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Abstract

Given a point setSand an unknown metricd onS, we study the problem of efficiently partitioning
S into k clusters while querying few distances between the points. In our model we assume that
we have access toone versus allqueries that given a points∈ Sreturn the distances betweensand
all other points. We show that given a natural assumption about the structure of the instance, we
can efficiently find an accurate clustering using onlyO(k) distance queries. Our algorithm uses an
activeselection strategy to choose a small set of points that we call landmarks, and considers only
the distances between landmarks and other points to producea clustering. We use our procedure to
cluster proteins by sequence similarity. This setting nicely fits our model because we can use a fast
sequence database search program to query a sequence against an entire data set. We conduct an
empirical study that shows that even though we query a small fraction of the distances between the
points, we produce clusterings that are close to a desired clustering given by manual classification.
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1. Introduction

Clustering from pairwise distance information is an important problem in the analysis and explo-
ration of data. It has many variants and formulations and it has been extensively studied in many
different communities, and many different clustering algorithms have been proposed.

Many application domains ranging from computer vision to biology have recently faced an ex-
plosion of data, presenting several challenges to traditional clustering techniques. In particular,
computing the distances between all pairs of points, as required by traditionalclustering algorithms,
has become infeasible in many application domains. As a consequence it has become increasingly
important to develop effective clustering algorithms that can operate with limited distance informa-
tion.

In this work we initiate a study of clustering with limited distance information; in particular
we consider clustering with a small number ofone versus allqueries. We can imagine at least two
different ways to query distances between points. One way is to ask for distances between pairs of
points, and the other is to ask for distances between one point and all otherpoints. Clearly, a one
versus all query can be implemented asn pairwise queries, wheren is the size of the point set, but
we draw a distinction between the two because the former is often significantly faster in practice if
the query is implemented as a database search.

Our main motivating example for considering one versus all distance queriesis sequence simi-
larity search in biology. A program such as BLAST (Altschul et al., 1990) (Basic Local Alignment
Search Tool) is optimized to search a single sequence against an entire database of sequences. On
the other hand, performingn pairwise sequence alignments takes several orders of magnitude more
time, even if the pairwise alignment is very fast. The disparity in runtime is due to thehashing
that BLAST uses to identify regions of similarity between the input sequence and sequences in the
database. The program maintains a hash table of allwords in the database (substrings of a certain
length), linking each word to its locations. When a query is performed, BLAST considers each word
in the input sequence, and runs a local sequence alignment in each of its locations in the database.
Therefore the program only performs a limited number of local sequence alignments, rather than
aligning the input sequence to each sequence in the database. Of course, the downside is that we
never consider alignments between sequences that do not share a word. However, in this case an
alignment may not be relevant anyway, and we can assign a distance of infinity to the two sequences.
Even though the search performed by BLAST is heuristic, it has been shown that protein sequence
similarity identified by BLAST is meaningful (Brenner et al., 1998).

Motivated by such scenarios, in this paper we consider the problem of clustering a data set with
an unknown distance function, given only the capability to ask one versusall distance queries. We
design an efficient algorithm for clustering accurately with a small number ofsuch queries. To
formally analyze the correctness of our algorithm we assume that the distance function is a metric,
and that our clustering problem satisfies a natural approximation stability property with respect to
thek-median objective function for clustering. In particular, our analysis assumes the(c,ε) approx-
imation stability property of Balcan et al. (2009). For an objective functionΦ (such ask-median),
the(c,ε)-property assumes that any clustering that is ac-approximation ofΦ is structurally close to
some “target” clusteringCT (has error of at mostε with respect toCT). Given this assumption, our
goal is to find a clustering that is structurally close to the target (has error ofat mostε), which is
what we call anaccurateclustering.
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Our first main contribution is designing an algorithm that given the(1+α,ε)-property for thek-
median objective finds an accurate clustering with probability at least 1−δ by using onlyO(k+ ln 1

δ)
one versus all queries. Our analysis requires that the clusters of the target clustering have size at
leastO(εn/α). In particular, we use the same assumption as Balcan et al. (2009), and weobtain
effectively the same performance guarantees as Balcan et al. but by only using a very small number
of one versus all queries. In addition to handling this more difficult scenario, we also provide a
much faster algorithm. The algorithm of Balcan et al. (2009) can be implementedin O(n3) time,
wheren is the size of the point set, while the one proposed here runs in timeO((k+ ln 1

δ)nlogn).

Our algorithm uses anactiveselection strategy to choose a small set of landmark points. In
each iteration ourLandmark-Selectionprocedure chooses one of the farthest points from the ones
chosen already, where distance from a points to a setX is given by minx∈Xd(s,x). This procedure is
motivated by the observation that if we select points that are far from all thepoints chosen already,
we can quickly cover all the dense regions of the data set. At the same time, our procedure uses some
randomness to avoid choosing outliers. After selecting a small set of landmarks, we use a robust
single-linkage clustering procedure that we callExpand-Landmarks, which constructs a clustering
linking only the landmarks that havesmin points in anr-ball around them, for an appropriate choice
of smin and increasing estimates ofr. After our initial work a similar robust single-linkage clustering
algorithm has been used in Chaudhuri and Dasgupta (2010), which is a generalization of a procedure
presented in Wishart (1969). Our algorithm uses only the distances between landmarks and other
points to compute a clustering. Therefore the number of one versus all distance queries required is
equivalent to the number of landmarks.

The runtime of our algorithm isO(|L|nlogn), whereL is the set of landmarks that have been
selected. Our adaptive selection procedure significantly reduces the time and query complexity
of the algorithm. We show that using our adaptive procedure it suffices tochoose onlyO(k+
ln 1

δ) landmarks to compute an accurate clustering with probability at least 1− δ. If we use a non-
adaptive selection strategy and simply choose landmarks uniformly at random, we must sample
a point from each ground truth cluster and therefore need at leastO(k ln k

δ) landmarks to find an
accurate clustering. More exactly, the non-adaptive selection strategy requiresO( n

∆ ln k
δ) landmarks,

where∆ is the size of the smallest ground truth cluster. Therefore if we simply chooselandmarks
uniformly at random, performance can degrade significantly if some clusters are much smaller than
the average cluster size. Our theoretic assumption does require that the ground truth clusters are
large, butO(εn/α) can still be much smaller than the average cluster size, in which case our adaptive
selection procedure gives a more significant improvement in runtime and query complexity of the
algorithm.

We use our algorithm to cluster proteins by sequence similarity, and compare our results to gold
standard manual classifications given in the Pfam (Finn et al., 2010) and SCOP (Murzin et al., 1995)
databases. These classification databases are used ubiquitously in biology to observe evolutionary
relationships between proteins and to find close relatives of particular proteins. We find that for one
of these sources we obtain clusterings that usually closely match the given classification, and for the
other the performance of our algorithm is comparable to that of the best known algorithms using the
full distance matrix. Both of these classification databases have limited coverage, so a completely
automated method such as ours can be useful in clustering proteins that have yet to be classified.
Moreover, our method can cluster very large data sets because it is efficient and does not require the
full distance matrix as input, which may be infeasible to obtain for a very large data set.
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1.1 Related Work

A theoretical assumption that is related to the(c,ε)-property isε-separability, which is used in
Ostrovsky et al. (2006). This property is also referred to as irreducibility in Badoiu et al. (2002) and
Kumar et al. (2005). A clustering instance isε-separated if the cost of the optimalk-clustering is at
mostε2 times the cost of the optimal clustering usingk−1 clusters. Theε-separability and(c,ε)
properties are related: in the case when the clusters are large the Ostrovsky et al. (2006) condition
implies the Balcan et al. (2009) condition (see Balcan et al., 2009).

Ostrovsky et al. also present a sampling method for choosing initial centers, which when fol-
lowed by a single Lloyd-type descent step gives a constant factor approximation of thek-means
objective if the instance isε-separated. However, their sampling method needs information about
the full distance matrix because the probability of picking two points as the firsttwo cluster centers
is proportional to their squared distance. A very similar (independently proposed) strategy is used
by Arthur and Vassilvitskii (2007) to obtain anO(logk)-approximation of thek-means objective on
arbitrary instances. Their work was further extended by Ailon et al. (2009) to give a constant factor
approximation usingO(k logk) centers. The latter two algorithms can be implemented withk and
O(k logk) one versus all distance queries, respectively.

Awasthi et al. (2010) have since improved the approximation guarantee ofOstrovsky et al.
(2006) and some of the results of Balcan et al. (2009). In particular, they show a way to arbitrarily
closely approximate thek-median andk-means objective when the Balcan et al. (2009) condition
is satisfied and all the target clusters are large. In their analysis they use aproperty called weak
deletion-stability, which is implied by the Ostrovsky et al. (2006) condition and the Balcan et al.
(2009) condition when the target clusters are large. However, in orderto find ac-approximation
(and given our assumption a clustering that isε-close to the target) the runtime of their algorithm is
nO(1/(c−1)2)kO(1/(c−1)). On the other hand, the runtime of our algorithm is completely independent
of c, so it remains efficient even when the(c,ε)-property holds only for some very small constantc.

Approximate clustering using sampling has been studied extensively in recent years (see Mishra
et al., 2001; Ben-David, 2007; Czumaj and Sohler, 2007). The methodsproposed in these papers
yield constant factor approximations to thek-median objective using at leastO(k) one versus all
distance queries. However, as the constant factor of these approximations is at least 2, the proposed
sampling methods do not necessarily yield clusterings close to the target clustering CT if the (c,ε)-
property holds only for some small constantc< 2, which is the interesting case in our setting.

Clustering using coresets is another approach that can be effective in the limited information
setting. A coreset is a small representative sampleD of the original point setP, which has the
property that computational problems onP can be reduced to problems onD. In particular, Feldman
and Langberg (2011) give ways to construct coresets such that a(1+α)-approximation to thek-
median problem onD gives a(1+α)-approximation on the full data set. Therefore by using these
coresets we can find a(1+α)-approximation to thek-median problem using a number of one-
versus-all distance queries that is equal to the size of the coreset. However, the size of the coreset
of Feldman and Langberg (2011) isO(k log(1/α)/α3), so this approach may require significantly
more queries to find an accurate clustering in our model if the(c,ε)-property holds only for some
very small constantc.

Our landmark selection strategy is related to thefarthest first traversalused by Dasgupta (2002).
In each iteration this traversal selects the point that is farthest from the ones chosen so far, where
as in our algorithm the distance from a points to a setX is given by minx∈Xd(s,x). This traversal
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was originally used by Gonzalez (1985) to give a 2-approximation to thek-center problem. The
same procedure is also used in the FastMap algorithm in Faloutsos and Lin (1995) as a heuristic
to find a pair of distant objects. Farthest first traversal is used in Dasgupta (2002) to produce a
hierarchical clustering where for eachk the inducedk-clustering is a constant factor approximation
of the optimalk-center clustering. Our selection strategy is somewhat different from thistraversal
because in each iteration we uniformly at random choose one of the farthest points from the ones
selected so far. In addition, the theoretical guarantees we provide are quite different from those of
Gonzales and Dasgupta.

To our knowledge, our work is the first to provide theoretical guarantees for active clustering
(clustering by adaptively using only some of the distances between the objects) under a natural
condition on the input data. Following the initial publication of this work, Eriksson et al. (2011) have
provided another active clustering procedure with theoretical guarantees for hierarchical clustering
under a different condition on the input data.

2. Preliminaries

Given a metric spaceM = (X,d) with point setX, an unknown distance functiond satisfying the
triangle inequality, and a set of pointsS⊆ X with cardinalityn, we would like to find ak-clustering
C that partitions the points inS into k setsC1, . . . ,Ck by usingone versus alldistance queries.

In our analysis we assume thatS satisfies the(c,ε)-property of Balcan et al. (2009) for thek-
median objective function. Thek-median objective is to minimizeΦ(C) =∑k

i=1 ∑x∈Ci
d(x,ci), where

ci is the median of clusterCi , which is the pointy∈ Ci that minimizes∑x∈Ci
d(x,y). Let OPTΦ =

minC Φ(C), where the minimum is over allk-clusterings ofS, and denote byC∗ = {C∗
1, . . . ,C

∗
k} a

clustering achieving this value.
To formalize the(c,ε)-property we need to define a notion of distance between twok-clusterings

C= {C1, . . . ,Ck} andC′ = {C′
1, . . . ,C

′
k}. As in Balcan et al. (2009), we define the distance between

C andC′ as the fraction of points on which they disagree under the optimal matching of clusters in
C to clusters inC′:

dist(C,C′) = min
f∈Fk

1
n

k

∑
i=1

|Ci −C′
f (i)|,

whereFk is the set of bijectionsf :{1, . . . ,k} → {1, . . . ,k}. Two clusteringsC andC′ areε-closeif
dist(C,C′)< ε.

We assume that there exists some unknown relevant “target” clusteringCT and given a proposed
clusteringC we define the error ofC with respect toCT as dist(C,CT). Our goal is to find a clustering
of low error.

The(c,ε)-property is defined as follows.

Definition 1 We say that the instance(S,d) satisfies the(c,ε)-property for the k-median objective
function with respect to the target clustering CT if any clustering of S that approximatesOPTΦ
within a factor of c isε-close to CT , that is,Φ(C)≤ c·OPTΦ ⇒ dist(C,CT)< ε.

In the analysis of the next section we denote byc∗i the center point ofC∗
i , and use OPT to refer

to the value ofC∗ using thek-median objective, that is, OPT= Φ(C∗). We define theweightof
point x to be the contribution ofx to thek-median objective inC∗: w(x) = mini d(x,c∗i ). Similarly,
we usew2(x) to denotex’s distance to the second-closest cluster center among{c∗1,c

∗
2, . . . ,c

∗
k}. In

addition, letw be the average weight of the points:w= 1
n ∑x∈Sw(x) = OPT

n .
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3. Clustering With Limited Distance Information

Algorithm 1 Landmark-Clustering(S,α,ε,δ,k)

b= (1+17/α)εn;
q= 2b;
iter= 4k+16ln1

δ ;
smin = b+1;
n′ = n−b;
L = Landmark-Selection(q, iter,S);
C′ = Expand-Landmarks (k,smin,n′,L,S);
Choose some working landmarkl i from each clusterC′

i ;
for eachx∈ Sdo

Insertx into the clusterC′′
j for j = argminid(x, l i);

end for
return C′′;

In this section we present a new algorithm that accurately clusters a set ofpoints assuming
that the clustering instance satisfies the(c,ε)-property forc= 1+α, and the clusters in the target
clusteringCT are not too small. The algorithm presented here is much faster than the one given
by Balcan et al., and does not require all pairwise distances as input. Instead, we only require
O(k+ ln 1

δ) one versus all distance queries to achieve the same performance guarantee as in Balcan
et al. (2009) with probability at least 1−δ.

Our clustering method is described in Algorithm 1. We start by using theLandmark-Selection
procedure toadaptivelyselect a small set of landmarks. This procedure repeatedly chooses uni-
formly at random one of theq farthest points from the ones selected so far (for an appropriateq),
where the distance from a points to a setX is given by minx∈Xd(s,x). We usedmin(s) to refer to the
minimum distance betweens and any point selected so far. Each time we select a new landmarkl ,
we use a one versus all distance query to get the distances betweenl and all other points in the data
set, and updatedmin(s) for each points∈ S. To select a new landmark in each iteration, we choose
a random numberi ∈ {n−q+1, . . . ,n} and use a linear time selection algorithm to select theith
farthest point. The complete description of this procedure is given in Algorithm 2. We note that our
algorithm uses only the distances between landmarks and other points to produce a clustering.

Expand-Landmarksthen expands a ballBl around each landmarkl ∈ L. We use the variabler
to denote the radius of all the balls: for each landmarkl ∈ L, Bl = {s∈ S | d(s, l) ≤ r}. For each
ball there are at mostn relevant values ofr, each adding at least one more point to it, which results
in at most|L|n values ofr to try in total. We call a landmarkl working if Bl containsat least smin

points. The algorithm maintains a graphGB = (VB,EB), wherevl ∈VB represents the ballBl around
working landmarkl , and two vertices are connected by an (undirected) edge if the corresponding
balls overlap on any point:(vl1,vl2) ∈ EB iff Bl1 ∩Bl2 6= /0. We emphasize that this graph considers
only the balls that haveat least smin points in them. In addition, we maintain the set of points in
these balls Clustered= {s∈ S | ∃l :s∈ Bl andvl ∈ VB}, and a list of the connected components of
GB, which we refer to as Components(GB) = {Comp1, ...,Compm}.

In each iteration we expand one of the balls by a point, and updateGB,Components(GB), and
Clustered. IfGB has exactlyk components, and|Clustered| ≥n′, we terminate and report a clustering
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Algorithm 2 Landmark-Selection(q, iter,S)

Choosel ∈ Suniformly at random;
L = {l};
for eachd(l ,s) ∈ QUERY-ONE-VS-ALL(l ,S) do

dmin(s) = d(l ,s);
end for
for i = 1 to iter−1 do

Let s1, ...,sn be an ordering of points inSsuch thatdmin(sj)≤ dmin(sj+1) for j ∈ {1, . . . ,n−1};
Choosel ∈ {sn−q+1, . . . ,sn} uniformly at random;
L = L∪{l};
for eachd(l ,s) ∈ QUERY-ONE-VS-ALL(l ,S) do

if d(l ,s)< dmin(s) then
dmin(s) = d(l ,s);

end if
end for

end for
return L;

Bl1Bl1

l1l1

Bl2Bl2

l2l2

s
 
s
 

l
 
l
 

Bl Bl 

Figure 1: Balls around landmarks are displayed, with the next point to be added to a ball labeled as
s∗.

that has a clusterCi for each component Compi , where eachCi contains points in balls in Compi .
If this condition is never satisfied, we reportno-cluster. A sketch of this algorithm is given in
Algorithm 3. In our description Expand-Ball() is an abstraction for expanding one of the balls by a
single point, which is performed by finding the next closest landmark-pointpair (l∗,s∗), and adding
s∗ to Bl∗ (see Figure 1). In Section 4 we give a full description of an efficient implementation of
Expand-Landmarks.

The last step of our algorithm takes the clusteringC′ returned byExpand-Landmarksand im-
proves it. We compute a setL′ that contains exactly one working landmark from each clusterC′

i ∈C′

(any working landmark is sufficient), and assign each pointx∈ Sto the cluster corresponding to the
closest landmark inL′.

We now present our main theoretical guarantee for Algorithm 1.
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Algorithm 3 Expand-Landmarks(k,smin,n′,L,S)

1: r = 0;
2: while ((l∗,s∗) = Expand-Ball()) != nulldo
3: r = d(l∗,s∗);
4: updateGB, Components(GB), and Clustered;
5: if |Components(GB)|= k and|Clustered| ≥ n′ then
6: return C= {C1, ...,Ck} whereCi = {s∈ S| ∃l :s∈ Bl andvl ∈ Compi};
7: end if
8: end while
9: return no-cluster;

Theorem 2 Given a metric space M= (X,d), where d is unknown, and a set of points S⊆ X, if
the instance(S,d) satisfies the(1+α,ε)-property for the k-median objective function and if each
cluster in the target clustering CT has size at least(4+51/α)εn, then Landmark-Clustering outputs
a clustering that isε-close to CT with probability at least1−δ in time O((k+ ln 1

δ)|S| log|S|) using
O(k+ ln 1

δ) one versus alldistance queries.

Before we prove the theorem, we will introduce some notation and use an analysis similar to
the one in Balcan et al. (2009) to argue about the structure of the clustering instance that follows
from our assumptions. Letε∗ = dist(CT ,C∗). By our assumption that thek-median clustering ofS
satisfies the(1+α,ε)-property we haveε∗ < ε. Because each cluster in the target clustering has at
least(4+51/α)εn points, and theoptimal k-median clustering C∗ differs from the target clustering
by ε∗n≤ εn points, each cluster inC∗ must have at least(3+51/α)εn points.

Let us define thecritical distance dcrit =
αw
17ε . We call a pointx good if both w(x) < dcrit and

w2(x)−w(x)≥ 17dcrit, elsex is calledbad. In other words, thegoodpoints are those points that are
close to their own cluster center and far from any other cluster center. Inaddition, we will break up
thegoodpoints intogood sets Xi , whereXi is the set of thegoodpoints in the optimal clusterC∗

i .
So each setXi is the “core” of the optimal clusterC∗

i .
Note that the distance between two pointsx,y∈Xi satisfiesd(x,y)≤ d(x,c∗i )+d(c∗i ,y) =w(x)+

w(y)< 2dcrit. In addition, the distance between any two points in different good sets is greater than
16dcrit. To see this, consider a pair of pointsx∈ Xi andy∈ Xj 6=i . The distance fromx to y’s cluster
centerc∗j is at least 17dcrit. By the triangle inequality,d(x,y)≥ d(x,c∗j )−d(y,c∗j )> 17dcrit −dcrit =
16dcrit.

If the k-median instance(M,S) satisfies the(1+α,ε)-property with respect toCT , and each
cluster inCT has size at least 2εn, then

1. less than(ε− ε∗)n pointsx∈ Son whichCT andC∗ agree havew2(x)−w(x)< αw
ε .

2. at most 17εn/α pointsx∈ Shavew(x)≥ αw
17ε .

The first part is proved by Balcan et al. (2009). The intuition is that if too many points on which
CT andC∗ agree are close enough to the second-closest center among{c∗1,c

∗
2, . . . ,c

∗
k}, then we can

move them to the clusters corresponding to those centers, producing a clustering that is structurally
far fromCT , but whose objective value is close to OPT, violating the(1+α,ε)-property. The second
part follows from the fact that∑x∈Sw(x) = OPT= wn.
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Then using these facts and the definition ofε∗ it follows that at mostε∗n+(ε−ε∗)n+17εn/α =
εn+17εn/α = (1+17/α)εn= b points are bad. Hence each|Xi |= |C∗

i \B| ≥ (2+34/α)εn= 2b.
In the remainder of this section we prove that given this structure of the clustering instance,

Landmark-Clusteringfinds an accurate clustering. We first show that almost surely the set of land-
marks returned byLandmark-Selectionhas the property that each of the cluster cores has a landmark
near it, which we refer to as thelandmark spreadproperty. We then argue that given a set of such
landmarks,Expand-Landmarksfinds a partitionC′ that clusters most of the points in each core cor-
rectly. We conclude with the proof of the theorem, which argues that the clustering returned by the
last step of our procedure is a further improved clustering that is very close toC∗ andCT .

TheLandmark-Clusteringalgorithm first usesLandmark-Selection(q, iter,S) to choose a set of
landmarks. We say that thelandmark spreadproperty holds if there is a landmark closer than 2dcrit

to some point in each good set. The following lemma proves that forq = 2b after selecting only
iter=O(k+ ln 1

δ) points the chosen landmarks will have this property with probability at least 1−δ.

Lemma 3 Given a set of landmarks L = Landmark-Selection(2b,4k+ 16ln1
δ ,S), the landmark

spread property is satisfied with probability at least1−δ.

Proof Because there are at mostb bad points and in each iteration we uniformly at random choose
one of 2b points, the probability that a good point is added toL is at least 1/2 in each iteration.
Using a Chernoff bound, we show in Lemma 4 that the probability that fewer than k good points
have been added toL aftert > 2k iterations is less thane−t(1− 2k

t )
2/4. For t = 4k+16ln1

δ

e−t(1− 2k
t )

2/4 < e−(4k+16ln 1
δ )0.5

2/4 < e−16ln 1
δ /16 = δ.

Therefore aftert = 4k+16ln1
δ iterations this probability is smaller thanδ.

We argue that once we selectk good points using our procedure, one of them must be closer
than 2dcrit to some point in each good set. As in Algorithm 2, we usedmin(s) to denote the minimum
distance from points to any landmark that has been selected so far:dmin(s) = minl∈L′ d(l ,s), where
L′ is the set of landmarks that have been selected so far.

There are two possibilities regarding the firstk good points added toL: we select them from
distinct good sets, or at least two points are selected from the same good set. If the former is true,
thelandmark spreadproperty trivially holds. If the latter is true, consider the first time that a second
point is chosen from the same good setXi . Let us call these two pointsx andy (they may be the
same point), and assume thaty is chosen afterx. The distance betweenx andy must be less than
2dcrit because they are in the same good set. Therefore wheny is chosen,dmin(y)≤ d(x,y)< 2dcrit.
Moreover,y is chosen from{sn−2b+1, ...,sn}, wheredmin(sj) ≤ dmin(sj+1). Therefore wheny is
chosen, at leastn−2b+1 pointss∈ S(includingy) satisfydmin(s)≤ dmin(y)< 2dcrit. Because each
good set satisfies|Xi | ≥ 2b, it follows that there must be a landmark closer than 2dcrit to some point
in each good set.

Lemma 4 The probability that fewer than k good points have been chosen as landmarks after t> 2k
iterations of Landmark-Selection is less than e−t(1− 2k

t )
2/4.
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Proof Let Xi be an indicator random variable defined as follows:Xi = 1 if the point chosen in
iteration i is a good point, and 0 otherwise. LetX = ∑t

i=1Xi , andµ be the expectation ofX. In
other words,X is the number of good points chosen aftert iterations of the algorithm, andµ is its
expected value.

Because in each round we uniformly at random choose one of 2b points and there are at most
b bad points in total, E[Xi ] ≥ 1/2 and henceµ ≥ t/2. By the Chernoff bound, for anyδ > 0,
Pr[X < (1−δ)µ]< e−µδ2/2.

If we setδ = 1− 2k
t , we have(1−δ)µ= (1− (1− 2k

t ))µ≥ (1− (1− 2k
t ))t/2= k. Assuming that

t ≥ 2k, it follows that Pr[X < k]≤ Pr[X < (1−δ)µ]< e−µδ2/2 = e−µ(1− 2k
t )

2/2 ≤ e−t/2(1− 2k
t )

2/2.

The algorithm then uses theExpand-Landmarksprocedure to find ak-clusteringC′. The fol-
lowing lemma states thatC′ is an accurate clustering, and has an additional property that is relevant
for the last part of the algorithm.

Lemma 5 Given a set of landmarks L that satisfy the landmark spread property, Expand-Landmarks
with parameters smin = b+1, and n′ = n−b returns a k-clustering C′ = {C′

1,C
′
2, . . .C

′
k} in which

each cluster contains points from a single distinct good set Xi . If we letσ be a bijection mapping
each good set Xi to the cluster C′σ(i) containing points from Xi , the distance between c∗

i and any

working landmark l in C′σ(i) satisfies d(c∗i , l)< 5dcrit.

Proof Lemma 6 argues that because the good setsXi are well-separated, forr < 4dcrit no ball of
radiusr can overlap (intersect) more than oneXi , and two balls that overlap differentXi cannot share
any points. Lemma 7 argues that because there is a landmark near each good set, there is a value
of r∗ < 4dcrit such that eachXi is contained in some ball of radiusr∗. Moreover, because we only
consider balls that have more thanb points in them, and the number of bad points is at mostb, each
ball in GB must overlap some good set. We can use these facts to argue for the correctness of the
algorithm. We refer to the clustering computed in line 6 ofExpand-Landmarksas the clustering
inducedby GB, in which each cluster contains points in balls that are in the same component inGB.

First we observe that forr = r∗, GB has exactlyk components and each good setXi is contained
within a distinct component of the induced clustering. Each ball inGB overlaps with someXi , and
becauser∗ < 4dcrit, we know that each ball inGB overlaps with exactly oneXi . We also know that
balls that overlap differentXi cannot share any points and are thus not connected inGB. Therefore
balls that overlap differentXi will be in different components inGB. Moreover, eachXi is contained
in some ball of radiusr∗. For each good setXi let us designate byBi a ball that contains all the points
in Xi (Figure 2), which is inGB because the size of each good set satisfies|Xi |> b. Any ball in GB

that overlapsXi will be connected toBi , and will thus be in the same component asBi . Therefore
for r = r∗, GB has exactlyk components, one for each good setXi , with the corresponding cluster
containing all the points inXi .

There are at leastn−b points that are in someXi , therefore forr = r∗ the number of clustered
points is at leastn− b. Hence forr = r∗ the condition in line 5 ofExpand-Landmarkswill be
satisfied and in line 6 the algorithm will return ak-clustering in which each cluster contains points
from a single distinct good setXi .

Now let us suppose that we start withr = 0. Consider the first value ofr = r ′ for which the
condition in line 5 is satisfied. At this pointGB has exactlyk components and the number of points
that are not clustered is at mostb. It must be the case thatr ′ ≤ r∗ < 4dcrit because we know that
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BiBiXiXXiXX
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Figure 2: BallsBi andB j of radiusr∗ are shown, which contain good setsXi andXj , respectively.
The radius of the balls is small in comparison to the distance between the good sets.

the condition is satisfied forr = r∗, and we are considering all relevant values ofr in ascending
order. As before, each ball inGB must overlap some good setXi . Again using Lemma 6 we argue
that becauser < 4dcrit, no ball can overlap more than oneXi and two balls that overlap differentXi

cannot share any points. It follows that each cluster induced byGB contains points from a singleXi

(so we cannot merge the good sets). Moreover, because the size of each good set satisfies|Xi |> b,
and there are at mostb points that are not clustered, each induced cluster must contain points from
a distinctXi (so we cannot split the good sets). Thus we will return ak-clustering in which each
cluster contains points from a single distinct good setXi .

To prove the second part of the statement, letσ be a bijection matching each good setXi to
the clusterC′

σ(i) containing points fromXi . Clearly, for any working landmarkl in C′
σ(i) it must be

the case thatBl overlapsXi . Let s∗ denote any point on whichBl andXi overlap. By the triangle
inequality, the distance betweenc∗i and l satisfiesd(c∗i , l) ≤ d(c∗i ,s

∗)+d(s∗, l) < dcrit + r < 5dcrit.
Therefore the distance betweenc∗i and any working landmarkl ∈C′

σ(i) satisfiesd(c∗i , l)< 5dcrit.

Lemma 6 A ball of radius r< 4dcrit cannot contain points from more than one good set Xi , and two
balls of radius r< 4dcrit that overlap (intersect) different Xi cannot share any points.

Proof To prove the first part, consider a ballBl of radiusr < 4dcrit around landmarkl . In other
words, Bl = {s∈ S | d(s, l) ≤ r}. If Bl overlaps more than one good set, then it must have at
least two points from different good setsx ∈ Xi andy ∈ Xj . By the triangle inequality it follows
that d(x,y) ≤ d(x, l) + d(l ,y) ≤ 2r < 8dcrit. However, we know thatd(x,y) > 16dcrit, giving a
contradiction.

To prove the second part, consider two ballsBl1 andBl2 of radiusr < 4dcrit around landmarks
l1 andl2. In other words,Bl1 = {s∈ S| d(s, l1) ≤ r}, andBl2 = {s∈ S| d(s, l2) ≤ r}. Assume that
they overlap with different good setsXi andXj : Bl1 ∩Xi 6= /0 andBl2 ∩Xj 6= /0. For the purpose of
contradiction, let’s assume thatBl1 andBl2 share at least one point:Bl1∩Bl2 6= /0, and uses∗ to refer to
this point. By the triangle inequality, it follows that the distance between any point x∈Bl1 andy∈Bl2
satisfiesd(x,y)≤ d(x,s∗)+d(s∗,y)≤ [d(x, l1)+d(l1,s∗)]+ [d(s∗, l2)+d(l2,y)]≤ 4r < 16dcrit.
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BecauseBl1 overlaps withXi andBl2 overlaps withXj , it follows that there is a pair of points
x∈ Xi andy∈ Xj such thatd(x,y)< 16dcrit, a contradiction. Therefore ifBl1 andBl2 overlap differ-
ent good sets,Bl1 ∩Bl2 = /0.

Lemma 7 Given a set of landmarks L that satisfy the landmark spread property, there is some value
of r∗ < 4dcrit such that each Xi is contained in some ball Bl around landmark l∈ L of radius r∗.

Proof For each good setXi choose a pointsi ∈ Xi and a landmarkl i ∈ L that satisfyd(si , l i)< 2dcrit.
The distance betweenl i and each pointx∈ Xi satisfiesd(l i ,x)≤ d(l i ,si)+d(si ,x)< 2dcrit+2dcrit =
4dcrit. Considerr∗ = maxl i maxx∈Xi d(l i ,x). Clearly, eachXi is contained in a ballBl i of radiusr∗ and
r∗ < 4dcrit.

Lemma 8 Suppose the distance between c∗
i and any working landmark l in C′σ(i) satisfies d(c∗i , l)<

5dcrit. Then given a point x∈ C∗
i that satisfies w2(x)−w(x) ≥ 17dcrit, for any working landmark

l1 ∈C′
σ(i) and any working landmark l2 ∈C′

σ( j 6=i) it must be the case that d(x, l1)< d(x, l2).

Proof We will show thatd(x, l1) < w(x)+5dcrit, andd(x, l2) > w(x)+12dcrit. This implies that
d(x, l1)< d(x, l2).

To prove the former, by the triangle inequalityd(x, l1)≤ d(x,c∗i )+d(c∗i , l1) =w(x)+d(c∗i , l1)<
w(x)+5dcrit.

To prove the latter, by the triangle inequalityd(x, l2) ≥ d(x,c∗j )−d(l2,c∗j ). Becaused(x,c∗j ) ≥
w2(x) andd(l2,c∗j )< 5dcrit, we have

d(x, l2)> w2(x)−5dcrit. (1)

Moreover, becausew2(x)−w(x)≥ 17dcrit, we have

w2(x)≥ 17dcrit +w(x). (2)

Combining Equations 1 and 2 it follows thatd(x, l2)> 17dcrit +w(x)−5dcrit = w(x)+12dcrit.

Proof [Theorem 2] After using Landmark-Selection to chooseO(k+ ln 1
δ) points, with probability

at least 1− δ there is a landmark closer than 2dcrit to some point in each good set. Given a set of
landmarks with this property, each cluster in the clusteringC′ = {C′

1,C
′
2, . . .C

′
k} output byExpand-

Landmarkscontains points from a single distinct good setXi . This clustering can exclude up tob
points, all of which may be good. Nonetheless, this means thatC′ may disagree withC∗ on only the
bad points and at mostb good points. The number of points thatC′ andC∗ disagree on is therefore
at most 2b= O(εn/α). Thus,C′ is at leastO(ε/α)-close toC∗, and at leastO(ε/α+ε)-close toCT .

Moreover,C′ has an additional property that allows us to find a clustering that isε-close toCT .
If we useσ to denote a bijection mapping each good setXi to the clusterC′

σ(i) containing points from
Xi , any working landmarkl ∈C′

σ(i) is closer than 5dcrit to c∗i . We can use this observation to find all
points that satisfy one of the properties of the good points: pointsx such thatw2(x)−w(x)≥ 17dcrit.
Let us call these points thedetectablepoints. To clarify, the detectable points are those points that
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are much closer to their own cluster center than to any other cluster center inC∗, and thegoodpoints
are a subset of the detectable points that are also very close to their own cluster center.

To find the detectable points usingC′, we choose some working landmarkl i from eachC′
i . For

each pointx ∈ S, we then insertx into the clusterC′′
j for j = argminid(x, l i). Lemma 8 argues

that each detectable point inC∗
i is closer to every working landmark inC′

σ(i) than to any working
landmark inC′

σ( j 6=i). It follows thatC′′ andC∗ agree on all the detectable points. Because there
are fewer than(ε− ε∗)n points on whichCT andC∗ agree that are not detectable, it follows that
dist(C′′,CT)< (ε− ε∗)+dist(CT ,C∗) = (ε− ε∗)+ ε∗ = ε.

Therefore usingO(k+ ln 1
δ) landmarks we compute an accurate clustering with probability at

least 1−δ. The runtime ofLandmark-Selectionis O(|L|n) if we use a linear time selection algorithm
to select the next point in each iteration, where|L| is the number of landmarks. Using a min-heap to
store all landmark-point pairs and a disjoint-set data structure to keep track of the connected compo-
nents ofGB, Expand-Landmarkscan be implemented inO(|L|nlogn) time. A detailed description
of this implementation is given in Section 4. The last part of our procedure takesO(kn) time, so
the overall runtime of our algorithm isO(|L|nlogn). Therefore to compute an accurate clustering
with probability at least 1− δ the runtime of our algorithm isO((k+ ln 1

δ)nlogn). Moreover, we
only consider the distances between the landmarks and other points, so we only useO(k+ ln 1

δ) one
versus all distance queries.

4. Implementation of Expand-Landmarks

In order to efficiently expand balls around landmarks, we build a min-heapH of landmark-point
pairs(l ,s), where the key of each pair is the distance betweenl ands. In each iteration we find
(l∗,s∗) = H.deleteMin(), and then adds∗ to items(l∗), which stores the points inBl∗ . We store points
that have been clustered (points in balls of size at leastsmin) in the set Clustered.

Our implementation assigns each clustered points to a “representative” landmark, denoted by
lm(s). The representative landmark ofs is the landmarkl of the first large ballBl that contains
s. To efficiently update the components ofGB, we maintain a disjoint-set data structureU that
contains sets corresponding to the connected components ofGB, where each ballBl is represented by
landmarkl . In other words,U contains a set{l1, l2, l3} iff Bl1,Bl2,Bl3 form a connected component
in GB.

For each large ballBl our algorithm will consider all pointss ∈ Bl and perform
Update-Components(l ,s), which works as follows. Ifs does not have a representative landmark
we assign it tol , otherwises must already be inBlm(s), and we assignBl to the same component as
Blm(s). If none of the points inBl are assigned to other landmarks, it will be in its own component.
A detailed description of the algorithm is given in Algorithm 4.

During the execution of the algorithm the connected components ofGB must correspond to the
sets ofU (where each ballBl is represented by landmarkl ). Lemma 9 argues that ifBl1 andBl2 are
directlyconnected inGB, l1 andl2 must be in the same set inU . It follows that wheneverBl1 andBl2
are in the same connected component inGB, l1 andl2 will be in the same set inU . Moreover, ifBl1
andBl2 are not in the same component inGB, thenl1 andl2 cannot be in the same set inU because
both start in distinct sets (line 22), and it is not possible for a set containingl1 to be merged with a
set containingl2.
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Algorithm 4 Expand-Landmarks(k,smin,n′,L,S)

1: A = ();
2: for eachs∈ Sdo
3: lm(s) = null;
4: for eachl ∈ L do
5: A.add((l ,s),d(l ,s));
6: end for
7: end for
8: H = build-heap(A);
9: for eachl ∈ L do

10: items(l ) = ();
11: end for
12: Set Clustered = ();
13: U = ();
14: while H.hasNext()do
15: (l∗,s∗) = H.deleteMin();
16: items(l∗).add(s∗);
17: if items(l∗).size()> smin then
18: Update-Components(l∗,s∗);
19: Clustered.add(s∗);
20: end if
21: if items(l∗).size() ==smin then
22: U .MakeSet(l∗);
23: for eachs∈ items(l∗) do
24: Update-Components(l∗,s);
25: Clustered.add(s);
26: end for
27: end if
28: if Clustered.size()≥ n′ andU .size() ==k then
29: return Format-Clustering();
30: end if
31: end while
32: return no-cluster;

Algorithm 5 Update-Components(l ,s)

1: if lm(s) == null then
2: lm(s) = l ;
3: else
4: c1 = U .find(l );
5: c2 = U .find(lm(s));
6: U .union(c1,c2);
7: end if
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Algorithm 6 Format-Clustering()

1: C = ();
2: for each SetL′ in U do
3: Set Cluster = ();
4: for eachl ∈ L′ do
5: for eachs∈ items(l ) do
6: Cluster.add(s);
7: end for
8: end for
9: C.add(Cluster);

10: end for
11: return C;

Lemma 9 If balls Bl1 and Bl2 are directly connected in GB, then landmarks l1 and l2 must be in the
same set in U.

Proof If Bl1 andBl2 are directly connected inGB, thenBl1 andBl2 must overlap on some points.
Without loss of generality, supposes is added toBl1 before it is added toBl2. Whens is added to
Bl1, lm(s) = l1 if s does not yet have a representative landmark (lines 1-2 of Update-Components),
or lm(s) = l ′ and bothl1 andl ′ are put in the same set (lines 4-6 of Update-Components). Whens is
added toBl2, if lm(s) = l1, thenl1 andl2 will be put in the same set inU . If lm(s) = l ′, l ′ andl2 will
be put in the same set inU , which also containsl1.

It takesO(|L|n) time to buildH (linear in the size of the heap). Each deleteMin() operation
takesO(log(|L|n)) (logarithmic in the size of the heap), which is equivalent toO(log(n)) because
|L| ≤ n. If U is implemented by a union-find algorithm, Update-Components takes amortized time
of O(α(|L|), whereα denotes the inverse Ackermann function. Moreover, Update-Components may
be called at most once for each iteration of the while loop in Expand-Landmarks (for a pair(l∗,s∗)
it is either called on line 18 ifBl∗ is large enough, or it is called on line 24 whenBl∗ grows large
enough). All other operations also take time proportional to the number of landmark-point pairs.
So the runtime of this algorithm isO(|L|n) + iter ·O(logn+α(|L|)), where iter is the number of
iterations of the while loop. As the number of iterations is bounded by|L|n, andα(|L|) is effectively
constant, this gives a worst-case running time ofO(|L|nlogn).

5. Empirical Study

We use ourLandmark Clusteringalgorithm to cluster proteins using sequence similarity. As men-
tioned in the Introduction, one versus all distance queries are particularlyrelevant in this setting
because of sequence database search programs such as BLAST (Altschul et al., 1990) (Basic Lo-
cal Alignment Search Tool). BLAST aligns a queried sequence to sequences in the database, and
produces a “bit score” for each alignment, which is a measure of its quality (we invert the bit score
to make it a distance). However, BLAST does not consider alignments with some of the sequences
in the database, in which case we assign distances of infinity to the corresponding sequences. We
observe that if we define distances in this manner they almost form a metric in practice: when we
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draw triplets of sequences at random and check the distances between them the triangle inequality
is almost always satisfied. Moreover, BLAST is very successful at detecting sequence homology
in large sequence databases, therefore it is plausible thatk-median clustering using these distances
is approximately stable with respect to a relevant target clusteringCT , which groups together se-
quences with shared evolutionary ancestry.

We perform experiments on data sets obtained from two classification databases: Pfam (Finn
et al., 2010), version 24.0, October 2009; and SCOP (Murzin et al., 1995), version 1.75, June 2009.
Both of these sources classify proteins by their evolutionary relatedness, therefore we can use their
classifications as a ground truth to evaluate the clusterings produced by our algorithm and other
methods.

Pfam classifies proteins using hidden Markov models (HMMs) that represent multiple sequence
alignments. There are two levels in the Pfam classification hierarchy: family and clan. In our
clustering experiments we compare with a classification at the family level because the relationships
at the clan level are less likely to be discerned with sequence alignment. In each experiment we
randomly select several large families (of size between 1000 and 10000)from Pfam-A (the manually
curated part of the classification), retrieve the sequences of the proteins in these families, and use
ourLandmark-Clusteringalgorithm to cluster the data set.

SCOP groups proteins on the basis of their 3D structures, so it only classifies proteins whose
structure is known. Thus the data sets from SCOP are much smaller in size. The SCOP classification
is also hierarchical: proteins are grouped by class, fold, superfamily, and family. We consider the
classification at the superfamily level because this seems most appropriate given that we are only
using sequence information. As with the Pfam data, in each experiment we create a data set by
randomly choosing several superfamilies (of size between 20 and 200),retrieve the sequences of
the corresponding proteins, and use ourLandmark-Clusteringalgorithm to cluster the data set.

Once we cluster a particular data set, we compare the clustering to the manual classification
using the distance measure from the theoretical part of our work. To findthe fraction of misclassified
points under the optimal matching of clusters inC to clusters inC′ we solve a minimum weight
bipartite matching problem where the cost of matchingCi to C′

f (i) is |Ci −C′
f (i)|/n. In addition,

we compare clusterings to manual classifications using the F-measure, whichis used in another
study that clusters protein sequences (Paccanaro et al., 2006). The F-measure is a similarity score
between 0 and 1, where 1 indicates an exact match between the two clusterings (see Appendix A).
This measure has also been used in other studies (see Cheng et al., 2006), and is related to our notion
of clustering distance (see Lemma 10 in Appendix A). Surprisingly, the F-measure is not symmetric;
in our experiments we compute the similarity of a clusteringC to the manual classificationCM as
F(CM,C).

5.1 Choice of Parameters

To runLandmark-Clustering, we setk using the number of clusters in the ground truth clustering.
For each Pfam data set we use 5k landmarks/queries, and for each SCOP data set we use 10k
landmarks/queries. In addition, our algorithm uses three parameters(q,smin,n′) whose value is set
in the proof based onα andε, assuming that the clustering instance satisfies the(1+α,ε)-property.
In practice we must choose some value for each parameter. In our experiments we setq as a function
of the average size of the ground truth clusters (ave-size),smin as a function of the size of the smallest
ground truth cluster (min-size), andn′ as a function of the number of points in the data set. For the
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Pfam data sets we setq = ave-size,smin = 0.25 · min-size, andn′ = 0.7n. Because the selection
of landmarks is randomized, for each data set we compute several clusterings, compare each to the
ground truth, and report the median quality.

Landmark-Clusteringis most sensitive to thesmin parameter, and will not report a clustering if
smin is too small or too large. We recommend trying several values of this parameter, in increasing
or decreasing order, until one gets a clustering and none of the clustersare too large. If the user
gets a clustering where one of the clusters is very large, this likely means thatseveral ground truth
clusters have been merged. This may happen becausesmin is too small causing balls of outliers to
connect different cluster cores, orsmin is too large causing balls intersecting different cluster cores
to overlap.

In our SCOP experiments we have to use the above-mentioned heuristic to setthesmin parameter.
We start withsmin = min-size, and decrement it until we get exactlyk clusters and none of the
clusters are too large (larger than twice the size of the largest ground truthcluster). For the SCOP
data sets we setq = ave-size, andn′ = 0.5n. As before, for each data set we compute several
clusterings, compare each to the ground truth, and report the median quality.

Our algorithm is less sensitive to then′ parameter. However, if the user setsn′ too large some
ground truth clusters may be merged, so we recommend using a smaller value (0.5n≤ n′ ≤ 0.7n)
because all of the points are still clustered during the last step. Again, forsome values ofn′ the
algorithm may not output a clustering, or output a clustering where some of the clusters are too
large.

It is important to not choose an extreme value for theq parameter. The value ofq must be large
enough to avoid repeatedly choosing outliers (ifq = 1 we are likely to choose an outlier in each
iteration), but small enough to quickly find a landmark near each cluster core. If we setq= n, the
algorithm selects landmarks uniformly at random, and we may need significantlymore landmarks
to choose one from each cluster core by chance.

In our experiments we compare the algorithm that uses the adaptive selectionstrategy with the
alternative that chooses landmarks uniformly at random. The alternative algorithm uses exactly
the same number of landmarks, and other parameters stay the same as well. When the data has
the structure that follows from our assumptions, the non-adaptive selection strategy may require
significantly more landmarks to cover all cluster cores (especially if the sizesof the ground truth
clusters are not well-balanced). Therefore when the data has the rightstructure and we cannot afford
to use many landmarks, we expect to find more accurate clusterings with the adaptive selection
strategy.

5.2 Results

Figure 3 shows the results of our experiments on the Pfam data sets. As discussed earlier, to test
our adaptive landmark selection strategy we compare our algorithm, which is labeledLandmark-
Clustering-Adaptive, with the same algorithm that chooses landmarks uniformly at random, which
we refer to asLandmark-Clustering-Random. We can see that for a lot of the data setsLandmark-
Clustering-Adaptivefinds a clustering that is quite close to the ground truth. The alternative algo-
rithm does not perform as well, and for data set 3 fails to find a clustering altogether.

The Pfam data sets are very large, so as a benchmark for comparison wecan only consider
algorithms that use a comparable amount of distance information (because wedo not have the full
distance matrix). A natural choice is the following algorithm: uniformly at random choose a set of
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Figure 3: Comparing the performance ofLandmark-Clustering-Adaptive, Landmark-Clustering-
Random, andk-means in the embedded space on 10 data sets from Pfam. Data sets1-10
are created by randomly choosing 8 families from Pfam of sizes, 1000≤ s≤ 10000.
(a) Comparison using the distance measure from the theoretical part of our work. (b)
Comparison using the F-measure.

landmarksL, |L|= d; embed each point in ad-dimensional space using distances toL; usek-means
clustering in this space (with distances given by the Euclidean norm). This embedding scheme is a
Lipschitz embedding with singleton subsets (see Tang and Crovella, 2003),which gives distances
with low distortion for points near each other in a metric space.

Notice that this procedure uses exactlyd one versus all distance queries, so we can setd equal
to the number of queries used by our algorithm. We expect this algorithm to work well, and if
we look at Figure 3 we can see that it finds reasonable clusterings. Still, theclusterings reported
by this algorithm do not closely match the Pfam classification, showing that ourresults are indeed
significant.

Figure 4 shows the results of our experiments on the SCOP data sets. For these data sets we find
less accurate clusterings, which is likely because the SCOP classification is based on biochemical
and structural evidence in addition to sequence evidence. By contrast, the Pfam classification is
based entirely on sequence information. Still, because the SCOP data sets are much smaller, we
can compare our algorithm with methods that require distances between all thepoints. In particular,
Paccanaro et al. (2006) show that spectral clustering using sequence similarity data works well
when applied to the proteins in SCOP. Thus we use the exact method described by Paccanaro et al.
(2006) as a benchmark for comparison on the SCOP data sets. Moreover, other than clustering
randomly generated data sets from SCOP, we also consider the two main examples from Paccanaro
et al., which are labeledA andB in the figure. From Figure 4 we can see that the performance of
Landmark-Clusteringis comparable to that of the spectral method, which is very good considering
that the spectral clustering algorithm significantly outperforms other clustering algorithms on this
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Figure 4: Comparing the performance ofLandmark-Clusteringand spectral clustering on 10 data
sets from SCOP. Data setsA and B are the two main examples from Paccanaro et al.
(2006), the other data sets (1-8) are created by randomly choosing 8 superfamilies from
SCOP of sizes, 20≤ s≤ 200. (a) Comparison using the distance measure from the
theoretical part of our work.(b) Comparison using the F-measure.

data (Paccanaro et al., 2006). Moreover, the spectral clustering algorithm requires the full distance
matrix as input, and takes much longer to run.

For the SCOP data sets we do not see any significant difference in performance when we com-
pare the adaptive and non-adaptive landmark selection strategies. This islikely because we are
using a lot of landmarks (10 times the number of clusters), and selecting landmarks uniformly at
random is sufficient to cover the dense groups of points. Unfortunatelyfor these data the algorithm
has little success if we use fewer than 10k landmarks (it usually cannot find a clustering altogether),
so we cannot test how the two selection strategies perform when we use fewer landmarks.

5.3 Testing the(c,ε)-property

To see whether approximation stability of thek-median objective function is a reasonable assump-
tion for our data, we look at whether our data sets resemble the structure that is implied by our
assumption. We do this by measuring the separation of the ground truth clusters in our data sets.
For each data set in our study, we sample some points from each ground truth cluster. We then look
at whether the sampled points are more similar to points in the same cluster than to points in other
clusters. More specifically, for each point we record the median within-cluster similarity, and the
maximum between-cluster similarity. If our data sets indeed have well-separated cluster cores, as
implied by our assumption, then for a lot of the points the median within-cluster similarity should
be significantly larger than the maximum between-cluster similarity. We can see that this is indeed
the case for the Pfam data sets. However, this is not typically the case for the SCOP data sets, where
most points have little similarity to the majority of the points in their ground truth cluster. These
observations explain our results on the two sets of data: we are able to accurately cluster the Pfam
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data sets, and our algorithm is much less accurate on the SCOP data sets. Thecomplete results of
these experiments can be found athttp://xialab.bu.edu/resources/ac.

Testing whether the(c,ε)-property holds for thek-median objective is an NP-complete prob-
lem (Schalekamp et al., 2010). Moreover, in our experiments when we setthe parameters of the
algorithm we don’t preserve the relationships between them as in Algorithm 1.In particular, in our
experiments when we setn′ to n−smin+1 as in Algorithm 1, the algorithm usually fails to report a
clustering no matter what value ofsmin we try. This means that these data sets in fact do not satisfy
our exact theoretic assumptions. Still, when we only slightly break the dependence between the
parameters, we are able to find accurate clusterings for the Pfam data sets. For the SCOP data sets
we have to further break the dependence between the parameters, and use an additional heuristic to
estimatesmin, which is not surprising because these data do not have the structure that the algorithm
exploits.

6. Conclusion and Open Questions

In this work we presented a new algorithm for clustering large data sets with limited distance infor-
mation. As opposed to previous settings, our goal was not to approximate some objective function
like the k-median objective, but to find clusterings close to the ground truth. We proved that our
algorithm yields accurate clusterings with only a small number of one versus all distance queries,
given a natural assumption about the structure of the clustering instance.This assumption has been
previously analyzed by Balcan et al. (2009), but in the full distance information setting. By contrast,
our algorithm uses only a small number of queries, it is much faster, and it has effectively the same
formal performance guarantees as the one introduced by Balcan et al. (2009).

To demonstrate the practical use of our algorithm, we clustered protein sequences using a se-
quence database search program as the one versus all query. We compared our results to gold
standard manual classifications of protein evolutionary relatedness given in Pfam (Finn et al., 2010)
and SCOP (Murzin et al., 1995). We find that our clusterings are quite accurate when we compare
with the classification given in Pfam. For SCOP our clusterings are as accurate as state of the art
methods, which take longer to run and require the full distance matrix as input.

Our main theoretical guarantee assumes large target clusters. It would beinteresting to design
a provably correct algorithm for the case of small clusters as well. It would also be interesting to
study other objective functions for clustering under similar approximation stability assumptions.
In particular, Voevodski et al. (2011) study the implications of the(c,ε)-property for themin-sum
objective function. However, the algorithm presented there is not as efficient and is less accurate in
clustering protein sequences.
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Appendix A.

In this section we give the definition of F-measure, which is another way to compare two clusterings.
We also show a relationship between our measure of distance and the F-measure.

A.1 F-measure

The F-measure compares two clusteringsC andC′ by matching each cluster inC to a cluster inC′

using a harmonic mean of Precision and Recall, and then computing a “per-point” average. If we

matchCi to C′
j , Precision is defined asP(Ci ,C′

j) =
|Ci∩C′

j |

|Ci |
. Recall is defined asR(Ci ,C′

j) =
|Ci∩C′

j |

|Cj |
.

ForCi andC′
j the harmonic mean of Precision and Recall is then equivalent to

2·|Ci∩C′
j |

|Ci |+|C′
j |

, which we

denote by pr(Ci ,C′
j) to simplify notation. The F-measure is then defined as

F(C,C′) =
1
n ∑

Ci∈C

|Ci |max
C′

j∈C′
pr(Ci ,C

′
j).

Note that this quantity is between 0 and 1, where 1 corresponds to an exactmatch between the two
clusterings.

Lemma 10 Given two clusterings C and C′, if dist(C,C′) = d then F(C,C′)≥ 1−3d/2.

Proof Denote byσ the optimal matching of clusters inC to clusters inC′, which achieves a mis-
classification ofdn points. We show that just considering pr(Ci ,C′

σ(i)) for eachCi ∈C achieves an
F-measure of at least 1−3d/2:

F(C,C′)≥
1
n ∑

Ci∈C

|Ci |pr(Ci ,C
′
σ(i))≥ 1−3d/2.

To see this, for a match ofCi to C′
σ(i) we denote bym1

i the number of points that are inCi

but not inC′
σ(i), and bym2

i the number of points that are inC′
σ(i) but not inCi : m1

i = |Ci −C′
σ(i)|,

m2
i = |C′

σ(i)−Ci |. Because the total number of misclassified points isdn it follows that

∑
Ci∈C

m1
i = ∑

Ci∈C

m2
i = dn.

By definition,|Ci ∩C′
σ(i)|= |Ci |−m1

i . Moreover,|C′
σ(i)|= |C′

σ(i)∩Ci |+m2
i ≤ |Ci |+m2

i . It follows
that

pr(Ci ,C
′
σ(i)) =

2(|Ci |−m1
i )

|Ci |+ |C′
σ(i)|

≥
2(|Ci |−m1

i )

2|Ci |+m2
i

=
2|Ci |+m2

i

2|Ci |+m2
i

−
m2

i +2m1
i

2|Ci |+m2
i

≥ 1−
m2

i +2m1
i

2|Ci |
.

We can now see that

1
n ∑

Ci∈C

|Ci |pr(Ci ,C
′
σ(i))≥

1
n ∑

Ci∈C

|Ci |(1−
m2

i +2m1
i

2|Ci |
) =

1
n ∑

Ci∈C

|Ci |−
1
2n ∑

Ci∈C

m2
i +2m1

i = 1−
3dn
2n

.
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