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Abstract
Boosting combines weak learners into a predictor with low empirical risk. Its dual constructs a high
entropy distribution upon which weak learners and traininglabels are uncorrelated. This manuscript
studies this primal-dual relationship under a broad familyof losses, including the exponential loss
of AdaBoost and the logistic loss, revealing:

• Weak learnability aids the whole loss family: for anyε > 0,O(ln(1/ε)) iterations suffice to produce a
predictor with empirical riskε-close to the infimum;

• The circumstances granting the existence of an empirical risk minimizer may be characterized in terms
of the primal and dual problems, yielding a new proof of the known rateO(ln(1/ε));

• Arbitrary instances may be decomposed into the above two, granting rateO(1/ε), with a matching
lower bound provided for the logistic loss.
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1. Introduction

Boosting is the task of converting inaccurateweak learnersinto a single accurate predictor. The
existence of any such method was unknown until the breakthrough resultof Schapire (1990): under
a weak learning assumption, it is possible to combine many carefully chosen weak learners into
a majority of majorities with arbitrarily low training error. Soon after, Freund (1995) noted that a
single majority is enough, and thatΘ(ln(1/ε)) iterations are both necessary and sufficient to attain
accuracyε. Finally, their combined effort produced AdaBoost, which exhibits this optimal conver-
gence rate (under the weak learning assumption), and has an astonishingly simple implementation
(Freund and Schapire, 1997).

It was eventually revealed that AdaBoost was minimizing a risk functional, specifically the
exponential loss (Breiman, 1999). Aiming to alleviate perceived deficiencies in the algorithm, other
loss functions were proposed, foremost amongst these being the logistic loss (Friedman et al., 2000).
Given the wide practical success of boosting with the logistic loss, it is perhaps surprising that no
convergence rate better thanO(exp(1/ε2)) was known, even under the weak learning assumption
(Bickel et al., 2006). The reason for this deficiency is simple: unlike SVM,least squares, and
basically any other optimization problem considered in machine learning, theremight not exist a
choice which attains the minimal risk! This reliance is carried over from convex optimization, where
the assumption of attainability is generally made, either directly, or through stronger conditions like
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compact level sets or strong convexity (Luo and Tseng, 1992). But thislimitation seems artificial:
a function like exp(−x) has no minimizer but decays rapidly.

Convergence rate analysis provides a valuable mechanism to compare andimprove of minimiza-
tion algorithms. But there is a deeper significance with boosting: a convergence rate ofO(ln(1/ε))
means that, with a combination of justO(ln(1/ε)) predictors, one can construct anε-optimal clas-
sifier, which is crucial to both the computational efficiency and statistical stability of this predictor.

The main contribution of this manuscript is to provide a tight convergence theory for a large
family of losses, including the exponential and logistic losses, which has heretofore resisted anal-
ysis. In particular, it is shown that the (disjoint) scenarios of weak learnability (Section 6.1) and
attainability (Section 6.2) both exhibit the rateO(ln(1/ε)). These two scenarios are in a strong
sense extremal, and general instances are shown to decompose into them; but their conflicting be-
havior yields a degraded rateO(1/ε) (Section 6.3). A matching lower bound for the logistic loss
demonstrates this is no artifact.

1.1 Outline

Beyond providing these rates, this manuscript will study the rich ecology within the primal-dual
interplay of boosting.

Starting with necessary background, Section 2 provides the standard view of boosting as co-
ordinate descent of an empirical risk. This primal formulation of boosting obscures a key internal
mechanism: boosting iteratively constructs distributions where the previously selected weak learner
fails. This view is recovered in the dual problem; specifically, Section 3 reveals that the dual feasible
set is the collection of distributions where all weak learners have no correlation to the target, and
the dual objective is a max entropy rule.

The dual optimum is always attainable; since a standard mechanism in convergence analysis to
control the distance to the optimum, why not overcome the unattainability of the primal optimum
by working in the dual? It turns out that the classical weak learning rate was a mechanism to control
distances in the dual all along; by developing a suitable generalization (Section 4), it is possible to
convert the improvement due to a single step of coordinate descent into a relevant distance in the
dual (Section 6). Crucially, this holds for general instances, without any assumptions.

The final puzzle piece is to relate these dual distances to the optimality gap. Section 5 lays the
foundation, taking a close look at the structure of the optimization problem. Theclassical scenarios
of attainability and weak learnability are identifiable directly from the weak learning class and
training sample; moreover, they can be entirely characterized by properties of the primal and dual
problems.

Section 5 will also reveal another structure: there is a subset of the training set, thehard core,
which is the maximal support of any distribution upon which every weak learner and the training
labels are uncorrelated. This set is central—for instance, the dual optimum(regardless of the loss
function) places positive weight on exactly the hard core. Weak learnability corresponds to the
hard core being empty, and attainability corresponds to it being the whole training set. For those
instances where the hard core is a nonempty proper subset of the trainingset, the behavior on and
off the hard core mimics attainability and weak learnability, and Section 6.3 will leverage this to
produce rates using facts derived for the two constituent scenarios.

Much of the technical material is relegated to the appendices. For convenience, Section A sum-
marizes notation, and Section B contains some important supporting results. Ofperhaps practical
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interest, Section D provides methods to select the step size, meaning the weightwith which new
weak learners are included in the full predictor. These methods are sufficiently powerful to grant
the convergence rates in this manuscript.

1.2 Related Work

The development of general convergence rates has a number of important milestones in the past
decade. Collins et al. (2002) proved convergence for a large family oflosses, albeit without any
rates. Interestingly, the step size only partially modified the choice from AdaBoost to accommodate
arbitrary losses, whereas the choice here follows standard optimization principles based purely on
the particular loss. Next, Bickel et al. (2006) showed a general rate ofO(exp(1/ε2)) for a slightly
smaller family of functions: every loss has positive lower and upper bounds on its second deriva-
tive within any compact interval. This is a larger family than what is consideredin the present
manuscript, but Section 6.2 will discuss the role of the extra assumptions whenproducing fast rates.

Many extremely important cases have also been handled. The first is the original rate of
O(ln(1/ε)) for the exponential loss under the weak learning assumption (Freund andSchapire,
1997). Next, under the assumption that the empirical risk minimizer is attainable, Rätsch et al.
(2001) demonstrated the rateO(ln(1/ε)). The loss functions in that work must satisfy lower and
upper bounds on the Hessian within the initial level set; equivalently, the existence of lower and
upper bounding quadratic functions within this level set. This assumption may be slightly relaxed
to needing just lower and upper second derivative bounds on the univariate loss function within an
initial bounding interval (cf. discussion within Section 5.2), which is the same set of assumptions
used by Bickel et al. (2006), and as discussed in Section 6.2, is all that isreally needed by the
analysis in the present manuscript under attainability.

Parallel to the present work, Mukherjee et al. (2011) established general convergence under the
exponential loss, with a rate ofΘ(1/ε). That work also presented bounds comparing the AdaBoost
suboptimality to anyl1 bounded solution, which can be used to succinctly prove consistency prop-
erties of AdaBoost (Schapire and Freund, in preparation). In this case, the rate degrades toO(ε−5),
which although presented without lower bound, is not terribly surprising since the optimization
problem minimized by boosting has no norm penalization. Finally, mirroring the development here,
Mukherjee et al. (2011) used the same boosting instance (due to Schapire2010) to produce lower
bounds, and also decomposed the boosting problem into finite and infinite margin pieces (cf. Sec-
tion 5.3).

It is interesting to mention that, for many variants of boosting, general convergence rates were
known. Specifically, once it was revealed that boosting is trying to be not only correct but also have
large margins (Schapire et al., 1997), much work was invested into methods which explicitly max-
imized the margin (R̈atsch and Warmuth, 2002), or penalized variants focused on the inseparable
case (Warmuth et al., 2007; Shalev-Shwartz and Singer, 2008). Thesemethods generally impose
some form of regularization (Shalev-Shwartz and Singer, 2008), whichgrants attainability of the
risk minimizer, and allows standard techniques to grant general convergence rates. Interestingly,
the guarantees in those works cited in this paragraph areO(1/ε2).

Hints of the dual problem may be found in many works, most notably those of Kivinen and
Warmuth (1999) and Collins et al. (2002), which demonstrated that boostingis seeking a difficult
distribution over training examples via iterated Bregman projections.
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The notion of hard core sets is due to Impagliazzo (1995). A crucial difference is that in the
present work, the hard core is unique, maximal, and every weak learnerdoes no better than random
guessing upon a family of distributions supported on this set; in this cited work,the hard core is
relaxed to allow some small but constant fraction correlation to the target. Thisrelaxation is central
to the work, which provides a correspondence between the complexity (circuit size) of the weak
learners, the difficulty of the target function, the size of the hard core, and the correlation permitted
in the hard core.

2. Setup

A view of boosting, which pervades this manuscript, is that the action of the weak learning class
upon the sample can be encoded as a matrix (Rätsch et al., 2001; Shalev-Shwartz and Singer, 2008).
Let a sampleS := {(xi ,yi)}m

1 ⊆ (X ×Y )m and a weak learning classH be given. For everyh∈H ,
let S |h denote the negated projection ontoS induced byh; that is,S |h is a vector of lengthm, with
coordinates(S |h)i =−yih(xi). If the set of all such columns{S |h : h∈H } is finite, collect them into
the matrixA∈ R

m×n. Let ai denote theith row of A, corresponding to the example(xi ,yi), and let
{h j}n

1 index the set of weak learners corresponding to columns ofA. It is assumed, for convenience,
that entries ofA are within[−1,+1]; relaxing this assumption merely scales the presented rates by
a constant.

The setting considered here is that this finite matrix can be constructed. Note that this can
encode infinite classes, so long as they map to onlyk < ∞ values (in which caseA has at mostkm

columns). As another example, if the weak learners are binary, andH has VC dimensiond, then
Sauer’s lemma grants thatA has at most(m+1)d columns. This matrix view of boosting is thus
similar to the interpretation of boosting performing descent in functional space (Mason et al., 2000;
Friedman et al., 2000), but the class complexity and finite sample have been used to reduce the
function class to a finite object.

To make the connection to boosting, the missing ingredient is the loss function.

Definition 1 G0 is the set of loss functions g: R→ R satisfying: g is twice continuously differen-
tiable, g′′ > 0, andlimx→−∞ g(x) = 0.

For convenience, whenever g∈ G0 and sample size m are provided, let f: Rm → R denote the
empirical risk function f(x) := ∑m

i=1g((x)i). For more properties of g and f , please see Section C.

The convergence rates of Section 6 will require a few more conditions, but G0 suffices for all
earlier results.

Example 1 The exponential lossexp(·) (AdaBoost) and logistic lossln(1+exp(·)) are both within
G0 (and the eventualG). These two losses appear in Figure 1, where the log-scale plot aims to
convey their similarity for negative values.

This definition provides a notational break from most boosting literature, which instead requires
limx→∞ g(x)= 0 (i.e., the exponential loss becomes exp(−x)); note that the usage here simply pushes
the negation into the definition of the matrixA. The significance of this modification is that the gradi-
ent of the empirical risk, which corresponds to distributions produced byboosting, is a nonnegative
measure. (Otherwise, it would be necessary to negate this (nonpositive)distribution everywhere to
match the boosting literature.) Note that there is no consensus on this choice, and the form followed
here can be found elsewhere (Boucheron et al., 2005).
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Figure 1: Exponential and logistic losses, plotted with linear and log-scale range.

Boosting determines some weightingλ ∈ R
n of the columns ofA, which correspond to weak

learners inH . The (unnormalized) margin of examplei is thus〈−ai ,λ〉 = −e⊤i Aλ, whereei is an
indicator vector. (This negation is one notational inconvenience of making losses increasing.) Since
the prediction onxi is1[∑ j λ jh j(xi)≥ 0] = 1[yi 〈ai ,λ〉 ≤ 0], it follows thatAλ < 0m (where0m is the
zero vector) implies a training error of zero. As such, boosting solves theminimization problem

inf
λ∈Rn

m

∑
i=1

g(〈ai ,λ〉) = inf
λ∈Rn

m

∑
i=1

g(e⊤i Aλ) = inf
λ∈Rn

f (Aλ) = inf
λ∈Rn

( f ◦A)(λ) =: f̄A; (1)

recall f : Rm→R is the convenience functionf (x) = ∑i g((x)i), and in the present problem denotes
the (unnormalized) empirical risk.̄fA will denote the optimal objective value.

The infimum in Equation 1 may well not be attainable. Suppose there existsλ′ such thatAλ′ <
0m (Theorem 11 will show that this is equivalent to the weak learning assumption). Then

0≤ inf
λ∈Rn

f (Aλ)≤ inf
c>0

f (A(cλ′)) = 0.

On the other hand, for anyλ ∈ R
n, f (Aλ) > 0. Thus the infimum is never attainable when weak

learnability holds.
The template boosting algorithm appears in Figure 2, formulated in terms off ◦A to make the

connection to coordinate descent as clear as possible. To interpret the gradient terms, note that

(∇( f ◦A)(λ)) j = (A⊤∇ f (Aλ)) j =−
m

∑
i=1

g′(〈ai ,λ〉)h j(xi)yi ,

which is the expected negative correlation ofh j with the target labels according to an unnormalized
distribution with weightsg′(〈ai ,λ〉). The stopping condition∇( f ◦A)(λ) = 0m means: either the
distribution is degenerate (it is exactly zero), or every weak learner is uncorrelated with the target.

As such, BOOST in Figure 2 represents an equivalent formulation of boosting, with one minor
modification: the column (weak learner) selection has an absolute value. Butnote that this is
the same as closingH under complementation (i.e., for anyh ∈ H , there existsh(−) with h(x) =
−h(−)(x)), which is assumed in many theoretical treatments of boosting.

In the case of the exponential loss and binary weak learners, the line search (when attainable)
has a convenient closed form; but for other losses, and even with the exponential loss but with
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Routine BOOST.
Input Convex functionf ◦A.
Output Approximate primal optimumλ.

1. Initializeλ0 := 0n.

2. Fort = 1,2, . . ., while ∇( f ◦A)(λt−1) 6= 0n:

(a) Choose column (weak learner)

jt := argmax
j

|∇( f ◦A)(λt−1)
⊤ej |.

(b) Correspondingly, set descent directionvt ∈ {±ejt}; note

v⊤t ∇( f ◦A)(λt−1) =−‖∇( f ◦A)(λt−1)‖∞.

(c) Findαt via approximate solution to the line search

inf
α>0

( f ◦A)(λt−1+αvt).

(d) Updateλt := λt−1+αtvt .

3. Returnλt−1.

Figure 2:l1 steepest descent (Boyd and Vandenberghe, 2004, Algorithm 9.4) off ◦A.

confidence-rated predictors, there may not be a closed form. As such,BOOST only requires an
approximate line search method. Section D details two mechanisms for this: an iterative method,
which requires no knowledge of the loss function, and a closed form choice, which unfortunately
requires some properties of the loss, which may be difficult to bound tightly. The iterative method
provides a slightly worse guarantee, but is potentially more effective in practice; thus it will be used
to produce all convergence rates in Section 6.

For simplicity, it is supposed that the best weak learnerjt (or the approximation thereof encoded
in A) can always be selected. Relaxing this condition is not without subtleties, but as discussed in
Section E, there are ways to allow approximate selection without degrading thepresented conver-
gence rates.

As a final remark, consider the rows{−ai}m
1 of −A as a collection ofm points inRn. Due to

the form ofg, BOOST is therefore searching for a halfspace, parameterized by a vectorλ, which
contains all of these points. Sometimes such a halfspace may not exist, andg applies a smoothly
increasing penalty to points that are farther and farther outside it.

3. Dual Problem

Applying coordinate descent to Equation 1 represents a valid interpretationof boosting, in the sense
that the resulting algorithm BOOST is equivalent to the original. However this representation loses
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Figure 3: Fenchel conjugates of exponential and logistic losses.

the intuitive operation of boosting as generating distributions where the current predictor is highly
erroneous, and requesting weak learners accurate on these tricky distributions. The dual problem
will capture this.

In addition to illuminating the structure of boosting, the dual problem also possesses a major
concrete contribution to the optimization behavior, and specifically the convergence rates: the dual
optimum is always attainable.

The dual problem will make use of Fenchel conjugates (Hiriart-Urruty and Lemaŕechal, 2001;
Borwein and Lewis, 2000); for any functionh, the conjugate is

h∗(φ) = sup
x∈dom(h)

〈x,φ〉−h(x).

Example 2 The exponential lossexp(·) has Fenchel conjugate

(exp(·))∗(φ) =











φ ln(φ)−φ whenφ > 0,

0 whenφ = 0,

∞ otherwise.

The logistic lossln(1+exp(·)) has Fenchel conjugate

(ln(1+exp(·)))∗(φ) =











(1−φ) ln(1−φ)+φ ln(φ) whenφ ∈ (0,1),

0 whenφ ∈ {0,1},
∞ otherwise.

These conjugates are known respectively as the Boltzmann-Shannon and Fermi-Dirac entropies
(Borwein and Lewis, 2000, Commentary, Section 3.3). Please see Figure 3 for a depiction.

It further turns out that general members ofG0 have a shape reminiscent of these two standard
notions of entropy.
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Lemma 2 Let g∈ G0 be given. Then g∗ is continuously differentiable onint(dom(g∗)), strictly
convex, and eitherdom(g∗) = [0,∞) or dom(g∗) = [0,b] where b> 0. Furthermore, g∗ has the
following form:

g∗(φ) ∈































∞ whenφ < 0,

0 whenφ = 0,

(−g(0),0) whenφ ∈ (0,g′(0)),

−g(0) whenφ = g′(0),

(−g(0),∞] whenφ > g′(0).

(The proof is in Section C.) There is one more object to present, the dual feasible setΦA.

Definition 3 For any A∈ R
m×n, define the dual feasible set

ΦA := Ker(A⊤)∩R
m
+

Consider anyψ ∈ ΦA. Sinceψ ∈ Ker(A⊤), this is a weighting of examples which decorrelates
all weak learners from the target: in particular, for any primal weightingλ ∈R

n over weak learners,
ψ⊤Aλ = 0. And sinceψ ∈ R

m
+, all coordinates are nonnegative, so in the case thatψ 6= {0m}, this

vector may be renormalized into a distribution over examples. The caseΦA = {0m} is an extremely
special degeneracy: it will be shown to encode the scenario of weak learnability.

Theorem 4 For any A∈ R
m×n and g∈G0 with f(x) = ∑i g((x)i),

inf { f (Aλ) : λ ∈ R
n}= sup{− f ∗(ψ) : ψ ∈ ΦA} , (2)

where f∗(φ) = ∑m
i=1g∗((φ)i). The right hand side is the dual problem, and moreover the dual

optimum, denotedψ f
A, is unique and attainable.

(The proof uses routine techniques from convex analysis, and is deferred to Section G.2.)
The definition ofΦA does not depend on any specificg∈ G0; this choice was made to provide

general intuition on the structure of the problem for the entire family of losses. Note however that
this will cause some problems later. For instance, with the logistic loss, the vectorwith every value
two, that is, 2·1m, has objective value− f ∗(2 ·1m) = −∞. In a sense, there are points inΦA which
are not really candidates for certain losses, and this fact will need adjustment in some convergence
rate proofs.

Remark 5 Finishing the connection to maximum entropy, for any g∈G0, by Lemma 2, the optimum
of the unconstrained problem is g′(0)1m, a rescaling of the uniform distribution. But note that
∇ f (Aλ0) = ∇ f (0m) = g′(0)1m: that is, the initial dual iterate is the unconstrained optimum! Let
φt := ∇ f (Aλt) denote the tth dual iterate; since∇ f ∗(∇ f (x)) = x (cf. Section B.2), then for any
ψ ∈ ΦA ⊆ Ker(A⊤),

〈∇ f ∗(φt),ψ〉= 〈Aλt ,ψ〉=
〈

λt ,A
⊤ψ

〉

= 0.

This allows the dual optimum to be rewritten as

ψ f
A = argmin

ψ∈ΦA

f ∗(ψ)

= argmin
ψ∈ΦA

f ∗(ψ)− f ∗(φt)−〈∇ f ∗(φt),ψ−φt〉 ;
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that is, the dual optimumψ f
A is the Bregman projection (according to f∗) ontoΦA of any dual iterate

φt = ∇ f (Aλt). In particular,ψ f
A is the Bregman projection onto the feasible set of the unconstrained

optimumφ0 = ∇ f (Aλ0)!

The connection to Bregman divergences runs deep; in fact, mirroring thedevelopment of BOOST

as “compiling out” the dual variables in the classical boosting presentation, itis possible to compile
out the primal variables, producing an algorithm using only dual variables, meaning distributions
over examples. This connection has been explored extensively (Kivinen and Warmuth, 1999; Collins
et al., 2002).

Remark 6 It may be tempting to use Theorem 4 to produce a stopping condition; that is,if for
a suppliedε > 0, a primal iterateλ′ and dual feasibleψ′ ∈ ΦA can be found satisfying f(Aλ′)+
f ∗(ψ′)≤ ε, BOOSTmay terminate with the guarantee f(Aλ′)− f̄A ≤ ε.

Unfortunately, it is unclear how to produce dual iterates (excepting the trivial 0m). If Ker(A⊤)
can be computed, it suffices to l2 project∇ f (Aλt) onto this subspace. In general however, not only
is Ker(A⊤) painfully expensive to compute, this computation does not at all fit the oraclemodel of
boosting, where access to A is obscured. (What isKer(A⊤) when the weak learning oracle learns a
size-bounded decision tree?)

In fact, noting that the primal-dual relationship from Equation 2 can be written

inf { f (Λ) : Λ ∈ Im(A)}= sup
{

− f ∗(Ψ) : Ψ ∈ Ker(A⊤) = Im(A)⊥
}

(sincedom( f ∗)⊆ R
m
+ encodes the orthant constraint), the standard oracle model gives elements of

Im(A), but what is needed in the dual is an oracle forKer(A⊤) = Im(A)⊥.

4. Generalized Weak Learning Rate

The weak learning rate was critical to the original convergence analysis of AdaBoost, providing a
handle on the progress of the algorithm. But to be useful, this value must be positive, which was
precisely the condition granted by the weak learning assumption. This sectionwill generalize the
weak learning rate into a quantity which can be made positive for any boostinginstance.

Note briefly that this manuscript will differ slightly from the norm in that weak learning will be
a purelysample-specificconcept. That is, the concern here is convergence in empirical risk, and all
that matters is the sampleS = {(xi ,yi)}m

1 , as encoded inA; it doesn’t matter if there are wild points
outside this sample, because the algorithm has no access to them.

This distinction has the following implication. The usual weak learning assumptionstates that
there exists no uncorrelating distribution over the inputspace. This of course implies that any
training sampleS used by the algorithm will also have this property; however, it suffices that there
is no distribution over the inputsampleS which uncorrelates the weak learners from the target.

Returning to task, the weak learning assumption posits the existence of a positive constant, the
weak learning rateγ, which lower bounds the correlation of the best weak learner with the target for
any distribution. Stated in terms of the matrixA,

0< γ = inf
φ∈Rm

+
‖φ‖=1

max
j∈[n]

∣

∣

∣

∣

∣

m

∑
i=1

(φ)iyih j(xi)

∣

∣

∣

∣

∣

= inf
φ∈Rm

+\{0m}

‖A⊤φ‖∞

‖φ‖1
= inf

φ∈Rm
+\{0m}

‖A⊤φ‖∞

‖φ−0m‖1
. (3)
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Proposition 7 A boosting instance is weak learnable iffΦA = {0m}.

Proof SupposeΦA = {0m}; since the first infimum in Equation 3 is of a continuous function over a
compact set, it has some minimizerφ′. But ‖φ′‖1 = 1, meaningφ′ 6∈ ΦA, and so‖A⊤φ′‖∞ > 0. On
the other hand, ifΦA 6= {0m}, take anyφ′′ ∈ ΦA\{0m}; then

0≤ γ = inf
φ∈Rm

+\{0m}

‖A⊤φ‖∞

‖φ‖1
≤ ‖A⊤φ′′‖∞

‖φ′′‖1
= 0.

Following this connection, the first way in which the weak learning rate is modified is to replace
{0m} with the dual feasible setΦA = Ker(A⊤)∩R

m
+. For reasons that will be sketched shortly, but

fully dealt with only in Section 6, it is necessary to replaceR
m
+ with a more refined choiceS.

Definition 8 Given a matrix A∈ R
m×n and a set S⊆ R

m, define

γ(A,S) := inf

{

‖A⊤φ‖∞

infψ∈S∩Ker(A⊤) ‖φ−ψ‖1
: φ ∈ S\Ker(A⊤)

}

.

First note that in the scenario of weak learnability (i.e.,ΦA = {0m} by Theorem 7), the choice
S= R

m
+ allows the new notion to exactly cover the old one:γ(A,Rm

+) = γ.
To get a better handle on the meaning ofS, first define the following projection and distance

notation to a closed convex nonempty setC, where in the case of non-uniqueness (l1 andl∞), some
arbitrary choice is made:

P
p
C(x) ∈ Argmin

y∈C
‖y−x‖p, D

p
C(x) = ‖x−P

p
C(x)‖p.

Suppose, for somet, that∇ f (Aλt) ∈ S\Ker(A⊤); then the infimum withinγ(A,S) may be instanti-
ated with∇ f (Aλt), yielding

γ(A,S) = inf
φ∈S\Ker(A⊤)

‖A⊤φ‖∞

‖φ−P
1
S∩Ker(A⊤)(φ)‖1

≤ ‖A⊤∇ f (Aλt)‖∞

‖∇ f (Aλt)−P
1
S∩Ker(A⊤)(∇ f (Aλt))‖1

. (4)

Rearranging this,

γ(A,S)
∥

∥

∥
∇ f (Aλt)−P

1
S∩Ker(A⊤)(∇ f (Aλt))

∥

∥

∥

1
≤ ‖A⊤∇ f (Aλt)‖∞. (5)

This is helpful because the right hand side appears in standard guarantees for single-step progress in
descent methods. Meanwhile, the left hand side has reduced the influence of A to a single number,
and the normed expression is the distance to a restriction of dual feasible set, which will converge
to zero if the infimum is to be approached, so long as this restriction contains thedual optimum.

This will be exactly the approach taken in this manuscript; indeed, the first step towards conver-
gence rates, Proposition 20, will use exactly the upper bound in Equation 5. The detailed work that
remains is then dealing with the distance to the dual feasible set. The choice ofSwill be made to
facilitate the production of these bounds, and will depend on the optimization structure revealed in
Section 5.

In order for these expressions to mean anything,γ(A,S) must be positive.
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Theorem 9 Let matrix A∈ R
m×n and polyhedron S⊆ R

m be given with S\Ker(A⊤) 6= /0 and S∩
Ker(A⊤) 6= /0. Thenγ(A,S)> 0.

The proof, material on other generalizations ofγ, and discussion on the polyhedrality ofScan all be
found in Section F.

As a final connection, sinceA⊤
P

1
S∩Ker(A⊤)(φ) = 0n, note that

γ(A,S) = inf
φ∈S\Ker(A⊤)

‖A⊤φ‖∞

‖φ−P
1
S∩Ker(A⊤)(φ)‖1

= inf
φ∈S\Ker(A⊤)

‖A⊤(φ−P
1
S∩Ker(A⊤)(φ))‖∞

‖φ−P
1
S∩Ker(A⊤)(φ)‖1

.

In this way,γ(A,S) resembles a Lipschitz constant, reflecting the effect ofA on elements of the dual,
relative to the dual feasible set.

5. Optimization Structure

The scenario of weak learnability translates into a simple condition on the dual feasible set: the dual
feasible set is the origin (in symbols,ΦA =Ker(A⊤)∩R

m
+ = {0m}). And how about attainability—is

there a simple way to encode this problem in terms of the optimization problem?
This section will identify the structure of the boosting optimization problem both in terms of

the primal and dual problems, first studying the scenarios of weak learnability and attainability, and
then showing that general instances can be decomposed into these two.

There is another behavior which will emerge through this study, motivated by the following
question. The dual feasible setΦA =Ker(A⊤)∩R

m
+ is the set of nonnegative weightings of examples

under which every weak learner (every column ofA) has zero correlation; what is the support of
these weightings?

Definition 10 H(A) denotes thehard coreof A: the collection of examples which receive positive
weight under some dual feasible point, a distribution upon which no weak learner is correlated with
the target. Symbolically,

H(A) := {i ∈ [m] : ∃ψ ∈ ΦA,(ψ)i > 0}.

One case has already been considered; as established in Theorem 7, weak learnability is equiv-
alent toΦA = {0m}, which in turn is equivalent to|H(A)| = 0. But it will turn out that other
possibilities forH(A) also have direct relevance to the behavior of BOOST. Indeed, contrasted with
the primal and dual problems and feasible sets,H(A) will provide a conceptually simple, discrete
object with which to comprehend the behavior of boosting.

5.1 Weak Learnability

The following theorem establishes four equivalent formulations of weak learnability.

Theorem 11 For any A∈ R
m×n and g∈G0 the following conditions are equivalent:

∃λ ∈ R
n
�Aλ ∈ R

m
−−, (6)

inf
λ∈Rn

f (Aλ) = 0, (7)

ψ f
A = 0m, (8)

ΦA = {0m}. (9)
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Figure 4: Geometric view of the primal and dual problem, under weak learnability. The vertices of
the pentagon denote the points{−ai}m

1 . The arrow, denotingλ in Equation 6, defines a
homogeneous halfspace containing these points; on the other hand, their convex hull does
not contain the origin. Please see Theorem 11 and its discussion.

First note that Equation 9 indicates (via Theorem 7) this is indeed the weak learnability setting,
equivalently|H(A)|= 0.

Recall the earlier discussion of boosting as searching for a halfspace containing the points
{−ai}m

1 = {−e⊤i A}m
1 ; Equation 6 encodes precisely this statement, and moreover that there exists

such a halfspace with these points interior to it. Note that this statement also encodes the margin
separability equivalence of weak learnability due to Shalev-Shwartz and Singer (2008); specifically,
if labels are bounded away from 0 and each point−ai (row of −A) is replaced with−yiai , the
definition ofA grants that positive examples will land on one side of the hyperplane, and negative
examples on the other.

Equation 9 and Equation 6 can be interpreted geometrically, as depicted in Figure 4: the dual
feasibility statement is that no convex combination of{−ai}m

1 will contain the origin.
Next, Equation 7 is the (error part of the) usual strong PAC guarantee (Schapire, 1990): weak

learnability entails that the training error will go to zero. And, as must be the case whenΦA = {0m},
Equation 8 provides thatψ f

A = 0m.
Proof of Theorem 11 (Equation 6=⇒ Equation 7.) Let̄λ ∈ R

n be given withAλ̄ ∈ R
m
−−, and let

any increasing sequence{ci}∞
1 ↑ ∞ be given. Then, sincef > 0 and limx→−∞ g(x) = 0,

inf
λ

f (Aλ)≤ lim
i→∞

f (ciAλ̄) = 0≤ inf
λ

f (Aλ).

(Equation 7=⇒ Equation 8.) The point0m is always dual feasible, and

inf
λ

f (Aλ) = 0=− f ∗(0m).

Since the dual optimum is unique (Theorem 4),ψ f
A = 0m.

(Equation 8=⇒ Equation 9.) Suppose there existsψ ∈ ΦA with ψ 6= 0m. Since− f ∗ is contin-
uous and increasing along every positive direction at0m = ψ f

A (see Lemma 2 and Lemma 36), there
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must exist some tinyτ > 0 such that− f ∗(τψ)>− f ∗(ψ f
A), contradicting the selection ofψ f

A as the
unique optimum.

(Equation 9=⇒ Equation 6.) This case is directly handled by Gordan’s theorem (cf. Theo-
rem 29).

5.2 Attainability

For strictly convex functions, there is a nice characterization of attainability,which will require the
following definition.

Definition 12 (Hiriart-Urruty and Lemar échal 2001, Section B.3.2)A closed convex function h
is called0-coercivewhen all level sets are compact. (That is, for anyα ∈ R, the set{x : f (x)≤ α}
is compact.)

Proposition 13 Suppose h is differentiable, strictly convex, anddom(h) = R
m. Theninfxh(x) is

attainable iff h is 0-coercive.

Note that 0-coercivity means the domain of the infimum in Equation 1 can be restricted to a compact
set, and attainability in turn follows just from properties of minimization of continuous functions on
compact sets. It is the converse which requires some structure; the proof however is unilluminating
and deferred to Section G.3.

Armed with this notion, it is now possible to build an attainability theory forf ◦A. Some care
must be taken with the above concepts, however; note that whilef is strictly convex,f ◦A need not
be (for instance, if there exist nonzero elements of Ker(A), then moving along these directions does
not change the objective value). Therefore, 0-coercivity statements will refer to the function

( f + ιIm(A))(x) =

{

f (x) whenx∈ Im(A),

∞ otherwise.

This function is effectively taking the epigraph off , and intersecting it with a slice representing
Im(A) = {Aλ : λ ∈ R

n}, the set of points considered by the algorithm. As such, it is merely a
convenient way of dealing with Ker(A) as discussed above.

Theorem 14 For any A∈ R
m×n and g∈G0, the following conditions are equivalent:

∀λ ∈ R
n
�Aλ 6∈ R

m
− \{0m}, (10)

f + ιIm(A) is 0-coercive, (11)

ψ f
A ∈ R

m
++, (12)

ΦA∩R
m
++ 6= /0. (13)

Following the discussion above, Equation 11 is the desired attainability statement.
Next, note that Equation 13 is equivalent to the expression|H(A)| = m, that is, there exists a

distribution with positive weight on all examples, upon which every weak learner is uncorrelated.
The forward direction is direct from the existence of a singleψ ∈ ΦA∩R

m
++. For the converse, note
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Figure 5: Geometric view of the primal and dual problem, under attainability. Once again, the
{−ai}m

1 are the vertices of the pentagon. This time, no (closed) homogeneous halfspace
containing all the points will contain one strictly, and the relative interior of the pentagon
contains the origin. Please see Theorem 14 and its discussion.

that theψi corresponding to eachi ∈ H(A) can be combined intoψ = ∑i ψi ∈ Ker(A⊤)∩R
m
++ (since

Ker(A⊤) is a subspace).
For a geometric interpretation, consider Equation 10 and Equation 13. The first says that any

halfspace containing some−ai within its interior must also fail to contain some−a j (with i 6= j).
(Equation 10 also allows for the scenario that no valid enclosing halfspaceexists, that is,λ = 0n.)
The latter states that the origin0m is contained within a positive convex combination of{−ai}m

1
(alternatively, the origin is within the relative interior of these points). Thesetwo scenarios appear
in Figure 5.

Finally, note Equation 12: it is not only the case that there are dual feasiblepoints fully interior
to R

m
+, but furthermore the dual optimum is also interior. This will be crucial in the convergence

rate analysis, since it will allow the dual iterates to never be too small.
Proof of Theorem 14 (Equation 10=⇒ Equation 11.) Letd ∈R

m\{0m} andλ ∈R
n be arbitrary.

To show 0-coercivity, it suffices (Hiriart-Urruty and Lemaréchal, 2001, Proposition B.3.2.4.iii) to
show

lim
t→∞

f (Aλ+ td)+ ιIm(A)(Aλ+ td)− f (Aλ)
t

> 0. (14)

If d 6∈ Im(A) (and t > 0), thenιIm(A)(Aλ+ td) = ∞. Supposed ∈ Im(A); by Equation 10, since
d 6= 0m, thend 6∈ R

m
−, meaning there is at least one positive coordinatej. But then, sinceg> 0 and

g is convex,

Eq. 14≥ lim
t→∞

g(e⊤j (Aλ+ td))− f (Aλ)
t

≥ lim
t→∞

g(e⊤j Aλ)+ td jg′(e⊤j Aλ)− f (Aλ)
t

= d jg
′(e⊤j Aλ),
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which is positive by the selection ofd j and sinceg′ > 0.
(Equation 11=⇒ Equation 12.) Since the infimum is attainable, designate anyλ̄ satisfy-

ing infλ f (Aλ) = f (Aλ̄) (note, althoughf is strictly convex, f ◦A need not be, thus uniqueness
is not guaranteed!). The optimality conditions of Fenchel problems may be applied, meaning
ψ f

A = ∇ f (Aλ̄), which is interior toRm
+ since∇ f ∈ R

m
++ everywhere (cf. Lemma 36). (For the

optimality conditions, see Borwein and Lewis 2000, Exercise 3.3.9.f, with a negation inserted to
match the negation inserted within the proof of Theorem 4.)

(Equation 12=⇒ Equation 13.) This holds sinceΦA ⊇ {ψ f
A} andψ f

A ∈ R
m
++.

(Equation 13=⇒ Equation 10.) This case is directly handled by Stiemke’s Theorem (cf. The-
orem 30).

5.3 General Setting

So far, the scenarios of weak learnability and attainability corresponded tothe extremal hard core
cases of|H(A)| ∈ {0,m}. The situation in the general setting 1≤ |H(A)| ≤ m−1 is basically as
good as one could hope for: it interpolates between the two extremal cases.

As a first step, partitionA into two submatrices according toH(A).

Definition 15 Partition A∈ R
m×n by rows into two matrices A0 ∈ R

m0×n and A+ ∈ R
m+×n, where

A+ has rows corresponding to H(A), and m+ = |H(A)|. For convenience, permute the examples so
that

A=
[

A0
A+

]

.

(This merely relabels the coordinate axes, and does not change the optimization problem.) Note that
this decomposition is unique, since H(A) is uniquely specified.

As a first consequence, this partition cleanly decomposes the dual feasible setΦA into ΦA0 and
ΦA+ .

Proposition 16 For any A∈ R
m×n, ΦA0 = {0m0}, ΦA+ ∩R

m+
++ 6= /0, and

ΦA = ΦA0 ×ΦA+ .

Furthermore, no other partition of A into B0 ∈ R
z×n and B+ ∈ R

p×n satisfies these properties.

Proof It must hold thatΦA0 = {0m0}, since otherwise there would existψ ∈ Ker(A⊤
0 )∩R

m0
+ with

ψ 6= 0m0, which could be extended toψ′ = ψ×0m+ ∈ ΦA and the positive coordinate ofψ could be
added toH(A), contradicting the construction ofH(A) as including all such rows.

The propertyΦA+ ∩R
m+
++ 6= /0 was proved in the discussion of Theorem 14: simply add together,

for eachi ∈ H(A), theψi ’s corresponding to positive weight oni.
For the decomposition, note first that certainly everyψ ∈ ΦA0 ×ΦA+ satisfiesψ ∈ ΦA. Now

suppose contradictorily that there existsψ′ ∈ ΦA \ (ΦA0 ×ΦA+). There must existj ∈ [m] \H(A)
with (ψ′) j > 0, since otherwiseψ′ ∈ {0z}×ΦA+ ; but that meansj should have been included in
H(A), a contradiction.

For the uniqueness property, suppose some otherB0,B+ is given, satisfying the desired prop-
erties. It is impossible that someai ∈ B+ is not in H(A), since anyψ ∈ ΦB+ can be extended to
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ψ′ ∈ ΦA with positive weight oni, and thus is included inH(A) by definition. But the other case
with i ∈ H(A) butai ∈ B0 is equally untenable, since the corresponding measureψi is in ΦA but not
in ΦB0 ×ΦB+ .

The main result of this section will have the same two main ingredients as Proposition 16:

• The full boosting instance may be uniquely decomposed into two pieces,A0 andA+, each of
which individually behave like the weak learnability and attainability scenarios.

• The subinstances have a somewhat independent effect on the full instance.

Theorem 17 Let g∈ G0 and A∈ R
m×n be given. Let B0 ∈ R

z×n, B+ ∈ R
p×n be any partition of A

by rows. The following conditions are equivalent:

∃λ ∈ R
n
�B0λ ∈ R

z
−−∧B+λ = 0p and ∀λ ∈ R

n
�B+λ 6∈ R

p
− \{0p}, (15)

{

infλ∈Rn f (Aλ) = infλ∈Rn f (B+λ), and infλ∈Rn f (B0λ) = 0,
and f+ ιIm(B+) is 0-coercive,

}

(16)

ψ f
A =

[

ψ f
B0

ψ f
B+

]

with ψ f
B0

= 0z and ψ f
B+

∈ R
p
++, (17)

ΦB0 = {0z}, and ΦB+ ∩R
p
++ 6= /0, and ΦA = ΦB0 ×ΦB+ . (18)

Stepping through these properties, notice that Equation 18 mirrors the expression in Proposi-
tion 16. But that Theorem also granted that this representation was unique, thus only one partition
of A satisfies the above properties, namelyA0,A+. Since this Theorem is stated as a series of equiv-
alences, any one of these properties can in turn be used to identify the hard core setH(A).

To continue with geometric interpretations, notice that Equation 15 states that there exists a
halfspace strictly containing those points in[m] \H(A), with all points ofH(A) on its boundary;
furthermore, trying to adjust this halfspace to contain elements ofH(A) will place others outside
it. With regards to the geometry of the dual feasible set as provided by Equation 18, the origin
is within the relative interior of the points corresponding toH(A), however the convex hull of
the otherm− |H(A)| points can not contain the origin. Furthermore, if the origin is written as
a convex combination of all points, this combination must place zero weight on the points with
indices[m]\H(A). This scenario is depicted in Figure 6.

In Equation 16 and Equation 17,B0 mirrors the behavior of weakly learnable instances in The-
orem 11, and analogouslyB+ follows instances with minimizers from Theorem 14. The interesting
addition, as discussed above, is the independence of these components:Equation 16 provides that
the infimum of the combined problem is the sum of the infima of the subproblems, while Equa-
tion 17 provides that the full dual optimum may be obtained by concatenating thesubproblems’
dual optima.
Proof of Theorem 17 (Equation 15=⇒ Equation 16.) Let̄λ be given withB0λ̄ ∈ R

z
−− and

B+λ̄ = 0p, and let{ci}∞
1 ↑ ∞ be an arbitrary sequence increasing without bound. Lastly, let{λi}∞

1
be a minimizing sequence for infλ f (B+λ). Then

inf
λ

f (B+λ) = lim
i→∞

(

f (B+λi)+ f (ciB0λ̄)
)

≥ inf
λ

f (Aλ)

= inf
λ
( f (B+λ)+ f (B0λ))≥ inf

λ
f (B+λ),
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Figure 6: Geometric view of the primal and dual problem in the general case. There is a closed
homogeneous halfspace containing the points{−ai}m

1 , where the hard core lies on the
halfspace boundary, and the other points are within its interior; moreover,there does not
exist a closed homogeneous halfspace containing all points but with strict containment
on a point in the hard core. Finally, although the origin is in the convex hull of{−ai}m

1 ,
any such convex combination places zero weight on points outside the hardcore. Please
see Theorem 17 and its discussion.

which used the fact thatf (B0λ)≥ 0 sincef ≥ 0. And since the chain of inequalities starts and ends
the same, it must be a chain of equalities, which means infλ f (B0λ) = 0. To show 0-coercivity of
f + ιIm(B+), note the second part of Equation 15 is one of the conditions of Theorem 14.

(Equation 16=⇒ Equation 17.) First, by Theorem 11, infλ f (B0λ) = 0 meansψ f
B0

= 0z and
ΦB0 = {0z}. Thus

− f ∗(ψ f
A) = sup

ψ∈ΦA

− f ∗(ψ)

= sup
ψz∈Rz

+

ψp∈Rp
+

B⊤
0 ψz+B⊤

+ψp=0n

− f ∗(ψz)− f ∗(ψp)

≥ sup
ψz∈ΦB0

− f ∗(ψz)+ sup
ψp∈ΦB+

− f ∗(ψp)

= 0− f ∗(ψ f
B+
) = inf

λ∈Rn
f (B+λ) = inf

λ∈Rn
f (Aλ) =− f ∗(ψ f

A).

Combining this with f ∗(x) = ∑i g((x)i) and g∗(0) = 0 (cf. Lemma 2, Theorem 4),f ∗(ψ f
A) =

f ∗(ψ f
B+
) = f ∗(

[

ψ f
B0

ψ f
B+

]

). But Theorem 4 showsψ f
A was unique, which gives the result. And to

obtainψ f
B+

∈ R
p
++, use Theorem 14 with the 0-coercivity off + ιIm(B+).

(Equation 17=⇒ Equation 18.) Sinceψ f
B0

= 0z, it follows by Theorem 11 thatΦB0 = {0z}.

Furthermore, sinceψ f
B+

∈ R
p
++, it follows thatΦB+ ∩R

p
++ 6= /0. Now suppose contradictorily that

ΦA 6= ΦB0 ×ΦB+ ; since it always holds thatΦA ⊇ ΦB0 ×ΦB+ , this supposition grants the existence
of ψ =

[ ψz
ψp

]

∈ ΦA whereψz ∈ R
z
+ \{0z}.
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Consider the elementq := ψ+ψ f
A, which has more nonzero entries thanψ f

A, but still q ∈ ΦA

sinceΦA is a convex cone. LetIq index the nonzero entries ofq, and letAq be the restriction of
A to the rowsIq. Sinceq ∈ ΦA, meaningq is nonnegative andq ∈ Ker(A⊤), it follows that the
restriction ofq to its positive entries is within Ker(A⊤

q ) (because only zeros ofq and matching rows
of A are removed, dot products betweenq with rows ofA⊤ are the same as dot products between the

restriction ofq and rows ofA⊤
q ), and soq∈ΦAq, meaningΦAq∩R

|Iq|
++ is nonempty. Correspondingly,

by Theorem 14, the dual optimumψ f
Aq

of this restricted problem will have only positive entries. But
by the same reasoning granting thatq restricted toIq is within ΦAq, it follows that the full optimum

ψ f
A, restricted toIq, must also be withinΦAq (since, byq’s construction,ψ f

A’s zero entries are a

superset of the zero entries ofq). Therefore this restriction̂ψ f
A of ψ f

A to Iq will have at least one zero
entry, meaning it can not be equal toψ f

Aq
; but Theorem 4 provided that the dual optimum is unique,

thus− f ∗(ψ f
Aq
)>− f ∗(ψ̂ f

A). Finally, produceψ̄ f
Aq

from ψ f
Aq

by inserting a zero for each entry ofIq;
the same reasoning that allows feasibility to be maintained while removing zeros allows them to be
added, and thus̄ψ f

Aq
∈ ΦA. But this is a contradiction: sinceg∗(0) = 0 (cf. Lemma 2), both̄ψ f

Aq
and

the optimumψ f
A have zero contribution to the objective along the entries outside ofIq, and thus

− f ∗(ψ̄ f
Aq
) =− f ∗(ψ f

Aq
)>− f ∗(ψ̂ f

A) =− f ∗(ψ f
A),

meaningψ̄ f
Aq

is feasible and has strictly greater objective value than the optimumψ f
A, a contradic-

tion.
(Equation 18=⇒ Equation 15.) Unwrapping the definition ofΦA, the assumed statements

imply

(∀φ0 ∈ R
z
+ \{0z},φ+ ∈ R

p
+ �B⊤

0 φ0+B⊤
+φ+ 6= 0n)∧ (∃φ+ ∈ R

p
++ �B⊤

+φ+ = 0n).

Applying Motzkin’s transposition theorem (cf. Theorem 31) to the left statement and Stiemke’s
theorem (cf. Theorem 30, which is implied by Motzkin’s theorem) to the right yields

(∃λ ∈ R
n
�B0λ ∈ R

z
−−∧B+λ ∈ R

p
−)∧ (∀λ ∈ R

n
�B+λ 6∈ R

p
− \{0p}),

which implies the desired statement.

Remark 18 Notice the dominant role A plays in the structure of the solution found by boosting.
For every i∈ [m] \H(A), the corresponding dual weights go to zero (i.e.,(∇ f (Aλt))i ↓ 0), and the
corresponding primal margins grow unboundedly (i.e.,−e⊤i Aλt ↑ ∞, since otherwiseinfλ f (A0λ)>
0). This is completely unaffected by the choice of g∈ G0. Furthermore, whether this instance is
weak learnable, attainable, or neither is dictated purely by A (respectively|H(A)|= 0, |H(A)|= m,
or |H(A)| ∈ [1,m−1]).

Where different loss functions disagree is how they assign dual weight to the points in H(A).
In particular, each g∈ G0 (and corresponding f ) defines a notion of entropy via f∗. The dual
optimization in Theorem 4 can then be interpreted as selecting the max entropychoice (per f∗)
amongst those convex combinations of H(A) equal to the origin.

578



A PRIMAL -DUAL CONVERGENCEANALYSIS OF BOOSTING

6. Convergence Rates

Convergence rates will be proved for the following family of loss functions.

Definition 19 G contains all functions g satisfying the following properties. First, g∈G0. Second,
for any x∈R

m satisfying f(x)≤ f (Aλ0) = mg(0), and for any coordinate(x)i , there exist constants
η > 0 andβ > 0 such that g′′((x)i)≤ ηg((x)i) and g((x)i)≤ βg′((x)i).

The exponential loss is in this family withη = β = 1 since exp(·) is a fixed point with respect to
the differentiation operator. Furthermore, as is verified in Remark 46, the logistic loss is also in this
family, with η = 2m/(mln(2)) andβ = 1+2m (which may be loose). In a sense,η andβ encode
how similar someg∈G is to the exponential loss, and thus these parameters can degrade radically.
However, outside the weak learnability case, the other terms in the bounds here can also incur a
large penalty with the exponential loss, and there is some evidence that this is unavoidable (see the
lower bounds in Mukherjee et al. 2011 or the upper bounds in Rätsch et al. 2001).

The first step towards proving convergence rates will be to lower bound the improvement due to
one iteration. As discussed previously, standard techniques for analyzing descent methods provide
such bounds in terms of gradients, however to overcome the difficulty of unattainability in the primal
space, the key will be to convert this into distances in the dual viaγ(A,S), as in Equation 5.

Proposition 20 For any t, g∈G, A∈ R
m×n, and S⊇ {∇ f (Aλt)} with γ(A,S)> 0,

f (Aλt+1)− f̄A ≤ f (Aλt)− f̄A−
γ(A,S)2

D
1
S∩Ker(A⊤)(∇ f (Aλt))

2

6η f (Aλt)
.

Proof The stopping condition grants∇ f (Aλt) 6∈ Ker(A⊤). Proceeding as in Equation 4,

γ(A,S) = inf
φ∈S\Ker(A⊤)

‖A⊤φ‖∞

D
1
S∩Ker(A⊤)(φ)

≤ ‖A⊤∇ f (Aλt)‖∞

D
1
S∩Ker(A⊤)(∇ f (Aλt))

.

Combined with the approximate line search guarantee from Proposition 38,

f (Aλt)− f (Aλt+1)≥
‖A⊤∇ f (Aλt)‖2

∞
6η f (Aλt)

≥
γ(A,S)2

D
1
S∩Ker(A⊤)(∇ f (Aλt))

2

6η f (Aλt)
.

Subtractingf̄A from both sides and rearranging yields the statement.

The task now is to manage the dual distanceD
1
S∩Ker(A⊤)(∇ f (Aλt)), specifically to produce a re-

lation to f (Aλt)− f̄A, the total suboptimality in the preceding iteration; from there, standard tools in
convex optimization will yield convergence rates. Matching the problem structure revealed in Sec-
tion 5, first the extremal cases of weak learnability and attainability will be handled, and only then
the general case. The significance of this division is that the extremal cases have rateO(ln(1/ε)),
whereas the general case has rateO(1/ε) (with a matching lower bound provided for the logistic
loss). The reason, which will be elaborated in further sections, is straightforward: the extremal
cases are fast for essentially opposing regions, and this conflict will degrade the rate in the general
case.
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6.1 Weak Learnability

Theorem 21 Suppose|H(A)|= 0 and g∈G; thenγ(A,Rm
+)> 0, and for any t≥ 0,

f (Aλt)≤ f (Aλ0)

(

1− γ(A,Rm
+)

2

6β2η

)t

.

Proof By Theorem 11,ΦA = {0m}, meaning

D
1
ΦA
(∇ f (Aλt)) = inf

ψ∈ΦA

‖∇ f (Aλt)−ψ‖1 = ‖∇ f (Aλt)‖1 ≥ f (Aλt)/β.

Next, Rm
+ is polyhedral, and Theorem 11 grantsRm

+ ∩Ker(A⊤) 6= /0 andR
m
+ \Ker(A⊤) 6= /0, so

Theorem 9 providesγ(A,Rm
+) > 0. Since∇ f (Aλt) ∈ R

m
+, all conditions of Proposition 20 are met,

and usingf̄A = 0 (again by Theorem 11),

f (Aλt+1)≤ f (Aλt)−
γ(A,Rm

+)
2 f (Aλt)

2

6β2η f (Aλt)
= f (Aλt)

(

1− γ(A,Rm
+)

2

6β2η

)

, (19)

and recursively applying this inequality yields the result.

As discussed in Section 4,γ(A,Rm
+) = γ, the latter quantity being the classical weak learning

rate.
Specializing this analysis to the exponential loss (whereη = β = 1), the bound becomes(1−

γ2/6)t , which recovers the bound of Schapire and Singer (1999), although withvastly different
analysis. (The exact expression has denominator 2 rather than 6, whichcan be recovered with the
closed form line search; cf. Section D.)

In general, solving fort in the expression

ε =
f (Aλt)− f̄A
f (Aλ0)− f̄A

≤
(

1− γ2

6β2η

)t

≤ exp

(

− tγ2

6β2η

)

reveals thatt ≤ 6β2η
γ2 ln(1/ε) iterations suffice to reach suboptimalityε. Recall thatβ and η, in

the case of the logistic loss, have only been bounded by quantities like 2m. While it is unclear if
this analysis ofβ andη was tight, note that it is plausible that the logistic loss is slower than the
exponential loss in this scenario, as it works less in initial phases to correct minor margin violations.

Remark 22 The rateO(ln(1/ε)) depended crucially on both g≤ βg′ and g′′ ≤ ηg. If for in-
stance the second inequality were replaced with g′′ ≤ C, then Equation 19 would instead have
form f(Aλt+1)≤ f (Aλt)− f (Aλt)

2O(1), which by an application of Lemma 33 would grant a rate
O(1/ε). For functions which asymptote to zero (i.e., everything inG0), satisfying this milder second
order condition is quite easy. The real mechanism behind producing a fast rate is g≤ βg′, which
guarantees that the flattening of the objective function is concomitant with low objective values.

6.2 Attainability

Consider now the case of attainability. Recall from Theorem 14 and Proposition 13 that attainability
occurred along with a stronger property, the 0-coercivity (compact level sets) off + ιIm(A) (it was
not possible to work withf ◦A directly, which will have unbounded level sets when Ker(A) 6= 0n).
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This has an immediate consequence to the task of relatingf (Aλt)− f̄A to the dual distance
D

1
S∩Ker(A⊤)(∇ f (Aλt)). f is a strictly convex function, which means it is strongly convex over any

compact set. Strong convexity in the primal corresponds to upper bounds on second derivatives
(occasionally termedstrong smoothness) in the dual, which in turn can be used to relate distance
and objective values. This also provides the choice of polyhedronS in γ(A,S): unlike the case of
weak learnability, where the unbounded setR

m
+ was used, a compact set containing the initial level

set will be chosen.

Theorem 23 Suppose|H(A)| = m and g∈ G. Then there exists a (compact) tightest axis-aligned
rectangleC containing the initial level set{x ∈ R

m : ( f + ιIm(A))(x) ≤ f (Aλ0)}, and f is strongly
convex with modulus c> 0 overC . Finally, eitherλ0 is optimal, orγ(A,∇ f (C ))> 0, and for all t,

f (Aλt)− f̄A ≤ ( f (Aλ0)− f̄A)

(

1− cγ(A,∇ f (C ))2

3η f (Aλ0)

)t

.

As in Section 6.1, whenλ0 is suboptimal, this bound may be rearranged to say that
t ≤ 3η f (Aλ0)

cγ(A,∇ f (C ))2 ln(1/ε) iterations suffice to reach suboptimalityε.
To make sense of this bound and its proof, the essential object isC , whose properties are cap-

tured in the following Theorem, which is stated with some slight generality in orderto allow reuse
in Section 6.3.

Lemma 24 Let g∈ G, A∈ R
m×n with |H(A)| = m, and any d≥ infλ f (Aλ) be given. Then there

exists a (compact nonempty) tightest axis-aligned rectangleC ⊇ {x ∈ R
m : ( f + ιIm(A))(x) ≤ d}.

Furthermore, the dual image∇ f (C ) ⊂ R
m is also a (compact nonempty) axis-aligned rectangle,

and moreover it is strictly contained withindom( f ∗) ⊆ R
m
+. Finally, ∇ f (C ) contains dual feasible

points (i.e.,∇ f (C )∩ΦA 6= /0).

A full proof may be found in Section G.4; the principle is that|H(A)| = m provides 0-coercivity
of f + ιIm(A), and thus the initial level set is compact. To later showγ(A,S) > 0 via Theorem 9,S
must be polyhedral, and to apply Proposition 20, it must contain the dual iterates{∇ f (Aλt)}∞

t=1;
the easiest choice then is to take the bounding boxC of the initial level set, and use its dual map
∇ f (C ). To exhibit dual feasible points within∇ f (C ), note thatC will contain a primal minimizer,
and optimality conditions grant that∇ f (C ) contains the dual optimum.

With the polyhedron in place, Proposition 20 may be applied, so what remains isto control the
dual distance. Again, this result will be stated with some extra generality in order to allow reuse in
Section 6.3.

Lemma 25 Let A∈ R
m×n, g ∈ G, and any compact set S with∇ f (S)∩Ker(A⊤) 6= /0 be given.

Then f is strongly convex over S, and taking c> 0 to be the modulus of strong convexity, for any
x∈ S∩ Im(A),

f (x)− f̄A ≤ 1
2c

inf
ψ∈∇ f (S)∩Ker(A⊤)

‖∇ f (x)−ψ‖2
1.

Before presenting the proof, it can be sketched quite easily. Using the Fenchel-Young inequality
(cf. Proposition 32) and the form of the dual optimization problem (cf. Theorem 4), primal sub-
optimality can be converted into a Bregman divergence in the dual. If there is strong convexity in
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the primal, it allows this Bregman divergence to be converted into a distance viastandard tools in
convex optimization (cf. Lemma 34). Althoughf lacks strong convexity in general, it is strongly
convex over any compact set.
Proof of Lemma 25 Consider the optimization problem

inf
x∈S

inf
φ∈Rm

‖φ‖2=1

〈

∇2 f (x)φ,φ
〉

= inf
x∈S

inf
φ∈Rm

‖φ‖2=1

m

∑
i=1

g′′(xi)φ2
i ;

sinceSis compact andg′′ and(·)2 are continuous, the infimum is attainable. Butg′′ > 0 andφ 6= 0m,
meaning the infimumc is nonzero, and moreover it is the modulus of strong convexity off overS
(Hiriart-Urruty and Lemaŕechal, 2001, Theorem B.4.3.1.iii).

Now let anyx ∈ S∩ Im(A) be given, defineD = ∇ f (S) ⊂ R
m
+, and for convenience setK :=

Ker(A⊤). Consider the dual elementP2
D∩K(∇ f (x)) (which exists sinceD∩K 6= /0); due to the

projection, it is dual feasible, and thus it must follow from Theorem 4 that

f̄A = sup{− f ∗(ψ) : ψ ∈ ΦA} ≥ − f ∗
(

P
2
D∩K(∇ f (x))

)

.

Furthermore, sincex∈ Im(A),
〈

x,P2
D∩K(∇ f (x))

〉

= 0.

Combined with the Fenchel-Young inequality (cf. Proposition 32) andx= ∇ f ∗(∇ f (x)),

f (x)− f̄A ≤ f (x)+ f ∗
(

P
2
D∩K(∇ f (x))

)

= f ∗
(

P
2
D∩K(∇ f (x))

)

+ 〈∇ f (x),x〉− f ∗(∇ f (x))

= f ∗
(

P
2
D∩K(∇ f (x))

)

− f ∗(∇ f (x))−
〈

∇ f ∗(∇ f (x)),P2
D∩K(∇ f (x))−∇ f (x)

〉

(20)

≤ 1
2c

‖∇ f (x)−P
2
D∩K(∇ f (x))‖2

2, (21)

where the last step follows by an application of Lemma 34, noting that both∇ f (x) andP2
D∩K(∇ f (x))

are in∇ f (S) = D, and f is strongly convex with modulusc overS. To finish, rewriteP as an infi-
mum and use‖ · ‖2 ≤ ‖ ·‖1.

The desired result now follows readily.
Proof of Theorem 23 Invoking Lemma 24 withd= f (Aλ0) immediately provides a compact tight-
est axis-aligned rectangleC containing the initial level setS:= {x∈R

m : ( f + ιIm(A))(x)≤ f (Aλ0)}.
Crucially, since the objective values never increase,SandC contain every iterate{Aλt}∞

t=1.
Applying Lemma 25 to the setC (by Lemma 24,∇ f (C )∩Ker(A⊤) 6= /0), then for anyt,

f (Aλt)− f̄A ≤ 1
2c

‖∇ f (Aλt)−P
1
∇ f (C )∩Ker(A⊤)(∇ f (Aλt))‖2

1,

wherec> 0 is the modulus of strong convexity off overC .
Finally, if there are suboptimal iterates, then∇ f (C ) ⊇ ∇ f (S) contains points that are not dual

feasible, meaning∇ f (C )\Ker(A⊤) 6= /0; since Lemma 24 also provided∇ f (C )∩ΦA 6= /0 and∇ f (C )

582



A PRIMAL -DUAL CONVERGENCEANALYSIS OF BOOSTING

is a hypercube, it follows by Theorem 9 thatγ(A,∇ f (C )) > 0. Plugging this into Proposition 20
and usingf (Aλt)≤ f (Aλ0) gives

f (Aλt+1)− f̄A ≤ f (Aλt)− f̄A−
γ(A,∇ f (C ))2

D
1
∇ f (C )∩Ker(A⊤)(∇ f (Aλt))

2

6η f (Aλt)

≤ ( f (Aλt)− f̄A)

(

1− cγ(A,∇ f (C ))2

3η f (Aλ0)

)

,

and the result again follows by recursively applying this inequality.

Remark 26 The key conditions on g∈ G, namely the existence of constants granting g≤ βg′ and
g′′ ≤ ηg within the initial level set, are much more than are needed in this setting. Inspecting the
presented proofs, it entirely suffices that on any compact set inR

m, f has quadratic upper and
lower bounds (equivalently, bounds on the smallest and largest eigenvalues of the Hessian), which
are precisely the weaker conditions used in previous treatments (Bickel et al., 2006; R̈atsch et al.,
2001).

These quantities are therefore necessary for controlling convergence under weak learnability.
To see how the proofs of this section break down in that setting, consider thecentral Bregman
divergence expression in Equation 20. What is really granted by attainabilityis that every iterate
lies well within the interior ofdom( f ∗), and therefore these Bregman divergences, which depend on
∇ f ∗, can not become too wild. On the other hand, with weak learnability, all dualweights go to
zero (cf. Theorem 11), which means that∇g∗ ↑ ∞, and thus the upper bound in Equation 21 ceases
to be valid. As such, another mechanism is required to control this scenario, which is precisely the
role of g≤ βg′ and g′′ ≤ ηg.

6.3 General Setting

The key development of Section 5.3 was that general instances may be decomposed uniquely into
two smaller pieces, one satisfying attainability and the other satisfying weak learnability, and that
these smaller problems behave somewhat independently. This independence is leveraged here to
produce convergence rates relying upon the existing rate analysis for the attainable and weak learn-
able cases. The mechanism of the proof is as straightforward as one could hope for: decompose the
dual distance into the two pieces, handle them separately using preceding results, and then stitch
them back together.

Theorem 27 Suppose g∈ G and 1 ≤ |H(A)| ≤ m− 1. Recall from Section 5.3 the partition of
the rows of A into A0 ∈ R

m0×n and A+ ∈ R
m+×n, and suppose the axes ofR

m are ordered so that

A =
[

A0
A+

]

. SetC+ to be the tightest axis-aligned rectangleC+ ⊇ {x ∈ R
m+ : ( f + ιIm(A+))(x) ≤

f (Aλ0)}, and w:= supt ‖∇ f (A+λt)−P
1
∇ f (C+)∩Ker(A⊤

+)
(∇ f (A+λt))‖1. ThenC+ is compact, w< ∞,

f has modulus of strong convexity c> 0 overC+, andγ(A,Rm0 ×∇ f (C+))> 0. Using these terms,
for all t,

f (Aλt)− f̄A ≤ 2 f (Aλ0)

(t +1)min{1,γ(A,Rm0
+ ×∇ f (C+))2/(3η(β+w/(2c))2)} .
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The new term,w, appears when stitching together the two subproblems. For choices ofg ∈
G where dom(g∗) is a compact set, this value is easy to bound; for instance, the logistic loss,
where dom(g∗) = [0,1], hasw≤ supφ∈dom( f ∗) ‖φ−0m‖1 = m (since0m ∈ dom( f ∗)). And with the
exponential loss, takingS:= {λ ∈ R

n : f (Aλ) ≤ f (Aλ0)} to denote the initial level set, since0m is
always dual feasible,

w≤ sup
λ∈S

‖∇ f (Aλ)‖1 = sup
λ∈S

f (Aλ) = f (Aλ0) = m.

Note that rearranging the rate from Theorem 27 will provide thatO(1/ε) iterations suffice to
reach suboptimalityε, whereas the earlier scenarios needed onlyO(ln(1/ε)) iterations. The exact
location of the degradation will be pinpointed after the proof, and is related tothe introduction ofw.
Proof of Theorem 27 By Theorem 17,f̄A+ = f̄A, and the form off gives f (Aλt) = f (A0λt)+
f (A+λt), thus

f (Aλt)− f̄A = f (A0λt)+ f (A+λt)− f̄A+ . (22)

For the left term, sinceg(x)≤ β|g′(x)|,

f (A0λt)≤ β‖∇ f (A0λt)‖1 = β‖∇ f (A0λt)−P
1
ΦA0

(∇ f (A0λt))‖1, (23)

which used the fact (from Theorem 17) thatΦA0 = {0m0}.
For the right term of Equation 22, recall from Theorem 17 thatf + ιIm(A+) is 0-coercive, thus

the level setS+ := {x∈ R
m+ : ( f + ιIm(A+))(x)≤ f (Aλ0)} is compact. For allt, since f ≥ 0 and the

objective values never increase,

f (Aλ0)≥ f (Aλt) = f (A0λt)+ f (A+λt)≥ f (A+λt);

in particular,A+λt ∈ S+. It is crucial that the level set compares againstf (Aλ0) and notf (A+λ0).
Continuing, Lemma 24 may be applied toA+ with valued = f (Aλ0), which grants a tightest

axis-aligned rectangleC+ ⊆ R
m+ containingS+, and moreover∇ f (C+)∩Ker(A⊤

+) 6= /0. Applying
Lemma 25 toA+ andC+, f is strongly convex with modulusc> 0 overC+, and for anyt,

f (A+λt)− f̄A+ ≤ 1
2c

‖∇ f (A+λt)−P
1
∇ f (C+)∩Ker(A⊤

+)
(∇ f (A+λt))‖2

1. (24)

Next, setw := supt ‖∇ f (A+λt)−P
1
∇ f (C+)∩Ker(A⊤)(∇ f (A+λt))‖1; w < ∞ sinceS+ is compact and

∇ f (C+)∩Ker(A⊤) is nonempty. By the definition ofw,

D
1
∇ f (C+)∩Ker(A⊤

+)
(∇ f (A+λt))

2 ≤ wD1
∇ f (C+)∩Ker(A⊤

+)
(∇ f (A+λt)),

which combined with Equation 24 yields

f (A+λt)− f̄A+ ≤ w
2c

D
1
∇ f (C+)∩Ker(A⊤

+)
(∇ f (A+λt)). (25)

To merge the subproblem dual distance upper bounds Equation 23 and Equation 25 via Lemma 47,
it must be shown that(Rm0

+ ×∇ f (C+))∩ΦA 6= /0. But this follows by construction and Theorem 17,
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since{0m}=ΦA0 ⊆R
m
+, ∇ f (C+)∩ΦA+ 6= /0 by Lemma 24, and the decompositionΦA =ΦA0×ΦA+ .

Returning to the total suboptimality expression Equation 22, these dual distance bounds yield

f (Aλt)− f̄A ≤ βD1
ΦA0

(∇ f (A0λt))+w/(2c)D1
∇ f (C+)∩Ker(A⊤

+)
(∇ f (A+λt))

≤ (β+w/(2c))D1
(R

m0
+ ×∇ f (C+))∩Ker(A⊤)

(∇ f (Aλt)),

the second step using Lemma 47.
To finish, noteRm0

+ ×∇ f (C+) is polyhedral, and

(Rm0
+ ×∇ f (C+))\Ker(A⊤) ⊇ {∇ f (Aλt)}∞

t=1\Ker(A⊤) 6= /0

since no primal iterate is optimal and thus∇ f (Aλt) is not dual feasible by optimality conditions;
combined with the above derivation(Rm0

+ ×∇ f (C+))∩ΦA 6= /0, Theorem 9 may be applied, meaning
γ(A,Rm0

+ ×∇ f (C+)) > 0. As such, all conditions of Proposition 20 are met, and making use of
f (Aλt)≤ f (Aλ0),

f (Aλt+1)− f̄A ≤ f (Aλt)− f̄A−
γ(A,Rm0

+ ×∇ f (C+))2
D

1
(R

m0
+ ×∇ f (C+))∩Ker(A⊤)

(∇ f (Aλt))
2

6η f (Aλt)

≤ f (Aλt)− f̄A−
γ(A,Rm0

+ ×∇ f (C+))2( f (Aλt)− f̄A)2

6η f (Aλ0)(β+w/(2c))2 .

Applying Lemma 33 with

εt :=
f (Aλt)− f̄A

f (Aλ0)
and r :=

1
2

min

{

1,
γ(A,Rm0

+ ×∇ f (C+))2

3η(β+w/(2c))2

}

gives the result.

In order to produce a rateO(ln(1/ε)) under attainability, strong convexity related the subopti-
mality to asquareddual distance‖ · ‖2

1 (cf. Equation 21). On the other hand, the rateO(ln(1/ε))
under weak learnability came from a fortuitous cancellation with the denominatorf (Aλt) (cf. Equa-
tion 19), which is equal to the total suboptimality since Theorem 11 providesf̄A = 0. But in order
to merge the subproblem dual distances via Lemma 47, the differing properties granting fast rates
must be ignored. (In the case of attainability, this process introducesw.)

This incompatibility is not merely an artifact of the analysis. Intuitively, the finite and infinite
margins sought by the two piecesA0,A+ are in conflict. For a beautifully simple, concrete case of
this, consider the following matrix, due to Schapire (2010):

S:=





−1 +1
+1 −1
−1 −1



 .

The optimal solution here is to push both coordinates ofλ unboundedly positive, with margins
approaching(0,0,∞). But pushing any coordinate(λ)i too quickly will increase the objective value,
rather than decreasing it. In fact, this instance will provide a lower bound, and the mechanism of
the proof shows that the primal weights grow extremely slowly, asO(ln(t)).
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Theorem 28 Fix g = ln(1+ exp(·)) ∈ G, the logistic loss, and suppose the line search is exact.
Then for any t≥ 1, f (Sλt)− f̄S≥ 1/(8t).

(The proof, in Section G.6, is by brute force.)
Finally, note that this third setting does not always entail slow convergence. Again taking the

view of the rows ofSbeing points{−si}3
1, consider the effect of rotating the entire instance around

the origin byπ/4. The optimization scenario is unchanged, however coordinate descentcan now be
arbitrarily close to the optimum in one iteration by pushing a single primal weight extremely high.
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Appendix A. Common Notation

Symbol Comment

R
m m-dimensional vector space over the reals.

R
m
+ Non-negativem-dimensional real vectors.

int(S) The interior of setS.
R

m
++ Positivem-dimensional real vectors, that is, int(Rm

+).
R

m
−,R

m
−− Respectively−R

m
+,−R

m
++.

0m,1m m-dimensional vectors of all zeros and all ones, respectively.
ei Indicator vector: 1 at coordinatei, 0 elsewhere. Context will provide the ambient

dimension.
Im(A) Image of linear operatorA.
Ker(A) Kernel of linear operatorA.

ιS Indicator function on a setS:

ιS(x) :=

{

0 x∈ S,
∞ x 6∈ S.

dom(h) Domain of convex functionh, that is, the set{x∈ R
m : h(x)< ∞}.

h∗ The Fenchel conjugate ofh:

h∗(φ) = sup
x∈dom(h)

〈φ,x〉−h(x).

(Cf. Section 3 and Section B.2.)
0-coercive A convex function with all level sets compact is called 0-coercive (cf. Section 5.2).

G0 Basic loss family under consideration (cf. Section 2).
G Refined loss family for which convergence rates are established (cf. Section 6).

η,β Parameters corresponding to someg∈G (cf. Section 6).
ΦA The general dual feasibility set:ΦA := Ker(A⊤)∩R

m
+ (cf. Section 3).

γ(A,S) Generalization of classical weak learning rate (cf. Section 4).
f̄A The minimal objective value off ◦A: f̄A := infλ f (Aλ) (cf. Section 2).

ψ f
A Dual optimum (cf. Section 3).

P
p
S l p projection onto closed nonempty convex setS, with ties broken in some consis-

tent manner (cf. Section 4).
D

p
S l p distance to closed nonempty convex setS: Dp

S(φ) := ‖φ−P
p
S(φ)‖p.

Appendix B. Supporting Results from Convex Analysis, Optimization, and Linear
Programming

This appendix collects various supporting results from the literature.

B.1 Theorems of the Alternative

Theorems of the alternative consider the interplay between a matrix (or a fewmatrices) and its
transpose; they are typically stated as two alternative scenarios, exactly one of which must hold.
These results usually appear in connection with linear programming, where Farkas’s lemma is used
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to certify (or not) the existence of solutions. In the present manuscript, they are used to establish
the relationship between Im(A) and Ker(A⊤), appearing as the first and fourth clauses of the various
characterization theorems in Section 5.

The first such theorem, used in the setting of weak learnability, is perhaps the oldest theorem of
alternatives (Dantzig and Thapa, 2003, Bibliographic Notes, Section 5 ofChapter 2). Interestingly,
a streamlined presentation, using a related optimization problem (which can nearly be written as
f ◦A from this manuscript), can be found in Borwein and Lewis (2000, Theorem 2.2.6).

Theorem 29 (Gordan, Borwein and Lewis, 2000, Theorem 2.2.1)For any A∈R
m×n, exactly one

of the following situations holds:

∃λ ∈ R
n
�Aλ ∈ R

m
−−;

∃φ ∈ R
m
+ \{0m} �A⊤φ = 0n.

A geometric interpretation is as follows. Take the rows ofA to bem points inRn. Then there are
two possibilities: either there exists an open homogeneous halfspace containing all points, or their
convex hull contains the origin.

Next is Stiemke’s Theorem of the Alternative, used in connection with attainability.

Theorem 30 (Stiemke, Borwein and Lewis, 2000, Exercise 2.2.8)For any A∈R
m×n, exactly one

of the following situations holds:

∃λ ∈ R
n
�Aλ ∈ R

m
− \{0m};

∃φ ∈ R
m
++ �A⊤φ = 0n.

The geometric interpretation here is that either there exists a closed homogeneous halfspace con-
taining all m points, with at least one point interior to the halfspace, or the relative interior of the
convex hull of the points contains the origin (for the connection to relative interiors, see for instance
Hiriart-Urruty and Lemaŕechal 2001, Remark A.2.1.4).

Finally, a version of Motzkin’s Transposition Theorem, which can encodethe theorems of alter-
natives due to Farkas, Stiemke, and Gordan (Ben-Israel, 2002).

Theorem 31 (Motzkin, Dantzig and Thapa, 2003, Theorem 2.16)For any B∈R
z×n and C∈R

p×n,
exactly one of the following situations holds:

∃λ ∈ R
n
�Bλ ∈ R

z
−−∧Cλ ∈ R

p
−,

∃φB ∈ R
z
+ \{0z},φC ∈ R

p
+ �B⊤φB+C⊤φC = 0n.

For this geometric interpretation, take any matrixA∈ R
m×n, broken into two submatricesB∈ R

z×n

andC∈R
p×n, with z+ p=m; again, consider the rows ofA asmpoints inRn. The first possibility is

that there exists a closed homogeneous halfspace containing allmpoints, thezpoints corresponding
to B being interior to the halfspace. Otherwise, the origin can be written as a convex combination
of thesempoints, with positive weight on at least one element ofB.
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B.2 Fenchel Conjugacy

The Fenchel conjugate of a functionh, defined in Section 3, is

h∗(φ) = sup
x∈dom(h)

〈x,φ〉−h(x),

where dom(h) = {x : h(x) < ∞}. The main property of the conjugate, indeed what motivated its
definition, is that∇h∗(∇h(x)) = x (Hiriart-Urruty and Lemaŕechal, 2001, Corollary E.1.4.4). To
demystify this, differentiate and set to zero the contents of the above sup: the Fenchel conjugate
acts as an inverse gradient map. For a beautiful description of Fenchelconjugacy, please see Hiriart-
Urruty and Lemaŕechal (2001, Section E.1.2).

Another crucial property of Fenchel conjugates is the Fenchel-Younginequality, simplified here
for differentiability (the “if” can be strengthened to “iff” via subgradients).

Proposition 32 (Fenchel-Young, Borwein and Lewis, 2000, Proposition 3.3.4) For any convex func-
tion h and x∈ dom(h), φ ∈ dom(h∗),

h(x)+h∗(φ)≥ 〈x,φ〉 ,

with equality ifφ = ∇h(x).

B.3 Convex Optimization

Two standard results from convex optimization will help produce convergence rates; note that these
results can be found in many sources.

First, a lemma to convert single-step convergence results into general convergence results.

Lemma 33 (Lemma 20 from Shalev-Shwartz and Singer 2008)Let 1 ≥ ε1 ≥ ε2 ≥ . . . be given
with εt+1 ≤ εt − rε2

t for some r∈ (0,1/2]. Thenεt ≤ (r(t +1))−1.

Although strong convexity in the primal grants the existence of a lower bounding quadratic, it
grants upper bounds in the dual. The following result is also standard in convex analysis, see for
instance Hiriart-Urruty and Lemaréchal (2001, proof of Theorem E.4.2.2).

Lemma 34 (Lemma 18 from Shalev-Shwartz and Singer 2008)Let h be strongly convex over com-
pact convex set S with modulus c. Then for anyφ1,φ1+φ2 ∈ ∇h(S),

h∗(φ1+φ2)−h∗(φ1)≤ 〈∇h∗(φ1),φ2〉+
1
2c

‖φ2‖2
2.

Appendix C. Basic Properties ofg∈G0

Lemma 35 Let any g∈G0 be given. Then g is strictly convex, g> 0, g strictly increases (g′ > 0),
and g′ strictly increases. Lastly,limx→∞ g(x) = ∞.

Proof (Strict convexity andg′ strictly increases.) For anyx< y,

g′(y) = g′(x)+
∫ y

x
g′′(t)dt ≥ g′(x)+(y−x) inf

t∈[x,y]
g′′(t)> g′(x),
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thusg′ strictly increases, granting strict convexity (Hiriart-Urruty and Lemaréchal, 2001, Theorem
B.4.1.4).

(g strictly increases, that is,g′ > 0.) Suppose there existsy with g′(y)≤ 0, and choose anyx< y.
Sinceg′ strictly increases,g′(x)< 0. But that means

lim
z→−∞

g(z)≥ lim
z→−∞

g(x)+(z−x)g′(x) = ∞,

a contradiction.
(g > 0.) If there existedy with g(y) ≤ 0, then the strict increasing property would invalidate

limx→−∞ g(x) = 0.
(limx→∞ g(x) = ∞.) Let any sequence{ci}∞

1 ↑ ∞ be given; the result follows by convexity and
g′ > 0, since

lim
i→∞

g(ci)≥ lim
i→∞

g(c1)+g′(c1)(ci −c1) = ∞.

Next, a deferred proof regarding properties ofg∗ for g∈G0.
Proof of Lemma 2 g∗ is strictly convex becauseg is differentiable, andg∗ is continuously differen-
tiable on int(dom(g∗)) becauseg is strictly convex (Hiriart-Urruty and Lemaréchal, 2001, Theorems
E.4.1.1, E.4.1.2).

Next, whenφ < 0: limx→−∞ g(x) = 0 grants the existence ofy such that for anyx≤ y, g(x)≤ 1,
thus

g∗(φ) = sup
x

φx−g(x)≥ sup
x≤y

φx−1= ∞.

(g> 0 precludes the possibility of∞−∞.)
Takeφ = 0; then

g∗(φ) = sup
x
−g(x) =− inf

x
g(x) = 0.

Whenφ = g′(0), by the Fenchel-Young inequality (Proposition 32),

g∗(φ) = g∗(g′(0)) = 0·g′(0)−g(0) =−g(0).

Moreover∇g∗(g′(0)) = 0 (Hiriart-Urruty and Lemaŕechal, 2001, Corollary E.1.4.3), which com-
bined with strict convexity ofg∗ meansg′(0) minimizes g∗. g∗ is closed (Hiriart-Urruty and
Lemaŕechal, 2001, Theorem E.1.1.2), which combined with the above gives that dom(g∗) = [0,∞)
or dom(g∗) = [0,b] for someb> 0, and the rest of the form ofg∗.

Finally, properties of the empirical risk functionf and its conjugatef ∗.

Lemma 36 Let any g∈ G0 be given. Then the corresponding f is strictly convex, twice con-
tinuously differentiable, and∇ f > 0m. Furthermore,dom( f ∗) = dom(g∗)m ⊆ R

m
+, f ∗(0m) = 0,

f ∗ is strictly convex, f∗ is continuously differentiable on the interior of its domain, and finally
f ∗(φ) = ∑m

i=1g∗(φi).
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Proof First,

f ∗(φ) = sup
x∈Rm

〈φ,x〉− f (x) = sup
x∈Rm

m

∑
i=1

xiφi −g(xi) =
m

∑
i=1

g∗(φi).

Next, strict convexity ofg∗ (cf. Lemma 2) means, forx 6= y, 〈∇g∗(x)−∇g∗(y),x−y〉> 0 (Hiriart-
Urruty and Lemaŕechal, 2001, Theorem E.4.1.4); thus, givenφ1,φ2 ∈ R

m with φ1 6= φ2, strict con-
vexity of f ∗ follows from

〈∇ f ∗(φ1)−∇ f ∗(φ2),φ1−φ2〉=
m

∑
i=1

〈∇g∗((φ1)i)−∇g∗((φ2)i),(φ1)i − (φ2)i〉> 0.

The remaining properties follow from properties ofg andg∗ (cf. Lemma 35 and Lemma 2).

Appendix D. Approximate Line Search

This section provides two approximate line search methods for BOOST: an iterative approach, out-
lined in Section D.1 and analyzed in Section D.2, and a closed form choice, outlined in Section D.3.

The iterative approach follows standard line search principles from nonlinear optimization (Bert-
sekas, 1999; Nocedal and Wright, 2006). It requires no parameters, only the ability to evaluate
objective values and their gradients, and as such is perhaps of greaterpractical interest. Due to
this, and the fact that its guarantee is just a constant factor worse than theclosed form method, all
convergence analysis will use this choice.

The closed form step size is provided for the sake of comparison to other choices from the
boosting literature. The drawback, as mentioned above, is the need to knowcertain parameters,
specifically a second derivative bound, which may be loose.

Before proceeding, note briefly that this section is the only place where boundedness of the
entries ofA is used. Without this assumption, the second derivative upper bounds would contain the
term maxi, j A2

i j , which in turn would appear in the various convergence rates of Section 6.

D.1 The Wolfe Conditions

Consider any convex differentiable functionh, a current iteratex, and a descent directionv (that is,
∇h(x)⊤v< 0). By convexity, the linearization ofh atx in directionv, symbolicallyh(x)+α∇h(x)⊤v,
will lie below the function. But, by continuity, it must be the case that, for anyc1 ∈ (0,1), the ray
h(x)+αc1∇h(x)⊤v, depicted in Figure 8, must lie aboveh for some small region aroundx; this
gives the first Wolfe condition, also known as the Armijo condition (cf. Nocedal and Wright 2006,
Equation 3.4 and Bertsekas 1999, Exercise 1.2.16):

h(x+αv)≤ h(x)+αc1∇h(x)⊤v. (26)

Unfortunately, this rule may grant only very limited decrease in objective value, sinceα > 0 can
be chosen arbitrarily small and still satisfy the rule; thus, the second Wolfe condition, also called a
curvature condition, which depends onc2 ∈ (c1,1), forces the step to be farther away:

∇h(x+αv)⊤v≥ c2∇h(x)⊤v. (27)
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Routine WOLFE.
Input Convex functionh, iteratex, descent directionv.
Output Step sizeα > 0 satisfying Equation 26 and Equation 27.

1. Bracketing step.

(a) Setαmax := 1.

(b) While αmax satisfies Equation 26:

• Setαmax := 2αmax.

2. Bisection step.

(a) Setαmin := 0 andα := αmax/2.

(b) While α does not satisfy Equation 26 and Equation 27:

i. If α violates Equation 26:

• Setαmax := α.

ii. Else,α must violate Equation 27:

• Setαmin := α.

iii. Set α := (αmin+αmax)/2.

(c) Returnα.

Figure 7: Bracketing and bisecting search for step size satisfying Wolfe conditions.

This requires the new gradient (in directionv) to be closer to 0, mimicking first order optimality
conditions for the exact line search. Note that the new gradient (in direction v) may in fact be
positive; this does not affect the analysis.

In the case of boosting, with functionf ◦A, current iterateλt , directionvt+1∈{±ejt+1} satisfying
∇( f ◦A)(λt)

⊤vt+1 =−‖∇( f ◦A)(λt)‖∞, these conditions become

( f ◦A)(λt +αvt+1)≤ ( f ◦A)(λt)−αc1‖∇( f ◦A)(λt)‖∞, (28)

∇( f ◦A)(λt +αvt+1)
⊤vt+1 ≥−c2‖∇( f ◦A)(λt)‖∞. (29)

An algorithm to find a point satisfying these conditions, presented in Figure 7, is simple enough:
grow α as quickly as possible, and then bisect backwards for a satisfactory point. As compared
with the presentation in Nocedal and Wright (2006, Algorithm 3.5),αmax is searched for rather than
provided, and convexity removes the need for interpolation.

Proposition 37 Given a continuously differentiable convex bounded below function h, iteratex,
and direction v,WOLFE terminates with anα > 0 satisfying Equation 26 and Equation 27.

Proof The bracketing search must terminate:v is a descent direction, so the linearization atλt−1

with slopec1∇h(x)⊤v will eventually intersecth (sinceh it is bounded below).
The remainder of this proof is illustrated in Figure 8. Letα1 be the greatest positive real sat-

isfying Equation 26; due to convexity, everyα ≥ 0 satisfying this first condition must also satisfy
α ∈ [0,α1]. Crucially,α1 < αmax.
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∇h(x)⊤v

c1∇h(x)⊤v

c2∇h(x)⊤vc2∇h(x)⊤v

α2 α1

Wolfe condition 2

Wolfe condition 1

h(x+ αv)

Figure 8: The mechanism behind WOLFE: the set of points satisfying Equation 26 and Equation 27
is a closed interval, and bisection will find interior points. In this figure, dashed lines
denote various relevant slopes.

Next, letα2 be the smallest positive real satisfying Equation 27; existence of such a point follows
from the existence of points satisfying both Wolfe conditions (Nocedal andWright, 2006, Lemma
3.1). By convexity,

〈∇h(x+αv)−∇h(x),v〉 ≥ 0,

and therefore everyα ≥ 0 satisfying Equation 27 must satisfyα ≥ α2.
Finally, α1 6= α2, sincec1 < c2, meaning

∇h(x+α1v)⊤v= c2∇h(x)⊤v< c1∇h(x)⊤v< ∇h(x+α2v)⊤v.

Combining these facts, the interval[α2,α1] is precisely the set of points which satisfy Equa-
tion 28 and Equation 27. The bisection search maintains the invariantsαmin ≤ α2 andαmax≥ α1,
meaning no valid solution is ever thrown out:[α2,α1] ⊆ [αmin,αmax]. [α2,α1] has nonzero width
(sinceα1 6= α2), and every bisection step halves the width of[αmin,αmax], thus the procedure termi-
nates.

D.2 Improvement Guaranteed by WOLFE Search

The following proof, adapted from Nocedal and Wright (2006, Lemma 3.1), provides the improve-
ment gained by a single line search step. The usual proof depends on a Lipschitz parameter on the
gradient, which is furnished here byg′′(x)≤ ηg(x).

Proposition 38 (See Nocedal and Wright 2006, Lemma 3.1)Fix any g∈G. If αt+1 is chosen by
WOLFE applied to function f◦A at iterateλt in direction vt+1 with c1 = 1/3 and c2 = 1/2, then

f (A(λt +αt+1vt+1))≤ f (Aλt)−
‖A⊤∇ f (Aλt)‖2

∞
6η f (Aλt)

.
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Proof First note that everyα ∈ [0,αt+1] satisfies

f (A(λt +αvt+1))≤ f (Aλt).

By the fundamental theorem of calculus,

(∇( f ◦A)(λt +αt+1vt+1)−∇( f ◦A)(λt))
⊤vt+1

=
∫ αt+1

0
v⊤t+1∇2( f ◦A)(λt +αvt+1)vt+1dα

≤ αt+1 sup
α∈[0,αt+1]

m

∑
i=1

g′′(e⊤i A(λt +αvt+1))(Ai j t+1)
2

≤ ηαt+1 sup
α∈[0,αt+1]

m

∑
i=1

g(e⊤i A(λt +αvt+1))

≤ ηαt+1 f (Aλt),

which used boundedness of the entries inA.
The rest of the proof continues as in Nocedal and Wright (2006, Theorem 3.2). Specifically,

subtracting∇( f ◦A)(λt)
⊤vt+1 from both sides of Equation 29 yields

(∇( f ◦A)(λt +αt+1vt+1)−∇( f ◦A)(λt))
⊤vt+1 ≥ (c2−1)∇( f ◦A)(λt)

⊤vt+1.

Combining these two gives

αt+1 ≥
(c2−1)∇( f ◦A)(λt)

⊤vt+1

η f (Aλt)
=

(1−c2)‖∇( f ◦A)(λt)‖∞

η f (Aλt)
.

Plugging this into Equation 28 yields

( f ◦A)(λt +αt+1vt+1)≤ ( f ◦A)(λt)−
c1(1−c2)‖∇( f ◦A)(λt)‖2

∞
η f (Aλt)

.

Note briefly that the simpler iterative strategy of backtracking line search is doomed to require
knowledge of the sorts of parameters appearing in the closed form choice.

D.3 Non-iterative Step Selection

The same techniques from the proof of Proposition 38 can provide a closed form choice ofαt . In
particular, it follows that anyα ∈ {α ≥ 0 : f (Aλt) ≥ f (A(λt +αvt+1))} is upper bounded by the
quadratic

f (A(λt +αvt+1))≤ f (Aλt)−α‖A⊤∇ f (Aλt)‖∞ +
α2η f (Aλt)

2
.

This quadratic is minimized at

α′ :=
‖A⊤∇ f (Aλt)‖∞

η f (Aλt)
;

594



A PRIMAL -DUAL CONVERGENCEANALYSIS OF BOOSTING

moreover, this minimum is attained within the interval above, which in particular implies

f (A(λt +α′vt+1))≤ f (Aλt)−
‖A⊤∇ f (Aλt)‖2

∞
2η f (Aλt)

.

Whenη is simple and tight, this yields a pleasing expression (for instance,η = 1 wheng= exp(·)).
In general, however,η might be hard to calculate, or simply very loose, in which case performing a
line search like WOLFE is preferable.

Appendix E. Approximate Coordinate Selection

Selecting a coordinatejt translates into selecting some hypothesisht ∈ H ; this is in fact a key
strength of boosting, sinceA need not be written down, and a weak learning oracle can select
ht ∈H . But for certain hypothesis classesH , it may be impossible to guaranteeht is truly the best
choice.

Observe how these statements translate into gradient descent. Specifically,the choicevt+1 made
by boosting satisfies

v⊤t+1∇( f ◦A)(λt) = v⊤t+1A⊤∇ f (Aλt) =−‖A⊤∇ f (Aλt)‖∞.

On the other hand, the usual choicev = −∇( f ◦A)(λt)/‖A⊤∇ f (Aλt)‖2 of gradient descent (l2

steepest descent) grants
v⊤∇( f ◦A)(λt) =−‖A⊤∇ f (Aλt)‖2;

note that this choice ofv is potentially a dense vector.

Remark 39 Suppose the relaxed condition that the weak learner need merely have any correlation
over the provided distribution; in optimization terms, the returned direction v satisfies

v⊤∇( f ◦A)(λt)< 0.

This choice is not sufficient to guarantee convergence, let alone any reasonable convergence rate.
As an example boosting instance, consider either of the matrices

A1 :=









−1 +1 0
+1 −1 0
−1 −1 0
0 0 −1









, A2 :=





−1 +1 −1
+1 −1 −1
−1 −1 −1



 ,

the first of which uses confidence-rated predictors, the second of which is weak learnable; note that
both instances embed the matrix S due to Schapire (2010), used for lower bounds in Section 6.3.

For either instance,e1,e2,e1,e2,e1, . . . is a sequence of descent directions. But, for either matrix,
to approach optimality, the weight on the third column must go to infinity.

A first candidate fix is to choose some appropriatec0 > 0, and require

v⊤∇( f ◦A)(λt)≤−c0‖∇ f (Aλt)‖1;
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but note, by Theorem 7 and Theorem 11, that this is only possible under weak learnability. (Drop-
ping the term‖∇ f (Aλt)‖1 also fails; supposeA grants a minimizer̄λ: plugging this in makes the
left hand side exactly zero, and continuity thus grants arbitrarily small values.)

Instead consider requiring the weak learning oracle to return some hypothesis at least a fraction
c0 ∈ (0,1] as good as the best weak learner in the class; written in the present framework, the
directionv must satisfy

v⊤∇( f ◦A)(λt)≤−c0‖A⊤∇ f (Aλt)‖∞.

Inspecting the proof of Proposition 20, it follows that this approximate selection would simply intro-
duce the constantc2

0 in all rates, but would not degrade their asymptotic relationship to suboptimality
ε.

Appendix F. Generalizing the Weak Learning Rate

This appendix develops the generalizationγ(A,S) of the classical weak learning rate.

F.1 Choosing a Generalization toγ

Any generalizationγ′ of γ should satisfy the following properties.

• When weak learnability holds,γ′ = γ.

• For any boosting instance,γ′ ∈ (0,∞).

• γ′ provides an expression similar to Equation 5, which allows the full gradient tobe converted
into a notion of suboptimality in the dual.

Taking the form of the classical weak learning rate from Equation 3 as a model, the template
generalized weak learning rate is

γ′(A,S,C,D) := inf
φ∈S\C

‖A⊤φ‖∞

infψ∈S∩D ‖φ−ψ‖1
,

for some setsS, C, andD (for instance, the classical weak learning rate usesS= R
m
+ andC = D =

{0m}). In order to provide an expression similar to Equation 5, the domain of the infimum must
include every suboptimal dual iterate∇ f (Aλt).

Any choiceC which does not include all of Ker(A⊤) is immediately problematic: this allows
φ ∈ S∩Ker(A⊤) to be selected, wherebyA⊤φ = 0m andγ′ = 0. But note that without being careful
aboutD, it is still possible to force the value 0.

Remark 40 Another generalization is to define

γ′′(A) := γ′(A,Rm
+,Ker(A⊤),{ψ f

A}) = inf
φ∈Rm

+\ΦA

‖A⊤φ‖∞

‖φ−ψ f
A‖1

.

This form agrees with the originalγ when weak learnability holds, and will lead to a very convenient
analog to Equation 5.

Unfortunately,γ′′ may be zero. Specifically, take the matrix S defined in Section 6.3, due to
Schapire (2010), where

ψ f
S = g′(0)

[

1
1
0

]

.
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Furthermore, for anyα ∈ (0,1), define

φa := α
[

0
0
1

]

∈ Im(S); ψα := (1−α)
[

1/2
1/2
0

]

+ψ f
S ∈ Ker(S⊤).

Then

inf
φ∈Rm

+\Ker(S⊤)

‖S⊤φ‖∞

‖φ−ψ f
S‖1

≤ inf
α∈(0,1)

‖S⊤(φα +ψα)‖∞

‖φα +ψα −ψ f
S‖1

= inf
α∈(0,1)

∥

∥

[−α
−α

]∥

∥

∞
1

= 0.

The natural correction to these worries is to setC = D = Ker(A⊤). But there is still sensitivity
due toS.

Remark 41 Set A:= 12, meaningKer(A⊤) = {z(1,−1) : z∈ R}, and S= B(12,
√

2), the ball of
radius

√
2 around12; note that S∩Ker(A⊤) = 02. Considerγ′(A,S,Ker(A⊤),Ker(A⊤)), and the

sequence{φi}∞
i=1 where

φi = 12−
1√

i2+1

[

i+1
i−1

]

.

Note that‖φi −12‖2 =
√

2, thusφi ∈ S. Furthermore, A⊤φi 6= 0, soφi 6∈ S∩Ker(A⊤). As such,

γ′(A,S,Ker(A⊤),Ker(A⊤))≤ inf
i

‖A⊤φi‖∞

‖φi −P
1
S∩Ker(A⊤)(φi)‖1

=
‖1⊤2

(

12
√

i2+1−
[

i+1
i−1

]

)

‖∞

‖12
√

i2+1−
[

i+1
i−1

]

‖1
. (30)

Using
√

y≤ (1+y)/2, the numerator has upper bound

‖1⊤2
(

12

√

i2+1−
[

i+1
i−1

]

)

‖∞ = |2
√

i2+1−2i|

= 2i(
√

1+ i−2−1)

≤ 2i((2+ i−2)/2−1) = 1/i.

The denominator is

‖12

√

i2+1−
[

i+1
i−1

]

‖1 = |
√

i2+1− (i+1)|+ |
√

i2+1− (i−1)|
= ((i+1)−

√

i2+1)+(
√

i2+1− (i−1))

= 2.

Thus Equation 30 is bounded above byinf i(2i)−1 = 0.

The difficulty here was the curvature ofS, which allowed elements arbitrarily close to Ker(A⊤)
without actually being inside this subspace. This possibility is averted in this manuscript by re-
quiring polyhedrality ofS. This choice is sufficiently rich to allow the various dual-distance upper
bounds of Section 6.
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F.2 Proof of Theorem 9

The proof of Theorem 9 requires a few steps, but the strategy is straightforward. First note that
γ(A,S) can be rewritten as

γ(A,S) = inf
φ∈S\Ker(A⊤)

‖A⊤φ‖∞

‖φ−P
1
S∩Ker(A⊤)(φ)‖1

= inf
φ∈S\Ker(A⊤)

‖A⊤(φ−P
1
S∩Ker(A⊤)(φ))‖∞

‖φ−P
1
S∩Ker(A⊤)(φ)‖1

= inf

{‖A⊤v‖∞

‖v‖1
: v∈ R

m\{0m},∃φ ∈ S�v= φ−P
1
S∩Ker(A⊤)(φ)

}

= inf
{

‖A⊤v‖∞ : ‖v‖1 = 1,∃φ ∈ S,∃c> 0�cv= φ−P
1
S∩Ker(A⊤)(φ)

}

, (31)

where the second equivalence usedA⊤
P

1
S∩Ker(A⊤)(φ) = 0n.

In the final form,v 6∈ Ker(A⊤), and soA⊤v 6= 0n; that is to say, the infimand is positive for every
element of its domain. The difficulty is that the domain of the infimum, written in this way,is not
obviously closed; thus one can not simply assert the infimum is attainable and positive.

The goal then will be to reparameterize the infimum to have a compact domain. For technical
convenience, the result will be mainly proved for thel2 norm (where projections behave nicely),
and norm equivalence will provide the final result.

Lemma 42 Given A∈R
m×n and a polyhedron S⊆R

m with S∩Ker(A⊤) 6= /0 and S\Ker(A⊤) 6= /0,

inf

{‖A⊤(φ−P
2
S∩Ker(A⊤)(φ))‖2

‖φ−P
2
S∩Ker(A⊤)(φ)‖2

: φ ∈ S\Ker(A⊤)

}

> 0. (32)

To produce the desired reparameterization of this infimum, the following characterization of poly-
hedral sets will be used.

Definition 43 For any nonempty polyhedral set S⊆ R
m, let HS index a finite (but possibly empty)

collection of affine functions gα : Rm → R so that S= ∩α∈HS{x ∈ R
m : gα(x) ≤ 0} (with the con-

vention that S= R
m whenHS= /0). For any x∈ S, letIS(x) denote theactive setfor x: α ∈ IS(x)

iff gα(x) = 0. Lastly, define a relation∼S over points in S: given x,y∈ S, x∼S y iff IS(x) = IS(y).
Observe that∼S is an equivalence relation over points within S, and letCS be the set of equivalence
classes.

The equivalence relation∼S thus partitionsS into the members ofCS, each of which has a very
convenient structure.

Lemma 44 Let a polyhedral set S⊆ R
m be given, and fix a nonempty F∈ CS. Then F is convex,

and F is equal to its relative interior (i.e., F= ri(F)). Finally, fixing an arbitrary z0 ∈ F, the
normal cone at any point z∈ F is orthogonal to the vector space parallel to the affine hull of F (i.e.,
NF(z) = (aff(F)−{z})⊥ = (aff(F)−{z0})⊥).
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Throughout the remainder of this section, normal and tangent cones will be considered at points
within a setF ∈ CS. As Lemma 44 establishes, any setF ∈ CS is relatively open(F = ri(F)),
however, the required properties of normal and tangent cones, as developed by Hiriart-Urruty and
Lemaŕechal (2001, Sections A.5.2 and A.5.3), supposeclosedconvex sets. But it is always the
case that ri(F) = ri(cl(F)) (Hiriart-Urruty and Lemaŕechal, 2001, Proposition A.2.1.8); as such,
the normal and tangent cones at the desired relative interior points may justas well be constructed
against cl(F), and thus the aforementioned properties safely hold.
Proof If S= R

m (meaningHS is empty) or dim(F) = 0 (F is a single point), everything follows
directly, thus supposeS 6= R

m, and fix a nonemptyF ∈ CS with dim(F)> 0.
Let anyx0,x1 ∈ F and β ∈ [0,1] be given, and definexβ := (1− β)x0 + βx1. Since eachgα

definingS is affine,
gα(xβ) = (1−β)gα(x0)+βgα(x1). (33)

By construction ofCS, gα(x0) = 0 iff gα(x1) = 0 and otherwise both are negative, thusgα(xβ) = 0
iff gα(x0) = gα(x1) = 0, meaningIS(xβ) = IS(x0) = IS(x1), soxβ ∈ F andF is convex.

Now let anyy0 ∈ F be given;y0 ∈ ri(F) when there exists aδ > 0 so that

B(y0,δ)∩aff(F)⊆ F (34)

(Hiriart-Urruty and Lemaŕechal, 2001, Definition A.2.1.1). To this end, first defineδ to be half the
distance to the closest hyperplane definingSwhich is not active fory0:

δ :=
1
2

min
α∈HS\IS(y)

min{‖y′−y0‖2 : y′ ∈ R
m,gα(y

′) = 0}.

Since there are only finitely many such hyperplanes, and the distance to each is nonzero,δ > 0. Let
anyyβ ∈ B(y,δ)∩aff(F) be given; by definition of aff(F), there must existβ ∈R andy1 ∈ F so that
yβ = (1−β)y0+βy1. By Equation 33, for anyα ∈ IS(y0) = IS(y1),

gα(yβ) = (1−β)gα(y0)+βgα(y1) = 0.

On the other hand, for anyα ∈HS\ IS(y0), it must be the case thatgα(yβ)< 0, sinceyβ ∈ B(y0,δ),
and due to the choice ofδ. Returning to the definition of relative interior in Equation 34, it follows
thaty0 ∈ ri(F), and ri(F) = F sincey0 ∈ F was arbitrary.

For the final property, for anyz0,z∈ ri(F) = F , the tangent coneTF(z) has form(aff(F)−{z})
(Hiriart-Urruty and Lemaŕechal, 2001, see Proposition A.5.2.1 and discussion within Section A.5.3),
and note aff(F)−{z}= aff(F)+{z0−z}−{z0}= aff(F)−{z0}. Lastly,NF(z) = TF(z)⊥ (Hiriart-
Urruty and Lemaŕechal, 2001, Proposition A.5.2.4).

The relevance to Equation 32 and Equation 31 is that projections from polyhedron S onto
S∩Ker(A⊤) (itself a polyhedron, as is verified in the proof of Lemma 42) must land on some
equivalence class ofCS∩Ker(A⊤), and these projections are easily characterized.

Lemma 45 Let any nonempty polyhedra S⊆ R
m and K⊆ R

m be given, and fix any nonempty
F ∈ CS∩K and xF ∈ F. Define

PF := {c(φ−P
2
S∩K(φ)) : c> 0,φ ∈ S,P2

S∩K(φ) ∈ F},
DF := NF(xF)∩{y−xF : y∈ R

m,∀α ∈ IS(xF) �gα(y)≤ 0},

where NF(xF) is the normal cone of F at xF . Then PF = DF .
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Note that the final active setIS(xF) is with respect toS, notS∩K.
Proof (⊆) Let anyφ∈Swith ψ :=P

2
S∩K(φ)∈F be given, where the latter is well-defined sinceF and

henceS∩K are nonempty. By Lemma 44,ψ∈ ri(F), andNF(ψ)=NF(xF), meaningφ−ψ∈NF(xF)
(Hiriart-Urruty and Lemaŕechal, 2001, Proposition A.5.3.3). Sinceφ ∈ S, for any α ∈ IS(ψ) =
IS(xF)⊆HS, gα(φ)≤ 0, so

φ−ψ ∈ {y∈ R
m : gα(y)≤ 0}−{ψ}=

(

{y∈ R
m : gα(y)≤ 0}−{ψ−xF}

)

−{xF}
= {y∈ R

m : gα(y)≤ 0}−{xF},

the final equality following sincegα(xF) = gα(ψ) = 0 andgα defines an affine hyperplane, meaning
the corresponding affine halfspace is closed under translations byψ− xF . This holds for allα ∈
IS(xF), thusφ−ψ ∈ DF , and sinceDF is a convex cone, for anyc> 0, c(φ−ψ) ∈ DF .

(⊇) Define
δ := min{‖xF −z‖2 : α ∈HS\ IS(xF),z∈ R

m,gα(z) = 0} .
For any fixedα, this minimum is positive sincegα(xF) < 0, while polyhedrality ofS grants that
α ranges over a finite set, together meaningδ > 0. Now let anyv ∈ DF be given, and setφ :=
xF + δv/(2‖v‖2). The form ofDF immediately grantsgα(φ) ≤ 0 for α ∈ IS(xF), but notice for
α ∈ HS\ IS(xF), it still holds thatgα(φ) ≤ 0, sincegα(xF) < 0 and ‖φ − xF‖2 < δ. So v =
(2‖v‖2/δ)(φ−P

2
S∩K(φ)) whereφ ∈ SandP2

S∩K(φ) = xF ∈ F , meaningv∈ PF .

The result now follows by considering all elements ofCS∩Ker(A⊤).

Proof of Lemma 42 For convenience, setK := Ker(A⊤). Note thatK (and henceS∩K) is a
polyhedron; indeed, it has the form

K = Ker(A⊤) = {φ ∈ R
m : A⊤φ = 0n}

=
n⋂

i=1

(

{φ ∈ R
m : e⊤i A⊤φ ≤ 0}∩{φ ∈ R

m : e⊤i A⊤φ ≥ 0}
)

.

Next, noteCS∩K has at least one nonempty equivalence class, sinceS∩K is nonempty by assump-
tion. Rewriting Equation 32 as in Equation 31, and fixing anxF within each nonemptyF ∈ CS∩K ,
Lemma 45 grants

Eq. 32= inf
{

‖A⊤v‖2 : ‖v‖2 = 1,∃c> 0,∃φ ∈ S�φ−P
2
S∩K(φ) = cv

}

= min
F∈CS∩K

F 6= /0

inf
{

‖A⊤v‖2 : ‖v‖2 = 1,∃c> 0,∃φ ∈ S�φ−P
2
S∩K(φ) = cv,P2

S∩K(φ) ∈ F
}

= min
F∈CS∩K

F 6= /0

inf
{

‖A⊤v‖2 : ‖v‖2 = 1,v∈ NF(xF),∀α ∈ IS(xF) �gα(xF +v)≤ 0
}

.

SinceS\Ker(A⊤) 6= /0 andS∩Ker(A⊤), at least one infimum has a nonempty domain (for the others,
take the convention that their value is+∞). Each infimum with a nonempty domain in this final
expression is of a continuous function over a compact set (in fact, a polyhedral cone intersected
with the boundary of the unitl2 ball), and thus it has a minimizer ¯v, which corresponds to some
c(φ̄−P

2
S∩K(φ̄)) 6∈ Ker(A⊤), wherec> 0. It follows that

A⊤v̄= cA⊤(φ̄−P
2
S∩K(φ̄)) 6= 0,
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meaning each of these infima is positive. But sinceSis polyhedral,CS has finitely many equivalence
classes (|CS| ≤ 2|HS|), meaning the outer minimum is attained and positive.

Finally, as mentioned above, the desired result follows by norm equivalence.
Proof of Theorem 9 For the upper bound, note as in the proof of Lemma 42 thatS∩Ker(A⊤) 6= /0
and the infimand is positive for every element of the domain, so the infimum is finite. For the lower
bound, by Lemma 42 and norm equivalence,

γ(A,S) = inf
φ∈S\Ker(A⊤)

‖A⊤φ‖∞

infψ∈S∩Ker(A⊤) ‖φ−ψ‖1

≥
(

1√
mn

)

inf
φ∈S\Ker(A⊤)

‖A⊤φ‖2

infψ∈S∩Ker(A⊤) ‖φ−ψ‖2
> 0.

Appendix G. Miscellaneous Technical Material

This appendix collects remaining technical material.

G.1 The Logistic Loss is withinG

Remark 46 This remark develops bounds on the quantitiesη,β for the logistic loss g= ln(1+
exp(·)). First note that the initial level set S0 := {x∈R

m : f (x)≤ f (Aλ0)} is contained within a cube
(−∞,b]m, where b≤ mln(2); this follows since f(Aλ0) = f (0m) = mln(2), whereas g(mln(2)) =
ln(1+exp(mln(2)))≥ mln(2).

For convenience, the analysis will be mainly written with respect to b= mln(2). Let any x∈
(−∞,b] be given, and note g′ = exp(·)/(1+exp(·)), and g′′ = exp(·)/(1+exp(·))2.

To determineη, note1 ≤ 1+ exp(x) ≤ 1+ exp(b). Sinceln is concave, it follows for all z∈
[1,1+exp(b)] that the secant line through(1,0) and(1+exp(b), ln(1+exp(b))) is a lower bound:

ln(z)≥
(

ln(1+exp(b))−0
1+exp(b)−1

)

z− ln(1+exp(b))−0
1+exp(b)−1

= ln(1+exp(b))exp(−b)(z−1).

As such, for x∈ (−∞,b], ln(1+exp(x))≥ exp(x) ln(1+exp(b))exp(−b), so

g′′(x)
g(x)

=
exp(x)

(1+exp(x))2 ln(1+exp(x))
≤ exp(b)

(1+exp(x))2 ln(1+exp(b))
≤ exp(b)

ln(1+exp(b))
.

Consequently, a sufficient choice isη := exp(b)/ ln(1+exp(b))≤ 2m/(mln(2)).
For g(x)≤ βg′(x), usingln(x)≤ x−1,

g(x)
g′(x)

=
ln(1+exp(x))

exp(x)
1+exp(x)

≤ exp(x)
exp(x)

1+exp(x)

≤ 1+exp(b).

That is, it suffices to setβ := 1+exp(b) = 1+2m.
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G.2 Proof of Theorem 4

Proof of Theorem 4 Writing the objective as two Fenchel problems,

f̄A = inf
λ

f (Aλ)+ ιRn(λ),

d :=sup
φ
− f ∗(−φ)− ι∗Rn(A⊤φ).

Since cont( f ) = R
m (set of points wheref is continuous) and dom(ιRn) = R

n, it follows that
Adom(ιRn)∩cont( f ) = Im(A) 6= /0, thusd = f̄A (Borwein and Lewis, 2000, Theorem 3.3.5). More-
over, sincef̄A ≤ f (0m) andd ≥ − f ∗(0m) = 0, the optimum is finite, and thus the same theorem
grants that it is attainable in the dual.

To complete the dual problem, note for anyλ ∈ R
n that

ι∗Rn(λ) = sup
µ∈Rn

〈λ,µ〉− ιRn(µ) = ι{0n}(λ).

From this, the term−ι∗
Rn(A⊤φ) allows the search in the dual to be restricted toφ ∈ Ker(A⊤). Next,

replaceφ ∈ Ker(A⊤) with −ψ ∈ Ker(A⊤), which combined with dom( f ∗)⊆ R
m
+ (from Lemma 36)

means it suffices to considerψ ∈ Ker(A⊤)∩R
m
+ = ΦA. (Note that the negation was simply to be

able to interpret feasible dual variables as nonnegative measures.)
Next, f ∗(φ) = ∑i g

∗((φ)i) was proved in Lemma 36.
Finally, the uniqueness ofψ f

A was established by Collins et al. (2002, Theorem 1), however a
direct argument is as follows by the strict convexity off ∗ (cf. Lemma 36). Specifically, if there were
some other optimalψ′ 6= ψ, the point(ψ+ψ′)/2 is dual feasible and has strictly larger objective
value, a contradiction.

G.3 Proof of Proposition 13

Proof of Proposition 13 It holds in general that 0-coercivity grants attainable minima (cf. Hiriart-
Urruty and Lemaŕechal 2001, Proposition B.3.2.4 and Borwein and Lewis 2000, Proposition1.1.3).
Conversely, let ¯x with h(x̄) = infxh(x) and any directiond ∈R

m with ‖d‖2 = 1 be given. To demon-
strate 0-coercivity, it suffices to show

lim
t→∞

h(x̄+ td)−h(x̄)
t

> 0

(Hiriart-Urruty and Lemaŕechal, 2001, Proposition B.3.2.4.iii). To this end, first note, for anyt ∈R,
that convexity grants

h(x̄+ td)≥ h(x̄+d)+(t −1)〈∇h(x̄+d),d〉 .
By strict monotonicity of gradients (Hiriart-Urruty and Lemaréchal, 2001, Section B.4.1.4) and
first-order necessary conditions (∇h(x̄) = 0m),

〈∇h(x̄+d),d〉= 〈∇h(x̄+d)−∇h(x̄), x̄+d− x̄〉=: c> 0,

Combining these,

lim
t→∞

h(x̄+ td)−h(x̄)
t

≥ lim
t→∞

h(x̄+d)+(t −1)c−h(x̄)
t

= c> 0.
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G.4 Proof of Lemma 24

Proof of Lemma 24 Sinced ≥ infλ f (Aλ), the level setSd := {x ∈ R
m : ( f + ιIm(A))(x) ≤ d} is

nonempty. Since|H(A)|=m, Theorem 14 providesf + ιIm(A) is 0-coercive, meaningSd is compact.
Now consider the rectangleC defined as a product of intervalsC =⊗m

i=1[ai ,bi ], where

ai := inf{xi : x∈ Sd}, bi := sup{xi : x∈ Sd}.

By construction,C ⊇ Sd, and furthermore any smaller axis-aligned rectangle must violate some
infimum or supremum above, and so must fail to include a piece ofSd. In particular, the tightest
rectangle exists, and it isC .

Next, note that∇ f (x) = (g′(x1),g′(x2), . . . ,g′(xm)), thusD = ⊗m
i=1g′([ai ,bi ]), an axis-aligned

rectangle in the dual. Sinceg is strictly convex and dom(g) = R, bothg′(ai) andg′(bi) are within
int(dom(g∗)) (for all i), and so∇ f (C )⊂ int(dom( f ∗)).

Finally, Proposition 13 grants thatf + ιIm(A) has a minimizer; thus choose anyλ̄ ∈ R
n so that

f (Aλ̄) = infλ f (Aλ). By optimality conditions of Fenchel problems,ψ f
A = ∇ f (Aλ̄) (cf. the optimal-

ity conditions in Borwein and Lewis (2000, Exercise 3.3.9.f), and the proofof Theorem 4, where a
negation was inserted into the dual to allow dual points to be interpreted as nonnegative measures).
But the dual optimum is dual feasible, andAλ̄ ∈ Sd, so

∇ f (C )∩ΦA ⊇ {∇ f (Aλ̄)}∩ΦA = {ψ f
A}∩ΦA 6= /0.

G.5 Splitting Distances alongA0,A+

Lemma 47 Let A=
[

A0
A+

]

be given as in Theorem 27, and let a set S= S0 ×S+ be given with

S0 ⊆ R
m0 and S+ ⊆ R

m+ and S∩ΦA 6= /0. Then, for anyφ =
[

φ0
φ+

]

with φ0 ∈ R
m0 andφ+ ∈ R

m+ ,

D
1
S∩ΦA

(φ) = D
1
S0∩ΦA0

(φ0)+D
1
S+∩ΦA+

(φ+).

Proof Recall from Theorem 17 thatΦA = ΦA0 ×ΦA+ , thus

S∩ΦA = (S0∩ΦA0)× (S+∩ΦA+),

andS∩ΦA 6= /0 grants thatS0∩ΦA0 6= /0 andS+∩ΦA+ 6= /0. Define now the notation[·]0 : Rm→R
m0

and [·]+ : Rm → R
m+ , which respectively select the coordinates corresponding to the rows ofA0,

and the rows ofA+.

Let φ =
[

φ0
φ+

]

∈ R
m be given; in the above notation,φ0 = [φ]0 andφ+ = [φ]+. By the above

Cartesian product and intersection properties,
[

P
1
S0∩ΦA0

(φ0)

P
1
S+∩ΦA+

(φ+)

]

∈ S∩ΦA,
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and so

D
1
S∩ΦA

(φ)≤
∥

∥

∥

∥

[

φ0
φ+

]

−
[

P
1
S0∩ΦA0

(φ0)

P
1
S+∩ΦA+

(φ+)

]∥

∥

∥

∥

1

= D
1
S0∩ΦA0

(φ0)+D
1
S+∩ΦA+

(φ+).

On the other hand, sinceP1
S∩ΦA

(φ) ∈ (S0∩φA0)× (S+∩φA+),

D
1
S0∩ΦA0

(φ0)+D
1
S+∩ΦA+

(φ+)≤
∥

∥φ0− [P1
S∩ΦA

(φ)]0
∥

∥

1+
∥

∥φ+− [P1
S∩ΦA

(φ)]+
∥

∥

1 = D
1
S∩ΦA

(φ).

G.6 Proof of Theorem 28

Proof of Theorem 28 This proof proceeds in two stages: first the gap between any solution with
l1 normB is shown to be large, and then it is shown that thel1 norm of the BOOSTsolution (under
logistic loss) grows slowly.

To start, Ker(S⊤) = {z(1,1,0) : z∈ R}, and−g∗ is maximized atg′(0) with value−g(0) (cf.
Lemma 2). Thusψ f

S = (g′(0),g′(0),0), and f̄S=− f ∗(ψ f
S) = 2g(0) = 2ln(2).

Next, by calculus, given anyB,

inf
‖λ‖1≤B

f (Sλ)− f̄S= f
(

S
[

B/2
B/2

])

−2ln(2)

= (2ln(2)+ ln(1+exp(−B)))−2ln(2)

= ln(1+exp(−B)).

Now to bound thel1 norm of the iterates. By the nature of exact line search, the coordinates
of λ are updated in alternation (with arbitrary initial choice); thus letut denote the value of the
coordinate updated in iterationt, andvt be the one which is held fixed. (In particular,vt = ut−1.)

The objective function, written in terms of(ut ,vt), is

ln
(

1+exp(vt −ut)
)

+ ln
(

1+exp(ut −vt)
)

+ ln
(

1+exp(−ut −vt)
)

= ln
(

2+exp(vt −ut)+exp(ut −vt)+2exp(−ut −vt)+exp(−2ut)+exp(−2vt)
)

.

Due to the use of exact line search, and the fact thatut is the new value of the updated variable, the
derivative with respect tout of the above expression must equal zero. In particular, producing this
equality and multiplying both sides by the (nonzero) denominator yields

−exp(vt −ut)+exp(ut −vt)−2exp(−ut −vt)−2exp(−2ut) = 0.

Multiplying by exp(ut +vt) and rearranging, it follows that, after line search,ut andvt must satisfy

exp(2ut) = exp(2vt)+2exp(vt −ut)+2. (35)

First it will be shown fort ≥ 1, by induction, thatut ≥ vt . The base case follows by inspection
(sinceu0 = v0 = 0 and sou1 = ln(2)). Now the inductive hypothesis grantsut ≥ vt ; the caseut = vt

can be directly handled by Equation 35, thus supposeut > vt . But previously, it was shown that the
optimal l1 bounded choice has both coordinates equal; as such, the current iterate, with coordinates
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(ut ,vt), is worse than the iterate(ut ,ut), and thus the line search will move in a positive direction,
giving ut+1 ≥ vt+1.

It will now be shown by induction that, fort ≥ 1, ut ≤ 1
2 ln(4t). The base case follows by the

direct inspection above. Applying the inductive hypothesis to the update rule above, and recalling
vt+1 = ut and that the weights increase (i.e.,ut+1 ≥ vt+1 = ut),

exp(2ut+1) = exp(2ut)+2exp(ut −ut+1)+2≤ exp(2ut)+2exp(ut −ut)+2≤ 4t +4≤ 4(t +1).

To finish, recall by Taylor expansion that ln(1+q)≥ q− q2

2 ; consequently fort ≥ 1

f (Sλt)− f̄S≥ inf
‖λ‖1≤ln(4t)

f (Sλ)− f̄S≥ ln

(

1+
1
4t

)

≥ 1
4t

− 1
2

(

1
4t

)2

≥ 1
8t
.
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