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Abstract
Sparsity-inducing multiple kernel Fisher discriminant analysis (MK-FDA) has been studied in the
literature. Building on recent advances in non-sparse multiple kernel learning (MKL), we propose
a non-sparse version of MK-FDA, which imposes a generalℓp norm regularisation on the kernel
weights. We formulate the associated optimisation problemas a semi-infinite program (SIP), and
adapt an iterative wrapper algorithm to solve it. We then discuss, in light of latest advances in MKL
optimisation techniques, several reformulations and optimisation strategies that can potentially lead
to significant improvements in the efficiency and scalability of MK-FDA. We carry out extensive
experiments on six datasets from various application areas, and compare closely the performance
of ℓp MK-FDA, fixed norm MK-FDA, and several variants of SVM-basedMKL (MK-SVM). Our
results demonstrate thatℓp MK-FDA improves upon sparse MK-FDA in many practical situations.
The results also show that on image categorisation problems, ℓp MK-FDA tends to outperform its
SVM counterpart. Finally, we also discuss the connection between (MK-)FDA and (MK-)SVM,
under the unified framework of regularised kernel machines.

Keywords: multiple kernel learning, kernel fisher discriminant analysis, regularised least squares,
support vector machines

1. Introduction

Since their introduction in the mid-1990s, kernel methods (Schölkopf and Smola, 2002; Shawe-
Taylor and Cristianini, 2004) have proven successful for many machinelearning problems, for
example, classification, regression, dimensionality reduction, clustering. Representative methods
such as support vector machine (SVM) (Vapnik, 1999; Shawe-Taylorand Cristianini, 2004), kernel
Fisher discriminant analysis (kernel FDA) (Mika et al., 1999; Baudat and Anouar, 2000), kernel
principal component analysis (kernel PCA) (Schölkopf et al., 1999) have been reported to produce
state-of-the-art performance in numerous applications. Kernel methodswork by embedding data
items in an input space (vector, graph, string, etc.) into a feature space, and applying linear methods
in the feature space. This embedding is defined implicitly by specifying an innerproduct for the
feature space via a symmetric positive semidefinite (PSD) kernel function.

It is well recognised that in kernel methods, the choice of kernel function is critically important,
since it completely determines the embedding of the data in the feature space. Ideally, this em-
bedding should be learnt from training data. In practice, a relaxed version of this very challenging
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problem is often considered: given multiple kernels capturing different “views” of the problem, how
to learn an “optimal” combination of them. Among several others (Cristianini et al., 2002; Chapelle
et al., 2002; Bousquet and Herrmann, 2003; Ong et al., 2003), Lanckriet et al. (2002, 2004) are one
of the pioneering works for this multiple kernel learning (MKL) problem.

Lanckriet et al. (2002, 2004) study a binary classification problem, andtheir key idea is to
learn a linear combination of a given set of base kernels by maximising the margin between the
two classes or by maximising kernel alignment. More specifically, suppose one is givenn m×m
symmetric PSD kernel matricesK j , j = 1, · · · ,n, andm class labelsyi ∈ {1,−1}, i = 1, · · · ,m. A
linear combination of then kernels under anℓ1 norm constraint is considered:

K =
n

∑
j=1

β jK j , β ≥ 0, ‖β‖1 = 1,

whereβ= (β1, · · · ,βn)
T ∈R

n, and0 is themdimensional vector of zeros. Geometrically, taking the
sum of kernels can be interpreted as taking the Cartesian product of the associated feature spaces.
Different scalings of the feature spaces lead to different embeddings of the data in the composite
feature space. The goal of MKL is then to learn the optimal scaling of the feature spaces, such that
the “separability” of the two classes in the composite feature space is maximised.

Lanckriet et al. (2002, 2004) propose to use the soft margin of SVM asa measure of separa-
bility, that is, to learnβ by maximising the soft margin between the two classes. One of the most
commonly used formulations of the resulting MKL problem is the following saddle point problem:

max
β

min
α

−yTα+
1
2

n

∑
j=1

αTβ jK jα (1)

s.t. 1Tα= 0, 0≤ yTα≤C1, β ≥ 0, ‖β‖1 ≤ 1,

whereα ∈ R
m, 1 is themdimensional vector of ones,y is themdimensional vector of class labels,

C is a parameter controlling the trade-off between regularisation and empiricalerror, andK j(xi ,xi′)

is the dot product of theith and thei′th training examples in thej th feature space. Note that in
Equation (1), we have replaced the constraint‖β‖1 = 1 by ‖β‖1 ≤ 1, which can be shown to have
no effect on the solution of the problem, but allows for an easier generalisation.

Several alternative MKL formulations have been proposed (Lanckrietet al., 2004; Bach and
Lanckriet, 2004; Sonnenburg et al., 2006; Zien and Ong, 2007; Rakotomamonjy et al., 2008). These
formulations essentially solve the same problem as Equation (1), and differ only in the optimisa-
tion techniques used. The original semi-definite programming (SDP) formulation (Lanckriet et al.,
2004) becomes intractable whenm is in the order of thousands, while the semi-infinite linear pro-
gramming (SILP) formulation (Sonnenburg et al., 2006) and the reduced gradient descent algorithm
(Rakotomamonjy et al., 2008) can deal with much larger problems.

Of particular interest to this article is the SILP formulation in Sonnenburg et al.(2006). The
authors propose to use a technique called column generation to solve the SILP, which involves
dividing a SILP into an inner subproblem and an outer subproblem, and alternating between solving
the two subproblems until convergence. A straightforward implementation of column generation
leads to a conceptually very simple wrapper algorithm, where finding the optimalα in the inner
subproblem corresponds to solving a standard binary SVM. This means the wrapper algorithm can
take advantage of existing efficient SVM solvers, and can be reasonablyfast for medium-sized
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problems already. However, as pointed out by Sonnenburg et al. (2006), solving the whole SVM
problem to a high precision is unnecessary and therefore wasteful when the variableβ in the outer
subproblem is still far from the global optimum.

To remedy this, Sonnenburg et al. (2006) propose to optimiseα andβ in an interleaved manner,
by incorporating chunking (Joachims, 1988) into the inner subproblem. The key idea of chunking,
and more generally decomposition techniques for SVM, is to freeze all but asmall subset ofα, and
solve only a small-sized subproblems of the SVM dual in each iteration. The resulting interleaved
algorithm in Sonnenburg et al. (2006) avoids the wasteful computation of the whole SVM dual, and
as a result has an improved efficiency over the wrapper algorithm. Moreover, with the interleaved
algorithm, only columns of the kernel matrices that correspond to the “active” dual variables need
to be loaded into memory, extending MKL’s applicability to large scale problems.

The learning problem in Equation (1) imposes anℓ1 regularisation on the kernel weights. It has
been known thatℓ1 norm regularisation tends to produce sparse solutions (Rätsch, 2001), which
means during the learning most kernels are assigned zero weights. Conventionally, sparsity is
favoured mainly for two reasons: it offers a better interpretability, and thetest process is more
efficient with sparse kernel weights. However, sparsity is not alwaysdesirable, since the informa-
tion carried in the zero-weighted kernels is lost. In Kloft et al. (2008) andCortes et al. (2009),
non-sparse versions of MKL are proposed, where anℓ2 norm regularisation is imposed instead of
ℓ1 norm. Kloft et al. (2009, 2011) later extended their work to use a general ℓp (p≥ 1) norm regu-
larisation. To solve the associated optimisation problem, Kloft et al. (2011) propose extensions of
the wrapper and the interleaved algorithms in Sonnenburg et al. (2006) respectively. Experiments in
Kloft et al. (2008, 2009, 2011) show that the regularisation norm contributes significantly to the per-
formance of MKL, and confirm that in general a smaller regularisation norm produces more sparse
kernel weights.

Although many of the above references discuss general loss functions(Lanckriet et al., 2004;
Sonnenburg et al., 2006; Kloft et al., 2011), they have mainly been focusing on the binary hinge
loss. In this sense, the corresponding MKL algorithms are essentially binary multiple kernel sup-
port vector machines (MK-SVMs). In contrast to SVM, which maximises the soft margin, Fisher
discriminant analysis (FDA) (Fisher, 1936) maximises the ratio of projected between and within
class scatters. Since its introduction in the 1930s, FDA has stood the test of time. Equipped recently
with kernelisation (Mika et al., 1999; Baudat and Anouar, 2000) and efficient implementation (Cai
et al., 2007), FDA has established itself as a strong competitor of SVM. In many comparative stud-
ies, FDA is reported to offer comparable or even better performance thanSVM (Mika, 2002; Cai
et al., 2007; Ye et al., 2008).

In Kim et al. (2006) and Ye et al. (2008), a multiple kernel FDA (MK-FDA)is introduced, where
an ℓ1 norm is used to regularise the kernel weights. As in the case ofℓ1 MK-SVM, ℓ1 MK-FDA
tends to produce sparse selection results, which may lead to a loss of information. In this paper,
we extend the work of Kim et al. (2006) and Ye et al. (2008) to a generalℓp norm regularisation by
bringing latest advances in non-sparse MKL to MK-FDA. Our contributioncan be summarised as
follows:

• We provide a SIP formulation ofℓp MK-FDA for both binary and multiclass problems, and
adapt the wrapper algorithm in Sonnenburg et al. (2006) to solve it. By considering recent
advances in large scale MKL techniques, we also discuss several strategies that could signifi-
cantly improve the efficiency and scalability of the wrapper-basedℓp MK-FDA. (Section 2)

609



YAN , K ITTLER, M IKOLAJCZYK AND TAHIR

• We carry out extensive experiments on six datasets, including one synthetic dataset, four
object and image categorisation benchmarks, and one computational biologydataset. We
confirm that as in the case ofℓp MK-SVM, in ℓp MK-FDA, a smaller regularisation norm in
general leads to more sparse kernel weights. We also show that by selecting the regularisation
norm p on an independent validation set, the “intrinsic sparsity” of the given set of base
kernels can be learnt. As a result, using the learnt optimal normp in ℓp MK-FDA offers
better performance than fixed norm MK-FDAs. (Section 3)

• We compare closely the performance ofℓp MK-FDA and that of several variants ofℓp MK-
SVM, and show that on object and image categorisation datasets,ℓp MK-FDA has a small
but consistent edge. In terms of efficiency, our wrapper-basedℓp MK-FDA is comparable
to the interleavedℓp MK-SVM on small/medium sized binary problems, but can be sig-
nificantly faster on multiclass problems. When compared against recently proposed MKL
techniques that define the state-of-the-art, such as SMO-MKL (Vishwanathan et al., 2010)
and OBSCURE (Orabona et al., 2010), our MK-FDA also compares favourably or similarly.
(Section 3)

• Finally, we discuss the connection between (MK-)FDA and (MK-)SVM, from the perspec-
tives of both loss function and version space, under the unified framework of regularised
kernel machines. (Section 4)

Essentially, our work builds on Sonnenburg et al. (2006), Ye et al. (2008) and Kloft et al. (2011).
However, we believe the empirical findings of this paper, especially the onethat (MK-)FDA tends
to outperform (MK-)SVM on image categorisation datasets, is important, given that SVM and SVM
based MKL are widely accepted as the state-of-the-art classifier in most image categorisation sys-
tems. Finally, note that preliminary work to this article has been published previously as conference
papers (Yan et al., 2009b,a, 2010). The aim of this article is to consolidate theresults into an in-
tegrated and comprehensive account and to provide more experimental results in support of the
proposed methodology.

2. ℓp Norm Multiple Kernel FDA

In this section we first present ourℓp regularised MK-FDA for binary problems and then for multi-
class problems. In both cases, we first give problem formulation, then solve the associated optimi-
sation problem using a wrapper algorithm. Towards the end of this section, we also discuss several
possible improvements over the wrapper algorithm in terms of time and memory complexity, in
light of recent advances in MKL optimisation techniques.

2.1 Binary Classification

Given a binary classification problem withm training examples, our goal is to learn the optimal
kernel weightsβ ∈ R

n for a linear combination ofn base kernels under theℓp (p≥ 1) constraint:

K =
n

∑
j=1

β jK j , β j ≥ 0, ‖β‖p
p ≤ 1,

where thep≥ 1 requirement is to ensure that the triangle inequality is satisfied and‖ ·‖p is a norm.
We define optimality in terms of the class separation criterion of FDA, that is, the learnt kernel
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weightsβ are optimal, if the ratio of the projected between and within class scatters is maximised.
In this paper we assume each kernel is centred in its feature space. Centring can be performed
implicitly (Schölkopf et al., 1999) byK j = PK̃ jP, whereP is them×m centring matrix defined as
P= I − 1

m1·1T , K̃ j is the uncentred kernel matrix, andI is them×m identity matrix.
Let m+ be the number of positive training examples, andm− = m−m+ be that of negative

training examples. For a given kernelK, let φ(x+i ) be theith positive training point in the implicit
feature space associated withK, φ(x−i ) be theith negative training point in the feature space. Here
x+i andx−i can be thought of as training examples in some input space, andφ is the mapping to the
feature space. Also letµ+ andµ− be the centroids of the positive examples and negative examples
in the feature space, respectively:

µ+ =
1

m+

m+

∑
i=1

φ(x+i ), µ− =
1

m−

m−

∑
i=1

φ(x−i ).

The within class covariance matrices of the two classes are:

C+ =
1

m+

m+

∑
i=1

(

φ(x+i )−µ+

)(

φ(x+i )−µ+

)T

,

C− =
1

m−

m−

∑
i=1

(

φ(x−i )−µ−

)(

φ(x−i )−µ−

)T

.

The between class scatterSB and within class scatterSw are then defined as:

SB =
m+m−

m
(µ+−µ−)(µ+−µ−)T , (2)

SW = m+C++m−C−.

The objective of single kernel FDA is to find the projection directionw in the feature space that

maximiseswTSBw
wTSWw , or equivalently,

wT m
m+m− SBw
wTSTw , whereST = SB+SW is the total scatter matrix. In

practice a regularised objective function

JFDA(w) =
wT m

m+m− SBw
wT(ST +λI)w

(3)

is maximised to improve generalisation and numerical stability (Mika, 2002), where λ is a small
positive number.

From Theorem 2.1 of Ye et al. (2008), for a given kernelK, the maximal value of Equation (3)
is:

J∗FDA = aTa−aT
(

I +
1
λ

K

)−1

a, (4)

where

a=

(

1
m+

, · · · ,
1

m+
,
−1
m−

, · · · ,
−1
m−

)T

∈ R
m

contains the centred labels. On the other hand, Lemma 2.1 of Ye et al. (2008)states that thew that
maximises Equation (3) also minimises the following regularised least squares (RLS):

JRLS(w) = ‖φT(X)w−a‖2+λ‖w‖2, (5)
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and the minimum of Equation (5) is given by:

J∗RLS= aT
(

I +
1
λ

K

)−1

a. (6)

In Equation (5),φ(X) = (φ(x+1 ), · · · ,φ(x
+
m+),φ(x−1 ), · · · ,φ(x

−
m−)) are the (centred) training data in

the feature space such thatφ(X)Tφ(X) = K.
Due to strong duality, the minimal value of Equation (5) is equal to the maximal valueof its

Lagrangian dual problem, that is,

J∗RLS= max
α

aTα−
1
4
αTα+

1
4λ

αTKα,

or equivalently

J∗RLS=−min
α

(

−aTα+
1
4
αTα+

1
4λ

αTKα

)

, (7)

whereα ∈ R
m. By combining Equation (4), Equation (6) and Equation (7), it follows that the

maximal value of the FDA objective in Equation (3) is given by:

J∗FDA = aTa+min
α

(

−aTα+
1
4
αTα+

1
4λ

αTKα

)

. (8)

Now instead of a fixed single kernel, consider the case where the kernelK can be chosen from
linear combinations of a set of base kernels. The kernel weights must be regularised somehow to
make sure Equation (8) remains meaningful and does not become arbitrarilylarge. In this paper, we
propose to impose anℓp regularisation on the kernel weights for anyp≥ 1, following Kloft et al.
(2009, 2011):

K̃ =

{

K =
n

∑
j=1

β jK j : β ≥ 0,‖β‖p
p ≤ 1

}

. (9)

Combining Equation (9) and Equation (8), and dropping the unimportant constantaTa, it can be
shown that the optimalK ∈ K̃ maximising Equation (4) is found by solving:

max
β

min
α

−aTα+
1
4
αTα+

1
4λ

n

∑
j=1

αTβ jK jα (10)

s.t. β ≥ 0, ‖β‖p
p ≤ 1.

Note that putting anℓp constraint onβ or penalizingw by anℓ2,r block norm are equivalent with
p = r/(2− r) (Szafranski et al., 2008). Whenp = 1, we have theℓ1 MK-FDA discussed in Ye
et al. (2008); whilep= ∞ leads tor = 2, and MK-FDA reduces to standard single kernel FDA with
unweighted concatenation of base feature spaces. In this paper, however, we are interested in the
general case of anyp≥ 1.

Equation (10) is an optimisation problem with a quadratic objective and a general pth order
constraint. We borrow the idea fromℓp MK-SVM (Kloft et al., 2009, 2011) and use second order
Taylor expansion to approximate the norm constraint:

‖β‖p
p ≈

p(p−1)
2

n

∑
j=1

β̃p−2
j β2

j −
n

∑
j=1

p(p−2)β̃p−1
j β j +

p(p−3)
2

+1 := ν(β), (11)
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whereβ̃ j is the current estimate ofβ j in an iterative process, which will be explained in more detail
shortly. Substituting Equation (11) into Equation (10), we arrive at the binary ℓp MK-FDA saddle
point problem:

max
β

min
α

−aTα+
1
4
αTα+

1
4λ

n

∑
j=1

αTβ jK jα (12)

s.t. β ≥ 0, ν(β)≤ 1.

In Sonnenburg et al. (2006), the authors propose to transform a saddle point problem similar
to Equation (12) to a semi-infinite program (SIP). A SIP is an optimisation problem with a finite
number of variablesx ∈ R

d on a feasible set described by infinitely many constraints (Hettich and
Kortanek, 1993):

min
x

f (x) s.t. g(x,u)≥ 0 ∀u∈U,

whereU is an infinite index set. Following the similar arguments as in Sonnenburg et al. (2006)
and Ye et al. (2008), we show in Theorem 1 that the saddle point problemin Equation (12) can also
be transformed into a SIP.

Theorem 1 Given a set of n kernel matrices K1, · · · ,Kn, the kernel weightsβ that optimise Equa-
tion (12)are given by solving the following SIP problem:

max
θ,β

θ (13)

s.t. −aTα+
1
4
αTα+

1
4λ

n

∑
j=1

αTβ jK jα≥ θ ∀α ∈ R
m, β ≥ 0, ν(β)≤ 1.

Proof Letα∗ be the optimal solution to the saddle point problem in Equation (12). By defining

θ∗ :=−aTα∗+
1
4
α∗Tα∗+

1
4λ

n

∑
j=1

α∗Tβ jK jα
∗

as the minimum objective value achieved byα∗, we have

−aTα+
1
4
αTα+

1
4λ

n

∑
j=1

αTβ jK jα≥ θ∗

∀α ∈ R
m. Now define

θ = min
α

−aTα+
1
4
αTα+

1
4λ

n

∑
j=1

αTβ jK jα

and substitute it into Equation (12), the theorem is proved.

We adapt the wrapper algorithm in Sonnenburg et al. (2006) to solve the SIP in Equation (13).
This algorithm is based on the column generation technique, where the basic idea is to divide a SIP
into an inner subproblem and an outer subproblem. The algorithm alternatesbetween solving the
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Algorithm 1 A wrapper algorithm for solving the binaryℓp MK-FDA SIP in Equation (13)

Input: K1, · · · ,Kn, a, θ(1) =−∞, β(1)
j = n−1/p∀ j, ε.

Output: Learnt kernel weightsβ = (β(t)
1 , · · · ,β(t)

n )T .
1: for t = 1, · · · do
2: Computeα(t) in Equation (15);
3: ComputeS(t) =−aTα(t)+ 1

4α
(t)Tα(t)+ 1

4λ ∑n
j=1α

(t)Tβ(t)
j K jα

(t);

4: if |1− S(t)

θ(t) | ≤ ε then
5: break;
6: end if
7: Compute{θ(t+1),β(t+1)} in Equation (16), whereν(β) is defined as in Equation (11) with

β̃ = β(t);
8: end for

two subproblems until convergence. At stept, the inner subproblem (α step) identifies the constraint
that maximises the constraint violation for{θ(t),β(t)}:

α(t) := argmin
α

−aTα+
1
4
αTα+

1
4λ

n

∑
j=1

αTβ(t)
j K jα. (14)

Note that the program in Equation (14) is nothing but the single kernel FDA/RLS dual problem
using the current estimateβ(t) as kernel weights. Observing that Equation (14) is an unconstrained
quadratic program,α(t) is obtained by solving the following linear system (Ye et al., 2008):

(

1
2

I +
1
2λ

n

∑
j=1

β(t)
j K j

)

α(t) = a. (15)

If α(t) satisfies constraint−aTα(t)+ 1
4α

(t)Tα(t)+ 1
4λ ∑n

j=1α
(t)Tβ(t)

j K jα
(t) ≥ θ(t) then{θ(t),β(t)} is

optimal. Otherwise, the constraint is added to the set of constraints and the algorithm proceeds to
the outer subproblem of stept.

The outer subproblem (β step) is also called the restricted master problem. At stept, it computes
the optimal{θ(t+1),β(t+1)} in Equation (13) for a restricted subset of constraints:

{θ(t+1),β(t+1)}= argmax
θ,β

θ (16)

s.t. −aTα(r)+
1
4
α(r)Tα(r)+

1
4λ

n

∑
j=1

α(r)Tβ jK jα
(r) ≥ θ ∀r = 1, · · · , t, β ≥ 0, ν(β)≤ 1.

When p= 1, ν(β) ≤ 1 reduces to a linear constraint. As a result, Equation (16) becomes a linear
program (LP) and theℓp MK-FDA reduces to theℓ1 MK-FDA in Ye et al. (2008). Whenp > 1,
Equation (16) is a quadratically constrained linear program (QCLP) with one quadratic constraint
ν(β)≤ 1 andt +n linear constraints. This can be solved by off-the-shelf optimisation tools such as
Mosek.1 Note that at timet, ν(β) is defined as in Equation (11) with̃β = β(t), that is, the current
estimate ofβ.

1. Mosek optimisation toolbox can be found athttp://www.mosek.com .
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Normalised maximal constraint violation is used as a convergence criterion. The algorithm
stops when|1− S(t)

θ(t) | ≤ ε, whereS(t) := −aTα(t)+ 1
4α

(t)Tα(t)+ 1
4λ ∑n

j=1α
(t)Tβ(t)

j K jα
(t) andε is a

pre-defined accuracy parameter. This iterative wrapper algorithm forsolving the binaryℓp MK-
FDA SIP is summarised in Algorithm 1. It is a special case of a set of semi-infinite programming
algorithms known as exchange methods, which are guaranteed to converge (Hettich and Kortanek,
1993). Finally, note that in line 4 of Algorithm 1,β(t+1) can also be solved using the analytical
update in Kloft et al. (2011) that is adapted to FDA. However, in practice we notice that for MK-
FDA, such an analytical update tends to be numerically unstable whenp is close to 1.

2.2 Multiclass Classification

In this section we consider the multiclass case. Letc be the number of classes, andmk be the number
of training examples in thekth class. In multiclass FDA, the following objective is commonly
maximised (Ye et al., 2008):

JMC−FDA(W) = trace

(

(

WT(ST +λI)W
)−1

WTSBW

)

, (17)

whereW is the projection matrix, the within class scatterSW is defined in a similar way as in
Equation (2) but withc classes, and the between class scatter isSB = φ(X)HHTφ(X)T , where
φ(X) = (φ(x1),φ(x2), · · · ,φ(xm)) is the set ofm training examples in the feature space, andH =
(h1,h2, · · · ,hc) is anm×c matrix withhk = (h1k, · · · ,hmk)

T and

hik =

{ √

m
mk

−
√mk

m if yi = k

−
√mk

m if yi 6= k.
(18)

Similar to the binary case, using duality theory and the connection between FDAand RLS, Ye
et al. (2008) show that the maximal value of Equation (17) is given by (up toan additive constant
determined by the labels):

J∗MC−FDA ∼ min
αk

c

∑
k=1

(

−hT
k αk+

1
4
αT

k αk+
1
4λ

αT
k Kαk

)

,

whereαk ∈ R
m for k = 1, · · · ,c. When choosing from linear combinations of a set of base kernels

with kernel weights regularised with anℓp norm, the optimal kernel weights are given by:

max
β

min
αk

c

∑
k=1

(

−hT
k αk+

1
4
αT

k αk+
1
4λ

n

∑
j=1

αT
k β jK jαk

)

(19)

s.t. β ≥ 0, ‖β‖p
p ≤ 1.

We use again second order Taylor expansion to approximate the norm constraint and arrive at the
multiclassℓp MK-FDA saddle point problem:

max
β

min
αk

c

∑
k=1

(

−hT
k αk+

1
4
αT

k αk+
1
4λ

n

∑
j=1

αT
k β jK jαk

)

s.t. β ≥ 0, ν(β)≤ 1,
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Algorithm 2 A wrapper algorithm for solving the multiclassℓp MK-FDA SIP in Equation (20)

Input: K1, · · · ,Kn, a, θ(1) =−∞, β(1)
j = n−1/p∀ j, ε.

Output: Learnt kernel weightsβ = (β(t)
1 , · · · ,β(t)

n )T .
1: for t = 1, · · · do
2: Computeα(t)

k in Equation (21);

3: ComputeS(t) = ∑c
k=1

(

−hT
k α

(t)
k + 1

4α
(t)T
k α

(t)
k + 1

4λ ∑n
j=1α

(t)T
k β(t)

j K jα
(t)
k

)

;

4: if |1− S(t)

θ(t) | ≤ ε then
5: break;
6: end if
7: Compute{θ(t+1),β(t+1)} in Equation (22), whereν(β) is defined as in Equation (11) with

β̃ = β(t);
8: end for

whereν(β) is defined as in Equation (11).
Again similar to the binary case, Equation (19) can be reformulated as a SIP:

max
θ,β

θ (20)

s.t.
c

∑
k=1

(

−hT
k αk+

1
4
αT

k αk+
1
4λ

n

∑
j=1

αT
k β jK jαk

)

≥ θ ∀αk ∈ R
m, β ≥ 0, ν(β)≤ 1,

and the SIP can be solved using a column generation algorithm that is similar to Algorithm 1. In
the inner subproblem, the only difference is that instead of one linear system, herec linear systems
need to be solved, one for eachhk:

(

1
2

I +
1
2λ

n

∑
j=1

β(t)
j K j

)

α
(t)
k = hk. (21)

Accordingly, the outer subproblem for computing the optimal{θ(t+1),β(t+1)} is adapted to work
with multiple classes:

(θ(t+1),β(t+1)) = argmax
θ,β

θ (22)

s.t.
c

∑
k=1

(

−hT
k α

(r)
k +

1
4
α

(r)T
k α

(r)
k +

1
4λ

n

∑
j=1

α
(r)T
k β jK jα

(r)
k

)

≥ θ ∀r = 1, · · · , t

β ≥ 0, ν(β)≤ 1.

Whenp= 1, Equation (22) reduces to an LP and our formulation reduces to that in Yeet al. (2008).
For p> 1, Equation (22) is an QCLP with one quadratic constraint andt +n linear constraints, as
in the binary case. The iterative wrapper algorithm for solving the multiclassℓp MK-FDA SIP is
summarised in Algorithm 2.

2.3 Addressing Efficiency Issues

In this section we discuss several possible improvements over the wrapper-basedℓp MK-FDA
method proposed in the previous sections. In particular, we address time and memory complex-
ity issues, in light of recent advances in MKL optimisation techniques. We show that by exploiting
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the equivalence between kernel FDA and least squares SVM (LSSVM)(Suykens and Vandewalle,
1999), the interleaved method in Sonnenburg et al. (2006) and Kloft et al. (2011) can be applied
to MK-FDA. Furthermore, we demonstrate that the formulation in Vishwanathanet al. (2010) that
tackles directly the MKL dual problem can also be adapted to work with MK-FDA. Both new for-
mulations discussed in this section are equivalent to previous ones in terms oflearnt kernel weights,
but can potentially lead to significant efficiency improvement. However, notethat we describe these
new formulations only briefly, and do not show their efficiency in the experiments section and their
implementation details, since these are not in the main scope of this paper. Note also that in the fol-
lowing we focus only on multiclass formulations, as the corresponding binaryones can be derived
in a very similar fashion, or as special cases.

2.3.1 INTERLEAVED OPTIMISATION OF THE SADDLE POINT PROBLEM

We consider the multiclass MKL problem for a general convex loss functionV(ξik,hik):

min
w jk,ξik,β

c

∑
k=1

(

1
2

n

∑
j=1

||w jk||
2

β j
+C

m

∑
i=1

V(ξik,hik)

)

(23)

s.t.
n

∑
j=1

wT
jkφ j(xi) = ξik, ∀i, ∀k; β ≥ 0; ||β||2p ≤ 1,

wherehik is as defined in Equation (18), and we have replaced the constraint||β||pp ≤ 1 equiva-
lently by ||β||2p ≤ 1. WhenV(ξik,hik) is the square lossV(ξik,hik) =

1
2(ξik −hik)

2, Equation (23)
is essentially multiclass multiple kernel regularised least squares (MK-RLS).It can be shown (see
Appendix A for details) that this multiclass MK-RLS can be reformulated as the following saddle
point problem:

min
β

max
αk

c

∑
k=1

(

hT
k αk−

1
2C

αT
k αk−

1
2

n

∑
j=1

αT
k β jK jαk

)

(24)

s.t. β ≥ 0; ||β||2p ≤ 1.

Making substitutionsαk →
C
2αk and thenC → 1

λ , it directly follows that the MK-RLS in Equa-
tion (24) is equivalent to the MK-FDA in Equation(19). In the previous sections, we proposed to
use a conceptually very simple wrapper algorithm to solve it. However, as pointed out in Sonnen-
burg et al. (2006) and Kloft et al. (2011), such an algorithm has two disadvantages: solving the
whole single kernel problem in theα step is unnecessary therefore wasteful, and all kernels need
to be loaded into memory. These problems, especially the second one, significantly limit the scal-
ability of wrapper-based MKL algorithms. For example, 50 kernel matrices of size 20000×20000
would usually not fit into memory since they require approximately 149GB of memory (Kloft et al.,
2011).

Exploiting the fact that LSSVM, RLS and kernel FDA are equivalent (Rifkin, 2002; Gestel et al.,
2002; Keerthi and Shevade, 2003), sequential minimal optimisation (SMO) techniques (Joachims,
1988) developed for LSSVM (Keerthi and Shevade, 2003; Lopez and Suykens, 2011) can be em-
ployed to remedy these problems. This effectively leads to an interleaved algorithm that is similar
to Algorithm 2 in Kloft et al. (2011), but applies to square loss instead of to hinge loss. Such an
interleaved optimisation strategy allows for a very cheap update of a minimal subset of the dual
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variablesαk in eachα step, without having to have access to the whole kernel matrices, and as a
result extends the applicability of MK-FDA to large scale problems. We omit details of the resulting
interleaved MK-FDA algorithm, the interested reader is referred to Keerthiand Shevade (2003) and
Lopez and Suykens (2011).

2.3.2 WORKING DIRECTLY WITH THE DUAL

The MK-FDA algorithms considered so far, including the wrapper method and the interleaved
method, are all based on the intermediate saddle point formulation Equation (24), or equivalently,
Equation(19). Recently, a “direct” formulation of MKL was proposed in Vishwanathan et al. (2010),
where the idea is to eliminateβ from the saddle point problem, and deal directly with the dual. Con-
sider again MKL with a general convex loss, but following Vishwanathan et al. (2010) this time we
impose the norm constraint in the form of Tikhonov regularisation instead ofIvanov regularisation:

min
w jk,ξik,β

c

∑
k=1

(

1
2

n

∑
j=1

‖w jk‖
2

β j
+C

m

∑
i=1

V(ξik,hik)

)

+
µ
2
‖β‖2

p (25)

s.t.
n

∑
j=1

wT
jkφ j(xi) = ξik, ∀i, ∀k; β ≥ 0.

Note that the two formulations in Equation (25) and Equation (23) are equivalent, in the sense that
for any givenC there exists aµ (and vice versa) such that the optimal solutions to both problems are
identical (Kloft et al., 2011).

It can be shown (see Appendix B for details) that for the special case of square loss, which
corresponds to MK-FDA/MK-RLS, the dual of Equation(25) is:

max
αk

c

∑
k=1
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∥

∥

2

q
, (26)

whereq= p
p−1 is the dual norm ofp, and once the optimalαk are found by solving Equation (26),

the kernel weights are given by:

β j =
1
2µ

( n

∑
j=1

(
c

∑
k=1

αT
k K jαk)

q
)

1
q−

1
p

(
c

∑
k=1

αT
k K jαk)

q
p .

Equation (26) can be viewed as an extension of Equation (9) in Vishwanathan et al. (2010) to
multiclass problems. Another difference is that Equation (9) in Vishwanathanet al. (2010) considers
a hinge loss, while Equation (26) is for square loss. Similarly as in Vishwanathan et al. (2010), for
any p> 1, Equation (26) can be solved using an SMO type of algorithm, with the updaterule for
the minimal subset of dual variables adapted to work with square loss (Keerthi and Shevade, 2003;
Lopez and Suykens, 2011). On the other hand, observing that Equation (26) is an unconstrained op-
timisation problem and the objective function is differentiable everywhere for p> 1, an alternative
approach is the quasi-Newton descent methods, for example, the limited memoryvariant (Liu and
Nocedal, 1989). In fact, Equation (26) can also be thought of as an extension of the smooth variant
of group Lasso considered in Kloft et al. (2011) to multiclass case. Note however that Equation (26)
has a term ofℓq norm squared, while the smooth group Lasso formulation in Kloft et al. (2011)
has a term ofℓq norm. This is a direct result of the fact that the two formulations use Tikhonov
regularisation and Ivanov regularisation overβ, respectively.
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3. Experiments

In this section we validate the usefulness of the proposedℓp MK-FDA with experimental evidence
on six datasets. The experiments can be divided into four groups:

• We first demonstrate in Section 3.1 and 3.2 the different behaviour of the sparseℓ1 MK-FDA
and a non-sparse version of MK-FDA (ℓ2 norm) on synthetic data and the Pascal VOC2008
object recognition dataset (Everingham et al., 2008). The goal of these two experiments is
to confirm thatℓ1 andℓ2 regularisations indeed lead to sparse and non-sparse kernel weights
respectively.

• Next in Section 3.3, 3.4 and 3.5 we carry out experiments on another three object and image
categorisation benchmarks, namely, Pascal VOC2007 (Everingham et al., 2007), Caltech101
(Fei-Fei et al., 2006), and Oxford Flower17 (Nilsback and Zisserman,2008). We show that
by selecting the regularisation normp on an independent validation set, the intrinsic sparsity
of the given set of base kernels can be learnt. As a result, using the learnt optimal normp in
the proposedℓp MK-FDA offers better performance thanℓ1 or ℓ∞ MK-FDAs. Moreover, we
compare the performance ofℓp MK-FDA and that of several variants ofℓp MK-SVM, and
show that on image categorisation problemsℓp MK-FDA tends to have a small but consistent
edge over its SVM counterpart.

• In Section 3.6 we further compareℓp MK-FDA and ℓp MK-SVM on the protein subcellular
localisation problem studied in Zien and Ong (2007) and Ong and Zien (2008). On this dataset
ℓp MK-SVM outperformsℓp MK-FDA by a small margin, and the results suggest that given
the same set of base kernels, the two MKL algorithms may favour slightly different norms.

• Finally, in Section 3.7, the training speed of our wrapper-basedℓp MK-FDA and severalℓp

MK-SVM implementations is analysed empirically on a few small/medium sized problems,
where MK-FDA compares favourably or similarly against state-of-the-art MKL techniques.

Among the six datasets used in the experiments, three of them (synthetic, VOC08, VOC07) are
binary problems and the rest (Caltech101, Flower17, Protein) are multiclass ones. In our experi-
ments the wrapper-basedℓp MK-FDA is implemented in Matlab with the outer-subproblem solved
using the Mosek optimisation toolbox. The code of ourℓp MK-FDA implementation is available on-
line.2 Once the kernel weights have been learnt, we use a spectral regression based efficient kernel
FDA implementation (Cai et al., 2007; Tahir et al., 2009) to compute the optimal projection direc-
tions, the code of which is also available online.3 On binary problems, we compareℓp MK-FDA
with two implementations of binaryℓp MK-SVM, namely, MK-SVM Shogun (Sonnenburg et al.,
2006, 2010),4 and SMO-MKL (Vishwanathan et al., 2010);5 while on multiclass problems, we com-
pareℓp MK-FDA with two variants of multiclassℓp MK-SVM: MK-SVM Shogun and MK-SVM
OBSCURE (Orabona et al., 2010; Orabona and Jie, 2011).6 In bothℓp MK-FDA and ℓp MK-SVM

2. The code of ourℓp MK-FDA is available athttp://www.featurespace.org
3. The code of spectral regression FDA can be found athttp://www.zjucadcg.cn/dengcai/SR/index.html .
4. Version 0.10.0 of the Shogun toolbox, the latest version as of the writing of this paper, can be found athttp:

//www.shogun-toolbox.org .
5. The code of SMO-MKL is available athttp://research.microsoft.com/en-us/um/people/manik /code/

SMO-MKL/download.html .
6. The code of OBSCURE can be found athttp://dogma.sourceforge.net .
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Shogun, the stopping thresholdε is set to 10−4 unless stated otherwise. Parameters in MK-SVM
OBSCURE and SMO-MKL are set to default values unless stated otherwise.

All kernels used in the experiments have been normalised. For the first fivedatasets, due to the
kernel functions used, the kernel matrices are by definition spherically normalised: all data points
lie on the unit hypersphere in the feature space. For the protein localisationdataset, the kernels
are multiplicatively normalised following Ong and Zien (2008) and Kloft et al. (2011) to allow
comparison with Kloft et al. (2011). After normalisation, the kernels are then centred in the feature
spaces, as required byℓp MK-FDA. Note thatℓp MK-SVM is not affected by centring. Kernels
used in the experiments (except for those in the simulation and in training speedexperiments) are
also available online.7

3.1 Simulation

We first perform simulation to illustrate the different behaviour ofℓ1 MK-FDA and a special case
of ℓp MK-FDA, namely, the case ofp= 2. We simulate two classes by sampling 100 points from
two 2-dimensional Gaussian distributions, 50 points from each. The means of the two distributions
in both dimensions are drawn from a uniform distribution between 1 and 2, and the covariances
of the two distributions are also randomly generated. A radial basis function(RBF) kernel is then
constructed using these 2-dimensional points. Similarly, 100 test points are sampled from the same
distributions, 50 from each, and an RBF kernel is built for the test points.Kernel FDA is then
applied to find the best projection direction in the feature space and compute the error rate on the
test set. Figure 1 (a) gives 3 examples of the simulated points. It shows thatdue to the parameters
used in the two Gaussian distributions, the two classes are heavily, but not completely, overlapping.
As a result, the error rate given by single kernel FDA is around 0.43: slightly better than a random
guess.

The above process of mean/covariance generation, sampling, and kernel building is repeatedn
times, resulting inn training kernels (andn corresponding test kernels). Thesen training kernels,
although generated independently, can be thought of as kernels that capture different “views” of a
single binary classification problem. With this interpretation in mind, we applyℓ1 andℓ2 MK-FDAs
to learn optimal kernel weights for this classification problem. We vary the number n from 5 to 50
at a step size of 5. For each value ofn, ℓ1 andℓ2 MK-FDAs are applied and the resulting error
rates are recorded. This process is repeated 100 time for each value ofn to compute the mean and
standard deviation of error rates. The results for variousn values are plotted in Figure 1 (c).

It is clear in Figure 1 (c) that as the number of kernels increases, the error rates of both methods
drop. This is expected, since more kernels bring more discriminative information. Another obser-
vation is thatℓ1 MK-FDA slightly outperformsℓ2 MK-FDA when the number of kernels is 5, and
vice versa when the number of kernels is 10 or 15. When there are 20 kernels, the advantage ofℓ2

MK-FDA becomes clear. As the number of kernels keeps increasing, its advantage becomes more
and more evident.

The different behaviour ofℓ1 andℓ2 MK-FDAs can be explained by the different weights learnt
from them. Two typical examples of such weights, learnt usingn = 5 kernels andn = 30 kernels
respectively, are plotted in Figure 1 (b). It has been known thatℓ1 norm regularisation tends to
produce sparse solutions (Rätsch, 2001; Kloft et al., 2008). When kernels carry complementary
information, this will lead to a loss of information and hence degraded performance. When the

7. The kernels can be downloaded athttp://www.featurespace.org .
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(a)

(b) (c)

Figure 1: Simulation: (a) Three examples of the two Gaussian distributions. (b) Comparing the
kernel weights learnt fromℓ1 MK-FDA and ℓ2 MK-FDA. Left: using 5 kernels. Right:
using 30 kernels. (c) Mean and standard deviation of error rates ofℓ1 MK-FDA and ℓ2

MK-FDA using various number of kernels.

number of kernels is sufficiently small, however, this effect does not occur: as can be seen in the
left plot of Figure 1 (b), when there are only 5 kernels, all of them get non-zero weights in bothℓ1

andℓ2 MK-FDAs.
As the number of kernels increases, eventually there are enough of themfor the over-selectiveness

of ℓ1 regularisation to exhibit itself. As the right plot of Figure 1 (b) shows, when 30 kernels are
used, many of them are assigned zero weights byℓ1 MK-FDA. This leads to a loss of information.
By contrast, the weights learnt inℓ2 MK-FDA are non-sparse, hence the better performance. Fi-
nally, it is worth noting that the sparsity of learnt kernel weights, which captures the sparsity of
information in the kernel set, is not to be confused with the numerical sparsityof the kernel matri-
ces. For example, when the RBF kernel function is used, the kernel matrices will not contain any
zero, regardless of the sparsity of kernel weights.

3.2 Pascal VOC2008

In this section, we demonstrate again the different behaviour ofℓ1 andℓ2 MK-FDAs, but this time
on a real world dataset: the Pascal visual object classes (VOC) challenge 2008 development dataset.
The VOC challenge provides a yearly benchmark for comparison of object classification methods,
with one of the most challenging datasets in the object recognition / image classification community.
The VOC2008 development dataset consists of 4332 images of 20 object classes such as aeroplane,
cat, person, etc. The dataset is divided into a pre-defined training set with 2111 images and a
validation set with 2221 images. In our experiments, the training set is used for training and the
validation set for testing. VOC2008 test set is not used as the class labels are not publicly available.

Pascal VOC2008 is a multilabel dataset in the sense that each image can contain multiple classes
of objects. To tackle this multilabel problem, the classification of the 20 object classes is treated as
20 independent binary problems. In our experiments, average precision (AP) (Snoek et al., 2006) is
used to measure the performance of each binary classifier. Average precision is particularly suitable
for evaluating the performance of a retrieval system, since it emphasises higher ranked relevant
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(a) (b)

Figure 2: VOC2008: (a) Learnt kernel weights inℓ1 MK-FDA andℓ2 MK-FDA. “motorbike” class.
(b) MAPs ofℓ1 MK-FDA and ℓ2 MK-FDA with various composition of kernel set.

instances. The mean of the APs of the 20 classes in the dataset, MAP, is usedas a measure of the
overall performance.

The SIFT descriptor (Lowe, 2004; Mikolajczyk and Schmid, 2005) and spatial pyramid match
kernel (SPMK) (Grauman and Darrell, 2007; Lazebnik et al., 2006) based on bag-of-words model
(Zhang et al., 2007; Gemert et al., 2008) are used to build base kernels.The combination of two
sampling strategies (dense sampling and Harris-Laplace interest point sampling), 5 colour variants
of SIFT descriptors (Sande et al., 2008), and 3 ways of dividing an image into spatial location grids
results in 2×5×3 = 30 “informative” kernels. We also generate 30 sets of random vectors,and
build 30 RBF kernels from them. These random kernels are then mixed with theinformative ones,
to study how the properties of kernels affect the performance ofℓ1 andℓ2 MK-FDAs.

The number of kernels used in each run is fixed to 30. In the first run, only the 30 random
kernels are used. In the following runs the number of informative kernelsis increased and that of
random kernels decreased, until the 31st run, where all 30 kernels are informative. In each run, we
apply bothℓ1 andℓ2 MK-FDAs to the 20 binary problems, compute the MAP for each algorithm,
and record the learnt kernel weights.

Figure 2 (a) plots the kernel weights learnt fromℓ1 MK-FDA and ℓ2 MK-FDA. In each subplot,
the weights of the informative kernels are plotted towards the left end and those of random ones
towards the right. We clearly observe again the “over-selective” behaviour of ℓ1 norm: it sets the
weights of most kernels, including informative kernels, to zero. By contrast, the proposedℓ2 MK-
FDA always assigns non-zero weights to the informative kernels. However,ℓ2 MK-FDA is “under-
selective”, in the sense that it assigns non-zero weights to the random kernels. It is also worth noting
that the kernels that do get selected byℓ1 MK-FDA are usually the ones that get highest weights in
ℓ2 MK-FDA.

The MAPs of bothℓ1 and ℓ2 MK-FDAs are shown in Figure 2 (b). In order to improve the
clarity of the interest region, in Figure 2 (b), the MAP of the first run, thatis, when all kernels are
random, is not plotted. In such a situation, both versions of MK-FDAs reduce to a chance classifier,
which has an MAP of around 0.007. It can be seen from Figure 2 (b) that, as expected,ℓ1 MK-FDA
outperformsℓ2 MK-FDA when the noise level is high and vice versa when the noise level is low.
Another interpretation of this observation is that when the “intrinsic” sparsityof the base kernels is
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high thenℓ1 norm regularisation is appropriate, and vice versa. This suggests that ifwe can learn
this intrinsic sparsity of base kernels on a validation set, we will be able to find the most appropriate
regularisation normp, and get improved performance over a fix norm MK-FDA. We validate this
idea in the next section.

3.3 Pascal VOC2007

Similar to Pascal VOC2008, Pascal VOC2007 is a multilabel object recognitiondataset consisting
of the same 20 object categories. The dataset is divided into training, validation and test sets, with
2501, 2510 and 4952 images respectively. As in the case of VOC2008, the classification of the
20 object classes is treated as 20 independent binary problems, and MAPis used as a measure of
overall performance.

We generate 14 base kernels by combining 7 colour variants of local descriptors (Sande et al.,
2008) and two kernel functions, namely, SPMK (Lazebnik et al., 2006; Grauman and Darrell, 2007)
and RBF kernel withχ2 distance (Zhang et al., 2007). We first perform supervised dimensionality
reduction on the descriptors to improve their discriminability, following Cai et al.(2011). The
descriptors with reduced dimensionality are clustered with k-means to learn codewords (Csurka
et al., 2004). The soft assignment scheme in Gemert et al. (2008) is then employed to generate a
histogram for each image as its representation. Finally, the two kernel functions are applied to the
histograms to build kernel matrices.

We investigate the idea of learning the intrinsic sparsity of the base kernels bytuning the regular-
isation normp on a validation set, using bothℓp MK-SVM and ℓp MK-FDA. For both methods, we
learn the parameterp on the validation set from 12 values:{1,1+2−6,1+2−5,1+2−4,1+2−3,1+
2−2,1+2−1,2,3,4,8,106}. For ℓp MK-SVM, the regularisation parameterC is learnt jointly with
p from 10 values that are logarithmically spaced over 2−2 to 27. Similarly, for ℓp MK-FDA, the
regularisation parameterλ is learnt jointly with p from a set of 10 values that are logarithmically
spaced over 4−5 to 44. The sets of values ofC andλ are chosen to cover the areas in the parameter
spaces that give the best performance for MK-SVM and MK-FDA, respectively.

Plotted in Figure 3 are the weights learnt on the training set inℓp MK-FDA and ℓp MK-SVM
with variousp values for the “aeroplane” class. Forℓp MK-FDA, for each p value, the weights
learnt with the optimalλ value are plotted; while forℓp MK-SVM, for eachp value, we show the
weights learnt with the optimalC value. It is clear that asp increases, in both MKL algorithms, the
sparsity of the learnt weights decreases. As expected, whenp= 106 (practically infinity), the kernel
weights become ones, that is,ℓ∞ MK-FDA/MK-SVM produces uniform kernel weights. Note that
for the same normp, the weights learnt inℓp MK-FDA and ℓp MK-SVM can be different. This is
especially evident whenp is small. Note also that results reported in this section are obtained using
the Shogun implementation of MK-SVM, which is based on the saddle point formulation of the
problem. The recently proposed SMO-MKL works directly with the dual andcan be more efficient,
especially on large scale problems. However, as discussed in Section 2.3,these two formulations
are equivalent and produce identical kernel weights. Considering this, we only present the results
of SMO-MKL in terms of training speed in Section 3.7.

Next, we plot in Figure 4 top-left the APs on the validation and test sets for the“bird” class
with variousp values, usingℓp MK-FDA, where again for eachp value, the APs with theλ value
that gives the best AP on the validation set are plotted. It is clear that the twocurves match well,
which implies that learningp in addition toλ should help. Shown in the middle and right columns
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Figure 3: VOC2007: Kernel weights learnt on the training set inℓp MK-FDA and ℓp MK-SVM
with variousp values. “aeroplane” class.

Figure 4: VOC2007: Learning the normp for MK-FDA on the validation set. Top row: “bird”
class. Bottom row: “pottedplant” class; left column: APs on the validation setand
test set with variousp values; middle column: kernel weights learnt on the training set
with the optimal{p,λ} combination; right column: kernel weights learnt on the train-
ing+validation set with the same{p,λ} combination.
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MK-SVM MK-FDA

ℓ1 ℓ∞ ℓp ℓ1 ℓ∞ ℓp

aeroplane 78.8 79.6 79.6 79.9 79.5 80.9

bicycle 63.4 65.0 64.7 64.7 67.6 67.8

bird 57.3 61.0 61.0 57.1 62.0 63.7

boat 71.1 70.1 71.1 70.9 70.1 70.8

bottle 29.1 29.9 29.7 27.5 29.7 29.4

bus 62.9 64.9 65.5 63.4 66.1 66.1

car 77.9 78.8 78.8 79.1 79.5 80.9

cat 56.7 56.4 57.1 57.1 56.9 58.3

chair 52.3 53.0 53.0 51.9 52.5 52.9

cow 38.7 41.4 41.4 42.3 41.5 43.4

table continued in the right column.

MK-SVM MK-FDA

ℓ1 ℓ∞ ℓp ℓ1 ℓ∞ ℓp

din. table 52.4 57.3 56.6 57.2 59.2 61.4

dog 42.8 45.8 44.6 44.2 46.1 45.1

horse 78.9 80.6 80.6 80.0 81.1 81.0

moterbike 66.3 66.8 66.8 67.8 67.8 68.8

person 86.7 88.0 88.0 86.8 88.1 88.8

pot. plant 31.8 41.0 40.5 32.5 42.6 42.5

sheep 40.2 46.0 46.0 39.0 44.4 43.9

sofa 44.0 43.8 44.0 43.5 43.7 45.9

train 81.3 82.4 82.4 83.2 84.2 85.1

tvmonitor 53.3 53.7 53.7 52.5 54.1 56.9

MAP 58.3 60.3 60.3 59.0 60.8 61.7

Table 1: VOC2007: Average precisions of six MKL methods

of the top row of Figure 4 are the learnt kernel weights with the optimal{p,λ} combination on the
training set and on the training + validation set, respectively. Since for the “bird” class the optimal
p found on the validation set is 1+ 2−1, both sets of weights are non-sparse. For this particular
binary problem, the intrinsic sparsity of the set of base kernels is medium. Similarly, the bottom
row of Figure 4 shows the results for the “pottedplant” class. We again observe that the AP on the
validation set and that on the test set show similar patterns. However, for the “pottedplant” class,
the optimalp on the validation set is found to be 8, which implies that the intrinsic sparsity of the
kernels is low.

When keeping the normp fixed at 1, 106 and learning only theC/λ parameter, theℓp MK-
SVM/MK-FDA reduces toℓ1 and ℓ∞ MK-SVM/MK-FDA, respectively. The APs and MAPs of
the six MKL methods are shown in Table 1. The results in Table 1 demonstrate that learning the
regularisation normp indeed improves the performance of MK-FDA. However, it is worth noting
that this improvement is achieved at a computational price of cross validating for an additional
parameter, the regularisation normp. In the case of MK-SVM, the learnt optimalp yields the same
MAP asℓ∞ MK-SVM. However, this does not mean learningp is not bringing anything, because
a priori we would not know thatℓ∞ is the most appropriate norm. Instead, the conclusion we can
draw from the MK-SVM results is that the sparsity of the base kernels, according to MK-SVM, is
very low. Another observation from Table 1 is that in all three cases:ℓ1, ℓ∞ andℓp tuned, MK-FDA
outperforms MK-SVM on the majority of classes.

The pairwise alignment of the 14 kernel matrices w.r.t. the Frobenius dot product (Golub and
van Loan, 1996),A(i, j) = <Ki ,K j>F

‖Ki‖F‖K j‖F
, is plotted in Figure 5, where subplot (a) shows the alignment

of uncentred kernels and subplot (b) shows that of centred kernels.Kernel alignment has been
used to analyse the property of a given kernel set (Nakajima et al., 2009;Kloft et al., 2011). We
argue, however, that kernel alignment by itself cannot reveal completely the sparsity of a kernel
set. First of all, as shown in Figure 5 (a) and (b), centring the kernel matrices changes significantly
the alignment of the kernels. On the other hand, it is well known that centringdoes not change
the effective weights learnt in MKL, since the shape of the data in the feature space is translation
invariant. Second, kernel alignment does not take into account label information. For a multilabel
dataset such as VOC07, all object classes share the same set of images (hence the same kernels),
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(a) (b)

Figure 5: VOC07: Alignment of the 14 kernels. (a) Spherically normalised kernels. (b) Spheri-
cally normalised and centred kernels. Note the scale difference between the two plots as
indicated by the colorbars.

and the labels are different depending on which object class (i.e., which binary problem) is being
considered. It is clear from Table 1 that for bothℓp MK-FDA and ℓp MK-SVM, the sparsity of the
kernel set is class dependent. This means kernel alignment, which is classindependent, by itself
cannot be expected to identify the kernel set sparsity for all classes. Instead, we hypothesise that
correlation analysis using projected labels (Braun et al., 2008) is probably more appropriate.

Finally, note that due to different parameter sets and different normalisation methods used
(spherical normalisation in this paper while unit trace normalisation in Yan et al.,2010), the re-
sults on VOC07, Caltech101 and Flower17 reported in this paper are slightly different from those
in Yan et al. (2010). However, the trends in the results remain the same, andall conclusions drawn
from the results remain unchanged.

3.4 Caltech101

In the following three sections, we compare the proposedℓp MK-FDA with several variants ofℓp

MK-SVM on multiclass problems. We start in this section with the Caltech101 objectrecognition
dataset. Caltech101 is a multiclass object recognition benchmark with 101 object categories. We
follow the popular practice of using 15 randomly selected images per class for training, up to 50
randomly selected images per class for testing, and compute the average accuracy over all classes.
This process is repeated 3 times, and we report the mean of the average accuracies on the test set
that is achieved with the optimal parameter (C for MK-SVM and λ for MK-FDA). Validation is
omitted, as the training of multiclass MK-SVM Shogun on this dataset can be verytime consuming.

We generate 10 kernels in a similar way as in the VOC2007 experiments. In addition to these
“informative” kernels, we also construct 10 RBF kernels from 10 sets of random vectors. To test
the robustness of the MKL methods, we repeat the experiment 6 times. We start with only the
informative kernels, and add two more random kernels in each subsequent run.
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p= 1 p= 1+2−6 p= 1+2−2

p= 2 p= 4 p= 106

Figure 6: Caltech101: Accuracy comparison of three multiclass MKL methods.

Two multiclass MK-SVM implementations are compared against multiclass MK-FDA, namely,
MK-SVM Shogun, and the recently proposed online MK-SVM algorithm OBSCURE (Orabona
et al., 2010). For OBSCURE, the parameters are set to default values, except for the MKL normp
and the regularisation parameterC. In our experiments,C andλ are chosen from the same set of
values that are logarithmically spaced over 4−5 to 44. We use the same set of 12p values as in the
VOC07 experiments. Note however that in OBSCURE, the MKL normp is specified equivalently
through the block normr, wherer = 2p/(p+ 1). Moreover, OBSCURE requires thatr > 1, so
p= r = 1 in the set ofp values is not used for OBSCURE.

The performance of the three MKL methods with various numbers of randomkernels is il-
lustrated in Figure 6, where we show results for sixp values, covering the spectrum from highly
sparsity-inducing norm, to uniform weighting. Whenp is large, MK-SVM Shogun does not con-
verge within 24 hours, so its performance is not plotted forp = 4 andp = 106. We can see from
Figure 6 that, whenp is small, both MK-SVM OBSCURE and MK-FDA are robust to the added
noise, and MK-FDA has a marginal advantage over OBSCURE (e.g.,∼0.003 whenp= 1+2−6).
Whenp is large, as expected, the performance of all three methods in general degrades as the num-
ber of random kernels increases. However, MK-FDA does so more gracefully than OBSCURE. On
the other hand, both MK-FDA and MK-SVM OBSCURE outperform MK-SVMShogun by a large
margin on this multiclass problem.

3.5 Oxford Flower17

Oxford Flower17 is a multiclass dataset consisting of 17 categories of flowers with 80 images per
category. This dataset comes with 3 predefined splits into training (17×40 images), validation (17×
20 images) and test (17×20 images) sets. Moreover, Nilsback and Zisserman (2008) precomputed
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method accuracy and std. dev. parameters tuned on val. set

product 85.5± 1.2 C

averaging 84.9± 1.9 C

MKL (SILP) 85.2± 1.5 C

MKL (Simple) 85.2± 1.5 C

CG-Boost 84.8± 2.2 C

LP-β 85.5± 3.0 Cj , j = 1, · · · ,n andδ ∈ (0,1)

LP-B 85.4± 2.4 Cj , j = 1, · · · ,n andδ ∈ (0,1)

ℓp MK-SVM Shogun 86.0± 2.4 p andC jointly

ℓp MK-SVM OBSCURE 85.6± 0.0 p andC jointly

ℓp MK-FDA 87.2± 1.6 p andλ jointly

Table 2: Flower17: Comparison of ten kernel fusion methods.

7 distance matrices using various features, and the matrices are available online.8 We use these
distance matrices and follow the same procedure as in Gehler and Nowozin (2009) to compute 7
kernels:K j(xi ,xi′) = exp(−D j(xi ,xi′)/η j), whereη j is the mean of the pairwise distances for the
j th feature.

Table 2 comparesℓp MK-SVM Shogun,ℓp MK-SVM OBSCURE,ℓp MK-FDA, and 7 kernel
combination techniques discussed in Gehler and Nowozin (2009). Note thatthese methods are
directly comparable since they share the same kernel matrices and the same splits. Forℓp MK-SVM
Shogun,ℓp MK-SVM OBSCURE andℓp MK-FDA, the parametersp, C andλ are tuned on the
validation set from the same sets of values as in the Caltech101 experiments. For the other seven
methods, the corresponding entries in the table are taken directly from Gehler and Nowozin (2009),
where: “product” and “sum” refer to the two simplest kernel combination methods, namely, taking
the element-wise geometric mean and arithmetic mean of the kernels, respectively; “MKL (SILP)”
and “MKL (Simple)” are essentiallyℓ1 MK-SVM; while “CG-Boost”, “LP-β” and “LP-B” are three
boosting based kernel combination methods.

We can see from Table 2 that the boosting based methods, although performing well on other
datasets in Gehler and Nowozin (2009), fail to outperform the baseline methods “product” and
“averaging”. On the other hand,ℓp MK-FDA not only shows a considerable improvement over
all the methods discussed in Gehler and Nowozin (2009), but also outperforms bothℓp MK-SVM
Shogun andℓp MK-SVM OBSCURE. Note that the optimal test accuracy over all combinationsof
parameters achieved by OBSCURE is comparable to that by MK-FDA. However, the performance
on the validation set and that on the test set do not match as well for OBSCURE as for MK-FDA,9

resulting in the lower test accuracy of OBSCURE. Parameters that need to be tuned on the validation
set in these methods are also compared in Table 2.

3.6 Protein Subsellular Localisation

In the previous three sections, we have shown that on both binary and multiclass object recognition
problems,ℓp MK-FDA tends to outperformℓp MK-SVM by a small margin. In this section, we
further compareℓp MK-FDA and ℓp MK-SVM on a computational biology problem, namely, the
prediction of subcellular localisation of proteins (Zien and Ong, 2007; Ongand Zien, 2008).

8. The distance matrices can be found athttp://www.robots.ox.ac.uk/ ˜ vgg/research/flowers/index.html .
9. This is indicated by, for example, a lower Spearman or Kendall rank correlation coefficient.
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norm p 1 32/31 16/15 8/7 4/3 2 4 8 16 ∞

MK-SVM
8.18 8.22 8.20 8.21 8.43 9.47 11.00 11.61 11.91 11.85

plant
± 0.47 ± 0.45 ± 0.43 ± 0.42 ± 0.42 ± 0.43 ± 0.47 ± 0.49 ± 0.55 ± 0.60

MK-FDA
10.86 11.02 10.96 11.07 10.85 10.69 11.28 11.28 11.04 11.35

± 0.42 ± 0.43 ± 0.46 ± 0.43 ± 0.43 ± 0.37 ± 0.45 ± 0.45 ± 0.43 ± 0.46

MK-SVM
8.97 9.01 9.08 9.19 9.24 9.43 9.77 10.05 10.23 10.33

nonpl
± 0.26 ± 0.25 ± 0.26 ± 0.27 ± 0.29 ± 0.32 ± 0.32 ± 0.32 ± 0.32 ± 0.31

MK-FDA
10.93 10.59 10.91 10.89 10.84 11.00 12.12 12.12 11.81 12.15

± 0.31 ± 0.33 ± 0.31 ± 0.32 ± 0.31 ± 0.33 ± 0.41 ± 0.41 ± 0.38 ± 0.41

MK-SVM
9.99 9.91 9.87 10.01 10.13 11.01 12.20 12.73 13.04 13.33

psortNeg
± 0.35 ± 0.34 ± 0.34 ± 0.34 ± 0.33 ± 0.32 ± 0.32 ± 0.34 ± 0.33 ± 0.35

MK-FDA
9.89 10.07 9.95 9.87 9.75 9.74 11.39 11.25 11.27 11.50

± 0.34 ± 0.36 ± 0.35 ± 0.37 ± 0.39 ± 0.37 ± 0.35 ± 0.34 ± 0.35 ± 0.35

MK-SVM
13.07 13.01 13.41 13.17 13.25 14.68 15.55 16.43 17.36 17.63

psortPos
± 0.66 ± 0.63 ± 0.67 ± 0.62 ± 0.61 ± 0.67 ± 0.72 ± 0.81 ± 0.83 ± 0.80

MK-FDA
12.59 13.16 13.07 13.34 13.45 13.63 16.86 16.37 16.56 16.94

± 0.75 ± 0.80 ± 0.80 ± 0.80 ± 0.74 ± 0.70 ± 0.85 ± 0.89 ± 0.87 ± 0.84

Table 3: Protein Subcellular Localisation: comparingℓp MK-FDA and ℓp MK-SVM w.r.t. pre-
diction error and its standard error. Prediction error is measured as 1−average MCC in
percentage.

The protein subcellular localisation problem contains 4 datasets, corresponding to 4 different
sets of organisms: plant (plant), non-plant eukaryotes (nonpl), Gram-positive (psortPos) and Gram-
negative bacteria (psortNeg). Each of the 4 datasets can be considered as a multiclass classification
problem, with the number of classes ranging between 3 and 5. For each dataset, 69 kernels that
capture diverse aspects of protein sequences are available online.10 We download the kernel matri-
ces and follow the experimental setup in Kloft et al. (2011) to enable a direct comparison. More
specifically, for each dataset, we first multiplicatively normalise the kernel matrices. Then for each
of the 30 predefined splits, we use the first 20% of examples for testing andthe rest for training.

In Kloft et al. (2011), the multiclass problem associated with each dataset isdecomposed
into binary problems using the one-vs-rest strategy. This is not necessary in the case of FDA,
since FDA by its natures handles both binary and multiclass problems in a principled fashion.
For each dataset, we consider the same set of values for the normp as in Kloft et al. (2011):
{1,32/31,16/15,8/7,4/3,2,4,8,∞}. In Kloft et al. (2011), the regularisation constant C for MK-
SVM is taken from a set of 9 values:{1/32,1/8,1/2,1,2,4,8,32,128}. In our experiments, the
regularisation constantλ for MK-FDA is also taken from a set of 9 values, and the values are loga-
rithmically spaced over 10−8 to 100.

Again following Kloft et al. (2011), for eachp/λ combination, we evaluate the performance of
ℓp MK-FDA w.r.t. average (over the classes) Matthews correlation coefficient (MCC), and report in
Table 3 the average of 1−MCC over 30 splits and its standard error. For ease of comparison, we
also show in Table 3 the performance ofℓp MK-SVM as reported in Kloft et al. (2011).

10. The kernels can be downloaded athttp://www.fml.tuebingen.mpg.de/raetsch/suppl/prots ubloc .
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Table 3 demonstrates that overall the performance ofℓp MK-FDA lags behind that ofℓp MK-
SVM, except onpsortNegand onpsortPos, where it has a small edge. Another observation is
that the optimal normp identified by MK-SVM does not necessarily agree with that by MK-FDA.
On psortPosthey are in close agreement and both methods favour sparsity-inducing norms. On
plant, nonplandpsortNeg, on the other hand, the norms picked by MK-FDA are larger than those
picked by MK-SVM. Note, however, that this observation can be slightly misleading, because on
the latter three datasets, the performance curve ofℓp MK-FDA is quite “flat” in the area of optimal
performance. As a result, the optimal norm estimated may not be stable.

3.7 Training Speed

In this section we provide an empirical analysis of the efficiency of the wrapper-basedℓp MK-FDA
and various implementations ofℓp MK-SVM. We usep = 1 (or in some cases 1+2−5, 1+2−6)
andp= 2 as examples of sparse/non-sparse MKL respectively,11 and study the scalability of MK-
FDA and MK-SVM w.r.t. the number of examples and the number of kernels, onboth binary and
multiclass problems.

3.7.1 BINARY CASE: VOC2007

We first compare on the VOC2007 dataset the training speed of three binary MKL methods: the
wrapper based binaryℓp MK-FDA in Section 2.1, the binaryℓp MK-SVM Shogun implementa-
tion (Sonnenburg et al., 2006, 2010), and the SMO-MKL in Vishwanathanet al. (2010). In the
experiments, interleaved optimisation and analytical update ofβ are used for MK-SVM Shogun.

We first fix the number of training examples to 1000, and vary the number of kernels from 3 to
96. We record the time taken to learn the kernel weights, and average overthe 20 binary problems.
Figure 7 (a) shows the training time of the six MKL algorithms as functions of the number of
kernels. Next, we fix the number of kernels to 14, and vary the number of examples from 75 to
4800. Similarly, in Figure 7 (b) we plot the average training time as functions ofthe number of
examples.

Figure 7 (a) demonstrates that for small/medium sized problems, when a sparsity-inducing norm
is used, SMO-MKL is the most efficient; while whenp = 2, MK-FDA can be significantly faster
than the competing methods. On the other hand, when training efficiency is measured as a func-
tion of the number of examples, there is no clear winner, as indicated in Figure7 (b). However,
the trends in Figure 7 (b) suggest that on large scale problems, SMO-MKLis likely to be more
efficient than MK-FDA and MK-SVM Shogun. In both cases, MK-FDA has a comparable or bet-
ter efficiency than MK-SVM Shogun, despite the fact that MK-SVM Shogunuses the interleaved
algorithm while MK-FDA employs the somewhat wasteful wrapper-based implementation. Again,
this trend is likely to flip over on large scale problems. For such problems, onecan adopt either the
square loss counterpart of the interleaved algorithm, or the square loss counterpart of the SMO-MKL
algorithm, or the limited memory quasi-Newton method, to improve the efficiency ofℓp MK-FDA,
as discussed in Section 2.3.

11. Both SMO-MKL and OBSCURE require thatp > 1. Moreover, SMO-MKL is numerically unstable whenp =
1+2−6. As a result, we usep= 1+2−5 andp= 1+2−6 as sparsity-inducing norms for SMO-MKL and OBSCURE,
respectively.
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(a) (b)

Figure 7: Training speed on a binary problem: VOC2007. (a) Training time vs. number of kernels,
where number of examples is fixed at 1000. (b) Training time vs. number of examples,
where number of kernels is fixed at 14.λ = 1 for MK-FDA, andC = 1 for MK-SVM
Shogun and MK-SVM OBSCURE.

3.7.2 MULTICLASS CASE: CALTECH101

Next we compare three multiclassℓp MKL algorithms on the Caltech101 dataset, namely, the
wrapper-based multiclassℓp MK-FDA in Section 2.2, multiclassℓp MK-SVM Shogun, and MK-
SVM OBSCURE. We compare the first two methods following similar protocols as inthe binary
case. In Figure 8 (a) we show the average training time over the 3 splits as functions of the number
of kernels (from 2 to 31) when the number of examples is fixed to 101 (one example per class);
while plotted in Figure 8 (b) is the average training time as functions of the numberof examples
(from 101 to 1515, that is, from one example per class to 15 examples per class) when the number
of kernels is fixed to 10.

Figure 8 shows that on small/medium sized multiclass problems, MK-FDA is in most cases
one or two orders of magnitude faster than MK-SVM Shogun. The only exception is that as the
number of kernels increases, the efficiency ofℓ1 MK-SVM Shogun degrades more gracefully than
ℓ1 MK-FDA, and eventually overtakes. Another observation from both Figure 7 and Figure 8 is
that, ℓ2 MK-FDA tends to be more efficient thanℓ1 MK-FDA, despite the fact that in the outer
subproblem, the LP solver employed inℓ1 MK-FDA is slightly faster than the QCLP solver inℓ2

MK-FDA. This is becauseℓ1 MK-FDA usually takes a few tens of iterations to converge, while
the ℓ2 version typically takes less than 5. This difference in the number of iterationsreverses the
efficiency advantage of LP over QCLP.

Due to its online nature, the efficiency of OBSCURE has to be measured differently to allow
a fair comparison. The OBSCURE algorithm is a two-stage algorithm, and eachstage involves
an iterative process with a parameterT1/T2 controlling the number of iterations. In general the
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(a) (b)

Figure 8: Training speed on a multiclass problem: Caltech101. MK-FDA vs. MK-SVM Shogun.
(a) Training time vs. number of kernels, where number of examples is fixed at 101. (b)
Training time vs. number of examples, where number of kernels is fixed at 10. λ = 1 for
MK-FDA, andC= 1 for MK-SVM Shogun.

Figure 9: Training speed on a multiclass problem: Caltech101. MK-FDA vs. MK-SVM OB-
SCURE. Top row:p = 1+ 2−6. Bottom row: p = 2. The three columns correspond
to the three splits. 10 kernels and 101×15= 1515 training examples.
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larger the values ofT1 andT2, the longer it takes to train, but the more accurate the learnt model.
We setT1 = T2 = T and varyT in a set of 11 values from 20 to 210. This allows us to plot a
curve of model accuracy against training time. For MK-FDA, the similar curve can be plotted by
varying the convergence thresholdε in a set of 11 values:{20, · · · ,2−6,10−2, · · · ,10−5}. Note that
the regularisation parameters (λ for MK-FDA andC for OBSCURE) are set to values that yield the
highest classification accuracy.

The resulting time-accuracy curves for all 3 splits of the dataset are presented in Figure 9,
where the top row corresponds to the case ofp= 1+2−6 and the bottom row top= 2, and each
column corresponds to one split. It is evident that MK-FDA typically reaches its optimum faster
than OBSCURE, especially in the case ofp= 2. Moreover, the optimum achieved by MK-FDA is at
least as accurate as that by OBSCURE, confirming our findings in Section 3.4. All the training time
reported in this section is measured on a single core of an Intel Xeon E55202.27GHz processor.

4. Discussion: FDA vs. SVM

The empirical observation that MK-FDA tends to outperform MK-SVM on image categorisation
datasets matches well with our experience with single kernel FDA and single kernel SVM on several
other object/image/video classification benchmarks, including VOC2008, VOC2009, VOC2010,12

Trecvid2008, Trecvid2009,13 and ImageCLEF2010.14 In this section, we discuss the connection
between (MK-)SVM and (MK-)FDA from perspectives of both loss function and version space,
and attempt to explain their different performance.

It is well known that many machine learning problems essentially boil down to function learn-
ing. In the supervised scenario, it is intuitive to learn the function by minimising the empirical loss
for the given set of labelled input/output pairs{xi ,yi}

m
i=1, with respect to some loss function. How-

ever, such an empirical risk minimisation principle is ill-posed and therefore does not generalise
(Tikhonov and Arsenin, 1977; Vapnik, 1999). Regularisation tries to restore well-posedness of the
learning problem, by restricting the complexity of the function set over which the empirical loss
is minimised. By (implicitly) mapping the data into a high dimensional feature space, thiscan be
conveniently done in the form of Tikhonov regularisation:

min
w

1
2
||w||2+C

m

∑
i=1

V( f (φ(xi)),yi), (27)

whereφ(xi) is the mapping to the feature space,f (φ(xi)) = wTφ(xi) is the linear function to be
learnt, the complexity of the function set is regularised by1

2||w||2, andV(·, ·) measures the empirical
loss. Learning machines with the form of Equation (27) are collectively termed regularised kernel
machines, a name capturing the two key aspects of them: regularisation, and kernel mapping. Note
that in the formulation above, the unregularised bias termb in standard SVM is absent from the
linear function. As shown in Keerthi and Shevade (2003); Poggio et al.(2004), the two formulations,
with and withoutb, can be made equivalent by transforming the kernel function.

The setting in Equation (27) is very general, in the sense that many state-of-the-art machine
learning techniques can be realised by plugging in different loss functions. For example, the hinge
lossV( f (φ(x)),y) = (1− y f(φ(x)))+, where(·)+ = max(·,0), gives rise to the well known SVM,

12. More information on VOC can be found athttp://pascallin.ecs.soton.ac.uk/challenges/VOC .
13. More information on Trecvid can be found athttp://www-nlpir.nist.gov/projects/trecvid .
14. More information on ImageCLEF can be found athttp://www.imageclef.org/2010 .
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probably the most popular learning machine in the past ten years. On the other hand, along with the
success of SVM, regularised kernel machines using the square lossV( f (φ(x)),y) = (y− f (φ(x)))2

have emerged several times under various names, including: regularisednetworks (RN) (Girosi
et al., 1995; Evgeniou et al., 2000), regularised least squares (RLS)(Rifkin, 2002), kernel ridge
regression (KRR) (Saunders et al., 1998; Hastie et al., 2002), least squares support vector machines
(LSSVM) (Suykens and Vandewalle, 1999; Gestel et al., 2002), proximal support vector machines
(PSVM) (Fung and Mangasarian, 2001). In particular, shortly after the proposal of kernel FDA
(Mika et al., 1999; Baudat and Anouar, 2000), its regularised versionwas shown to be yet another
equivalent formulation (Duda et al., 2000; Rifkin, 2002; Gestel et al., 2002).

There is a long list of literature which compares the performance of FDA andSVM, for example,
Mika (2002), Rifkin (2002), Cai et al. (2007) and Ye et al. (2008), with most of them reporting both
methods yield virtually identical performance, and the rest claiming there is a small advantage
towards one method or the other. It is speculated in Mika et al. (1999) that the superior performance
of FDA over SVM in their experiments is due to the fact that FDA uses all training examples in the
test stage while SVM uses only the support vectors. However, a more elegant way of explaining the
different performance of SVM and FDA is probably from the perspective of version space. Version
space is the space of all consistent hypotheses, that is, allw’s that correspond to hyperplanes with
zero training error (Rujan, 1997). Note that with a full rank kernel matrix, linear separability in
the feature space and therefore the existence of version space is guaranteed. It is shown in Rujan
(1997) that the optimal hyperplane in the Bayes sense, which requires theknowledge of the joint
distribution onX ×Y thus not obtainable in practice, is arbitrarily close (with increasing training
sample size) to the centre of mass of the version space.

Algorithms that explicitly approximate the Bayes point were later termed Bayes point machine
(BPM) in Herbrich et al. (2001). Herbrich et al. (2001) also prove that the hyperplane found by
SVM corresponds to the centre of the largest inscribed ball of the version space. In this light, SVM
can be viewed as an approximation to BPM. This approximation is reasonable if the version space
is regularly shaped, but can be weak otherwise (Rujan, 1997; Herbrich et al., 2001; Mika, 2002).
For example, experiments in Herbrich et al. (2001) show that BPM consistently outperforms SVM.
Recently, an ellipsoid SVM was proposed (Momma et al., 2010), where the idea is to improve the
approximation to the Bayes point by using the centre of the largest inscribedellipsoid, instead of
that of the ball. We conjecture that for certain kernels (e.g., kernels generated using local descriptors
and bag-of-words model, as those used in image categorisation problems),due to the different loss
functions used, the hyperplane given by FDA is closer to the Bayes pointthan that given by SVM,
resulting in the superior performance of (MK-)FDA in our experiments. How to decide without a
validation process whether (MK-)FDA or (MK-SVM) is more suitable for a given kernel (set), and
how to incorporate explicit BPM approximation into MKL, are interesting research directions for
the future.

5. Conclusions

In this paper we have incorporated latest advances in both non-sparseMKL formulation and MKL
optimisation techniques into MK-FDA. We have presented a non-sparse version of MK-FDA based
on anℓp norm regularisation of kernel weights, and have discussed several of its reformulations and
associated optimisation strategies, including wrapper and interleaved algorithms for its saddle point
formulation, and an SMO-based scheme for its dual formulation.
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We carried out extensive evaluation on six datasets from various application areas. Our results
indicate that the optimal normp, and therefore the “intrinsic sparsity” of the base kernels, can be
estimated on an independent validation set. This estimation can be exploited in manypractical
applications where there is no prior knowledge on how informative the channels are. We have also
compared closely the performance ofℓp MK-FDA and that of several variants ofℓp MK-SVM.
On object and image categorisation problems, MK-FDA tends to have a small advantage. This
observation is consistent with our findings elsewhere regarding the performance of single kernel
FDA/SVM. In terms of training time, the wrapper-based MK-FDA implementation has similar or
favourable efficiency on small to medium sized problems when compared against state-of-the-art
MKL techniques. On large scale problems, alternative optimisation strategies discussed in the paper
should be employed to improve the efficiency and scalability of MK-FDA.

Finally, we have provided a discussion on the connection between (MK-)FDA and (MK-)SVM
from the perspectives of both loss function and version space, underthe unified framework of regu-
larised kernel machines.
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Appendix A. Multiclass ℓp MK-FDA Saddle Point Formulation

In this appendix, we first derive the saddle point formulation of multiclass MKL for a general
convex loss. Multiclass MK-FDA saddle point problem is then derived as aspecial case of it. Using
the output encoding scheme in Equation (18), multiclass MKL for a general convex loss function
V(ξik,hik) can be stated as:

min
w jk,ξik,β

c

∑
k=1

(

1
2

n

∑
j=1

||w jk||
2

β j
+C

m

∑
i=1

V(ξik,hik)

)

(28)

s.t.
n

∑
j=1

wT
jkφ j(xi) = ξik, ∀i, ∀k; β ≥ 0; ||β||2p ≤ 1.

We build the Lagrangian of Equation (28):

L =
c

∑
k=1

(

1
2

n

∑
j=1

||w jk||
2

β j
+C

m

∑
i=1

V(ξik,hik)

)

+ζ(
1
2
||β||2p−

1
2
)

−
c

∑
k=1

m

∑
i=1

αik

( n

∑
j=1

wT
jkφ j(xi)−ξik

)

,
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set to zero the derivatives of the Lagrangian w.r.t.w jk, and substitute back. After some rearrange-
ments we have:

L =
c

∑
k=1

(

C
m

∑
i=1

V(ξik,hik)+
m

∑
i=1

αikξik −
1
2

n

∑
j=1

αT
k β jK jαk

)

+ζ(
1
2
||β||2p−

1
2
),

whereαk = (α1k, · · · ,αmk)
T . Following Theorem 1 of Kloft et al. (2011) it can be shown that at

the optimum||β||2p = 1. Using this fact we arrive at the multiclass MKL saddle point problem for a
general loss function:

min
ξik,β

max
αik

c

∑
k=1

(

C
m

∑
i=1

V(ξik,hik)+
m

∑
i=1

αikξik −
1
2

n

∑
j=1

αT
k β jK jαk

)

(29)

s.t. β ≥ 0; ||β||2p ≤ 1.

At this point any convex loss function can be plugged into Equation (29). Take the square loss
V(ξik,hik) =

1
2(ξik − hik)

2 as an example. Setting to zero the derivatives ofL w.r.t. ξik we have
ξik = hik−αik/C. Plugging this into Equation (29) and rearranging we arrive at the multiclassMKL
saddle point problem for square loss, that is, multiclass multiple kernel regularised least squares
(MK-RLS):

min
β

max
αk

c

∑
k=1

(

hT
k αk−

1
2C

αT
k αk−

1
2

n

∑
j=1

αT
k β jK jαk

)

(30)

s.t. β ≥ 0; ||β||2p ≤ 1,

where thec classes are coupled through the common set of kernel weightsβ. By making substitu-
tionsαk →

C
2αk and thenC→ 1

λ , it directly follows that the MK-RLS in Equation (30) is equivalent
to the MK-FDA in Equation(19).

Appendix B. Multiclass ℓp MK-FDA Dual Formulation

In this appendix, we derive the dual formulation of multiclass MK-FDA. We again consider mul-
ticlass MKL with a general convex loss, but following Vishwanathan et al. (2010) this time we
impose the norm constraint in the form of Tikhonov regularisation instead ofIvanov regularisation:

min
w jk,ξik,β

c

∑
k=1

(

1
2

n

∑
j=1

‖w jk‖
2

β j
+C

m

∑
i=1

V(ξik,hik)

)

+
µ
2
‖β‖2

p (31)

s.t.
n

∑
j=1

wT
jkφ j(xi) = ξik, ∀i, ∀k; β ≥ 0.

Note however that the switching from Ivanov to Tikhonov regularisation is not essential for the
derivation in the following. The dual program for Ivanov regularisationin Equation (28) can be
derived in a similar way.

Building the Lagrangian of Equation (31):

L =
c

∑
k=1

(

1
2

n

∑
j=1

‖w jk‖
2

β j
+C

m

∑
i=1

V(ξik,hik)

)

+
µ
2
‖β‖2

p−
n

∑
j=1

γ jβ j

−
c

∑
k=1

m

∑
i=1

αik

( n

∑
j=1

wT
jkφ j(xi)−ξik

)

,
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and setting to zero the derivatives w.r.t.β j , we have:

µ(
n

∑
j=1

βp
j )

2
p−1βp−1

j = γ j +
1
2

c

∑
k=1

αT
k K jαk. (32)

Multiplying both sides of Equation (32) byβ j and then taking summation overj gives us:

µ‖β‖2
p =

n

∑
j=1

β j(γ j +
1
2

c

∑
k=1

αT
k K jαk),

or equivalently:
n

∑
j=1

γ jβ j =−
1
2

n

∑
j=1

c

∑
k=1

αT
k β jK jαk+µ‖β‖2

p. (33)

On the other hand, raise both sides of Equation (32) to powerp
p−1 and then take summation over

j, we have:

µ‖β‖2
p =

1
µ

∥

∥

∥

∥

(

γ j +
1
2

c

∑
k=1

αT
k K jαk

)n

j=1

∥

∥

∥

∥

2

q
, (34)

whereq= p
p−1 is the dual norm ofp.

Now let us set the derivatives ofL w.r.t. w jk also to zero, and substitute the result and Equa-
tion (33), Equation (34) back intoL . Using the fact thatγ j = 0 at the optimum (Vishwanathan et al.,
2010), and after some rearrangements we arrive at:

L =
c

∑
k=1

(

C
m

∑
i=1

V(ξik,hik)+
m

∑
i=1

αikξik

)

−
1
8µ

∥

∥

∥

∥

( c

∑
k=1

αT
k K jαk

)n

j=1

∥

∥

∥

∥

2

q
. (35)

At this point any convex loss function can be plugged into Equation (35) to recover the correspond-
ing multiclass MKL dual. We again take the square lossV(ξik,hik) =

1
2(ξik −hik)

2 as an example.
Setting to zero the derivatives ofL w.r.t. ξik we haveξik = hik −αik/C. Plugging this into Equa-
tion (35) and rearranging we arrive at the multiclass MK-RLS dual problem:

max
αk

c

∑
k=1

(

hT
k αk−

1
2C

αT
k αk

)

−
1
8µ

∥

∥

∥

∥

( c

∑
k=1

αT
k K jαk

)n

j=1

∥

∥

∥

∥

2

q
. (36)

Unlike the saddle point formulation in Equation (30), the kernel weightsβ have been eliminated
from Equation (36). Despite this, Equation (30) and Equation (36) are equivalent, in the sense that
for any givenC there exist aµ (and vice versa) such that the optimal solutions to both problems are
identical (Kloft et al., 2011).

Finally, substituting Equation (34) andγ j = 0 into Equation (32), we show that once the optimal
αk are found by solving Equation (36), the kernel weightsβ are given by:

β j =
1
2µ

( n

∑
j=1

(
c

∑
k=1

αT
k K jαk)

q
)

1
q−

1
p

(
c

∑
k=1

αT
k K jαk)

q
p .
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