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Abstract

We present methods able to predict the presence and strefgtinditional and unconditional
dependencies (correlations) between two varialflesyd Z never jointly measuredn the same
samples, based on multiple data sets measuring a set of cowemi@ables. The algorithms are
specializations of prior work on learning causal structuirem overlapping variable sets. This
problem has also been addressed in the fieldtafistical matching The proposed methods are
applied to a wide range of domains and are shown to accunattetiict the presence of thousands
of dependencies. Compared against prototypical statisti@tching algorithms and within the
scope of our experiments, the proposed algorithms makeéctieets that are better correlated with
the sample estimates of the unknown parameters on testtiiégas particularly the case when the
number of commonly measured variables is low.

The enabling idea behind the methods is to induce one caaBalmodels that are simultane-
ously consistent with (fit) all available data sets and pkinowledge and reason with them. This
allows constraints stemming from causal assumptions, (Eausal Markov Condition, Faithful-
ness) to propagate. Several methods have been developtdrethis idea, for which we propose
the unifying name Integrative Causal Analysis (INCA). A troired example is presented demon-
strating the theoretical potential to develop more genmethods for co-analyzing heterogeneous
data sets. The computational experiments with the novehoakstprovide evidence that causally-
inspired assumptions such as Faithfulness often hold tmd degree of approximation in many
real systems and could be exploited for statistical infeeeilCode, scripts, and data are available at
www.mensxmachina.org.

Keywords: integrative causal analysis, causal discovery, Bayestmarks, maximal ancestral
graphs, structural equation models, causality, stagilsti@tching, data fusion

1. Introduction

In several domains it is often the case that several data sets (studiedenaagilable related to
a specific analysis question. Meta-analysis methods attempt to collect, evatdat®mbine the
results of several studies regarding a single hypothesis. Howewdiestunay be heterogeneous in
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several aspects, and thus not amenable to standard meta-analysisueshkay example, different
studies may be measuring different sets of variables or under diffexpetimental conditions.

One approach to allow the co-analysis of heterogeneous data sets imtéet @ prior knowl-
edge is to try to induce one or @ihusalmodels that are simultaneously consistent with all available
data sets and pieces of knowledge. Subsequently, one can reasoris\gt thf consistent models.
We have named this approalttiegrative Causal AnalysidNCA).

The use ofcausalmodels may allow additional inferences than what is possible with non-
causal models. This is because the former employ additional assumptiarecting the concept
of causality with observable and estimable quantities such as conditionatmiimpcies and depen-
dencies. These assumptions further constrain the space of consistiais rmod may lead to new
inferences. Two of the most common causal assumptions in the literatureca@atisal Markov
Condition and the Faithfulness Condition (Spirtes et al., 2001); intuitivelgetibenditions assume
that the observed dependencies and independencies in the data tor¢hdueausal structure of the
observed system and not due to accidental properties of the distribatiampters (Spirtes et al.,
2001). Another interpretation of these conditions is that the set of indeperes is stable to small
perturbations of the joint distribution (Pearl, 2000) of the data.

The idea of inducing causal models from several data sets has ali@aelyrad in several prior
works. Methods for inducing causal models from samples measured difféeent experimental
conditions are described in Cooper and Yoo (1999), Tian and PdlL)2Claassen and Heskes
(2010), Eberhardt (2008); Eberhardt et al. (2010) and Hyttinexh. €2011, 2010). Other methods
deal with the co-analysis of data sets defined over different variatde(Sdman et al., 2008;
Triantafillou et al., 2010; Tillman and Spirtes, 2011). In Tillman (2009) andnTardinos and
Borboudakis (2010) approaches that induce causal models frorsetatdefined over semantically
similar variables (e.g., a dichotomous variable for Smoking in one data setcamtiauous variable
for Cigarettes-Per-Day in a second) are explored. Methods foringgausal models in the context
of prior knowledge also exist (Angelopoulos and Cussens, 200&dBolakis et al., 2011; Meek,
1995; Werhli and Husmeier, 2007; O’Donnell et al., 2006). INCA agifying common theme was
first presented in Tsamardinos and Triantafillou (2009) where a mathehiatitalation is given
of the co-analysis of data sets that are heterogeneous in severalajdbe aspects. In Section
3, we present a contrived example demonstrating the theoretical poterdteétop such general
methods.

In this paper, we focus on the problem of analyzing data sets definedifferent variable
sets, as proof-of-concept of the main idea. We develop methods tHdtlmweeen as special cases
of general algorithms that have appeared for this problem (Tillman et &8; 2biantafillou et al.,
2010; Tillman and Spirtes, 2011). The methods are able to predict thenpeeaed strength of
conditional and unconditional dependencies (correlations) betweewaviablesY andZ never
jointly measuredbn the same samples, based on multiple data sets measuring a set of common
variables.

To evaluate the methods we simulate the above situation in a way that it becombletesta
single data set is partitioned to three data sets that do not share samplderéntget of variables
is excluded from each of the first two data sets, while the third is hold ouefting. Based on the
first two data sets the algorithms predict certain pairs of the excluded leswisiiiould be dependent.
These are then tested in the third test set containing all variables.

The proposed algorithms make numerous predictions that range in therdedealarge data
sets; the predictions are highly accurate, significantly more accurate tbdictppns made at ran-
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dom. The methods also successfully predict certain conditional deperddretween pairs of
variablesY,Z never measured together in a study. In addition, when linear causal nelatal
Gaussian error terms are assumed, the algorithms successfully predicetigth of the linear cor-
relation betweely andZ. The latter observation is an example where the INCA approach can give
rise to algorithms that provide quantitative inferences (strength of depeey, and are not limited

to qualitative inferences (e.g., presence of dependencies).

Inferring the correlation betweéhandZ in the above setting has also been addressestiais-
tical matchingalgorithms (D’Orazio et al., 2006), often found under the name of daterfus Eu-
rope. Statistical matching algorithms make predictions based on parametricudiistrith assump-
tions, instead of causally-inspired assumptions. We have implemented twaypioab statistical
matching algorithms and performed a comparative evaluation. Within the sEopeexperiments,
the proposed algorithms make predictions that are better correlated withntipdesastimates of
the unknown parameters on test data; this is particularly the case whenntitenaf commonly
measured variables is low. In addition, the proposed algorithms make predigticases where
some statistical matching procedures fail to do so and vice versa, andrbwa/o approaches can
be considered complementary in this respect.

There are several philosophical and practical implications of the aleswdts. First, the results
provide ample statistical evidence that some of the typical assumptions emplagesal modeling
hold abundantly (at least to a good level of approximation) in a wide rahdernains and lead to
accurate inferencesTo obtain the results the causal semantics are not employed pénageis,
we do not predict the effects of experiments and manipulations. In othefswone could view
the assumptions made by the causal models as constraints or priors obilggoldatributions
encountered in Nature without any reference to causal semantics.

Second, the results point to the utility and potential impact of the approachnalgsis pro-
vides novel inferences as a norm, not only in contrived toy problemsarer situations. Future
INCA-based algorithms that are able to handle all sorts of heterogedatasets that vary in terms
of experimental conditions, study design and sampling methodology (e.g-coagol vs. i.i.d.
sampling, cross-sectional vs. temporal measurements) could potentiallagrenable the auto-
mated large-scale integrative analysis of a large part of available datenamdedge to construct
causal models.

The rest of this document is organized as follows: Section 2 briefly presmckground on
causal modeling with Maximal Ancestral Graphs. Section 3 discussesdpe aad vision of the
INCA approach. Section 4 presents the example scenario employed irallaBons. Section 5
formalizes the problem of co-analysis of data sets measuring differantitjigs. Sections 6 and 7
present the algorithms and their comparative evaluation for predictinghditmmal and conditional
dependencies respectively, between variables not jointly measuretibrsg extends the theory to
devise an algorithm that can also predict the strength of the depend&ecton 9 presents the
statistical matching theory and comparative evaluation. The paper coschkitfeSection 10 and
11 discussing the related work and the paper in general.

2. Modeling Causality with Maximal Ancestral Graphs

Maximal Ancestral Graphs (MAGS) is a type of graphical model thatesgmts causal relations
among a set of measured (observed) variabless well as probabilistic properties, such as con-
ditional independencies (independence modéhe probabilistic properties of MAGs can be de-
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veloped without any reference to their causal semantiegertheless, we also briefly discuss their
causal interpretation.

MAGs can be viewed as a generalization of Causal Bayesian Netwohiescdusal semantics
of an edgeA — B imply thatA is probabilistically causing, that is, an (appropriate) manipulation
of A results in a change of the distribution Bf EdgesA « B imply that A andB are associated
but neitherA cause® nor vice-versa. Under certain conditions, the independencies implieceby th
model are given by a graphical criterion call@eseparation, defined below. A desired property of
MAGs is that they are closed under marginalization: the marginal of a MAG i&& MMAGs can
also represent the presence of selection bias, but this is out of the ettpe present paper. We
present the key theory of MAGS, introduced in Richardson and SpR@G&2].

A path in a graphg = (V,E) is a sequence of distinct verticéé, Vi, ...,V,) all of them inO
s.tfor 0<i < n,V, andVi;1 are adjacent irG. A path fromVj to V;, is directedif for 0 <i < n, V,
is a parenVi ;. X is called arancestorof Y andY adescendemnf X if X =Y or there is a directed
path fromX to Y in G. Ang(X) is used to denote the set of ancestors of néde G. A directed
cyclein G occurs wherX — Y € E andY € Ang(X). An almost directed cyclen G occurs when
X <Y e EandY € Ang(X).

Definition 1 (Mixed and Ancestral Graph) A graph is mixed if all of its edges are either directed
or bi-directed. A mixed graph iancestralif the graph does not contain any directed or almost
directed cycles.

Given a pathp = (Vp, V1,...,Vh), nodeVi, i € 1,2,... nis acollider on p if both edges incident tg;
have an arrowhead towartls We also say that triplévi_1,V;,Vi11) forms a collider. Otherwis¥

is called anon-collideron p. The criterion ofm-separation leads to a graphical way of determining
the probabilistic properties stemming from the causal semantics of the graph:

Definition 2 (m-connection,m-separation) In a mixed graphg = (E, V), a path p between A and
B is m-connecting relative to (condition to) a set of vertic&, Z C V \ {A,B} if

1. Every non-collider on p is not a memberzf
2. Every collider on the path is an ancestor of some memb2r of

A and B are said to be rseparated by Z if there is no m-connecting path between A and B relative to
Z. Otherwise, we say they are-tonnected givenZ. We denote the m-separation of A and B given
Z as MSepA; B|Z). Non-empty set& andB are m-separated given (symb. MSefA;B|2)) if for
every Ac A and every B= B A and B are m-separated givén (A, B andZ are disjoint). We also
define the set of all m-separations &s(G):

In(G) ={(X,Y|Z),s.t. MSepX;Y|Z) andX,Y,Z C O}.

We also define the set of all conditional independencies LL Y|Z, whereX, Y andZ are
disjoint sets of variables, in the joint distribution Bfof O:

J(P) = {(X,Y|Z]),st.,X 1L Y|Z andX,Y,Z C O}.

The setJ () is also called théndependence modef . Them-separation criterion is meant
to connect the graph with the observed independencies in the distributien tnedfollowing as-
sumption:
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Definition 3 (Faithfulness) We call a distribution? over a set of variable® faithful to a graph
G, and vice versa, iff:

](T)::jh(G)

A graph is faithful iff there exists a distribution faithful to it. When the above egudidds, we say
the Faithfulness Condition holds for the graph and the distribution.

When the faithfulness condition holds, everyseparation present i corresponds to a condi-
tional independence ifi(?) and vice-versa. The following definition describes a subset of ances-
tral graphs in which every missing edge (non-adjacency) correspndt least one conditional
independence:

Definition 4 (Maximal Ancestral Graph, MAG) An ancestral graphg is called maximalif for
every pair of non-adjacent verticéX,Y), there is a (possibly empty) sé&t X,Y ¢ Z such that
X.Y[Z) € 5(G).

Every ancestral graph can be transformed into a unique equivale@ Wé., with the same
independence model) with the possible addition of bi-directed edges. Vigedbie marginal of a
distribution? over a set of variableg \ L L as®|,, and the independence model stemming from
the marginalized distribution a& ?)| , that is,

J(PIL) =9(P)L={(X,Y|Z) € J(P) : (XUYUZ)NL = 0}.
Equivalently, we define the set ofseparations o restricted on the marginal variables as:
In(G)[L={(X,Y|Z) € In(G) : (XUYUZ)NL =0}.

A simple graphical transformation for a MAG faithful to a distribution? with independence
model 7(©P) exists that provides a uniqgue MAG|._ that represents the causal ancestral relations
and the independence modglP)[_ after marginalizing out variables in. Formally,

Definition 5 (Marginalized Graph G[.) Graph G[_ has vertex seV \ L, and edges defined as
follows: If X,Y ares.t. VZ CV\ (LU{X,Y}), (X,Y|Z) ¢ 7(G) and

X g Ang(Y),Y ¢ Ang(X) XY
XeAng(Y),Y ¢ Ang(X) then X =Y in GJ.
X ¢ Ang(Y),Y € Ang(X) XY

We will call G[. the marginalized graplg; overL.

The following result has been proved in Richardson and Spirtes (2002)

Theorem 6 If G is a MAG ovelV, andL C V, thenG|. is also a MAG and
Im(G) L= Im(G[L)-
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Figure 1: A PAG (left) and the MAGs of the respective equivalence cllbMAGs represent the
same independence model over varial§ésy,Z,W}.

If G is faithful to a distribution? overV, then the above theorem implies thdtP)[ = 7(G)[L=
J(G[L); in other words the graplg[. constructed by the above process faithfully represents the
marginal independence modg| (P).

Different MAGs encode different causal information, but may shaeestime independence
models and thus are statistically indistinguishable based on these models aicn®1/8Gs define
a Markov equivalence class based on the concepts of unshielded icatigidiscriminating path: A
triple of nodeg(X,Y,W) is calledunshieldedf X is adjacent t&, Y is adjacent t&W, andX is not
adjacent tdV. A pathp= (X,...,W,V,Y) is called adiscriminatingpath forV if X is not adjacent
toY, and every vertex betweetiandY is a collider onp and an ancestor &f. The following result
has been proved in Spirtes and Richardson (1996):

Proposition 7 Two MAGs over the same vertex set are Markov equivalent if and only if:
1. They share the same edges.
2. They share the same unshielded colliders.

3. If a path p is discriminating for a vertex V in both graphs, V is a collider ongéih on one
graph if and only if it is a collider on the path on the other.

A Partial Ancestral Graphs a graph containing (up to) three kinds of endpoints: arrowtiegd
tail (—), and circle(o), and represents a MAG Markov equivalence class in the following mattner
has the same adjacencies as any member of the equivalence class,rgmibesercle endpoint is
invariant in any member of the equivalence class. Circle endpoints pomrdgo uncertainties; the
definitions of paths are extended with the prefdssibleo denote that there is a configuration of the
uncertainties in the path rendering the path ancestnaloonnecting. For example ¥Xo —oYo —
W, (X,Y,W) is a possible ancestral path from X to W, but not a possible ancestrapathV to X.
An example PAG, and some of the MAGs in the respective equivalencearashown in Figure
1. FCI (Spirtes et al., 2001; Zhang, 2008) is a sound algorithm whichutsigpPAG over a set of
variablesV when given access to an independence model\dver

The MAG formulation is a generalization of the graph of a (Causal) Baydééiwork (CBN)
intended to explicitly model and reason with latent variables and particulatdytlaonfounding
variables. The absence of such confounding variables is (oftealigiieally) assumed when learn-
ing Causal Bayesian Networks, named @eusal Sufficiencgssumption. The presence of latent
confounders can be modeled in MAGs with bidirectional edges. The grBpiCBN is a MAG
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without bidirectional edges. Similarly, the Faithfulness Condition we defin®1&Gs generalizes
the Faithfulness for CBNs. This work is inspired by the following scendhiere exists an unknown
causal mechanism over variablés represented by a faithful CB{¥, G). Based on the theory pre-
sented in this section (Theorem 6), each marginal distributiéhover a subsed =V \ L is faithful
to the MAG G| described in definition 5.

3. Scope and Motivation of Integrative Causal Analysis

A general objective is to develop algorithms that are able to co-analyzesetstahat are hetero-
geneous in various aspects, including data sets defined over diffengalbles sets, experimental
conditions, sampling methodologies (e.g., observational vs. case-csatnpling) and others. In
addition, cross-sectional data sets could be eventually co-analyzed miploital data sets measur-
ing either time-series data or repeated measurements data. Finally, the inéegnatiysis should
also include prior knowledge about the data and their semantics. Some afkb@tahe integrative
analysis can be the identification of the causal structure of the data irgen@chanism, the selec-
tion of the next most promising experiment, the construction of predictive Imatie prediction of
the effect of manipulations, or the selection of the manipulation that bestvashtaedesired effect.

The work in this paper however, focuses on providing a first step tsvinis direction. It
addresses the problem of learning the structure of the data generataggpfrom data sets defined
over different variable sets. In addition, it focuses on providing podaconcept experiments of the
main INCA idea on the simplest cases and comparing against current tltesndinally, it gives
methods that predict the strength of dependence betWeadZ, which can be seen as constructing
a simple predictive model without having access to the joint distribution of ttae da

We now make concrete some of these ideas by presenting a motivating fictittegsative
analysis scenario:

e Study 1(i.i.d., observational sampling, variablasB,C, D): A scientist is studying the “rela-
tion” between contraceptives and breast cancer. In a random safiypderen, he measures
variables{A,B,C,D} corresponding to quantities Suffers frarhrombosis (Yes/Npfontra-
ceptives (Yes/NpTLoncentration of Protein C in the Blood (numericaldDevelops Breast
Cancer by 60 Years Old (Yes/Ndhe researcher then develops predictive models for Breast
Cancer and, given that he fin@8sassociated witlD (among other associations), announces
taking contraceptives as a risk-factor for developing Breast Cancer

e Study 2 (randomized controlled trial, variablésB,C, D): Another scientist checks whether
(variableC) Protein C(causally) protects against cancer. In a randomized controlled ex-
periment she randomly assigns women into two groups and measures the aiaibies
{A/B,C,D}. The first group is injected with high levels of the protein in their blood, while
the latter is injected with enzymes that dissolve only the specific protein, gfgctemov-
ing it from the blood. IfC andD are negatively correlated in her data, the scientist concludes
that the protein is causally protecting against the development of breasrcdNotice that,
data from Study 2 cannot be merged with Study 1 because the joint distribofitims data
may be different. For example, assuming tGas caused by the diseaBe(e.g., the disease
changes the concentration of the protein in the blood) @erill be highly associated with
D in Study 1; in contrast, in Study 2 where the levelCoéxclusively depend on the group
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Variables A B C D E F
Study Thrombosis| Contraceptives Protein C | Cancer | ProteinY | ProteinZ
(Yes/No) (Yes/No) (numerical)| (Yes/No) | (numerical)| (numerical)
1 Yes No 105 Yes - -
No Yes 53 No - -
(observational
data) No Yes 0.01 No - -
2 No No 0(Control) No - -
Yes No O(Control) Yes - -
(experimental
data) Yes Yes 5.0(Treat.) Yes - -
3 - - - Yes 0.03 9.3
(different
variables) - - - No 3.4 22.2
4
(prior B causally affects A: B-» A
knowledge)

Figure 2:

Tabular depiction of the different studies (data sets). Studyrhisdom sample aiming at
predictingD and identifying risk factors. Study 2 is a Randomized Controlled Trial were
the levels ofC for a subject are randomly decided and enforced by the experimenter,
aiming at identifying a causal relation with cancer. Forced values aretetbhy bold

font. Study 3 is also an observational study abbubut measuring different variables
than Study 1. Prior knowledge provides a piece of causal knowledgbduvaw data are

not available. Typically, such studies are analyzed independently bfather.

assignmeniC andD are not associated. Thus, statistical inferences made based on apalyzin
Study 2 in isolation probably result in lower statistical power.

e Study 3 (i.i.d., observational sampling, variabl€sE,F): A biologist studies the relation
of a couple of proteins in the blood, represented with variaBlesxd F and their relation
with breast cancer. She measures in a random sample of women vafiBbes=}. As
with analyzing Study 1, she develops predictive models for Breast Cépased orE and
F instead) and checks whether the two proteins are risk factors. Thiseaot be pulled
together with Studies 1 or 2 because they measure different variables.

e Prior Knowledge: A doctor establishes a causal relation between the uS®ofraceptives
(variableB) and the development @thrombosiqvariableA), that is, “B causes A” denoted
asB --» Al Unfortunately, the raw data are not publicly available.

The three studies and prior knowledge are depicted Figure 2. Notice #ating the empty
cells as missing values is meaningless given that it is impossible for an algoritbstirtate the
joint distribution between variables never measured together without addiiseumptions (see
Rubin 1974 for more details).

1. We use a double arrow-» to denote a causal relation without reference to the context of otheblesiaThis is
to avoid confusion with the use of a single arrewin most causal models (e.g., Causal Bayesian Networks) that
denotes airectcausal relation (or inducing path, see Richardson and Spirtes 200&)ewirect causality is defined
in the context of the rest of the variables in the model.
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QO QO
0 ©

(e) (f)

Figure 3: (a) Assumed unknown causal structure. (b) Structure éudbyg Study 1 alone. (c)
Structure induced by Study 2 alone. (d) Structure induced by INCA dafi€&ul and 2.
New inference:C is not causindg but they are associated. (e) Structure induced after
incorporating knowledgeB cause®A”. New inference:B causeA andD. (f) Structure
induced by Study 3 alone. (g) Structure induced by all studies and kdgedeDashed
edges denote edges whose both existence and absence is consistémt dita. New
inference:F andC (two proteins) are not causing each other nor do they have a latent
confounder, even though we never measure them together in a study.

We now show informally the reasoning for an integrative causal analysieeabove studies
and prior knowledge and compare against independent analysis tdithess Figure 3(a) shows the
presumed true, unknown, causal structure. Figure 3(b-c) showmtlsal model induced (asymp-
totically) by an independent analysis of the data of Study 1 and Study 2atdsgly using existing
algorithms, such as FCI (Spirtes et al., 2001; Zhang, 2008) and assdaiagenerated by the
true model. TheR variable denotes the randomization procedure that assigns patients tol contr
and treatment groups. Notice that it removes any causal linkGrgmce the value o€ only de-
pends on the result of the randomization. Figure 3(d) shows the causdel that can be inferred
by co-analyzing both studies together. By INCA of Study 1 and 2 it is nodlitiadally inferred
thatB andC are correlated bu€ does not causB: If C was causindd, we would have found the
variables dependent in Study 2 (the randomization procedure wouldmeteliminated the causal
link C — B). If we also incorporate prior knowledge th@ tause#\” we obtain the graph in Figure
3(e): “B caused\” implies that there has to be at least one directed (causal) pathBrom. Thus,
the only possible such paBv — C — A becomes directeB — C — A. In other words using prior
knowledge we now additionally infer thaB'is causindgC”: the association found in Study 1 cannot
be totally explained by the presence of a latent variable. Analyzing indepéy Study 3 we obtain
the graph of Figure 3(f). In contrast INCA of Study 3 with the rest dadand knowledge results in
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Figure 3(g). This type of graph is called the Pairwise Causal Graphn{afilou et al., 2010) and
is presented in detail in Section 5. The dashed edges denote statistical guisttability about
the existence of the edge, that is, there exist a consistent causal nitidallwata and knowledge
having the edge, and one without the edge. Among other interesting ioés,emotice thaff and

C (two proteins) are not causing each other nor do they have a lateribonder, even though we
never measure them togethdiis is because F — C, orC « F, or there exists latetd such that

F < H — C it would also imply an association betweErandD. These two are found independent
however, in Study 3.

4. Running Example

To illustrate the main ideas and concepts, as well as provide a proofogpbvalidation in real
data, we have identified the smallest and simplest scenario that we could thitlatomakes a
testable prediction. Specifically, we identify a special case that prediate@mnditional depen-
denceY )L Z|0, as well as certain conditional dependencdiegl Z|S, for someS # 0, between
two variables not measured in the same samples, based on two data setsasnengé, and one
measuringZ.

Example 1 We assume two i.i.d data sefy and D, are provided on variable®; = {X,Y,W}

and O, = {X,Z,W} respectively. We assume that the independence models of the dataesets ar
= {(XWJ]Y)} and %> = {{(X,W]|Z)}, in other words the one and only independenceDinis

X 1L WJY, and inD, is X 1L W|Z. Based on the input data it is possible to induce with existing
causal analysis algorithms, such as FCI the following PAGs from each eéataspectively:

Pr:Xo—oYo—oW

and
Pr:Xo—o0Zo—oW.

These are also shown graphically in Figure 4. The problem is to identify oaét MAGs defined
onO = {X,Y,Z,W} consistent with the independence modgland J,, or equivalently, both PAGs
P, and P.

These two PAGs represent all the sound inferences possible abaitubtire of the data, when
analyzing the data sets in isolation and independently of each other. Weavekop the theory for
their causal co-analysis.

5. Integrative Causal Analysis of Data Sets with Overlappig Variable Sets

In this section, we address the problem of integratively analyzing multiplesédsadefined over
different variable sets. Co-analyzing these data sets is meaningfuy fhssrapproach) only when
these variable sets overlap; otherwise, there are no additional inésrémde made unless other
information connects the two data sets (e.g., the presence of prior kn@emeagecting some
variables).

We assume that we are givihdata set{ﬂ).}iK:l each with samples identically and indepen-
dently distributed defined over corresponding subsets of varidhles—rom these data we can
estimate the independence modejﬁs}i’il using statistical tests of conditional independenge.
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@H@@ X LWy
@H@@ X 1L Wz

Figure 4: Definition of the co-analysis problem of Example 1: two obsematini.d. data sets
defined on variable®; = {X,Y,W} andO, = {X,Z,W} are used to identify the inde-
pendence modelg = {(X,W|Y)} and % = {(X,W|Z)}. These models are represented
by PAGs?; and P, shown in the figure. The problem is to identify one or all MAGs
defined orO = {X,Y,Z,W} consistent with bott?, and?..

major assumption in the theory and algorithms presented is that the indepeadnodels can be
identified without any statistical error§&ection 6 discusses how we address this issue when experi-
menting with real data sets in the presence of statistical errors. We denoigidneof all variables

asO = u{iloi and also defin®; = O\ O;. We now define the problem below:

Definition 8 (Find Consistent MAG) Assume the distribution & is faithful. Given independence
models{ 7(0;)}K ;, 0; C 0,i =1...K, induce a MAGM s.t., for all i

I M[5)=I(R)
where Ris the distribution 0f0;.

In other words, we are looking for a model (graph) such that when we consider its marginal
graphs over each variable €8¢, each one faithfully represents the observed independence model
of that data set. We can reformulate the problem in graph-theoretic terms? be the PAG
representing the Markov equivalence class of all MAGs consistent wathnilependence model

. B can be constructed with a sound and complete algorithm such as Fast l6grsace (FCI)
(Spirtes et al., 2001). We can thus recast the problem above as idepafjiiAG M such that,

M[g,€ B, foralli

(abusing the notation to denote withboth the PAG and the equivalence class).

The first algorithm to solve the above problem is ION (Tillman et al., 2008)¢chvidentifies
the set of PAGs (defined ové) of all consistent MAGs. Subsequently, in Triantafillou et al.
(2010), we proposed the algorithm Find Consistent MAG (FCM) that edsvhe problem to a
satisfiability problem for improved computational efficiency. FCM returns oansistent MAG
with all input PAGs. Similar ideas have been developed to learn joint strufitume marginal
structures in decomposable graphs such as undirected graphs (Kibeend008) and Bayesian
Networks (Kim, 2010). Going back to Example 1, Figure 5 shows all 14istarg MAGs with the
input PAGs in the scenario. The FCM algorithm arbitrarily returns one ahths the solution to
the problem (of course, the algorithm can be easily modified to return atlead). Figure 6 (right)
shows the output of ION on the same problem.
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OO0 O-O-O-@ QO

O-O-0-0 OO0 QFO D QT B

D000 O-O-0-0 QO D QTHO B
O-O--E) QOO ®

Figure 5: Solution of the co-analysis problem of Example 1: The 14 dephMt&@s are all and
only the consistent MAGs with the PAGs shown in Figure 4. In all these MA®s th
independencieX LL W|Y andX LL W|Z hold (and only them). Notice that, even though
the edgexX — Y exists in?; (Example 1), some of the consistent MAGs (the ones on the
right of the figure) do not contain this edgadjacencies in the input PAGs do not simply
transfer to the solution MAGS he FCM algorithm would arbitrarily output one of these
MAGs as the solution of the problem of Example 1.

5.1 Representing the Set of Consistent MAGs with Pairwise Causal Grédys

The set of consistent MAGs to a set of PAGs is defined as follows:

Definition 9 (Set of Consistent MAGs) We call the set of all MAG&1 over variableO consistent
with the set of PAGP = {13.}{\‘:1 over corresponding variable se@;, whereO = U;O; as the Set
of Consistent MAGs witR denoted wittM (P).

Unfortunately,M (P) cannot in general be represented with a single PAG: the PAG formalism rep
resents a set of equivalent MA@dhen learning from a single data set and its independence model
In Example 1 though, notice that the MAGsh(P) in Figure 5 have a different skeleton (i.e., set
of edges ignoring the edge-arrows), so they cannot be repredgntesingle PAG.

The PAG formalism allows the set afrseparations that entail the-separations of all MAGs
in the class to be read off its graph in polynomial time. Unfortunately, thereriemtly no known
compact representation bf(P) such that then-separations that hold for all members of the set can
be easily identified (i.e., in polynomial time).

We have introduced (Triantafillou et al., 2010) a new type of graph calkeBahwise Causal
Graph(PCG) that graphically represemq P). However, PCG do not always allow threseparations
of each member MAG to be easily identified. A PCG focuses on represengngpisible causal
pair-wise relations among each pair of variabteandyY in O.

Definition 10 (Pairwise Causal Graph) We consider the MAGs M (P) consistent with the set of
PAGsP = {&}N , defined ove{O;}N ;. A Pairwise Causal Grapl! is a partially oriented mixed
graph over J; O; with two kinds of edges dashed | and solid (—) and three kinds of endpoints(
-, o) with the following properties:
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T D)

Figure 6: (left) Pairwise Causal Graph (PCG) representing the seinsistent MAGs of Example
1. This PCG is the output of the cSAT+ algorithm on the problem of Exampldt&rma-
tively, the set of consistent MAGs can be represented with two PAGg)righis is the
output of the ION algorithm on the same problem.

1. X — Y inuiff X is adjacentto Y in every consistemf € M (P).
2. X-- Y inUiff X is adjacentto Y in at least one but not all consistafitc M (P).
3. X andY are not adjacent if¥ iff they are not adjacent in any consistemt € M (P).

4. The right end-point of edge X Y is oriented as>, -, oro iff X isinto Y in all, none, or at
least one (but not all) consistent MA® € M (P) where X and Y are adjacent. Similarly, for
the left end-point and for solid edges-Xv .

Solid edges, missing edges, as well as end-points marked:witirid “—" show invariant charac-
teristics that hold in all consistent MAGs. Dash edges ariefiarked end-points represent uncer-
tainty of the presence of the edge and the type of the end-point.

The PCG of Example 1 is shown in Figure 6 (left). For computing the PCG amemgloy
the cSAT+ algorithm (Triantafillou et al., 2010). There are several ptintetice. The invariant
graph features are the solid edge— Z and the missing edge betwe¥randW,; these are shared
by all consistent MAGs. The remaining edges are dashed showing tlyadri@resent in at least
one consistent MAG. All end-points are marked witlf Showing that any type of orientation is
possible for each of them. The graph fails to graphically represenircedastraints, for example,
that there is no MAG that simultaneously contains edgesY andX — Z; in general, the presence
of an edge (or a particular end-point) in a consistent MAG may entail thenabsof some other
edge (or end-point). It also fails to depict threseparatiorX LL W|Z or the fact that any solution
has a chain-like structure.

Nevertheless, the graph still conveys valuable informatiba:solid edge X — Y along with the
Faithfulness condition entails that Y and Z are associated given any suttbet ather variables,
even thoughY and Z are never measured together in any input dafehéets a testable prediction
on which we base the computational experiments in Section 6. AlternativelsetheP) could be
represented withwo PAGs shown in 6 (right), as the set of MAGs consistent with either one them.
These PAGs form the output of ION on this problem.
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6. Predicting the Presence of Unconditional Dependencies

We now discuss how to implement the identification of the scenario in Example kdicpthe
presence of dependencies.

6.1 Predictions of Dependencies

Recall that, in Example 1 we assume we are given two data sets on vafabtegX,Y,W} and

02 = {X,Z,W}. We then determine, if possible, whether their independence models peztes
tively 91 = {(X,W[Y)} and %> = {(X,W|Z)} by a series of unconditional and conditional tests of
independence. If this is the case, we predict an association bevardZ. The details of de-
termining the independence model are important. Let us denotp-tladue of an independence
test with null hypothesiX L1 Y|Z aspx,,yz. In the algorithms that follow, we make statistical
decisions with the following rules:

e If pxi1y)z < aconcludeX /L Y|Z (reject the null hypothesis).
e If px.1yjz > B concludeX L1 Y|Z (accept the null hypothesis).

e Otherwise, forgo making a decision.

Algorithm 1: Predict Dependency: Full-Testing RUETR)

Input: Data Set3); andD, on variableg X,Y,W} and{X,Z,W}, respectively
1 if in Dy we conclude

Il determ ne whether % = {(X,W|Y)}

X LLWIY , XZLY[0,Y LLW[O, X LLWIO, X LYW, YL WX
and in D, we conclude

Il determ ne whether % ={(X,W|Z)}

w N

4 XLUW|Z, XANZI0,Z/AL WO, XL W|0, X/ ZIW ,ZJ/ WX

5 then

6 PredictY /L Z|0

7 Predict eitherXo—oYo—o0Zo—oW)or(Xo—oZo—oYo—oW) holds
8 else

9 Do not make a prediction

10 end

The details are shown in Algorithm 1 named Full-Testing Rule, or FTR fortsiWe note a
couple of observations. First, the algorithm is opportunistic. It doesnmalyze a prediction when-
ever possible, but only for the case presented in Example 1. In additimakigs a prediction only
when thep-values of the tests are either too high or too low to relatively safely acegpgrdiencies
and independencies. Second, to accept an independence modegrfgie, that/; = {(X,W|Y)}
all possible conditional and unconditional tests among the variables dogrmped. If any of these
tests is inconclusive or contradictory fl, the latter is not accepted and no prediction is made.
In the terminology of Spirtes et al. (2001), we test fatetectable failure of faithfulnessSimilar
ideas have also been devised in Ramsey et al. (2006) and Spanok (28B6rule characteristic
is important in case one would like to generalize these ideas to larger gnaglses of variables:

1110



TOWARDS INTEGRATIVE CAUSAL ANALYSIS

performing all possible tests becomes quickly prohibitive, and the probabflisyatistical errors
increases.

If however, one assumes the Faithfulness Condition holds among var{gbl¥¢sZ, W}, then
it is not necessary to perform all such tests to determine the indepenaededs. Algorithms for
inducing graphical models from data, such as FCI and PC (Spirtes e0@l) are based on this
observation to gain computational efficiency. The Minimal-Testing Rule, MarHort, performs
only a minimal number of tests that together with Faithfulness may entaiytkat (X,W|Y)} and
I ={(X,W|Z)} and lead to a prediction. The details are shown in Algorithm 2.

Algorithm 2: Predict Dependency Minimal-Testing RUMTR)

Input: Data SetsD; andD, on variables{X,Y,W} and{X,Z,W}, respectively
1 if in Dy we conclude

Il determ ne whether % ={(X,WJ|Y)}

X LLWIJY , XLLY[0,Y YL W|0
and in D, we conclude

Il determnine whether % ={(X,W|Z)}

w N

4 X1 W|Z,X/NZ0,Z)/ W0

5 then

6 PredictY /L Z|0

7 Predict eitherXo—oYo—o0Zo—oW)or (Xo—oZo—oY o—oW) holds
8 else

9 Do not make a prediction

10 end

6.2 Heuristic Predictions of Dependencies Based on Transitivity

Is it really necessary to develop and employ the theory presented to nmatkeradictions? Could
there be other simpler and intuitive rules that are as predictive, or modéctive? For example,
a common heuristic inference people are sometimes willing to make is the transitheityfry is
correlated withX andX is correlated withz, then predict thaY is also correlated witl. The FTR
and MTR rules defined also check these dependenXigs:Y in D; andX VI Zin Dy, so one could
object that any success of the rules could be attributed to the transitivipggycoften holding in
Nature. We implement the Transitivity Rule (TR), shown in Algorithm 3 to compaainst the
INCA-based FTR and MTR rules. Obviously, the Transitivity Rule is notbin generaf, but on
the other hand, FTR and MTR are also based on the assumption of Faifisfutech may as well
be unrealistic. The verdict will be determined by experimentation.

6.3 Empirical Evaluation of Predicting Unconditional Dependencies

We have applied and evaluated the three rules against each-other as raalllom predictions (prior
probability of a pair being dependent) on real data, in a way that becosteblie Specifically,
given a data seD we randomly partition its samples to three data sets of equal ®izeD», and
7x. The latter is hold out for testing purposes. In the first two data sets, wéfidguadruples of

2. The Transitivity Rule should be sound when the marginal of the thréghles is faithful to &Markov Random Field
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Algorithm 3: Predict Dependency Transitivity RUl€R)

Input: Data Sete»; and, on variablesY, X} and{X,Z}, respectively
1ifin Dp: Y YL X|0and inDs,: X VL Z|0 then
2 PredictY )L Z|0

3 else
4 Do not make a prediction
5 end
Name Reference #istances # vars| Group Size| Varstype| Scient. domain
Covtype Blackard and Dean (1999) | 581012 55 55 N/O Agricultural
Read Guvenir and Uysal (2000) 681 26 26 N/C/O Business
Infant-mortality Mani and Cooper (2004) 5337 83 83 N Clinical study
Compactiv Alcala-Fdez et al. (2009) 8192 22 22 C Computer science
Gisette Guyon et al. (2006a) 7000 5000 50 C Digit recognition
Hiva Guyon et al. (2006b) 4229 1617 50 N Drug discovering
Breast-Cancer Wang (2005) 286 17816 50 C Gene expression
Lymphoma Rosenwald et al. (2002) 237 7399 50 C Gene expression
Wine Cortez et al. (2009) 4898 12 12 C Industrial
Insurance-C Elkan (2001) 9000 84 84 N/O Insurance
Insurance-N Elkan (2001) 9000 86 86 N/O Insurance
p53 Danziger et al. (2009) 16772 | 5408 50 C Protein activity
Ovarian Conrads (2004) 216 2190 50 C Proteomics
C&C Frank and Asuncion (2010)| 1994 128 128 C Social science
ACPJ Aphinyanaphongs et al. (2006) 15779 | 28228 50 C Text mining
Bibtex Tsoumakas et al. (2010) 7395 1995 50 N Text mining
Delicious Tsoumakas et al. (2010) 16105 1483 50 N Text mining
Dexter Guyon et al. (2006a) 600 11035 50 N Text mining
Nova Guyon et al. (2006b) 1929 12709 50 N Text mining
Ohsumed Joachims (2002) 5000 14373 50 C Text mining

Table 1. Data Sets included in empirical evaluation of Section 6.3. N- NominaD@inal, C -
Continuous.

variables{X,Y, Z,W} for which the Full-Testing and the Minimal-Testing Rules apply. Notice that,
the two rules perform tests among variab{eésY,W} in 2, and among variableSX,Z,W} in Dy;

the rules do not access the joint distribution gZY Similarly, for the Transitivity Rule we identify
triplets {X,Y,Z} where the rule applies. Subsequently, we measure the predictiverparfce of
the rules. In more detail:

e Data Sets We selected data sets in an attempt to cover a wide range of sample-sizes, di-
mensionality (number of variables), types of variables, domains, and tékksdecision for
inclusion depended on availability of the data, ease of parsing and imporényg Mo data
set was a posteriori removed out of the study, once selettdalle 1 assembles the list of data
sets and their characteristics before preprocessing. Some minimal ggsgirg steps were
applied to several data sets that are described in Appendix A.

e Tests of IndependencEor discrete variables we have used @fetest (a type of likelihood
ratio test) with an adjustment for the degrees-of-freedom used in Tsaroaret al. (2006)
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and presented in detail in Tsamardinos and Borboudakis (2010). Rtingous variables
we have used a test based on the Fisher z-transform of the partielatiom as described in
Spirtes et al. (2001). The two tests employed are typical in the graphicaligditerature.
In some cases ordinal variables were treated as continuous, while irs ttieecontinuous
variables were discretized (see Appendix A) so that every possibldruple {X,Y,Z,W}
was either treated as all continuous variables or all discrete and one widhests above
could be applied.

e Significance Threshold3 here are two threshold parameters: lavélelow which we accept
dependence and lev@habove which we accept independence; the TR rule only employs the
parameter. For FTR these thresholds were always sgtitg = 0.05 andBrtr = 0.3 without
an effort to optimize them. Some minimal anecdotal experimentation with FTR shibaed
the performance of the algorithm is relative insensitive to the valueseg andrrr and
the algorithm works without fine-tuning. Notice that FTR requires 10 dépecies and 2
independencies to be identified, while MTR requires 4 dependencies iadeé@ndencies,
and TR requires 2 dependencies to be found. Thus, FTR is more catigerthan MTR
and TR for the same values afand3. The Bonferroni correction for MTR dictates that
OMTR= OFTR X 16 = 0.02, while for TR we getitr = apTr x & = 0.01 (TR however, does
not require any independencies present so this adjustment may natsenaive enough).
We run MTR with threshold valuesyTr € {0.05,0.02,0.002 0.0002}, that is equal to the
threshold of FTR, with the Bonferroni adjustment, and stricter than Booieby one and
two orders of magnitude. THéyTr parameter is always set to0 In a similar fashion for
TR, we sebitr € {0.05,0.01,0.001 0.0001}.

¢ Identifying Quadruplesin low-dimensional data sets (number of variables less than 150), we
check the rules on all quadruples of variables. This is time-prohibitiveekiewyfor the larger
data sets. In such cases, we randomly permute the order of variablparitidn them into
groups of 50 and consider quadruples only within these groups. Themncmamed “Group
Size” in Table 1 notes the actual sizes of the variable groups used.

e Measuring PerformanceThe ground truth for the presence of a predicted correlation is not
known. We thus seek to statistically evaluate the predictions. Specificallgatdr predicted
pair of variablesX andY, we perform a test of independence in the corresponding hold-out
test setZx and store it9-valuepy | yjp- The lower thep-value the higher the probability the
pair is truly correlated. We consider as “accurate” a prediction wipegalue is less than a
threshold and we report the accuracy of each rule.

Definition 11 (Prediction Accuracy) We denote with Fand UR the multiset and set respectively
of p-values of the predictions of rule R applied on data set i. The p-valteesomputed on the
hold-out test set. The accuracy of the rule on data set i at thresholddfised as:

Acqi(t) =#{p<=t,pe M{}/IMT.
We also define thaverage accuraayer all data sets (each data set is weighted the same)

Aed(t) = o > Aty
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and thepooled accuracgver the union of predictions (each prediction is weighted the same)

Acci(t) =#{p<=ti=1...20pe M7}/ |MF.

The reasorMR is defined as a multiset stems from the fact that a dependéntyZ|0 may be
predicted multiple times if a rule applies to several quadruplsY,Z, W} or triplets {X,Y,Z}
(for the Transitivity Rule). The number of predictions of each Rilge., M) is shown in Table 2,
while Table 8 in Appendix A reportd&JR|, the number of pairX — Y predicted correlated. In some
cases (e.g., data sets Read and ACPJ) the Full-Testing Rule does notpakedictions. Overall
however, the rules typically make hundreds or even thousands of poadic

Data Set FTRoo5 | MTRg.02 TRo.01
Covtype 222 33277 54392
Read 0 9 4713
Infant Mortality 22 2038 3736
Compactiv 135 679 3950
Gisette 423 35824 | 134213
hiva 554 65967 | 151582
Breast-Cancer| 1833 141643 | 470212
Lymphoma 7712 188216 | 394572
Wine 4 73 431
Insurance-C 1839 30569 40173
Insurance-N 226 18270 47115
p53 46647 | 1645476| 1995354
Ovarian 539165| 1604131| 2015133
Cc&C 99241 | 416934 | 301218
ACPJ 0 219 16574
Bibtex 1 3982 25948
Delicious 856 32803 | 105776
Dexter 0 2 117
Nova 0 124 3473
Ohsumed 0 64 5358

Table 2: Number of prediction#/R| with “Bonferroni” correction for rules FTR, MTR and TR.

Overall Performance The accuracies at= 0.05, Acg(t), Acdt), and Acdt) for the three
rules as well as the one achieved by guessing at random are showruie FFig The Bonferroni
adjusted thresholds for MTR and TR were usagdyr = 0.05,aptr = 0.02 argr = 0.01 . Similar
figures for all sets of thresholds are shown in Appendix A, Section Ax&r@ll predictions, the
Full-Testing Rule achieves accuracy 96%, consistently higher thaniggegsrandom, the MTR
and the TR. The same results are also depicted in tabular form in Table B adhditionally, the
statistical significance is noted. The null hypothesis is Awaf ' ?(0.05) < Acd¥(0.05), for Rbeing
MTR or TR. The one-tail Fisher's exact test (Fisher, 1922) is emplaylkdn computationally
feasible, otherwise the Pearsghtest (Pearson, 1900) is used instead. FTR is typically performing
statistically significantly better than all other rules.
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Figure 7: Accuracie\cg for each data set, as well as the average accubacy(each data set
weighs the same) and the pooled accurAcg (each prediction weighs the same). All
accuracies are computed as thresheld0.05. FTR’s accuracy is always above 80% and
always higher than MTR, TR, and random guess.

Sensitivity to then parameter The results are not particularly sensitive to the significance
thresholds used fan for MTR and TR. Figures 9 (a-b) show the average accufsmyand the
pooled accuracyccas a function of thal phaparameter used: no correction, Bonferroni correc-
tion, and stricter than Bonferroni by one and two orders of magnitude.atburacy of MTR and
TR improves as they become more conservative but never reacheseti®y TR even for the
stricter thresholds adiytr = 0.0002 andotr = 0.0001.

Sensitivity to t The results are also not sensitive to the particular significance tewsd to
define accuracy. Figure 8 grapAsdi(t) overt = [0,0.05 for two typical data sets as well as
Acc(t) andAcqt). The situation is similar and consistent across all data sets considereth, whic
are shown in Appendix A. The lines of the Full Testing Rule rise sharpljchvimdicates that the
p-values of its predictions are concentrated close to zero.

Explaining the difference of FTR and MTRsymptotically and when the data distribution is
faithful to a MAG, the FTR and the MTR rules are both sound (100% ateuréiowever, when
the distribution is not faithful, the performance difference could beconge Ibecause FTR tests
for faithfulness violations as much as possible in an effort to avoid falsdigifons. This may
explain the large differences in accuracies observed in the InfantahMygr Gisette, Hiva, Breast-
Cancer, and Lymphoma data sets. When the distribution is faithful, but thees@srimite, we
expect some but small differences. For example when MTR falsely detesrifiatX /L Y|0 due to
a false positive test, the FTR rule still has a chance to avoid an incoreditfion by additionally
testingX /L Y|W. To support this theoretical analysis we perform experiments with simulated d
where the network structure is known. Specifically, we employ the struofuhe ALARM (Bein-
lich et al., 1989), INSURANCE (Binder et al., 1997) and HAILFINDERKfamson et al., 1996)
Bayesian Networks. We sample 20 continuous and 20 discrete pairs detay andD» from
distributions faithful to the network structure using different randomlyseimgparameterizations for
the continuous case, and the original network parameters for the disassteWe do the same for
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Data Set FTRy05 | MTRgo2 | TRoo1 | Random Guess
Covtype 1.00 1.00 | 0.91* 0.83*
Read - 1.00 0.97 0.82
Infant Mortality | 0.95 | 0.64* | 0.36* 0.114
Compactiv 1.00 0.98 0.96* 0.93*
Gisette 0.95 0.71% | 0.59* 0.1
hiva 0.94 0.61% | 0.42% 0.30*
Breast-Cancer| 0.84 0.49% | 0.3 0.20%
Lymphoma 0.82 0.57 | 0.3% 0.2
Wine 1.00 0.85 0.81 0.80
Insurance-C | 0.97 0.7%% | 0.66* 0.37
Insurance-N 0.97 0.94 0.86* 0.3
p53 0.97 0.87 | 0.71% 0.5
Ovarian 0.99 0.98% | 0.93* 0.914
Cc&C 0.96 0.88% | 0.80* 0.77*
ACPJ - 0.26 0.07 0.02
Bibtex 1.00 0.68 0.31 0.12*
Delicious 1.00 0.8 | 0.68* 0.23#
Dexter - 0.50 0.05 0.02
Nova - 0.08 0.06 0.03
Ohsumed - 0.14 0.05 0.02
ACCR 0.96 0.69* | 0.55* 0.39+*
ACCR 0.98 0.88% | 0.74 0.16

Table 3; ACCf (t) att = 0.05 with “Bonferroni” correction for rules FTR, MTR, TR and Random
Guess. Marks *, **, andd denote a statistically significant difference from FTR at the
levels of 0.05, 0.01, and machine-epsilon respectively.

sample sizes 100, 500, 1000. Subsequently, we apply the FTR and M@Rwith artr = 0.05
andaytr = 0.02 (Bonferroni adjusted) on each pairdf andD, and all possible quadruples of
variables. The true accuracy is not computed on a test daf $ett on the known graph instead
by checking whetheY andZ ared-connected giveiX andW. The mean true accuracies over all
samplings are reported in Figure 10. The difference in performanceediaithful, simulated data
is usually below 5%. In contrast, the largest difference in performandbereal data sets is over
35% (Breast-Cancer), while the difference of the pooled accuracie8%s Thus, violations of
faithfulness seem to be the most probable explanation for the large diffeie accuracy on the
real data.

6.4 Summary, Interpretation, and Conclusions

We now comment and interpret the results of this section:

¢ Notice that even if all predicted pairs are truly correlated, the accuragynotareach 100%
due to the presence of Type Il errors (false negatiwet)e test set
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Figure 8: AccuracieAcdi(t) as a function of threshold for two typical data sets along with

ACCR(t) and ACCR(t). The remaining data sets are plot in Appendix A Section A.3.
Predicted dependencies hgwealues concentrated close to zero. The performance dif-
ferences are insensitive to the threshoilal the performance definition.

e The FTR rule performs the test for the X-W association independently in dhidn sets.
Given that the data in our experiments come from exactly the same distributgrcahld be
pooled together to perform a single test; alternatively, if this is not apiatepthe p-values
of the tests could be combined to produce a single p-value (Tillman, 20081ardaos and
Borboudakis, 2010).

e The results show thahe Full-Testing Rule accurately predicts the presence of dependencies
statistically significantly better than random predictions, across all dataregeedless of
the type of data or the idiosyncracies of a domain. The rule is succesgfeh&expression
data, mass-spectra data measuring proteins, clinical data, images aisd dhigeaccuracy of
predictions is robustly always above 0.80 and over all predictions it is th@@lifference with
random predictions is of course more striking in data sets where the peyeesf correlations
(prior probability) is relatively small, as there is more room for improvement.

e The Full-Testing Rule is noticeably more accurate than the Minimal-Testing &ugeto test-
ing whether the Faithfulness Condition holds in the induced PAGs. The issaoiportant
considering that most constraint-based algorithms assume the Faithfuloedi$i@h to in-
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duce modelsbhut do not check whether the induced model is Faithfllese results indicate
that when the latter is not the case, the model (and its predictions) may redigige. On the
other hand, the FTR rule is also noticeably more conservative: the nurhpezdictions it
makes is significantly lower than the one made by MTR. In some data sets (engpaCiiv,
Insurance-N, and Ovarian) by using the MTR vs. the FTR one sagificamall percentage
of accuracy (less than 3% in these cases) to gain one order of magnitudegradictions.
However, caution should be exercised because in certain data sets MMri85% less
accurate than FTR.

e The Full-Testing Rule is more accurate than the Transitivity Rdlaus, the performance
of the Full-Testing Rule cannot be attributed to simply performing a supestdée tests
performed by the Transitivity Rule.

e Predictions are the norm case and not occur in contrived or rare casdgs Even though
there were few or no predictions for a couple of data sets, there aralypitindreds or
thousands of predictions for each data set. This is the case despitettheafage are only
looking for a special-case structure and the search for these stutlireited within groups
of 50 variables for the larger data sets. The results are consistent withéken Triantafillou
et al. (2010), where larger structures were induced from simulated data

e FTR makes almost no predictions in the text dhthis actually makes sense and is probably
evidence for the validity of the method: it is semantically hard to interpret theepee of a
word “causing” another word to be presént.

e FTR is an opportunistic algorithm that sacrifices completeness to increaseay as well
as improve computational efficiency and scalability. General algorithmsd@nealyzing
data over overlapping variable sets, such as ION (Tillman et al., 2008),(T@man and
Spirtes, 2011) and cSAT (Triantafillou et al., 2010) could presumably mmake predictions,
and more general types of predictions (e.g., also predict independgn¢iewever, their
computational and learning performance on a wide range of domains amdlinignsional
data sets is still an open question and an interesting future direction to pursue

7. Predicting the Presence of Conditional Dependencies

The FTR and the MTR not only predict the presence of the dependeficy |0 given two data sets
onO1 = {X,Y,W} andO; = {X,Z,W}; the rules also predict that eith€o — oY o—oZo—oW or
Xo—o0Zo—oYo—oW isthe model that generated both data sets (see Algorithms 1 and 2). Both
of these models also imply the following dependencies:

Y U Z|X,

3. The only predictions in text data are in Bibtex (1 prediction) and in Delic{886), which are the only text data sets
that are actually not purely bag-of-words data sets but include vasiabteesponding to tags. 66% of the predictions
made in Delicious involves tag variables, as well as the single prediction inBibte

4. However, causality between words is still conceivable in our opinienidihg to include a word in a document may
change a latent variable corresponding to a mental state of the authadn, iwkurn causes her to include some other
word.
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Figure 9: Average accuradycg0.05) (left) and pooled accuracicg0.05) (right) for each rule
as a function ofa thresholds used:aytr € {0.05,0.02,0.0020.0002 and atgr €
{0.05,0.01,0.001,0.0001} corresponding to no correction, Bonferroni correction, and
stricter than Bonferroni by one and two orders of magnitude resp8ctivé€R'’s perfor-
mance is higher even when MTR and TR become quite conservative.

Y YL Z|W,
Y /L Z|{X,W}.
In other words, the rules predict that the dependency betWeenlZ is not mediated by eithet or
W inclusively. To test whether all these predictions hold simultaneously atttbldt we compute:

*

p _SQT)?\)/(V} Pviizs

and test whethep* <t. The above dependencies are all the dependencies that are implied by
the model but not tested by the FTR given that it has no access to the jditihudion of Y and

Z. Note that we forgo providing a value fgr* when any of the conditional dependencies can
not be calculated, that is, when there are not enough samples to achigyet@ugh power, see
Tsamardinos and Borboudakis (2010). The accuracy of the predidoorall dependencies in the
model, named Structural Accuracy because it scores all the depéeslanplied by the structure

of model, is defined in a similar fashion #xc (Definition 11) but based op* instead ofp:

SAc§(t) =#{p* <=t,pe M{}/|MF].

The SAccfor each FTR, MTR (with “Bonferroni” correction) and randomly selectgiadruples is
shown in Figure 7.1; the remaining data sets are shown in Appendix A. Tseodine for the TR

as it concerns triplets of variables and makes no predictions about coadliiependencies. Both
FTR and MTR have maximurp-valuesp* concentrated around zero. The curves do not rise as
sharp as those in Figure 8 since thievalues are always larger than the correspongipng zjo. We

also calculate the accuracytat 0.05 for all data sets (see Table 9 in Appendix A Section A.2).
The results closely resemble the ones reported in Table 3, with FTR alwgyerforming random
guess. FTR outperforms MTR on most data sets (and h8AGE TR~ SACC™ however, over

all predictions their performance is quite similar.
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Figure 10: Difference betweehCC TR andACCMTRfor discrete (left) and continuous (right) sim-
ulated data sets. Results calculated using the “Bonferroni” correctionHT.Bg,0s and
MTRp.02). The difference between FTR and MTR is larger than 5% only in two cases
with low sample size (ALARM and HAILFINDER networks); however, thefelience
steeply decreases as the sample size increases. No prediction was meiddLfo
FINDER with discrete data and 100 samples. The difference between®@RER on
faithful data is relatively small.

7.1 Summary, Interpretation, and Conclusions

The results show that both the FTR and MTR rules correctly predict all ¢éiperttiencies (con-
ditional and unconditional) implied by the models involving the two variables nezsured to-
gether. These results provide evidence that these rules often cordecttify the data generating
structure.

8. Predicting the Strength of Dependencies

In this section, we present and evaluate ideas that turn the qualitativietimesl of FTR to quanti-
tative predictions. Specifically, for Example 1 we shioaw to predict the strength of dependence
in addition to its existence. In addition to the Faithfulness Condition, we assumwihiea the
FTR applies on quadrupleX,Y,Z, W}, all dependencies are linear with independent and normally
distributed error terms. However, the results of these section could pobsilglgneralized to more
relaxed settings, for example, when some of the error terms are nosi@a(Shimizu et al., 2006,
2011). When the Full-Testing Rule applies, we can safely assume the wotustris one of the
MAGs shown in Figure 5. Given linear relationships among the variablesawéreat these MAGs
as linear Path Diagrams (Richardson and Spirtes, 2002). We also aconsid®alized versions of
the variables with zero mean and standard deviation of one. Let us coonsidef the possible
MAGs:

My : X &Yy Bz, 7 Py
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Figure 11: Structural AccuracieSBAc&(t) as a function of thresholt for two typical data sets
along withSACC (t) andSACC(t). The remaining data sets are plot in Appendix A
Section A.2. FTR outperforms MTR on most of the data sets, andwm(t) >
W@ATR(U. However, since MTR ouperforms FTR on few data sets with a large

number of predictions and SACC'TR(t) is slightly better tharBACC TR(t) fort <=
0.05.

wherepxy is theregression coefficierdf regressing onY, that is,
X =pxyY+€

ande is the error term. Since we have standardized the variables, and sindeotreeegjuation is
simple linear regressiopxy coincides with the Pearson lineaorrelationbetween variableX and
Y. Thus, there is no need to distinguish the fwblow notice that in all MAGs in Figure 5 there
are no colliders. Thus, as M; above, all regressions are simple regressions and all standardized
regression coefficients coincide with their respective correlation caeifs, and so, for the rest of
the section we will not differentiate between the two.

The rules of path analysis (Wright, 1934) dictate that the correlation battmeevariables, for
example,pxy equals the sum of the contribution of evatyconnecting path (conditioned on the

5. If Y was a collider then it would have been regressed on multiple variables; inabépxy should be the partial
regression coefficient which in general does not coincide with the pestigelation coefficient, even for standardized
variables.
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empty set); the contribution of each path is the product of the correlatioits edges. FoM; the
above rule implies (among others):

Pxz = Pxy X Pyz
because fronX to Z there is a single path going throuyh Recall that the 14 consistent MAGs are
represented by the following PAGs:
Pi:Xo—0oYo—0Zo—oW
and
Po: Xo—0Zo—0oYo—oW.

All MAGs consistent withP; entail the same constraints on the coefficients using path analysis;
similarly all MAGs consistent witl,.% Specifically, ifP; is the true structure we get the constraints

Pxz = PxY X Pyz, (1)

Pyw = Pyz X Pzw- (2)
On the other hand, ¥ is the true structure we obtain:

Pxy = Pxz X PYz, (3)

Pzw = PYZz X PYw- (4)

We use, f, and r to denote actual, predicted, and sample correlations, respégtividne quantities
that we observe are theample correlation coefficientslenoted byr, for the pairs of variables
measured together. Thus, we can compute the quantitiesxz, ryw, rzw from the data and we
would like to predictpyz without available data. From Equations 1, 2, 3, 4 above we obtain four
possible estimators:

. r . . T .
If Py is true 1Y, ~ rxiz from Equation 1 and?’, ~ rY—W from Equation 2 (5)
XY Zw

o r . r .
if Pyis true 1S, ~ rx—Y from Equation 3 andyy, ~ rz—w from Equation 4 (6)
Xz Yw

where the superscripts correspond to the equation used to producsithate. Notice that, each
possible PAG provides two equations to pregigt, that is, the parameter is overidentified. Also,
the following important relation holds between the estimators:
1
o1 2
I’YZ: ? al’ldl’YZ: T
vz vz

This observation allows us to distinguish between PRGandP;: if 13,72, € [~1,+1], then their
reciprocals$,, i¢, ¢ [-1,+1] and so, they are not valid estimates for a correlation. Thus, we can
infer thatPy is the true structure and employ oy, %, for estimation. Otherwise, the reverse
holdsr$,, 7%, € [-1,+1], P, is the true structure and onhy} ,, 7%, should be used for estimation.

6. In general, the consistent MAGs may disagree on the unknownlatiores. In this case, these parameters may not
identifiable. However, one could analyze all possible MAGs to providentiewn the unidentifiable quantities in a
similar fashion to Balke and Pearl (1997) and Maathuis et al. (2009).
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Due to sampling errors it is plausible that we obtain conflicting informatign: €' [—1,+1] but
2, ¢ [-1,+1] (and sord, ¢ [-1,+1] andr¥, € [-1,+1]). In that case, we forgo making any
predictions.

The ramifications of the above analysis are important. In the case wheegiables are jointly
measured, the distribution is Faithful, the relations are linear and the emas teHow Gaussian
distributions, the set of statistically indistinguishable causal graphs is detsroompletely by
the independence model and not by the parameterization of the distributiovevir, in the case
of incomplete data, where some variable sets are not jointly observed ttbiisgistinguishable
models also depends on the parameters of the distribution, even for litetgsnme and Gaussian
error terms. In our scenario, by analyzing the estimable parameters Viigrtdaar narrow down the
set of equivalent consistent MAGs.

At this point in our analysis, we are left with two valid estimators, eithef2or F3,74. All
estimators are computed as ratios. We report the mean of the two valid estinsatioespredicted
fvz for a more robust estimation. The above procedure is formalized in Algodthmamed FTR-S.

Algorithm 4 : Predict Dependency Strengfi(R-S)
Input: Data setgD; andD, on variable{X,Y,W} and{X,Z,W}, respectively

1 if Full-Testing Rule®y, D,) does not applyhen return;
2 In D1 computerxy, ryw;
3 In Dy, computerxz, rzw;
rl Ixz.
qr é—rXY,
5 124 :%v;
73 Ixy .
6 r4 < {xz’
i 1ZW -
7 r T w
g if 1,2 € [-1,1] then
9 PredictXo—oYo—0Zo—oW,

Predict correlatiomyy = 3(f*+2);
end
else iff3,7* € [-1,1] then
PredictXo —o0Zo—oYo—oW,;
Predict correlatiomyz = %(f3 +74);
end
else
Make no prediction
end

e L I o =
© N o 0 b W N P O

8.1 Empirical Evaluation of the Predictions of Correlation Strength

As in Section 6, we partition each data set with continuous variables to tht@setaD,, D», and
a test seth;. We then apply Algorithm 4 and predict the strength of correlatigifér various pairs
of variables; we compare the predictions with the sample correlatigas estimated irfx. The
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results for one representative data set (Lymphoma) are shown in Hig(ag there is an apparent
trend to overestimate the absolute value of the sample correlation.

There are several possible explanations for the bias of the method,imghkidlations of nor-
mality, linearity, faithfulness, and even the known bias in the estimation of samplgation coef-
ficients (Zimmerman et al., 2003) that are used for making the predictions imithligo4. In order
to pinpoint the culprit, we generated data where all assumptions hold fromatlelM; shown in
the beginning of this section, where we set the correlatmispy z, pzw and the noise terms are
independently and normally distributed. We used the entire spectrum ofveasitirelation coef-
ficients for all three correlations to examine how the bias varies as a furgftibese correlations.
We generated 1000 data sets of different sample sizes of 50, 70 arshdfdes. We then used
Equation 1 to estimate z in each experimenfThis set of experiments revealed no significant bias
for any of the experimental setting@sults are not shown for brevity).

Estimated vs. Sample Correlations

Estimated vs. Sample Correlations

o
¥

R —0.5

Sample Correlation ry z
|
o
(@23
¥
N
g
+ %5: H
A
b
¥
b Fr
e

=

—0.5 0 0.5 —0.5 0 0.5

Predicted Correlation 7y z Predicted Correlation 7y z

(a) Lymphoma Data Set (b) Simulated Data where FTR Rule Applies

Figure 12: (a) Predictedyz) vs samplerfyz) correlation for the Lymphoma data set. There is an
obvious trend to over-estimate the correlation in absolute value. (b) Simuksatsr
from modelM; when pxz andpyw are lower than 0.4 and observed correlatians
found significan{FTR applies). The FTR constraint that the observed correlations are
significant reproduces a similar behavior in the simulated data, explaininggthe b

We next tested whether the bias is an artifact of the filtering by the FTR atlLoféhe FTR-
S algorithm. We re-run this procedure, but this time we kept only the predictedlations that
passed the FTR. By comparing Figure 12(a) produced on real datd,2¢h) on simulated data,
we observe a similar behavior, indicating that FTR filtering seems a reasagddaation for the
bias.

An explanation of this phenomenon now follows. Suppbke X XYy Pz, 7 P2\ s the
data generating MAG. We expect thgt, = {;—5 (the equalityryz = %vv also holds but we ignore it
to simplify the discussion). When sample correlations amofiy,Z, W} pass the FTR, this means
that bothryz andrxy are above a cut-off threshold, as given by the Fisher test. For exafopée,

data set with 70 samples, two variables are considered depepde®)(f their sample correlation
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is more that 0.2391 (in absolute value), whereas for a data set with 50 sartijgethreshold is
0.2852.

Filtering with the Fisher test introduces a bias in the estimatian ®he bias of the estimation
without filtering, ry is By, = E[ry — p] = Tu — p, while the bias of the estimation with filtering
is Br, = E[rf —p] =Tt —p, where|r¢| > t. The threshold, as mentioned above, is the threshold
determined by the Fisher test and depends on sample Sike.lower the sample size, the higher
the threshold t, and so the higher the introduced bigs B1 addition, the lower thép| the higher
the bias B, .

Figure 13 illustrates these points pictorially. In this example, the distribution o$dheple
correlationr of two variables for sample size 70 when the true correlatiomds{0.2,0.4}. For
unfiltered estimations, the biasig, is 0.0052 and -0.0011 fgy equal to 0.2 and 0.4 respectively,
whereas for filtered estimations the corresponding veBeare 0.1187 and 0.0127.

Going back to the prediction,z = {)X(—i notice that the numerator is always lower (in absolute
value) than the denominator. Therefore, when filtered, it is, on avenage overestimated than the
denominator. This implies that, on average, the fraction leads to overestimagiaggblute value
of pyz. The lower the values dfxz| and|rxy|, the larger we expect this bias to be. The situation
is similar for all fractions involved in Equations 5 and 6. This hypothesis ifimoed in the data
as illustrated in Figure 14 where the predictions are grouped by the mealutabglues of the
denominators used in their computation.

ampl lati s =04
Sample Correlations when p = 0.2 Sample Correlations when p =0

Ty = 0.3989 BB p-value<0.05

Tu = 0.2052 BE p-value<0.05 B8 valuem0.05
p-value>0.

BE p-value>0.05 77 = 0.4127

77 = 0.3187

—0.2 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0.8
(a) (b)

Figure 13: Histograms of the sample correlations fop(a)0.2 and (b)p = 0.4 for sample size 70.
Red bars correspond to cases where the Fisher test returns a p>val0é, whereas
blue bars correspond to p-values0.05. The dashed lines indicate the mean sample
correlation for filtered and unfiltered correlations. The lowerghehe more overesti-
mated the sample correlations that pass the Fisher test, therefore the défbetween
the two means is larger.

The bias should be a function of sample size, the absolute value of théatioms employed
for its computation, and the significance thresholds of the FTR rule. Howaell theoretical
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treatment of the bias is out of the scope of the paper. In the experimenfsltbatwe remove the
linear trend to over-estimatedlibrate) by regressing the sample correlatiogs on the predicted
fvz: the final calibrated prediction sx fyz+i. For each data set the intercépind slopes of the
regression are estimated by training on the remaining data sets (leavetarsetiout validation).
The effect of this calibration is shown in Figure 15. To avoid repetition, #taitkd set of results is
presented in the comparative evaluation to statistical matching in Section 9.

mean absolute denominator in [0.1,0.2] mean absolute denominator in [0.2,0.3]

sample correlation
sample correlation

ne I A
-1 -08 -06 —-04 -02 O 02 04 06 08 1 -1 -08 -06 —-04 -02 O 02 04 06 08 1
predicted correlation predicted correlation
mean absolute denominator in [0.6,0.7] mean absolute denominator in [0.8,0.9]

1
0.8
0.6
0.4
g
£ 02
2
5 0
2
g 02
g
—0.4
—0.6
—0.8
/' 71 4
-1 -08 -06 —04 —02 0 02 04 06 08 1 -1 -08 -06 —04 -02 0 02 04 06 08 1
predicted correlation predicted correlation

Figure 14: Predicted vs sample correlations over all data sets, groypled mean absolute values
of the denominators used in their computation: predictions computed basedyen la
correlations have reduced bias. Red regions correspond to highstydareas.

8.2 Summary, Interpretation, and Conclusions

We now comment and interpret the results of this section:
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Predicted vs Sample Correlation Predicted vs Sample Correlation
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Figure 15: Predicted vs sample correlations on all data sets (a) befidréy)eafter calibration.

e FTR coupled with parametric assumptions can be used to predict the strédgipemdency
(correlation), providing quantitative predictions. This is equivalent twstricting a predic-
tion model for variables not jointly observed.

e In the case of incomplete data, where some variable sets are not jointlwetstre set of
indistinguishable models also depends on the parameters of the distribugonfoevinear
relations and Gaussian error terms. In contrast, in the case whereialllgarare jointly
measured and the distribution is Faithful the set of statistically indistinguishabéaktgraphs
is completely determined by the independence model (again, also assumirrgylined
Gaussian error terms).

¢ In our simple scenarigyiven the correct structurepath analysis of the induced MAGs pro-
vides easy solutions for predicting the strength of dependence. Hoveeatching for the
correct MAG modeldy applying the FTR incurs bias on the predictions that should be taken
into account.

9. Comparison Against Statistical Matching

Statistical Matching (D’Orazio et al., 2006) is a integrative analysis praeetbr data sets de-
fined over overlapping variable sets. Statistical matching addresses twéasismamed theicro
approachandthe macro approachThe micro approach aims to impute the missing values and con-
struct a complete synthetic file, whereas the macro approach aims to idemtiéycd@mracteristics

of the joint probability distribution of the variables not jointly observed. Naityr construction of

the synthetic data set premises the estimation of the parameters of the joint titstribMe focus

on the macro approach as it presents an alternative to the FTR and MTR.

The problem set up is as follows: variabMés) X are measured in data g8, while variables
ZUX are measured in data 8. ThusX are the commonly measured variables. The goal is to
estimate the variances and covarianceX ofY UZ. The problem cannot be solved without addi-
tional assumptions (Rubin, 1974; D’Orazio et al., 2006). Dependingatur@ of the assumptions,
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statistical matching is able to produce either intervals or point-estimates fonthgartces between
Y andZ. The most typical assumption in the literature able to produce point estimatesGstthe
ditional Independence Assumptio¥: LL Z|X. This is an arbitrary assumption that has been long
debated. Alternatively, one can limit the shape of the distribution by imposirgric forms,
such as multivariate normality. The latter type of assumptions, for the typidabdisons, do not
lead to identifiable estimations, but instead provide bounds on the missindgacmes. Other ap-
proaches do exist that require prior knowledge, for example, Van(a§08) assumes knowledge
of structural zeros and Cudeck (2000) of the structure of latentrigcsach approaches however,
are not directly comparable with FTR and MTR on this task. In this section igé\bpresent the
main theory and techniques used in statistical matching, and then attempt to empogcapare
against FTR.

9.1 Statistical Matching Based on the Conditional Independence Asmption

The most common assumption that allows identification of the unknown paranseteexondi-
tional independence assumptiofCIA): Y LI Z|X. The conditional independence assumption is
usually paired with some parametric assumption. The most common assumptioa stiafhe of a
continuous distribution of the variables involved in the model is multivariate nldgmia this case,
the parameters of the jpd are the mean vector and the covariance matrixovBEnicce Matrix for
XUY UZ can be written as:

2xx 2XY 2xz
2= |2Zyx 2vy 2vz
27x  2zv  2zz
where the unknown parametersz. The CIA assumption imposes that the covariance matrix of
Y andZ givenX is null, thus,
Zvz = ZyxIxx  Zxz.

In case we have standardized variables,anrd {Y} andZ = {Z}, the covariance matrix becomes

Pxx Pxy Pxz
Z=|pyx 1 opyz
pzx pzv 1

and so
Pvz = PyxPxx Pxz-

This formula can be used to produce a prediction for the correlation coefficient of the not
commonly observed variabléé and Z. Recall that, we assume we are given a dataZyebn
variablesX UY and a data seb, on X UZ. The parametergxy andpxz can be estimated fror®;
and?D, respectively, while the parametgrgx can be estimated from either or both data sets.

In an applied setting, there is usually also a preprocessing step attemptingtifyidesubset
of the common variables to be used in the matching process. This step sembsomaputational
efficiency and interpretability purposes and does not affect the asyimptoperties of the proce-
dure. The main method suggested in D’Orazio et al. (2006) is to disrelyaediables inX that are
independentwith bothY andZ. The details are described in Algorithm 5.

Even though the conditional independence assumption seems quite arliitimmptuitively
justified in certain cases. When the number of common variables is large it ielynifiatY
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Algorithm 5: Predict Correlation: Statistical Matching RuBMR)
Input: Data setgD; and D, on variablegV UY } and{V UZ}, respectively
1P {VeV:V_LILY|0}in Dy
2 P+ {VeV:V .1 Z|0}in D,
3 X <—V\(lIJ]_ﬂlIJ2)
4 Predictryz = z;xz;(x _12;(2

providesadditional information forZ, than whatX already provides. In other words, we expect
Y LL Z|X to hold or hold approximately. Using graphical model theory one can betteralize
this intuition:

Theorem 12 Consider a Bayesian Network of maximum degree k faithful to a distributifimedie
over a set of variableyY = XUYUZ, [V| = N. Then, the CIA YLL Z|X holds if and only if
Y ¢ Mb(Z), where Mi§Z) is the Markov Boundary of Z in the context of variablesfY and Z are
chosen at random the probability of the CIA being violated is upper boubyéd)/N.

Proof In a faithful distribution oveV, each variablel has a unique Markov Boundaib(Y)
(Pearl, 2000) that coincides with the parents, children, and parenitdldifen (spouses) of in any
network faithful to the distribution. It is also easy to see thaMb(Z) < Z € Mb(Y). Finally, the
Mb(Y) and any of its supersetsseparate¥ from any other nod&. Thus, wherZ ¢ Mb(Y), then
conditioned on the remaining variables (supers&bfY)) Y becomesl-separated and independent
of Z. Thus, the CIA holds. Conversely,Zf € Mb(Y) then it is either a neighbor &f or a spouse.
If it is a neighbor it cannot be made independen¥atonditioned on any subset of the variables
(Spirtes et al., 2001). If it is a spouse ¥f then conditioned on the remaining variables (which
includes the common children) it &connected t& and thus dependent. Thus, the CIA does not
hold.

Now, the Markov Boundary oY is a subset of the nodes that are reachable fYomithin two
edges. If the network has degree at mosie probability that a randomly chos#&rbelongs to the
Markov Boundary o is less thark?/N. u

Thus, when the sparsity remains the same, the probability of a violation of tbeDiveen two
randomly selected variables decreases with the number of participatinglgaNa The theoretical
results is illustrated in Figure 16 on simulated data. The figure shows the rekthts statistical
matching procedure described in Algorithm 5 for simulated continuous datadrnetwork based
on the ALARM Network (Beinlich et al., 1989).To recreate the scenario above we generated two
data set¥D; and 7, of 1000 samples each from the distribution of the network. We then applied
the statistical matching rule described in Algorithm 5 for each pair of variabtessidering that
the rest of the variables in the network are jointly measured in both data ge#ly,Fwe generated
a third data set to test the predictions of the method. The pairs of variaklgmsitioned in two
categories: pairs of variables that belong to each other’'s Markov @oynand pairs of variables
that do not belong to each other's Markov Boundary. As expectedethdts are poorer for the

7. The ALARM network a well-known network with 37 variables. We used gkeleton of ALARM to simulate a
conditional linear gaussian network with random parameters.
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pairs of variables that belong to each other’s Markov Boundary, with annadsolute error of
0.1649+0.1088, compared to a mean absolute error.0826+ 0.0271 for pairs that do not belong
to each other’s Markov Boundary.

In the context of Maximal Ancestral Graphs, defining the Markov Baumds more compli-
cated and its cardinality cannot be likewise bounded (Pellet and Elis2668). Nevertheless, we
still expect that, in a sparse network containing a large number of jointly messariables, the
probability thaty € Mb(Z) is low. We therefore expect that, when the number of common variables
is large, the CIA will often hold for randomly-chosen pairs of variables tiage not been observed
together. If, however, the set of variables measured in common is smalgweeno good reason to

expect that the conditional independence assumption holds.

Estimated vs. Sample Correlations
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Figure 16: Predicted vs actual sample correlations using the Statisticalin@Rtile for simulated
data from the ALARM network. For each pair of variables, prediction seldaupon the
subset of the remaining 35 variables that are determined significantljaterctevith
eitherY or Z at level 0.05 . The CIA holds wheYi ¢ Mb(Z) in which case the mean
absolute error is 0326+ 0.0271; in contrast, wheW € Mb(Z) the CIA does not hold
and the mean absolute error i4649+ 0.1088.

9.2 Empirical Evaluation of SMR and FTR-S

In this section, we empirically compare the SMR and FTR-S methods for preglit@éncorrelation
fvz between two variable¥ and Z never jointly observed. Both SMR and FTR-S procedures
provide such predictions, however, they follow different approadhat makes their comparison

not straightforward:

e SMR provides a prediction for all cases. FTR-S provides a predictioengt identifies a
specific structure that entails a significant correlation.
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Data Sets | SMRg | SMRq | FTR-S
ACPJ 445121 | 509000 0
Breast-Cancer 436093| 356000| 1005
C&C 5050 1000 | 70367
Compactiv 231 1000 108
Insurance-C | 3486 1000 1372
Lymphoma | 180074| 147000| 3897
Ohsumed | 124505| 122000 0
Ovarian 52675 | 43000 | 273456
Wine 66 495 4

p53 132299| 108000| 33934

Table 4: Number of predictions

e SMR can be applied to se¥ with more than two commonly measured variables and get
leverage from all available information. FTR-S on the other hand is apjiceiy when the
number of common variables is two.

We applied the SMR method on all continuous data sets, simulating two scenaribs first sce-
nario, SMR is applied on two data s&bs and D, defined over a quadruple of variables,Y,Z W},
where onlyX,W are jointly measured in both. The pairs Df, D, are simulated by considering
randomly chosen variable quadruples from each variable group bfdstta set of Table 1; as in

all experiments; andD, contain a disjoint third of the original samples. This scenario simulates
a case where SMR is applied on low dimensional data; we denoteSiv&s. In this caseSMR

has the same information available for making predictions as FT&&e the number of possible
quadruples is computationally prohibitive, we ap@iIR, on 1000 randomly chosen quadruples
from each variable group of each data %dn the second scenario, SMR is applied to data sets
of higher-dimensionality. Specifically, we apply SMR to all pairs of varialilethe same group
(see Section 6), considering the remaining 48 variables in the group asertiraan variables<.

We name this casBMR;. The same leave-one-data-set-out calibration method was used for both
SMR cases and FTR-S. Figures 17, 18, 19 and 20 plot the predictatiessample estimates of
the correlations foBMR;, SMR, and FTR-S for all the continuous data sets used in the study. The
figures also present the coefficient of determinainthe percentage of variance explained by the
predictions R? is also interpreted as the reduction in uncertainty obtained by using a limesiofu

of f to predictr vs. predicting by its expected valug(r). Table 5 shows the correlation between
predicted and sample estimates for all methods and data sets. Noti&® isatimply computed

as the square of the correlation. Other metrics of performance (Meanlud<£rror and Mean
Relative Absolute Error) are also presented in the Appendix A, TableE110

8. Notice that FTR is typically executed much more efficiently than gMiiecause of the possible pruning of the search
space, for example, K andY are independent, there is no need to test whether the rule applies onaaitypjes of
the form(X,Y,Z,W). For the SMR rule instead, one needs to exhaustively consider all quadruples.
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Data Sets SMRg SMRq FTR-S
ACPJ 0.05[0.04;005] | 0.00[0.00;0.01]
Breast-Cancer | 0.55[0.55;055 | 0.25[0.24;025 | 0.88 [o 87;090]
c&C 0.99[0.99;099 | 0.68[0.65;071] | 0.91]0.91;091]
Compactiv 0.97[0.96;098] | 0.49[0.44;054] | 0.88[0.83;092
Insurance-C | 0.83]0.82;084] | 0.47[0.42;051] | 0.90[0.89;091]
Lymphoma 0.60[0.60;060] | 0.32[0.31;032 0.50[0 47,052
Ohsumed 0.02[0.01;003 | 0.01[0.00;001]
Ovarian 0.62[0.62;063] | 0.50[0.50;051] 0.14[0 14;014
Wine 0.83[0.74;090] | 0.58[0.52;064] | 0.99(0.47;100
p53 0.91[0.91;091] | 0.45[0.44;045] | 0.87]0.87;087
Mean over data sets0.64[0.62;065] | 0.38]0.35;040] | 0.76[0.68;0.77]
On all predictions | 0.73]0.73;0.73] | 0.58[0.57;058 | 0.89[0.89;089

Table 5: Correlations among predicteg and sample-estimatedz; the 95% confidence intervals
are shown in brackets.

9.3 Summary, Interpretation, and Conclusions

The CIA assumption is the most common assumption in statistical matching to produnte p
estimates of the unknown distribution parameters. In comparison to FTR+&te¢he following:

e When predictions are based on only 2 common variables, statistical matcliad ba the
CIA (SMRy) is unreliable in several data sets and particularly the text categorizatési on
the correlation of predicted vs. sample estimates in ACPJ, Breast-Cande@hsumed is
less than 0.3 (Table 4). In general, SMR tends to predict a zero correlaioveen the two
variablesy andZ: the point-clouds in Figures 17, 18, 19 and 20 are vertically orientedhdrou
zero. While SMR gives a prediction in every case, it is too liberal in its ptietis and the
CIA is often violated, as expected by Theorem 12. Over all predictiomscdirelation of
predicted vs. sample estimates is 0.58.

e When predictions are based on larger sets of common variables statistichlingdtased on
the CIA (SMRs) is more successful. Over all predictions, the correlation of predicted vs
sample estimates is 0.73. The method still fails however, on the text data (AGRIM@d)
where the predictions are not correlated at all with the sample estimates. Otiéndnand,
FTR-S does not make any predictions on these data sets.

e FTR-S’s predictions are highly correlated with sample estimates (0.89 ammg|avhich is
the highest correlation achieved by any of the three methods. Howexegiwt out that these
metrics are computed on different sets of predictions and their compairatvpretation is
not straightforward (see Appendix A, Section A.2 for more metrics andidgon).

e FTR-S is a novel alternative to statistical matching based on the CIA. FTiReicions are
better correlated with the sample estimates of the unknown parameters, pdytiwhlen the
number of common variables is low; we thus recommend that FTR-S shouléfeerpd than
existing statistical matching alternatives making the CIA in such cases.
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Figure 17: Predicted vs Sample CorrelationsSMR,, SMRs, FTR-S

9.4 Statistical Matching Based on the Assumption of Multivariate Nomality

The conditional independence assumption attempts to overcome the lack ahjombation of
the variables of interest. However, it can often be a misspecified assunagtipsinted out in the
literature (D’Orazio et al., 2006) and our simulated results above. An atieenapproach, is to
limit oneself to an assumption involving only the shape of the distribution. The owwstnon
distributional assumption adopted by statistical matching techniques for counsintariables is
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multivariate normality. Of course, multivariate normality alone does not allow $tienation of
the parameters of the model. It does, however, impose some constraints merdmeters. These
constraints stem from the positive semi-definiteness of the covariance matridtivariate normal
distributions, thus, they naturally apply to any distribution with a positive seffiriitiecovariance
matrix.
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Figure 19: Predicted vs Sample CorrelationsSMR,, SMRs, FTR-S

Let us consider agaistandardizedvariables{X,Y,Z} and assume their joint is distributed as
multivariate normal with correlation / covariance matfiXwhich is symmetric)

Pxx Pxy Pxz
pvyx 1  pvz
pzx pPzy 1

2=
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The unknown quantity in the problem is parameies. One can start from the requirement tRat
must be positive semi-definite to prove tipgtz must lie within the intervaC + /(D) (Moriarity
and Scheuren, 2001), where

p p .
C: d BI’J ]
i;glpvx X B X Pzx;

and
P P P p

D=[1-3 3 prx B xprx]x[1=5 5 pax x B xpax)
i=1j=1 i=1j=1

wherep is the cardinality of seX, andB is the inverse opxx, andB"l is B's i, j element. This

constraint is equivalent stating that the partial correlapppx parameter can range freely in the

interval [-1, 1]. Instead, the CIA specifies titzx = 0, that is, the mid-point of the interval.

The formula above can be applied to quadruples of variables to produceldfor the unknown
parametepyz. The usefulness of such a prediction depends, of course, on thk trilge predicted
interval. In case the interval does not include 0, we may also say that thedratdicts an
unconditional independence for Y and Ehis procedure is described in Algorithm 6. In practice,
we apply Algorithm 6 using the sample estimates place of the unknown population parameters
p. The sample estimates are the maximum likelihood ones. The uncertainty of thetiesticoald
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be considered in the computation of the intervals by considering the waestowar all correlation
estimateg that belong in the 95% confidence interval of their correspongdinglowever, in this
case the algorithm would produce wider intervals and thus fewer prediction

Algorithm 6 : Predict Dependency and Its Strength: Multivariate Normality RMIBR )
Input: Data setsD; and D, on variableg X,Y,W} and{X,Z,W}, respectively
Compute sample correlation matéix(except unknown quantitgy z) ;
MNI « [C—/(D),C++/(D)];
if 0 ¢ MNI then
PredictY /L Z|0;
end
Predictrky € MNI

o 0o A WN B

9.5 Empirical Evaluation and Comparison of MNR and FTR

In order to evaluate how often MNR provides a prediction, we applied Algoré on real data.
Applying Algorithm 6 on all possible combinations of four variables is prohibitiThus, to evaluate
the MNR we randomly sampled 1000 quadruples from each group of #bies in each data set,
for all data sets with continuous variables; For the Wine data set we gedeath possible 495
guadruples out of its 12 variables.

Table 6 reports MNR performances on the randomly chosen quadruescolumns of the
table present the total number of randomly chosen quadruples (@ @@number of chunks, except
for the Wine data set), the number of predictions made by MNR on thesemagdadruples, the
accuraciesAcdNR and Acd 'R at thresholdt = 0.05. We then calculate (project) thexpected
number of predictions by the MNR rule, had it been applied on all possilddrgples. The final
column presents the ratio of the number of predictions by the FTR rule ovekpieetechumber of
predictions made by the MNR rule on all possible quadruples.

First, notice that MNR, similarly to FTR, does not provide any predictiongifeitext data sets
ACPJ and Ohsumed data sets. Second, the rule is in general, highlyta@naon par with FTR.
The most important observation however, is that the MNR does not oatgeHATR in the number
of predictions. The number of predictions made by FTR ranges fromt&&8a to 50% of those
made by MNR (in four out of eight data sets) to 4 to 6 times more than MNR in themergalata
sets.

To examine whether the predictions of MNR rule overlap with those of FTRapytied the
MNR rule on the quadruples where FTR makes a prediction. The compasistrown in Table
7. MNR is able to predict a dependence only 186 to 25% of FTR predictions.The results in
both Tables 6 and 7 clearly indicate that the two methods share only a smadt sdilcommon
predictions, and thus neither method subsumes the other.

9.6 Summary, Interpretation, and Conclusions

We now comment and interpret the results of this section:

e Itis possible to predict the presence of dependencies and boundtteath with distribu-
tional assumptions other than Faithfulness, such as multivariate normality.

1137



TSAMARDINOS, TRIANTAFILLOU AND LAGANI

o

Data Set || #rand. quads #MNR predictions] ACCNR [ ACC TR #FTR predictions
sampled on sampled quads [ #expected MNR prediction
on all quads

Breast-Cancer| 356000 2 0.50 0.84 3.98
C&C 1000 45 1.00 0.96 0.02
Compactiv 1000 30 1.00 1.00 0.62
Insurance-C 1000 4 0.75 0.97 0.24
Lymphoma 147000 12 0.67 0.82 2.79
Ovarian 43000 391 0.99 0.99 5.99
p53 108000 39 1.00 0.97 5.19
Wine 495 7 1.00 1.00 0.57

Table 6: A comparison between FTR vs. MNR in predicting unconditionatdégncies on ran-
domly sampled quadruples. The columns are: the data set name, the totalrmimbe
randomly sampled quadruples (10@0the number of chunks, except for the Wine data
set), the number of predictions made by MNR on those, the accuraoi¥8R andAcd ™R
at threshold = 0.05. The final column presents the ratio of the number of predictions by
the FTR rule over thexpectechumber of predictions made by the MNR rule on all possi-
ble quadruples. The number of predictions made by FTR ranges froat 26% to 50%
of those made by MNR to 4 to 6 times more than MNR.

Data Set #FTR #MNR predictions | % common ACC

predictions restricted to cases | predictions| of both MNR

FTR makes a prediction and FTR

Breast-Cancer 1833 32 0.02 1.00
C&C 99241 10640 0.11 1.00
Compactiv 135 28 0.21 1.00
Insurance-C 1839 15 0.01 1.00
Lymphoma 7712 681 0.09 0.97
Ovarian 539165 59327 0.11 1.00
p53 46647 413 0.01 1.00
Wine 4 1 0.25 1.00

Table 7: A comparison between FTR vs. MNR in predicting unconditionaédépncies on the
cases where both rules apply.

e The sets of predictions entailed by assuming Faithfulness (FTR) and mialtdé/aormality
(MNR) do not overlap to a significant degree and neither method subdtimether and they
could be considered complementary. For example, the MNR makes a predintjoim the
1% to 25% of cases where FTR applies. In addition, in some data sets MNR imalge2%
of the number of FTR predictions, while in others MNR makes 6 times more preuictio
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10. Related Work

Whole sub-fields have been developed to address the problem of inegraalysis, that we re-
view briefly. Statistical matching has been reviewed, presented, and peargogainst in Section 9.
Meta-Analysis focuses on the co-analysis of studies with similar samplingxpedismental design
characteristics with the purpose of making inferences about a singleiaiso. Meta-Analysis
in Statistics (O’Rourke, 2007) combines the results of several studiesdtessda set of related
research hypotheses. While meta-analysis focuses on a pair-wiséatiesoof a variable with an
outcome of interest, a recent interesting extension addresses the paftdastimating the multi-
variate associations (for example, in the form of a regression model) withripet variable (Samsa
et al., 2005); such methods often appear under the names of metasiegeasd univariate synthe-
sis (Zhou et al., 2009). The main idea of the latter is to assume a parametriofftheregression
model and estimate the sufficient statistics from several homogeneousi{gidgébeing conducted
on the same population, experimental conditions, sampling, etc.) studies thabtragasure all
variables (risk factors in this context). Both statistical matching and metasasialgcope does not
extend to other sources of heterogeneity of the data sets, such asrdifgperimental conditions.

In Computer Science and Machine Learning, the field of Transfer @iiPan and Yang,
2010) represents a main effort in integrative analysis. In Transfamiieg, successful search con-
trol strategies, model priors, and other characteristics transfer aniftergidt domains and/or tasks.
When the task (target) is the same but the domains (populations) are difteisitype of Transfer
Learning is called Domain Adaptation. In this case, typically one would like tska#m the esti-
mated conditional distributioBs(Y |X) used for prediction in a source distribution to a target distri-
bution R (Y|X) that may be different (e.g., has a different marginal class distributiomenGhat
such methods are typically non-causal based, they cannot transtaateats where manipulations
have been performed (causal methods could transfer predictive ntodedipulated distributions
as we show in Tsamardinos and Brown 2008, also shown in Maathuis é14)).2n addition, the
input space for the predictods has to be common. When the domain is the same (same distribu-
tion), but the tasks (target variables) are different, the type of Teahsfarning is calledulti-Task
Learning This type of learning attempts to simultaneously build models for several tasiks in
effort to use one for leveraging the performance on the others. Tiypihés is performed by using
a shared representation and learning common induced features. Agamjriferences are limited
as they can only combine studies under the same sampling and experimedigbnseron the same
sets of variables.

Other fields may seem related in a first glance, but are orthogonal to ¢peged research.
The field of Relational Learning (Getoor and Taskar, 2007) doesaadlyraddress the problem of
learning from different data sets/studies over different samples rihtde a single data set (the one
stemming from implicitly propositionalizing the database) in the form of relationd¢s$abSimi-
larly, the field of Distributed Learning (Cannataro et al., 2002) is restritietksigning time and
communication-efficient analysis of what is essentially a single data sed statéferent locations.

Other related work includes efforts to combine models (that may be devetapadiifferent
data sets) on the same system but on different scales (Gennari e08)., Z@pically, such methods
involve mechanical models using differential equations and are not tmdvith statistical mod-
els. In addition, these methods concern vertical integration at differemgaral or spatial scales,
while INCA proposes a horizontal integration of studies.
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11. Discussion and Conclusions

We presented the basic idea and concept behind Integrative Cawsgsi&r(INCA), an approach
for co-analyzing data sets that are heterogeneous in several asuettsas in terms of measured
variables and experimental conditions in the context of available prior lettm®. In this approach,
one attempts to identify one or all causal models that are consistent with ildlde@ata and pieces
of prior knowledge, and reason with them. Depending on the assumptioneaiing causality with
estimable quantities, co-analysis may lead to more inferences than indepandlysis of the data
sets.

In this paper, we focus on the problem of analyzing data sets overaiiffeariable sets. We
employ Maximal Ancestral Graphs (MAGSs) to model independencies in ttzedistributions and
assume the latter are faithful to some MAG. As a proof-of-concept, weifgde¢he simplest sce-
nario where the INCA idea provides testable predictions, and specificadhgdlicts the presence
and strength of an unconditional dependence, and a chain-like cgtusature (entailing several
additional conditional dependencies). The idea is implemented in the follovgogitams: the
Full-Testing Rule (FTR), the Minimal-Testing Rule (MTR) and FTR-S that addltily predicts
the strength of the dependence.

The empirical results show that FTR and MTR are able to accurately ptedigiresence and
strength of unconditional dependencies, as well as all the conditiopahdencies entailed by the
causal model. These predictions are better than chance and canxpldieesl by the transitivity
of dependencies often holding in Nature. Against typical statistical matetgagithms, FTR-S’s
predictions are better correlated with sample estimates particularly when thenofmtommon
variables is low.

Inducing causal models from observational data has been long defaad, 2000; Spirtes
etal., 2001; Pearl, 2009). In our experiments, we do not employ thalsersantics of the models
to predict the effect of manipulations but their ability to represent indeperids, based on the
assumption of Faithfulness. The results support that graphical modete@assumption of Faith-
fulness can make testable predictions and can be exploited for novel sdhtiggcences. While this
is not a direct proof in favor of the causal semantics of the models, wetgdimat both Faithfulness
and MAGs have been inspired by theories of probabilistic causality.

The empirical results show that the proposed algorithms’ predictions arelabt, indicating
the potential of the approach. Extending the theory and algorithms foisedesfficiency, statisti-
cal robustness, range of tasks, data types, types of prior knowleddesettings seems a promising
direction that may allow the co-analysis of a large part of available studidata sets.
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Appendix A. Supplementary Material

In this appendix we provide supplementary information for the data setsinsld experiments
presented in this paper, as well as some additional results.
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A.1 Data Sets Preprocessing
Missing data imputation and discretization weseparatelyperformed, when necessary, on each
sub-data-seD,, D, and;. Continuous variableX were discretized in three intervals:

e |—inf, meanX) — std(X)]

o [mean(X) +std(X); inf|

e remaining values.

Missing data were substituted with mean values (continuous, ordinal vagjailieencoded as a
distinct value (nominal variables). Our implementation of@feest requires that nominal variables
with n distinct values are econded as lh— 1. When necessary we re-encoded nominal variables
for respecting this convention.

A.1.1 ACPJ

Preprocessing step765 variables were found constant in at least one sub-dataeetean con-
sequently eliminated from the analysis.

Download information Aliferis et al. (2010) kindly provided us with the data.

A.1.2 BIBTEX

Preprocessing step®o particular preprocessing steps.

Download information The data set is freely available from the MULAN project website:
http://sourceforge.net/projects/mulan/ (checked on February 10,.2011)

A.1.3 C&C

Preprocessing stepsThe first five attributes were eliminated because they do not carry ntleva
information. Columns with more than 80% of missing values were removed.

Download information The data set is freely available from the UCI Machine Learning repgsitor
http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime (checked oraRebd,2011).

A.1.4 COMPACTIV

Preprocessing step®o particular preprocessing steps.
Download information The data set is freely available from the KEEL software web site:
http://sci2s.ugr.es/keel/dataset.php?cod=49 (checked on Februagi1), 2

A.1.5 CovTYPE

Preprocessing step#ttributes 1 ..10 were discretized.

Download information The data set is freely available from the UCI Machine Learning repgsitor
http://archive.ics.uci.edu/ml/datasets/Covertype

(checked on February 10, 2011).
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A.1.6 DELICIOUS

Preprocessing stepdo particular preprocessing steps.

Download information The data set is freely available from the MULAN project website:
http://sourceforge.net/projects/mulan/ (checked on February 10,.2011)

A.1.7 HvA

Preprocessing stepdo particular preprocessing steps.

Download information The data set is freely available from the web site:
http://www.causality.inf.ethz.ch/alata/HIVA.html (checked on February 10, 2011).

A.1.8 INSURANCEC

Preprocessing stepdAll variables were considered as continuous; nominal variables (naately
tributes 1 and 5) were eliminated.

Download information The data set is freely available from the UCI Machine Learning repgsitor
http://archive.ics.uci.edu/ml/datasets/Insurance+Company+Benchmark-+{ZD0)
(checked on February 10, 2011).

A.1.9 INSURANCEN

Preprocessing stepall variables were considered as nominal.

Download information The data set is freely available from the UCI Machine Learning repgsitor
http://archive.ics.uci.edu/ml/datasets/Insurance+Company+Benchmark-+Zn0)
(checked on February 10, 2011).

A.1.10 P53

Preprocessing stepSamples with missing values were eliminated from the analysis (180 rows in
total).

Download information The data set is freely available from the UCI Machine Learning repgsitor
http://archive.ics.uci.edu/ml/datasets/p53+Mutants (checked on Febry&911).

A.1.11 READ

Preprocessing step£ontinuous variables (namely attributes 24, 25 and 26) were discretized.

Download information The data set is freely available from the web site:
http://funapp.cs.bilkent.edu.tr/DataSets/ (checked on February 10,.2011)

A.1.12 WINE

Preprocessing stepgwo different data sets are available, respectively about red aitd whnes.
For our experimentation we used only the white wines data set (the one withsaropges).

Download information The data set is freely available from the UCI Machine Learning repgsitor
http://archive.ics.uci.edu/ml/datasets/Wine+Quality (checked on Februa?p10).
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Data Set FTRoo05 | MTRgo2 | TRoo1

Covtype 59 810 1431
Read 0 9 260
Infant Mortality 10 427 1170
Compactiv 69 193 231
Gisette 330 12340 | 31648
hiva 366 16174 | 34977

Breast-Cancer| 1371 68077 | 228610
Lymphoma 4473 51794 | 122857

Wine 3 44 66
Insurance-C 394 2212 3264
Insurance-N 95 1002 2527

p53 15181 | 95195 | 129372
Ovarian 41600 48376 | 52646
C&C 4168 5048 5050

ACPJ 0 190 15994

Bibtex 1 1858 16087
Delicious 524 6042 21351
Dexter 0 2 116
Nova 0 115 3280
Ohsumed 0 60 5227

Table 8: Number of unique predictiomsiR| with “Bonferroni” correction for rules FTR, MTR, TR
and Random Guess

A.1.13 BREAST-CANCER, DEXTER, GISETTE, INFANT-MORTALITY, LYMPHOMA, NOVA,
OHSUMED, OVARIAN

Preprocessing step$lo particular preprocessing steps.
Download information Aliferis et al. (2010) kindly provided us with the data.

A.2 Supplementary Tables

Table 10 presents the performance of the algorithms as measured by theAldsalute Error
(MAE) of the predictionsryz and the sample-estimategz: 1/N- ¥ |f' —r'|, whereN is the to-
tal number of predictions of an algorithm. This metric may favor algorithms thahgdfredict zero
correlations on data sets where the number of dependencies is low. Thisciasih oSMR; and
SMR, on the ACPJ data set (see Figure 178)IR; andSMR, achieve an MAE obnly 0.01 and
0.02 respectively because they always predict values close to Zeile,failing to detect any high
correlation. The corresponding correlations between predictionsaanpls-estimates on the same
data set are low: 0.05 and 0.00 respectively.

Table 11 presents the performance of the algorithms as measured by th&®lative Absolute
Error (MRAE) of the predictionsy and the sample-estimategz: 1/N- 5 |f' —r'|/|r'|, whereN is
the total number of predictions of an algorithm. This metric penalizes more algsritiat attempt
predictions of small correlations (such @8R because even a small absolute error may lead to a
high relative error. For example, SMR on the Ovarian data set has a HykBMon the order of
10° despite a correlation between predictions and sample-estimates of 0.62 .

1143



TSAMARDINOS, TRIANTAFILLOU AND LAGANI

Data Set FTRo05 | MTRg02 | Random Quadruple

Covtype 1.00 0.99 0.7
Read - - -

Infant Mortality | 0.60 0.44 0.10*
Compactiv 0.87 0.93 0.83
Gisette 0.80 0.59 0.114
hiva 0.71 0.47 0.22%
Breast-Cancer| 0.55 0.314 0.16%
Lymphoma 0.46 0.3 0.18
Wine 1.00 0.70 0.73
Insurance-C 0.86 0.63* 0.4%
Insurance-N 0.57 0.50 0.17*
p53 0.90 0.82* 0.4
Ovarian 0.61 0.622 0.50*
c&C 0.78 0.7 0.66%
ACPJ - 0.26 0.02
Bibtex 1.00 0.55 0.08*
Delicious 0.99 0.814 0.19*
Dexter - 0.50 0.02
Nova 0.07 0.03
Ohsumed - 0.14 0.02
SACQ? 0.78 0.55 0.30"
SACR 0.66 0.6P 0.12*

Table 9: SAC (t) att = 0.05 with “Bonferroni” correction for rules FTR, MTR and Random
Quadruple. Marks *, **, andh denote a statistically significant difference from FTR at
the levels of 0.05, 0.01, and machine-epsilon respectively.

Data Sets SMRg SMRq FTR-S
ACPJ 0.01+0.01| 0.02+ 0.01 -
Breast-Cancer| 0.114+ 0.08 | 0.13+ 0.10 | 0.18+ 0.13
C&C 0.05+ 0.03| 0.194+0.18 | 0.18+ 0.13
Compactiv 0.04+0.06 | 0.19+ 0.20| 0.144+0.12
Insurance-C | 0.03+ 0.08 | 0.094+0.14 | 0.14+ 0.12
Lymphoma | 0.12+0.09| 0.14+0.11| 0.17+0.14
Ohsumed 0.01+0.02 | 0.02+ 0.02 -
Ovarian 0.15+0.10| 0.164+0.11 | 0.09+ 0.07
Wine 0.09+ 0.10| 0.15+ 0.17 | 0.22+0.14
p53 0.03+0.05| 0.07+0.10 | 0.14+0.12
Over data sets| 0.06+ 0.06 | 0.12+ 0.11 | 0.16+ 0.12
Over predictions 0.07+ 0.08 | 0.07+0.09 | 0.11+ 0.10

Table 10: Mean Absolute Error (MAE) between the calibrated predictigisand sample-
estimatedy z (average value- standard deviation). SMirefers to the Statistical Match-
ing Rule applied on all pairs of variables in the same group, consideringniaming 48
variables in the group as common variables. SM&the Statistical Matching Rule ap-
plied on quadruples of variables randomly chosen from the same gringdlyFFTR-S
consists in the Full Testing Rule modified for estimating the strength of the depeyd
see Algorithm 4.
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Data Sets SMRg SMRg FTR-S
ACPJ 13.17+ 87.17 27.22+ 141.50 -
Breast-Cancer 5,74+ 624.51 2.79+90.41 1.394+ 451
C&C 1.524 39.16 3.53+ 44.98 1.304+ 16.80
Compactiv 0.39+1.43 1.7949.39 0.46+ 0.53
Insurance-C 2.794+11.04 2.104+5.15 2.44+ 18.04
Lymphoma 451+ 182.18 3.66+ 181.90 | 5.774+ 145.88
Ohsumed 4.62+ 30.53 7.7248.95 -
Ovarian 7.32x10° + 1.68x10 | 0.58+5.51 0.20+ 0.44
Wine 1.314+2.24 1.7845.65 0.38+ 0.06
p53 34.95+ 7982.92 19.86+ 4544.32| 4.76+ 290.58
Over data sets| 7.32x10° + 1.68x10* | 7.104+503.78 | 2.09+ 59.61
Over predictiong 2.79x10° + 3.28 x10% | 14.36+ 1320.98| 0.87+ 87.92

Table 11: Mean Relative Absolute Error (MRAE) between the calibratedliipionsryz and
sample-estimated, 7 (average valuet standard deviation) SMRrefers to the Statis-
tical Matching Rule applied on all pairs of variables in the same group, cemsigthe
remaining 48 variables in the group as common variables. SMhe Statistical Match-
ing Rule applied on quadruples of variables randomly chosen from the gamp. Fi-
nally, FTR-S consists in the Full Testing Rule modified for estimating the strerigth o
the dependency, see Algorithm 4. For the Ovarian data set thes3M® provides pre-
dictions for cases with nearby-zero sample estimatedand these predictions generate
extremely high MRAE values. Once excluded such cases, thecSMRAE on the
Ovarian data set is 0.54 12.16, while the MRAE averaged over all data sets and over
all predictions is 6.95: 897.33 and 10.45:- 2498.28, respectively.
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A.3 Supplementary Figures
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Figure 21: Accuracieécq for each data set, as well as the average accuhacyeach data set
weighs the same) and the pooled accur&cg (each prediction weighs the same). (a)
All rules are applied without any correction of significance thresholdadiraccuracies
are computed at = 0.05 (b) AccuraciesAcg calculated with the “Bonferroni 16~
significance threshold correction. (c) Accurackes; calculated with the “Bonferroni
102" significance threshold correction.
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