
Journal of Machine Learning Research 13 (2012) 3103-3131 Submitted 2/11; Revised 4/12; Published 10/12

Breaking the Curse of Kernelization: Budgeted Stochastic Gradient
Descent for Large-Scale SVM Training

Zhuang Wang ∗ ZHUANG.WANG@SIEMENS.COM

Corporate Technology
Siemens Corporation
755 College Road East
Princeton, NJ 08540, USA

Koby Crammer KOBY@EE.TECHNION.AC.IL
Department of Electrical Engineering
The Technion
Mayer Bldg
Haifa, 32000, Israel

Slobodan Vucetic VUCETIC@TEMPLE.EDU

Department of Computer and Information Sciences
Temple University
1805 N Broad Street
Philadelphia, PA 19122, USA

Editor: Tong Zhang

Abstract
Online algorithms that process one example at a time are advantageous when dealing with very large data
or with data streams. Stochastic Gradient Descent (SGD) is such an algorithm and it is an attractive choice
for online Support Vector Machine (SVM) training due to its simplicity and effectiveness. When equipped
with kernel functions, similarly to other SVM learning algorithms, SGD is susceptible to the curse of kernel-
ization that causes unbounded linear growth in model size and update time with data size. This may render
SGD inapplicable to large data sets. We address this issue by presenting a class of Budgeted SGD (BSGD)
algorithms for large-scale kernel SVM training which have constant space and constant time complexity per
update. Specifically, BSGD keeps the number of support vectors bounded during training through several
budget maintenance strategies. We treat the budget maintenance as a source of the gradient error, and show
that the gap between the BSGD and the optimal SVM solutions depends on the model degradation due to
budget maintenance. To minimize the gap, we study greedy budget maintenance methods based on removal,
projection, and merging of support vectors. We propose budgeted versions of several popular online SVM
algorithms that belong to the SGD family. We further derive BSGD algorithmsfor multi-class SVM training.
Comprehensive empirical results show that BSGD achieves higher accuracy than the state-of-the-art budgeted
online algorithms and comparable to non-budget algorithms, while achieving impressive computational effi-
ciency both in time and space during training and prediction.
Keywords: SVM, large-scale learning, online learning, stochastic gradient descent, kernel methods

1. Introduction

Computational complexity of machine learning algorithms becomes a limiting factor when one is faced with
very large amounts of data. In an environment where new largescale problems are emerging in various
disciplines and pervasive computing applications are becoming common, there is a real need for machine
learning algorithms that are able to process increasing amounts of data efficiently. Recent advances in large-

∗. Zhuang Wang was with the Department of Computer and Information Sciences at Temple University while most of the presented
research was performed.

c©2012 Zhuang Wang, Koby Crammer and Slobodan Vucetic.

WANG, CRAMMER AND VUCETIC

scale learning resulted in many algorithms for training SVMs (Cortes and Vapnik, 1995) using large data
(Vishwanathan et al., 2003; Zhang, 2004; Bordes et al., 2005; Tsang et al., 2005; Joachims, 2006; Hsieh
et al., 2008; Bordes et al., 2009; Zhu et al., 2009; Teo et al.,2010; Chang et al., 2010b; Sonnenburg and
Franc, 2010; Yu et al., 2010; Shalev-Shwartz et al., 2011). However, while most of these algorithms focus on
linear classification problems, the area of large-scale kernel SVM training remains less explored. SimpleSVM
(Vishwanathan et al., 2003), LASVM (Bordes et al., 2005), CVM (Tsang et al., 2005) and parallel SVMs
(Zhu et al., 2009) are among the few successful attempts to train kernel SVM from large data. However,
these algorithms do not bound the model size and, as a result,they typically have quadratic training time in
the number of training examples. This limits their practical use on large-scale data sets.

A promising avenue to SVM training from large data sets and from data streams is to use online algo-
rithms. Online algorithms operate by repetitively receiving a labeled example, adjusting the model parame-
ters, and discarding the example. This is opposed to offline algorithms where the whole collection of training
examples is at hand and training is accomplished by batch learning. SGD is a recently popularized approach
(Shalev-Shwartz et al., 2011) that can be used for online training of SVM, where the objective is cast as an
unconstrained optimization problem. Such algorithms proceed by iteratively receiving a labeled example and
updating the model weights through gradient decent over thecorresponding instantaneous objective func-
tion. It was shown that SGD converges toward the optimal SVM solution as the number of examples grows
(Shalev-Shwartz et al., 2011). In its original non-kernelized form SGD has constant update time and constant
space.

To solve nonlinear classification problems, SGD and relatedalgorithms, including the original perceptron
(Rosenblatt, 1958), can be easily kernelized combined withMercer kernels, resulting in prediction models
that require storage of a subset of observed examples, called the Support Vectors (SVs).1 While kernelization
allows solving highly nonlinear problems, it also introduces heavy computational burden. The main reason
is that on noisy data the number of SVs tends to grow with the number of training examples. In addition
to the danger of exceeding the physical memory, this also implies a linear growth in both model update
and prediction time with data size. We refer to this propertyof kernel online algorithms asthe curse of
kernelization. To solve the problem, budgeted online SVM algorithms (Crammer et al., 2004) that limit the
number of SVs were proposed to bound the number of SVs. In practice, the assigned budget depends on the
specific application requirements, such as memory limitations, processing speed, or data throughput.

In this paper we study a class of BSGD algorithms for online training of kernel SVM. The main con-
tributions of this paper are as follows. First, we propose a budgeted version of the kernelized SGD for
SVM that has constant update time and constant space. This isachieved by controlling the number of SVs
through one of the several budget maintenance strategies. We study the impact of budget maintenance on
SGD optimization and show that, in the limit, the gap betweenthe loss of BSGD and the loss of the optimal
solution is upper-bounded by the average model degradationinduced by budget maintenance. Second, we
develop a multi-class version of BSGD based on the multi-class SVM formulation by Crammer and Singer
(2001). The resulting multi-class BSGD has similar algorithmic structure as its binary relative and inherits
its theoretical properties. Having shown that the quality of BSGD directly depends on the quality of budget
maintenance, our final contribution is exploring computationally efficient methods to maintain an accurate
low-budget classifier. In this work we consider three major budget maintenance strategies: removal, projec-
tion, and merging. In case of removal, we show that it is optimal to remove the smallest SV. Then, we show
that optimal projection of one SV to the remaining ones is achieved by minimizing the accumulated loss
of multiple sub-problems for each class, which extends the results by Csató and Opper (2001), Engel et al.
(2002) and Orabona et al. (2009) to the multi-class setting.In case of merging, when Gaussian kernel is used,
we show that the new SV is always on the line connecting two merged SVs, which generalizes the result by
Nguyen and Ho (2005) to the multi-class setting. Both space and update time of BSGD scale quadratically
with the budget size when projection is used and linearly when merging or removal are used. We show exper-

1. In this paper, Support Vectors refer to the examples that contribute to the online classifier at a given stage of online learning, which
differs slightly from the standard terminology where Support Vector refers to the examples with non-zero coefficients in the dual
form of the final classifier.

3104

BUDGETED STOCHASTIC GRADIENT DESCENT

Figure 1: A hierarchy of large-scale SVMs

imentally that BSGD with merging is the most attractive because it is computationally efficient and results in
highly accurate classifiers.

The structure of the paper is as follows: related work is given in Section 2; a framework for the proposed
algorithms is presented in Section 3; the impact of budget maintenance on SGD optimization is studied in
Section 4, which motivates the budget maintenance strategies that are presented in Section 6; the extension to
the multi-class setting is described in Section 5; in Section 7, the proposed algorithms are comprehensively
evaluated; and, finally, the paper is concluded in Section 8.

2. Related Work

In this section we summarize related work to ours. Figure 1 provides a view at the hierarchy of large-scale
SVM training algorithms discussed below.

2.1 Algorithms for Large-Scale SVM Training

LIBSVM (Chang and Lin, 2001) is a widely used SVM solver whichis scalable to hundreds of thousands of
examples. LIBSVM uses the SMO decomposition technique (Platt, 1998) to solve SVM Quadratic Program-
ming (QP). LASVM (Bordes et al., 2005) is another scalable SMO-based algorithm that approximates the
SVM solution by incrementally updating the model. In order to speed up training, LASVM performs only
several SMO iterations during each model update and it occasionally removes examples from the training set
that are deemed unlikely to become SVs. SimpleSVM (Vishwanathan et al., 2003) is a fast iterative training
algorithm that uses greedy working set selection to identify SVs to be incrementally updated. CVM (Tsang
et al., 2005) scales up kernel SVM by reformulating SVM’s QP as a minimum enclosing ball problem and
it applies an efficient approximation algorithm to obtain a near-optimal solution. BVM (Tsang et al., 2007)
is a simpler version of CVM that reduces the minimum enclosing ball problem to the enclosing ball problem
and thus solves a simpler problem. Experimentally, these approximate algorithms have been demonstrated to
have relatively fast training times, result in sparser models, and achieve a slightly reduced accuracy.

3105

WANG, CRAMMER AND VUCETIC

Recent research in large-scale linear SVM resulted in many successful algorithms (Zhang, 2004; Joachims,
2006; Shalev-Shwartz et al., 2011; Hsieh et al., 2008; Bordes et al., 2009; Teo et al., 2010) with an impressive
scalability and able to train with millions of examples in a matter of minutes on standard PCs. Recently, linear
SVM algorithms have been employed for nonlinear classification by explicitly expressing the feature space as
a set of attributes and training a linear SVM on the transformed data set (Rahimi and Rahimi, 2007; Sonnen-
burg and Franc, 2010; Yu et al., 2010). However, this type of approaches is only applicable with special types
of kernels (e.g., the low degree polynomial kernels, stringkernels or shift invariant kernels) or on very sparse
or low dimensional data sets. More recently, Zhang et al. (2012) proposed a low-rank linearization approach
that is general to any PSD kernel. The proposed algorithm LLSVM transforms a non-linear SVM to a linear
one via an approximate empirical kernel map computed from low-rank approximation of kernel matrices.
Taking an advantage of the fast training of linear classifiers, Wang et al. (2011) proposed to use multiple
linear classifiers to capture non-linear concepts. A commonproperty of the above linear-classifier-based al-
gorithms is that they usually have low space footprint and are initially designed for offline learning but can
also be easily converted to online algorithms by accepting aslight decrease in accuracy. Recent research
in training large-scale SVM with the popular Gaussian kernel focuses on parallelizing training on multiple
cores or machines. Either optimal (e.g., Graf et al., 2005) or approximate (e.g., Zhu et al., 2009) solutions
can be obtained by this type of methods. Other attempts to large-scale kernel SVM learning include a method
that modifies the SVM loss function (Collobert et al., 2006),preprocessing methods such as pre-clustering
and training on the high-quality summarized data (Li et al.,2007), and a method (Chang et al., 2010a) that
decomposes data space and trains multiple SVMs on the decomposed regions.

2.2 Algorithms for SVM Model Reduction

SVM classifier can be thought of as composed of a subset of training examples known as SVs, whose number
typically grows linearly with the number of training examples on noisy data (Steinwart, 2003). Bounding
the space complexity of SVM classifiers has been an active research since the early days of SVM. SVM
reduced set methods (Burges, 1996; Schölkopf et al., 1999) start by training a standard SVM on the complete
data and then find a sparse approximation by minimizing Euclidean distance between the original and the
approximated SVM. A limitation of reduced set methods is that they require training a full-scale SVM,
which can be computationally infeasible on large data. Another line of work (Lee and Mangasarian, 2001;
Wu et al., 2005; Dekel and Singer, 2006) is to directly train areduced classifier from scratch by reformulating
the optimization problem. The basic idea is to train SVM withminimal risk on the complete data under a
constraint that the model weights are spanned by a small number of examples. A similar method to build
reduced SVM classifier based on forward selection was proposed by Keerthi et al. (2006). This method
proceeds in an iterative fashion that greedily selects an example to be added to the model so that the risk on
the complete data is decreased the most. Although SVM reduction methods can generate a classifier with a
fixed size, they require multiple passes over training data.As such, they can be infeasible for online learning.

2.3 Online Algorithms for SVM

Online SVM algorithms were proposed to incrementally update the model weights upon receiving a single
example. IDSVM (Cauwenberghs and Poggio, 2000) maintains the optimal SVM solution on all previously
seen examples throughout the whole training process by using matrix manipulation to incrementally update
the KKT conditions. The high computational cost due to the desire to guarantee an optimum makes it less
practical for large-scale learning. As an alternative, LASVM (Bordes et al., 2005) was proposed to trade the
optimality with scalability by using an SMO like procedure to incrementally update the model. However,
LASVM still does not bound the number of SVs and a potential unlimited growth in their number limits its
use for truly large learning tasks. Both IDSVM and LASVM solve SVM optimization by casting it as a QP
problem and working on the KKT conditions.

Gradient-based methods are an appealing alternative to theQP based methods for SVM training. SGD
for SVM training was first studied by Kivinen et al. (2002), where SVM training is cast as an unconstrained

3106

BUDGETED STOCHASTIC GRADIENT DESCENT

problem and model weights are updated through gradient decent over an instantaneous objective function.
Pegasos (Shalev-Shwartz et al., 2011) is an improved stochastic gradient method, by employing a more
aggressively decreasing learning rate and projection. Iterative nature of stochastic gradient makes it suitable
for online SVM training. In practice, it is often run in epochs, by scanning the data several times to achieve a
convergence to the optimal solution. Recently, Bordes et al. (2009) explored the use of 2nd order information
to calculate the gradient in the SGD algorithms. Although the SGD-based methods show impressive training
speed for linear SVMs, when equipped with kernel functions,they suffer from the curse of kernelization.

TVM (Wang and Vucetic, 2010b) is a recently proposed budgeted online SVM algorithm which has
constant update time and constant space. The basic idea of TVM is to upper bound the number of SVs
during the whole learning process. Examples kept in memory (called prototypes) are used both as SVs and as
summaries of local data distribution. This has been achieved by positioning the prototypes near the decision
boundary, which is the most informative region of the input space. An optimal SVM solution is guaranteed
over the set of prototypes at any time. Upon removal or addition of a prototype, IDSVM is employed to
update its model.

2.4 Budgeted Quasi-additive Online Algorithms

The Perceptron (Rosenblatt, 1958) is a well-known online algorithm which is updated by simply adding
misclassified examples to the model weights. Perceptron belongs to a wider class of quasi-additive online
algorithms that updates a model in a greedy manner by using only the last observed example. Popular recent
members of this family of algorithms include ALMA (Gentile,2001), ROMMA (Li and Long, 2002), MIRA
(Crammer and Singer, 2003), PA (Crammer et al., 2006), ILK (Cheng et al., 2007), the SGD based algorithms
(Kivinen et al., 2002; Zhang, 2004; Shalev-Shwartz et al., 2011), and the Greedy Projection algorithm (Zinke-
vich, 2003). These algorithms are straightforwardly kernelized. To prevent the curse of kernelization, several
budget maintenance strategies for the kernel perceptron have been proposed in recent work. The common
property of the methods summarized below is that the number of SVs (the budget) is fixed to a pre-specified
value.

Stoptronis a truncated version of kernel perceptron that terminateswhen number of SVs reaches budget
B. This simple algorithm is useful for benchmarking (Orabonaet al., 2009).

Budget Perceptron(Crammer et al., 2004) removes the SV that would be predictedcorrectly and with
the largest confidence after its removal. While this algorithm performs well on relatively noise-free data it is
less successful on noisy data. This is because in the noisy case this algorithm tends to remove well-classified
points and accumulate noisy examples, resulting in a gradual degradation of accuracy.

Random Perceptronemploys a simple removal procedure that removes a random SV.Despite its simplic-
ity, this algorithm often has satisfactory performance andits convergence has been proven under some mild
assumptions (Cesa-Bianchi and Gentile, 2006).

Forgetron removes the oldest SV. The intuition is that the oldest SV wascreated when the quality of
perceptron was the lowest and that its removal would be the least hurtful. Under some mild assumptions,
convergence of the algorithm has also been proven (Dekel et al., 2008). It is worth mentioning that a unified
analysis of the convergence of Random Perceptron and Forgetron under the framework of online convex
programming was studied by Sutskever (2009) after slightlymodifying the two original algorithms.

Tighter Perceptron. The budget maintenance strategy proposed by Weston et al. (2005) is to evaluate
accuracy on validation data when deciding which SV to remove. Specifically, the SV whose removal would
have the least validation error is selected for removal. From the perspective of accuracy estimation, it is ideal
that the validation set consists of all observed examples. Since it can be too costly, a subset of examples can
be used for validation. In the extreme, only SVs from the model might be used, but the drawback is that the
SVs are not representative of the underlying distribution that could lead to misleading accuracy estimation.

Tightest Perceptronis a modification of Tighter Perceptron that improves how theSV set is used both
for model representation and for estimation (Wang and Vucetic, 2009). In particular, instead of using the
actual labels of SVs, the Tightest learns distribution of labels in the neighborhood of each SV and uses this
information for improved accuracy estimation.

3107

WANG, CRAMMER AND VUCETIC

Algorithms Budget maintenance Update time Space
BPANN projection O(B) O(B)
BSGD+ removal removal O(B) O(B)
BSGD+ pro ject projection O(B2) O(B2)
BSGD+merge merging O(B) O(B)
Budget removal O(B) O(B)
Forgetron removal O(B) O(B)
Pro jectron++ projection O(B2) O(B2)
Random removal O(B) O(B)
SILK removal O(B) O(B)
Stoptron stop O(1) O(B)
Tighter removal O(B2) O(B)
Tightest removal O(B2) O(B)
TVM merging O(B2) O(B2)

Table 1: Comparison of different budgeted online algorithms (B is a pre-specified budget equal to the number
of SVs; Update time includes both model update time and budget maintenance time; Space corre-
sponds to space needed to store the model and perform model update and budget maintenance.)

Projectron maintains a sparse representation by occasionally projecting an SV onto remaining SVs
(Orabona et al., 2009). The projection is designed to minimize the model weight degradation caused by
removal of an SV, which requires updating the weights of the remaining SVs. Instead of enforcing a fixed
budget, the original algorithm adaptively increases it according to a pre-defined sparsity parameter. It can be
easily converted to the budgeted version by projecting whenthe budget is exceeded.

SILK discards the example with the lowest absolute coefficient value once the budget is exceeded (Cheng
et al., 2007).

BPA. Unlike the previously described algorithms that perform budget maintenance only after the model
is updated, Wang and Vucetic (2010a) proposed a Budgeted online Passive-Aggressive (BPA) algorithm
that does budget maintenance and model updating jointly by introducing an additional constraint into the
original Passive-Aggressive (PA) (Crammer et al., 2006) optimization problem. The constraint enforces that
the removed SV is projected onto the space spanned by the remaining SVs. The optimization leads to a
closed-form solution.

The properties of budgeted online algorithms described in this subsection as well as and the BSGD algo-
rithms presented in following sections are summarized in Table 1. It is worth noting that although (budgeted)
online algorithms are typically trained by a single pass through training data, they are also able to perform
multiple passes that can lead to improved accuracy.

3. Budgeted Stochastic Gradient Descent (BSGD) for SVMs

In this section, we describe an algorithmic framework of BSGD for SVM training.

3.1 Stochastic Gradient Descent (SGD) for SVMs

Consider a binary classification problem with a sequence of labeled examplesS= {(xi ,yi), i = 1, ...,N},
where instancexi ∈ Rd is a d-dimensional input vector andyi ∈ {+1,−1} is the label. Training an SVM
classifier2 f (x) = wTx usingS, wherew is a vector of weights associated with each input, is formulated as

2. We study the case where the bias term is set to zero.

3108

BUDGETED STOCHASTIC GRADIENT DESCENT

Algorithms λ ηt

Pegasos > 0 1/(λt)
Norma > 0 η/

√
t

Margin Perceptron 0 η

Table 2: A summary of three SGD algorithms (η is a constant.)

solving the following optimization problem

minP(w) =
λ
2
||w||2+ 1

N ∑N
t=1 l(w;(xt ,yt)), (1)

wherel(w;(xt ,yt)) = max(0,1− ytwTxt) is thehinge lossfunction andλ ≥ 0 is a regularization parameter
used to control model complexity.

SGD works iteratively. It starts with an initial guess of themodel weightw1, and att-th round it updates
the current weightwt as

wt+1← wt −ηt∇t , (2)

where∇t = ∇wt Pt(wt) is the (sub)gradient of theinstantaneous lossfunctionPt(w) defined only on the latest
example,

Pt(w) =
λ
2
||w||2+ l(w;(xt ,yt)), (3)

at wt , andηt > 0 is a learning rate. Thus, (2) can be rewritten as

wt+1← (1−ληt)wt +βtxt , (4)

where

βt ←
{

ηtyt , if ytwT
t xt < 1

0, otherwise.

Several learning algorithms are based on (or can be viewed as) SGD for SVM. In Table 2, Pegasos3

(Shalev-Shwartz et al., 2011), Norma (Kivinen et al., 2002), and Margin Perceptron4 (Duda and Hart, 1973)
are viewed as the SGD algorithms. They share the same update rule (4), but have different scheduling of
learning rate. In addition, Margin Perceptron differs because it does not contain the regularization term in
(3).

3.2 Kernelization

SGD for SVM can be used to solve non-linear problems when combined with Mercer kernels. After intro-
ducing a nonlinear functionΦ that mapsx from the input to the feature space and replacingx with Φ(x), wt

can be described as
wt = ∑t

j=1 α jΦ(x j),

where

α j = β j

t

∏
k= j+1

(1−ηkλ). (5)

3. In this paper we study the Pegasos algorithm without the optional projecting step (Shalev-Shwartz et al., 2011). It isworth to note
that we can both cases (with or without the optional projecting step) allow similar analysis. We focus on this version since it has
closer connection to the other two algorithms we study.

4. Margin Perceptron is a robust variant of the classical perceptron (Rosenblatt, 1958), by changing the update criterion fromywT x< 0
to ywT x < 1.

3109

WANG, CRAMMER AND VUCETIC

Algorithm 1 BSGD
1: Input: dataS, kernelk, regularization parameterλ, budgetB;
2: Initialize: b= 0,w1 = 0;
3: for i = t,2, ... do
4: receive(xt ,yt);
5: wt+1← (1−ηtλ)wt

6: if l(wt ;(xt ,yt))> 0 then
7: wt+1← wt+1+Φ(xt)βt ; // add an SV
8: b← b+1;
9: if b> B then

10: wt+1← wt+1−∆t ; // budget maintenance
11: b← b−1;
12: end if
13: end if
14: end for
15: Output: ft+1(x)

From (5), it can be seen that an example(xt ,yt) whose hinge loss was zero at timet has zero value ofα and
can therefore be ignored. Examples with nonzero valuesα are called the Support Vectors (SVs). We can now
representft(x) as the kernel expansion

ft(x) = wT
t Φ(x) = ∑ j∈It

α jk(x j ,x),

wherek is the Mercer kernel induced byΦ andIt is the set of indexes of all SVs inwt . Rather than explicitly
calculatingw by usingΦ(x), that might be infinite-dimensional, it is more efficient to save SVs to implicitly
representw and to use kernel functionk when calculating predictionwTΦ(x). This is known as thekernel
trick. Therefore, an SVM classifier is completely described by either a weight vectorw or by an SV set
{(αi ,xi), i ∈ It}. From now on, depending on the convenience of presentation,we will use either thew
notation or theα notation interchangeably.

3.3 Budgeted SGD (BSGD)

To maintain a fixed number of SVs, BSGD executes a budget maintenance step whenever the number of SVs
exceeds a pre-defined budgetB (i.e., |It+1| > B). It reduces the size ofIt+1 by one, such thatwt+1 is only
spanned byB SVs. This results in degradation of the SVM classifier. We present a generic BSGD algorithm
for SVM in Algorithm 1. Here, we denote by∆t the weight degradation caused by budget maintenance att-th
round, which is defined5 as the difference between model weights before and after budget maintenance (Line
10 of Algorithm 1). We note that all budget maintenance strategies mentioned in Section 2.4, except BPA,
can be represented as Line 10 of Algorithm 1.

Budget maintenance is a critical design issue. We describe several budget maintenance strategies for
BSGD in Section 6. In the next section, we motivate differentstrategies by studying in the next section how
budget maintenance influences the performance of SGD.

4. Impact of Budget Maintenance on SGD

This section provides an insight into the impact of budget maintenance on SGD. In the following, we quantify
the optimization error introduced by budget maintenance onthree known SGD algorithms. Without loss of
generality, we assume||Φ(x)|| ≤ 1.

5. The formal definition for different strategies is presented in Algorithm 2.

3110

BUDGETED STOCHASTIC GRADIENT DESCENT

First, we analyze Budgeted Pegasos (BPegasos), a BSGD algorithm using the Pegasos style learning rate
from Table 2.
Theorem 1 Let us consider BPegasos (Algorithm 1 using the Pegasos learning rate, see Table 2) running on a
sequence of examples S. Letw∗ be the optimal solution of Problem (1). Define the gradient error Et = ∆t/ηt

and assume||Et || ≤ 1. Define the average gradient error as̄E = ∑N
t=1 ||Et ||/N. Let

U =

{

2/λ, i f λ≤ 4
1/
√

λ, otherwise.
(6)

Then, the following inequality holds,

1
N

N

∑
t=1

Pt(wt)−
1
N

N

∑
t=1

Pt(w∗)≤
(λU +2)2(ln(N)+1)

2λN
+2UĒ. (7)

The proof is in Appendix A. Remarks on Theorem 1:

• In Theorem 1 we quantify how budget maintenance impacts the quality of SGD optimization. Observe
that asN grows, the first term in the right side of inequalities (7) converges to zero. Therefore, the
averaged instantaneous loss of BSGD converges toward the averaged instantaneous loss of optimal
solutionw∗, and the gap between these two is upper bounded by the averaged gradient errorĒ. The
results suggest that an optimal budget maintenance should attempt to minimizēE. To minimizeĒ in
the setting of online learning, we propose a greedy procedure that minimizes||Et || at each round.

• The assumption||Et || ≤ 1 is not restrictive. Let us assume theremoval-based budget maintenance
method, where, at roundt, SV with indext is removed. Then, the weight degradation is∆t = αt ′Φ(xt ′),
wheret ′ is the index of any SV in the budget. By using (5) it can be seen that||Et || is not larger than 1,

||Et || ≤
∥

∥

∥

αt′
ηt

∥

∥

∥
= λt

{

ηt ′
t

∏
j=t ′+1

(1−η jλ)

}

= λt
{

ηt ′ · t ′
t ′+1 · t ′+1

t ′+2 · ... · t−2
t−1 · t−1

t

}

= 1.

Since our proposed budget maintenance strategy is to minimize||Et || at each round,||Et || ≤ 1 holds.

Next, we show a similar theorem for Budgeted Norma (BNorma),a BSGD algorithm using the Norma
style update rule from Table 1.
Theorem 2 Let us consider BNorma (Algorithm 1 using the Norma learningrate from Table 2) running on a
sequence of examples S. Letw∗ be the optimal solution of Problem (1). Assume||Et || ≤ 1. Let U be defined
as in (6). Then, the following inequality holds,

1
N

N

∑
t=1

Pt(wt)−
1
N

N

∑
t=1

Pt(w∗)≤
(2U2/η+η(λU +2)2)

√
N

N
+2UĒ. (8)

The proof is in Appendix B. The remarks on Theorem 1 also hold6 for Theorem 2.
Next, we show the result for Budgeted Margin Perceptron (BMP). The update rule of Margin Perceptron

(MP) summarized in Table 2 does not bound growth of the weightvector. We add a projection step to MP after
the SGD update to guarantee an upper bound on the norm of the weight vector.7 More specifically, the new
update rule iswt+1←∏C(wt−∇t)≡ φt(wt−∇t) whereC is the closed convex set with radiusU and∏C(u)

6. The assumption||Et || ≤ 1 holds when budget maintenance is achieved by removing the smallest SV, that is, t ′ =
argminj∈It′+1

||α j Φ(x j)|| .
7. The projection step (Zinkevich, 2003; Shalev-Shwartz and Singer, 2007; Sutskever, 2009) is a widely used technical operation

needed for the convergence analysis.

3111

WANG, CRAMMER AND VUCETIC

defines the closest point tou in C. We can replace the projection operator withφt = min{1,U/||wt−∇t ||}. It
is worth to note that, although the MP with the projection step solves an un-regularized SVM problem (i.e.,
λ = 0 in (1)), the projection to a ball with radiusU does introduce the regularization by enforcing the weight
with bounded normU . The vectorU should be treated as a hyper-parameter and smallerU values enforce
simpler models.

After this modification, the resulting BMP algorithm can be described with Algorithm 1, where an ad-
ditional projection stepwt+1←∏C(wt+1) is added at the end of each iteration (after Line 12 of Algorithm
1).
Theorem 3 Let C be a closed convex set with a pre-specified radius U. Let BMP (Algorithm 1 using the
PMP learning rate from Table 2 and the projection step) run ona sequence of examples S. Let||w∗|| be the
optimal solution to Problem (1) withλ = 0 and subject to the constraint||w∗|| ≤U. Assume||Et || ≤ 1 Then,
the following inequality holds,

1
N

N

∑
t=1

Pt(wt)−
1
N

N

∑
t=1

Pt(w∗)≤
2U2

Nη
+2η+2UĒ. (9)

The proof is in Appendix C. The remarks on Theorem 1 also hold for Theorem 3.

5. BSGD for Multi-Class SVM

Algorithm 1 can be extended to the multi-class setting. In this section we show that the resulting multi-class
BSGD inherits the same algorithmic structure and theoretical properties of its binary counterpart.

Consider a sequence of examplesS= {(xi ,yi), i = 1, ...,N}, where instancexi ∈ Rd is a d-dimensional
input vector and the multi-class labelyi belongs to the setY = {1, ...,c}. We consider the multi-class SVM
formulation by Crammer and Singer (2001). Let us define the multi-class modelf M(x) as

f M(x) = argmax
i∈Y

{ f (i)(x)}= argmax
i∈Y

{(w(i))Tx},

where f (i) is thei-th class-specific predictor andw(i) is its corresponding weight vector. By adding all class-
specific weight vectors, we constructW = [w(1)...w(c)] as thed× c weight matrix of f M(x). The predicted
label ofx is the class of the weight vector that achieves the maximal value(w(i))Tx . Given this setup, training
a multi-class SVM onSconsists of solving the optimization problem

min
W

PM(W) =
λ
2
||W||2+ 1

N ∑N
t=1 lM(W;(xt ,yt)), (10)

where the binary hinge loss is replaced with themulti-classhinge loss defined as

lM(W;(xt ,yt)) = max(0,1+ f (rt)(xt)− f (yt)(xt)), (11)

wherert = argmaxi∈Y,i 6=yt f (i)(xt), and the norm of the weight matrixW is

||W||2 = ∑i∈Y ||w
(i)||2.

The subgradient matrix∇t of the multi-class instantaneous loss function,

PM
t (W) =

λ
2
||W||2+ lM(W;(xt ,yt)),

at Wt is defined as∇t = [∇(1)
t ...∇(c)

t], where∇(i)
t = ∇w(i)PM

t (W) is a column vector. If loss (11) is equal to

zero then∇(i)
t = λw(i)

t . If loss (11) is above zero, then

∇(i)
t =











λw(i)
t −xt , if i = yt

λw(i)
t +xt , if i = rt

λw(i)
t , otherwise.

3112

BUDGETED STOCHASTIC GRADIENT DESCENT

Thus, the update rule for the multi-class SVM becomes

Wt+1←Wt −ηt∇t = (1−ηtλ)Wt +xtβt ,

whereβt is a row vector,βt = [β(1)
t ...β(c)

t]. If loss (11) is equal to zero, thenβt = 0; otherwise,

β(i)
t =







ηt , if i = yt

−ηt , if i = rt

0, otherwise.

When used in conjunction with kernel,w(i)
t can be described as

w(i)
t = ∑t

j=1 α(i)
j Φ(x j),

where

α(i)
j = β(i)

j

t

∏
k= j+1

(1−ηkλ).

The budget maintenance step can be achieved as

Wt+1←Wt+1−∆t ⇒ w(i)
t+1← w(i)

t+1−∆(i)
t ,

where∆t = [∆(1)
t ... ∆(c)

t] and the column vectors∆(i)
t are the coefficients for thei-th class-specific weight,

such thatw(i)
t+1 is spanned only byB SVs.

Algorithm 1 can be applied to the multi-class version after replacing scalarβt with vectorβt , vectorwt

with matrix Wt and vector∆t with matrix ∆t .
The analysis of the gap between BSGD and SGD optimization forthe multi-class version is similar to

that provided for its binary version, presented in Section 4. If we assume||Φ(x)||2 ≤ 0.5 , then the resulting
multi-class counterparts of Theorems 1, 2, and 3 become identical to their binary variants by simply replacing
the text Problem (1) with Problem (10).

6. Budget Maintenance Strategies

The analysis in Sections 4 and 5 indicates that budget maintenance should attempt to minimize the averaged
gradient errorĒ. To minimize Ē in the setting of online learning, we propose a greedy procedure that
minimizes the gradient error||Et || at each round. From the definition of||Et || in Theorem 1, minimizing
||Et || is equivalent to minimizing the weight degradation||∆t ||,

min||∆t ||2. (12)

In the following, we address Problem (12) through three budget maintenance strategies: removing, pro-
jecting and merging of SV(s). We discuss our solutions underthe multi-class setting, and consider the binary
setting as a special case. Three styles of budget maintenance update rules are summarized in Algorithm 2 and
discussed in more detail in the following three subsections.

6.1 Budget Maintenance through Removal

If budget maintenance removes thep-th SV, then

∆t = Φ(xp)αp,

where the row vectorαp = [α(1)
p ...α(c)

p] contains thec class-specific coefficients ofj-th SV. The optimal
solution of (12) is removal of SV with the smallest norm,

p= arg min
j∈It+1

||α j ||2k(x j ,x j).

3113

WANG, CRAMMER AND VUCETIC

Algorithm 2 Budget maintenance
Removal:

1. select somep;
2. ∆t = Φ(xp)αp;

Projection:
1. select somep;
2. ∆t=Φ(xp)αp− ∑

j∈It+1−p
Φ(x j)∆α j ;

Merging
1. select somem andn;
2. ∆t=Φ(xm)αm+Φ(xn)αn−Φ(z)αz;

Let us consider the class of translation invariant kernels wherek(x,x′) = k̃(x− x′), which encompasses the
Gaussian kernel. Let us assume, without loss of generality,that k(x,x) = 1. In this case, the best SV to
remove is the one with the smallest||αp||. Note:

• In BPegasos with SV removal with Gaussian kernel,||Et ||= 1. Thus, from the perspective of (12), all
removal strategies are equivalent.

• In BNorma, the SV with the smallest norm depends on the specific choice ofλ and η parameters.
Therefore, the decision of which SV to remove should be made during runtime. It is worth noting that
removal of the smallest SV was the strategy used by Kivinen etal. (2002) and Cheng et al. (2007) to
truncate model weight for Norma.

• In BMP, ||αp||2k(xp,xp) = (η∏t
i=p+1 φi)

2k(xp,xp), because of the projection operation. Knowing that
φi ≤ 1 the optimal removal will select the oldest SV. We note that removal of the oldest SV is the
strategy used in Forgetron (Dekel et al., 2008).

Let us now briefly discuss other kernels, wherek(x,x) in general depends onx. In this case, the SV with
the smallest norm needs to be found at runtime. How much of computational overhead this would produce
depends on the particular algorithm. In case of BPegasos, this would entail finding SV with the smallest
k(xp,xp) , while in case of Norma and BMP, it would be SV with the smallest ||αp||2k(xp,xp) value.

6.2 Budget Maintenance through Projection

Let us consider budget maintenance through projection. In this case, before thep-th SV is removed from
the model, it is projected to the remaining SVs to minimize the weight degradation. By considering the
multi-class case, projection can be defined as the solution of the following optimization problem,

min
∆α ∑

i∈Y

∥

∥

∥

∥

∥

α(i)
p Φ(xp)− ∑

j∈It+1−p
∆α(i)

j Φ(x j)

∥

∥

∥

∥

∥

2

, (13)

where∆α(i)
j are coefficients of the projected SV to each of the remaining SVs. After setting the gradient of

(13) with respect to the class-specific column vector of coefficients∆α(i) to zero, one can obtain the optimal
solution as

∀i ∈Y,∆α(i) = α(i)
p K−1

p kp, (14)

whereKp = [ki j],∀i, j ∈ It+1− p is the kernel matrix,ki j = k(xi ,x j), andkp = [kp j]
T ,∀ j ∈ It+1− p is the

column vector. It should be observed that invertingKp can be accomplished inO(B2) time if Woodbury for-
mula (Cauwenberghs and Poggio, 2000) is applied to reuse theresults of inversion from previous projections.
Finally, upon removal of thep-th SV,∆α is added toα of the remaining SVs.

3114

BUDGETED STOCHASTIC GRADIENT DESCENT

The remaining issue is finding the best amongB+1 candidate SVs for projection. After plugging (14)
into (13) we can observe that the minimal weight degradationof projecting equals

min||∆t ||2 = min
p∈It+1

||αp||2
(

kpp−kT
p(K

−1
p kp)

)

. (15)

Considering there areB+1 SVs, evaluation of (15) requiresO(B3) time for each budget maintenance step.
As an efficient approximation, we propose a simplified solution that always projects the smallest SV,p =
argminj∈It+1 ||α j ||2k(x j ,x j). Then, the computation is reduced toO(B2). We should also note that the space
requirement of projection isO(B2), which is needed to store the kernel matrix and its inverse. Unlike the
recently proposed projection method for multi-class perceptron (Orabona et al., 2009), that projects an SV
only onto the SVs assigned to the same class, our method solves a more general case by projecting an SV
onto all the remaining SVs, thus resulting in smaller weightdegradation.

It should be observed that, by selecting the smallest SV to project, it can be guaranteed that weight
degradation of projection is upper bounded by weight degradation of removal for anyt, for all three BSGD
variants from Table 1. Therefore, Theorems 1, 2, and 3 remainvalid for projection. Since weight degradation
for projection is expected to be, on average, smaller than that for removal, it is expected that the average error
Ē would be smaller too, thus resulting in smaller gap in the average instantaneous loss .

6.3 Budget Maintenance through Merging

Problem (12) can also be solved by merging two SVs to a newly created one. The justification is as follows.
For thei-th class weight, ifΦ(xm) andΦ(xn) are replaced by

M(i) =
(

α(i)
m Φ(xm)+α(i)

n Φ(xn)
)

/(α(i)
m +α(i)

n),

(assumingα(i)
m +α(i)

n 6= 0) and the coefficient ofM(i) is set toα(i)
m +α(i)

n , then the weight remains unchanged.
The difficulty is thatM(i) cannot be used directly because the pre-image ofM(i) may not exist. Moreover,
even if the pre-images existed, since every class results indifferentM(i), it is not clear whatM would be the
best overall choice. To resolve these issues, we define the merging problem as finding an input space vector
z whose imageΦ(z) is at the minimum distance from the class-specificM(i)’s,

min
z ∑i∈Y ||M

(i)−Φ(z)||2. (16)

Let us assume a radial kernel,8 k(x,x′) = k̃(||x−x′||2), is used. Problem (16) can then be reduced to

max
z ∑i∈Y (M

(i))TΦ(z). (17)

Setting the gradient of (17) with respect toz to zero, leads to solution

z = hxm+(1−h)xn,whereh=
∑i∈Y m(i)k̃′(||xm− z||2)

∑i∈Y

(

m(i)k̃′(||xm− z||2)+(1−m(i))k̃′(||xn− z||2)
) , (18)

wherem(i) = α(i)
m /(α(i)

m +α(i)
n), and k̃′(x) is the first derivative of̃k. (18) indicates thatz lies on the line

connectingxm andxn. Plugging (18) into (17), the merging problem is simplified to finding

max
h

∑
i∈Y

(

m(i)k1−h(xm,xn)+(1−m(i))kh(xm,xn)
)

,

where we denotedkh(x,x′) = k(hx,hx′). We can use any efficient line search method (e.g., the golden search)
to find the optimal h, which takesO(log(1/ε))time, whereε is the accuracy of the solution. After that, the
optimalz can be calculated using (18).

8. Gaussian kernelk(x,x′) = exp(−σ||x − x′ ||2)is a radial kernel.

3115

WANG, CRAMMER AND VUCETIC

After obtaining the optimal solutionz, the optimal coefficientα(i)
z for approximatingα(i)

m Φ(xm)+α(i)
n Φ(xn)

by α(i)
z Φ(z) is obtained by minimizing the following objective function

||∆t ||2≡min
α(i)

z

∑
i∈Y

∥

∥

∥
α(i)

m Φ(xm)+α(i)
n Φ(xn)−α(i)

z Φ(z)
∥

∥

∥

2
. (19)

The optimal solution of (19) is

α(i)
z = α(i)

m k(xm,z)+α(i)
n k(xn,z).

The remaining question is what pair of SVs leads to the smallest weight degradation. The optimal solution
can be found by evaluating merging of allB(B− 1)/2 pairs of SVs, which would requireO(B2) time. To
reduce the computational cost, we use the same simplification as in projection (Section 6.2), by fixingm as
the SV with the smallest value of||αm||2. Thus, the computation is reduced toO(B). We should observe that
the space requirement is onlyO(B) because there is no need to store the kernel matrix.

It should be observed that, by selecting the smallest SV to merge, it can be guaranteed that weight degra-
dation of merging is upper bounded by weight degradation of removal for anyt, for all three BSGD variants
from Table 1. Therefore, Theorems 1, 2, and 3 remain valid formerging. Using the same argument as for
projection,Ē is expected to be smaller than that of removal.

6.4 Relationship between Budget and Weight Degradation

When budget maintenance is achieved by projection and merging, there is an additional impact of budget size
on Ē. As budget sizeB grows, the density of SVs is expected to grow. As a result, theweight degradation of
projection and merging is expected to decrease, thus leading to decrease in̄E. The specific amount depends
on the specific data set and specific kernel. We evaluate the impact ofB on Ē experimentally in Table 6 .

7. Experiments

In this section, we evaluate BSGD9 and compare it to related algorithms on 14 benchmark data sets.

7.1 Experimental Setting

We first describe the data sets and the evaluated algorithms.

7.2 Data Sets

The properties (training size, dimensionality, number of classes) of 14 benchmark data sets10 are summarized
in the first row of Tables 3, 4 and 5. Gauss data was generated asa mixture of 2 two-dimensional Gaussians:
one class is fromN((0,0), I) and another is fromN((2,0),4I). Checkerboard data was generated as a uni-
formly distributed two-dimensional 4×4 checkerboard with alternating class assignments. Attributes in all
data sets were scaled to mean 0 and standard deviation 1.

7.3 Algorithms

We evaluated several budget maintenance strategies for BSGD algorithms BPegasos, BNorma, and BMP.
Specifically, we explored the following budgeted online algorithms:

• BPegasos+remove: multi-class BPegasos with arbitrary SV removal;11

9. Our implementation of BSDG algorithms is available atwww.dabi.temple.edu/ ˜ vucetic/BSGD.html .
10. Adult, Covertype, DNA, IJCNN, Letter, Satimage, Shuttleand USPS are available atwww.csie.ntu.edu.tw/ ˜ cjlin/

libsvmtools/datasets/ , Banana is available atida.first.fhg.de/projects/bench/benchmarks.htm , and Waveform data
generator and Pendigits are available atarchive.ics.uci.edu/ml/datasets.html .

11. Arbitrary removal is equivalent to removing the smallest one, as discussed in Section 6.1.

3116

BUDGETED STOCHASTIC GRADIENT DESCENT

• BPegasos+project: multi-class BPegasos with projection of the smallest SV;

• BPegasos+merge: multi-class BPegasos with merging of the smallest SV;

• BNorma+merge: multi-class BNorma with merging of the smallest SV;

• BMP+merge: multi-class BPMP with merging of the smallest SV.

These algorithms were compared to the following offline, online, and budgeted online algorithms:
Offline algorithms:

• LIBSVM: state-of-art offline SVM solver (Chang and Lin, 2001); we used the 1 vs rest method as the
default setting for the multi-class tasks.

Online algorithms:

• IDSVM: online SVM algorithm which achieves the optimal solution (Cauwenberghs and Poggio,
2000);

• Pegasos: non-budgeted kernelized Pegasos (Shalev-Shwartz et al., 2011);

• Norma: non-budgeted stochastic gradient descent for kernel SVM (Kivinen et al., 2002);

• MP: non-budgeted margin perceptron algorithm (Duda and Hart, 1973) equipped with a kernel func-
tion.

Budgeted online algorithms:

• TVM: SVM-based budgeted online algorithm (Wang and Vucetic, 2010b);

• BPA: budgeted Passive-Aggressive algorithm that uses the projection of an SV to its nearest neighbor
to maintain the budget (theBPANN version in Wang and Vucetic, 2010a);

• MP+stop: margin perceptron algorithm that stops training when the budget is exceeded;

• MP+random: margin perceptron algorithm that removes a random SV when the budget is exceeded;

• Projectron++: margin perceptron that projects an SV only ifthe weight degradation is below the thresh-
old; otherwise, budget is increased by one SV (Orabona et al., 2009). In our experiments, we set the
Projectron++ threshold such that the number of SVs equalsB of the budgeted algorithms at the end of
training.

Gaussian kernel was used in all experiments. For Norma and BNorma, the learning rate parameterη was
set either to 1 (as used by Kivinen et al., 2002) or to 0.5(2+0.5N−0.5)0.5 (as used by Shalev-Shwartz et al.,
2011), whichever resulted in higher cross-validation accuracy. The hyper-parameters (kernel widthσ, λ for
Pegasos and Norma,U for BMP, C for LIBSVM, IDSVM, TVM) were selected by 10 fold cross-validation
for each combination of data, algorithm, and budget. We repeated all the experiments five times, where at
each run the training examples were shuffled differently. Mean and standard deviation of the accuracies of
each set of experiments are reported. For Adult, DNA, IJCNN,Letter, Pendigit, Satimage, Shuttle and USPS
data, we used the common training-test split. For other datasets, we randomly selected a fixed number of
examples as the test data in each repetition. We trained all online (budgeted and non-budgeted) algorithms
using a single pass over the training data. All experiments were run on a 3G RAM, 3.2 GHz Pentium Dual
Core. Our proposed algorithms were implemented in MATLAB.

7.4 Experimental Results

The accuracy of different algorithms on test data is reported in Table 3, 4 and 5.12

12. For IDSVM, TVM and BPA, only results on the binary data sets are reported since only binary classification versions of these
algorithms are available.

3117

WANG, CRAMMER AND VUCETIC

Algorithms/Data Banana Gauss Adult IJCNN Checkerb
(4.3K, 2, 2) (10K, 2, 2) (21K,123,2) (50K, 21, 2) (10M, 2, 2)

Offline:
LIBSVM Acc: 90.70±0.06 81.62±0.40 84.29±0.0 98.72±0.10 99.87±0.02
(#SVs): (1.1K) (4.0K) (8.5K) (4.9K) (2.6K100K)
Online(one pass):
IDSVM 90.65±0.04 81.67±0.40 83.93±0.03 98.51±0.03 99.40±0.02

(1.1K) (4.0K) (4.0K8.3K) (3.6K33K) (7.5K51K)
Pegasos 90.48±0.78 81.54±0.25 84.02±0.14 98.76±0.09 99.35±0.04

(1.7K) (6.4K) (9K) (16K) (41K916K)
Norma 90.23±1.04 81.54±0.06 83.65±0.11 93.41±0.15 99.32±0.09

(2.1K) (5.2K) (10K) (33K) (128K730K)
MP 89.40±0.57 78.45±2.18 82.61±0.61 98.61±0.10 99.43±0.11

(1K) (3.4K) (8K) (11K) (22K1M)
Budgeted(one pass):
1-st line: B= 100:
2-nd line: B= 500:
TVM 90.03±0.96 81.56±0.16 82.77±0.00 97.20±0.19 98.90±0.09

91.13±0.68 81.39±0.50 83.82±0.04 98.32±0.14 99.94±0.03
BPA 90.35±0.37 80.75±0.24 83.38±0.56 93.01±0.53 99.01±0.04

91.30±1.18 81.67±0.42 83.58±0.30 96.20±0.35 99.70±0.01
Projection++ 88.36±1.52 76.06±2.25 77.86±3.45 92.36±1.15 96.92±0.45

86.76±1.27 75.17±4.02 79.80±2.11 94.73±1.95 98.24±0.34
MP+stop 88.07±1.38 74.10±3.00 80.00±1.61 91.13±0.18 86.39±1.12

89.77±0.25 79.68±1.19 81.68±0.90 94.60±0.96 95.43±0.43
MP+random 87.54±1.33 75.68±3.68 79.78±0.88 90.22±1.69 84.24±1.39

88.36±0.99 77.26±1.16 80.40±1.03 91.86±1.39 93.12±0.56

BPegasos+remove 85.63±1.25 79.13±1.40 78.84±0.76 90.73±0.31 83.02±2.12
89.92±0.66 80.70±0.61 81.67±0.44 93.30±0.57 91.82±0.22

BPegasos+project 90.21±1.61 81.25±0.34 83.88±0.33 96.48±0.44 97.27±0.72
90.40±0.47 81.33±0.40 83.84±0.07 97.52±0.62 98.08±0.27

BPegasos+merge 90.17±0.61 81.22±0.40 84.55±0.17 97.27±0.72 99.55±0.12
89.46±0.81 81.34±0.38 83.93±0.41 98.08±0.27 99.83±0.08

BNorma+merge 91.53±1.14 81.27±0.37 84.11±0.25 92.69±0.19 99.16±0.23
90.65±1.28 81.37±0.25 83.80±0.21 91.35±0.13 99.72±0.05

BMP+merge 89.37±1.31 79.57±0.90 83.34±0.36 96.67±0.35 98.24±0.13
89.46±0.50 79.38±0.82 82.97±0.26 98.10±0.41 98.79±0.08

Table 3: Comparison of offline, online, and budgeted online algorithms on 5 benchmark binary classification
data sets. Online algorithms (IDSVM, Pegasos, Norma and MP)were early stopped after 10,000
seconds and the number of examples being learned at the time of the early stopping was recorded
and shown in the subscript within the #SV parenthesis. LIBSVM was trained on a subset of 100K
examples on Checkerboard, Covertype and Waveform due to computational issues. Among the
budgeted online algorithms, for each combination of data set and budget, the best accuracy is in
bold, while the accuracies that were not significantly worse(with p > 0.05 using the one-sided
t-test) are in bold and italic.

7.5 Comparison of Non-budgeted Algorithms

On the non-budgeted algorithm side, as expected, the exact SVM solvers LIBSVM and IDSVM have the
highest accuracy and are followed by Pegasos, MP and Norma, algorithms trained by a single pass of the
training data. The dual-form based LIBSVM and IDSVM have sparser models than the primal-form based

3118

BUDGETED STOCHASTIC GRADIENT DESCENT

Algorithms/Data DNA Satimage USPS Pen Letter
(4.3K,180, 3) (4.4K, 36, 6) (7.3K,256,10) (7.5K,16, 10) (16K, 16, 26)

Offline:
LIBSVM 95.32±0.00 91.55±0.00 95.27±0.00 98.23±0.00 97.62±0.00

(1.3K) (2.5K) (1.9K) (0.8K) (8.1K)
Online(one pass):
Pegasos 92.87±0.81 91.29±0.15 94.41±0.11 97.86±0.27 96.28±0.15

(0.7K) (2.9K) (4.9K) (1.4K) (8.2K)
Norma 86.15±0.67 90.28±0.35 93.40±0.33 95.86±0.27 95.21±0.09

(2.0K) (4.4K) (6.6K) (7.0K) (15K)
MP 93.36±0.93 91.23±0.54 94.37±0.04 98.02±0.11 96.41±0.24

(0.8K) (1.6K) (2.2K) (1.9K) (8.2K)
Budgeted(one pass):
1-st line: B= 100:
2-nd line: B= 500:
Projection++ 82.94±3.73 84.47±1.75 81.40±1.26 93.33±0.96 47.23±0.99

90.11±2.11 88.66±0.66 92.02±0.59 95.78±0.75 75.90±0.76
MP+stop 73.56±7.59 82.34±2.43 79.11±2.15 88.27±1.56 41.89±1.16

91.23±0.78 88.68±0.60 90.78±0.58 97.78±0.20 67.32±1.53
MP+random 73.87±4.93 82.51±1.34 78.06±2.01 87.77±2.96 40.93±2.31

87.84±4.84 87.25±1.07 90.10±0.97 97.20±0.68 68.23±1.14

BPegasos+remove 78.63±2.03 81.09±3.21 80.16±1.15 91.84±1.27 41.50±1.49
91.48±1.65 86.77±1.01 89.44±1.05 97.6±0.21 71.97±1.04

BPegasos+ project 86.53±2.03 87.69±0.62 89.67±0.42 96.19±0.85 74.49±1.89
92.26±1.20 88.86±0.2 92.61±0.32 97.58±0.49 87.85±0.49

BPegasos+merge 93.13±1.49 87.53±0.72 91.76±0.24 97.06±0.19 73.63±1.72
92.42±1.24 89.77±0.14 92.91±0.19 97.63±0.14 89.68±0.61

BNorma+merge 75.72±0.25 85.61±0.54 87.44±0.45 90.82±0.42 61.79±1.58
76.25±3.27 86.33±0.40 89.51±0.24 94.60±0.22 75.84±0.35

BMP+merge 93.76±0.31 88.33±0.90 92.31±0.57 97.35±0.16 74.99±1.08
93.84±0.64 90.41±0.22 93.10±0.36 97.86±0.33 88.22±0.36

Table 4: Comparison of offline, online, and budgeted online algorithms on 5 benchmark multi-class data sets

Pegasos, MP, and Norma. Pegasos and MP achieve similar accuracy on most data sets, while Pegasos signif-
icantly outperforms MP on the two noisy data sets Gauss and Waveform. Norma is generally less accurate
than Pegasos and MP, and the gap is larger on IJCNN, Checkerboard, DNA, and Covertype. Additionally,
Norma generates more SVs than its two siblings.

7.6 Comparison of Budgeted Algorithms

On the budgeted side, BPegasos+merge and BMP+merge are the two most accurate algorithms and their accu-
racies are comparable on most data sets. Considering that BPegasos+merge largely outperforms BMP+merge
on Phoneme and Covertype and also the additional computational cost of the projection step in BMP, BPega-
sos+merge is clearly the winner of this category. The accuracy of BPegasos+project is highly competitive to
the above two algorithms, but we should note that projectionis costlier than merging. Accuracy of TVM and
BPA is comparable to BPegasos+merge on the binary data sets (with exception of the lower BPA accuracy on
IJCNN). Accuracies of Projectron++, MP+stop, and MP+random are significantly lower. In this subgroup,
Projectron++ is the most successful, showing the benefits ofprojecting as compared to removal. Consistent
with this result, BSGD algorithms using removal fared significantly worse than those using projection and
merging.

3119

WANG, CRAMMER AND VUCETIC

Algorithms/Data Shuttle Phoneme Covertype Waveform
(43K, 9, 2) (84K,41,48) (0.5M, 54, 7) (2M, 21, 3)

Offline:
LIBSVM 99.90±0.00 78.24±0.05 89.69±0.15 85.83±0.06

(0.3K) (69K) (36K100K) (32K100K)
Online(one pass):
Pegasos 99.90±0.00 79.62±0.16 87.73±0.31 86.50±0.10

(1.2K) (80K80K) (47K136K) (74K192K)
Norma 99.79±0.01 79.86±0.09 82.80±0.33 86.29±0.15

(8K) (84K) (92K92K) (111K189K)
MP 99.89±0.02 79.80±0.12 88.84±0.06 84.36±0.36

(0.4K44K) (78K78K) (56K160K) (83K310K)
Budgeted(one pass):
1-st line: B= 100:
2-nd line: B= 500:
Projection++ 99.55±0.16 21.20±1.24 62.54±3.14 80.75±0.81

99.85±0.08 32.32±1.97 67.32±2.93 83.56±0.54
MP+stop 99.39±0.35 24.86±2.10 56.96±1.59 81.04±2.61

99.90±0.01 33.76±1.01 61.93±1.56 83.76±0.71
MP+random 98.67±0.07 23.29±1.39 55.56±1.37 79.94±1.12

99.90±0.01 31.37±1.91 60.47±1.70 81.61±1.51

BPegasos+remove 99.26±0.54 24.39±1.48 55.64±1.82 78.43±1.79
99.89±0.02 32.10±0.85 62.97±0.55 84.38±0.53

BPegasos+ project 99.81±0.05 43.60±0.10 70.84±0.59 85.63±0.07
99.89±0.02 48.87±0.07 74.94±0.22 86.18±0.06

BPegasos+merge 99.63±0.02 46.49±0.78 74.10±0.30 86.71±0.38
99.89±0.02 51.57±0.30 76.89±0.51 86.63±0.28

BNorma+merge 99.48±0.01 39.66±0.66 71.54±0.53 86.60±0.12
99.80±0.01 45.13±0.43 72.81±0.46 82.03±0.53

BMP+merge 98.99±0.55 42.18±1.94 67.28±3.86 86.02±0.22
99.91±0.01 47.02±0.98 72.31±0.75 86.03±0.17

Table 5: Comparison of offline, online, and budgeted online algorithms on 4 benchmark multi-class data sets

7.7 Best Budgeted Algorithm vs Non-budgeted Algorithms

Comparing the best budgeted algorithm BPegasos+merge withmodest budgets ofB= 100 and 500 with the
non-budgeted Pegasos and LIBSVM, we can see that it achievesvery competitive accuracy. Interestingly,
its accuracy is even larger than the two non-budgeted algorithms on two largest data sets Checkerboard and
Waveform. This indicates noise reduction capability of SV merging. This result is even more significant
as BPegasos+merge has faster training time and learns a muchsmaller model. On Covertype, Phoneme and
Letter data, the accuracy gap between budgetB= 500 and non-budgeted algorithms remained large and it can
be explained by the complexity of these problems; for example, 30% of Covertype examples, 50% of Letter
examples, and 100% of Phoneme examples became SVs in Pegasos. In addition, Letter had 26 class labels
and Phoneme 48. In all 3 data sets, the accuracy clearly improved fromB = 100 to 500, which indicates
that extra budget is needed for comparable accuracy. To better illustrate the importance of budget size on
some data sets, Figure 2 shows that on Letter and Covertype, the accuracy of BPegasos+merge approaches
that of Pegasos as the larger budget is used. Interestingly,while 16K examples appear to be sufficient for
convergence on Letter data set, it is evident that Covertypecould benefit from a much larger budget than the
available half million labeled examples.

3120

BUDGETED STOCHASTIC GRADIENT DESCENT

10
2

10
3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Budget

ac
cu

ra
cy

BPegasos+merge
Pegasos

(a)

10
1

10
2

10
3

10
4

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Budget

ac
cu

ra
cy

BPegasos+merge
Pegasos

(b)

Figure 2: The accuracy of BPegasos as a function of the budgetsize

−0.5

0

0.5

1

1.5

2

2.5

ac
cu

ra
cy

 im
pr

ov
em

en
t

Ban
an

a

Gau
ss

Adu
lt

IJC
NN

Che
ck

er
b

DNA

Sat
im

ag
e

USPS
Pen

Le
tte

r

Shu
ttle

Pho
ne

m
e

Cov
er

typ
e

W
av

ef
or

m

Figure 3: BPegasos+merge (B= 500): difference in accuracy between a model trained with 5-passes and a
model trained with a single-pass of the data.

7.8 Multi-epoch vs Single-pass Training

For the most accurate budgeted online algorithm BPegasos+merge, we also report its accuracy after allowing
it to make 5 passes through training data. In this scenario, BPegasos should be treated as an offline algorithm.
The accuracy improvement as compared to the single-pass version is reported in Figure 3. We can observe
that multi-epoch training improves the accuracy of BPegasos on most data sets. This result suggests that, if
the training time is not of major concern, multiple accessesto the training data should be used.

7.9 Accuracy Evolution Curves

In Figure 4 we show evolution of accuracy as a function of the number of observed examples on the three
largest data sets. By comparing BPegasos+merge with non-budgeted SVMs and several other budgeted algo-
rithms from Tables 3, 4, and 5, we observe that the accuracy ofBPegasos+merge consistently increases with

3121

WANG, CRAMMER AND VUCETIC

10
3

10
4

10
5

10
6

10
7

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

length of data stream

ac
cu

ra
cy

LIBSVM, #SVs=2.6K
IDSVM, #SVs=7.5K
Pegasos, #SV=41K
TVM, B=100, finished in 29Ks
BPA, B=100, finished in 4Ks
BPegasos+merge, B=100, finished in 2.5Ks

(a) Checkerboard

10
2

10
3

10
4

10
5

10
6

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

length of data stream

ac
cu

ra
cy

LIBSVM, #SVs=32K
Pegasos, #SVs=90K
BPegasos+merge, B=100, finished in 1.1Ks

(b) Waveform

10
2

10
3

10
4

10
5

0.5

0.6

0.7

0.8

0.9

length of data stream

ac
cu

ra
cy

LIBSVM, #SVs=36K
Pegasos, #SVs=90K
BPegasos+merge, B=100, finished in 0.2Ks

(c) Covertype

Figure 4: Comparison of accuracy evolution curves

data stream size. On Checkerboard, its accuracy closely follows Pegasos and eventually surpasses it after
Pegasos had to be early stopped. IDSVM and its budgeted version TVM exhibit faster accuracy growth ini-
tially, but are surpassed by BPegasos+merge as more training examples become available. On waveform, the
accuracy of BPegasos grows faster than the original non-budgeted version. This behavior can be attributed
to the noise-reduction property of merging. Finally, on Covertype, BPegasos+merge significantly trails its
non-budgeted cousin, and this behavior is consistent with Figure 2.b.

3122

BUDGETED STOCHASTIC GRADIENT DESCENT

10
2

10
3

10
4

10
5

10
6

10
7

0.8

0.85

0.9

0.95

1

length of data stream

ac
cu

ra
cy

BPegasos+merge, B=100, finished in 2.5Ks
BPegasos+project, B=100, finished in 1.7Ks
BPegasos+remove, B=100, finished in 0.8Ks

(a) Checkerboard

10
2

10
3

10
4

10
5

10
6

0.75

0.8

0.85

length of data stream

ac
cu

ra
cy

BPegasos+merge, B=100, finished in 1.1Ks
BPegasos+project, B=100, finished in 2.4Ks
BPegasos+remove, B=100, finished in 0.4Ks

(b) Waveform

10
2

10
3

10
4

10
5

10
6

0.5

0.55

0.6

0.65

0.7

0.75

length of data stream

ac
cu

ra
cy

 BPegasos+merge, B=100, finished in 0.2Ks
BPegasos+project, B=100, finished in 0.4Ks
BPegasos+remove, B=100, finished in 0.4Ks

(c) Covertype

Figure 5: Accuracy evolution curves of BPegasos for different budget maintenance strategies

In Figure 5 we compare evolution of accuracy of BPegasos for 3proposed budget maintenance strategies.
As could be seen, removal is inferior to projection and merging on all 3 data sets. On Checkerboard, removal
even causes a gradual drop in accuracy after an initial moderate increase, while on the other two sets the
accuracy fluctuates around a very small value close to that achieved by training on 100 initial examples. On
the other hand, projection and merging result in strong and consistent accuracy increase with data stream
size. Interestingly, on Waveform data, merging significantly outperforms projection, which may point to its
robustness to noise.

3123

WANG, CRAMMER AND VUCETIC

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

length of data stream

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Pegasos
BPegasos+project, B=100
BPegasos+project, B=500
BPegasos+merge, B=100
BPegasos+merge, B=500

Figure 6: Training time curves on Checkerboard data

Legends in both Figures 4 and 5 list total training time of budgeted algorithms at the end of the data stream
(non-budgeted algorithms were early stopped after 10K seconds). Considering that our implementation of all
algorithms except LIBSVM was in Matlab and on a 3GB RAM, 3.2GHz Pentium Dual Core 2 PC, Figure 4
indicates a rather impressive speed of the budgeted algorithms. From Figure 5, it can be seen that merging
and projection are very fast and are comparable to removal.

7.10 Training Time Scalability

Figure 6 presents log-log plot of the training time versus the data stream length on Checkerboard data set
with 10 million examples. Excluding the initial stage, Pegasos had the fastest increase in training time,
confirming the expectedO(N2) runtime. On the budgeted side, the runtime time of BPegasos with merging
and projecting increases linearly with data size. However,it is evident that BPegasos with projecting grow
much faster with the budget size than costs of BPegasos with merging. This confirms the expectedO(B)
scaling of the merging andO(B2) scaling of the projection version.

7.11 Weight Degradation

Theorems 1, 2, and 3 indicate that lowerĒ leads to lower gap between the optimal solution and the budgeted
solution. We also argued that̄E decreases with budget size through three mechanisms. In Table 6, we show
how the value ofĒ on Checkerboard data is being influenced by the budgetB and, in turn, how the change
in Ē influences accuracy. From the comparison of three strategies for twoB values (100 and 500), we see as
B gets larger,Ē is getting smaller. The results also show that projection and merging achieve significantly
lower value than removal and that lowerĒ indeed results in higher accuracy.

7.12 Merged vs Projected SVs

In order to gain further insight into the projection and merging-based budget maintenance, in Figure 7 we
compare final SVs generated by these two strategies on the USPS data where classes are 10 digits. We used
budgetB= 10 for BPegasos to explore how successful the algorithm was in revealing the 10 digits. Compar-
ing Figures 7.a-c and 7.d-e we can observe that SVs generatedby 3 different runs of BPegasos+project did
not represent all 10 digits (e.g., in Run 1, digits 0 and 6 appear twice, while digits 3 and 4 are not represented).
It should be noted that the 10 SVs obtained using projection are identical to 10 actual training examples of
USPS. On the other hand, SVs obtained by merging in all 3 runs represent all 10 digits. The appearance of

3124

BUDGETED STOCHASTIC GRADIENT DESCENT

B= 100 B= 500
Ē Acc Ē Acc

BPegasos+remove 1.402±0.000 79.19±3.05 1.401±0.000 90.32±0.40
BPegasos+project 0.052±0.007 99.25±0.06 0.007±0.001 99.66±0.10
BPegasos+merge 0.037±0.006 99.55±0.14 0.002±0.001 99.74±0.08

Table 6: Comparison of accuracy and averaged weight degradation for three versions of BPegasos as a func-
tion of budget sizeB on 10M Checkerboard examples, using same parameters (λ = 10−4, kernel
width σ = 0.0625).

(a) BPegasos+project(run 1)

(b) BPegasos+project(run 2)

(c) BPegasos+project(run 3)

(d) BPegasos+merge(run 1)

(e) BPegasos+merge(run 2)

(f) BPegasos+merge(run 3)

Figure 7: The plot of SVs on USPS data. (Each row corresponds to a different run. 3 different runs using
BPegasos+project (B = 10) with average accuracy 74%; 3 different runs using BPegasos+merge
(B= 10) with average accuracy 86%.)

each SV in Figure 7.d-e is blurred and is a result of many mergings of the original labeled examples. This
example is a useful illustration of the main difference between projection and merging, and it can be helpful
in selecting the appropriate budget maintenance strategy for a particular learning task.

8. Conclusion

We proposed a framework for large-scale kernel SVM trainingusing BSGD algorithms. We showed that bud-
geted versions of three popular online algorithms, Pegasos, Norma, and Margin Perceptron, can be studied
under this framework. We obtained theoretical bounds on their performance that indicate that decrease in
BSGD accuracy is closely related to the model degradation due to budget maintenance. Based on the analy-
sis, we studied budget maintenance strategies based on removal, projection, and merging. We experimentally
evaluated the proposed BSGD algorithms in terms of accuracy, and training time and compared them with a

3125

WANG, CRAMMER AND VUCETIC

number of offline and online, as well as non-budgeted, and budgeted alternatives. The results indicate that
highly accurate and compact kernel SVM classifiers can be trained on high-throughput data streams. Partic-
ularly, the results show that merging is a highly attractivebudget maintenance strategy for BSGD algorithms
as it results in relative accurate classifiers while achieving linear training time scaling with support vector
budget and data size.

Acknowledgments

This work was supported by the U.S. National Science Foundation Grant IIS-0546155. Koby Crammer is a
Horev Fellow, supported by the Taub Foundations.

Appendix A. Proof of Theorem 1

We start by showing the following technical lemma.
Lemma 1

• Let Pt be as defined in (3).

• Let C be a closed convex set with radius U.

• Let w1, ...,wN be a sequence of vectors such thatw1 ∈C and for any t> 1 wt+1← ∏C(wt −ηt∇t −
∆t), ∇t is the (sub)gradient of Pt at wt , ηt is a learning rate function,∆t is a vector, and∏C(w) =
argminw′∈C ||w′−w||, is a projection operation that projectsw to C.

• Assume||Et || ≤ 1.

• Define Dt = ||wt −u||2−||wt+1−u||2 as the relative progress towardu at t-th round.

Then, the following inequality holds for anyu ∈C

1
N

N

∑
t=1

Pt(wt)−
1
N

N

∑
t=1

Pt(u)≤
1
N

(

N

∑
t=1

Dt

2ηt
−

N

∑
t=1

λ
2
||wt −u||2+ (λU +2)2

2

N

∑
t=1

ηt

)

+2UĒ. (20)

Proof of Lemma 1. First, we rewritewt+1←∏C(wt −ηt∇t −∆t) by treating∆t as the source of error in the
gradientwt+1←∏C(wt −ηt∂t), where we defined∂t = ∇t +Et . Then, we lower boundDt as

Dt = ||wt −u||2−||∏C(wt −ηt∂t)−u||2
≥1 ||wt −u||2−||wt −ηt∂t −u||2
=−η2

t ||∂t ||2+2ηt∇T
t (wt −u)+2ηtET

t (wt −u)

≥2−η2
t (λU +1+1)2+2ηt

(

Pt(wt)−Pt(u)+ λ
2 ||wt −u||2

)

−4ηt ||Et ||U.

(21)

In ≥1, we use the fact that sinceC is convex,||∏C(a)−b|| ≤ ||a−b|| for all b∈C anda. In≥2, ||∂t || is
bounded as

||∂t || ≤ ||λwt +ytΦ(xt)||+ ||Et || ≤ λU +1+1,

and, by applying the property of strong convexity, it follows

∇T
t (wt −u)≥ Pt(wt)−Pt(u)+λ||wt −u||2/2,

sincePt is λ-strongly convex function w.r.t.||w||2/2 and∇t is the subgradient ofPt(w) at wt (according to
Lemma 1 by Shalev-Shwartz and Singer (2007). Bound||wt − u|| ≤ 2U holds since both||wt || andu are
upper bounded byU .

3126

BUDGETED STOCHASTIC GRADIENT DESCENT

Dividing both sides of inequality (21) by 2ηt and rearranging, we obtain

Pt(wt)−Pt(u)≤
Dt

2ηt
− λ

2
||wt −u||2+ ηt(λU +1+1)2

2
+2||Et ||U. (22)

Summing over allt in (22) and dividing two sides of inequality byN leads to the stated bound.
Proof of Theorem 1. wt+1 is bounded as

||wt+1||= ||(1−ηtλ)wt +ηtytΦ(xt)−∆t ||
≤ ||(1−ηtλ)wt ||+ηt(1+ ||Et ||)≤3 2/λ.

In ≤3 we used the definition ofηt and recursively bounded||wt ||.
Using the fact that||w∗|| ≤ 1/

√
λ (Shalev-Shwartz et al., 2011), both||wt || and ||w∗|| can be bounded

by constantU defined in (6). Thus the update rulewt+1← ∏C(wt −ηt∇t −∆t) in Lemma 1 is reduced to
wt+1← wt −ηt∇t −∆t .

Pluggingηt ≡ 1/(λt) into RHS of inequality (20) in Lemma 1 and replacingu with ||w∗||, the first and
second term in the parenthesis on the RHS are bounded as

N
∑

t=1

Dt
2ηt
−

N
∑

t=1

λ
2 ||wt −w∗||2

≤ 1
2

(

(1
η1
−λ)||w1−w∗||2+

N
∑

t=2
(1

ηt
− 1

ηt−1
−λ)||wt −w∗||2− 1

ηN
||wN+1−w∗||2

)

=− 1
2ηN
||wN+1−w∗||2≤ 0.

(23)

According to the divergence rate of harmonic series, the third term on the RHS in (20) is bounded by,

(λU +2)2

2

N

∑
t=1

ηt =
(λU +2)2

2λ

N

∑
t=1

1
t
≤ (λU +2)2

2λ
(ln(N)+1). (24)

With boundedU value, combining (23), (24) with (20) leads to (7).

Appendix B. Proof of Theorem 2

wt+1 is bounded as
||wt+1||= ||(1−ηtλ)wt +ηtytΦ(xt)−∆t ||
≤ ||(1−ηtλ)wt ||+ηt(1+ ||Et ||)
≤ ||(1−ηtλ)wt ||+2ηt .

Since||w1|| = 0, the bound||wt+1|| ≤ 2/λ holds for allt (Kivinen et al., 2002). Using the fact that||w∗|| ≤
1/
√

λ (Shalev-Shwartz, Singer & Srebro, 2011), both||wt || and||w∗|| are bounded by constantU defined in
(6). Thus the update rulewt+1←∏C(wt −ηt∇t −∆t) in Lemma 1 is reduced towt+1← wt −ηt∇t −∆t .

Replacingu by w∗ in (20), the first term at RHS in (20) can be bounded as

N
∑

t=1

Dt
2ηt

=
N
∑

t=1

1
2ηt

(||wt −w∗||2−||wt+1−w∗||2)

= 1
2η1
||w1−w∗||2+ 1

2

N
∑

t=2
(1

ηt
− 1

ηt−1
)||wt −w∗||2− 1

2ηN
||wN+1−w∗||2

≤ 4U2

2

(

1
η1

+
N
∑

t=2
(1

ηt
− 1

ηt−1
)

)

= 2U2

ηN
= 2U2

√
N

η .

(25)

The third term at RHS in (20) can be bounded according to the series divergence rate as

(λU +2)2

2 ∑N
t=1 ηt ≤

η(λU +2)2

2
(2
√

N−1). (26)

With boundedU value, combing (25), (26) with (20) and bounding the negative terms by zero lead to (8).

3127

WANG, CRAMMER AND VUCETIC

Appendix C. Proof of Theorem 3

Replacingu by w∗ in (20), the first term at RHS in (20) can be bounded as

N
∑

t=1

Dt
2ηN

=
N
∑

t=1

1
2ηt

(

||wt −w∗||2−||wt+1−w∗||2
)

= 1
2η1
||w1−w∗||2+ 1

2

N
∑

t=2
(1

ηt
− 1

ηt−1
)||wt −w∗||2− 1

2ηN
||wN+1−w∗||2

= 1
2η ||w1−w∗||2− 1

2η ||wN+1−w∗||2≤ U2

2η ,

using the factηt = η and λ = 0. Bounding the second term in RHS of (20) by zero (since it is always
negative), Lemma 1 directly leads to (9).

References

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers for online and active learning.Journal
of Machine Learning Research, 2005.

A. Bordes, L. Bottou, and P. Gallinari. Sgd-qn: careful quasi-newton stochastic gradient descent.Journal of
Machine Learning Research, 2009.

C. J. C. Burges. Simplified support vector decision rules. InAdvances in Neural Information Processing
Systems, 1996.

G. Cauwenberghs and T. Poggio. Incremental and decrementalsupport vector machine learning. InAdvances
in Neural Information Processing Systems, 2000.

N. Cesa-Bianchi and C. Gentile. Tracking the best hyperplane with a simple budget perceptron. InAnnual
Conference on Learning Theory, 2006.

C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines,http://www.csie.ntu.edu.
tw/ ˜ cjlin/libsvm . 2001.

F. Chang, C.-Y. Guo, X.-R. Lin, and C.-J. Lu. Tree decomposition for large-scale svm problems.Journal of
Machine Learning Research, 2010a.

Y.-W. Chang, C.-J. Hsie, K.-W. Chang, M. Ringgaard, and C.-J. Lin. Training and testing low-degree poly-
nomial data mappings via linear svm.Journal of Machine Learning Research, 2010b.

L. Cheng, S. V. N. Vishwanathan, D. Schuurmans, S. Wang, and T. Caelli. Implicit online earning with
kernels. InAdvances in Neural Information Processing Systems, 2007.

R. Collobert, F. Sinz, J. Weston, and L. Bottou. Trading convexity for scalability. InInternational Conference
on Machine Learning, 2006.

C. Cortes and V. Vapnik. Support-vector networks.Machine Learning, 1995.

K. Crammer and Y. Singer. On the algorithmic implementationof multiclass kernel-based vector machines.
Journal of Machine Learning Research, 2001.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems.Journal of Machine
Learning Research, 2003.

K. Crammer, J. Kandola, and Y. Singer. Online classificationon a budget. InAdvances in Neural Information
Processing Systems, 2004.

3128

BUDGETED STOCHASTIC GRADIENT DESCENT

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive algorithms.
Journal of Machine Learning Research, 2006.

L. Csat́o and M. Opper. Sparse representation for gaussian process models. InAdvances in Neural Informa-
tion Processing Systems, 2001.

O. Dekel and Y. Singer. Support vector machines on a budget. In Advances in Neural Information Processing
Systems, 2006.

O. Dekel, S. Shalev-Shwartz, and Y. Singer. The forgetron: akernel-based perceptron on a budget.SIAM
Journal on Computing, 2008.

R. Duda and P. Hart.Pattern Classification and Scene Analysis. New York: Wiley, 1973.

Y. Engel, S. Mannor, and R. Meir. Sparse online greedy support vector regression. InEuropean Conference
on Machine Learning, 2002.

C. Gentile. A new approximate maximal margin classificationalgorithm. Journal of Machine Learning
Research, 2001.

H.-P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik. Parallel support vector machines: the
cascade svm. InAdvances in Neural Information Processing Systems, 2005.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate descent method
for large-scale linear svm. InInternational Conference on Machine Learning, 2008.

T. Joachims. Training linear svms in linear time. InACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2006.

S. S. Keerthi, O. Chapelle, , and D. DeCoste. Building support vector machines with reduced classifier
complexity.Journal of Machine Learning Research, 2006.

J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels.IEEE Transactions on Signal
Processing, 2002.

Y.-J. Lee and O. L. Mangasarian. Rsvm: reduced support vector machines. InSIAM Conference on Data
Mining, 2001.

B. Li, M. Chi, J. Fan, , and X. Xue. Support cluster machine. InInternational Conference on Machine
Learning, 2007.

Y. Li and P. Long. The relaxed online maximum margin algorithm. Machine Learning, 2002.

D. Nguyen and T. Ho. An efficient method for simplifying support vector machines. InInternational Con-
ference on Machine Learning, 2005.

F. Orabona, J. Keshet, and B. Caputo. Bounded kernel-based online learning.Journal of Machine Learning
Research, 2009.

J. Platt. Fast training of support vector machines using sequential minimal optimization.Advances in Kernel
Methods - Support Vector Learning, MIT Press, 1998.

A. Rahimi and B. Rahimi. Random features for large-scale kernel machines. InAdvances in Neural Infor-
mation Processing Systems, 2007.

F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain.
Psychological Review, 1958.

3129

WANG, CRAMMER AND VUCETIC

B. Scḧolkopf, S. Mika, C. J. C. Burges, P. Knirsch, K. Müller, G. R̈atsch, and A. J. Smola. Input space versus
feature space in kernel-based methods.IEEE Transactions on Neural Networks, 1999.

S. Shalev-Shwartz and Y. Singer. Logarithmic regret algorithms for strongly convex repeated games (techni-
cal report). The Hebrew University, 2007.

S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: primal estimated sub-gradient solver for
svm. Mathematical Programming, 2011.

S. Sonnenburg and V. Franc. Coffin: a computational framework for linear svms. InInternational Conference
on Machine Learning, 2010.

I. Steinwart. Sparseness of support vector machines.Journal of Machine Learning Research, 2003.

I. Sutskever. A simpler unified analysis of budget perceptrons. In International Conference on Machine
Learning, 2009.

C.H. Teo, S. V. N. Vishwanathan, A. J. Smola, and Q. V. Le. Bundle methods for regularized risk minimiza-
tion. Journal of Machine Learning Research, 2010.

I. W. Tsang, J. T. Kwok, and P.-M. Cheung. Core vector machines: fast svm training on very large data sets.
Journal of Machine Learning Research, 2005.

I. W. Tsang, A. Kocsor, and J. T. Kwok. Simpler core vector machines with enclosing balls. InInternational
Conference on Machine Learning, 2007.

S. V. N. Vishwanathan, A. J. Smola, and M. N.Murty. Simplesvm. In International Conference on Machine
Learning, 2003.

Z. Wang and S. Vucetic. Tighter perceptron with improved dual use of cached data for model representation
and validation. InInternational Joint Conference on Neutral Netweok, 2009.

Z. Wang and S. Vucetic. Online passive-aggressive algorithms on a budget. InInternational Conference on
Artificial Intelligence and Statistics, 2010a.

Z. Wang and S. Vucetic. Online training on a budget of supportvector machines using twin prototypes.
Statisitcal Analysis and Data Mining Journal, 2010b.

Z. Wang, N. Djuric, K. Crammer, and S. Vucetic. Trading representability for scalability: adaptive multi-
hyperplane machine for nonlinear classification. InACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2011.

J. Weston, A. Bordes, and L. Bottou. Online (and offline) on aneven tighter budget. InInternational
Workshop on Artificial Intelligence and Statistics, 2005.

M.-R. Wu, B. Scḧolkopf, , and G. Barik. Building sparse large margin classifiers. InInternational Conference
on Machine Learning, 2005.

H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin. Large linear classification when data cannot fit in memory.
In ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2010.

K. Zhang, L. Lan, Z. Wang, and F. Moerchen. Scaling up kernel svm on limited resources: a low-rank
linearization approach. InInternational Conference on Artificial Intelligence and Statistics, 2012.

T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent. InInternational
Conference on Machine Learning, 2004.

3130

BUDGETED STOCHASTIC GRADIENT DESCENT

Z. A. Zhu, W. Chen, G. Wang, C. Zhu, and Z. Chen. P-packsvm: parallel primal gradient descent kernel svm.
In IEEE International Conference on Data Mining, 2009.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. InInternational
Conference on Machine Learning, 2003.

3131

