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Abstract

Given a point seSand an unknown metrid on S, we study the problem of efficiently partitioning
Sinto k clusters while querying few distances between the poimiour model we assume that
we have access tine versus alfjueries that given a poiste Sreturn the distances betwesand

all other points. We show that given a natural assumptiomutathe structure of the instance, we
can efficiently find an accurate clustering using oDi§) distance queries. Our algorithm uses an
activeselection strategy to choose a small set of points that wéacelmarks, and considers only
the distances between landmarks and other points to pradcicstering. We use our procedure to
cluster proteins by sequence similarity. This setting Igifies our model because we can use a fast
sequence database search program to query a sequence agansre data set. We conduct an
empirical study that shows that even though we query a smaailibn of the distances between the
points, we produce clusterings that are close to a desitestiecing given by manual classification.
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bility, clustering accuracy, protein sequences
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1. Introduction

Clustering from pairwise distance information is an important problem in thiysisand explo-
ration of data. It has many variants and formulations and it has been eigrstudied in many
different communities, and many different clustering algorithms have begoged.

Many application domains ranging from computer vision to biology have thctawed an ex-
plosion of data, presenting several challenges to traditional clusterihgitees. In particular,
computing the distances between all pairs of points, as required by traditlostdring algorithms,
has become infeasible in many application domains. As a consequence @dwasebincreasingly
important to develop effective clustering algorithms that can operate with limiségihde informa-
tion.

In this work we initiate a study of clustering with limited distance information; in pagicu
we consider clustering with a small numberasfe versus alfjueries. We can imagine at least two
different ways to query distances between points. One way is to askstandes between pairs of
points, and the other is to ask for distances between one point and allpaines. Clearly, a one
versus all query can be implementedngsairwise queries, wheneis the size of the point set, but
we draw a distinction between the two because the former is often significaster in practice if
the query is implemented as a database search.

Our main motivating example for considering one versus all distance queseguence simi-
larity search in biology. A program such as BLAST (Altschul et al., 198@)sfc Local Alignment
Search Tool) is optimized to search a single sequence against an entirasgatd sequences. On
the other hand, performingpairwise sequence alignments takes several orders of magnitude more
time, even if the pairwise alignment is very fast. The disparity in runtime is due tbabking
that BLAST uses to identify regions of similarity between the input sequemds@guences in the
database. The program maintains a hash table efa@tiisin the database (substrings of a certain
length), linking each word to its locations. When a query is performed, BLé&@hsiders each word
in the input sequence, and runs a local sequence alignment in each chiishs in the database.
Therefore the program only performs a limited humber of local sequdigrareents, rather than
aligning the input sequence to each sequence in the database. Of, tberdewnside is that we
never consider alignments between sequences that do not share.aHwovdver, in this case an
alignment may not be relevant anyway, and we can assign a distanceiyitdfithe two sequences.
Even though the search performed by BLAST is heuristic, it has beemsti@t protein sequence
similarity identified by BLAST is meaningful (Brenner et al., 1998).

Motivated by such scenarios, in this paper we consider the problemsiédhg a data set with
an unknown distance function, given only the capability to ask one vatkdstance queries. We
design an efficient algorithm for clustering accurately with a small numbeuoh queries. To
formally analyze the correctness of our algorithm we assume that the distamation is a metric,
and that our clustering problem satisfies a natural approximation stabilipegyowith respect to
thek-median objective function for clustering. In particular, our analysismss the(c, €) approx-
imation stability property of Balcan et al. (2009). For an objective funciofsuch ak-median),
the (c,€)-property assumes that any clustering thatésagpproximation ofb is structurally close to
some “target” clusterin@y (has error of at most with respect taCr). Given this assumption, our
goal is to find a clustering that is structurally close to the target (has ermtrmbste), which is
what we call araccurateclustering.
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Our first main contribution is designing an algorithm that given(the a, €)-property for thek-
median objective finds an accurate clustering with probability at leastldy using onlyO(k+In %)
one versus all queries. Our analysis requires that the clusters of et thuistering have size at
leastO(en/a). In particular, we use the same assumption as Balcan et al. (2009), aobitawe
effectively the same performance guarantees as Balcan et al. bulyysimg a very small number
of one versus all queries. In addition to handling this more difficult scenase also provide a
much faster algorithm. The algorithm of Balcan et al. (2009) can be impleméente¢h®) time,
wheren is the size of the point set, while the one proposed here runs inQiftie+ In %)nlogn).

Our algorithm uses aactive selection strategy to choose a small set of landmark points. In
each iteration ouLandmark-Selectioprocedure chooses one of the farthest points from the ones
chosen already, where distance from a petata seiX is given by migexd(s, x). This procedure is
motivated by the observation that if we select points that are far from afidhis chosen already,
we can quickly cover all the dense regions of the data set. At the same tinpgpoadure uses some
randomness to avoid choosing outliers. After selecting a small set of laksnvee use a robust
single-linkage clustering procedure that we ¢&thand-Landmarksvhich constructs a clustering
linking only the landmarks that hawg)i, points in anr-ball around them, for an appropriate choice
of smin and increasing estimatestofAfter our initial work a similar robust single-linkage clustering
algorithm has been used in Chaudhuri and Dasgupta (2010), whicleiseaaiization of a procedure
presented in Wishart (1969). Our algorithm uses only the distances dreteredmarks and other
points to compute a clustering. Therefore the number of one versus atichsgaeries required is
equivalent to the number of landmarks.

The runtime of our algorithm i©(|L|nlogn), whereL is the set of landmarks that have been
selected. Our adaptive selection procedure significantly reduces the rignguary complexity
of the algorithm. We show that using our adaptive procedure it sufficefidose onlyO(k +
In %) landmarks to compute an accurate clustering with probability at least. If we use a non-
adaptive selection strategy and simply choose landmarks uniformly atrmanede must sample
a point from each ground truth cluster and therefore need at @{m%) landmarks to find an
accurate clustering. More exactly, the non-adaptive selection straiggiy@sO(3 In %) landmarks,
whereA is the size of the smallest ground truth cluster. Therefore if we simply cHaodenarks
uniformly at random, performance can degrade significantly if some ctustermuch smaller than
the average cluster size. Our theoretic assumption does require thabthma gruth clusters are
large, butO(en/a) can still be much smaller than the average cluster size, in which case otivadap
selection procedure gives a more significant improvement in runtime amy qomplexity of the
algorithm.

We use our algorithm to cluster proteins by sequence similarity, and comparesailts to gold
standard manual classifications given in the Pfam (Finn et al., 2010)@@& $Murzin et al., 1995)
databases. These classification databases are used ubiquitously iy bdobdgerve evolutionary
relationships between proteins and to find close relatives of particulipsoWe find that for one
of these sources we obtain clusterings that usually closely match the ¢iasification, and for the
other the performance of our algorithm is comparable to that of the bestkalgorithms using the
full distance matrix. Both of these classification databases have limited gevesaa completely
automated method such as ours can be useful in clustering proteins thagdtao be classified.
Moreover, our method can cluster very large data sets because itisrgfind does not require the
full distance matrix as input, which may be infeasible to obtain for a very laatge skt.
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1.1 Related Work

A theoretical assumption that is related to tfee)-property ise-separability, which is used in
Ostrovsky et al. (2006). This property is also referred to as irreditgiim Badoiu et al. (2002) and
Kumar et al. (2005). A clustering instancesiseparated if the cost of the optimatlustering is at
moste? times the cost of the optimal clustering usikg 1 clusters. The-separability andc, )
properties are related: in the case when the clusters are large the ®gebes. (2006) condition
implies the Balcan et al. (2009) condition (see Balcan et al., 2009).

Ostrovsky et al. also present a sampling method for choosing initial cemteish when fol-
lowed by a single Lloyd-type descent step gives a constant factooxdpmation of thek-means
objective if the instance is-separated. However, their sampling method needs information about
the full distance matrix because the probability of picking two points as thewicstluster centers
is proportional to their squared distance. A very similar (independentlygsexd) strategy is used
by Arthur and Vassilvitskii (2007) to obtain d@(logk)-approximation of thé&-means objective on
arbitrary instances. Their work was further extended by Ailon et aDg26 give a constant factor
approximation using(klogk) centers. The latter two algorithms can be implemented kihd
O(klogk) one versus all distance queries, respectively.

Awasthi et al. (2010) have since improved the approximation guarant@stobvsky et al.
(2006) and some of the results of Balcan et al. (2009). In particularsthew a way to arbitrarily
closely approximate thk-median andk-means objective when the Balcan et al. (2009) condition
is satisfied and all the target clusters are large. In their analysis they preparty called weak
deletion-stability, which is implied by the Ostrovsky et al. (2006) condition aedBalcan et al.
(2009) condition when the target clusters are large. However, in codénd ac-approximation
(and given our assumption a clustering that-idose to the target) the runtime of their algorithm is
nP(L/(e-1%)k0(1/(c-1)  On the other hand, the runtime of our algorithm is completely independent
of ¢, so it remains efficient even when the€)-property holds only for some very small constant

Approximate clustering using sampling has been studied extensively irt yexes (see Mishra
et al., 2001; Ben-David, 2007; Czumaj and Sohler, 2007). The metrog®sed in these papers
yield constant factor approximations to tkemedian objective using at leaS{k) one versus all
distance queries. However, as the constant factor of these approximigtiat least 2, the proposed
sampling methods do not necessarily yield clusterings close to the targetiolu&e if the (c,€)-
property holds only for some small constant 2, which is the interesting case in our setting.

Clustering using coresets is another approach that can be effective limited information
setting. A coreset is a small representative saniplaf the original point seP, which has the
property that computational problemsBrean be reduced to problems Dn In particular, Feldman
and Langberg (2011) give ways to construct coresets such tfiata)-approximation to the-
median problem o gives a(1+ a)-approximation on the full data set. Therefore by using these
coresets we can find @ + o)-approximation to the&-median problem using a number of one-
versus-all distance queries that is equal to the size of the coreset.veipwe size of the coreset
of Feldman and Langberg (2011)@&klog(1/a)/a), so this approach may require significantly
more queries to find an accurate clustering in our model if(the)-property holds only for some
very small constant.

Our landmark selection strategy is related toftrghest first traversalised by Dasgupta (2002).
In each iteration this traversal selects the point that is farthest from # @rosen so far, where
as in our algorithm the distance from a po#tb a setX is given by migexd(s,x). This traversal
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was originally used by Gonzalez (1985) to give a 2-approximation tk{tenter problem. The
same procedure is also used in the FastMap algorithm in Faloutsos and Bb) @®a heuristic
to find a pair of distant objects. Farthest first traversal is used in sda002) to produce a
hierarchical clustering where for eaklthe inducedk-clustering is a constant factor approximation
of the optimalk-center clustering. Our selection strategy is somewhat different frontréivisrsal
because in each iteration we uniformly at random choose one of thedpibiats from the ones
selected so far. In addition, the theoretical guarantees we provideideedifferent from those of
Gonzales and Dasgupta.

To our knowledge, our work is the first to provide theoretical guaranteeactive clustering
(clustering by adaptively using only some of the distances between thaegbjecler a natural
condition on the input data. Following the initial publication of this work, Erikssbal. (2011) have
provided another active clustering procedure with theoretical guasie hierarchical clustering
under a different condition on the input data.

2. Preliminaries

Given a metric spac®l = (X,d) with point setX, an unknown distance functiahsatisfying the
triangle inequality, and a set of poirfis X with cardinalityn, we would like to find &-clustering
C that partitions the points iSinto k setsCy, ..., Cx by usingone versus altlistance queries.

In our analysis we assume thasatisfies thec, €)-property of Balcan et al. (2009) for the
median objective function. THemedian objective is to minimiz&(C) = 57X, S xec d(x,¢Ci), where
¢ is the median of clustet;, which is the poiny € C; that minimizesy ,.c d(X,y). Let OPTp =
minc ®(C), where the minimum is over ak-clusterings ofS, and denote bg* = {Cj,...,C;} a
clustering achieving this value.

To formalize thegc, €)-property we need to define a notion of distance betweerk{elosterings
C={Cy,....G} andC’' = {Cy,...,C;}. Asin Balcan et al. (2009), we define the distance between
C andC' as the fraction of points on which they disagree under the optimal matchingstés in
Cto clustersirC’:

1k
. N i . _CL .
d'St(C’C)_?;EniZE G —Chpy,

whereF is the set of bijectiond: {1,...,k} — {1,...,k}. Two clustering<C andC’ aree-closeif
dist(C,C) < e.

We assume that there exists some unknown relevant “target” clus@riagd given a proposed
clusteringC we define the error & with respect t&Cr as distC,Cy ). Our goal is to find a clustering
of low error.

The(c,€)-property is defined as follows.

Definition 1 We say that the instand&, d) satisfies théc, €)-property for the k-median objective
function with respect to the target clustering @ any clustering of S that approximat€PTe
within a factor of c iss-close to G, that is,®(C) < ¢-OPTe = dist(C,Cr) < €.

In the analysis of the next section we denotechyhe center point o€, and use OPT to refer
to the value ofC* using thek-median objective, that is, OPF ®(C*). We define theveight of
pointx to be the contribution of to thek-median objective il€*: w(x) = min;d(x,¢’). Similarly,
we usew,(x) to denotex’s distance to the second-closest cluster coenter amongs;,...,c}. In

PT

addition, letw be the average weight of the pointg:= %ersw(x) = =
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3. Clustering With Limited Distance Information

Algorithm 1 Landmark-Clusterindg§ a, €, 0, k)
b= (1+17/a)en;
q=2b;
iter = 4k+ 16In3;
Smin=Db+1;
n=n-b;
L = Landmark-Selection(q, iter, S);
C’ = Expand-Landmarks (k, smin, 1, L, S);
Choose some working landmaikrom each cluste€;
for eachx € Sdo
Insertx into the clusteCy for j = argmind(x,li);
end for
return C”;

In this section we present a new algorithm that accurately clusters a peirma$ assuming
that the clustering instance satisfies {bee)-property forc = 1+ a, and the clusters in the target
clusteringCy are not too small. The algorithm presented here is much faster than theveme gi
by Balcan et al., and does not require all pairwise distances as inputadhsve only require
O(k+1In %) one versus all distance queries to achieve the same performance geaimdalcan
et al. (2009) with probability at least-10.

Our clustering method is described in Algorithm 1. We start by usind-#mmark-Selection
procedure taadaptivelyselect a small set of landmarks. This procedure repeatedly chooses un
formly at random one of thq farthest points from the ones selected so far (for an appropgjate
where the distance from a poisito a setX is given by migexd(s, x). We usedmin(S) to refer to the
minimum distance betweesand any point selected so far. Each time we select a new landmark
we use a one versus all distance query to get the distances bdtameall other points in the data
set, and updatdmn(s) for each poins € S. To select a new landmark in each iteration, we choose
a random numbere {n—q+1,...,n} and use a linear time selection algorithm to selectithe
farthest point. The complete description of this procedure is given in Algor&hWe note that our
algorithm uses only the distances between landmarks and other points te@w@dlustering.

Expand-Landmarkthen expands a ba, around each landmatke L. We use the variable
to denote the radius of all the balls: for each landmagklL, B = {s€ S| d(s,I) <r}. For each
ball there are at mostrelevant values of, each adding at least one more point to it, which results
in at most|L|n values ofr to try in total. We call a landmarkworking if B; containsat least in
points. The algorithm maintains a gra@g = (Vs, Eg), wherev; € Vg represents the ball around
working landmark, and two vertices are connected by an (undirected) edge if the condisg
balls overlap on any pointvi,,Vvi,) € Eg iff B, "B, # 0. We emphasize that this graph considers
only the balls that havat least &, points in them. In addition, we maintain the set of points in
these balls Clustered {s< S| 3Jl:se By andv| € g}, and a list of the connected components of
Gg, which we refer to as Componef®s) = {Comp, ...,Comp,}.

In each iteration we expand one of the balls by a point, and uggiat€omponent&Gg), and
Clustered. 1iGg has exactlik components, anlusteredi> n’, we terminate and report a clustering
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Algorithm 2 Landmark-Selectiomy iter, S)
Choosd € Suniformly at random;

L={l}

for eachd(l,s) € QUERY-ONE-VS-ALL(I,S) do
dmin(s) =d(l,s);

end for

fori=1toiter—1do
Letsy, ..., S, be an ordering of points iBsuch thatmin(sj) < dmin(Sj+1) for j € {1,...,n—1};
Choosd € {sh—q+1,---,S} uniformly at random;
L=LuU{l};
for eachd(l,s) € QUERY-ONE-VS-ALL(I,S) do

if d(I,) < dmin(S) then
dmin(s) =d(l,s);

end if
end for
end for
return L;
GO
N
S

B, B;/\

. ‘/.l :.\\ Vo)

\1 .'/ \\77//

Figure 1: Balls around landmarks are displayed, with the next point todedatd a ball labeled as
s".

that has a cluste; for each component Compwvhere eacl€; contains points in balls in Comp
If this condition is never satisfied, we repard-cluster. A sketch of this algorithm is given in
Algorithm 3. In our description Expand-Ball() is an abstraction for exjiag one of the balls by a
single point, which is performed by finding the next closest landmark-jaiint!*,s*), and adding
s' to B« (see Figure 1). In Section 4 we give a full description of an efficient implatation of
Expand-Landmarks

The last step of our algorithm takes the cluste@igeturned byExpand-Landmarkand im-
proves it. We compute a setthat contains exactly one working landmark from each clugterC’
(any working landmark is sufficient), and assign each poinSto the cluster corresponding to the
closest landmark ih'.

We now present our main theoretical guarantee for Algorithm 1.
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Algorithm 3 Expand-Landmark&(smin,n,L, S

1. r=0;

2: while ((1*,s*) = Expand-Ball()) != nulldo

3 r=d(l*s);

4:  updateGg, ComponentS>g), and Clustered;

5. if [Component&Gg)| = k and|Clusteredl> n’ then

6: return C= {Cy,...,Cc} whereC; = {se S| 3l:se By andy; € Comp};
7. endif

8: end while

9: return no-cluster;

Theorem 2 Given a metric space M- (X,d), where d is unknown, and a set of points X, if
the instancg S d) satisfies thé1+ a,)-property for the k-median objective function and if each
cluster in the target clusteringfChas size at leagd+51/a)en, then Landmark-Clustering outputs
a clustering that i-close to G with probability at leastl — 3 in time O((k+In §)|S/log|S)) using
O(k+1In %) one versus alflistance queries.

Before we prove the theorem, we will introduce some notation and use &rsiangimilar to
the one in Balcan et al. (2009) to argue about the structure of the clustestance that follows
from our assumptions. Let = dist(Cr,C*). By our assumption that tHemedian clustering 0§
satisfies thé1+ a, €)-property we have* < €. Because each cluster in the target clustering has at
least(4+51/a)en points, and theptimal k-median clustering iffers from the target clustering
by £*n < en points, each cluster i8* must have at leagB+ 51/a)en points.

Let us define theritical distance it = f—% We call a pointx goodif both w(x) < dgit and
Wa(X) —W(X) > 17dqit, elsexis calledbad In other words, thgoodpoints are those points that are
close to their own cluster center and far from any other cluster centaddition, we will break up
the good points intogood sets X whereX; is the set of thggood points in the optimal clustet;’.
So each seX; is the “core” of the optimal clustez;’.

Note that the distance between two potge X; satisfiesl(x,y) < d(x,¢')+d(c,y) =w(x) +
w(y) < 2dit. In addition, the distance between any two points in different good seteasggrthan
16d.it. To see this, consider a pair of poitg X; andy € Xj. The distance fromto y’s cluster
centerc]-‘ is at least 1@cit. By the triangle inequalityd(x,y) > d(x, c]-‘) —d(y, c’j‘) > 17dgyit — derit =
16dcyit.

If the k-median instancéM, S) satisfies theg1+ o, €)-property with respect t€r, and each
cluster inCt has size at leastR, then

1. less tharfe — £*)n pointsx € Son whichCr andC* agree havev,(x) —w(x) < %¥.

2. at most 1gn/a pointsx € Shavew(x) > 2.

The first part is proved by Balcan et al. (2009). The intuition is that if toayymoints on which
Cr andC* agree are close enough to the second-closest center afopeg, ..., c;}, then we can
move them to the clusters corresponding to those centers, producindeiolyishat is structurally
far fromCy, but whose objective value is close to OPT, violating(the o, €)-property. The second
part follows from the fact thay ,.sw(x) = OPT = wn.
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Then using these facts and the definitioroit follows that at most*n+ (€ —€*)n+17en/a =
en+17en/a = (14 17/a)en = b points are bad. Hence eafgk| = |C\B| > (2+34/a)en = 2b.

In the remainder of this section we prove that given this structure of théedlug instance,
Landmark-Clusterindinds an accurate clustering. We first show that almost surely the satdbf la
marks returned bizandmark-Selectiohas the property that each of the cluster cores has a landmark
near it, which we refer to as tHandmark spreagroperty. We then argue that given a set of such
landmarksExpand-Landmarkfinds a partitiorC’ that clusters most of the points in each core cor-
rectly. We conclude with the proof of the theorem, which argues that theediog returned by the
last step of our procedure is a further improved clustering that is vesg ¢tC* andCr.

The Landmark-Clusteringlgorithm first use¢ andmark-Selectidp, iter,S) to choose a set of
landmarks. We say that thendmark spreagroperty holds if there is a landmark closer thaly,2
to some point in each good set. The following lemma proves thaq fer2b after selecting only
iter=O(k+In %) points the chosen landmarks will have this property with probability at least 1

Lemma 3 Given a set of landmarks L = Landmark-Selecti@b, 4k + 16In ,S), the landmark
spread property is satisfied with probability at ledst .

Proof Because there are at mdsibad points and in each iteration we uniformly at random choose
one of D points, the probability that a good point is added_tis at least 1/2 in each iteration.
Using a Chernoff bound, we show in Lemma 4 that the probability that feveerklyood points
have been added toaftert > 2k iterations is less thaert1-%)*/4, Fort = 4k + 16In%5

eft( )2/4 (4k+16|n )052/4 716In5/16 5.

Therefore aftet = 4k + 16In% iterations this probability is smaller tha&n

We argue that once we seldctood points using our procedure, one of them must be closer
than 21t to some point in each good set. As in Algorithm 2, we dgg(s) to denote the minimum
distance from poins to any landmark that has been selected sodak:(s) = minc-d(l,s), where
L’ is the set of landmarks that have been selected so far.

There are two possibilities regarding the fiksgjood points added th: we select them from
distinct good sets, or at least two points are selected from the same dodidtise former is true,
thelandmark spreagbroperty trivially holds. If the latter is true, consider the first time that aséco
point is chosen from the same good Xet Let us call these two pointsandy (they may be the
same point), and assume thyas chosen after. The distance betweenandy must be less than
2d.rit because they are in the same good set. Therefore wisethosendmin(y) < d(X,y) < 2dcrit.
Moreover,y is chosen from{sh_2n(1,...,Sh}, Wheredmin(sj) < dmin(Sj+1). Therefore whery is
chosen, at least— 2b+ 1 pointss € S(includingy) satisfydmin(s) < dmin(Y) < 2dgit. Because each
good set satisfiel| > 2b, it follows that there must be a landmark closer thdg;2to some point
in each good set.

[ |

Lemma 4 The probability that fewer than k goodzE)omts have been chosen as lakdiafer t> 2k
iterations of Landmark-Selection is less thaf(& *
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Proof Let X; be an indicator random variable defined as followg:= 1 if the point chosen in
iterationi is a good point, and O otherwise. L¥t= z}:m, andu be the expectation oX. In
other words X is the number of good points chosen aftéerations of the algorithm, angdis its
expected value.

Because in each round we uniformly at random choose oné pbihts and there are at most
b bad points in total, B] > 1/2 and henceu > t/2. By the Chernoff bound, for any > 0,
PrIX < (1—3)y] < e H/2,

If we setd = 1— 2, we have(1—&)p= (1— (1— 2))p> (1 (1— %))t/2=k. Assuming that
t > 2K, it follows that PfX < K] < PiX < (1—8)j] < e ¥/2 = g H1-7)%/2 < g 1/20-2%/2.  m

The algorithm then uses thexpand-Landmarkgrocedure to find &-clusteringC’. The fol-
lowing lemma states th&' is an accurate clustering, and has an additional property that is relevant
for the last part of the algorithm.

Lemma 5 Given a set of landmarks L that satisfy the landmark spread propenparitkLandmarks
with parameters gin = b+ 1, and i = n— b returns a k-clustering C= {C},C,,...C,} in which
each cluster contains points from a single distinct good setfXve leto be a bijection mapping
each good setXo the cluster (g(i) containing points from X the distance betweerj and any

working landmark | in Cé(i) satisfies dc’, 1) < 5dcrit.

Proof Lemma 6 argues that because the good Xetse well-separated, far< 4d.i; no ball of
radiusr can overlap (intersect) more than ogeand two balls that overlap differeKt cannot share
any points. Lemma 7 argues that because there is a landmark near edctegdbere is a value
of r* < 4dqi; such that eacl; is contained in some ball of radius. Moreover, because we only
consider balls that have more thapoints in them, and the number of bad points is at nhpstch
ball in Gg must overlap some good set. We can use these facts to argue for thetrasseof the
algorithm. We refer to the clustering computed in line 6Eodpand-Landmarkss the clustering
inducedby Gg, in which each cluster contains points in balls that are in the same comporigst in

First we observe that far=r*, Gg has exacthk components and each good Xgts contained
within a distinct component of the induced clustering. Each baBdroverlaps with some;, and
because* < 4d.i;, we know that each ball iGGg overlaps with exactly ong;. We also know that
balls that overlap different; cannot share any points and are thus not connect&g.irmherefore
balls that overlap different; will be in different components iGg. Moreover, eaclx; is contained
in some ball of radius*. For each good s& let us designate bg; a ball that contains all the points
in X (Figure 2), which is inGg because the size of each good set satigfgs> b. Any ball in Gg
that overlapsX; will be connected td;, and will thus be in the same componentBas Therefore
for r =r*, Gg has exacthjk components, one for each good etwith the corresponding cluster
containing all the points ib.

There are at least— b points that are in somx,, therefore for = r* the number of clustered
points is at leash — b. Hence forr = r* the condition in line 5 ofExpand-Landmarksvill be
satisfied and in line 6 the algorithm will returrkeclustering in which each cluster contains points
from a single distinct good sé§.

Now let us suppose that we start with= 0. Consider the first value af=r’ for which the
condition in line 5 is satisfied. At this poifdg has exacthk components and the number of points
that are not clustered is at mdst It must be the case that < r* < 4d.it because we know that
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Figure 2: BallsB; andB; of radiusr* are shown, which contain good séfsandX;, respectively.
The radius of the balls is small in comparison to the distance between the geod se

the condition is satisfied far = r*, and we are considering all relevant valueg af ascending
order. As before, each ball @g must overlap some good 96§t Again using Lemma 6 we argue
that because < 4d.;, no ball can overlap more than oXgand two balls that overlap differei
cannot share any points. It follows that each cluster induce@ggontains points from a singh§
(so we cannot merge the good sets). Moreover, because the sizzhajaad set satisfidXi| > b,
and there are at mobtpoints that are not clustered, each induced cluster must contain poimts fro
a distinctX; (so we cannot split the good sets). Thus we will retutr@ustering in which each
cluster contains points from a single distinct good>§et

To prove the second part of the statementddie a bijection matching each good 3¢tto
the clustelcg(i) containing points fron¥;. Clearly, for any working landmarkin C&(i) it must be
the case thaB| overlapsX;. Lets* denote any point on whicB; andX; overlap. By the triangle
inequality, the distance betweeh andl satisfiesd(c",1) < d(c,s") +d(s",1) < derit +r < 50iit.
Therefore the distance betwegnand any working landmarke Cé(i) satisfied(c,l) < 5dgit. W

Lemma 6 A ball of radius r< 4d.; cannot contain points from more than one good seaXd two
balls of radius r< 4d;; that overlap (intersect) different, Xannot share any points.

Proof To prove the first part, consider a b&8| of radiusr < 4d.;; around landmark. In other
words, B = {s€ S| d(s,I) <r}. If B, overlaps more than one good set, then it must have at
least two points from different good setsc X; andy € Xj. By the triangle inequality it follows
that d(x,y) < d(x1)+d(l,y) < 2r < 8deit. However, we know thatl(x,y) > 16d.i, giving a
contradiction.

To prove the second part, consider two b&lsandB), of radiusr < 4dit around landmarks
[1 andly. In other wordsBj, = {s€ S|d(s,l1) <r}, andB,, = {se€ S| d(s,l2) <r}. Assume that
they overlap with different good se¥ andX;: B;, N X # 0 andB,, N X; # 0. For the purpose of
contradiction, let's assume tha andB), share at least one poirj, N By, # 0, and use" to refer to
this point. By the triangle inequality, it follows that the distance between any paiBj, andy € By,
satisfiedd(x,y) < d(x,s") +d(s",y) < [d(x,l1) +d(l1,s°)] +[d(s*,]2) +d(l2,y)] < 4r < 160cit.
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BecauseB;, overlaps withX; andB,, overlaps withX;, it follows that there is a pair of points
x € X andy € X; such thatl(x,y) < 16dcit, a contradiction. Therefore By, andBy, overlap differ-
ent good set, N B, = 0. [ ]

Lemma 7 Given a set of landmarks L that satisfy the landmark spread propertg ihsome value
of r* < 4dit such that each {s contained in some ball,Baround landmark k L of radius r*.

Proof For each good sef choose a poing € X; and a landmark € L that satisfyd(s, li) < 2dcit.
The distance betwednand each point € X; satisfied(l;,x) < d(l;,s) +d(s,X) < 2dgrit + 2dcrit =
4dcrit. Considenr™® = max,maxex,d(li,x). Clearly, eaclX; is contained in a bal, of radiusr* and
r* < 4dgrit. [ |

Lemma 8 Suppose the distance betweg¢rmand any working landmark | in g&) satisfies dc', 1) <

5dcit. Then given a point ¥ C that satisfies w(x) —w(x) > 17dgit, for any working landmark
l1 e C/c(i) and any working landmark le Cé(j#) it must be the case that® 1) < d(x,12).

Proof We will show thatd(x,l1) < w(X) + 5dcrit, andd(X,12) > w(x) + 12deit. This implies that
d(x,11) <d(x,12).

To prove the former, by the triangle inequalityx, 1) < d(x,c) +d(c’,l1) =w(x)+d(c,11) <
W(X) 4 S5dcit.

To prove the latter, by the triangle inequaldyx,l2) > d(x,cj) —d(l2,cj). Becausel(x,cj) >
Wa(X) andd(lz,c’j‘) < 5dgit, we have

d(x,12) > wa(X) — 5crit. (@H)
Moreover, because,(X) — w(X) > 17dcit, we have
Wo(X) > 17dcric + W(X). (2)

Combining Equations 1 and 2 it follows théx, |2) > 17dcyit +W(X) — 5dgrit = W(X) + 12dcri;. W

Proof [Theorem 2] After using Landmark-Selection to cho@(®+ln%) points, with probability

at least 1- o there is a landmark closer thadgg; to some point in each good set. Given a set of

landmarks with this property, each cluster in the cluste@hg {C;,C;,...C,} output byExpand-

Landmarkscontains points from a single distinct good Xgt This clustering can exclude up o

points, all of which may be good. Nonetheless, this meansthagy disagree witk* on only the

bad points and at mobtgood points. The number of points tlZtandC* disagree on is therefore

atmost » = O(en/a). Thus,C' is at leasD(e/a)-close toC*, and at leasD(g/a + €)-close toCr.
Moreover,C' has an additional property that allows us to find a clustering theatlese toCr .

If we useo to denote a bijection mapping each goodXdb the clustecg(i) containing points from

X, any working landmark € Cé(i) is closer than 8t to ¢. We can use this observation to find all

points that satisfy one of the properties of the good points: pgisteh thatv,(x) —w(x) > 17dcit.

Let us call these points theetectablegpoints. To clarify, the detectable points are those points that
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are much closer to their own cluster center than to any other cluster ce@terand thegoodpoints
are a subset of the detectable points that are also very close to their ster clenter.

To find the detectable points usi@), we choose some working landmdrkrom eachC/. For
each pointx € S we then inserk into the cIusterC}’ for j = argmind(x,l;). Lemma 8 argues
that each detectable point @ is closer to every working landmark (D{U(i) than to any working
landmark incg(#i). It follows thatC” andC* agree on all the detectable points. Because there
are fewer thar(e — €*)n points on whichCy andC* agree that are not detectable, it follows that
dist(C",Cr) < (e —€*) +dist(Cr,C*) = (e—€*) +-€* =&.

Therefore using(k + In%) landmarks we compute an accurate clustering with probability at
least 1- 6. The runtime oLandmark-Selectiois O(|L|n) if we use a linear time selection algorithm
to select the next point in each iteration, whetrgis the number of landmarks. Using a min-heap to
store all landmark-point pairs and a disjoint-set data structure to kedquatrtee connected compo-
nents ofGg, Expand-Landmarksan be implemented i@(|L|nlogn) time. A detailed description
of this implementation is given in Section 4. The last part of our procedues@fkn) time, so
the overall runtime of our algorithm ©(|L|nlogn). Therefore to compute an accurate clustering
with probability at least + o the runtime of our algorithm i©((k+ In%)nlogn). Moreover, we
only consider the distances between the landmarks and other points, stywseO(k+ In %) one
versus all distance queries. |

4. Implementation of Expand-Landmarks

In order to efficiently expand balls around landmarks, we build a min-keab landmark-point
pairs(l,s), where the key of each pair is the distance betwleands. In each iteration we find
(I*,s") = H.deleteMin(), and then ads] to items(*), which stores the points i-. We store points
that have been clustered (points in balls of size at Iggg}t in the set Clustered.

Our implementation assigns each clustered psiota “representative” landmark, denoted by
Im(s). The representative landmark sis the landmarl of the first large balB, that contains
s. To efficiently update the components @, we maintain a disjoint-set data structlwethat
contains sets corresponding to the connected compone@ts where each baB, is represented by
landmarkl. In other wordslJ contains a seflq, 5,13} iff By, B,, B, form a connected component
in Gg.

For each large ballB, our algorithm will consider all pointss € B, and perform
Update-Componentsg), which works as follows. Ifs does not have a representative landmark
we assign it td, otherwises must already be i), and we assigB, to the same component as
Bim(s)- If none of the points irB, are assigned to other landmarks, it will be in its own component.
A detailed description of the algorithm is given in Algorithm 4.

During the execution of the algorithm the connected componer@g ofiust correspond to the
sets ofU (where each baB, is represented by landmark Lemma 9 argues that B;, andB, are
directly connected irGg, |1 andl; must be in the same setlih It follows that wheneveB), andB,,
are in the same connected componer®gi |1 andl, will be in the same set i. Moreover, ifB;,
andB, are not in the same component®a, thenl; andl, cannot be in the same setlhbecause
both start in distinct sets (line 22), and it is not possible for a set contaliniiogoe merged with a
set containindy.
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Algorithm 4 Expand-Landmark&(smin,,L,S)

1. A=();
2: for eachse Sdo
Im(s) = null;
for eachl € L do
A.add(l,s),d(l,s));
end for
end for
H = build-heapd);
for eachl € L do
10: items() = ();
11: end for
12: Set Clustered = ();
13: U =();
14: while H.hasNext()Jdo
15:  (I*,s*) = H.deleteMin();
16:  items(*).add€");
17:  if items(*).size()> smin then
18: Update-Components( s);
19: Clustered.add¥);
20: endif
21. if items(*).size() ==Smin then
22: U.MakeSet(*);

w

© o N a R

23: for eachs € items(*) do

24: Update-Components(s);

25: Clustered.addy;

26: end for

27:  endif

28: if Clustered.size(} n’ andU .size() ==k then
29: return Format-Clustering();

30:  endif

31: end while

32: return no-cluster;

Algorithm 5 Update-Components)

1: if Im(s) == null then
Im(s) =1;
else
c1 =U.find();
¢z = U.find(m(s));
U.union(y, ¢p);
end if

N

NogRAw
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Algorithm 6 Format-Clustering()
1 C=();
2: for each Set’ inU do
3:  Set Cluster = ();

4: for eachl € L' do

5: for eachs € items() do
6: Cluster.addg);

7 end for

8: endfor

9: C.add(Clusten);

10: end for

11: return C;

Lemma 9 If balls B, and B, are directly connected in & then landmarks;land b must be in the
same setinU.

Proof If B;, andB,, are directly connected iGg, thenB,; andB,, must overlap on some poist
Without loss of generality, supposas added tdB;, before it is added t®,. Whensis added to
Bi,, Im(s) = |1 if sdoes not yet have a representative landmark (lines 1-2 of Update-@amnis),
orIm(s) =1’ and both; andl’ are put in the same set (lines 4-6 of Update-Components). \Wisen
added tdB,,, if Im(s) =11, thenl; andl, will be put in the same set id. If Im(s) =1’, I” andl, will
be put in the same set i, which also containk. [ |

It takesO(|L|n) time to buildH (linear in the size of the heap). Each deleteMin() operation
takesO(log(|L|n)) (logarithmic in the size of the heap), which is equivalen®og(n)) because
IL| < n. If U is implemented by a union-find algorithm, Update-Components takes amortized time
of O(a(|L]), wherea denotes the inverse Ackermann function. Moreover, Update-Compsomety
be called at most once for each iteration of the while loop in Expand-Landn(fr a pair(1*,s*)
it is either called on line 18 iB;- is large enough, or it is called on line 24 whBp grows large
enough). All other operations also take time proportional to the number dirlark-point pairs.
So the runtime of this algorithm ©(|L|n) + iter- O(logn+ a(|L|)), where iter is the number of
iterations of the while loop. As the number of iterations is boundeld.lyy anda(|L|) is effectively
constant, this gives a worst-case running tim&g@L|nlogn).

5. Empirical Study

We use outtandmark Clusteringlgorithm to cluster proteins using sequence similarity. As men-
tioned in the Introduction, one versus all distance queries are particuddelyant in this setting
because of sequence database search programs such as BLAShulAdtsal., 1990) (Basic Lo-
cal Alignment Search Tool). BLAST aligns a queried sequence to seqaen the database, and
produces a “bit score” for each alignment, which is a measure of its quaigtyrivert the bit score

to make it a distance). However, BLAST does not consider alignments witke sbthe sequences

in the database, in which case we assign distances of infinity to the camdéspsequences. We
observe that if we define distances in this manner they almost form a metriadgtiger when we
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draw triplets of sequences at random and check the distances betweeththtriangle inequality

is almost always satisfied. Moreover, BLAST is very successful ttctiag sequence homology
in large sequence databases, therefore it is plausibl&-tin&idian clustering using these distances
is approximately stable with respect to a relevant target clust€rngvhich groups together se-
guences with shared evolutionary ancestry.

We perform experiments on data sets obtained from two classification degalizam (Finn
etal., 2010), version 24.0, October 2009; and SCOP (Murzin et al5)198rsion 1.75, June 2009.
Both of these sources classify proteins by their evolutionary relatedihessfore we can use their
classifications as a ground truth to evaluate the clusterings produced laygouithm and other
methods.

Pfam classifies proteins using hidden Markov models (HMMs) that reptesultiple sequence
alignments. There are two levels in the Pfam classification hierarchy: famiyckam. In our
clustering experiments we compare with a classification at the family level bedae relationships
at the clan level are less likely to be discerned with sequence alignmentchregperiment we
randomly select several large families (of size between 1000 and 100660Pfam-A (the manually
curated part of the classification), retrieve the sequences of the winetinese families, and use
our Landmark-Clusteringlgorithm to cluster the data set.

SCOP groups proteins on the basis of their 3D structures, so it only agsgifiteins whose
structure is known. Thus the data sets from SCOP are much smaller in se8CIDP classification
is also hierarchical: proteins are grouped by class, fold, superfamilyfaamily. We consider the
classification at the superfamily level because this seems most approjvaieltpt we are only
using sequence information. As with the Pfam data, in each experimenteatea data set by
randomly choosing several superfamilies (of size between 20 and r2¢ve the sequences of
the corresponding proteins, and use bandmark-Clusteringlgorithm to cluster the data set.

Once we cluster a particular data set, we compare the clustering to the mbasiication
using the distance measure from the theoretical part of our work. Tehéniaction of misclassified
points under the optimal matching of clustersdro clusters inC’ we solve a minimum weight
bipartite matching problem where the cost of match@do C’f(i) is |G —C’f(i)\/n. In addition,
we compare clusterings to manual classifications using the F-measure, iwhistd in another
study that clusters protein sequences (Paccanaro et al., 2006).-badtre is a similarity score
between 0 and 1, where 1 indicates an exact match between the two clus{egagdppendix A).
This measure has also been used in other studies (see Cheng et al.a@f@§yelated to our notion
of clustering distance (see Lemma 10 in Appendix A). Surprisingly, the Fsumeds not symmetric;
in our experiments we compute the similarity of a clustekhtp the manual classificatioBy as
F(Cwm,C).

5.1 Choice of Parameters

To run Landmark-Clusteringwe setk using the number of clusters in the ground truth clustering.
For each Pfam data set we usle Iandmarks/queries, and for each SCOP data set we use 10
landmarks/queries. In addition, our algorithm uses three parameters,, ') whose value is set

in the proof based oa ande, assuming that the clustering instance satisfie$theq, €)-property.

In practice we must choose some value for each parameter. In ouireepés we sefj as a function

of the average size of the ground truth clusters (ave-szg)as a function of the size of the smallest
ground truth cluster (min-size), amdas a function of the number of points in the data set. For the
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Pfam data sets we sqt= ave-size smin = 0.25 - min-size, andY = 0.7n. Because the selection
of landmarks is randomized, for each data set we compute several iclgsi@ompare each to the
ground truth, and report the median quality.

Landmark-Clusterings most sensitive to thg,, parameter, and will not report a clustering if
Smin iS too small or too large. We recommend trying several values of this paratimeitecreasing
or decreasing order, until one gets a clustering and none of the claséetso large. If the user
gets a clustering where one of the clusters is very large, this likely meansetrexal ground truth
clusters have been merged. This may happen becgysis too small causing balls of outliers to
connect different cluster cores, §in is too large causing balls intersecting different cluster cores
to overlap.

In our SCOP experiments we have to use the above-mentioned heuristithiess@t parameter.
We start withsyin = min-size, and decrement it until we get exadtlglusters and none of the
clusters are too large (larger than twice the size of the largest grouncttastier). For the SCOP
data sets we sef = ave-size, andY = 0.5n. As before, for each data set we compute several
clusterings, compare each to the ground truth, and report the median quality

Our algorithm is less sensitive to tmeparameter. However, if the user set¢oo large some
ground truth clusters may be merged, so we recommend using a smaller value (@ < 0.7n)
because all of the points are still clustered during the last step. Agaispfoe values off the
algorithm may not output a clustering, or output a clustering where someedfltisters are too
large.

It is important to not choose an extreme value fordiparameter. The value gfmust be large
enough to avoid repeatedly choosing outliersg(i 1 we are likely to choose an outlier in each
iteration), but small enough to quickly find a landmark near each cluster tfowe setq = n, the
algorithm selects landmarks uniformly at random, and we may need significaatky landmarks
to choose one from each cluster core by chance.

In our experiments we compare the algorithm that uses the adaptive sekctimyy with the
alternative that chooses landmarks uniformly at random. The alterndgjsathm uses exactly
the same number of landmarks, and other parameters stay the same as weil the&/data has
the structure that follows from our assumptions, the non-adaptive selesttigegy may require
significantly more landmarks to cover all cluster cores (especially if the sizése ground truth
clusters are not well-balanced). Therefore when the data has thetrigttiure and we cannot afford
to use many landmarks, we expect to find more accurate clusterings with apévadselection
strategy.

5.2 Results

Figure 3 shows the results of our experiments on the Pfam data sets. Assdidcearlier, to test
our adaptive landmark selection strategy we compare our algorithm, whicheketh andmark-
Clustering-Adaptivewith the same algorithm that chooses landmarks uniformly at random, which
we refer to as andmark-Clustering-RandanWe can see that for a lot of the data dessdmark-
Clustering-Adaptivdinds a clustering that is quite close to the ground truth. The alternative algo-
rithm does not perform as well, and for data set 3 fails to find a clusteliogether.

The Pfam data sets are very large, so as a benchmark for compariscenvemly consider
algorithms that use a comparable amount of distance information (becawke et have the full
distance matrix). A natural choice is the following algorithm: uniformly at randtoose a set of
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Figure 3: Comparing the performance loindmark-Clustering-Adaptivd-andmark-Clustering-
Randomandk-means in the embedded space on 10 data sets from Pfam. Datal€ets
are created by randomly choosing 8 families from Pfam of sjzE000< s < 10000.
(a) Comparison using the distance measure from the theoretical part of alr @)
Comparison using the F-measure.

landmarkd., |L| = d; embed each point in@dimensional space using distances taisek-means
clustering in this space (with distances given by the Euclidean norm). Thiedainty scheme is a
Lipschitz embedding with singleton subsets (see Tang and Crovella, 2008)) gives distances
with low distortion for points near each other in a metric space.

Notice that this procedure uses exaatlpne versus all distance queries, so we cardsjual
to the number of queries used by our algorithm. We expect this algorithm tio welt, and if
we look at Figure 3 we can see that it finds reasonable clusterings. Stitjusierings reported
by this algorithm do not closely match the Pfam classification, showing thakesutts are indeed
significant.

Figure 4 shows the results of our experiments on the SCOP data sets. Jeod#tha sets we find
less accurate clusterings, which is likely because the SCOP classificatiaseid bn biochemical
and structural evidence in addition to sequence evidence. By contrad®fdim classification is
based entirely on sequence information. Still, because the SCOP dataesetadir smaller, we
can compare our algorithm with methods that require distances betweengiti® In particular,
Paccanaro et al. (2006) show that spectral clustering using sexjgandarity data works well
when applied to the proteins in SCOP. Thus we use the exact method dédwyiBaccanaro et al.
(2006) as a benchmark for comparison on the SCOP data sets. Mgrethar than clustering
randomly generated data sets from SCOP, we also consider the two maines&omm Paccanaro
et al., which are labeled andB in the figure. From Figure 4 we can see that the performance of
Landmark-Clusterings comparable to that of the spectral method, which is very good considering
that the spectral clustering algorithm significantly outperforms other clogtafgorithms on this
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Figure 4: Comparing the performancelaindmark-Clusteringind spectral clustering on 10 data
sets from SCOP. Data sefsand B are the two main examples from Paccanaro et al.
(2006), the other data sett-8) are created by randomly choosing 8 superfamilies from
SCOP of sizes, 20 < s< 200. (a) Comparison using the distance measure from the
theoretical part of our workib) Comparison using the F-measure.

data (Paccanaro et al., 2006). Moreover, the spectral clusteringthigaequires the full distance
matrix as input, and takes much longer to run.

For the SCOP data sets we do not see any significant difference inrparfoe when we com-
pare the adaptive and non-adaptive landmark selection strategies. TRiEyisbecause we are
using a lot of landmarks (10 times the number of clusters), and selecting lakaloaformly at
random is sufficient to cover the dense groups of points. Unfortunttetiriese data the algorithm
has little success if we use fewer tharkl@ndmarks (it usually cannot find a clustering altogether),
so we cannot test how the two selection strategies perform when wewseldamdmarks.

5.3 Testing the(c, €)-property

To see whether approximation stability of tkenedian objective function is a reasonable assump-
tion for our data, we look at whether our data sets resemble the structtiie thelied by our
assumption. We do this by measuring the separation of the ground truth slustarr data sets.
For each data set in our study, we sample some points from each grotimdaster. We then look
at whether the sampled points are more similar to points in the same cluster thantsapoimner
clusters. More specifically, for each point we record the median withist@tsimilarity, and the
maximum between-cluster similarity. If our data sets indeed have well-sepalaster cores, as
implied by our assumption, then for a lot of the points the median within-cluster sityisould
be significantly larger than the maximum between-cluster similarity. We can saithis indeed
the case for the Pfam data sets. However, this is not typically the case 80P data sets, where
most points have little similarity to the majority of the points in their ground truth clustees&
observations explain our results on the two sets of data: we are able mat@tgeluster the Pfam
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data sets, and our algorithm is much less accurate on the SCOP data setsnipiete results of
these experiments can be foundhet p: // xi al ab. bu. edu/ r esour ces/ ac.

Testing whether théc, €)-property holds for thé&-median objective is an NP-complete prob-
lem (Schalekamp et al., 2010). Moreover, in our experiments when wle@arameters of the
algorithm we don'’t preserve the relationships between them as in Algorithmghrticular, in our
experiments when we setto n— syin + 1 as in Algorithm 1, the algorithm usually fails to report a
clustering no matter what value sf;, we try. This means that these data sets in fact do not satisfy
our exact theoretic assumptions. Still, when we only slightly break the depeadetween the
parameters, we are able to find accurate clusterings for the Pfam datkaetise SCOP data sets
we have to further break the dependence between the parametersegaamtadditional heuristic to
estimatesn, which is not surprising because these data do not have the structuttesthégorithm
exploits.

6. Conclusion and Open Questions

In this work we presented a new algorithm for clustering large data sets withdidligéance infor-
mation. As opposed to previous settings, our goal was not to approxinratedgjective function
like the k-median objective, but to find clusterings close to the ground truth. Weegdrthat our
algorithm yields accurate clusterings with only a small number of one velisdistance queries,
given a natural assumption about the structure of the clustering instelniseassumption has been
previously analyzed by Balcan et al. (2009), but in the full distancefmédion setting. By contrast,
our algorithm uses only a small number of queries, it is much faster, and éffectively the same
formal performance guarantees as the one introduced by Balcan20@®)(

To demonstrate the practical use of our algorithm, we clustered proteiersaegiusing a se-
guence database search program as the one versus all query. mfvared our results to gold
standard manual classifications of protein evolutionary relatednessigi®am (Finn et al., 2010)
and SCOP (Murzin et al., 1995). We find that our clusterings are quitgaecwhen we compare
with the classification given in Pfam. For SCOP our clusterings are asadeas state of the art
methods, which take longer to run and require the full distance matrix as input.

Our main theoretical guarantee assumes large target clusters. It womlgttzesting to design
a provably correct algorithm for the case of small clusters as well. lidvalso be interesting to
study other objective functions for clustering under similar approximatidoilgyaassumptions.
In particular, Voevodski et al. (2011) study the implications of tbe)-property for themin-sum
objective function. However, the algorithm presented there is not &seeffiand is less accurate in
clustering protein sequences.
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Appendix A.

In this section we give the definition of F-measure, which is another waynipace two clusterings.
We also show a relationship between our measure of distance and the Greneas

A.1 F-measure

The F-measure compares two clusteri@gandC’ by matching each cluster @ to a cluster inC’
using a harmonic mean of Precision and Recall, and then computing a “ppét-geerage. If we

matchG; to Cj, Precision is defined &B(Ci,C}) = ‘ﬁg‘cj‘. Recall is defined aR(C;,C;) = lc‘igﬁ"l.
ForC andC} the harmonic mean of Precision and Recall is then equival 2‘A"mc}“, which we
]

denote by p(rCi,C}) to simplify notation. The F-measure is then defined as
1
F(C,C)== Gi| maxpr(G;,C}).
©.c)=5 2 [Glmaer(©.c)

Note that this quantity is between 0 and 1, where 1 corresponds to amexett between the two
clusterings.

Lemma 10 Given two clusterings C and df dist(C,C") =d then F(CC') > 1—3d/2.

Proof Denote byo the optimal matching of clusters @ to clusters inC’, which achieves a mis-
classification ofdn points. We show that just considering(@ir,Cg(i)) for eachC; € C achieves an
F-measure of at least-13d/2:

F(C,C) >

Sl

> 1Gilpr(Gi,Cqy) > 1 3d/2.
CeC

To see this, for a match af; to Cé(i) we denote bym! the number of points that are @
but not incg(i), and bym2 the number of points that are %(i) but not inG;: mi1 =|G _Cé(i)"
e = \Cé(i) —G;|. Because the total number of misclassified pointiig follows that

> mt = > = dn.

CeC CeC
By definition,|C; NCy, | =G| —m. Moreover,[C i | = Cy; mCi]+n12§|Ci|+mz. It follows
that
oGl ) = 20GI=m)  20GI—m) _ 20| +nf  nfromi ) nfo2mt
oW TG+ IC [ T 2C 1+ T 2G|+nf 2C[+mE T 2C
We can now see that
1 ;o1 nf+2ml 1 1 3dn
= : ‘ _ = - 2m 1_7
[ ]
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