand, when training efficiency isireéas a func-
tion of the number of examples, there is no clear winner, as indicated in Fig(be However,
the trends in Figure 7 (b) suggest that on large scale problems, SMO-slKkely to be more
efficient than MK-FDA and MK-SVM Shogun. In both cases, MK-FDAsteacomparable or bet-
ter efficiency than MK-SVM Shogun, despite the fact that MK-SVM Shogses the interleaved
algorithm while MK-FDA employs the somewhat wasteful wrapper-based mmgtéation. Again,
this trend is likely to flip over on large scale problems. For such problems;amadopt either the
square loss counterpart of the interleaved algorithm, or the squarelas®gart of the SMO-MKL
algorithm, or the limited memory quasi-Newton method, to improve the efficienéy BIK-FDA,
as discussed in Section 2.3.

11. Both SMO-MKL and OBSCURE require that> 1. Moreover, SMO-MKL is numerically unstable when=
1+276. Asaresult, we usp= 1422 andp = 1+ 28 as sparsity-inducing norms for SMO-MKL and OBSCURE,
respectively.
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Figure 7: Training speed on a binary problem: VOC2007. (a) Training ten@wmber of kernels,
where number of examples is fixed at 1000. (b) Training time vs. numbetanhges,
where number of kernels is fixed at 14.= 1 for MK-FDA, andC = 1 for MK-SVM
Shogun and MK-SVM OBSCURE.

3.7.2 MuLTICLASS CASE: CALTECH101

Next we compare three multiclagg MKL algorithms on the Caltech101 dataset, namely, the
wrapper-based multiclagg MK-FDA in Section 2.2, multiclasg, MK-SVM Shogun, and MK-
SVM OBSCURE. We compare the first two methods following similar protocols &lseirbinary
case. In Figure 8 (a) we show the average training time over the 3 splitactofis of the number
of kernels (from 2 to 31) when the number of examples is fixed to 101 (pam@e per class);
while plotted in Figure 8 (b) is the average training time as functions of the nuaileamples
(from 101 to 1515, that is, from one example per class to 15 example$ass) when the number
of kernels is fixed to 10.

Figure 8 shows that on small/medium sized multiclass problems, MK-FDA is in messca
one or two orders of magnitude faster than MK-SVM Shogun. The onlgpian is that as the
number of kernels increases, the efficiency oMK-SVM Shogun degrades more gracefully than
¢1 MK-FDA, and eventually overtakes. Another observation from both feéiguand Figure 8 is
that, /2, MK-FDA tends to be more efficient thafy MK-FDA, despite the fact that in the outer
subproblem, the LP solver employeddn MK-FDA is slightly faster than the QCLP solver i
MK-FDA. This is becausé¢; MK-FDA usually takes a few tens of iterations to converge, while
the /, version typically takes less than 5. This difference in the number of iteratesesses the
efficiency advantage of LP over QCLP.

Due to its online nature, the efficiency of OBSCURE has to be measurededifiie to allow
a fair comparison. The OBSCURE algorithm is a two-stage algorithm, andstaghk involves
an iterative process with a parameiet/T 2 controlling the number of iterations. In general the
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larger the values of 1 andT 2, the longer it takes to train, but the more accurate the learnt model.
We setT1=T2=T and varyT in a set of 11 values from%o 2!°. This allows us to plot a
curve of model accuracy against training time. For MK-FDA, the similar ewan be plotted by
varying the convergence threshalih a set of 11 values{2°,---,276,1072,... ,10°}. Note that

the regularisation parametepsfor MK-FDA and C for OBSCURE) are set to values that yield the
highest classification accuracy.

The resulting time-accuracy curves for all 3 splits of the dataset aremessin Figure 9,
where the top row corresponds to the cas@ef 1+ 2-° and the bottom row t@ = 2, and each
column corresponds to one split. It is evident that MK-FDA typically readteoptimum faster
than OBSCURE, especially in the casepaf 2. Moreover, the optimum achieved by MK-FDA is at
least as accurate as that by OBSCURE, confirming our findings in SectioAlBthe training time
reported in this section is measured on a single core of an Intel Xeon ES82GHz processor.

4. Discussion: FDA vs. SVM

The empirical observation that MK-FDA tends to outperform MK-SVM on ima&gtegorisation
datasets matches well with our experience with single kernel FDA and siagielkSVM on several
other object/image/video classification benchmarks, including VOC2008,200%; VOC20102
Trecvid2008, Trecvid2008 and ImageCLEF201Y" In this section, we discuss the connection
between (MK-)SVM and (MK-)FDA from perspectives of both lossdtion and version space,
and attempt to explain their different performance.

It is well known that many machine learning problems essentially boil downrtctiton learn-
ing. In the supervised scenario, it is intuitive to learn the function by minimisiagthpirical loss
for the given set of labelled input/output pa{rs, y; }{" ;, with respect to some loss function. How-
ever, such an empirical risk minimisation principle is ill-posed and therefoes dot generalise
(Tikhonov and Arsenin, 1977; Vapnik, 1999). Regularisation tries store well-posedness of the
learning problem, by restricting the complexity of the function set over whiehethpirical loss
is minimised. By (implicitly) mapping the data into a high dimensional feature space;ahibe
conveniently done in the form of Tikhonov regularisation:

min 3 Wl +C 3 V(F(0(x).), @)

where@(x;) is the mapping to the feature spadégp(x;)) = w'@(x;) is the linear function to be
learnt, the complexity of the function set is regularisec%hyv\ |2, andV (-, -) measures the empirical
loss. Learning machines with the form of Equation (27) are collectively t@magularised kernel
machines, a name capturing the two key aspects of them: regularisatioreraeditkapping. Note
that in the formulation above, the unregularised bias tbrim standard SVM is absent from the
linear function. As shown in Keerthi and Shevade (2003); Poggio €2@04), the two formulations,
with and withoutb, can be made equivalent by transforming the kernel function.

The setting in Equation (27) is very general, in the sense that many sttte-aft machine
learning techniques can be realised by plugging in different loss fursctieor example, the hinge
lossV (f(@(x)),y) = (L—yf(®(x)))+, where(-)+ = max-,0), gives rise to the well known SVM,

12. More information on VOC can be foundtdtp://pascallin.ecs.soton.ac.uk/challenges/VOC
13. More information on Trecvid can be foundhép://www-nlpir.nist.gov/projects/trecvid
14. More information on ImageCLEF can be foundht://www.imageclef.org/2010

633



YAN, KITTLER, MIKOLAJCZYK AND TAHIR

probably the most popular learning machine in the past ten years. On tménatitk along with the
success of SVM, regularised kernel machines using the squaré (6s(x)),y) = (y— f(@(x)))?
have emerged several times under various names, including: regulagsedrks (RN) (Girosi
et al., 1995; Evgeniou et al., 2000), regularised least squares (fRifR)n, 2002), kernel ridge
regression (KRR) (Saunders et al., 1998; Hastie et al., 2002), kpaestes support vector machines
(LSSVM) (Suykens and Vandewalle, 1999; Gestel et al., 2002) imabsupport vector machines
(PSVM) (Fung and Mangasarian, 2001). In particular, shortly afterptoposal of kernel FDA
(Mika et al., 1999; Baudat and Anouar, 2000), its regularised vemgamshown to be yet another
equivalent formulation (Duda et al., 2000; Rifkin, 2002; Gestel et abD220

There is a long list of literature which compares the performance of FD/Aa&Md, for example,
Mika (2002), Rifkin (2002), Cai et al. (2007) and Ye et al. (2008fhwnost of them reporting both
methods yield virtually identical performance, and the rest claiming there is & adwvantage
towards one method or the other. It is speculated in Mika et al. (1999) #natfterior performance
of FDA over SVM in their experiments is due to the fact that FDA uses all trgiskamples in the
test stage while SVM uses only the support vectors. However, a monelegy of explaining the
different performance of SVM and FDA is probably from the perspeatif version space. Version
space is the space of all consistent hypotheses, that is;salhat correspond to hyperplanes with
zero training error (Rujan, 1997). Note that with a full rank kernel matimear separability in
the feature space and therefore the existence of version space anigeal. It is shown in Rujan
(1997) that the optimal hyperplane in the Bayes sense, which requiréadidedge of the joint
distribution onX x 9 thus not obtainable in practice, is arbitrarily close (with increasing training
sample size) to the centre of mass of the version space.

Algorithms that explicitly approximate the Bayes point were later termed Bayiasmpachine
(BPM) in Herbrich et al. (2001). Herbrich et al. (2001) also provd tha hyperplane found by
SVM corresponds to the centre of the largest inscribed ball of the vesgiace. In this light, SVM
can be viewed as an approximation to BPM. This approximation is reasonabdeviétkion space
is regularly shaped, but can be weak otherwise (Rujan, 1997; Herérial., 2001; Mika, 2002).
For example, experiments in Herbrich et al. (2001) show that BPM con8istautperforms SVM.
Recently, an ellipsoid SVM was proposed (Momma et al., 2010), where thadde improve the
approximation to the Bayes point by using the centre of the largest insailipsbid, instead of
that of the ball. We conjecture that for certain kernels (e.qg., kernelsateeusing local descriptors
and bag-of-words model, as those used in image categorisation probiferadd, the different loss
functions used, the hyperplane given by FDA is closer to the Bayes {haintthat given by SVM,
resulting in the superior performance of (MK-)FDA in our experimentswHhio decide without a
validation process whether (MK-)FDA or (MK-SVM) is more suitable forigeg kernel (set), and
how to incorporate explicit BPM approximation into MKL, are interesting restedirections for
the future.

5. Conclusions

In this paper we have incorporated latest advances in both non-dg&isérmulation and MKL
optimisation techniques into MK-FDA. We have presented a non-sparsenaf MK-FDA based
on an/p norm regularisation of kernel weights, and have discussed sevVésfeformulations and
associated optimisation strategies, including wrapper and interleaved atg®fiahits saddle point
formulation, and an SMO-based scheme for its dual formulation.
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We carried out extensive evaluation on six datasets from various atiGaeas. Our results
indicate that the optimal norm, and therefore the “intrinsic sparsity” of the base kernels, can be
estimated on an independent validation set. This estimation can be exploited inpnaatigal
applications where there is no prior knowledge on how informative thershsiare. We have also
compared closely the performance @f MK-FDA and that of several variants df, MK-SVM.
On object and image categorisation problems, MK-FDA tends to have a smvalhtade. This
observation is consistent with our findings elsewhere regarding therpefice of single kernel
FDA/SVM. In terms of training time, the wrapper-based MK-FDA implementatiosn imilar or
favourable efficiency on small to medium sized problems when comparéudsagtate-of-the-art
MKL techniques. On large scale problems, alternative optimisation stratégeesded in the paper
should be employed to improve the efficiency and scalability of MK-FDA.

Finally, we have provided a discussion on the connection between (N -Hhd (MK-)SVM
from the perspectives of both loss function and version space, tirelenified framework of regu-
larised kernel machines.
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Appendix A. Multiclass ¢, MK-FDA Saddle Point Formulation

In this appendix, we first derive the saddle point formulation of multiclassLMt a general
convex loss. Multiclass MK-FDA saddle point problem is then derivedsgseaial case of it. Using
the output encoding scheme in Equation (18), multiclass MKL for a genersdex loss function
V (&ik, hik) can be stated as:

. 12 (w2 )
min - +CY V(ik,h 28
ij@kﬂk_l<2]_l 3 Zl ik, i) (28)

n
le-jrk(pj (X)) =&, Vi, Vk; B8>0; ||/8H;2) <1
=

We build the Lagrangian of Equation (28):

c n 2
=3 (53" pE rop viEo) sl 3

=1
- kz Y Gk ( lejTKCPj (x) — Eik) ,
—1i= =
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set to zero the derivatives of the Lagrangian wifx, and substitute back. After some rearrange-
ments we have:

c m m 10 L .
L= k; (CiZlV(Eik, i) +i;GikEik -5 J;aIBj Kjak) +Z(§||B”% -3

whereay = (a,---,0mk) . Following Theorem 1 of Kloft et al. (2011) it can be shown that at
the optimum||3| ]f, = 1. Using this fact we arrive at the multiclass MKL saddle point problem for a
general loss function:

n

TRn.K.
ET:IE rgi-xk 1( Zlv ik, Nik +Zl Ai&ik — ZakBJKJak> (29)

st. B>0; ||IBI3< 1.

At this point any convex loss function can be plugged into Equation (288e The square loss
V (Eik. hik) = 3(&i — hi)? as an example. Setting to zero the derivative<of.r.t. & we have
&ik = hix — aik/C. Plugging this into Equation (29) and rearranging we arrive at the multiM&ds
saddle point problem for square loss, that is, multiclass multiple kernelartggd least squares
(MK-RLS):

C 1 n

minmax hl o al o ay -K-a) 30

i "kk_1<k k— o Otk Ot — ;1 K BiKjow (30)
st. B>0; |IBl5<1,

where thec classes are coupled through the common set of kernel weijiy making substitu-
tionsay — ak and therC —> , it directly follows that the MK-RLS in Equation (30) is equivalent
to the MK- FDA in Equatlon(19)

Appendix B. Multiclass ¢, MK-FDA Dual Formulation

In this appendix, we derive the dual formulation of multiclass MK-FDA. Waiagonsider mul-
ticlass MKL with a general convex loss, but following Vishwanathan et2010) this time we
impose the norm constraint in the form of Tikhonov regularisation insteghabv regularisation:

min z( Z +CiiV(€ik,hik)>+g||ﬁHf, (31)

Wik, |k7ﬂk 1

HWJkH2

Z W@; (Xi) = &k, Vi, Vk; B> 0.
=1

Note however that the switching from lvanov to Tikhonov regularisationotsessential for the
derivation in the following. The dual program for Ivanov regularisatiofEquation (28) can be
derived in a similar way.

Building the Lagrangian of Equation (31):

: \WJkHZ gz S
L=3 (5 +C21V ik:hic) | + 518l = 3 ViPi
=1

k=1

B kii_ia‘k ( ngkaq’j (%) — Eik) :
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and setting to zero the derivatives w.pt, we have:

2 9 o 18
BP)» P 1zy,-+é Y ogKjo. (32)
k=1

=
g

Multiplying both sides of Equation (32) ¥; and then taking summation ovegives us:
2 < 18 1
MIBlls = > Bilvi+5 Z ayKjow),
=1 k=1
or equivalently:
n 1 n Cc T 2
YiBi=—5 oy BiKjauc+ M B (33)
le 2 lekzl P

On the other hand, raise both sides of Equation (32) to p%@fand then take summation over

j, we have:
2

: (34)

n

2 1 1g 1
HHBHp:ﬁ Vj+§kzlakKjak

whereq = pfpl is the dual norm op.

Now let us set the derivatives af w.r.t. wijc also to zero, and substitute the result and Equa-
tion (33), Equation (34) back int6. Using the fact thay; = 0 at the optimum (Vishwanathan et al.,
2010), and after some rearrangements we arrive at:

-3(egvans o) 2 (Fevem)

At this point any convex loss function can be plugged into Equation (3®dover the correspond-
ing multiclass MKL dual. We again take the square d$&i, hi) = %(Eik —hix)? as an example.
Setting to zero the derivatives af w.r.t. & we have§j = hix — aj/C. Plugging this into Equa-
tion (35) and rearranging we arrive at the multiclass MK-RLS dual proble

C (o] n
max hy K
Xk k—1< k= ank k) H <kzlak Jak) j=1

Unlike the saddle point formulation in Equation (30), the kernel weightsave been eliminated
from Equation (36). Despite this, Equation (30) and Equation (36) arwagnt, in the sense that
for any givenC there exist g1 (and vice versa) such that the optimal solutions to both problems are
identical (Kloft et al., 2011).

Finally, substituting Equation (34) arygl= 0 into Equation (32), we show that once the optimal
ay are found by solving Equation (36), the kernel weigfitare given by:

j=1llq

2
(35)

q

2
(36)

q

c

1/0 ¢ q
Bj:m(gl(kzlaIKjak)q> Z kKja)®.

_QH—'
-cm—\
_Q
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