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Abstract

Online algorithms that process one example at a time are advantageensdediing with very large data
or with data streams. Stochastic Gradient Descent (SGD) is such aittatigand it is an attractive choice
for online Support Vector Machine (SVM) training due to its simplicity anaretiffeness. When equipped
with kernel functions, similarly to other SVM learning algorithms, SGD is eptible to the curse of kernel-
ization that causes unbounded linear growth in model size and update timdata size. This may render
SGD inapplicable to large data sets. We address this issue by presentisg afdBudgeted SGD (BSGD)
algorithms for large-scale kernel SVM training which have constartespad constant time complexity per
update. Specifically, BSGD keeps the number of support vectorsdeduduring training through several
budget maintenance strategies. We treat the budget maintenanceuaseaafche gradient error, and show
that the gap between the BSGD and the optimal SVM solutions depends orotted degradation due to
budget maintenance. To minimize the gap, we study greedy budget maiotemethods based on removal,
projection, and merging of support vectors. We propose budgetsibre of several popular online SVM
algorithms that belong to the SGD family. We further derive BSGD algoritfunmulti-class SVM training.
Comprehensive empirical results show that BSGD achieves higheramgcthan the state-of-the-art budgeted
online algorithms and comparable to non-budget algorithms, while achi@vipressive computational effi-
ciency both in time and space during training and prediction.

Keywords: SVM, large-scale learning, online learning, stochastic gradient dese¥nel methods

1. Introduction

Computational complexity of machine learning algorithresdimes a limiting factor when one is faced with
very large amounts of data. In an environment where new lacgée problems are emerging in various
disciplines and pervasive computing applications are imétg common, there is a real need for machine
learning algorithms that are able to process increasinguate®f data efficiently. Recent advances in large-
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scale learning resulted in many algorithms for training S/(€ortes and Vapnik, 1995) using large data
(Vishwanathan et al., 2003; Zhang, 2004, Bordes et al., 208&ng et al., 2005; Joachims, 2006; Hsieh
et al., 2008; Bordes et al., 2009; Zhu et al., 2009; Teo e8l0; Chang et al., 2010b; Sonnenburg and
Franc, 2010; Yu et al., 2010; Shalev-Shwartz et al., 201djvéver, while most of these algorithms focus on
linear classification problems, the area of large-scaleeke3VVM training remains less explored. SimpleSVM
(Vishwanathan et al., 2003), LASVM (Bordes et al., 2005),M{Tsang et al., 2005) and parallel SVMs
(Zhu et al., 2009) are among the few successful attemptsaio kernel SVM from large data. However,
these algorithms do not bound the model size and, as a rémyttypically have quadratic training time in
the number of training examples. This limits their pradticse on large-scale data sets.

A promising avenue to SVM training from large data sets andfdata streams is to use online algo-
rithms. Online algorithms operate by repetitively receiva labeled example, adjusting the model parame-
ters, and discarding the example. This is opposed to offlgerithms where the whole collection of training
examples is at hand and training is accomplished by batchitea SGD is a recently popularized approach
(Shalev-Shwartz et al., 2011) that can be used for onlineitigiof SVM, where the objective is cast as an
unconstrained optimization problem. Such algorithms gedicby iteratively receiving a labeled example and
updating the model weights through gradient decent ovecéiesponding instantaneous objective func-
tion. It was shown that SGD converges toward the optimal S\8Mtion as the number of examples grows
(Shalev-Shwartz et al., 2011). In its original non-kerpedi form SGD has constant update time and constant
space.

To solve nonlinear classification problems, SGD and relatgdrithms, including the original perceptron
(Rosenblatt, 1958), can be easily kernelized combined Mihcer kernels, resulting in prediction models
that require storage of a subset of observed examplesg th#eSupport Vectors (SV$)While kernelization
allows solving highly nonlinear problems, it also introdgceavy computational burden. The main reason
is that on noisy data the number of SVs tends to grow with thaber of training examples. In addition
to the danger of exceeding the physical memory, this alsdiési@ linear growth in both model update
and prediction time with data size. We refer to this prop@tftkernel online algorithms athe curse of
kernelization To solve the problem, budgeted online SVM algorithms (Gremnet al., 2004) that limit the
number of SVs were proposed to bound the number of SVs. Ilipgathe assigned budget depends on the
specific application requirements, such as memory linoitegtj processing speed, or data throughput.

In this paper we study a class of BSGD algorithms for onlitméntng of kernel SVM. The main con-
tributions of this paper are as follows. First, we proposeudgeted version of the kernelized SGD for
SVM that has constant update time and constant space. Taghisved by controlling the number of SVs
through one of the several budget maintenance strategiesstidy the impact of budget maintenance on
SGD optimization and show that, in the limit, the gap betwdenloss of BSGD and the loss of the optimal
solution is upper-bounded by the average model degradetthuted by budget maintenance. Second, we
develop a multi-class version of BSGD based on the mulgsclBVM formulation by Crammer and Singer
(2001). The resulting multi-class BSGD has similar aldoriic structure as its binary relative and inherits
its theoretical properties. Having shown that the qualftB8GD directly depends on the quality of budget
maintenance, our final contribution is exploring compuatadily efficient methods to maintain an accurate
low-budget classifier. In this work we consider three majoddet maintenance strategies: removal, projec-
tion, and merging. In case of removal, we show that it is ogtito remove the smallest SV. Then, we show
that optimal projection of one SV to the remaining ones isi@ad by minimizing the accumulated loss
of multiple sub-problems for each class, which extends éiselts by Csat and Opper (2001), Engel et al.
(2002) and Orabona et al. (2009) to the multi-class settingase of merging, when Gaussian kernel is used,
we show that the new SV is always on the line connecting twa@get6Vs, which generalizes the result by
Nguyen and Ho (2005) to the multi-class setting. Both spackugpdate time of BSGD scale quadratically
with the budget size when projection is used and linearlyrwherging or removal are used. We show exper-

1. In this paper, Support Vectors refer to the examples thatriboite to the online classifier at a given stage of onliserieng, which
differs slightly from the standard terminology where Suppdactor refers to the examples with non-zero coefficienthendual
form of the final classifier.
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Figure 1: A hierarchy of large-scale SVMs

imentally that BSGD with merging is the most attractive hesgait is computationally efficient and results in
highly accurate classifiers.

The structure of the paper is as follows: related work ismgiveSection 2; a framework for the proposed
algorithms is presented in Section 3; the impact of budgent@aance on SGD optimization is studied in
Section 4, which motivates the budget maintenance stestégat are presented in Section 6; the extension to
the multi-class setting is described in Section 5; in Secfipthe proposed algorithms are comprehensively
evaluated; and, finally, the paper is concluded in Section 8.

2. Related Work

In this section we summarize related work to ours. Figuredliges a view at the hierarchy of large-scale
SVM training algorithms discussed below.

2.1 Algorithmsfor Large-Scale SVM Training

LIBSVM (Chang and Lin, 2001) is a widely used SVM solver whistscalable to hundreds of thousands of
examples. LIBSVM uses the SMO decomposition techniquet(RIa98) to solve SVM Quadratic Program-
ming (QP). LASVM (Bordes et al., 2005) is another scalableCBbhsed algorithm that approximates the
SVM solution by incrementally updating the model. In ordeispeed up training, LASVM performs only
several SMO iterations during each model update and it amtalty removes examples from the training set
that are deemed unlikely to become SVs. SimpleSVM (Vishwaaraet al., 2003) is a fast iterative training
algorithm that uses greedy working set selection to idg@W¥s to be incrementally updated. CVM (Tsang
et al., 2005) scales up kernel SVM by reformulating SVM’'s @GRaaminimum enclosing ball problem and
it applies an efficient approximation algorithm to obtaineanroptimal solution. BVM (Tsang et al., 2007)
is a simpler version of CVM that reduces the minimum enclg$iall problem to the enclosing ball problem
and thus solves a simpler problem. Experimentally, thepecimate algorithms have been demonstrated to
have relatively fast training times, result in sparser nigdind achieve a slightly reduced accuracy.
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Recentresearch in large-scale linear SVM resulted in macgessful algorithms (Zhang, 2004; Joachims,
2006; Shalev-Shwartz et al., 2011; Hsieh et al., 2008; Boetal., 2009; Teo et al., 2010) with an impressive
scalability and able to train with millions of examples in atter of minutes on standard PCs. Recently, linear
SVM algorithms have been employed for nonlinear classifioaty explicitly expressing the feature space as
a set of attributes and training a linear SVM on the transéatata set (Rahimi and Rahimi, 2007; Sonnen-
burg and Franc, 2010; Yu et al., 2010). However, this typeppfa@aches is only applicable with special types
of kernels (e.g., the low degree polynomial kernels, stkieignels or shift invariant kernels) or on very sparse
or low dimensional data sets. More recently, Zhang et allZ2@roposed a low-rank linearization approach
that is general to any PSD kernel. The proposed algorithmMM $ransforms a non-linear SVM to a linear
one via an approximate empirical kernel map computed fromrbnk approximation of kernel matrices.
Taking an advantage of the fast training of linear classfig¥ang et al. (2011) proposed to use multiple
linear classifiers to capture non-linear concepts. A comproperty of the above linear-classifier-based al-
gorithms is that they usually have low space footprint aredimitially designed for offline learning but can
also be easily converted to online algorithms by acceptistight decrease in accuracy. Recent research
in training large-scale SVM with the popular Gaussian kefoeuses on parallelizing training on multiple
cores or machines. Either optimal (e.g., Graf et al., 2008pproximate (e.g., Zhu et al., 2009) solutions
can be obtained by this type of methods. Other attemptsdedscale kernel SVM learning include a method
that modifies the SVM loss function (Collobert et al., 20Q@gprocessing methods such as pre-clustering
and training on the high-quality summarized data (Li et2007), and a method (Chang et al., 2010a) that
decomposes data space and trains multiple SVMs on the desaahpegions.

2.2 Algorithmsfor SYM Model Reduction

SVM classifier can be thought of as composed of a subset africpexamples known as SVs, whose number
typically grows linearly with the number of training exaraplon noisy data (Steinwart, 2003). Bounding
the space complexity of SVM classifiers has been an activearel since the early days of SVM. SVM
reduced set methods (Burges, 1996;&@kbpf et al., 1999) start by training a standard SVM on thexptete
data and then find a sparse approximation by minimizing Beaal distance between the original and the
approximated SVM. A limitation of reduced set methods i tihe@y require training a full-scale SVM,
which can be computationally infeasible on large data. Aeptine of work (Lee and Mangasarian, 2001,
Wu et al., 2005; Dekel and Singer, 2006) is to directly traiaduced classifier from scratch by reformulating
the optimization problem. The basic idea is to train SVM witinimal risk on the complete data under a
constraint that the model weights are spanned by a small eunfiexamples. A similar method to build
reduced SVM classifier based on forward selection was pezpby Keerthi et al. (2006). This method
proceeds in an iterative fashion that greedily selects ameie to be added to the model so that the risk on
the complete data is decreased the most. Although SVM riesluctethods can generate a classifier with a
fixed size, they require multiple passes over training dasassuch, they can be infeasible for online learning.

2.3 Online Algorithmsfor SVM

Online SVM algorithms were proposed to incrementally updhe model weights upon receiving a single
example. IDSVM (Cauwenberghs and Poggio, 2000) mainthie®ptimal SVM solution on all previously
seen examples throughout the whole training process by usairix manipulation to incrementally update
the KKT conditions. The high computational cost due to theirgeto guarantee an optimum makes it less
practical for large-scale learning. As an alternative, MAMB(Bordes et al., 2005) was proposed to trade the
optimality with scalability by using an SMO like proceduieitcrementally update the model. However,
LASVM still does not bound the number of SVs and a potentidingited growth in their number limits its
use for truly large learning tasks. Both IDSVM and LASVM s®I8VM optimization by casting it as a QP
problem and working on the KKT conditions.

Gradient-based methods are an appealing alternative tQRhkased methods for SVM training. SGD
for SVM training was first studied by Kivinen et al. (2002), ek SVM training is cast as an unconstrained
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problem and model weights are updated through gradienntleser an instantaneous objective function.
Pegasos (Shalev-Shwartz et al., 2011) is an improved stictgradient method, by employing a more
aggressively decreasing learning rate and projectiomatite nature of stochastic gradient makes it suitable
for online SVM training. In practice, it is often run in epagtby scanning the data several times to achieve a
convergence to the optimal solution. Recently, Bordes.€28D9) explored the use of 2nd order information
to calculate the gradient in the SGD algorithms. Although$iGD-based methods show impressive training
speed for linear SVMs, when equipped with kernel functidhney suffer from the curse of kernelization.

TVM (Wang and Vucetic, 2010b) is a recently proposed budfetaine SVM algorithm which has
constant update time and constant space. The basic ideaMfigV¥o upper bound the number of SVs
during the whole learning process. Examples kept in memealjed prototypes) are used both as SVs and as
summaries of local data distribution. This has been acHibyepositioning the prototypes near the decision
boundary, which is the most informative region of the inppeise. An optimal SVM solution is guaranteed
over the set of prototypes at any time. Upon removal or asiditif a prototype, IDSVM is employed to
update its model.

2.4 Budgeted Quasi-additive Online Algorithms

The Perceptron (Rosenblatt, 1958) is a well-known onlimo@thm which is updated by simply adding
misclassified examples to the model weights. Perceptrambelto a wider class of quasi-additive online
algorithms that updates a model in a greedy manner by usilyglumlast observed example. Popular recent
members of this family of algorithms include ALMA (Gentit2001), ROMMA (Li and Long, 2002), MIRA
(Crammer and Singer, 2003), PA (Crammer et al., 2006), ILKgi@) et al., 2007), the SGD based algorithms
(Kivinen et al., 2002; Zhang, 2004; Shalev-Shwartz et 81,13, and the Greedy Projection algorithm (Zinke-
vich, 2003). These algorithms are straightforwardly kéree. To prevent the curse of kernelization, several
budget maintenance strategies for the kernel perceptrom li@en proposed in recent work. The common
property of the methods summarized below is that the numib®¥e (the budget) is fixed to a pre-specified
value.

Stoptronis a truncated version of kernel perceptron that terminatesn number of SVs reaches budget
B. This simple algorithm is useful for benchmarking (Orabenal., 2009).

Budget PerceptrofiCrammer et al., 2004) removes the SV that would be predictecectly and with
the largest confidence after its removal. While this algamifserforms well on relatively noise-free data it is
less successful on noisy data. This is because in the nagytbs algorithm tends to remove well-classified
points and accumulate noisy examples, resulting in a gtathgeadation of accuracy.

Random Perceptroamploys a simple removal procedure that removes a randoé&3yite its simplic-
ity, this algorithm often has satisfactory performance asdonvergence has been proven under some mild
assumptions (Cesa-Bianchi and Gentile, 2006).

Forgetronremoves the oldest SV. The intuition is that the oldest SV wasited when the quality of
perceptron was the lowest and that its removal would be tast leurtful. Under some mild assumptions,
convergence of the algorithm has also been proven (Dekél @088). It is worth mentioning that a unified
analysis of the convergence of Random Perceptron and Fongehder the framework of online convex
programming was studied by Sutskever (2009) after slightbglifying the two original algorithms.

Tighter Perceptron The budget maintenance strategy proposed by Weston etC8l5) is to evaluate
accuracy on validation data when deciding which SV to rem@peecifically, the SV whose removal would
have the least validation error is selected for removalirRtte perspective of accuracy estimation, it is ideal
that the validation set consists of all observed examplegeSt can be too costly, a subset of examples can
be used for validation. In the extreme, only SVs from the nhatight be used, but the drawback is that the
SVs are not representative of the underlying distributiat tould lead to misleading accuracy estimation.

Tightest Perceptroiis a modification of Tighter Perceptron that improves how $heset is used both
for model representation and for estimation (Wang and \oc2009). In particular, instead of using the
actual labels of SVs, the Tightest learns distribution bEla in the neighborhood of each SV and uses this
information for improved accuracy estimation.
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Algorithms Budget maintenance Update time Space
BPAuN projection O(B) O(B)
BSGD+removal removal O(B) O(B)
BSGD+ project  projection 0O(B?) O(B?)
BSGD+ merge  merging O(B) O(B)
Budget removal O(B) O(B)
Forgetron removal O(B) O(B)
Projectront-+  projection 0O(B?) O(B?)
Random removal O(B) O(B)
SILK removal O(B) O(B)
Stoptron stop 0o(1) O(B)
Tighter removal O(B?) O(B)
Tightest removal 0O(B?) O(B)
TVM merging O(B?) O(B?)

Table 1: Comparison of different budgeted online algordhBis a pre-specified budget equal to the number
of SVs; Update time includes both model update time and Hutgéntenance time; Space corre-
sponds to space needed to store the model and perform matitbelgnd budget maintenance.)

Projectron maintains a sparse representation by occasionally piojeein SV onto remaining SVs
(Orabona et al., 2009). The projection is designed to mirénthe model weight degradation caused by
removal of an SV, which requires updating the weights of #maaining SVs. Instead of enforcing a fixed
budget, the original algorithm adaptively increases ioading to a pre-defined sparsity parameter. It can be
easily converted to the budgeted version by projecting viherbudget is exceeded.

SILK discards the example with the lowest absolute coefficidntvance the budget is exceeded (Cheng
et al., 2007).

BPA Unlike the previously described algorithms that perfornnddpeet maintenance only after the model
is updated, Wang and Vucetic (2010a) proposed a BudgetadeoRhssive-Aggressive (BPA) algorithm
that does budget maintenance and model updating jointlyntrgducing an additional constraint into the
original Passive-Aggressive (PA) (Crammer et al., 200énapation problem. The constraint enforces that
the removed SV is projected onto the space spanned by theniagm&Vs. The optimization leads to a
closed-form solution.

The properties of budgeted online algorithms describedigndubsection as well as and the BSGD algo-
rithms presented in following sections are summarized bi€la. It is worth noting that although (budgeted)
online algorithms are typically trained by a single passuigh training data, they are also able to perform
multiple passes that can lead to improved accuracy.

3. Budgeted Stochastic Gradient Descent (BSGD) for SVMs

In this section, we describe an algorithmic framework of BESGr SVM training.

3.1 Stochastic Gradient Descent (SGD) for SVMs

Consider a binary classification problem with a sequencealoéled exampleS = {(x;,yi),i = 1,...,N},
where instance; € RY is ad-dimensional input vector ang € {+1, —1} is the label. Training an SVM
classifief f(x) =w'x usingS, wherew is a vector of weights associated with each input, is fortedas

2. We study the case where the bias term is set to zero.
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Algorithms A Nt
Pegasos >0 1/(At)
Norma >0 n/vt

Margin Perceptron 0 n

Table 2: A summary of three SGD algorithnmrgié a constant.)

solving the following optimization problem

minP(w) = w2+ & 31 1 (x), )

wherel (w; (x;,Y;)) = max0,1—y,w"x;) is thehinge lossfunction and\ > 0 is a regularization parameter
used to control model complexity.

SGD works iteratively. It starts with an initial guess of tinedel weightw;, and att-th round it updates
the current weightv; as

Wi g < W — Nl 2

wherel; = Ow, R (W) is the (sub)gradient of thastantaneous losginction R (w) defined only on the latest
example,

A(W) = 5 w241 (w3 (x, ), ©

atw;, andn; > 0 is a learning rate. Thus, (2) can be rewritten as
Wi = (1= Ano)w + Bext, (4)

where

Neye,  if yewd X < 1
B {0, otherwise

Several learning algorithms are based on (or can be viewe8@P for SVM. In Table 2, Pegasos
(Shalev-Shwartz et al., 2011), Norma (Kivinen et al., 20@2y Margin Perceptrdr(Duda and Hart, 1973)
are viewed as the SGD algorithms. They share the same updatéy, but have different scheduling of
learning rate. In addition, Margin Perceptron differs hessait does not contain the regularization term in

3).

3.2 Kerndlization

SGD for SVM can be used to solve non-linear problems when auedbwith Mercer kernels. After intro-
ducing a nonlinear functio® that maps< from the input to the feature space and replacinvgth ®(x), w;
can be described as

t
W'[ = Zj:]_ujqj(xj)a
where

aj =B (1—nkA). (5)

3. In this paper we study the Pegasos algorithm without thiemg projecting step (Shalev-Shwartz et al., 2011). Wasth to note
that we can both cases (with or without the optional profecttep) allow similar analysis. We focus on this versioneintias
closer connection to the other two algorithms we study.

4. Margin Perceptron is a robust variant of the classicalgmtron (Rosenblatt, 1958), by changing the update @itdromyw”x < 0
toyw' x < 1.
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Algorithm 1 BSGD
1: Input: dataS, kernelk, regularization parametar, budgetB;
2: Initialize: b=0,w;1 = 0;
3: fori=t,2,...do

4:  receive(x,%t);

5: Wiy < (1— r]t)\)wt

6: if I(wy; (%, Wt)) > Othen

7 Wit ¢ W1 + P(X)Br; // add an SV
8: b+ b+1,;

9: if b> Bthen

10: Wii1 < Werg — 4 // budget maintenance
11: b+b-1,

12: end if

13:  endif

14: end for

15: Output: fi11(X)

From (5), it can be seen that an examf{g y;) whose hinge loss was zero at titnbas zero value afi and
can therefore be ignored. Examples with nonzero vadua® called the Support Vectors (SVs). We can now
representf;(x) as the kernel expansion

) =W ®0) = 3, ok(x).x).

wherek is the Mercer kernel induced bl andl; is the set of indexes of all SVs im;. Rather than explicitly
calculatingw by using®(x), that might be infinite-dimensional, it is more efficient fve SVs to implicitly
representv and to use kernel functiokwhen calculating predictiow” ®(x). This is known as th&ernel

trick. Therefore, an SVM classifier is completely described blegita weight vectow or by an SV set
{(ai,%i),i € It}. From now on, depending on the convenience of presentatierwill use either thew

notation or thex notation interchangeably.

3.3 Budgeted SGD (BSGD)

To maintain a fixed number of SVs, BSGD executes a budget erante step whenever the number of SVs
exceeds a pre-defined buddgti.e., |l;+1| > B). It reduces the size df,; by one, such thatv 1 is only
spanned by SVs. This results in degradation of the SVM classifier. Wesené a generic BSGD algorithm
for SVM in Algorithm 1. Here, we denote ki the weight degradation caused by budget maintenartethat
round, which is definetias the difference between model weights before and afteydtumdaintenance (Line
10 of Algorithm 1). We note that all budget maintenance sgigts mentioned in Section 2.4, except BPA,
can be represented as Line 10 of Algorithm 1.

Budget maintenance is a critical design issue. We desceberal budget maintenance strategies for
BSGD in Section 6. In the next section, we motivate differgraitegies by studying in the next section how
budget maintenance influences the performance of SGD.

4. Impact of Budget Maintenance on SGD

This section provides an insight into the impact of budgenteaance on SGD. In the following, we quantify
the optimization error introduced by budget maintenancéhoge known SGD algorithms. Without loss of
generality, we assumeb(x)|| < 1.

5. The formal definition for different strategies is preseriteAlgorithm 2.
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First, we analyze Budgeted Pegasos (BPegasos), a BSGitlalgaising the Pegasos style learning rate
from Table 2.
Theorem 1 Let us consider BPegasos (Algorithm 1 using the Pegasosilearate, see Table 2) running on a
sequence of examples S. l&tbe the optimal solution of Problem (1). Define the gradiemeE; = A /n;
and assum¢E;|| < 1. Define the average gradient error &= SN , ||E||/N. Let

C[2/A, ifA<a4
U= {1/ﬁ, otherwise ©

Then, the following inequality holds,

1N 1l o (AU+2)2(In(N) +1) —
NtZ\Pt(Wt)_ N;H(W ) < AN +2UE. )

|
The proof is in Appendix A. Remarks on Theorem 1:

¢ In Theorem 1 we quantify how budget maintenance impactsuhétyg of SGD optimization. Observe
that asN grows, the first term in the right side of inequalities (7) wenges to zero. Therefore, the
averaged instantaneous loss of BSGD converges toward #ragad instantaneous loss of optimal
solutionw*, and the gap between these two is upper bounded by the adegeagient erroE. The
results suggest that an optimal budget maintenance shdtédhat to minimizé=. To minimizeE in
the setting of online learning, we propose a greedy prooetht minimize$/E;|| at each round.

e The assumption|E;|| < 1 is not restrictive. Let us assume tlemovalbased budget maintenance
method, where, at rourtd SV with indext is removed. Then, the weight degradatiofis= oy ®(xy ),
wheret’ is the index of any SV in the budget. By using (5) it can be skanl || is not larger than 1,

t
=Mt {nv _ (1—01?\)}
j=t'+1

_ U G o A S o N
—M{nt’ T+l t+2 " t=1" t }_1'

Since our proposed budget maintenance strategy is to nzeajii|| at each round|E;|| < 1 holds.

2%

t

|[Ee|| <

Next, we show a similar theorem for Budgeted Norma (BNorraéBSGD algorithm using the Norma
style update rule from Table 1.
Theorem 2 Let us consider BNorma (Algorithm 1 using the Norma learmatg from Table 2) running on a
sequence of examples S. étbe the optimal solution of Problem (1). Assufiig|| < 1. Let U be defined
as in (6). Then, the following inequality holds,

N N 2 2 _
nlltZPt(W”‘ﬁ RW) < (U /n+n(IGU +2) )m+2u5. ®)

|

The proof is in Appendix B. The remarks on Theorem 1 also hfdd Theorem 2.

Next, we show the result for Budgeted Margin Perceptron (BMRe update rule of Margin Perceptron
(MP) summarized in Table 2 does not bound growth of the waigbtor. We add a projection step to MP after
the SGD update to guarantee an upper bound on the norm of igatwector’ More specifically, the new
update rule isv, 1 < [c(w; — 0;) = @ (w; — O;) whereC is the closed convex set with radidsand[]c(u)

6. The assumption||E;|| < 1 holds when budget maintenance is achieved by removing thelestedV, that is,t’ =
argminer, , ||ajP(x;)]| .

7. The projection step (Zinkevich, 2003; Shalev-Shwartd 8mger, 2007; Sutskever, 2009) is a widely used technipataiion
needed for the convergence analysis.
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defines the closest point toin C. We can replace the projection operator wgth= min{1,U /||w; — ;]| }. It

is worth to note that, although the MP with the projectiorpstelves an un-regularized SVM problem (i.e.,
A =01in (1)), the projection to a ball with radilss does introduce the regularization by enforcing the weight
with bounded norntJ. The vectoiU should be treated as a hyper-parameter and smallielues enforce
simpler models.

After this modification, the resulting BMP algorithm can besdribed with Algorithm 1, where an ad-
ditional projection stepv,  ; < [c(W,,) is added at the end of each iteration (after Line 12 of Algonit
1).

Theorem 3 Let C be a closed convex set with a pre-specified radius U. M BAlgorithm 1 using the
PMP learning rate from Table 2 and the projection step) runeosequence of examples S. [et’|| be the

optimal solution to Problem (1) with = 0 and subject to the constraifitv*|| <U. Assume|E;|| <1 Then,

the following inequality holds,

1N 1N i
PR

The proof is in Appendix C. The remarks on Theorem 1 also hmidheorem 3.

202 —

5. BSGD for Multi-Class SVM

Algorithm 1 can be extended to the multi-class setting. Ia slection we show that the resulting multi-class
BSGD inherits the same algorithmic structure and theakfimperties of its binary counterpart.

Consider a sequence of examp®&s: {(x;,yi),i = 1,...,N}, where instance; € R is ad-dimensional
input vector and the multi-class labglbelongs to the setf = {1,...,c}. We consider the multi-class SVM
formulation by Crammer and Singer (2001). Let us define thitirolass modelf™ (x) as

fM(x) = argmax f ¥ (x)} = argmax (w®)Tx},
ey ey

wheref () is thei-th class-specific predictor amd’) is its corresponding weight vector. By adding all class-
specific weight vectors, we construst = [w(...w(®)] as thed x ¢ weight matrix of fM(x). The predicted
label ofx is the class of the weight vector that achieves the maximaévav())Tx . Given this setup, training

a multi-class SVM or8 consists of solving the optimization problem

. A 1N

M 2 M .
minPM (W) = ZIWIP+ 5 5 1M OW: (xe), (10)
where the binary hinge loss is replaced with thelti-classhinge loss defined as

IM(W; (xe %)) = max(0, 1+ £ (%) — £ (x,)), a1

wherer; = arg maxey,-y, f(‘)(xt), and the norm of the weight matri%/ is

W2 = oy [0 2.
The subgradient matriix; of the multi-class instantaneous loss function,

P (W) = 5 W24 1M (W . y0).

atW; is defined agl = [Dt(l)... Dt@}, WhereDt(i> = 0, PM(W) is a column vector. If loss (11) is equal to
zero therd{" = aw{". If loss (11) is above zero, then

, g —x, if i =y
0 = w4, ifi=re
A, otherwise
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Thus, the update rule for the multi-class SVM becomes
Wipa ¢ Wy —nely = (1—ned)We +xeBr,

(©

wheref; is a row vectorf; = [Bt(l)...ﬁt ]. If loss (11) is equal to zero, theh = 0; otherwise,

_ N, ifi=wn
B ={ —n, ifi=n
0, otherwise

When used in conjunction with kerntwp) can be described as
, ; :
wl = zjzla?)d)(xj),
where
al =gt [T @-n).
k=j+1
The budget maintenance step can be achieved as
(i) (i) (i)

1 Wi — 47,

Wi W =B = w +1

t+

wherep;, = [At(l) t(°>] and the column vectorAt(i) are the coefficients for thieth class-specific weight,

such thaiwt(ﬁ1 is spanned only b SVs.

Algorithm 1 can be applied to the multi-class version afaplacing scala; with vector 3, vectorw;
with matrix Wy and vecto); with matrix 4.

The analysis of the gap between BSGD and SGD optimizatiothiamulti-class version is similar to
that provided for its binary version, presented in Sectiotf we assume|®(x)||? < 0.5, then the resulting
multi-class counterparts of Theorems 1, 2, and 3 becoméi@déto their binary variants by simply replacing
the text Problem (1) with Problem (10).

6. Budget Maintenance Strategies

The analysis in Sections 4 and 5 indicates that budget nmginte should attempt to minimize the averaged
gradient errorE. To minimize E in the setting of online learning, we propose a greedy proeedthat
minimizes the gradient errdtE;|| at each round. From the definition PE;|| in Theorem 1, minimizing
||Et|| is equivalent to minimizing the weight degradatidfy ||,

min||A 2. (12)

In the following, we address Problem (12) through three letidgaintenance strategies: removing, pro-
jecting and merging of SV(s). We discuss our solutions utlteemulti-class setting, and consider the binary
setting as a special case. Three styles of budget maintengadate rules are summarized in Algorithm 2 and
discussed in more detail in the following three subsections
6.1 Budget Maintenance through Removal
If budget maintenance removes th¢h SV, then

Ap = B(xp)ap,
where the row vectoo, = [a(pl)...a(pc)] contains thec class-specific coefficients gith SV. The optimal
solution of (12) is removal of SV with the smallest norm,

p = arg min||a;||?k(xj,X;).
jElt41
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Algorithm 2 Budget maintenance
Removal:
1. select some;
2. = P(xp)ap;

Projection:
1. select some;
2. =®(xp)ap— ¥ CD(XJ')AG]';
j€lira—p
Merging
1. select somenandn;
2. A =DP(Xm) 0y + P(Xn) 0, — D(2)0,;

Let us consider the class of translation invariant kernéidenak(x,x’) = k(x —x’), which encompasses the
Gaussian kernel. Let us assume, without loss of gener#iiagk(x,x) = 1. In this case, the best SV to
remove is the one with the smallggi||. Note:

¢ In BPegasos with SV removal with Gaussian kerfj&,|| = 1. Thus, from the perspective of (12), all
removal strategies are equivalent.

e In BNorma, the SV with the smallest norm depends on the spedifdice ofA andn parameters.
Therefore, the decision of which SV to remove should be madieg runtime. It is worth noting that
removal of the smallest SV was the strategy used by Kivineal.¢2002) and Cheng et al. (2007) to
truncate model weight for Norma.

e InBMP, [|ap|[?k(Xp,Xp) = (N |‘|}:p+1(n)2k(xp,xp), because of the projection operation. Knowing that
@ < 1 the optimal removal will select the oldest SV. We note tlehoval of the oldest SV is the
strategy used in Forgetron (Dekel et al., 2008).

Let us now briefly discuss other kernels, wh&(g, x) in general depends on In this case, the SV with
the smallest norm needs to be found at runtime. How much opcadational overhead this would produce
depends on the particular algorithm. In case of BPegasswbuld entail finding SV with the smallest
k(Xp,Xp) , While in case of Norma and BMP, it would be SV with the smal|és,||2k(xp, Xp) value.

6.2 Budget Maintenance through Projection

Let us consider budget maintenance through projectionhindase, before thp-th SV is removed from
the model, it is projected to the remaining SVs to minimize teight degradation. By considering the
multi-class case, projection can be defined as the solufitiredollowing optimization problem,

minz
Ao &

whereAaEi) are coefficients of the projected SV to each of the remainig,. \fter setting the gradient of

(13) with respect to the class-specific column vector offitiehtsAa(!) to zero, one can obtain the optimal
solution as

2

apoxp)— Y Aafor)| (13)

j€ht1—p

vi e Y, a0l = af K ko, (14)

whereK p = [kij], Vi, ] € l11 — p is the kernel matrixki; = k(xj,x;), andk, = [kpj]T,Vj € lgy1— pis the
column vector. It should be observed that invertiigcan be accomplished @(B?) time if Woodbury for-
mula (Cauwenberghs and Poggio, 2000) is applied to reusesiés of inversion from previous projections.
Finally, upon removal of th@-th SV, Aa is added tax of the remaining SVs.
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The remaining issue is finding the best amddg 1 candidate SVs for projection. After plugging (14)
into (13) we can observe that the minimal weight degradasfqrojecting equals

min [&]|? = min {[otpl [ (kpp — k5 (K kp)) - (15)

Considering there arB + 1 SVs, evaluation of (15) require3(B®) time for each budget maintenance step.
As an efficient approximation, we propose a simplified solutihat always projects the smallest 34
argminer,., ||otj]|2k(X;j,X;). Then, the computation is reduced@9B?). We should also note that the space
requirement of projection i©(B?), which is needed to store the kernel matrix and its inverselikel the
recently proposed projection method for multi-class petros (Orabona et al., 2009), that projects an SV
only onto the SVs assigned to the same class, our methodssalwere general case by projecting an SV
onto all the remaining SVs, thus resulting in smaller weidggradation.

It should be observed that, by selecting the smallest SV égegt, it can be guaranteed that weight
degradation of projection is upper bounded by weight degjrad of removal for any, for all three BSGD
variants from Table 1. Therefore, Theorems 1, 2, and 3 rexadid for projection. Since weight degradation
for projection is expected to be, on average, smaller thairfthn removal, it is expected that the average error
E would be smaller too, thus resulting in smaller gap in theaye instantaneous loss .

6.3 Budget Maintenancethrough Merging

Problem (12) can also be solved by merging two SVs to a nevélgted one. The justification is as follows.
For thei-th class weight, ifb(xm) and®(x,) are replaced by

MO = (afl D(xn) + o Dlxn) ) /(o + 0,

(assumlnguﬁn +0(n #+ 0) and the coefficient df1() is set toaﬁn) + aﬁ]), then the weight remains unchanged.
The difficulty is thatM() cannot be used directly because the pre-imagd ©f may not exist. Moreover,
even if the pre-images existed, since every class resuttifarentM (), it is not clear whai would be the
best overall choice. To resolve these issues, we define tlgimggoroblem as finding an input space vector
z whose imageb(z) is at the minimum distance from the class-spediid’s,

; [ 2
miny ., MY - o()|[2 (16)
Let us assume a radial kerrfek(x,x') = k(||x —x/||2), is used. Problem (16) can then be reduced to
maxy’ (MINHTo(2). 17)
Setting the gradient of (17) with respectato zero, leads to solution

SR (=2
Siev (MUK ([l —2]2) + (1= MR (52 2)
(M)

wherem® = al) /(al) + o), andK (x) is the first derivative ok. (18) indicates that lies on the line
connectingky andxp. Plugging (18) into (17), the merging problem is simplifiedihding

z=hxm+ (1—h)xy,whereh =

(18)

maxz( (m(i)kl—h(xmvxn) +(1- m(‘))kh(xm,xn)),
i€

where we denotekh(x,x’) = k(hx, hx’). We can use any efficient line search method (e.g., the gokhmcls)

to find the optimal h, which take®(log(1/¢€))time, wheree is the accuracy of the solution. After that, the
optimalz can be calculated using (18).

8. Gaussian kerndd(x,x') = exp(—a]||x — X' ||?)is a radial kernel.
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After obtaining the optimal solutior the optimal coe1‘ficiemx§i> for approximatingxmdn(xm) +aﬂ)¢(xn)

by ag)tb(z) is obtained by minimizing the following objective function

||A¢|[? = min
(i) ;
ay’ i€

The optimal solution of (19) is

(i) (i) (i) 2
‘am D(Xm) +an’ D(Xn) — 0z CD(Z)H . (29)

af) = afik(xm2) + afl k(v 2).

The remaining question is what pair of SVs leads to the sistalleight degradation. The optimal solution
can be found by evaluating merging of &(B — 1)/2 pairs of SVs, which would requir®(B?) time. To
reduce the computational cost, we use the same simplificasdn projection (Section 6.2), by fixing as
the SV with the smallest value ¢ifxy||2. Thus, the computation is reduced®gB). We should observe that
the space requirement is or§(B) because there is no need to store the kernel matrix.

It should be observed that, by selecting the smallest SV tgeét can be guaranteed that weight degra-
dation of merging is upper bounded by weight degradatiorwfaval for anyt, for all three BSGD variants
from Table 1. Therefore, Theorems 1, 2, and 3 remain validrferging. Using the same argument as for
projection,E is expected to be smaller than that of removal.

6.4 Relationship between Budget and Weight Degradation

When budget maintenance is achieved by projection and nigrifiere is an additional impact of budget size
onE. As budget siz& grows, the density of SVs is expected to grow. As a resultwibight degradation of
projection and merging is expected to decrease, thus lgadidecrease i&. The specific amount depends
on the specific data set and specific kernel. We evaluate ghadnofB on E experimentally in Table 6 .

7. Experiments

In this section, we evaluate BSGRnd compare it to related algorithms on 14 benchmark daga set

7.1 Experimental Setting

We first describe the data sets and the evaluated algorithms.

7.2 Data Sets

The properties (training size, dimensionality, numbera$ses) of 14 benchmark data $étre summarized

in the first row of Tables 3, 4 and 5. Gauss data was generai@dagure of 2 two-dimensional Gaussians:
one class is fronN((0,0),1) and another is fronN((2,0),4l). Checkerboard data was generated as a uni-
formly distributed two-dimensional 4 4 checkerboard with alternating class assignments. Ateibin all
data sets were scaled to mean 0 and standard deviation 1.

7.3 Algorithms

We evaluated several budget maintenance strategies foDBSgbrithms BPegasos, BNorma, and BMP.
Specifically, we explored the following budgeted onlinecsithms:

e BPegasos+remove: multi-class BPegasos with arbitrarye®ovaltl

9. Our implementation of BSDG algorithms is availablevatv.dabi.temple.edu/  ~vucetic/BSGD.html
10. Adult, Covertype, DNA, IJCNN, Letter, Satimage, Shutlad USPS are available atww.csie.ntu.edu.tw/ ~cjlin/
libsvmtools/datasets/ , Banana is available éda.first.fhg.de/projects/bench/benchmarks.htm , and Waveform data
generator and Pendigits are availablarahive.ics.uci.edu/ml/datasets.html
11. Arbitrary removal is equivalent to removing the smallest,@s discussed in Sectlon 6.1.
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e BPegasos+project: multi-class BPegasos with projectisgheosmallest SV,
e BPegasos+merge: multi-class BPegasos with merging oftladiesst SV,

e BNorma+merge: multi-class BNorma with merging of the sestlISV;

e BMP-+merge: multi-class BPMP with merging of the smallest SV

These algorithms were compared to the following offlinejranland budgeted online algorithms:
Offline algorithms:

e LIBSVM: state-of-art offline SVM solver (Chang and Lin, 200%e used the 1 vs rest method as the
default setting for the multi-class tasks.

Online algorithms:

e IDSVM: online SVM algorithm which achieves the optimal sidin (Cauwenberghs and Poggio,
2000);

e Pegasos: non-budgeted kernelized Pegasos (Shalev-3lvatt, 2011);
e Norma: non-budgeted stochastic gradient descent for kWi (Kivinen et al., 2002);

e MP: non-budgeted margin perceptron algorithm (Duda and, H873) equipped with a kernel func-
tion.

Budgeted online algorithms:
e TVM: SVM-based budgeted online algorithm (Wang and Vuget@10b);

e BPA: budgeted Passive-Aggressive algorithm that usesrtijeqtion of an SV to its nearest neighbor
to maintain the budget (tH8PAyn version in Wang and Vucetic, 2010a);

e MP+stop: margin perceptron algorithm that stops trainimgwthe budget is exceeded;
e MP+random: margin perceptron algorithm that removes aaan8V when the budget is exceeded;

e Projectron++: margin perceptron that projects an SV ortlyefweight degradation is below the thresh-
old; otherwise, budget is increased by one SV (Orabona,e2@09). In our experiments, we set the
Projectron++ threshold such that the number of SVs ed®ialsthe budgeted algorithms at the end of
training.

Gaussian kernel was used in all experiments. For Norma arafB&l the learning rate parametgwas
set either to 1 (as used by Kivinen et al., 2002) or &®+ 0.5N~9°)%5 (as used by Shalev-Shwartz et al.,
2011), whichever resulted in higher cross-validation aacy The hyper-parameters (kernel widthA for
Pegasos and Norm#, for BMP, C for LIBSVM, IDSVM, TVM) were selected by 10 fold cross-vahtion
for each combination of data, algorithm, and budget. Weatsgukall the experiments five times, where at
each run the training examples were shuffled differentlyaMand standard deviation of the accuracies of
each set of experiments are reported. For Adult, DNA, IJCN&#tter, Pendigit, Satimage, Shuttle and USPS
data, we used the common training-test split. For other skiis, we randomly selected a fixed number of
examples as the test data in each repetition. We trainedkileo(budgeted and non-budgeted) algorithms
using a single pass over the training data. All experimemsewun on a 3G RAM, 3.2 GHz Pentium Dual
Core. Our proposed algorithms were implemented in MATLAB.

7.4 Experimental Results

The accuracy of different algorithms on test data is reporélable 3, 4 and %2

12. For IDSVM, TVM and BPA, only results on the binary datassete reported since only binary classification versiondhe$e¢
algorithms are available.
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Algorithms/Data Banana Gauss Adult IJCNN Checkerb
(4.3K,2,2) (10K,2,2) (21K,123,2) (50K,21,2) (10M,2,2)
Offline
LIBSVM Acc 90.70+0.06 81.62-0.40 84.29-0.0 98.72£0.10 99.8%0.02
(#SVs) (1.1K) (4.0K) (8.5K) (4.9K) (26K100k)
Online(one pass)
IDSVM 90.65+0.04 81.620.40 83.930.03 98.53%+0.03 99.4&0.02
(1.1K) (4.0K) (40Kg 3x) (3.6K33«) (7.5Ks51k)
Pegasos 90.480.78 81.540.25 84.020.14 98.76:0.09 99.350.04
(1.7K) (6.4K) (9K) (16K) (41Kg1&x)
Norma 90.231.04 81.54-0.06 83.650.11 93.4%#0.15 99.32-0.09
(2.1K) (5.2K) (10K) (33K) (12&73)
MP 89.40t0.57 78.4%2.18 82.61%+0.61 98.61+0.10 99.430.11
(1K) (3.4K) (8K) (11K) (2XKiwm)
Budgeted(one pass)
1-stline: B=100:
2-nd line: B=500:
TVM 90.03+0.96 81.56+0.16 82.7A0.00 97.20+0.19 98.90+0.09
91.13+0.68 81.39+050 83.82+0.04 98.32+0.14 99.94+0.03
BPA 90.35t0.37 80.7%0.24 83.380.56 93.0%-0.53 99.0%0.04
91.30+1.18 81.67+0.42 83.58+0.30 96.20+0.35 99.7@-0.01
Projection++ 88.3%:1.52 76.06:2.25 77.86:3.45 92.36:1.15 96.92-0.45
86.76+1.27 75.1244.02 79.8&2.11 94.731.95 98.24-0.34
MP+stop 88.0#1.38 74.18-3.00 80.0&-1.61 91.13-0.18 86.3%1.12
89.7A40.25 79.6&1.19 81.680.90 94.6&0.96 95.43-0.43
MP+random 87.541.33 75.6&3.68 79.7&0.88 90.221.69 84.24-1.39

88.36:0.99 77.26:1.16 80.4@:1.03 91.861.39 93.120.56

BPegasos+remove 854632.25 79.131.40 78.84-:0.76 90.730.31 83.02-2.12
89.92+0.66 80.7@:0.61 81.6740.44 93.3&0.57 91.820.22
BPegasos+project 90.21+1.61 81.25+0.34 83.88:0.33 96.480.44 97.220.72
90.40+0.47 81.33+0.40 83.84+0.07 97.52t0.62 98.080.27
BPegasos+merge 9040.61 81.22+040 8455+0.17 97.274+0.72 99.55+0.12
89.46+0.81 81.34+0.38 83.93+0.41 98.08+0.27 99.83+0.08
BNorma+merge 91.53+1.14 81.27+0.37 84.114-0.25 92.6%0.19 99.16:0.23
90.65+1.28 81.37+0.25 83.80+0.21 91.35t0.13 99.720.05
BMP+merge 89.371.31 79.5240.90 83.34-0.36 96.67+0.35 98.24+-0.13
89.46+0.50 79.380.82 82.9740.26 98.10+0.41 98.79+0.08

Table 3: Comparison of offline, online, and budgeted onligerthms on 5 benchmark binary classification
data sets. Online algorithms (IDSVM, Pegasos, Norma and Wi?§ early stopped after 10,000
seconds and the number of examples being learned at the tithe early stopping was recorded
and shown in the subscript within the #SV parenthesis. LIBISVas trained on a subset of 100K
examples on Checkerboard, Covertype and Waveform due tpwational issues. Among the
budgeted online algorithms, for each combination of dateard budget, the best accuracy is in
bold, while the accuracies that were not significantly wdrséth p > 0.05 using the one-sided
t-test) are in bold and italic.

7.5 Comparison of Non-budgeted Algorithms

On the non-budgeted algorithm side, as expected, the exédt®lvers LIBSVM and IDSVM have the
highest accuracy and are followed by Pegasos, MP and Noidgajthms trained by a single pass of the
training data. The dual-form based LIBSVM and IDSVM haverspamodels than the primal-form based
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Algorithms/Data DNA Satimage USPS Pen Letter
(4.3K,180,3) (4.4K,36,6) (7.3K,256,10) (7.5K,16,10) K46, 26)
Offline
LIBSVM 95.32+0.00  91.55-0.00 95.27-0.00 98.23-0.00 97.62-0.00
(1.3K) (2.5K) (1.9K) (0.8K) (8.1K)
Online(one pass)
Pegasos 92.870.81  91.29-0.15 94.410.11 97.86:0.27 96.28-0.15
(0.7K) (2.9K) (4.9K) (1.4K) (8.2K)
Norma 86.1530.67  90.280.35 93.4@-0.33 95.86-0.27 95.210.09
(2.0K) (4.4K) (6.6K) (7.0K) (15K)
MP 93.36:0.93  91.230.54 94.3%-0.04 98.02-0.11 96.41-0.24
(0.8K) (1.6K) (2.2K) (2.9K) (8.2K)
Budgeted(one pass)
1-st line: B=100:
2-nd line: B=500:
Projection++ 82.943.73  84.4%1.75 81.4@-1.26 93.330.96 47.23-0.99
90.112.11  88.66:-0.66 92.02-0.59 95.780.75 75.9&0.76
MP+stop 73.567.59  82.342.43 79.1%2.15 88.27%1.56 41.8%1.16
91.23t0.78  88.68-0.60 90.78&0.58 97.78+0.20 67.32£1.53
MP+random 73.824.93 82.5%1.34 78.06:-2.01 87.7%-2.96 40.932.31

87.84t4.84 87.2%1.07 90.1&0.97 97.20+0.68 68.23t1.14

BPegasos+remove 784£2.03 81.093.21 80.16:-1.15 91.84-1.27 41.5&1.49
91.48+1.65 86.7#41.01 89.44-1.05 97.6:0.21 71.9%41.04
BPegasos+ project 86.52.03  87.69+0.62 89.670.42 96.19-0.85 74.49-1.89
92.26+1.20 88.86:0.2 92.610.32 97.58+0.49 87.85+0.49
BPegasos+merge 93.13+1.49 87.53+0.72 91.764+0.24 97.06+0.19 73.63+1.72
92.42+1.24  89.7240.14  92.91+0.19 97.63+0.14 89.68+0.61

BNorma+merge 75.70.25 85.61+0.54 87.44:0.45 90.82:0.42 61.7%1.58
76.25£3.27 86.330.40 89.510.24 94.6&0.22 75.84:0.35
BMP+merge 93.76+0.31  88.33+0.90 92.31+0.57 97.35+0.16 74.99+1.08

93.84+0.64  90.41+0.22 93.10+0.36 97.86+0.33 88.22+0.36

Table 4: Comparison of offline, online, and budgeted onligerhms on 5 benchmark multi-class data sets

Pegasos, MP, and Norma. Pegasos and MP achieve similanagam most data sets, while Pegasos signif-
icantly outperforms MP on the two noisy data sets Gauss aneféan. Norma is generally less accurate
than Pegasos and MP, and the gap is larger on IJCNN, CheekdrddNA, and Covertype. Additionally,
Norma generates more SVs than its two siblings.

7.6 Comparison of Budgeted Algorithms

On the budgeted side, BPegasos+merge and BMP+merge anethmost accurate algorithms and their accu-
racies are comparable on most data sets. Considering tlegBBs+merge largely outperforms BMP+merge
on Phoneme and Covertype and also the additional compuodghtiost of the projection step in BMP, BPega-
sos+merge is clearly the winner of this category. The aoyundBPegasos+project is highly competitive to
the above two algorithms, but we should note that projedsawstlier than merging. Accuracy of TVM and
BPA is comparable to BPegasos+merge on the binary datargéiskception of the lower BPA accuracy on
IJCNN). Accuracies of Projectron++, MP+stop, and MP+randwre significantly lower. In this subgroup,
Projectron++ is the most successful, showing the benefisajécting as compared to removal. Consistent
with this result, BSGD algorithms using removal fared digantly worse than those using projection and
merging.
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Algorithms/Data Shuttle Phoneme Covertype Waveform
(43K,9,2) (84K,41,48) (0.5M,54,7) (2M,21,3)

Offline

LIBSVM 99.90+0.00 78.24-0.05 89.69-0.15 85.83-0.06
(0.3K) (69K) (3&K10x) (32K10x)

Online(one pass)

Pegasos 99.900.00 79.620.16 87.730.31 86.5@-0.10
(1.2K) (8%Kgok) (47K136) (74K19)

Norma 99.7%40.01 79.86:0.09 82.86:0.33 86.29-0.15

(8K) (84K) (9Ko2) (111K18%)
MP 99.89:0.02 79.8@-0.12 88.84-0.06 84.36:0.36

(0.4K44x) (78K78k) (56K160k) (83K310x)

Budgeted(one pass):
1-st line: B=100:
2-nd line: B=500:

Projection++ 99.550.16 21.2&¢1.24 62.543.14 80.75:0.81
90.85+0.08 32.3Z21.97 67.322.93 83.56:0.54
MP+stop 99.390.35 24.862.10 56.96:1.59 81.04-2.61
99.90+0.01 33.76£1.01 61.93%1.56 83.76:0.71
MP+random 98.6£0.07 23.2%¢1.39 55.5&1.37 79.94:1.12

99.90+£0.01 31.3A4191 604#1.70 81.61+1.51

BPegasos+remove 9926.54 24.3%1.48 55.641.82 78.4%1.79
99.89+0.02 32.10£0.85 62.920.55 84.380.53
BPegasos+ project 99.81+0.05 43.60£0.10 70.840.59 85.630.07
99.89+0.02 48.870.07 74.940.22 86.180.06
BPegasos+merge 99.68.02 46.49+0.78 74.10+0.30 86.71+0.38
99.89+0.02 51.57+0.30 76.89+051 86.63+0.28

BNorma+merge 99.480.01 39.6&0.66  71.54:0.53 86.60+0.12
99.8G+0.01 45.130.43 72.81%+0.46 82.030.53
BMP+merge 98.980.55 42.18&1.94 67.283.86 86.020.22

99.91+0.01 47.02£0.98 72.3%0.75 86.0%0.17

Table 5: Comparison of offline, online, and budgeted onligerhms on 4 benchmark multi-class data sets

7.7 Best Budgeted Algorithm vs Non-budgeted Algorithms

Comparing the best budgeted algorithm BPegasos+mergenaittest budgets d@ = 100 and 500 with the
non-budgeted Pegasos and LIBSVM, we can see that it achievgompetitive accuracy. Interestingly,
its accuracy is even larger than the two non-budgeted &lgosi on two largest data sets Checkerboard and
Waveform. This indicates noise reduction capability of S¥rging. This result is even more significant
as BPegasos+merge has faster training time and learns asmatler model. On Covertype, Phoneme and
Letter data, the accuracy gap between buégetc00 and non-budgeted algorithms remained large and it can
be explained by the complexity of these problems; for exan®0% of Covertype examples, 50% of Letter
examples, and 100% of Phoneme examples became SVs in Peltaadslition, Letter had 26 class labels
and Phoneme 48. In all 3 data sets, the accuracy clearly iragrisomB = 100 to 500, which indicates
that extra budget is needed for comparable accuracy. Terhbtistrate the importance of budget size on
some data sets, Figure 2 shows that on Letter and Covertypacturacy of BPegasos+merge approaches
that of Pegasos as the larger budget is used. Interestinglie 16K examples appear to be sufficient for
convergence on Letter data set, it is evident that Covertppdd benefit from a much larger budget than the
available half million labeled examples.
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Figure 3: BPegasos+mergB £ 500): difference in accuracy between a model trained wigagses and a
model trained with a single-pass of the data.

7.8 Multi-epoch vs Single-pass Training

For the most accurate budgeted online algorithm BPegasargienwe also report its accuracy after allowing
it to make 5 passes through training data. In this scenaRegBsos should be treated as an offline algorithm.
The accuracy improvement as compared to the single-pas®nrds reported in Figure 3. We can observe
that multi-epoch training improves the accuracy of BPegasomost data sets. This result suggests that, if
the training time is not of major concern, multiple accegsdbe training data should be used.

7.9 Accuracy Evolution Curves

In Figure 4 we show evolution of accuracy as a function of thmber of observed examples on the three
largest data sets. By comparing BPegasos+merge with ndgebed SVMs and several other budgeted algo-
rithms from Tables 3, 4, and 5, we observe that the accuraBpPefjasos+merge consistently increases with
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Figure 4: Comparison of accuracy evolution curves

data stream size. On Checkerboard, its accuracy closétyv®IPegasos and eventually surpasses it after
Pegasos had to be early stopped. IDSVM and its budgeteduersiM exhibit faster accuracy growth ini-
tially, but are surpassed by BPegasos+merge as more gyaramples become available. On waveform, the
accuracy of BPegasos grows faster than the original nogdiad version. This behavior can be attributed
to the noise-reduction property of merging. Finally, on €type, BPegasos+merge significantly trails its
non-budgeted cousin, and this behavior is consistent vigthrg 2.b.
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Figure 5: Accuracy evolution curves of BPegasos for difietmidget maintenance strategies

In Figure 5 we compare evolution of accuracy of BPegasos fmoposed budget maintenance strategies.
As could be seen, removal is inferior to projection and meggin all 3 data sets. On Checkerboard, removal
even causes a gradual drop in accuracy after an initial nateléncrease, while on the other two sets the
accuracy fluctuates around a very small value close to tiééeed by training on 100 initial examples. On
the other hand, projection and merging result in strong amistent accuracy increase with data stream
size. Interestingly, on Waveform data, merging signifigaatitperforms projection, which may point to its
robustness to noise.
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Figure 6: Training time curves on Checkerboard data

Legends in both Figures 4 and 5 list total training time ofdpeted algorithms at the end of the data stream
(non-budgeted algorithms were early stopped after 10Krs#zjo Considering that our implementation of all
algorithms except LIBSVM was in Matlab and on a 3GB RAM, 3.2G3PEntium Dual Core 2 PC, Figure 4
indicates a rather impressive speed of the budgeted digwit From Figure 5, it can be seen that merging
and projection are very fast and are comparable to removal.

7.10 Training Time Scalability

Figure 6 presents log-log plot of the training time versus dlata stream length on Checkerboard data set
with 10 million examples. Excluding the initial stage, Psga had the fastest increase in training time,
confirming the expecte®(N?) runtime. On the budgeted side, the runtime time of BPegadbsmerging

and projecting increases linearly with data size. Howeivés, evident that BPegasos with projecting grow
much faster with the budget size than costs of BPegasos wetging. This confirms the expect&(B)
scaling of the merging an@(B?) scaling of the projection version.

7.11 Weight Degradation

Theorems 1, 2, and 3 indicate that loviefeads to lower gap between the optimal solution and the liedge
solution. We also argued thEtdecreases with budget size through three mechanisms. la @alve show
how the value oE on Checkerboard data is being influenced by the buBgatd, in turn, how the change
in E influences accuracy. From the comparison of three stratégigwo B values (100 and 500), we see as
B gets largerE is getting smaller. The results also show that projectiath merging achieve significantly
lower value than removal and that lowelindeed results in higher accuracy.

7.12 Merged vsProjected SVs

In order to gain further insight into the projection and nieggbased budget maintenance, in Figure 7 we
compare final SVs generated by these two strategies on th& d&@ where classes are 10 digits. We used
budgetB = 10 for BPegasos to explore how successful the algorithm mves/ealing the 10 digits. Compar-
ing Figures 7.a-c and 7.d-e we can observe that SVs gendmtedlifferent runs of BPegasos+project did
not represent all 10 digits (e.g., in Run 1, digits 0 and 6 appeice, while digits 3 and 4 are not represented).
It should be noted that the 10 SVs obtained using projectieridentical to 10 actual training examples of
USPS. On the other hand, SVs obtained by merging in all 3 rejmesent all 10 digits. The appearance of

3124



BUDGETED STOCHASTIC GRADIENT DESCENT

~ B=100 ~ B=500

E Acc E Acc
BPegasos+remove 1.48P.000 79.193.05 1.40%0.000 90.320.40
BPegasos+project  0.050.007 99.250.06 0.00A40.001 99.660.10
BPegasos+merge  0.080.006 99.550.14 0.002-0.001 99.74-0.08

Table 6: Comparison of accuracy and averaged weight detiwadar three versions of BPegasos as a func-
tion of budget sizeB on 10M Checkerboard examples, using same parametetslQ—*, kernel
width o = 0.0625).

MEHNAMNAZrE N

(a) BPegasos+project(run 1)

Of | ] | 2] SE4FAISIGEY

(b) BPegasos+project(run 2)

OO | {21 31504] /1207

(c) BPegasos+project(run 3)

MINHMEOMHEMrEAE

(d) BPegasos+merge(run 1)

MINHMEIOMMEEE

(e) BPegasos+merge(run 2)

MINMEIOMMEAE

(f) BPegasos+merge(run 3)

Figure 7: The plot of SVs on USPS data. (Each row correspamdsdifferent run. 3 different runs using
BPegasos+projecB(= 10) with average accuracy 74%; 3 different runs using BRegfaserge
(B = 10) with average accuracy 86%.)

each SV in Figure 7.d-e is blurred and is a result of many mgeyof the original labeled examples. This
example is a useful illustration of the main difference testw projection and merging, and it can be helpful
in selecting the appropriate budget maintenance strategyarticular learning task.

8. Conclusion

We proposed a framework for large-scale kernel SVM trainisiog BSGD algorithms. We showed that bud-
geted versions of three popular online algorithms, Pegasogma, and Margin Perceptron, can be studied
under this framework. We obtained theoretical bounds oir legformance that indicate that decrease in
BSGD accuracy is closely related to the model degradatientabudget maintenance. Based on the analy-
sis, we studied budget maintenance strategies based omakmmjection, and merging. We experimentally
evaluated the proposed BSGD algorithms in terms of accuamgytraining time and compared them with a
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number of offline and online, as well as non-budgeted, andi&ted alternatives. The results indicate that
highly accurate and compact kernel SVM classifiers can leetizon high-throughput data streams. Partic-
ularly, the results show that merging is a highly attracbiuelget maintenance strategy for BSGD algorithms
as it results in relative accurate classifiers while achigvinear training time scaling with support vector
budget and data size.
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Appendix A. Proof of Theorem 1

We start by showing the following technical lemma.
Lemma 1

e Let R be as defined in (3).
e Let C be a closed convex set with radius U.

e Letw,...,wy be a sequence of vectors such thatc C and for any t> 1w, ; < [c(w; — Nty —
L), O is the (sub)gradient ofRat wi, N is a learning rate functionfy is a vector, andc(w) =
argminy < ||W —wl||, is a projection operation that projectsto C.

Assumé|E|| < 1.

Define Q = ||w; —u||> — [|w;,, — u||? as the relative progress towargat t-th round.

Then, the following inequality holds for anye C

1 N 1 N 1 NDt N ) ()\U+2)2N _
Nt;Pt(Wt)—NI;Pt(U)SN (t ZT]I_I;EHWt_UH +Tt;r]t +2UE. (20)

|
Proof of Lemma 1. First, we rewritew, , ; < [c(W; —n:0; —A¢) by treating/; as the source of error in the
gradientw, , , < []c(w; —ntd;), where we defined, = [, + E;. Then, we lower boun®; as

Dt = ||wg —u|[2— || Mlc (Wt —Nnedy) — ul 2
> 1 |wy = ul[? = [, — 10, — ul|?
= —n?([9y||2 + 2ne O (w; — u) + 20 E] (w — u) (1)

>2 NP + 1+ 12+ 20 (R (W) — R(u) + 31w, — ul|?) — 4ne][Ee U
In >4, we use the fact that sin€is convex,||[c(a) —b|| < [|a—Db]|| for allb € Canda. In >, ||6;|| is

bounded as
110 < [[AW; + e P(xe) || + [[Ee|| <AU +1+1,

and, by applying the property of strong convexity, it follw
OF (W —u) > R(w,) — R(u) +Aw —ul[?/2,

sinceR is A-strongly convex function w.r.t}|w||?/2 andL]; is the subgradient d®(w) atw; (according to
Lemma 1 by Shalev-Shwartz and Singer (2007). Bolwgd— u|| < 2U holds since both|w|| andu are
upper bounded by .
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Dividing both sides of inequality (21) by and rearranging, we obtain

AU +1+41)2
F%(w{)—Pt(u><7t_f||wt P+ MO . (22)

Summing over alt in (22) and dividing two sides of inequality by leads to the stated bound.
Proof of Theorem 1. w;; is bounded as

[IWe | = [[(1—ned)we +Neye P(xe) — A
<A =neA)wi||+ne(1+[[El]) <3 2/A.

In <3 we used the definition of; and recursively boundew||.

Using the fact thatjw*|| < 1/v/A (Shalev-Shwartz et al., 2011), boffv|| and||w*|| can be bounded
by constant) defined in (6). Thus the update rulg ; < [c(w; — N0y —4¢) in Lemma 1 is reduced to
Wiy = W —Nell — A

Pluggingn: = 1/(At) into RHS of inequality (20) in Lemma 1 and replaciagvith ||w*||, the first and
second term in the parenthesis on the RHS are bounded as

" « 23
<3 (E =N wy — w|2+z<—ml—x)nwt—w||2—n1N||wN+1—w|2) (23)

:_Zr]N||WN+l_W > <o.

According to the divergence rate of harmonic series, tirel lerm on the RHS in (20) is bounded by,

2 N 2 N
(AU2+2) Zl t_ Au;z thl_ )\U+2 (In(N) + 1) (24)
t=

With boundedJ value, combining (23), (24) with (20) leads to (7).

Appendix B. Proof of Theorem 2

W1 is bounded as
[[Wera]| = [[(1=ned)we +Neye @(Xe) — L]
< (L =neM)we|| +ne(1+[|E|])
<A —ned)we|| +2n¢.

Since||w1|| = 0, the bound|wi1|| < 2/A holds for allt (Kivinen et al., 2002). Using the fact thiw*|| <

1/+v/\ (Shalev-Shwartz, Singer & Srebro, 2011), btk || and||w*|| are bounded by constadtdefined in

(6). Thus the update rulg,  ; < [c(W; — Nty —A¢) in Lemma 1 is reduced t@, 3 < w; — e —
Replacingu by w* in (20), the first term at RHS in (20) can be bounded as

B =t§12—;<||wt—w*|\2— w1 -w[)
= g llwy - w2+ 3 z (& = 220w — w2 — g flwing — w2 (25)
s e

The third term at RHS in (20) can be bounded according to thessdivergence rate as

)\U+2 )\U+2) 2VN-1)

Ztlt_

With boundedJ value, combing (25), (26) with (20) and boundmg the negstitrms by zero lead to (8).

(26)
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Appendix C. Proof of Theorem 3

Replacingu by w* in (20), the first term at RHS in (20) can be bounded as
N N

3 =3 & (e~ ey —w)

N
= %Ilwl—w*\lhr%tgz(n%—rl,l)llwt—W*Ilz—zﬁ\lwml—w*llz

2
~ Al -wlP <,

using the fact; = n andA = 0. Bounding the second term in RHS of (20) by zero (since itvsgs
negative), Lemma 1 directly leads to (9).
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