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Abstract

We present methods able to predict the presence and strengthof conditional and unconditional
dependencies (correlations) between two variablesY andZ never jointly measuredon the same
samples, based on multiple data sets measuring a set of common variables. The algorithms are
specializations of prior work on learning causal structures from overlapping variable sets. This
problem has also been addressed in the field ofstatistical matching. The proposed methods are
applied to a wide range of domains and are shown to accuratelypredict the presence of thousands
of dependencies. Compared against prototypical statistical matching algorithms and within the
scope of our experiments, the proposed algorithms make predictions that are better correlated with
the sample estimates of the unknown parameters on test data ;this is particularly the case when the
number of commonly measured variables is low.

The enabling idea behind the methods is to induce one or allcausalmodels that are simultane-
ously consistent with (fit) all available data sets and priorknowledge and reason with them. This
allows constraints stemming from causal assumptions (e.g., Causal Markov Condition, Faithful-
ness) to propagate. Several methods have been developed based on this idea, for which we propose
the unifying name Integrative Causal Analysis (INCA). A contrived example is presented demon-
strating the theoretical potential to develop more generalmethods for co-analyzing heterogeneous
data sets. The computational experiments with the novel methods provide evidence that causally-
inspired assumptions such as Faithfulness often hold to a good degree of approximation in many
real systems and could be exploited for statistical inference. Code, scripts, and data are available at
www.mensxmachina.org.

Keywords: integrative causal analysis, causal discovery, Bayesian networks, maximal ancestral
graphs, structural equation models, causality, statistical matching, data fusion

1. Introduction

In several domains it is often the case that several data sets (studies) maybe available related to
a specific analysis question. Meta-analysis methods attempt to collect, evaluateand combine the
results of several studies regarding a single hypothesis. However, studies may be heterogeneous in
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several aspects, and thus not amenable to standard meta-analysis techniques. For example, different
studies may be measuring different sets of variables or under differentexperimental conditions.

One approach to allow the co-analysis of heterogeneous data sets in the context of prior knowl-
edge is to try to induce one or allcausalmodels that are simultaneously consistent with all available
data sets and pieces of knowledge. Subsequently, one can reason with this set of consistent models.
We have named this approachIntegrative Causal Analysis(INCA).

The use ofcausalmodels may allow additional inferences than what is possible with non-
causal models. This is because the former employ additional assumptions connecting the concept
of causality with observable and estimable quantities such as conditional independencies and depen-
dencies. These assumptions further constrain the space of consistent models and may lead to new
inferences. Two of the most common causal assumptions in the literature are the Causal Markov
Condition and the Faithfulness Condition (Spirtes et al., 2001); intuitively, these conditions assume
that the observed dependencies and independencies in the data are dueto the causal structure of the
observed system and not due to accidental properties of the distribution parameters (Spirtes et al.,
2001). Another interpretation of these conditions is that the set of independencies is stable to small
perturbations of the joint distribution (Pearl, 2000) of the data.

The idea of inducing causal models from several data sets has already appeared in several prior
works. Methods for inducing causal models from samples measured under different experimental
conditions are described in Cooper and Yoo (1999), Tian and Pearl (2001), Claassen and Heskes
(2010), Eberhardt (2008); Eberhardt et al. (2010) and Hyttinen et al. (2011, 2010). Other methods
deal with the co-analysis of data sets defined over different variable sets (Tillman et al., 2008;
Triantafillou et al., 2010; Tillman and Spirtes, 2011). In Tillman (2009) and Tsamardinos and
Borboudakis (2010) approaches that induce causal models from datasets defined over semantically
similar variables (e.g., a dichotomous variable for Smoking in one data set and acontinuous variable
for Cigarettes-Per-Day in a second) are explored. Methods for inducing causal models in the context
of prior knowledge also exist (Angelopoulos and Cussens, 2008; Borboudakis et al., 2011; Meek,
1995; Werhli and Husmeier, 2007; O’Donnell et al., 2006). INCA as a unifying common theme was
first presented in Tsamardinos and Triantafillou (2009) where a mathematical formulation is given
of the co-analysis of data sets that are heterogeneous in several of theabove aspects. In Section
3, we present a contrived example demonstrating the theoretical potential todevelop such general
methods.

In this paper, we focus on the problem of analyzing data sets defined over different variable
sets, as proof-of-concept of the main idea. We develop methods that could be seen as special cases
of general algorithms that have appeared for this problem (Tillman et al., 2008; Triantafillou et al.,
2010; Tillman and Spirtes, 2011). The methods are able to predict the presence and strength of
conditional and unconditional dependencies (correlations) between twovariablesY and Z never
jointly measuredon the same samples, based on multiple data sets measuring a set of common
variables.

To evaluate the methods we simulate the above situation in a way that it becomes testable: a
single data set is partitioned to three data sets that do not share samples. A different set of variables
is excluded from each of the first two data sets, while the third is hold out fortesting. Based on the
first two data sets the algorithms predict certain pairs of the excluded variables should be dependent.
These are then tested in the third test set containing all variables.

The proposed algorithms make numerous predictions that range in the thousands for large data
sets; the predictions are highly accurate, significantly more accurate than predictions made at ran-
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dom. The methods also successfully predict certain conditional dependencies between pairs of
variablesY,Z never measured together in a study. In addition, when linear causal relations and
Gaussian error terms are assumed, the algorithms successfully predict thestrength of the linear cor-
relation betweenY andZ. The latter observation is an example where the INCA approach can give
rise to algorithms that provide quantitative inferences (strength of dependence), and are not limited
to qualitative inferences (e.g., presence of dependencies).

Inferring the correlation betweenY andZ in the above setting has also been addressed bystatis-
tical matchingalgorithms (D’Orazio et al., 2006), often found under the name of data fusion in Eu-
rope. Statistical matching algorithms make predictions based on parametric distributional assump-
tions, instead of causally-inspired assumptions. We have implemented two prototypical statistical
matching algorithms and performed a comparative evaluation. Within the scope of our experiments,
the proposed algorithms make predictions that are better correlated with the sample estimates of
the unknown parameters on test data; this is particularly the case when the number of commonly
measured variables is low. In addition, the proposed algorithms make predictions in cases where
some statistical matching procedures fail to do so and vice versa, and thus,the two approaches can
be considered complementary in this respect.

There are several philosophical and practical implications of the above results. First, the results
provide ample statistical evidence that some of the typical assumptions employedin causal modeling
hold abundantly (at least to a good level of approximation) in a wide range of domains and lead to
accurate inferences.To obtain the results the causal semantics are not employed per se, that is,
we do not predict the effects of experiments and manipulations. In other words, one could view
the assumptions made by the causal models as constraints or priors on probability distributions
encountered in Nature without any reference to causal semantics.

Second, the results point to the utility and potential impact of the approach: co-analysis pro-
vides novel inferences as a norm, not only in contrived toy problems or rare situations. Future
INCA-based algorithms that are able to handle all sorts of heterogeneousdata sets that vary in terms
of experimental conditions, study design and sampling methodology (e.g., case-control vs. i.i.d.
sampling, cross-sectional vs. temporal measurements) could potentially oneday enable the auto-
mated large-scale integrative analysis of a large part of available data andknowledge to construct
causal models.

The rest of this document is organized as follows: Section 2 briefly presents background on
causal modeling with Maximal Ancestral Graphs. Section 3 discusses the scope and vision of the
INCA approach. Section 4 presents the example scenario employed in all evaluations. Section 5
formalizes the problem of co-analysis of data sets measuring different quantities. Sections 6 and 7
present the algorithms and their comparative evaluation for predicting unconditional and conditional
dependencies respectively, between variables not jointly measured. Section 8 extends the theory to
devise an algorithm that can also predict the strength of the dependence.Section 9 presents the
statistical matching theory and comparative evaluation. The paper concludes with Section 10 and
11 discussing the related work and the paper in general.

2. Modeling Causality with Maximal Ancestral Graphs

Maximal Ancestral Graphs (MAGs) is a type of graphical model that represents causal relations
among a set of measured (observed) variablesO as well as probabilistic properties, such as con-
ditional independencies (independence model).The probabilistic properties of MAGs can be de-
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veloped without any reference to their causal semantics; nevertheless, we also briefly discuss their
causal interpretation.

MAGs can be viewed as a generalization of Causal Bayesian Networks. The causal semantics
of an edgeA→ B imply thatA is probabilistically causingB, that is, an (appropriate) manipulation
of A results in a change of the distribution ofB. EdgesA↔ B imply that A andB are associated
but neitherA causesB nor vice-versa. Under certain conditions, the independencies implied by the
model are given by a graphical criterion calledm-separation, defined below. A desired property of
MAGs is that they are closed under marginalization: the marginal of a MAG is a MAG. MAGs can
also represent the presence of selection bias, but this is out of the scope of the present paper. We
present the key theory of MAGs, introduced in Richardson and Spirtes (2002).

A path in a graphG = (V,E) is a sequence of distinct vertices〈V0,V1, . . . ,Vn〉 all of them inO
s.t for 0≤ i < n, Vi andVi+1 are adjacent inG . A path fromV0 to Vn is directedif for 0 ≤ i < n, Vi

is a parentVi+1. X is called anancestorof Y andY adescendentof X if X =Y or there is a directed
path fromX to Y in G . AnG (X) is used to denote the set of ancestors of nodeX in G . A directed
cyclein G occurs whenX→Y ∈ E andY ∈ AnG (X). An almost directed cyclein G occurs when
X↔Y ∈ E andY ∈ AnG (X).

Definition 1 (Mixed and Ancestral Graph) A graph is mixed if all of its edges are either directed
or bi-directed. A mixed graph isancestral if the graph does not contain any directed or almost
directed cycles.

Given a pathp= 〈V0,V1, . . . ,Vn〉, nodeVi , i ∈ 1,2, . . . ,n is acollider on p if both edges incident toVi

have an arrowhead towardsVi . We also say that triple(Vi−1,Vi ,Vi+1) forms a collider. OtherwiseVi

is called anon-collideron p. The criterion ofm-separation leads to a graphical way of determining
the probabilistic properties stemming from the causal semantics of the graph:

Definition 2 (m-connection,m-separation) In a mixed graphG = (E,V), a path p between A and
B is m-connecting relative to (condition to) a set of verticesZ , Z ⊆ V \{A,B} if

1. Every non-collider on p is not a member ofZ.

2. Every collider on the path is an ancestor of some member ofZ.

A and B are said to be m-separated byZ if there is no m-connecting path between A and B relative to
Z. Otherwise, we say they are m-connected givenZ. We denote the m-separation of A and B given
Z as MSep(A;B|Z). Non-empty setsA andB are m-separated givenZ (symb. MSep(A;B|Z)) if for
every A∈ A and every B∈ B A and B are m-separated givenZ. (A, B andZ are disjoint). We also
define the set of all m-separations asJm(G):

Jm(G)≡ {〈X,Y|Z〉,s.t. MSep(X;Y|Z) andX,Y,Z ⊆O}.

We also define the setJ of all conditional independenciesX ⊥⊥ Y|Z, whereX, Y andZ are
disjoint sets of variables, in the joint distribution ofP of O:

J (P )≡ {〈X,Y|Z|〉,s.t.,X ⊥⊥ Y|Z andX,Y,Z ⊆O}.

The setJ (P ) is also called theindependence modelof P . Them-separation criterion is meant
to connect the graph with the observed independencies in the distribution under the following as-
sumption:
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Definition 3 (Faithfulness) We call a distributionP over a set of variablesO faithful to a graph
G , and vice versa, iff:

J (P ) = Jm(G).

A graph is faithful iff there exists a distribution faithful to it. When the above equation holds, we say
the Faithfulness Condition holds for the graph and the distribution.

When the faithfulness condition holds, everym-separation present inG corresponds to a condi-
tional independence inJ (P ) and vice-versa. The following definition describes a subset of ances-
tral graphs in which every missing edge (non-adjacency) corresponds to at least one conditional
independence:

Definition 4 (Maximal Ancestral Graph, MAG) An ancestral graphG is called maximal if for
every pair of non-adjacent vertices(X,Y), there is a (possibly empty) setZ, X,Y /∈ Z such that
〈X,Y|Z〉 ∈ J (G).

Every ancestral graph can be transformed into a unique equivalent MAG (i.e., with the same
independence model) with the possible addition of bi-directed edges. We denote the marginal of a
distributionP over a set of variablesV \L L asP [L , and the independence model stemming from
the marginalized distribution asJ (P )[L , that is,

J (P [L ) = J (P )[L≡ {〈X,Y|Z〉 ∈ J (P ) : (X∪Y∪Z)∩L = /0}.

Equivalently, we define the set ofm-separations ofG restricted on the marginal variables as:

Jm(G)[L≡ {〈X,Y|Z〉 ∈ Jm(G) : (X∪Y∪Z)∩L = /0}.

A simple graphical transformation for a MAGG faithful to a distributionP with independence
modelJ (P ) exists that provides a unique MAGG [L that represents the causal ancestral relations
and the independence modelJ (P )[L after marginalizing out variables inL . Formally,

Definition 5 (Marginalized Graph G [L) Graph G [L has vertex setV \ L , and edges defined as
follows: If X,Y are s.t. ,∀Z ⊆ V \ (L ∪{X,Y}), 〈X,Y|Z〉 /∈ J (G) and

X /∈ AnG (Y);Y /∈ AnG (X)
X ∈ AnG (Y);Y /∈ AnG (X)
X /∈ AnG (Y);Y ∈ AnG (X)

then
X↔Y
X→Y
X←Y

in G [L.

We will callG [L the marginalized graphG overL .

The following result has been proved in Richardson and Spirtes (2002):

Theorem 6 If G is a MAG overV, andL ⊆ V, thenG [L is also a MAG and

Jm(G)[L= Jm(G [L).
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Figure 1: A PAG (left) and the MAGs of the respective equivalence class; all MAGs represent the
same independence model over variables{X,Y,Z,W}.

If G is faithful to a distributionP overV, then the above theorem implies thatJ (P )[L= J (G)[L=
J (G [L); in other words the graphG [L constructed by the above process faithfully represents the
marginal independence modelJ [L (P ).

Different MAGs encode different causal information, but may share the same independence
models and thus are statistically indistinguishable based on these models alone. Such MAGs define
a Markov equivalence class based on the concepts of unshielded collider and discriminating path: A
triple of nodes(X,Y,W) is calledunshieldedif X is adjacent toY, Y is adjacent toW, andX is not
adjacent toW. A pathp= 〈X, . . . ,W,V,Y〉 is called adiscriminatingpath forV if X is not adjacent
toY, and every vertex betweenX andY is a collider onp and an ancestor ofY. The following result
has been proved in Spirtes and Richardson (1996):

Proposition 7 Two MAGs over the same vertex set are Markov equivalent if and only if:

1. They share the same edges.

2. They share the same unshielded colliders.

3. If a path p is discriminating for a vertex V in both graphs, V is a collider on thepath on one
graph if and only if it is a collider on the path on the other.

A Partial Ancestral Graphis a graph containing (up to) three kinds of endpoints: arrowhead(>),
tail (−), and circle(◦), and represents a MAG Markov equivalence class in the following manner: It
has the same adjacencies as any member of the equivalence class, and every non-circle endpoint is
invariant in any member of the equivalence class. Circle endpoints correspond to uncertainties; the
definitions of paths are extended with the prefixpossibleto denote that there is a configuration of the
uncertainties in the path rendering the path ancestral orm-connecting. For example ifX ◦−◦Y◦→
W, 〈X,Y,W〉 is a possible ancestral path from X to W, but not a possible ancestral pathfromW to X.
An example PAG, and some of the MAGs in the respective equivalence classare shown in Figure
1. FCI (Spirtes et al., 2001; Zhang, 2008) is a sound algorithm which outputs a PAG over a set of
variablesV when given access to an independence model overV.

The MAG formulation is a generalization of the graph of a (Causal) BayesianNetwork (CBN)
intended to explicitly model and reason with latent variables and particularly, latent confounding
variables. The absence of such confounding variables is (often unrealistically) assumed when learn-
ing Causal Bayesian Networks, named theCausal Sufficiencyassumption. The presence of latent
confounders can be modeled in MAGs with bidirectional edges. The graphof a CBN is a MAG
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without bidirectional edges. Similarly, the Faithfulness Condition we define for MAGs generalizes
the Faithfulness for CBNs. This work is inspired by the following scenario:there exists an unknown
causal mechanism over variablesV, represented by a faithful CBN〈P ,G〉. Based on the theory pre-
sented in this section (Theorem 6), each marginal distribution ofP over a subsetO=V \L is faithful
to the MAGG [L described in definition 5.

3. Scope and Motivation of Integrative Causal Analysis

A general objective is to develop algorithms that are able to co-analyze datasets that are hetero-
geneous in various aspects, including data sets defined over differentvariables sets, experimental
conditions, sampling methodologies (e.g., observational vs. case-controlsampling) and others. In
addition, cross-sectional data sets could be eventually co-analyzed with temporal data sets measur-
ing either time-series data or repeated measurements data. Finally, the integrative analysis should
also include prior knowledge about the data and their semantics. Some of the tasks of the integrative
analysis can be the identification of the causal structure of the data generating mechanism, the selec-
tion of the next most promising experiment, the construction of predictive models, the prediction of
the effect of manipulations, or the selection of the manipulation that best achieves a desired effect.

The work in this paper however, focuses on providing a first step towards this direction. It
addresses the problem of learning the structure of the data generating process from data sets defined
over different variable sets. In addition, it focuses on providing proof-of-concept experiments of the
main INCA idea on the simplest cases and comparing against current alternatives. Finally, it gives
methods that predict the strength of dependence betweenY andZ, which can be seen as constructing
a simple predictive model without having access to the joint distribution of the data.

We now make concrete some of these ideas by presenting a motivating fictitious integrative
analysis scenario:

• Study 1 (i.i.d., observational sampling, variablesA,B,C,D): A scientist is studying the “rela-
tion” between contraceptives and breast cancer. In a random sample of women, he measures
variables{A,B,C,D} corresponding to quantities Suffers fromThrombosis (Yes/No), Contra-
ceptives (Yes/No), Concentration of Protein C in the Blood (numerical)andDevelops Breast
Cancer by 60 Years Old (Yes/No). The researcher then develops predictive models for Breast
Cancer and, given that he findsB associated withD (among other associations), announces
taking contraceptives as a risk-factor for developing Breast Cancer.

• Study 2 (randomized controlled trial, variablesA,B,C,D): Another scientist checks whether
(variableC) Protein C (causally) protects against cancer. In a randomized controlled ex-
periment she randomly assigns women into two groups and measures the same variables
{A,B,C,D}. The first group is injected with high levels of the protein in their blood, while
the latter is injected with enzymes that dissolve only the specific protein, effectively remov-
ing it from the blood. IfC andD are negatively correlated in her data, the scientist concludes
that the protein is causally protecting against the development of breast cancer. Notice that,
data from Study 2 cannot be merged with Study 1 because the joint distributionsof the data
may be different. For example, assuming thatC is caused by the diseaseD (e.g., the disease
changes the concentration of the protein in the blood) thenC will be highly associated with
D in Study 1; in contrast, in Study 2 where the levels ofC exclusively depend on the group
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Variables A B C D E F

Thrombosis Contraceptives Protein C Cancer Protein Y Protein Z
(Yes/No) (Yes/No) (numerical) (Yes/No) (numerical) (numerical)

1 Yes No 10.5 Yes - -
No Yes 5.3 No - -

(observational
data) No Yes 0.01 No - -

2 No No 0(Control) No - -
Yes No 0(Control) Yes - -

(experimental
data) Yes Yes 5.0(Treat.) Yes - -

3 - - - Yes 0.03 9.3
(different
variables) - - - No 3.4 22.2

4
(prior B causally affects A: B99K A

knowledge)

Figure 2: Tabular depiction of the different studies (data sets). Study 1 isa random sample aiming at
predictingD and identifying risk factors. Study 2 is a Randomized Controlled Trial were
the levels ofC for a subject are randomly decided and enforced by the experimenter,
aiming at identifying a causal relation with cancer. Forced values are denoted by bold
font. Study 3 is also an observational study aboutD, but measuring different variables
than Study 1. Prior knowledge provides a piece of causal knowledge but the raw data are
not available. Typically, such studies are analyzed independently of each other.

assignment,C andD are not associated. Thus, statistical inferences made based on analyzing
Study 2 in isolation probably result in lower statistical power.

• Study 3 (i.i.d., observational sampling, variablesD,E,F): A biologist studies the relation
of a couple of proteins in the blood, represented with variablesE andF and their relation
with breast cancer. She measures in a random sample of women variables{D,E,F}. As
with analyzing Study 1, she develops predictive models for Breast Cancer (based onE and
F instead) and checks whether the two proteins are risk factors. These data cannot be pulled
together with Studies 1 or 2 because they measure different variables.

• Prior Knowledge: A doctor establishes a causal relation between the use ofContraceptives
(variableB) and the development ofThrombosis(variableA), that is, “B causes A” denoted
asB 99K A.1 Unfortunately, the raw data are not publicly available.

The three studies and prior knowledge are depicted Figure 2. Notice that, treating the empty
cells as missing values is meaningless given that it is impossible for an algorithm toestimate the
joint distribution between variables never measured together without additional assumptions (see
Rubin 1974 for more details).

1. We use a double arrow99K to denote a causal relation without reference to the context of other variables. This is
to avoid confusion with the use of a single arrow→ in most causal models (e.g., Causal Bayesian Networks) that
denotes adirectcausal relation (or inducing path, see Richardson and Spirtes 2002), where direct causality is defined
in the context of the rest of the variables in the model.
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Figure 3: (a) Assumed unknown causal structure. (b) Structure induced by Study 1 alone. (c)
Structure induced by Study 2 alone. (d) Structure induced by INCA of Studies 1 and 2.
New inference:C is not causingB but they are associated. (e) Structure induced after
incorporating knowledge “B causesA”. New inference:B causesA andD. (f) Structure
induced by Study 3 alone. (g) Structure induced by all studies and knowledge. Dashed
edges denote edges whose both existence and absence is consistent withthe data. New
inference:F andC (two proteins) are not causing each other nor do they have a latent
confounder, even though we never measure them together in a study.

We now show informally the reasoning for an integrative causal analysis of the above studies
and prior knowledge and compare against independent analysis of the studies. Figure 3(a) shows the
presumed true, unknown, causal structure. Figure 3(b-c) shows thecausal model induced (asymp-
totically) by an independent analysis of the data of Study 1 and Study 2 respectively using existing
algorithms, such as FCI (Spirtes et al., 2001; Zhang, 2008) and assumingdata generated by the
true model. TheR variable denotes the randomization procedure that assigns patients to control
and treatment groups. Notice that it removes any causal link intoC since the value ofC only de-
pends on the result of the randomization. Figure 3(d) shows the causal model that can be inferred
by co-analyzing both studies together. By INCA of Study 1 and 2 it is now additionally inferred
thatB andC are correlated butC does not causeB: If C was causingB, we would have found the
variables dependent in Study 2 (the randomization procedure would not have eliminated the causal
link C→B). If we also incorporate prior knowledge that “B causesA” we obtain the graph in Figure
3(e): “B causesA” implies that there has to be at least one directed (causal) path fromB to A. Thus,
the only possible such pathB◦→C→ A becomes directedB→C→ A. In other words using prior
knowledge we now additionally infer that “B is causingC”: the association found in Study 1 cannot
be totally explained by the presence of a latent variable. Analyzing independently Study 3 we obtain
the graph of Figure 3(f). In contrast INCA of Study 3 with the rest of data and knowledge results in
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Figure 3(g). This type of graph is called the Pairwise Causal Graph (Triantafillou et al., 2010) and
is presented in detail in Section 5. The dashed edges denote statistical indistinguishability about
the existence of the edge, that is, there exist a consistent causal model with all data and knowledge
having the edge, and one without the edge. Among other interesting inferences, notice thatF and
C (two proteins) are not causing each other nor do they have a latent confounder, even though we
never measure them together. This is because ifF→C, orC← F , or there exists latentH such that
F←H→C it would also imply an association betweenF andD. These two are found independent
however, in Study 3.

4. Running Example

To illustrate the main ideas and concepts, as well as provide a proof-of-concept validation in real
data, we have identified the smallest and simplest scenario that we could think of, that makes a
testable prediction. Specifically, we identify a special case that predicts anunconditional depen-
denceY 6⊥⊥ Z| /0, as well as certain conditional dependenciesY 6⊥⊥ Z|S, for someS 6= /0, between
two variables not measured in the same samples, based on two data sets, one measuringY, and one
measuringZ.

Example 1 We assume two i.i.d data setsD1 andD2 are provided on variablesO1 = {X,Y,W}
and O2 = {X,Z,W} respectively. We assume that the independence models of the data sets are
J1 = {〈X,W|Y〉} and J2 = {〈X,W|Z〉}, in other words the one and only independence inD1 is
X ⊥⊥W|Y, and inD2 is X⊥⊥W|Z. Based on the input data it is possible to induce with existing
causal analysis algorithms, such as FCI the following PAGs from each data set respectively:

P1 : X ◦−◦Y ◦−◦W

and
P2 : X ◦−◦Z◦−◦W.

These are also shown graphically in Figure 4. The problem is to identify one or all MAGs defined
onO = {X,Y,Z,W} consistent with the independence modelsJ1 andJ2, or equivalently, both PAGs
P1 andP2.

These two PAGs represent all the sound inferences possible about thestructure of the data, when
analyzing the data sets in isolation and independently of each other. We nextdevelop the theory for
their causal co-analysis.

5. Integrative Causal Analysis of Data Sets with Overlapping Variable Sets

In this section, we address the problem of integratively analyzing multiple datasets defined over
different variable sets. Co-analyzing these data sets is meaningful (using this approach) only when
these variable sets overlap; otherwise, there are no additional inferences to be made unless other
information connects the two data sets (e.g., the presence of prior knowledge connecting some
variables).

We assume that we are givenK data sets{Di}
K
i=1 each with samples identically and indepen-

dently distributed defined over corresponding subsets of variablesOi . From these data we can
estimate the independence models{Ji}

K
i=1 using statistical tests of conditional independence.A
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X Y W X ⊥⊥ W |Y

X Z W X ⊥⊥ W |Z

Figure 4: Definition of the co-analysis problem of Example 1: two observational i.i.d. data sets
defined on variablesO1 = {X,Y,W} andO2 = {X,Z,W} are used to identify the inde-
pendence modelsJ1 = {〈X,W|Y〉} andJ2 = {〈X,W|Z〉}. These models are represented
by PAGsP1 andP2 shown in the figure. The problem is to identify one or all MAGs
defined onO = {X,Y,Z,W} consistent with bothP1 andP2.

major assumption in the theory and algorithms presented is that the independence models can be
identified without any statistical errors. Section 6 discusses how we address this issue when experi-
menting with real data sets in the presence of statistical errors. We denote theunion of all variables
asO = ∪K

i=1Oi and also defineOi ≡O\Oi . We now define the problem below:

Definition 8 (Find Consistent MAG) Assume the distribution ofO is faithful. Given independence
models{J (Oi)}

K
i=1, Oi ⊆O, i = 1. . .K, induce a MAGM s.t., for all i

J (M [Oi
) = J (Pi)

where Pi is the distribution ofOi .

In other words, we are looking for a model (graph)M such that when we consider its marginal
graphs over each variable setOi , each one faithfully represents the observed independence model
of that data set. We can reformulate the problem in graph-theoretic terms. Let Pi be the PAG
representing the Markov equivalence class of all MAGs consistent with the independence model
Ji . Pi can be constructed with a sound and complete algorithm such as Fast Causal Inference (FCI)
(Spirtes et al., 2001). We can thus recast the problem above as identifying a MAGM such that,

M[Oi
∈ Pi , for all i

(abusing the notation to denote withPi both the PAG and the equivalence class).
The first algorithm to solve the above problem is ION (Tillman et al., 2008), which identifies

the set of PAGs (defined overO) of all consistent MAGs. Subsequently, in Triantafillou et al.
(2010), we proposed the algorithm Find Consistent MAG (FCM) that converts the problem to a
satisfiability problem for improved computational efficiency. FCM returns one consistent MAG
with all input PAGs. Similar ideas have been developed to learn joint structurefrom marginal
structures in decomposable graphs such as undirected graphs (Kim andLee, 2008) and Bayesian
Networks (Kim, 2010). Going back to Example 1, Figure 5 shows all 14 consistent MAGs with the
input PAGs in the scenario. The FCM algorithm arbitrarily returns one of them as the solution to
the problem (of course, the algorithm can be easily modified to return all solutions). Figure 6 (right)
shows the output of ION on the same problem.
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X Y Z W X Y Z W X Y Z W X Y Z W

X Y Z W X Y Z W X Y Z W X Y Z W

X Y Z W X Y Z W X Y Z W X Y Z W

X Y Z W X Y Z W

Figure 5: Solution of the co-analysis problem of Example 1: The 14 depictedMAGs are all and
only the consistent MAGs with the PAGs shown in Figure 4. In all these MAGs the
independenciesX ⊥⊥W|Y andX ⊥⊥W|Z hold (and only them). Notice that, even though
the edgeX−Y exists inP1 (Example 1), some of the consistent MAGs (the ones on the
right of the figure) do not contain this edge:adjacencies in the input PAGs do not simply
transfer to the solution MAGs.The FCM algorithm would arbitrarily output one of these
MAGs as the solution of the problem of Example 1.

5.1 Representing the Set of Consistent MAGs with Pairwise Causal Graphs

The set of consistent MAGs to a set of PAGs is defined as follows:

Definition 9 (Set of Consistent MAGs) We call the set of all MAGsM over variablesO consistent
with the set of PAGsP= {Pi}

N
i=1 over corresponding variable setsOi , whereO = ∪iOi as the Set

of Consistent MAGs withP denoted withM(P).

Unfortunately,M(P) cannot in general be represented with a single PAG: the PAG formalism rep-
resents a set of equivalent MAGswhen learning from a single data set and its independence model.
In Example 1 though, notice that the MAGs inM(P) in Figure 5 have a different skeleton (i.e., set
of edges ignoring the edge-arrows), so they cannot be representedby a single PAG.

The PAG formalism allows the set ofm-separations that entail them-separations of all MAGs
in the class to be read off its graph in polynomial time. Unfortunately, there is currently no known
compact representation ofM(P) such that them-separations that hold for all members of the set can
be easily identified (i.e., in polynomial time).

We have introduced (Triantafillou et al., 2010) a new type of graph called the Pairwise Causal
Graph(PCG) that graphically representsM(P). However, PCG do not always allow them-separations
of each member MAG to be easily identified. A PCG focuses on representing the possible causal
pair-wise relations among each pair of variablesX andY in O.

Definition 10 (Pairwise Causal Graph) We consider the MAGs inM(P) consistent with the set of
PAGsP= {Pi}

N
i=1 defined over{Oi}

N
i=1. A Pairwise Causal GraphU is a partially oriented mixed

graph over
⋃

i Oi with two kinds of edges dashed (99) and solid (—) and three kinds of endpoints(>,
-, ◦) with the following properties:
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X Y Z W

X Y Z W

X Y Z W

Figure 6: (left) Pairwise Causal Graph (PCG) representing the set of consistent MAGs of Example
1. This PCG is the output of the cSAT+ algorithm on the problem of Example 1. Alterna-
tively, the set of consistent MAGs can be represented with two PAGs (right). This is the
output of the ION algorithm on the same problem.

1. X — Y inU iff X is adjacent to Y in every consistentM ∈M(P).

2. X 99 Y inU iff X is adjacent to Y in at least one but not all consistentM ∈M(P).

3. X and Y are not adjacent inU iff they are not adjacent in any consistentM ∈M(P).

4. The right end-point of edge X99 Y is oriented as>, -, or ◦ iff X is into Y in all, none, or at
least one (but not all) consistent MAGM ∈M(P) where X and Y are adjacent. Similarly, for
the left end-point and for solid edges X−Y.

Solid edges, missing edges, as well as end-points marked with“>” and “−” show invariant charac-
teristics that hold in all consistent MAGs. Dash edges and “◦”-marked end-points represent uncer-
tainty of the presence of the edge and the type of the end-point.

The PCG of Example 1 is shown in Figure 6 (left). For computing the PCG one can employ
the cSAT+ algorithm (Triantafillou et al., 2010). There are several pointsto notice. The invariant
graph features are the solid edgeY — Z and the missing edge betweenX andW; these are shared
by all consistent MAGs. The remaining edges are dashed showing that they are present in at least
one consistent MAG. All end-points are marked with “◦” showing that any type of orientation is
possible for each of them. The graph fails to graphically represent certain constraints, for example,
that there is no MAG that simultaneously contains edgesX−Y andX−Z; in general, the presence
of an edge (or a particular end-point) in a consistent MAG may entail the absence of some other
edge (or end-point). It also fails to depict them-separationX ⊥⊥W|Z or the fact that any solution
has a chain-like structure.

Nevertheless, the graph still conveys valuable information:the solid edge X — Y along with the
Faithfulness condition entails that Y and Z are associated given any subset of the other variables,
even though Y and Z are never measured together in any input data set.This is a testable prediction
on which we base the computational experiments in Section 6. Alternatively, thesetM(P) could be
represented withtwo PAGs shown in 6 (right), as the set of MAGs consistent with either one them.
These PAGs form the output of ION on this problem.
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6. Predicting the Presence of Unconditional Dependencies

We now discuss how to implement the identification of the scenario in Example 1 to predict the
presence of dependencies.

6.1 Predictions of Dependencies

Recall that, in Example 1 we assume we are given two data sets on variablesO1 = {X,Y,W} and
O2 = {X,Z,W}. We then determine, if possible, whether their independence models are respec-
tively J1 = {〈X,W|Y〉} andJ2 = {〈X,W|Z〉} by a series of unconditional and conditional tests of
independence. If this is the case, we predict an association betweenY andZ. The details of de-
termining the independence model are important. Let us denote thep-value of an independence
test with null hypothesisX ⊥⊥ Y|Z as pX⊥⊥Y|Z . In the algorithms that follow, we make statistical
decisions with the following rules:

• If pX⊥⊥Y|Z ≤ α concludeX 6⊥⊥Y|Z (reject the null hypothesis).

• If pX⊥⊥Y|Z ≥ β concludeX ⊥⊥Y|Z (accept the null hypothesis).

• Otherwise, forgo making a decision.

Algorithm 1 : Predict Dependency: Full-Testing Rule (FTR)

Input : Data SetsD1 andD2 on variables{X,Y,W} and{X,Z,W}, respectively
if in D1 we conclude1

// determine whether J1 = {〈X,W|Y〉}
X ⊥⊥W|Y , X 6⊥⊥Y| /0 , Y 6⊥⊥W| /0 , X 6⊥⊥W| /0 , X 6⊥⊥Y|W , Y 6⊥⊥W|X2

and inD2 we conclude3

// determine whether J2 = {〈X,W|Z〉}
X ⊥⊥W|Z , X 6⊥⊥ Z| /0 , Z 6⊥⊥W| /0 , X 6⊥⊥W| /0 , X 6⊥⊥ Z|W , Z 6⊥⊥W|X4

then5

PredictY 6⊥⊥ Z| /06

Predict either (X ◦−◦Y ◦−◦Z◦−◦W) or (X ◦−◦Z◦−◦Y ◦−◦W) holds7

else8

Do not make a prediction9

end10

The details are shown in Algorithm 1 named Full-Testing Rule, or FTR for short. We note a
couple of observations. First, the algorithm is opportunistic. It does not produce a prediction when-
ever possible, but only for the case presented in Example 1. In addition, itmakes a prediction only
when thep-values of the tests are either too high or too low to relatively safely accept dependencies
and independencies. Second, to accept an independence model, for example, thatJ1 = {〈X,W|Y〉}
all possible conditional and unconditional tests among the variables are performed. If any of these
tests is inconclusive or contradictory toJ1, the latter is not accepted and no prediction is made.
In the terminology of Spirtes et al. (2001), we test for adetectable failure of faithfulness. Similar
ideas have also been devised in Ramsey et al. (2006) and Spanos (2006). This rule characteristic
is important in case one would like to generalize these ideas to larger graphs and sets of variables:
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performing all possible tests becomes quickly prohibitive, and the probabilityof statistical errors
increases.

If however, one assumes the Faithfulness Condition holds among variables{X,Y,Z,W}, then
it is not necessary to perform all such tests to determine the independencemodels. Algorithms for
inducing graphical models from data, such as FCI and PC (Spirtes et al., 2001) are based on this
observation to gain computational efficiency. The Minimal-Testing Rule, MTR for short, performs
only a minimal number of tests that together with Faithfulness may entail thatJ1 = {〈X,W|Y〉} and
J2 = {〈X,W|Z〉} and lead to a prediction. The details are shown in Algorithm 2.

Algorithm 2 : Predict Dependency Minimal-Testing Rule (MTR )

Input : Data SetsD1 andD2 on variables{X,Y,W} and{X,Z,W}, respectively
if in D1 we conclude1

// determine whether J1 = {〈X,W|Y〉}
X ⊥⊥W|Y , X 6⊥⊥Y| /0 , Y 6⊥⊥W| /02

and inD2 we conclude3

// determine whether J2 = {〈X,W|Z〉}
X ⊥⊥W|Z , X 6⊥⊥ Z| /0 , Z 6⊥⊥W| /04

then5

PredictY 6⊥⊥ Z| /06

Predict either (X ◦−◦Y ◦−◦Z◦−◦W) or (X ◦−◦Z◦−◦Y ◦−◦W) holds7

else8

Do not make a prediction9

end10

6.2 Heuristic Predictions of Dependencies Based on Transitivity

Is it really necessary to develop and employ the theory presented to make such predictions? Could
there be other simpler and intuitive rules that are as predictive, or more predictive? For example,
a common heuristic inference people are sometimes willing to make is the transitivity rule: if Y is
correlated withX andX is correlated withZ, then predict thatY is also correlated withZ. The FTR
and MTR rules defined also check these dependencies:X 6⊥⊥Y inD1 andX 6⊥⊥ Z inD1, so one could
object that any success of the rules could be attributed to the transitivity property often holding in
Nature. We implement the Transitivity Rule (TR), shown in Algorithm 3 to compareagainst the
INCA-based FTR and MTR rules. Obviously, the Transitivity Rule is not sound in general,2 but on
the other hand, FTR and MTR are also based on the assumption of Faithfulness, which may as well
be unrealistic. The verdict will be determined by experimentation.

6.3 Empirical Evaluation of Predicting Unconditional Dependencies

We have applied and evaluated the three rules against each-other as wellas random predictions (prior
probability of a pair being dependent) on real data, in a way that becomes testable. Specifically,
given a data setD we randomly partition its samples to three data sets of equal size,D1, D2, and
Dt . The latter is hold out for testing purposes. In the first two data sets, we identify quadruples of

2. The Transitivity Rule should be sound when the marginal of the three variables is faithful to aMarkov Random Field.
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Algorithm 3 : Predict Dependency Transitivity Rule (TR)

Input : Data SetsD1 andD2 on variables{Y,X} and{X,Z}, respectively
if in D1: Y 6⊥⊥ X| /0 and inD2: X 6⊥⊥ Z| /0 then1

PredictY 6⊥⊥ Z| /02

else3

Do not make a prediction4

end5

Name Reference # istances # vars Group Size Vars type Scient. domain
Covtype Blackard and Dean (1999) 581012 55 55 N/O Agricultural

Read Guvenir and Uysal (2000) 681 26 26 N/C/O Business
Infant-mortality Mani and Cooper (2004) 5337 83 83 N Clinical study

Compactiv Alcalá-Fdez et al. (2009) 8192 22 22 C Computer science
Gisette Guyon et al. (2006a) 7000 5000 50 C Digit recognition
Hiva Guyon et al. (2006b) 4229 1617 50 N Drug discovering

Breast-Cancer Wang (2005) 286 17816 50 C Gene expression
Lymphoma Rosenwald et al. (2002) 237 7399 50 C Gene expression

Wine Cortez et al. (2009) 4898 12 12 C Industrial
Insurance-C Elkan (2001) 9000 84 84 N/O Insurance
Insurance-N Elkan (2001) 9000 86 86 N/O Insurance

p53 Danziger et al. (2009) 16772 5408 50 C Protein activity
Ovarian Conrads (2004) 216 2190 50 C Proteomics
C&C Frank and Asuncion (2010) 1994 128 128 C Social science
ACPJ Aphinyanaphongs et al. (2006) 15779 28228 50 C Text mining
Bibtex Tsoumakas et al. (2010) 7395 1995 50 N Text mining

Delicious Tsoumakas et al. (2010) 16105 1483 50 N Text mining
Dexter Guyon et al. (2006a) 600 11035 50 N Text mining
Nova Guyon et al. (2006b) 1929 12709 50 N Text mining

Ohsumed Joachims (2002) 5000 14373 50 C Text mining

Table 1: Data Sets included in empirical evaluation of Section 6.3. N- Nominal, O -Ordinal, C -
Continuous.

variables{X,Y,Z,W} for which the Full-Testing and the Minimal-Testing Rules apply. Notice that,
the two rules perform tests among variables{X,Y,W} in D1 and among variables{X,Z,W} in D2;
the rules do not access the joint distribution of Y,Z. Similarly, for the Transitivity Rule we identify
triplets{X,Y,Z} where the rule applies. Subsequently, we measure the predictive performance of
the rules. In more detail:

• Data Sets: We selected data sets in an attempt to cover a wide range of sample-sizes, di-
mensionality (number of variables), types of variables, domains, and tasks. The decision for
inclusion depended on availability of the data, ease of parsing and importing them. No data
set was a posteriori removed out of the study, once selected. Table 1 assembles the list of data
sets and their characteristics before preprocessing. Some minimal preprocessing steps were
applied to several data sets that are described in Appendix A.

• Tests of Independence: For discrete variables we have used theG2-test (a type of likelihood
ratio test) with an adjustment for the degrees-of-freedom used in Tsamardinos et al. (2006)
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and presented in detail in Tsamardinos and Borboudakis (2010). For continuous variables
we have used a test based on the Fisher z-transform of the partial correlation as described in
Spirtes et al. (2001). The two tests employed are typical in the graphical learning literature.
In some cases ordinal variables were treated as continuous, while in others the continuous
variables were discretized (see Appendix A) so that every possible quadruple{X,Y,Z,W}
was either treated as all continuous variables or all discrete and one of thetwo tests above
could be applied.

• Significance Thresholds: There are two threshold parameters: levelα below which we accept
dependence and levelβ above which we accept independence; the TR rule only employs theα
parameter. For FTR these thresholds were always set toαFTR= 0.05 andβFTR= 0.3 without
an effort to optimize them. Some minimal anecdotal experimentation with FTR showedthat
the performance of the algorithm is relative insensitive to the values ofαFTR andβFTR and
the algorithm works without fine-tuning. Notice that FTR requires 10 dependencies and 2
independencies to be identified, while MTR requires 4 dependencies and 2independencies,
and TR requires 2 dependencies to be found. Thus, FTR is more conservative than MTR
and TR for the same values ofα andβ. The Bonferroni correction for MTR dictates that
αMTR= αFTR×

4
10 = 0.02, while for TR we getαTR= αFTR×

2
10 = 0.01 (TR however, does

not require any independencies present so this adjustment may not be conservative enough).
We run MTR with threshold valuesαMTR∈ {0.05,0.02,0.002,0.0002}, that is equal to the
threshold of FTR, with the Bonferroni adjustment, and stricter than Bonferroni by one and
two orders of magnitude. TheβMTR parameter is always set to 0.3. In a similar fashion for
TR, we setαTR∈ {0.05,0.01,0.001,0.0001}.

• Identifying Quadruples: In low-dimensional data sets (number of variables less than 150), we
check the rules on all quadruples of variables. This is time-prohibitive however, for the larger
data sets. In such cases, we randomly permute the order of variables andpartition them into
groups of 50 and consider quadruples only within these groups. The column named “Group
Size” in Table 1 notes the actual sizes of the variable groups used.

• Measuring Performance: The ground truth for the presence of a predicted correlation is not
known. We thus seek to statistically evaluate the predictions. Specifically, foreach predicted
pair of variablesX andY, we perform a test of independence in the corresponding hold-out
test setDt and store itsp-valuepX⊥⊥Y| /0. The lower thep-value the higher the probability the
pair is truly correlated. We consider as “accurate” a prediction whosep-value is less than a
thresholdt and we report the accuracy of each rule.

Definition 11 (Prediction Accuracy) We denote with MRi and UR
i the multiset and set respectively

of p-values of the predictions of rule R applied on data set i. The p-valuesare computed on the
hold-out test set. The accuracy of the rule on data set i at threshold t isdefined as:

AccR
i (t) = #{p<= t, p∈MR

i }/|M
R
i |.

We also define theaverage accuracyover all data sets (each data set is weighted the same)

Acc
R
(t) =

1
20

20

∑
i=1

AccR
i (t)
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and thepooled accuracyover the union of predictions (each prediction is weighted the same)

AccR(t) = #{p<= t, i = 1. . .20, p∈MR
i }/∑

i

|MR
i |.

The reasonMR
i is defined as a multiset stems from the fact that a dependencyY 6⊥⊥ Z| /0 may be

predicted multiple times if a rule applies to several quadruples{Xi ,Y,Z,Wi} or triplets{Xi ,Y,Z}
(for the Transitivity Rule). The number of predictions of each ruleR (i.e., |MR

i |) is shown in Table 2,
while Table 8 in Appendix A reports|UR

i |, the number of pairsX−Y predicted correlated. In some
cases (e.g., data sets Read and ACPJ) the Full-Testing Rule does not make any predictions. Overall
however, the rules typically make hundreds or even thousands of predictions.

Data Set FTR0.05 MTR0.02 TR0.01

Covtype 222 33277 54392
Read 0 9 4713

Infant Mortality 22 2038 3736
Compactiv 135 679 3950

Gisette 423 35824 134213
hiva 554 65967 151582

Breast-Cancer 1833 141643 470212
Lymphoma 7712 188216 394572

Wine 4 73 431
Insurance-C 1839 30569 40173
Insurance-N 226 18270 47115

p53 46647 1645476 1995354
Ovarian 539165 1604131 2015133
C&C 99241 416934 301218
ACPJ 0 219 16574
Bibtex 1 3982 25948

Delicious 856 32803 105776
Dexter 0 2 117
Nova 0 124 3473

Ohsumed 0 64 5358

Table 2: Number of predictions|MR
i | with “Bonferroni” correction for rules FTR, MTR and TR.

Overall Performance: The accuracies att = 0.05, Acci(t), Acc(t), and Acc(t) for the three
rules as well as the one achieved by guessing at random are shown in Figure 7. The Bonferroni
adjusted thresholds for MTR and TR were used:αFTR= 0.05,αMTR= 0.02,αTR= 0.01 . Similar
figures for all sets of thresholds are shown in Appendix A, Section A.3. Over all predictions, the
Full-Testing Rule achieves accuracy 96%, consistently higher than guessing at random, the MTR
and the TR. The same results are also depicted in tabular form in Table 3, where additionally, the
statistical significance is noted. The null hypothesis is thatAccFTR

i (0.05)≤ AccR
i (0.05), for Rbeing

MTR or TR. The one-tail Fisher’s exact test (Fisher, 1922) is employedwhen computationally
feasible, otherwise the Pearsonχ2 test (Pearson, 1900) is used instead. FTR is typically performing
statistically significantly better than all other rules.
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Figure 7: AccuraciesAcci for each data set, as well as the average accuracyAcc (each data set
weighs the same) and the pooled accuracyAcc (each prediction weighs the same). All
accuracies are computed as thresholdt = 0.05. FTR’s accuracy is always above 80% and
always higher than MTR, TR, and random guess.

Sensitivity to theα parameter: The results are not particularly sensitive to the significance
thresholds used forα for MTR and TR. Figures 9 (a-b) show the average accuracyAcc and the
pooled accuracyAccas a function of thealphaparameter used: no correction, Bonferroni correc-
tion, and stricter than Bonferroni by one and two orders of magnitude. The accuracy of MTR and
TR improves as they become more conservative but never reaches the one by FTR even for the
stricter thresholds ofαMTR= 0.0002 andαTR= 0.0001.

Sensitivity to t: The results are also not sensitive to the particular significance levelt used to
define accuracy. Figure 8 graphsAccR

i (t) over t = [0,0.05] for two typical data sets as well as
Acc(t) andAcc(t). The situation is similar and consistent across all data sets considered, which
are shown in Appendix A. The lines of the Full Testing Rule rise sharply, which indicates that the
p-values of its predictions are concentrated close to zero.

Explaining the difference of FTR and MTR: Asymptotically and when the data distribution is
faithful to a MAG, the FTR and the MTR rules are both sound (100% accurate). However, when
the distribution is not faithful, the performance difference could become large because FTR tests
for faithfulness violations as much as possible in an effort to avoid false predictions. This may
explain the large differences in accuracies observed in the Infant Mortality, Gisette, Hiva, Breast-
Cancer, and Lymphoma data sets. When the distribution is faithful, but the sample is finite, we
expect some but small differences. For example when MTR falsely determines thatX 6⊥⊥Y| /0 due to
a false positive test, the FTR rule still has a chance to avoid an incorrect prediction by additionally
testingX 6⊥⊥Y|W. To support this theoretical analysis we perform experiments with simulated data
where the network structure is known. Specifically, we employ the structureof the ALARM (Bein-
lich et al., 1989), INSURANCE (Binder et al., 1997) and HAILFINDER (Abramson et al., 1996)
Bayesian Networks. We sample 20 continuous and 20 discrete pairs of datasetsD1 andD2 from
distributions faithful to the network structure using different randomly chosen parameterizations for
the continuous case, and the original network parameters for the discretecase. We do the same for
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Data Set FTR0.05 MTR0.02 TR0.01 Random Guess
Covtype 1.00 1.00 0.91∗∗ 0.83∗∗

Read - 1.00 0.97 0.82
Infant Mortality 0.95 0.64∗∗ 0.36∗∗ 0.11♠

Compactiv 1.00 0.98 0.96∗ 0.93∗∗

Gisette 0.95 0.71♠ 0.59♠ 0.14♠

hiva 0.94 0.61♠ 0.44♠ 0.30♠

Breast-Cancer 0.84 0.49♠ 0.34♠ 0.20♠

Lymphoma 0.82 0.57♠ 0.39♠ 0.23♠

Wine 1.00 0.85 0.81 0.80
Insurance-C 0.97 0.75♠ 0.66♠ 0.37♠

Insurance-N 0.97 0.94∗ 0.86∗∗ 0.34♠

p53 0.97 0.87♠ 0.71♠ 0.54♠

Ovarian 0.99 0.98♠ 0.95♠ 0.91♠

C&C 0.96 0.88♠ 0.80♠ 0.77♠

ACPJ - 0.26 0.07 0.02
Bibtex 1.00 0.68 0.31 0.12∗∗

Delicious 1.00 0.87♠ 0.68♠ 0.23♠

Dexter - 0.50 0.05 0.02
Nova - 0.08 0.06 0.03

Ohsumed - 0.14 0.05 0.02
ACCR 0.96 0.69∗∗ 0.55∗∗ 0.39∗∗

ACCR 0.98 0.88♠ 0.74♠ 0.16♠

Table 3: ACCR
i (t) at t = 0.05 with “Bonferroni” correction for rules FTR, MTR, TR and Random

Guess. Marks *, **, and♠ denote a statistically significant difference from FTR at the
levels of 0.05, 0.01, and machine-epsilon respectively.

sample sizes 100, 500, 1000. Subsequently, we apply the FTR and MTR rules with αFTR = 0.05
andαMTR = 0.02 (Bonferroni adjusted) on each pair ofD1 andD2 and all possible quadruples of
variables. The true accuracy is not computed on a test data setDt but on the known graph instead
by checking whetherY andZ ared-connected givenX andW. The mean true accuracies over all
samplings are reported in Figure 10. The difference in performance on the faithful, simulated data
is usually below 5%. In contrast, the largest difference in performance on the real data sets is over
35% (Breast-Cancer), while the difference of the pooled accuracies is10%. Thus, violations of
faithfulness seem to be the most probable explanation for the large difference in accuracy on the
real data.

6.4 Summary, Interpretation, and Conclusions

We now comment and interpret the results of this section:

• Notice that even if all predicted pairs are truly correlated, the accuracy may not reach 100%
due to the presence of Type II errors (false negatives)in the test set.
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Figure 8: AccuraciesAccR
i (t) as a function of thresholdt for two typical data sets along with

ACC
R
(t) andACCR(t). The remaining data sets are plot in Appendix A Section A.3.

Predicted dependencies havep-values concentrated close to zero. The performance dif-
ferences are insensitive to the thresholdt in the performance definition.

• The FTR rule performs the test for the X-W association independently in bothdata sets.
Given that the data in our experiments come from exactly the same distribution, they could be
pooled together to perform a single test; alternatively, if this is not appropriate, the p-values
of the tests could be combined to produce a single p-value (Tillman, 2009; Tsamardinos and
Borboudakis, 2010).

• The results show thatthe Full-Testing Rule accurately predicts the presence of dependencies,
statistically significantly better than random predictions, across all data sets,regardless of
the type of data or the idiosyncracies of a domain. The rule is successful ingene-expression
data, mass-spectra data measuring proteins, clinical data, images and others. The accuracy of
predictions is robustly always above 0.80 and over all predictions it is 0.96; the difference with
random predictions is of course more striking in data sets where the percentage of correlations
(prior probability) is relatively small, as there is more room for improvement.

• The Full-Testing Rule is noticeably more accurate than the Minimal-Testing Rule, due to test-
ing whether the Faithfulness Condition holds in the induced PAGs. The resultis important
considering that most constraint-based algorithms assume the Faithfulness Condition to in-
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duce models,but do not check whether the induced model is Faithful. These results indicate
that when the latter is not the case, the model (and its predictions) may not be reliable. On the
other hand, the FTR rule is also noticeably more conservative: the number of predictions it
makes is significantly lower than the one made by MTR. In some data sets (e.g., Compactiv,
Insurance-N, and Ovarian) by using the MTR vs. the FTR one sacrifices a small percentage
of accuracy (less than 3% in these cases) to gain one order of magnitude more predictions.
However, caution should be exercised because in certain data sets MTR isover 35% less
accurate than FTR.

• The Full-Testing Rule is more accurate than the Transitivity Rule. Thus, the performance
of the Full-Testing Rule cannot be attributed to simply performing a super-setof the tests
performed by the Transitivity Rule.

• Predictions are the norm case and not occur in contrived or rare casesonly. Even though
there were few or no predictions for a couple of data sets, there are typically hundreds or
thousands of predictions for each data set. This is the case despite the fact that we are only
looking for a special-case structure and the search for these structures is limited within groups
of 50 variables for the larger data sets. The results are consistent with theones in Triantafillou
et al. (2010), where larger structures were induced from simulated data.

• FTR makes almost no predictions in the text data:3 this actually makes sense and is probably
evidence for the validity of the method: it is semantically hard to interpret the presence of a
word “causing” another word to be present.4

• FTR is an opportunistic algorithm that sacrifices completeness to increase accuracy, as well
as improve computational efficiency and scalability. General algorithms for co-analyzing
data over overlapping variable sets, such as ION (Tillman et al., 2008), IOD (Tillman and
Spirtes, 2011) and cSAT (Triantafillou et al., 2010) could presumably makemore predictions,
and more general types of predictions (e.g., also predict independencies). However, their
computational and learning performance on a wide range of domains and high-dimensional
data sets is still an open question and an interesting future direction to pursue.

7. Predicting the Presence of Conditional Dependencies

The FTR and the MTR not only predict the presence of the dependencyY 6⊥⊥ Z| /0 given two data sets
onO1 = {X,Y,W} andO2 = {X,Z,W}; the rules also predict that eitherX ◦−◦Y◦−◦Z◦−◦W or
X ◦−◦Z◦−◦Y ◦−◦W is the model that generated both data sets (see Algorithms 1 and 2). Both
of these models also imply the following dependencies:

Y 6⊥⊥ Z|X,

3. The only predictions in text data are in Bibtex (1 prediction) and in Delicious(856), which are the only text data sets
that are actually not purely bag-of-words data sets but include variables corresponding to tags. 66% of the predictions
made in Delicious involves tag variables, as well as the single prediction in Bibtex.

4. However, causality between words is still conceivable in our opinion: deciding to include a word in a document may
change a latent variable corresponding to a mental state of the author, which in turn causes her to include some other
word.
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Figure 9: Average accuracyAcc(0.05) (left) and pooled accuracyAcc(0.05) (right) for each rule
as a function ofα thresholds used:αMTR ∈ {0.05,0.02,0.002,0.0002} and αTR ∈
{0.05,0.01,0.001,0.0001} corresponding to no correction, Bonferroni correction, and
stricter than Bonferroni by one and two orders of magnitude respectively. FTR’s perfor-
mance is higher even when MTR and TR become quite conservative.

Y 6⊥⊥ Z|W,

Y 6⊥⊥ Z|{X,W}.

In other words, the rules predict that the dependency betweenY andZ is not mediated by eitherX or
W inclusively. To test whether all these predictions hold simultaneously at thresholdt we compute:

p∗ = max
S⊆{X,W}

pY⊥⊥Z|S

and test whetherp∗ ≤ t. The above dependencies are all the dependencies that are implied by
the model but not tested by the FTR given that it has no access to the joint distribution of Y and
Z. Note that we forgo providing a value forp∗ when any of the conditional dependencies can
not be calculated, that is, when there are not enough samples to achieve large enough power, see
Tsamardinos and Borboudakis (2010). The accuracy of the predictions for all dependencies in the
model, named Structural Accuracy because it scores all the dependencies implied by the structure
of model, is defined in a similar fashion toAcc(Definition 11) but based onp∗ instead ofp:

SAccRi (t) = #{p∗ <= t, p∈MR
i }/|M

R
i |.

TheSAccfor each FTR, MTR (with “Bonferroni” correction) and randomly selected quadruples is
shown in Figure 7.1; the remaining data sets are shown in Appendix A. Thereis no line for the TR
as it concerns triplets of variables and makes no predictions about conditional dependencies. Both
FTR and MTR have maximump-valuesp∗ concentrated around zero. The curves do not rise as
sharp as those in Figure 8 since thep∗ values are always larger than the correspondingpY⊥⊥Z| /0. We
also calculate the accuracy att = 0.05 for all data sets (see Table 9 in Appendix A Section A.2).
The results closely resemble the ones reported in Table 3, with FTR always outperforming random
guess. FTR outperforms MTR on most data sets (and henceSACC

FTR
> SACC

MTR
; however, over

all predictions their performance is quite similar.
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Figure 10: Difference betweenACCFTR andACCMTR for discrete (left) and continuous (right) sim-
ulated data sets. Results calculated using the “Bonferroni” correction (i.e.,FTR0.05 and
MTR0.02). The difference between FTR and MTR is larger than 5% only in two cases
with low sample size (ALARM and HAILFINDER networks); however, the difference
steeply decreases as the sample size increases. No prediction was made for HAIL-
FINDER with discrete data and 100 samples. The difference between FTR and MTR on
faithful data is relatively small.

7.1 Summary, Interpretation, and Conclusions

The results show that both the FTR and MTR rules correctly predict all the dependencies (con-
ditional and unconditional) implied by the models involving the two variables nevermeasured to-
gether. These results provide evidence that these rules often correctlyidentify the data generating
structure.

8. Predicting the Strength of Dependencies

In this section, we present and evaluate ideas that turn the qualitative predictions of FTR to quanti-
tative predictions. Specifically, for Example 1 we showhow to predict the strength of dependence
in addition to its existence. In addition to the Faithfulness Condition, we assume that when the
FTR applies on quadruple{X,Y,Z,W}, all dependencies are linear with independent and normally
distributed error terms. However, the results of these section could possiblybe generalized to more
relaxed settings, for example, when some of the error terms are non-Gaussian (Shimizu et al., 2006,
2011). When the Full-Testing Rule applies, we can safely assume the true structure is one of the
MAGs shown in Figure 5. Given linear relationships among the variables, wecan treat these MAGs
as linear Path Diagrams (Richardson and Spirtes, 2002). We also consider normalized versions of
the variables with zero mean and standard deviation of one. Let us consider one of the possible
MAGs:

M1 : X
ρXY
←−−Y

ρYZ
−−→ Z

ρZW
−−→W
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Figure 11: Structural AccuraciesSAccRi (t) as a function of thresholdt for two typical data sets

along withSACC
R
(t) andSACCR(t). The remaining data sets are plot in Appendix A

Section A.2. FTR outperforms MTR on most of the data sets, and thusSACC
FTR

(t) >

SACC
MTR

(t). However, since MTR ouperforms FTR on few data sets with a large
number of predictions and soSACCMTR(t) is slightly better thanSACCFTR(t) for t <=
0.05.

whereρXY is theregression coefficientof regressingX onY, that is,

X = ρXYY+ ε

andε is the error term. Since we have standardized the variables, and since the above equation is
simple linear regression,ρXY coincides with the Pearson linearcorrelationbetween variablesX and
Y. Thus, there is no need to distinguish the two.5 Now notice that in all MAGs in Figure 5 there
are no colliders. Thus, as inM1 above, all regressions are simple regressions and all standardized
regression coefficients coincide with their respective correlation coefficients, and so, for the rest of
the section we will not differentiate between the two.

The rules of path analysis (Wright, 1934) dictate that the correlation between two variables, for
example,ρXY equals the sum of the contribution of everyd-connecting path (conditioned on the

5. If Y was a collider then it would have been regressed on multiple variables; in thiscaseρXY should be the partial
regression coefficient which in general does not coincide with the partial correlation coefficient, even for standardized
variables.
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empty set); the contribution of each path is the product of the correlations onits edges. ForM1 the
above rule implies (among others):

ρXZ = ρXY×ρYZ

because fromX to Z there is a single path going throughY. Recall that the 14 consistent MAGs are
represented by the following PAGs:

P1 : X ◦−◦Y ◦−◦Z◦−◦W

and
P2 : X ◦−◦Z◦−◦Y ◦−◦W.

All MAGs consistent withP1 entail the same constraints on the coefficients using path analysis;
similarly all MAGs consistent withP2.6 Specifically, ifP1 is the true structure we get the constraints

ρXZ = ρXY×ρYZ, (1)

ρYW = ρYZ×ρZW. (2)

On the other hand, ifP2 is the true structure we obtain:

ρXY = ρXZ×ρYZ, (3)

ρZW = ρYZ×ρYW. (4)

We useρ, r̂, and r to denote actual, predicted, and sample correlations, respectively. The quantities
that we observe are thesample correlation coefficients, denoted byr, for the pairs of variables
measured together. Thus, we can compute the quantitiesrXY, rXZ, rYW, rZW from the data and we
would like to predictρYZ without available data. From Equations 1, 2, 3, 4 above we obtain four
possible estimators:

If P1 is true : ˆr1
YZ≈

rXZ

rXY
from Equation 1 and ˆr2

YZ≈
rYW

rZW
from Equation 2, (5)

if P2 is true : ˆr3
YZ≈

rXY

rXZ
from Equation 3 and ˆr4

YZ≈
rZW

rYW
from Equation 4 (6)

where the superscripts correspond to the equation used to produce the estimate. Notice that, each
possible PAG provides two equations to predictρYZ, that is, the parameter is overidentified. Also,
the following important relation holds between the estimators:

r̂1
YZ =

1

r̂3
YZ

and ˆr2
YZ =

1

r̂4
YZ

.

This observation allows us to distinguish between PAGsP1 andP2: if r̂1
YZ, r̂

2
YZ∈ [−1,+1], then their

reciprocals ˆr3
YZ, r̂

4
YZ 6∈ [−1,+1] and so, they are not valid estimates for a correlation. Thus, we can

infer thatP1 is the true structure and employ only ˆr1
YZ, r̂

2
YZ for estimation. Otherwise, the reverse

holds ˆr3
YZ, r̂

4
YZ ∈ [−1,+1], P2 is the true structure and only ˆr3

YZ, r̂
4
YZ should be used for estimation.

6. In general, the consistent MAGs may disagree on the unknown correlations. In this case, these parameters may not
identifiable. However, one could analyze all possible MAGs to provide bounds on the unidentifiable quantities in a
similar fashion to Balke and Pearl (1997) and Maathuis et al. (2009).
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Due to sampling errors it is plausible that we obtain conflicting information: ˆr1
YZ ∈ [−1,+1] but

r̂2
YZ 6∈ [−1,+1] (and so ˆr3

YZ 6∈ [−1,+1] and ˆr2
YZ ∈ [−1,+1]). In that case, we forgo making any

predictions.

The ramifications of the above analysis are important. In the case where all variables are jointly
measured, the distribution is Faithful, the relations are linear and the error terms follow Gaussian
distributions, the set of statistically indistinguishable causal graphs is determined completely by
the independence model and not by the parameterization of the distribution. However, in the case
of incomplete data, where some variable sets are not jointly observed, the set of indistinguishable
models also depends on the parameters of the distribution, even for linear relations and Gaussian
error terms. In our scenario, by analyzing the estimable parameters we canfurther narrow down the
set of equivalent consistent MAGs.

At this point in our analysis, we are left with two valid estimators, either ˆr1, r̂2 or r̂3, r̂4. All
estimators are computed as ratios. We report the mean of the two valid estimators as the predicted
r̂YZ for a more robust estimation. The above procedure is formalized in Algorithm4, named FTR-S.

Algorithm 4 : Predict Dependency Strength(FTR-S)

Input : Data setsD1 andD2 on variables{X,Y,W} and{X,Z,W}, respectively
if Full-Testing Rule(D1, D2) does not applythen return ;1

In D1 computerXY, rYW;2

In D2 computerXZ, rZW;3

r̂1← rXZ
rXY

;4

r̂2← rYW
rZW

;5

r̂3← rXY
rXZ

;6

r̂4← rZW
rYW

;7

if r̂1, r̂2 ∈ [−1,1] then8

PredictX ◦−◦Y ◦−◦Z◦−◦W;9

Predict correlation ˆrYZ =
1
2(r̂

1+ r̂2);10

end11

else if r̂3, r̂4 ∈ [−1,1] then12

PredictX ◦−◦Z◦−◦Y ◦−◦W;13

Predict correlation ˆrYZ =
1
2(r̂

3+ r̂4);14

end15

else16

Make no prediction17

end18

8.1 Empirical Evaluation of the Predictions of Correlation Strength

As in Section 6, we partition each data set with continuous variables to three data setsD1, D2, and
a test setDt . We then apply Algorithm 4 and predict the strength of correlation ˆrYZ for various pairs
of variables; we compare the predictions with the sample correlationrYZ as estimated inDt . The
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results for one representative data set (Lymphoma) are shown in Figure12(a): there is an apparent
trend to overestimate the absolute value of the sample correlation.

There are several possible explanations for the bias of the method, including violations of nor-
mality, linearity, faithfulness, and even the known bias in the estimation of sample correlation coef-
ficients (Zimmerman et al., 2003) that are used for making the predictions in Algorithm 4. In order
to pinpoint the culprit, we generated data where all assumptions hold from themodelM1 shown in
the beginning of this section, where we set the correlationsρXY,ρYZ,ρZW and the noise terms are
independently and normally distributed. We used the entire spectrum of positive correlation coef-
ficients for all three correlations to examine how the bias varies as a functionof these correlations.
We generated 1000 data sets of different sample sizes of 50, 70 and 100samples. We then used
Equation 1 to estimaterYZ in each experiment.This set of experiments revealed no significant bias
for any of the experimental settings(results are not shown for brevity).
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Figure 12: (a) Predicted (ˆrYZ) vs sample (rYZ) correlation for the Lymphoma data set. There is an
obvious trend to over-estimate the correlation in absolute value. (b) Simulated results
from modelM1 whenρXZ andρYW are lower than 0.4 and observed correlationsare
found significant(FTR applies). The FTR constraint that the observed correlations are
significant reproduces a similar behavior in the simulated data, explaining the bias.

We next tested whether the bias is an artifact of the filtering by the FTR at Line1 of the FTR-
S algorithm. We re-run this procedure, but this time we kept only the predictedcorrelations that
passed the FTR. By comparing Figure 12(a) produced on real data, and 12(b) on simulated data,
we observe a similar behavior, indicating that FTR filtering seems a reasonableexplanation for the
bias.

An explanation of this phenomenon now follows. SupposeM1 : X
ρXY
←−−Y

ρYZ
−−→ Z

ρZW
−−→W is the

data generating MAG. We expect that ˆrYZ =
rXZ
rXY

(the equality ˆrYZ =
rYW
rZW

also holds but we ignore it
to simplify the discussion). When sample correlations among{X,Y,Z,W} pass the FTR, this means
that bothrXZ andrXY are above a cut-off threshold, as given by the Fisher test. For example,for a
data set with 70 samples, two variables are considered dependent (ρ 6= 0) if their sample correlation
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is more that 0.2391 (in absolute value), whereas for a data set with 50 samples, this threshold is
0.2852.

Filtering with the Fisher test introduces a bias in the estimation ofr. The bias of the estimation
without filtering, ru is Bru = E[ru− ρ] = ru− ρ, while the bias of the estimation with filteringr f

is Br f = E[r f −ρ] = r f −ρ, where|r f | ≥ t. The thresholdt, as mentioned above, is the threshold
determined by the Fisher test and depends on sample size.The lower the sample size, the higher
the threshold t, and so the higher the introduced bias Br f . In addition, the lower the|ρ| the higher
the bias Br f .

Figure 13 illustrates these points pictorially. In this example, the distribution of thesample
correlationr of two variables for sample size 70 when the true correlation isρ ∈ {0.2,0.4}. For
unfiltered estimations, the bias isBru is 0.0052 and -0.0011 forρ equal to 0.2 and 0.4 respectively,
whereas for filtered estimations the corresponding valuesBr f are 0.1187 and 0.0127.

Going back to the prediction ˆrYZ =
rXZ
rXY

notice that the numerator is always lower (in absolute
value) than the denominator. Therefore, when filtered, it is, on averagemore overestimated than the
denominator. This implies that, on average, the fraction leads to overestimating the absolute value
of ρYZ. The lower the values of|rXZ| and|rXY|, the larger we expect this bias to be. The situation
is similar for all fractions involved in Equations 5 and 6. This hypothesis is confirmed in the data
as illustrated in Figure 14 where the predictions are grouped by the mean absolute values of the
denominators used in their computation.
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rf = 0.3187

Sample Correlations when ρ = 0.2

p-value<0.05

p-value>0.05
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(a) (b)

Figure 13: Histograms of the sample correlations for (a)ρ = 0.2 and (b)ρ = 0.4 for sample size 70.
Red bars correspond to cases where the Fisher test returns a p-value> 0.05, whereas
blue bars correspond to p-values< 0.05. The dashed lines indicate the mean sample
correlation for filtered and unfiltered correlations. The lower theρ , the more overesti-
mated the sample correlations that pass the Fisher test, therefore the difference between
the two means is larger.

The bias should be a function of sample size, the absolute value of the correlations employed
for its computation, and the significance thresholds of the FTR rule. However, a full theoretical
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treatment of the bias is out of the scope of the paper. In the experiments thatfollow we remove the
linear trend to over-estimate (calibrate) by regressing the sample correlationsrYZ on the predicted
r̂YZ: the final calibrated prediction iss× r̂YZ+ i. For each data set the intercepti and slopes of the
regression are estimated by training on the remaining data sets (leave-one-data-set-out validation).
The effect of this calibration is shown in Figure 15. To avoid repetition, the detailed set of results is
presented in the comparative evaluation to statistical matching in Section 9.
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Figure 14: Predicted vs sample correlations over all data sets, grouped by the mean absolute values
of the denominators used in their computation: predictions computed based on large
correlations have reduced bias. Red regions correspond to higher density areas.

8.2 Summary, Interpretation, and Conclusions

We now comment and interpret the results of this section:
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Figure 15: Predicted vs sample correlations on all data sets (a) before, and (b) after calibration.

• FTR coupled with parametric assumptions can be used to predict the strength of dependency
(correlation), providing quantitative predictions. This is equivalent to constructing a predic-
tion model for variables not jointly observed.

• In the case of incomplete data, where some variable sets are not jointly observed, the set of
indistinguishable models also depends on the parameters of the distribution, even for linear
relations and Gaussian error terms. In contrast, in the case where all variables are jointly
measured and the distribution is Faithful the set of statistically indistinguishable causal graphs
is completely determined by the independence model (again, also assuming linearity and
Gaussian error terms).

• In our simple scenario,given the correct structure, path analysis of the induced MAGs pro-
vides easy solutions for predicting the strength of dependence. However, searching for the
correct MAG modelsby applying the FTR incurs bias on the predictions that should be taken
into account.

9. Comparison Against Statistical Matching

Statistical Matching (D’Orazio et al., 2006) is a integrative analysis procedure for data sets de-
fined over overlapping variable sets. Statistical matching addresses two maintasks named themicro
approachandthe macro approach. The micro approach aims to impute the missing values and con-
struct a complete synthetic file, whereas the macro approach aims to identify some characteristics
of the joint probability distribution of the variables not jointly observed. Naturally, construction of
the synthetic data set premises the estimation of the parameters of the joint distribution. We focus
on the macro approach as it presents an alternative to the FTR and MTR.

The problem set up is as follows: variablesY ∪X are measured in data setD1, while variables
Z ∪X are measured in data setD2. ThusX are the commonly measured variables. The goal is to
estimate the variances and covariances ofX ∪Y ∪Z. The problem cannot be solved without addi-
tional assumptions (Rubin, 1974; D’Orazio et al., 2006). Depending on nature of the assumptions,
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statistical matching is able to produce either intervals or point-estimates for the covariances between
Y andZ. The most typical assumption in the literature able to produce point estimates is theCon-
ditional Independence Assumption:Y ⊥⊥ Z|X. This is an arbitrary assumption that has been long
debated. Alternatively, one can limit the shape of the distribution by imposing parametric forms,
such as multivariate normality. The latter type of assumptions, for the typical distributions, do not
lead to identifiable estimations, but instead provide bounds on the missing covariances. Other ap-
proaches do exist that require prior knowledge, for example, Vantaggi (2008) assumes knowledge
of structural zeros and Cudeck (2000) of the structure of latent factors; such approaches however,
are not directly comparable with FTR and MTR on this task. In this section we briefly present the
main theory and techniques used in statistical matching, and then attempt to empiricallycompare
against FTR.

9.1 Statistical Matching Based on the Conditional Independence Assumption

The most common assumption that allows identification of the unknown parametersis thecondi-
tional independence assumption(CIA): Y ⊥⊥ Z|X. The conditional independence assumption is
usually paired with some parametric assumption. The most common assumption for the shape of a
continuous distribution of the variables involved in the model is multivariate normality. In this case,
the parameters of the jpd are the mean vector and the covariance matrix. The covariance Matrix for
X∪Y∪Z can be written as:

Σ =





ΣXX ΣXY ΣXZ

ΣYX ΣYY ΣYZ

ΣZX ΣZY ΣZZ





where the unknown parameter isΣYZ . The CIA assumption imposes that the covariance matrix of
Y andZ givenX is null, thus,

ΣYZ = ΣYX ΣXX
−1ΣXZ .

In case we have standardized variables, andY = {Y} andZ = {Z}, the covariance matrix becomes

Σ =





ρXX ρXY ρXZ

ρYX 1 ρYZ

ρZX ρZY 1





and so
ρYZ = ρYXρXX

−1ρXZ.

This formula can be used to produce a prediction ˆrYZ for the correlation coefficient of the not
commonly observed variablesY and Z. Recall that, we assume we are given a data setD1 on
variablesX∪Y and a data setD2 onX∪Z. The parametersρXY andρXZ can be estimated fromD1

andD2 respectively, while the parametersρXX can be estimated from either or both data sets.
In an applied setting, there is usually also a preprocessing step attempting to identify a subset

of the common variables to be used in the matching process. This step serves mainly computational
efficiency and interpretability purposes and does not affect the asymptotic properties of the proce-
dure. The main method suggested in D’Orazio et al. (2006) is to disregard all variables inX that are
independentwith bothY andZ. The details are described in Algorithm 5.

Even though the conditional independence assumption seems quite arbitrary, it is intuitively
justified in certain cases. When the number of common variables is large it is unlikely thatY
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Algorithm 5 : Predict Correlation: Statistical Matching Rule (SMR)

Input : Data setsD1 andD2 on variables{V∪Y} and{V∪Z}, respectively
ψ1←{V ∈ V : V ⊥⊥Y| /0} in D11

ψ2←{V ∈ V : V ⊥⊥ Z| /0} in D22

X← V \ (ψ1∩ψ2)3

Predict ˆrYZ = ˆΣYX ˆΣXX
−1 ˆΣXZ4

providesadditional information forZ, than whatX already provides. In other words, we expect
Y ⊥⊥ Z|X to hold or hold approximately. Using graphical model theory one can better formalize
this intuition:

Theorem 12 Consider a Bayesian Network of maximum degree k faithful to a distribution defined
over a set of variablesV = X ∪Y ∪ Z, |V| = N. Then, the CIA Y⊥⊥ Z|X holds if and only if
Y 6∈Mb(Z), where Mb(Z) is the Markov Boundary of Z in the context of variablesV; if Y and Z are
chosen at random the probability of the CIA being violated is upper boundedby k2/N.

Proof In a faithful distribution overV, each variableY has a unique Markov BoundaryMb(Y)
(Pearl, 2000) that coincides with the parents, children, and parents of children (spouses) ofY in any
network faithful to the distribution. It is also easy to see thatY ∈Mb(Z)⇔ Z ∈Mb(Y). Finally, the
Mb(Y) and any of its supersetsd-separatesY from any other nodeZ. Thus, whenZ 6∈Mb(Y), then
conditioned on the remaining variables (superset ofMb(Y)) Y becomesd-separated and independent
of Z. Thus, the CIA holds. Conversely, ifZ ∈Mb(Y) then it is either a neighbor ofY or a spouse.
If it is a neighbor it cannot be made independent ofY conditioned on any subset of the variables
(Spirtes et al., 2001). If it is a spouse ofY, then conditioned on the remaining variables (which
includes the common children) it isd-connected toY and thus dependent. Thus, the CIA does not
hold.

Now, the Markov Boundary ofY is a subset of the nodes that are reachable fromY within two
edges. If the network has degree at mostk the probability that a randomly chosenY belongs to the
Markov Boundary ofZ is less thank2/N.

Thus, when the sparsity remains the same, the probability of a violation of the CIA between two
randomly selected variables decreases with the number of participating variablesN. The theoretical
results is illustrated in Figure 16 on simulated data. The figure shows the resultsof the statistical
matching procedure described in Algorithm 5 for simulated continuous data from a network based
on the ALARM Network (Beinlich et al., 1989).7 To recreate the scenario above we generated two
data setsD1 andD2 of 1000 samples each from the distribution of the network. We then applied
the statistical matching rule described in Algorithm 5 for each pair of variables, considering that
the rest of the variables in the network are jointly measured in both data sets. Finally, we generated
a third data set to test the predictions of the method. The pairs of variables are partitioned in two
categories: pairs of variables that belong to each other’s Markov Boundary, and pairs of variables
that do not belong to each other’s Markov Boundary. As expected, theresults are poorer for the

7. The ALARM network a well-known network with 37 variables. We used theskeleton of ALARM to simulate a
conditional linear gaussian network with random parameters.
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pairs of variables that belong to each other’s Markov Boundary, with a mean absolute error of
0.1649±0.1088, compared to a mean absolute error of 0.0326±0.0271 for pairs that do not belong
to each other’s Markov Boundary.

In the context of Maximal Ancestral Graphs, defining the Markov Boundary is more compli-
cated and its cardinality cannot be likewise bounded (Pellet and Elisseeff,2008). Nevertheless, we
still expect that, in a sparse network containing a large number of jointly measured variables, the
probability thatY ∈Mb(Z) is low. We therefore expect that, when the number of common variables
is large, the CIA will often hold for randomly-chosen pairs of variables that have not been observed
together. If, however, the set of variables measured in common is small, we have no good reason to
expect that the conditional independence assumption holds.
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Figure 16: Predicted vs actual sample correlations using the Statistical Matching Rule for simulated
data from the ALARM network. For each pair of variables, prediction is based upon the
subset of the remaining 35 variables that are determined significantly correlated with
eitherY or Z at level 0.05 . The CIA holds whenY 6∈ Mb(Z) in which case the mean
absolute error is 0.0326±0.0271; in contrast, whenY ∈Mb(Z) the CIA does not hold
and the mean absolute error is 0.1649±0.1088.

9.2 Empirical Evaluation of SMR and FTR-S

In this section, we empirically compare the SMR and FTR-S methods for predicting the correlation
r̂YZ between two variablesY and Z never jointly observed. Both SMR and FTR-S procedures
provide such predictions, however, they follow different approaches that makes their comparison
not straightforward:

• SMR provides a prediction for all cases. FTR-S provides a prediction given it identifies a
specific structure that entails a significant correlation.
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Data Sets SMRG SMRQ FTR-S
ACPJ 445121 509000 0

Breast-Cancer 436093 356000 1005
C&C 5050 1000 70367

Compactiv 231 1000 108
Insurance-C 3486 1000 1372
Lymphoma 180074 147000 3897
Ohsumed 124505 122000 0
Ovarian 52675 43000 273456
Wine 66 495 4
p53 132299 108000 33934

Table 4: Number of predictions

• SMR can be applied to setsX with more than two commonly measured variables and get
leverage from all available information. FTR-S on the other hand is applicable only when the
number of common variables is two.

We applied the SMR method on all continuous data sets, simulating two scenarios.In the first sce-
nario, SMR is applied on two data setsD1 andD2 defined over a quadruple of variables{X,Y,Z,W},
where onlyX,W are jointly measured in both. The pairs ofD1, D2 are simulated by considering
randomly chosen variable quadruples from each variable group of each data set of Table 1; as in
all experiments,D1 andD2 contain a disjoint third of the original samples. This scenario simulates
a case where SMR is applied on low dimensional data; we denote it asSMRQ. In this case,SMR
has the same information available for making predictions as FTR-S. Since the number of possible
quadruples is computationally prohibitive, we applySMRQ on 1000 randomly chosen quadruples
from each variable group of each data set.8 In the second scenario, SMR is applied to data sets
of higher-dimensionality. Specifically, we apply SMR to all pairs of variablesin the same group
(see Section 6), considering the remaining 48 variables in the group as the common variablesX.
We name this caseSMRG. The same leave-one-data-set-out calibration method was used for both
SMR cases and FTR-S. Figures 17, 18, 19 and 20 plot the predicted vs.the sample estimates of
the correlations forSMRG, SMRQ and FTR-S for all the continuous data sets used in the study. The
figures also present the coefficient of determinationR2, the percentage of variance explained by the
predictions.R2 is also interpreted as the reduction in uncertainty obtained by using a linear function
of r̂ to predictr vs. predictingr by its expected valueE(r). Table 5 shows the correlation between
predicted and sample estimates for all methods and data sets. Notice thatR2 is simply computed
as the square of the correlation. Other metrics of performance (Mean Absolute Error and Mean
Relative Absolute Error) are also presented in the Appendix A, Tables 10, 11.

8. Notice that FTR is typically executed much more efficiently than SMRQ, because of the possible pruning of the search
space, for example, ifX andY are independent, there is no need to test whether the rule applies on any quadruples of
the form〈X,Y,Z,W〉. For the SMRQ rule instead, one needs to exhaustively consider all quadruples.
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Data Sets SMRG SMRQ FTR-S
ACPJ 0.05[0.04;0.05] 0.00[0.00;0.01] -

Breast-Cancer 0.55[0.55;0.55] 0.25[0.24;0.25] 0.88[0.87;0.90]
C&C 0.99[0.99;0.99] 0.68[0.65;0.71] 0.91[0.91;0.91]

Compactiv 0.97[0.96;0.98] 0.49[0.44;0.54] 0.88[0.83;0.92]
Insurance-C 0.83[0.82;0.84] 0.47[0.42;0.51] 0.90[0.89;0.91]
Lymphoma 0.60[0.60;0.60] 0.32[0.31;0.32] 0.50[0.47;0.52]
Ohsumed 0.02[0.01;0.03] 0.01[0.00;0.01] -
Ovarian 0.62[0.62;0.63] 0.50[0.50;0.51] 0.14[0.14;0.14]
Wine 0.83[0.74;0.90] 0.58[0.52;0.64] 0.99[0.47;1.00]
p53 0.91[0.91;0.91] 0.45[0.44;0.45] 0.87[0.87;0.87]

Mean over data sets0.64[0.62;0.65] 0.38[0.35;0.40] 0.76[0.68;0.77]
On all predictions 0.73[0.73;0.73] 0.58[0.57;0.58] 0.89[0.89;0.89]

Table 5: Correlations among predicted ˆrYZ and sample-estimatedrYZ; the 95% confidence intervals
are shown in brackets.

9.3 Summary, Interpretation, and Conclusions

The CIA assumption is the most common assumption in statistical matching to produce point-
estimates of the unknown distribution parameters. In comparison to FTR-S, wenote the following:

• When predictions are based on only 2 common variables, statistical matching based on the
CIA (SMRQ) is unreliable in several data sets and particularly the text categorization ones:
the correlation of predicted vs. sample estimates in ACPJ, Breast-Cancer, and Ohsumed is
less than 0.3 (Table 4). In general, SMR tends to predict a zero correlation between the two
variablesY andZ: the point-clouds in Figures 17, 18, 19 and 20 are vertically oriented around
zero. While SMR gives a prediction in every case, it is too liberal in its predictions and the
CIA is often violated, as expected by Theorem 12. Over all predictions, the correlation of
predicted vs. sample estimates is 0.58.

• When predictions are based on larger sets of common variables statistical matching based on
the CIA (SMRG) is more successful. Over all predictions, the correlation of predicted vs.
sample estimates is 0.73. The method still fails however, on the text data (ACPJ, Ohsumed)
where the predictions are not correlated at all with the sample estimates. On theother hand,
FTR-S does not make any predictions on these data sets.

• FTR-S’s predictions are highly correlated with sample estimates (0.89 correlation), which is
the highest correlation achieved by any of the three methods. However, we point out that these
metrics are computed on different sets of predictions and their comparativeinterpretation is
not straightforward (see Appendix A, Section A.2 for more metrics and discussion).

• FTR-S is a novel alternative to statistical matching based on the CIA. FTR-S predictions are
better correlated with the sample estimates of the unknown parameters, particularly when the
number of common variables is low; we thus recommend that FTR-S should be preferred than
existing statistical matching alternatives making the CIA in such cases.
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Figure 17: Predicted vs Sample Correlations forSMRQ, SMRG, FTR-S

9.4 Statistical Matching Based on the Assumption of Multivariate Normality

The conditional independence assumption attempts to overcome the lack of jointinformation of
the variables of interest. However, it can often be a misspecified assumptionas pointed out in the
literature (D’Orazio et al., 2006) and our simulated results above. An alternative approach, is to
limit oneself to an assumption involving only the shape of the distribution. The mostcommon
distributional assumption adopted by statistical matching techniques for continuous variables is
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Figure 18: Predicted vs Sample Correlations forSMRQ, SMRG, FTR-S

multivariate normality. Of course, multivariate normality alone does not allow the estimation of
the parameters of the model. It does, however, impose some constraints on the parameters. These
constraints stem from the positive semi-definiteness of the covariance matrixin multivariate normal
distributions, thus, they naturally apply to any distribution with a positive semi-definite covariance
matrix.
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Figure 19: Predicted vs Sample Correlations forSMRQ, SMRG, FTR-S

Let us consider againstandardizedvariables{X,Y,Z} and assume their joint is distributed as
multivariate normal with correlation / covariance matrixΣ (which is symmetric)

Σ =





ρXX ρXY ρXZ

ρYX 1 ρYZ

ρZX ρZY 1



 .
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Figure 20: Predicted vs Sample Correlations forSMRQ, SMRG, FTR-S

The unknown quantity in the problem is parameterρYZ. One can start from the requirement thatΣ
must be positive semi-definite to prove thatρYZ must lie within the intervalC±

√

(D) (Moriarity
and Scheuren, 2001), where

C=
p

∑
i=1

p

∑
j=1

ρYXi ×Bi, j ×ρZXj

and

D = [1−
p

∑
i=1

p

∑
j=1

ρYXi ×Bi, j ×ρYXj ]× [1−
p

∑
i=1

p

∑
j=1

ρZXi ×Bi, j ×ρZXj ]

wherep is the cardinality of setX, andB is the inverse ofρXX , andBi, j is B’s i, j element. This
constraint is equivalent stating that the partial correlationρYZ|X parameter can range freely in the
interval [-1, 1]. Instead, the CIA specifies thatρYZ|X = 0, that is, the mid-point of the interval.

The formula above can be applied to quadruples of variables to produce bounds for the unknown
parameterρYZ. The usefulness of such a prediction depends, of course, on the length of the predicted
interval. In case the interval does not include 0, we may also say that the method predicts an
unconditional independence for Y and Z. This procedure is described in Algorithm 6. In practice,
we apply Algorithm 6 using the sample estimates ˆr in place of the unknown population parameters
ρ. The sample estimates are the maximum likelihood ones. The uncertainty of the estimation could
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be considered in the computation of the intervals by considering the worst case over all correlation
estimates ˆr that belong in the 95% confidence interval of their correspondingρ. However, in this
case the algorithm would produce wider intervals and thus fewer predictions.

Algorithm 6 : Predict Dependency and Its Strength: Multivariate Normality Rule (MNR )

Input : Data setsD1 andD2 on variables{X,Y,W} and{X,Z,W}, respectively
Compute sample correlation matrixΣ (except unknown quantityρYZ) ;1

MNI← [C−
√

(D),C+
√

(D)];2

if 0 6∈MNI then3

PredictY 6⊥⊥ Z| /0 ;4

end5

Predict ˆrXY ∈MNI6

9.5 Empirical Evaluation and Comparison of MNR and FTR

In order to evaluate how often MNR provides a prediction, we applied Algorithm 6 on real data.
Applying Algorithm 6 on all possible combinations of four variables is prohibitive. Thus, to evaluate
the MNR we randomly sampled 1000 quadruples from each group of 50 variables in each data set,
for all data sets with continuous variables; For the Wine data set we generated all possible 495
quadruples out of its 12 variables.

Table 6 reports MNR performances on the randomly chosen quadruples.The columns of the
table present the total number of randomly chosen quadruples (1000× the number of chunks, except
for the Wine data set), the number of predictions made by MNR on these random quadruples, the
accuraciesAccMNR and AccFTR at thresholdt = 0.05. We then calculate (project) theexpected
number of predictions by the MNR rule, had it been applied on all possible quadruples. The final
column presents the ratio of the number of predictions by the FTR rule over theexpectednumber of
predictions made by the MNR rule on all possible quadruples.

First, notice that MNR, similarly to FTR, does not provide any predictions forthe text data sets
ACPJ and Ohsumed data sets. Second, the rule is in general, highly accurate and on par with FTR.
The most important observation however, is that the MNR does not outperform FTR in the number
of predictions. The number of predictions made by FTR ranges from about 25% to 50% of those
made by MNR (in four out of eight data sets) to 4 to 6 times more than MNR in the remaining data
sets.

To examine whether the predictions of MNR rule overlap with those of FTR, weapplied the
MNR rule on the quadruples where FTR makes a prediction. The comparisonis shown in Table
7. MNR is able to predict a dependence only for1% to 25% of FTR predictions.The results in
both Tables 6 and 7 clearly indicate that the two methods share only a small subset of common
predictions, and thus neither method subsumes the other.

9.6 Summary, Interpretation, and Conclusions

We now comment and interpret the results of this section:

• It is possible to predict the presence of dependencies and bound their strength with distribu-
tional assumptions other than Faithfulness, such as multivariate normality.
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Data Set # rand. quads #MNR predictions ACCMNR ACCFTR #FTR predictions
sampled on sampled quads / #expected MNR predictions

on all quads
Breast-Cancer 356000 2 0.50 0.84 3.98

C&C 1000 45 1.00 0.96 0.02
Compactiv 1000 30 1.00 1.00 0.62
Insurance-C 1000 4 0.75 0.97 0.24
Lymphoma 147000 12 0.67 0.82 2.79

Ovarian 43000 391 0.99 0.99 5.99
p53 108000 39 1.00 0.97 5.19

Wine 495 7 1.00 1.00 0.57

Table 6: A comparison between FTR vs. MNR in predicting unconditional dependencies on ran-
domly sampled quadruples. The columns are: the data set name, the total number of
randomly sampled quadruples (1000× the number of chunks, except for the Wine data
set), the number of predictions made by MNR on those, the accuraciesAccMNR andAccFTR

at thresholdt = 0.05. The final column presents the ratio of the number of predictions by
the FTR rule over theexpectednumber of predictions made by the MNR rule on all possi-
ble quadruples. The number of predictions made by FTR ranges from about 25% to 50%
of those made by MNR to 4 to 6 times more than MNR.

Data Set #FTR #MNR predictions % common ACC
predictions restricted to cases predictions of both MNR

FTR makes a prediction and FTR
Breast-Cancer 1833 32 0.02 1.00

C&C 99241 10640 0.11 1.00
Compactiv 135 28 0.21 1.00
Insurance-C 1839 15 0.01 1.00
Lymphoma 7712 681 0.09 0.97

Ovarian 539165 59327 0.11 1.00
p53 46647 413 0.01 1.00

Wine 4 1 0.25 1.00

Table 7: A comparison between FTR vs. MNR in predicting unconditional dependencies on the
cases where both rules apply.

• The sets of predictions entailed by assuming Faithfulness (FTR) and multivariate normality
(MNR) do not overlap to a significant degree and neither method subsumesthe other and they
could be considered complementary. For example, the MNR makes a predictiononly in the
1% to 25% of cases where FTR applies. In addition, in some data sets MNR makes only 2%
of the number of FTR predictions, while in others MNR makes 6 times more predictions.
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10. Related Work

Whole sub-fields have been developed to address the problem of integrative analysis, that we re-
view briefly. Statistical matching has been reviewed, presented, and compared against in Section 9.
Meta-Analysis focuses on the co-analysis of studies with similar sampling and experimental design
characteristics with the purpose of making inferences about a single association. Meta-Analysis
in Statistics (O’Rourke, 2007) combines the results of several studies to address a set of related
research hypotheses. While meta-analysis focuses on a pair-wise association of a variable with an
outcome of interest, a recent interesting extension addresses the problemof estimating the multi-
variate associations (for example, in the form of a regression model) with thetarget variable (Samsa
et al., 2005); such methods often appear under the names of meta-regression and univariate synthe-
sis (Zhou et al., 2009). The main idea of the latter is to assume a parametric formof the regression
model and estimate the sufficient statistics from several homogeneous (in terms of being conducted
on the same population, experimental conditions, sampling, etc.) studies that maynot measure all
variables (risk factors in this context). Both statistical matching and meta-analysis’s scope does not
extend to other sources of heterogeneity of the data sets, such as different experimental conditions.

In Computer Science and Machine Learning, the field of Transfer Learning (Pan and Yang,
2010) represents a main effort in integrative analysis. In Transfer Learning, successful search con-
trol strategies, model priors, and other characteristics transfer among different domains and/or tasks.
When the task (target) is the same but the domains (populations) are different, this type of Transfer
Learning is called Domain Adaptation. In this case, typically one would like to translate the esti-
mated conditional distributionPs(Y|X) used for prediction in a source distribution to a target distri-
bution Pt(Y|X) that may be different (e.g., has a different marginal class distribution). Given that
such methods are typically non-causal based, they cannot transfer to data sets where manipulations
have been performed (causal methods could transfer predictive modelsto manipulated distributions
as we show in Tsamardinos and Brown 2008, also shown in Maathuis et al. 2010). In addition, the
input space for the predictorsX has to be common. When the domain is the same (same distribu-
tion), but the tasks (target variables) are different, the type of Transfer Learning is calledMulti-Task
Learning. This type of learning attempts to simultaneously build models for several tasks inan
effort to use one for leveraging the performance on the others. Typically this is performed by using
a shared representation and learning common induced features. Again, these inferences are limited
as they can only combine studies under the same sampling and experimental conditions on the same
sets of variables.

Other fields may seem related in a first glance, but are orthogonal to the proposed research.
The field of Relational Learning (Getoor and Taskar, 2007) does not really address the problem of
learning from different data sets/studies over different samples, rather than a single data set (the one
stemming from implicitly propositionalizing the database) in the form of relational tables. Simi-
larly, the field of Distributed Learning (Cannataro et al., 2002) is restrictedto designing time and
communication-efficient analysis of what is essentially a single data set stored in different locations.

Other related work includes efforts to combine models (that may be developedfrom different
data sets) on the same system but on different scales (Gennari et al., 2008). Typically, such methods
involve mechanical models using differential equations and are not concerned with statistical mod-
els. In addition, these methods concern vertical integration at different temporal or spatial scales,
while INCA proposes a horizontal integration of studies.
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11. Discussion and Conclusions

We presented the basic idea and concept behind Integrative Causal Analysis (INCA), an approach
for co-analyzing data sets that are heterogeneous in several aspects, such as in terms of measured
variables and experimental conditions in the context of available prior knowledge. In this approach,
one attempts to identify one or all causal models that are consistent with all available data and pieces
of prior knowledge, and reason with them. Depending on the assumptions connecting causality with
estimable quantities, co-analysis may lead to more inferences than independent analysis of the data
sets.

In this paper, we focus on the problem of analyzing data sets over different variable sets. We
employ Maximal Ancestral Graphs (MAGs) to model independencies in the data distributions and
assume the latter are faithful to some MAG. As a proof-of-concept, we identify the simplest sce-
nario where the INCA idea provides testable predictions, and specifically itpredicts the presence
and strength of an unconditional dependence, and a chain-like causalstructure (entailing several
additional conditional dependencies). The idea is implemented in the following algorithms: the
Full-Testing Rule (FTR), the Minimal-Testing Rule (MTR) and FTR-S that additionally predicts
the strength of the dependence.

The empirical results show that FTR and MTR are able to accurately predictthe presence and
strength of unconditional dependencies, as well as all the conditional dependencies entailed by the
causal model. These predictions are better than chance and cannot be explained by the transitivity
of dependencies often holding in Nature. Against typical statistical matchingalgorithms, FTR-S’s
predictions are better correlated with sample estimates particularly when the number of common
variables is low.

Inducing causal models from observational data has been long debated(Pearl, 2000; Spirtes
et al., 2001; Pearl, 2009). In our experiments, we do not employ the causal semantics of the models
to predict the effect of manipulations but their ability to represent independencies, based on the
assumption of Faithfulness. The results support that graphical models and the assumption of Faith-
fulness can make testable predictions and can be exploited for novel statistical inferences. While this
is not a direct proof in favor of the causal semantics of the models, we do note that both Faithfulness
and MAGs have been inspired by theories of probabilistic causality.

The empirical results show that the proposed algorithms’ predictions are abundant, indicating
the potential of the approach. Extending the theory and algorithms for increased efficiency, statisti-
cal robustness, range of tasks, data types, types of prior knowledge, and settings seems a promising
direction that may allow the co-analysis of a large part of available studies and data sets.
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Appendix A. Supplementary Material

In this appendix we provide supplementary information for the data sets usedin the experiments
presented in this paper, as well as some additional results.
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A.1 Data Sets Preprocessing

Missing data imputation and discretization wereseparatelyperformed, when necessary, on each
sub-data-setD1, D2 andDt . Continuous variablesX were discretized in three intervals:

• ]− inf; mean(X)−std(X)]

• [mean(X)+std(X) ; inf[

• remaining values.

Missing data were substituted with mean values (continuous, ordinal variables) or encoded as a
distinct value (nominal variables). Our implementation of theG2 test requires that nominal variables
with n distinct values are econded as 0. . .n−1. When necessary we re-encoded nominal variables
for respecting this convention.

A.1.1 ACPJ

Preprocessing steps: 2765 variables were found constant in at least one sub-data-set and were con-
sequently eliminated from the analysis.
Download information: Aliferis et al. (2010) kindly provided us with the data.

A.1.2 BIBTEX

Preprocessing steps: No particular preprocessing steps.
Download information: The data set is freely available from the MULAN project website:
http://sourceforge.net/projects/mulan/ (checked on February 10, 2011).

A.1.3 C&C

Preprocessing steps: The first five attributes were eliminated because they do not carry relevant
information. Columns with more than 80% of missing values were removed.
Download information: The data set is freely available from the UCI Machine Learning repository:
http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime (checked on February 10, 2011).

A.1.4 COMPACTIV

Preprocessing steps: No particular preprocessing steps.
Download information: The data set is freely available from the KEEL software web site:
http://sci2s.ugr.es/keel/dataset.php?cod=49 (checked on February 10, 2011).

A.1.5 COVTYPE

Preprocessing steps: Attributes 1. . .10 were discretized.
Download information: The data set is freely available from the UCI Machine Learning repository:
http://archive.ics.uci.edu/ml/datasets/Covertype
(checked on February 10, 2011).
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A.1.6 DELICIOUS

Preprocessing steps: No particular preprocessing steps.

Download information: The data set is freely available from the MULAN project website:
http://sourceforge.net/projects/mulan/ (checked on February 10, 2011).

A.1.7 HIVA

Preprocessing steps: No particular preprocessing steps.

Download information: The data set is freely available from the web site:
http://www.causality.inf.ethz.ch/aldata/HIVA.html (checked on February 10, 2011).

A.1.8 INSURANCE-C

Preprocessing steps: All variables were considered as continuous; nominal variables (namely, at-
tributes 1 and 5) were eliminated.

Download information: The data set is freely available from the UCI Machine Learning repository:
http://archive.ics.uci.edu/ml/datasets/Insurance+Company+Benchmark+(COIL+2000)
(checked on February 10, 2011).

A.1.9 INSURANCE-N

Preprocessing steps: All variables were considered as nominal.

Download information: The data set is freely available from the UCI Machine Learning repository:
http://archive.ics.uci.edu/ml/datasets/Insurance+Company+Benchmark+(COIL+2000)
(checked on February 10, 2011).

A.1.10 P53

Preprocessing steps: Samples with missing values were eliminated from the analysis (180 rows in
total).

Download information: The data set is freely available from the UCI Machine Learning repository:
http://archive.ics.uci.edu/ml/datasets/p53+Mutants (checked on February 10, 2011).

A.1.11 READ

Preprocessing steps: Continuous variables (namely attributes 24, 25 and 26) were discretized.

Download information: The data set is freely available from the web site:
http://funapp.cs.bilkent.edu.tr/DataSets/ (checked on February 10, 2011).

A.1.12 WINE

Preprocessing steps: Two different data sets are available, respectively about red and white wines.
For our experimentation we used only the white wines data set (the one with moresamples).

Download information: The data set is freely available from the UCI Machine Learning repository:
http://archive.ics.uci.edu/ml/datasets/Wine+Quality (checked on February 10,2011).
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Data Set FTR0.05 MTR0.02 TR0.01

Covtype 59 810 1431
Read 0 9 260

Infant Mortality 10 427 1170
Compactiv 69 193 231

Gisette 330 12340 31648
hiva 366 16174 34977

Breast-Cancer 1371 68077 228610
Lymphoma 4473 51794 122857

Wine 3 44 66
Insurance-C 394 2212 3264
Insurance-N 95 1002 2527

p53 15181 95195 129372
Ovarian 41600 48376 52646
C&C 4168 5048 5050
ACPJ 0 190 15994
Bibtex 1 1858 16087

Delicious 524 6042 21351
Dexter 0 2 116
Nova 0 115 3280

Ohsumed 0 60 5227

Table 8: Number of unique predictions|UR
i | with “Bonferroni” correction for rules FTR, MTR, TR

and Random Guess

A.1.13 BREAST-CANCER, DEXTER, GISETTE, INFANT-MORTALITY, LYMPHOMA , NOVA ,
OHSUMED, OVARIAN

Preprocessing steps: No particular preprocessing steps.
Download information: Aliferis et al. (2010) kindly provided us with the data.

A.2 Supplementary Tables

Table 10 presents the performance of the algorithms as measured by the Mean Absolute Error
(MAE) of the predictions ˆrYZ and the sample-estimatesrYZ: 1/N ·∑ |r̂ i− r i |, whereN is the to-
tal number of predictions of an algorithm. This metric may favor algorithms that often predict zero
correlations on data sets where the number of dependencies is low. This is the case ofSMRG and
SMRQ on the ACPJ data set (see Figure 17a).SMRG andSMRQ achieve an MAE ofonly 0.01 and
0.02 respectively because they always predict values close to zero, while failing to detect any high
correlation. The corresponding correlations between predictions and sample-estimates on the same
data set are low: 0.05 and 0.00 respectively.

Table 11 presents the performance of the algorithms as measured by the Mean Relative Absolute
Error (MRAE) of the predictions ˆrYZ and the sample-estimatesrYZ: 1/N ·∑ |r̂ i− r i |/|r i |, whereN is
the total number of predictions of an algorithm. This metric penalizes more algorithms that attempt
predictions of small correlations (such asSMR) because even a small absolute error may lead to a
high relative error. For example, SMR on the Ovarian data set has a high MRAE (on the order of
109 despite a correlation between predictions and sample-estimates of 0.62 .
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Data Set FTR0.05 MTR0.02 Random Quadruple
Covtype 1.00 0.99 0.74♠

Read - - -
Infant Mortality 0.60 0.44 0.10∗∗

Compactiv 0.87 0.93∗ 0.83
Gisette 0.80 0.59♠ 0.11♠

hiva 0.71 0.47♠ 0.22♠

Breast-Cancer 0.55 0.31♠ 0.16♠

Lymphoma 0.46 0.34♠ 0.18♠

Wine 1.00 0.70 0.73
Insurance-C 0.86 0.65♠ 0.42♠

Insurance-N 0.57 0.50 0.17∗∗

p53 0.90 0.82♠ 0.49♠

Ovarian 0.61 0.62♠ 0.50♠

C&C 0.78 0.73♠ 0.66♠

ACPJ - 0.26 0.02
Bibtex 1.00 0.55 0.08∗∗

Delicious 0.99 0.81♠ 0.19♠

Dexter - 0.50 0.02
Nova - 0.07 0.03

Ohsumed - 0.14 0.02
SACCR 0.78 0.55∗ 0.30∗∗

SACCR 0.66 0.69♠ 0.12♠

Table 9: SACCR
i (t) at t = 0.05 with “Bonferroni” correction for rules FTR, MTR and Random

Quadruple. Marks *, **, and♠ denote a statistically significant difference from FTR at
the levels of 0.05, 0.01, and machine-epsilon respectively.

Data Sets SMRG SMRQ FTR-S
ACPJ 0.01± 0.01 0.02± 0.01 -

Breast-Cancer 0.11± 0.08 0.13± 0.10 0.18± 0.13
C&C 0.05± 0.03 0.19± 0.18 0.18± 0.13

Compactiv 0.04± 0.06 0.19± 0.20 0.14± 0.12
Insurance-C 0.03± 0.08 0.09± 0.14 0.14± 0.12
Lymphoma 0.12± 0.09 0.14± 0.11 0.17± 0.14
Ohsumed 0.01± 0.02 0.02± 0.02 -
Ovarian 0.15± 0.10 0.16± 0.11 0.09± 0.07
Wine 0.09± 0.10 0.15± 0.17 0.22± 0.14
p53 0.03± 0.05 0.07± 0.10 0.14± 0.12

Over data sets 0.06± 0.06 0.12± 0.11 0.16± 0.12
Over predictions 0.07± 0.08 0.07± 0.09 0.11± 0.10

Table 10: Mean Absolute Error (MAE) between the calibrated predictions ˆrYZ and sample-
estimatedrYZ (average value± standard deviation). SMRG refers to the Statistical Match-
ing Rule applied on all pairs of variables in the same group, considering the remaining 48
variables in the group as common variables. SMRQ is the Statistical Matching Rule ap-
plied on quadruples of variables randomly chosen from the same group. Finally, FTR-S
consists in the Full Testing Rule modified for estimating the strength of the dependency,
see Algorithm 4.
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Data Sets SMRG SMRQ FTR-S
ACPJ 13.17± 87.17 27.22± 141.50 -

Breast-Cancer 5.74± 624.51 2.79± 90.41 1.39± 4.51
C&C 1.52± 39.16 3.53± 44.98 1.30± 16.80

Compactiv 0.39± 1.43 1.79± 9.39 0.46± 0.53
Insurance-C 2.79± 11.04 2.10± 5.15 2.44± 18.04
Lymphoma 4.51± 182.18 3.66± 181.90 5.77± 145.88
Ohsumed 4.62± 30.53 7.72± 8.95 -
Ovarian 7.32×109 ± 1.68×1013 0.58± 5.51 0.20± 0.44
Wine 1.31± 2.24 1.78± 5.65 0.38± 0.06
p53 34.95± 7982.92 19.86± 4544.32 4.76± 290.58

Over data sets 7.32×109 ± 1.68×1013 7.10± 503.78 2.09± 59.61
Over predictions 2.79×109 ± 3.28×1012 14.36± 1320.98 0.87± 87.92

Table 11: Mean Relative Absolute Error (MRAE) between the calibrated predictions ˆrYZ and
sample-estimatedrYZ (average value± standard deviation) SMRG refers to the Statis-
tical Matching Rule applied on all pairs of variables in the same group, considering the
remaining 48 variables in the group as common variables. SMRQ is the Statistical Match-
ing Rule applied on quadruples of variables randomly chosen from the samegroup. Fi-
nally, FTR-S consists in the Full Testing Rule modified for estimating the strength of
the dependency, see Algorithm 4. For the Ovarian data set the SMRG rule provides pre-
dictions for cases with nearby-zero sample estimatedrYZ, and these predictions generate
extremely high MRAE values. Once excluded such cases, the SMRG MRAE on the
Ovarian data set is 0.54± 12.16, while the MRAE averaged over all data sets and over
all predictions is 6.95± 897.33 and 10.45± 2498.28, respectively.
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A.3 Supplementary Figures
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Figure 21: AccuraciesAcci for each data set, as well as the average accuracyAcc (each data set
weighs the same) and the pooled accuracyAcc (each prediction weighs the same). (a)
All rules are applied without any correction of significance threshold andall accuracies
are computed att = 0.05 (b) AccuraciesAcci calculated with the “Bonferroni 10−1”
significance threshold correction. (c) AccuraciesAcci calculated with the “Bonferroni
10−2” significance threshold correction.
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Figure 22: Accuracy at threshold t for data sets ACPJ-Etiology, Bibtex,Breast Cancer and Com-
munities and Crime, Compactiv and Covtype for different rules
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Figure 23: Accuracy at threshold t for data sets Delicious, Dexter, Gisette, Hiva, Infant Mortality
and Insurance-C for different rules
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Figure 24: Accuracy at threshold t for data sets Insurance-N, Lymphoma, Nova, Ohsumed, Ovarian,
Read and for different rules
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Figure 25: Accuracy at threshold t for data sets Wine, p53
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Figure 26: Structural accuracy at threshold t for data sets Delicious, Dexter, Gisette and Hiva for
different rules
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Figure 27: Structural accuracy at threshold t for data sets Infant Mortality, Insurance-C, Insurance-
N, Lymphoma, Nova and Ohsumed for different rules
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Figure 28: Structural accuracy at threshold t for data sets Ovarian, Read, Wine and p53 for different
rules
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