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Abstract

Boosting combines weak learners into a predictor with lovpigital risk. Its dual constructs a high
entropy distribution upon which weak learners and traitérgls are uncorrelated. This manuscript
studies this primal-dual relationship under a broad familiosses, including the exponential loss
of AdaBoost and the logistic loss, revealing:

e Weak learnability aids the whole loss family: for any 0, O(In(1/¢)) iterations suffice to produce a
predictor with empirical riske-close to the infimum;

e The circumstances granting the existence of an empirglahninimizer may be characterized in terms
of the primal and dual problems, yielding a new proof of thewn rateO(In(1/¢));

e Arbitrary instances may be decomposed into the above tvamtigig rateO(1/¢), with a matching
lower bound provided for the logistic loss.

Keywords: boosting, convex analysis, weak learnability, coordimBggscent, maximum entropy

1. Introduction

Boosting is the task of converting inaccurateak learnerdnto a single accurate predictor. The
existence of any such method was unknown until the breakthrough oéSdhapire (1990): under
aweak learning assumptiorit is possible to combine many carefully chosen weak learners into
a majority of majorities with arbitrarily low training error. Soon after, Freun@98) noted that a
single majority is enough, and th@{In(1/¢)) iterations are both necessary and sufficient to attain
accurace. Finally, their combined effort produced AdaBoost, which exhibits this optooaver-
gence rate (under the weak learning assumption), and has an astdgisiimge implementation
(Freund and Schapire, 1997).

It was eventually revealed that AdaBoost was minimizing a risk function&gifipally the
exponential loss (Breiman, 1999). Aiming to alleviate perceived deficigicithe algorithm, other
loss functions were proposed, foremost amongst these being the logist{€feedman et al., 2000).
Given the wide practical success of boosting with the logistic loss, it is perbarprising that no
convergence rate better thaiiexp(1/€2)) was known, even under the weak learning assumption
(Bickel et al., 2006). The reason for this deficiency is simple: unlike S\édst squares, and
basically any other optimization problem considered in machine learning, ithigre not exist a
choice which attains the minimal risk! This reliance is carried over from coopémization, where
the assumption of attainability is generally made, either directly, or throughgeir@onditions like
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compact level sets or strong convexity (Luo and Tseng, 1992). Bulinhitmtion seems artificial:
a function like exp—x) has no minimizer but decays rapidly.

Convergence rate analysis provides a valuable mechanism to compamgamee of minimiza-
tion algorithms. But there is a deeper significance with boosting: a comazgate ofO(In(1/¢))
means that, with a combination of justIn(1/¢)) predictors, one can construct aptimal clas-
sifier, which is crucial to both the computational efficiency and statisticailgyati this predictor.

The main contribution of this manuscript is to provide a tight convergenceythieoa large
family of losses, including the exponential and logistic losses, which hatdiere resisted anal-
ysis. In particular, it is shown that the (disjoint) scenarios of weak Idmlitya(Section 6.1) and
attainability (Section 6.2) both exhibit the rat¥In(1/¢)). These two scenarios are in a strong
sense extremal, and general instances are shown to decompose intouh#mjrtconflicting be-
havior yields a degraded rat&(1/¢) (Section 6.3). A matching lower bound for the logistic loss
demonstrates this is no artifact.

1.1 Outline

Beyond providing these rates, this manuscript will study the rich ecologyiniitie primal-dual
interplay of boosting.

Starting with necessary background, Section 2 provides the standard¥i@oosting as co-
ordinate descent of an empirical risk. This primal formulation of boostirsgoies a key internal
mechanism: boosting iteratively constructs distributions where the previalshted weak learner
fails. This view is recovered in the dual problem; specifically, Section @aievthat the dual feasible
set is the collection of distributions where all weak learners have nolatiore to the target, and
the dual objective is a max entropy rule.

The dual optimum is always attainable; since a standard mechanism in geneeranalysis to
control the distance to the optimum, why not overcome the unattainability of the lpyptimum
by working in the dual? It turns out that the classical weak learning raseawaechanism to control
distances in the dual all along; by developing a suitable generalizatiotid$dg, it is possible to
convert the improvement due to a single step of coordinate descent in@vantdistance in the
dual (Section 6). Crucially, this holds for general instances, withogaaumptions.

The final puzzle piece is to relate these dual distances to the optimality gapn3etays the
foundation, taking a close look at the structure of the optimization problemclalsical scenarios
of attainability and weak learnability are identifiable directly from the weak iegrelass and
training sample; moreover, they can be entirely characterized by prapeftibe primal and dual
problems.

Section 5 will also reveal another structure: there is a subset of the aainthehard core
which is the maximal support of any distribution upon which every weak éraand the training
labels are uncorrelated. This set is central—for instance, the dual opt{negardless of the loss
function) places positive weight on exactly the hard core. Weak leditgatorresponds to the
hard core being empty, and attainability corresponds to it being the wholntraiat. For those
instances where the hard core is a nonempty proper subset of the tradtjrtge behavior on and
off the hard core mimics attainability and weak learnability, and Section 6.3 wilfdgecthis to
produce rates using facts derived for the two constituent scenarios.

Much of the technical material is relegated to the appendices. For coneen®ection A sum-
marizes notation, and Section B contains some important supporting resulteriips practical
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interest, Section D provides methods to select the step size, meaning the wighgivhich new
weak learners are included in the full predictor. These methods areisnffy powerful to grant
the convergence rates in this manuscript.

1.2 Related Work

The development of general convergence rates has a number of intpmoitastones in the past
decade. Collins et al. (2002) proved convergence for a large familgssts, albeit without any
rates. Interestingly, the step size only partially modified the choice from AdstBo accommodate
arbitrary losses, whereas the choice here follows standard optimizairaippes based purely on
the particular loss. Next, Bickel et al. (2006) showed a general rat¥efp(1/€?)) for a slightly

smaller family of functions: every loss has positive lower and upper toondts second deriva-
tive within any compact interval. This is a larger family than what is considaratie present
manuscript, but Section 6.2 will discuss the role of the extra assumptionspubeuncing fast rates.

Many extremely important cases have also been handled. The first isitgieabrate of
O(In(1/¢)) for the exponential loss under the weak learning assumption (Freun&erapire,
1997). Next, under the assumption that the empirical risk minimizer is attainabtechRret al.
(2001) demonstrated the rat¥In(1/¢)). The loss functions in that work must satisfy lower and
upper bounds on the Hessian within the initial level set; equivalently, théeexes of lower and
upper bounding quadratic functions within this level set. This assumption malightly relaxed
to needing just lower and upper second derivative bounds on thariat& loss function within an
initial bounding interval (cf. discussion within Section 5.2), which is the sast@fsassumptions
used by Bickel et al. (2006), and as discussed in Section 6.2, is all theallg needed by the
analysis in the present manuscript under attainability.

Parallel to the present work, Mukherjee et al. (2011) established@eamvergence under the
exponential loss, with a rate &(1/¢€). That work also presented bounds comparing the AdaBoost
suboptimality to any* bounded solution, which can be used to succinctly prove consistenpy pro
erties of AdaBoost (Schapire and Freund, in preparation). In thes tas rate degrades @),
which although presented without lower bound, is not terribly surprisingesthe optimization
problem minimized by boosting has no norm penalization. Finally, mirroring theldement here,
Mukherjee et al. (2011) used the same boosting instance (due to Sck@pidketo produce lower
bounds, and also decomposed the boosting problem into finite and infinitérparges (cf. Sec-
tion 5.3).

It is interesting to mention that, for many variants of boosting, general cgemee rates were
known. Specifically, once it was revealed that boosting is trying to bemlgtamrrect but also have
large margins (Schapire et al., 1997), much work was invested into methacis explicitly max-
imized the margin (BRtsch and Warmuth, 2002), or penalized variants focused on the inbépar
case (Warmuth et al., 2007; Shalev-Shwartz and Singer, 2008). Tietbeds generally impose
some form of regularization (Shalev-Shwartz and Singer, 2008), wdrights attainability of the
risk minimizer, and allows standard techniques to grant general comgergates. Interestingly,
the guarantees in those works cited in this paragraploétée?).

Hints of the dual problem may be found in many works, most notably thosaviridt and
Warmuth (1999) and Collins et al. (2002), which demonstrated that bodstsegking a difficult
distribution over training examples via iterated Bregman projections.
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The notion of hard core sets is due to Impagliazzo (1995). A crucialrdiffee is that in the
present work, the hard core is unique, maximal, and every weak ledmremo better than random
guessing upon a family of distributions supported on this set; in this cited woekhard core is
relaxed to allow some small but constant fraction correlation to the targetrélaisation is central
to the work, which provides a correspondence between the complexityi{csize) of the weak
learners, the difficulty of the target function, the size of the hard cortlze correlation permitted
in the hard core.

2. Setup

A view of boosting, which pervades this manuscript, is that the action of tla Ve&arning class
upon the sample can be encoded as a matigtgéh et al., 2001; Shalev-Shwartz and Singer, 2008).
Let a samples == {(x, Vi) }7' C (X x 9)™ and a weak learning clagé be given. For everr € #,

let S|, denote the negated projection ogtanduced byh; that is, S|, is a vector of lengthm, with
coordinategS|n)i = —yih(x). If the set of all such columngsS|n : h € #H} is finite, collect them into

the matrixA € R™". Let a denote thé™ row of A, corresponding to the examp(®,y;), and let
{h;}7 index the set of weak learners corresponding to columws tifis assumed, for convenience,
that entries oA are within[—1, +1]; relaxing this assumption merely scales the presented rates by
a constant.

The setting considered here is that this finite matrix can be constructed. Nuotthith can
encode infinite classes, so long as they map to &nrtyc values (in which casé has at mosk™
columns). As another example, if the weak learners are binary#ahds VC dimensioml, then
Sauer’s lemma grants thAthas at mostm+ 1) columns. This matrix view of boosting is thus
similar to the interpretation of boosting performing descent in functionales@dason et al., 2000;
Friedman et al., 2000), but the class complexity and finite sample have beériauseduce the
function class to a finite object.

To make the connection to boosting, the missing ingredient is the loss function.

Definition 1 Gy is the set of loss functions:@R — R satisfying: g is twice continuously differen-
tiable, d’ > 0, andlimy_, . g(x) = 0.

For convenience, whenevergGo and sample size m are provided, letR™ — R denote the
empirical risk function fx) := ¥, g((x);). For more properties of g and f, please see Section C.

The convergence rates of Section 6 will require a few more conditiongz¢suffices for all
earlier results.

Example 1 The exponential losaxp(-) (AdaBoost) and logistic loda(1+ exp(-)) are both within
Go (and the eventuals). These two losses appear in Figure 1, where the log-scale plot aims to
convey their similarity for negative values.

This definition provides a notational break from most boosting literaturahwhstead requires
limy_.g(x) =0 (i.e., the exponential loss becomes exp)); note that the usage here simply pushes
the negation into the definition of the matAx The significance of this modification is that the gradi-
ent of the empirical risk, which corresponds to distributions producdablogting, is a nonnegative
measure. (Otherwise, it would be necessary to negate this (nonpodistréf)ution everywhere to
match the boosting literature.) Note that there is no consensus on this cmul¢eedorm followed
here can be found elsewhere (Boucheron et al., 2005).
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Figure 1: Exponential and logistic losses, plotted with linear and log-scadgera

Boosting determines some weightihge R" of the columns ofA, which correspond to weak
learners in#. The (unnormalized) margin of examplés thus(—a;,A) = —e" A\, whereg is an
indicator vector. (This negation is one notational inconvenience of mak#sgsincreasing.) Since
the prediction orx; is ]l[zj Ajhj(x) > 0] =1]y; (a,A) < 0], it follows thatAA < O (WhereOp, is the
zero vector) implies a training error of zero. As such, boosting solvesihienization problem

m m _
inf i,A\)) = inf " AN) = inf f(AN) = inf (foA)(\) =: fa; 1
AIQRni;g«ah ) AIQRni;g(a )= inf T(AN) = inf (ToA)(A) = fa 1
recall f : R™ — R is the convenience functiof(x) = 3;g((x)i), and in the present problem denotes
the (unnormalized) empirical riska will denote the optimal objective value.
The infimum in Equation 1 may well not be attainable. Suppose there akisth thatA\ <
Om (Theorem 11 will show that this is equivalent to the weak learning assumpliben

0< inf f(A\) < inf f(A(c\)) = 0.
AERN c>0

On the other hand, for any € R", f(A\) > 0. Thus the infimum is never attainable when weak
learnability holds.

The template boosting algorithm appears in Figure 2, formulated in terrhs Afto make the
connection to coordinate descent as clear as possible. To interpreatherg terms, note that

(DUFoA); = (AT AN); = = 3 g (@M (o).

which is the expected negative correlatiorhpivith the target labels according to an unnormalized
distribution with weightsy'((a;,A)). The stopping conditiof)(f o A)(A) = Oy, means: either the
distribution is degenerate (it is exactly zero), or every weak learnercisrtgiated with the target.

As such, BbosTin Figure 2 represents an equivalent formulation of boosting, with one minor
modification: the column (weak learner) selection has an absolute valuendBatthat this is
the same as closingy under complementation (i.e., for ahye #, there exist$(~) with h(x) =
—h(‘)(x)), which is assumed in many theoretical treatments of boosting.

In the case of the exponential loss and binary weak learners, the lirshqggdnen attainable)
has a convenient closed form; but for other losses, and even with gonential loss but with
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Routine BOOST.
Input Convex functionf o A.
Output Approximate primal optimun.

1. InitializeAg := Op.
2. Fort=1,2,..., while O(f o A)(A—1) # On:
(a) Choose column (weak learner)

ji ;= argmax0(f o A)(A—1) " gj].
i

(b) Correspondingly, set descent directigre {+e;, }; note
v O(foA) (A1) = —[|O(f o A) A1) [eo-
(c) Finda; via approximate solution to the line search
Oi(ry;(f oA)(At—1+0w).
(d) Updatei; := A¢_1+ O\
3. Returni_1.

Figure 2:1* steepest descent (Boyd and Vandenberghe, 2004, Algorithm 9f4) Af

confidence-rated predictors, there may not be a closed form. As BuohsT only requires an
approximate line search method. Section D details two mechanisms for this: dnetenathod,
which requires no knowledge of the loss function, and a closed forricehahich unfortunately
requires some properties of the loss, which may be difficult to bound tightly.it€hative method
provides a slightly worse guarantee, but is potentially more effective otipeathus it will be used
to produce all convergence rates in Section 6.

For simplicity, it is supposed that the best weak leaijpéor the approximation thereof encoded
in A) can always be selected. Relaxing this condition is not without subtletieashiiscussed in
Section E, there are ways to allow approximate selection without degradimpyetkented conver-
gence rates.

As a final remark, consider the roys-a }1" of —A as a collection ofn points inR". Due to
the form ofg, BoosTis therefore searching for a halfspace, parameterized by a vigctahnich
contains all of these points. Sometimes such a halfspace may not exigt,aqpiies a smoothly
increasing penalty to points that are farther and farther outside it.

3. Dual Problem

Applying coordinate descent to Equation 1 represents a valid interpretdiimosting, in the sense
that the resulting algorithm 8osTis equivalent to the original. However this representation loses
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Figure 3: Fenchel conjugates of exponential and logistic losses.

the intuitive operation of boosting as generating distributions where therdysredictor is highly
erroneous, and requesting weak learners accurate on these tritktyutisns. The dual problem
will capture this.

In addition to illuminating the structure of boosting, the dual problem also psesea major
concrete contribution to the optimization behavior, and specifically the cgemee rates: the dual
optimum is always attainable.

The dual problem will make use of Fenchel conjugates (Hiriart-Urrutylaamaéchal, 2001;
Borwein and Lewis, 2000); for any functidn the conjugate is

h' (@)= sup (x,¢)—h(x).
xedom(h)

Example 2 The exponential lossxp(-) has Fenchel conjugate

¢oIn(@) —¢@ wheng> 0,
(exp(-))"(@) = 0 wheng=0,
00 otherwise

The logistic los$n(1+ exp(-)) has Fenchel conjugate

(1-—@)In(1— @) +oIn(p) whenpe (0,1),
(In(1+exp(-)))"(®) =< 0 wheng € {0,1},
00 otherwise

These conjugates are known respectively as the Boltzmann-Shanddreani-Dirac entropies
(Borwein and Lewis, 2000, Commentary, Section 3.3). Please seesFdar a depiction.

It further turns out that general members@&f have a shape reminiscent of these two standard
notions of entropy.
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Lemma 2 Let g€ Go be given. Then’gis continuously differentiable omt(dom(g*)), strictly
convex, and eithedom(g*) = [0,0) or dom(g*) = [0,b] where b> 0. Furthermore, § has the
following form:

00 when@ < 0,

0 whenp =0,

g°(9) €  (—9(0),0) whenge (0,g'(0)),
—g(0) wheng=g¢'(0),
(—9(0),] wheng> g(0).

(The proofis in Section C.) There is one more object to present, the dasibfe setb,.
Definition 3 For any Ac R™", define the dual feasible set
Pp = Ker(AT)NRT

Consider any € da. Sincey € Ker(A"), this is a weighting of examples which decorrelates
all weak learners from the target: in particular, for any primal weighkimgR" over weak learners,
W AN = 0. And sinced € RT, all coordinates are nonnegative, so in the casegh#t{0n}, this
vector may be renormalized into a distribution over examples. Thed®gse{0n} is an extremely
special degeneracy: it will be shown to encode the scenario of wealalabty.

Theorem 4 For any Ac R™" and ge Go with f(x) = 3;9((X)i),
inf{f(AN) : A e R"} =sup{—f*(Y): P € Pa}, (2)

where f(@) =S, 9*((9)i). The right hand side is the dual problem, and moreover the dual
optimum, denotedl,i, is unigue and attainable.

(The proof uses routine techniques from convex analysis, and igréef® Section G.2.)

The definition of®, does not depend on any specifie Go; this choice was made to provide
general intuition on the structure of the problem for the entire family of loddese however that
this will cause some problems later. For instance, with the logistic loss, the weitiaevery value
two, that is, 2 1, has objective value-f*(2- 1) = —co. In a sense, there are pointsdi which
are not really candidates for certain losses, and this fact will needtadjosin some convergence
rate proofs.

Remark 5 Finishing the connection to maximum entropy, for ary@o, by Lemma 2, the optimum
of the unconstrained problem i$(§)1y, a rescaling of the uniform distribution. But note that
Of(A\o) = Of(Om) = d'(0)1y: that is, the initial dual iterate is the unconstrained optimum! Let
@ := Of(A\) denote the'f dual iterate; sincedf*(0f(x)) = x (cf. Section B.2), then for any
P € dp C Ker(AT),

(O (@), ) = (A, ) = <)\t,ATl.U> =0.
This allows the dual optimum to be rewritten as

WA = argminf* ()
Peda

= argminf* () — f*(@) — (Of* (@), W —@);
YDA
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thatis, the dual optimurqu,i is the Bregman projection (according téd)fonto®, of any dual iterate
@ = Of(A\). In particular, L|J,f\ is the Bregman projection onto the feasible set of the unconstrained
optimumego = Of (Aho)!

The connection to Bregman divergences runs deep; in fact, mirrorirgtiedopment of BosT
as “compiling out” the dual variables in the classical boosting presentatigrpassible to compile
out the primal variables, producing an algorithm using only dual variabiesning distributions
over examples. This connection has been explored extensively (KigimWarmuth, 1999; Collins
et al., 2002).

Remark 6 It may be tempting to use Theorem 4 to produce a stopping condition; thétfds,
a suppliede > 0, a primal iterateA” and dual feasible)’ € ® can be found satisfying(A\') +
f*(y') < g, BoosTmay terminate with the guarantegA\') — fa <e.

Unfortunately, it is unclear how to produce dual iterates (excepting the trigg If Ker(AT)
can be computed, it suffices fogroject 0 (A\;) onto this subspace. In general however, not only
is Ker(A") painfully expensive to compute, this computation does not at all fit the ansmtiel of
boosting, where access to A is obscured. (WhKEKA ) when the weak learning oracle learns a
size-bounded decision tree?)

In fact, noting that the primal-dual relationship from Equation 2 can be written

inf{f(A):AcIm(A)} = sup{—f*(LIJ) “WeKer(AT) = Im(A)L}

(sincedom(f*) C R encodes the orthant constraint), the standard oracle model gives elsimie
Im(A), but what is needed in the dual is an oracle Ker(A") = Im(A)*.

4. Generalized Weak Learning Rate

The weak learning rate was critical to the original convergence analiygidaBoost, providing a
handle on the progress of the algorithm. But to be useful, this value mustsiie/@owhich was
precisely the condition granted by the weak learning assumption. This sedtigieneralize the
weak learning rate into a quantity which can be made positive for any boasstamnce.

Note briefly that this manuscript will differ slightly from the norm in that weakri@ng will be
a purelysample-specificoncept. That is, the concern here is convergence in empirical ridlglan
that matters is the sample= {(x;,yi) }1', as encoded iA; it doesn’t matter if there are wild points
outside this sample, because the algorithm has no access to them.

This distinction has the following implication. The usual weak learning assumgtates that
there exists no uncorrelating distribution over the inppaice This of course implies that any
training samples used by the algorithm will also have this property; however, it sufficestiiese
is no distribution over the inpigamples which uncorrelates the weak learners from the target.

Returning to task, the weak learning assumption posits the existence of agositistant, the
weak learning ratg, which lower bounds the correlation of the best weak learner with thettimge
any distribution. Stated in terms of the matAx

m

zl )iyih;

AT T
O<y= |nf max g AGe _ [A e
RY jeln @eRM{0n} (@1 @eR™\{On} [|[@— Oml|1

H(PH

(3)
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Proposition 7 A boosting instance is weak learnabledff = {Om}.

Proof Supposebp = {On}; since the first infimum in Equation 3 is of a continuous function over a
compact set, it has some minimizgr But ||@||1 = 1, meaningy ¢ ®a, and so|A" ¢ > 0. On
the other hand, i # {Om}, take anyy’ € ®a\ {Om}; then

T T enf!
o<y IAT @l _ AT

— n =0.
T RN on} @l T (972

Following this connection, the first way in which the weak learning rate is madgito replace
{Om} with the dual feasible saby = Ker(A") NR™M. For reasons that will be sketched shortly, but
fully dealt with only in Section 6, it is necessary to repl&® with a more refined choic8

Definition 8 Given a matrix Ac R™" and a set &£ R™, define

|AT @|co
infycgkeran) 19— W1

Y(AS) = inf{ t@e S\ Ker(AT)}.

First note that in the scenario of weak learnability (i®s = {Om} by Theorem 7), the choice
S=RT allows the new notion to exactly cover the old ogA,RT') =Y.

To get a better handle on the meaningSfirst define the following projection and distance
notation to a closed convex nonempty Getvhere in the case of non-uniquenelssand|®), some
arbitrary choice is made:

PE(X) EAfgrginlly—Xllp, DE(X) = [[x—=PEX)[lp-
ye

Suppose, for somee thatOf (A\) € S\ Ker(AT); then the infimum withiny(A, S) may be instanti-
ated withOf (A)\;), yielding

. IAT @lloo IAT O (AN)]]oo
y(A,S) = inf < @
geS\Ker(AT) [|@— P yorary (@12~ 101 (AA) = Pg o amy (BT (AM)) 12
Rearranging this,
V(A )| O (AN) — P& yrar (DT (AN) || < AT O (AN o (5)

This is helpful because the right hand side appears in standard tpeséor single-step progress in
descent methods. Meanwhile, the left hand side has reduced the iefloiito a single number,
and the normed expression is the distance to a restriction of dual feadiblehgsh will converge
to zero if the infimum is to be approached, so long as this restriction contaidsigheptimum.

This will be exactly the approach taken in this manuscript; indeed, the fipstastgards conver-
gence rates, Proposition 20, will use exactly the upper bound in Equatitime=detailed work that
remains is then dealing with the distance to the dual feasible set. The chdgilbbe made to
facilitate the production of these bounds, and will depend on the optimizatioctste revealed in
Section 5.

In order for these expressions to mean anythy(g, S) must be positive.
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Theorem 9 Let matrix Ac R™" and polyhedron & R™ be given with § Ker(AT) # 0 and S
Ker(A") # 0. Theny(A,S) > 0.

The proof, material on other generalizationyodind discussion on the polyhedrality®tan all be
found in Section F.

As a final connection, sianPgKer(AT)(¢) = Oy, note that
1
y(AS) = inf AT @l B . IAT (¢— Pquer(AT)((P))Hw'

gesikerA’) [@—Pg o ar) (@ ll1 esikeran) ([0 Pg o (9)]l2

In this way,y(A, S) resembles a Lipschitz constant, reflecting the effeét ofi elements of the dual,
relative to the dual feasible set.

5. Optimization Structure

The scenario of weak learnability translates into a simple condition on theehsibfe set: the dual
feasible setis the origin (in symbok®a = Ker(AT) NRT = {Om}). And how about attainability—is
there a simple way to encode this problem in terms of the optimization problem?

This section will identify the structure of the boosting optimization problem bothrimgeof
the primal and dual problems, first studying the scenarios of weak laifitpand attainability, and
then showing that general instances can be decomposed into these two.

There is another behavior which will emerge through this study, motivated éjottowing
question. The dual feasible sef = Ker(A") NRT is the set of nonnegative weightings of examples
under which every weak learner (every columnAdfthas zero correlation; what is the support of
these weightings?

Definition 10 H(A) denotes thénard coreof A: the collection of examples which receive positive
weight under some dual feasible point, a distribution upon which no weakdes correlated with
the target. Symbolically,

H(A) :={i € [m]: 3P € Pa, (P); > 0}.

One case has already been considered; as established in TheoreakTearnability is equiv-
alent to®a = {Om}, which in turn is equivalent tgH(A)| = 0. But it will turn out that other
possibilities forH (A) also have direct relevance to the behavior ofd3T. Indeed, contrasted with
the primal and dual problems and feasible seft&A) will provide a conceptually simple, discrete
object with which to comprehend the behavior of boosting.

5.1 Weak Learnability

The following theorem establishes four equivalent formulations of weakébility.

Theorem 11 For any Ac R™" and ge Gy the following conditions are equivalent:

INER".ANeR™_, (6)
Aienlén f(AN) =0, 7)
WL = O, (8)
q)A = {Om}' (9)
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Figure 4: Geometric view of the primal and dual problem, under weak |bditgaThe vertices of
the pentagon denote the poidtsa; }". The arrow, denoting in Equation 6, defines a
homogeneous halfspace containing these points; on the other handotivex tiull does
not contain the origin. Please see Theorem 11 and its discussion.

First note that Equation 9 indicates (via Theorem 7) this is indeed the wealalslity setting,
equivalently|H (A)| = 0.

Recall the earlier discussion of boosting as searching for a halfsmadeaiing the points
{—a 1} = {—¢' A} Equation 6 encodes precisely this statement, and moreover that there exists
such a halfspace with these points interior to it. Note that this statement alstesrib@ margin
separability equivalence of weak learnability due to Shalev-ShwartziageiS2008); specifically,
if labels are bounded away from 0 and each peiat (row of —A) is replaced with—yia;, the
definition of A grants that positive examples will land on one side of the hyperplane, eyative
examples on the other.

Equation 9 and Equation 6 can be interpreted geometrically, as depicted i Bigthe dual
feasibility statement is that no convex combinatior e } " will contain the origin.

Next, Equation 7 is the (error part of the) usual strong PAC guaraSeeapire, 1990): weak
learnability entails that the training error will go to zero. And, as must be thewaer®s = {On},
Equation 8 provides tham/i = On. _ _

Proof of Theorem 11 (Equation 6—> Equation 7.) Lef\ € R" be given withAA € R™ _, and let

any increasing sequenge; }7 1 o be given. Then, sincé > 0 and lim, . g(Xx) =0,

inf £(AX) < lim f(GAN) =0 <inf f(AN).

i—o0

(Equation 7—> Equation 8.) The poirdy, is always dual feasible, and

inf f(AN) = 0=~ "(On).

Since the dual optimum is unigue (Theoremq;l},: Om.
(Equation 8= Equation 9.) Suppose there exigtE ®p with  # Oy,. Since— f* is contin-
uous and increasing along every positive directiod,at L|J£ (see Lemma 2 and Lemma 36), there
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must exist some tiny > 0 such that- f*(1y) > — f*(w;), contradicting the selection qf,i as the
unique optimum.

(Equation 9= Equation 6.) This case is directly handled by Gordan’s theorem (cf. -Theo
rem 29). |

5.2 Attainability

For strictly convex functions, there is a nice characterization of attainabiitigh will require the
following definition.

Definition 12 (Hiriart-Urruty and Lemar échal 2001, Section B.3.2A closed convex function h
is called0-coercivewhen all level sets are compact. (That is, for ang R, the set{x: f(x) <a}
is compact.)

Proposition 13 Suppose h is differentiable, strictly convex, atf@m(h) = R™. Theninfxh(x) is
attainable iff h is O-coercive.

Note that 0-coercivity means the domain of the infimum in Equation 1 can b&tedtro a compact
set, and attainability in turn follows just from properties of minimization of contirsuoinctions on
compact sets. It is the converse which requires some structure; thehprseever is unilluminating
and deferred to Section G.3.

Armed with this notion, it is now possible to build an attainability theory ferA. Some care
must be taken with the above concepts, however; note that Wislstrictly convex,f o A need not
be (for instance, if there exist nonzero elements of K&rthen moving along these directions does
not change the objective value). Therefore, 0-coercivity statemeltefer to the function

f(x) whenxeIm(A),
) otherwise

(f+l|m(A))(X):{

This function is effectively taking the epigraph &f and intersecting it with a slice representing
Im(A) = {A\ : A € R"}, the set of points considered by the algorithm. As such, it is merely a
convenient way of dealing with KéA) as discussed above.

Theorem 14 For any Ac R™" and ge Gy, the following conditions are equivalent:

VA eR". AN ¢ R™\ {0}, (10)
f +1im(a) is O-coercive (1)
Wl eRT, (12)
OANRT, #0. (13)

Following the discussion above, Equation 11 is the desired attainability statement.

Next, note that Equation 13 is equivalent to the expresBiti\)| = m, that is, there exists a
distribution with positive weight on all examples, upon which every wealnkais uncorrelated.
The forward direction is direct from the existence of a single CDAmRL. For the converse, note
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Figure 5. Geometric view of the primal and dual problem, under attainabilityceGagain, the
{—a&}]" are the vertices of the pentagon. This time, no (closed) homogeneoysacalfs
containing all the points will contain one strictly, and the relative interior of #r&agon
contains the origin. Please see Theorem 14 and its discussion.

that the; corresponding to eadhe H(A) can be combined intg = 5; g € Ker(AT)NRT, (since
Ker(AT) is a subspace).

For a geometric interpretation, consider Equation 10 and Equation 13. rEhedys that any
halfspace containing somea; within its interior must also fail to contain somea; (with i # j).
(Equation 10 also allows for the scenario that no valid enclosing halfspasts, that ish = 0y,.)
The latter states that the origy, is contained within a positive convex combination{efa; }"
(alternatively, the origin is within the relative interior of these points). Thegescenarios appear
in Figure 5.

Finally, note Equation 12: it is not only the case that there are dual fegmbies fully interior
to R, but furthermore the dual optimum is also interior. This will be crucial in thevecgence
rate analysis, since it will allow the dual iterates to never be too small.

Proof of Theorem 14 (Equation 10— Equation 11.) Letl € R™\ {On} andA € R" be arbitrary.
To show 0O-coercivity, it suffices (Hiriart-Urruty and Lengéahal, 2001, Proposition B.3.2.4.iii) to
show

lim f(AN+1d) + lima) (AN +td) — F(AN)

t—o0 t

> 0. (14)

If d ¢ Im(A) (andt > 0), thenijma) (AA +1td) = «. Supposed € Im(A); by Equation 10, since
d # Om, thend € R™, meaning there is at least one positive coordirjateut then, sincg > 0 and
gis convex,

g(ejT (AN +td)) — f(AN)

Eq. 14> lim
t—o0 t
_glef AN)+tdg (] A\) — (AN)
= tlln t

=djg/(e] A),
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which is positive by the selection df and sincey > 0. B

(Equation 11 = Equation 12.) Since the infimum is attainable, designate Xasgtisfy-
ing inf) f(AA) = f(AX) (note, althoughf is strictly convex,f o A need not be, thus uniqueness
is not guaranteed!). The optimality conditions of Fenchel problems may pkedp meaning
lj,l/]i\ = Of(AN), which is interior toRT sincedf € R, everywhere (cf. Lemma 36). (For the
optimality conditions, see Borwein and Lewis 2000, Exercise 3.3.9.f, with atieginserted to
match the negation inserted within the proof of Theorem 4.

(Equation 12— Equation 13.) This holds sincBa 2 {Y,} andlp,i eRT,.

(Equation 13— Equation 10.) This case is directly handled by Stiemke’s Theorem (cf. The-
orem 30). |

5.3 General Setting

So far, the scenarios of weak learnability and attainability correspondig textremal hard core
cases ofH(A)| € {O,m}. The situation in the general setting<l|H(A)| < m— 1 is basically as
good as one could hope for: it interpolates between the two extremal cases

As a first step, partitiod into two submatrices according k(A).

Definition 15 Partition A€ R™" by rows into two matrices A& R™*" and A, € R™*", where
A, has rows corresponding to (A), and m. = |H(A)|. For convenience, permute the examples so

that
A= [m.

(This merely relabels the coordinate axes, and does not change thezgtiom problem.) Note that
this decomposition is unique, sincéA is uniquely specified.

As a first consequence, this partition cleanly decomposes the dualléesesitb into ®,, and
Dy, .

Proposition 16 For any A€ R™", ®a = {On, }, Pa, "R, # 0, and
CDA = CDAO X CI)A+,
Furthermore, no other partition of A intoB= R#*" and B, € RP*" satisfies these properties.

Proof It must hold that®a, = {0y, }, Since otherwise there would exigte Ker(AJ) N R with
P # Om,, Which could be extended tp = ) x O, € Pa and the positive coordinate gf could be
added tdH (A), contradicting the construction f(A) as including all such rows.

The property®a, ﬂRT; = @ was proved in the discussion of Theorem 14: simply add together,
for eachi € H(A), they;’s corresponding to positive weight an

For the decomposition, note first that certainly evegng ®p, x @5, satisfiesp € Pa. Now
suppose contradictorily that there exigfse ®a\ (Pa, x Pa, ). There must exisf € [m)\ H(A)
with (§/); > 0, since otherwisg) € {0;} x ®a,; but that meang should have been included in
H(A), a contradiction.

For the uniqueness property, suppose some @hdd, is given, satisfying the desired prop-
erties. It is impossible that sona € B, is not inH(A), since anyp € ®g, can be extended to
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Y’ € da with positive weight ori, and thus is included iR (A) by definition. But the other case
with i € H(A) buta; € By is equally untenable, since the corresponding meastisein @, but not
in CDBO X CDB+. [ |

The main result of this section will have the same two main ingredients as Propdgitio

e The full boosting instance may be uniquely decomposed into two pidges)dA ., each of
which individually behave like the weak learnability and attainability scenarios.

e The subinstances have a somewhat independent effect on the fulldesta

Theorem 17 Let g€ Go and Ac R™" be given. Let Be R#", B, € RP*" be any partition of A
by rows. The following conditions are equivalent:

FAERBAERZ_ABA=0, and VAcR".B.A¢RP\{0,}, (15)
inf)\eRn f(A)\) = inf)\ERn f(B+)\), and inf)\GRn f(BO}\) = O, (16)
and  f+1mg,) is O-coercive

f

Wl = H’EO] with i =0, and wh eRP, (17)
.

®g,={0,}, and ®g NRP, #£0, and &= Dg,x D, . (18)

Stepping through these properties, notice that Equation 18 mirrors thessiqm in Proposi-
tion 16. But that Theorem also granted that this representation was uttiggeonly one partition
of A satisfies the above properties, nami&yA., . Since this Theorem is stated as a series of equiv-
alences, any one of these properties can in turn be used to identify thedrarseH (A).

To continue with geometric interpretations, notice that Equation 15 states thatekists a
halfspace strictly containing those points[im| \ H(A), with all points ofH(A) on its boundary;
furthermore, trying to adjust this halfspace to contain elements (&) will place others outside
it. With regards to the geometry of the dual feasible set as provided bytiBquEB, the origin
is within the relative interior of the points correspondingHgA), however the convex hull of
the otherm— |H(A)| points can not contain the origin. Furthermore, if the origin is written as
a convex combination of all points, this combination must place zero weighteopdimts with
indices[m] \ H(A). This scenario is depicted in Figure 6.

In Equation 16 and Equation 1By mirrors the behavior of weakly learnable instances in The-
orem 11, and analogousBy; follows instances with minimizers from Theorem 14. The interesting
addition, as discussed above, is the independence of these compdimrdtion 16 provides that
the infimum of the combined problem is the sum of the infima of the subproblenik Bdua-
tion 17 provides that the full dual optimum may be obtained by concatenatinguthroblems’
dual optima. _ B
Proof of Theorem 17 (Equation 15— Equation 16.) Lef\ be given withBoA € R* _ and
B4\ =0y, and let{c;}7 1 « be an arbitrary sequence increasing without bound. LastiyMgf
be a minimizing sequence for jpf(B;A). Then

inf 1(B,A) = lim (£(B,A) -+ (ciBoh)) = inf £(AN)
= ir}1\f(f(B+)\) + f(BoA)) > if;f f(B+A),
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Figure 6: Geometric view of the primal and dual problem in the general cEisere is a closed
homogeneous halfspace containing the po{ats; }', where the hard core lies on the
halfspace boundary, and the other points are within its interior; moretnezg does not
exist a closed homogeneous halfspace containing all points but with siritdiement
on a point in the hard core. Finally, although the origin is in the convex hulla } 7",
any such convex combination places zero weight on points outside thedrardPlease
see Theorem 17 and its discussion.

which used the fact théft(BoA) > 0 sincef > 0. And since the chain of inequalities starts and ends
the same, it must be a chain of equalities, which meansfiiifoA) = 0. To show 0-coercivity of
f +lim(s, ), Note the second part of Equation 15 is one of the conditions of Theotem 1
(Equation 16— Equation 17.) First, by Theorem 11, jnff(BoA) =0 meanquéO = 0; and
®g, = {0;}. Thus

—f*(pp) = sup—f*(y)

Peda

= sup  —f(W) - (Wp)
quERi
WpeR?
BJ W +BlWp=0,

> sup —f*(Y) + sup —f*(Pp)
l.IJqu)BO llJqu)B+

=0~ f*(Wg,) = inf f(BN)= inf f(AN)=—f(up).

Combining this withf*(x) = ¥;9((x);) andg*(0) = 0 (cf. Lemma 2, Theorem 4)f*(lp/§) =
f

f*(ljJé+) = f*([qufo}). But Theorem 4 ShOWﬂJL was unique, which gives the result. And to
By

obtaian,;+ € RL, use Theorem 14 with the O-coercivity bft 1y, ).
(Equation 17— Equation 18.) SinceaJé0 = 0, it follows by Theorem 11 tha®g, = {0,}.

Furthermore, sincep,';,+ € RP ., it follows that®g, "R, # 0. Now suppose contradictorily that
Pp £ @B& x ®g_ ; since it always holds thabs O ®g; x ®g, , this supposition grants the existence
of Y =[] € PaWherey, € R% \ {0}
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Consider the elemenmt:= Q)+ qJI\, which has more nonzero entries thab, but still g € ®a
since®, is a convex cone. Ldt, index the nonzero entries of and letA; be the restriction of
A to the rowslq. Sinceq € ®a, meaningq is nonnegative and € Ker(A"), it follows that the
restriction ofq to its positive entries is within KQAJ ) (because only zeros gfand matching rows
of Aare removed, dot products betwaswith rows of A" are the same as dot products between the
restriction ofg and rows oﬂg), and saj € ®p,, meaningba, ORM is nonempty. Correspondingly,
by Theorem 14, the dual optimuql)';q of this restricted problem will have only positive entries. But
by the same reasoning granting thaestricted tdq is within ®,, it follows that the full optimum
qJ,i, restricted tolg, must also be withirba, (since, byg's construction,y,’s zero entries are a
superset of the zero entries@)f Therefore this restrictio@L of L|JL to Iq will have at least one zero
entry, meaning it can not be equaltpg&q; but Theorem 4 provided that the dual optimum is unique,
thus—f*(wgq) > — f*(L’[JL). Finally, producamq from Lqu by inserting a zero for each entry kyf
the same reasoning that allows feasibility to be maintained while removing zenas #flem to be
added, and thu@f\q € da. But this is a contradiction: singg (0) = 0 (cf. Lemma 2), bothTJ,iq and

the optimumpl\ have zero contribution to the objective along the entries outsidig ahd thus
— 1 (Wp) = —F (W) > —f (Ba) == (W),

meaningq_J,';q is feasible and has strictly greater objective value than the optilem contradic-
tion.

(Equation 18 = Equation 15.) Unwrapping the definition dfa, the assumed statements
imply

(Vgo € RZ\ {0,},9; € RR.B{@+BL@; #0n) A (3@, €RP, .Bl@; =0p).

Applying Motzkin’s transposition theorem (cf. Theorem 31) to the left stataet and Stiemke’s
theorem (cf. Theorem 30, which is implied by Motzkin’s theorem) to the riggitig

(A €R".BoA € RZ_AB A € RP)A (VA € R".ByA € RP \ {0Op}),

which implies the desired statement. |

Remark 18 Notice the dominant role A plays in the structure of the solution found by bgostin
For every ie [m|]\ H(A), the corresponding dual weights go to zero (i(€lf (A\t))i J 0), and the
corresponding primal margins grow unboundedly (i-eg" A\ 1 «, since otherwis@nfy, f (Ag\) >
0). This is completely unaffected by the choice a&f Go. Furthermore, whether this instance is
weak learnable, attainable, or neither is dictated purely by A (respectjilx)| =0, [H(A)| =m,
or [H(A)| € [1,m—1]).

Where different loss functions disagree is how they assign dual weighe feoihts in HA).
In particular, each ge Gg (and corresponding f) defines a notion of entropy via fThe dual
optimization in Theorem 4 can then be interpreted as selecting the max ewtiope (per f)
amongst those convex combinations ¢AHequal to the origin.
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6. Convergence Rates

Convergence rates will be proved for the following family of loss functions

Definition 19 G contains all functions g satisfying the following properties. First Go. Second,
for any xe R™ satisfying fx) < f(A\o) = mg(0), and for any coordinatéx);, there exist constants
n > 0andp > 0such that §((x)i) < ng((x);) and g (x)i) < Bg'((X);)-

The exponential loss is in this family with= = 1 since ex-) is a fixed point with respect to
the differentiation operator. Furthermore, as is verified in Remark 46, th&tilwloss is also in this
family, with n = 2™/(miIn(2)) and = 1+ 2™ (which may be loose). In a sensgandf3 encode
how similar someg € G is to the exponential loss, and thus these parameters can degrade radically
However, outside the weak learnability case, the other terms in the bourglsdre also incur a
large penalty with the exponential loss, and there is some evidence that thav@dable (see the
lower bounds in Mukherjee et al. 2011 or the upper boundsiitséh et al. 2001).

The first step towards proving convergence rates will be to lower bounidifhrovement due to
one iteration. As discussed previously, standard techniques for amgaljescent methods provide
such bounds in terms of gradients, however to overcome the difficultyatfainability in the primal
space, the key will be to convert this into distances in the duaf(aS), as in Equation 5.

Proposition 20 For any t, ge G, A R™", and SO {O0f (AA\;) } withy(A,S) > 0,

_ _ VA SDY gar) (OF (AN))?
f(Ahi11) — fa < F(AN) — fa— .
(Ahea) = fa < F(AN) — fa o)

Proof The stopping condition granisf (A\;) ¢ Ker(AT). Proceeding as in Equation 4,

CAS— it ATl IATOTA.
’ @cS\Ker(AT) Déqur(AT)((p) N DéjKer(AT)(Df(A)\t))

Combined with the approximate line search guarantee from Proposition 38,

4 2 y(A S)°Dg (O (AN))2
f(AA) — F(ANt11) > 1A OF(AM) > SKer(AT) .
6n f(Ah) 6n f(A\)
Subtractingf_A from both sides and rearranging yields the statement. m

The task now is to manage the dual distaDégKer(AT)(Df(A}\t)), specifically to produce a re-

lation to f (A\;) — fa, the total suboptimality in the preceding iteration; from there, standard tools in
convex optimization will yield convergence rates. Matching the problemtstreicevealed in Sec-
tion 5, first the extremal cases of weak learnability and attainability will be ledndnd only then

the general case. The significance of this division is that the extremes tave rate@(In(1/g)),
whereas the general case has @té/¢) (with a matching lower bound provided for the logistic
loss). The reason, which will be elaborated in further sections, is stfaiglard: the extremal
cases are fast for essentially opposing regions, and this conflict withde the rate in the general
case.
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6.1 Weak Learnability
Theorem 21 SupposeéH (A)| = 0 and ge G; theny(A,RT) > 0, and for any t> 0,

my2\ t
F(AM) < f(Aho) (1_\/(23]12@;)) |

Proof By Theorem 11® = {0y}, meaning
D5, (Of (AN)) = wigqﬁAHDf(A?\t) =Yl =[|Of(AA) ]2 = F(AN)/B.
Next, RT is polyhedral, and Theorem 11 grark§ NnKer(A") # 0 and RT \ Ker(A") # 0, so

Theorem 9 provideg(A,RT) > 0. Sincedf(A\;) € RT, all conditions of Proposition 20 are met,
and usingfa = 0 (again by Theorem 11),

VARD)? (AN)? ( v<A,RT>2>
f (AN < f(AN) — =f(AN) 11— ——— ), 19
( H—l) = ( t) 6B2n f (A)\t) ( t) GBZr] ( )
and recursively applying this inequality yields the result. |

As discussed in Section A, RT) =y, the latter quantity being the classical weak learning
rate.

Specializing this analysis to the exponential loss (whete 3 = 1), the bound becomed —
y2/6)!, which recovers the bound of Schapire and Singer (1999), althoughvestity different
analysis. (The exact expression has denominator 2 rather than 6, earidbe recovered with the
closed form line search; cf. Section D.)

In general, solving fot in the expression

f £ t

f(Aho) — fa 63%n 6B°n
reveals that < %In(l/s) iterations suffice to reach suboptimality Recall that andn, in
the case of the logistic loss, have only been bounded by quantities"lik&\Vhile it is unclear if

this analysis o3 andn was tight, note that it is plausible that the logistic loss is slower than the
exponential loss in this scenario, as it works less in initial phases to tammeor margin violations.

Remark 22 The rate O(In(1/¢€)) depended crucially on both g Bg’ and ¢’ < ng. If for in-
stance the second inequality were replaced with<gC, then Equation 19 would instead have
form f(A\iy1) < f(AN) — f(AN)20(1), which by an application of Lemma 33 would grant a rate
O(1/¢). For functions which asymptote to zero (i.e., everythinGdh, satisfying this milder second
order condition is quite easy. The real mechanism behind producingt aaf@sis g< Bg’, which
guarantees that the flattening of the objective function is concomitant with Ifetole values.

6.2 Attainability

Consider now the case of attainability. Recall from Theorem 14 and Bitapol3 that attainability
occurred along with a stronger property, the 0-coercivity (compaet &ats) off + 1) (it was
not possible to work with o A directly, which will have unbounded level sets when (€er+ Op).
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This has an immediate consequence to the task of reldtiAd;) — fa to the dual distance
DéﬁKer(AT)(Df(A}\t))' f is a strictly convex function, which means it is strongly convex over any
compact set. Strong convexity in the primal corresponds to upper boumdsoond derivatives
(occasionally termedtrong smoothne¥sn the dual, which in turn can be used to relate distance
and objective values. This also provides the choice of polyhe8iiony(A,S): unlike the case of
weak learnability, where the unbounded B&twas used, a compact set containing the initial level
set will be chosen.

Theorem 23 SupposeH (A)| = m and ge G. Then there exists a (compact) tightest axis-aligned
rectangleC containing the initial level sefx € R™: (f +ty;(a))(X) < f(ANo)}, and f is strongly
convex with modulus s 0 over C. Finally, eitherAg is optimal, ory(A,0f(C)) > 0, and for all t,

t

- - cy(A,Of(0))?

_ < _ S A A

FAN) o < (1(Rho) — ) (1 P

As in Section 6.1, wher\g is suboptimal, this bound may be rearranged to say that

t< c&%ﬁ/\g;)z In(1/¢) iterations suffice to reach suboptimaliy

To make sense of this bound and its proof, the essential objethigose properties are cap-

tured in the following Theorem, which is stated with some slight generality in dodaifow reuse

in Section 6.3.

Lemma 24 Let ge G, Ae R™" with |[H(A)| = m, and any &> inf, f(A\) be given. Then there
exists a (compact nonempty) tightest axis-aligned rectaggle {x € R™ : (f +1;ma))(x) < d}.
Furthermore, the dual imagelf(C) c R™ is also a (compact nonempty) axis-aligned rectangle,
and moreover it is strictly contained witharom(f*) C R Finally, 0f(C) contains dual feasible
points (i.e.,0f(C) N®a # 0).

A full proof may be found in Section G.4; the principle is thEit(A)| = m provides 0-coercivity
of f +tim(a), and thus the initial level set is compact. To later shyg®, S) > 0 via Theorem 95
must be polyhedral, and to apply Proposition 20, it must contain the duatesseiaf (A\;) }i7 ;;
the easiest choice then is to take the bounding Gaf the initial level set, and use its dual map
O0f(C). To exhibit dual feasible points withi f (C), note thatC will contain a primal minimizer,
and optimality conditions grant thatf (C) contains the dual optimum.

With the polyhedron in place, Proposition 20 may be applied, so what remamsasitrol the
dual distance. Again, this result will be stated with some extra generality er todallow reuse in
Section 6.3.

Lemma 25 Let Ac R™", g G, and any compact set S withf (S) NKer(A") # 0 be given.
Then f is strongly convex over S, and taking © to be the modulus of strong convexity, for any
x e Snim(A),
— 1
f)—fa<o- inf Of(x) - wli-
) =tas ZCqJeDf(S)nKer(AT)” (0=l
Before presenting the proof, it can be sketched quite easily. Using ttth&kYoung inequality
(cf. Proposition 32) and the form of the dual optimization problem (cf. ofemn 4), primal sub-
optimality can be converted into a Bregman divergence in the dual. If theteirsgysconvexity in

581



TELGARSKY

the primal, it allows this Bregman divergence to be converted into a distanatavidard tools in
convex optimization (cf. Lemma 34). Althoughlacks strong convexity in general, it is strongly
convex over any compact set.

Proof of Lemma 25 Consider the optimization problem

. . 2 //
g ot (19 e) = ot L, 3 40

lloll2=1 9ll2=1

sinceSis compact and” and(-)? are continuous, the infimum is attainable. Bt> 0 and@+# O,
meaning the infimune is nonzero, and moreover it is the modulus of strong convexitly @fer S
(Hiriart-Urruty and Lemagchal, 2001, Theorem B.4.3.1.iii).

Now let anyx € SN Im(A) be given, defind = 0Of(S) ¢ R, and for convenience s&t :=
Ker(AT). Consider the dual eleme®3 . (Of(x)) (which exists sinceD NK # 0); due to the
projection, it is dual feasible, and thus it must follow from Theorem 4 that

fa=sup{—f (W) : we Pa} > —F* (PR (T (X)).
Furthermore, since € Im(A),
(x,PBk (Of(x))) =0.
Combined with the Fenchel-Young inequality (cf. Proposition 32)xard]f*(0f(x)),
)= fa< 00+ f* (P (0 (x)))
f(x

= £ (P5k (O ())) (0 (%))
=f*(P Bk (OF( x)))—f Of(X), PBrk (OF(X) - 0f(x)) (20)

SZfCIIDf() PBk (O ()2, (21)

(%),%) — £*(OFf
(01 09) = (O

where the last step follows by an application of Lemma 34, noting thatbtk) andP3 - (O (x))
are inOf(S) =D, andf is strongly convex with modulusoverS. To finish, rewriteP as an infi-
mum and usg - |2 < || - ||1. [ |

The desired result now follows readily.
Proof of Theorem 23 Invoking Lemma 24 withd = f (AAg) immediately provides a compact tight-
est axis-aligned rectangtecontaining the initial level se§:= {x € R™: (f +1;ma))(X) < f(Aho)}.
Crucially, since the objective values never incre&and C contain every iterat@A\; };~ ;.

Applying Lemma 25 to the sef (by Lemma 24[1f(C) NnKer(AT) # 0), then for anyt,

- 1
F(AN) = fa < S IO (AN) = Py eran (DT (AM)) 7,
wherec > 0 is the modulus of strong convexity éfover C.
Finally, if there are suboptimal iterates, thier (C) 2 Of(S) contains points that are not dual

feasible, meaning f (C) \ Ker(AT) # 0; since Lemma 24 also providétf (C) N®a # 0 andOf(C)
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is a hypercube, it follows by Theorem 9 thg®\, [If (C)) > 0. Plugging this into Proposition 20
and usingf (AA;) < f(A\g) gives

2nl 2
f(Ahty1) — fa < F(AN) — fa— MADTO Dareyanar, TTHA)

6n f(A\)
£ Cy(A,Df(C))2>
<(F(AN) —fa) | 1— ——7—— |,
and the result again follows by recursively applying this inequality. |

Remark 26 The key conditions on g G, namely the existence of constants granting g’ and
g” < ng within the initial level set, are much more than are needed in this settingedtisg the
presented proofs, it entirely suffices that on any compact s&"inf has quadratic upper and
lower bounds (equivalently, bounds on the smallest and largest eilgesvaf the Hessian), which
are precisely the weaker conditions used in previous treatments (Bickk| 8006; Ritsch et al.,
2001).

These guantities are therefore necessary for controlling convergember wveak learnability.
To see how the proofs of this section break down in that setting, consideetiiml Bregman
divergence expression in Equation 20. What is really granted by attainatsilityat every iterate
lies well within the interior odom( f*), and therefore these Bregman divergences, which depend on
f*, can not become too wild. On the other hand, with weak learnability, all dédihts go to
zero (cf. Theorem 11), which means thaf* 1 «, and thus the upper bound in Equation 21 ceases
to be valid. As such, another mechanism is required to control this siwenanich is precisely the
role of g< Bg and d’ < ng.

6.3 General Setting

The key development of Section 5.3 was that general instances may dralzsed uniquely into
two smaller pieces, one satisfying attainability and the other satisfying wealalslity, and that
these smaller problems behave somewhat independently. This indepernsiéeneraged here to
produce convergence rates relying upon the existing rate analysiefattéinable and weak learn-
able cases. The mechanism of the proof is as straightforward as ddehope for: decompose the
dual distance into the two pieces, handle them separately using preceduitsrand then stitch
them back together.

Theorem 27 Suppose g G and 1 < [H(A)| < m—1. Recall from Section 5.3 the partition of
the rows of A into A€ R™*" and A, € R™*", and suppose the axes Rf" are ordered so that

A= [AA‘J Set(; to be the tightest axis-aligned rectanglg O {x € R™ : (f +1jma,))(X) <
f(ANo)}, and w:=sup ||Of (AL Ar) — Péf(g)mKer(Ai)(Df(A+)‘f))||1' Then(; is compact, w o,

f has modulus of strong convexity-c0 over C,, andy(A,R™ x Of(C;)) > 0. Using these terms,
for all t,

2f (Ao)
(t-+1)min{Ly(A R x Of(Cy))?/(3n(B+w/(2c))?)}

f(AN) — fa <
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The new termw, appears when stitching together the two subproblems. For choiaps of
G where donfg*) is a compact set, this value is easy to bound; for instance, the logistic loss,
where donig") = [0, 1], hasw < SURygony+) [[@— Om|[1 = m (sinceOm € dom(f*)). And with the
exponential loss, taking:= {A € R": f(A\) < f(A\o)} to denote the initial level set, sin€g, is
always dual feasible,

w < sup||Of(AN)||1 = supf (AN) = f(ANg) = m.
AeS AeS

Note that rearranging the rate from Theorem 27 will provide tt/e) iterations suffice to
reach suboptimalitg, whereas the earlier scenarios needed a@¥iy(1/€)) iterations. The exact
location of the degradation will be pinpointed after the proof, and is relatégtimtroduction ofw.
Proof of Theorem 27 By Theorem 17,fa, = fa, and the form off gives f(A\;) = f(Aok) +
f(A4Ar), thus

F(AA) — fa = F(AA) + F(ALN) — fa, - (22)
For the left term, sincg(x) < B|g'(X)|,
f(Aoh) < BIIOF(Aod) |2 = BIIOf (Aoht) — Pa, (O (Aoho)) 1, (23)

which used the fact (from Theorem 17) tht, = {Om, }-

For the right term of Equation 22, recall from Theorem 17 thatima,) is O-coercive, thus
the level seB, 1= {x € R™ : (f +1jm(a,))(X) < f(AAo)} is compact. For ali, sincef > 0 and the
objective values never increase,

f(Ah) > T(AN) = T(AoAr) + T(ALA) > T(ALN);

in particular, A A; € S;.. Itis crucial that the level set compares agai@Ao) and notf (A Ag).

Continuing, Lemma 24 may be appliedAq with valued = f(A\g), which grants a tightest
axis-aligned rectangle, C R™ containingS;, and moreovellf () NKer(A]) # 0. Applying
Lemma 25 toA, and(., f is strongly convex with modulus> 0 over(,, and for anyt,

— 1
FA) = fa, < S ITFAN) = Pl ¢ gerian) (DT (AL AD) 1. (24)

Next, setw := sup ||Of (AL A) — Péf(@)mKer(AT)(Df(A+}‘t))||1; w < o sinceS; is compact and
Of(Co)NKer(AT) is nonempty. By the definition of,

1 2 1
D yrkercar) (B F (ALA))? S WDR o yeriar) (O (ALN)),
which combined with Equation 24 yields
w

£ 1
f(A‘F)\t) - fA+ < 2CDDf(C+)mKer(AI)(Df(A+)\t))' (25)

To merge the subproblem dual distance upper bounds Equation 23 aatideR5 via Lemma 47,
it must be shown thgfR"® x Of(C;)) N da # 0. But this follows by construction and Theorem 17,
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since{Om} = Pa, CRT, OF(Cy)NPa, # 0 by Lemma 24, and the decompositi®n = Pa, X Pa, .
Returning to the total suboptimality expression Equation 22, these dual dgidtanads yield
f(A}‘t) - f; < BD%)AO (D f (AO}‘t)) +W/(2C>Déf(c+)mKer(AD (D f (A+)\t))
1
< (B+w/(20))Dgmo, 56, ))rkercar) (BT (AN));

the second step using Lemma 47.
To finish, noteR"™® x Of(C;) is polyhedral, and

(RTxOf(Cy)) \Ker(AT) 2 {Of(AA)}Z; \Ker(AT)  # 0

since no primal iterate is optimal and thiig (A);) is not dual feasible by optimality conditions;
combined with the above derivatigR'”® x Of(C;)) N ®a # 0, Theorem 9 may be applied, meaning
Y(A,R® x Of(Cy)) > 0. As such, all conditions of Proposition 20 are met, and making use of
f(AA) < f(Aho),

— — Y(A7Rj—b X Df(C+))2D2-RTOXDf(CJr))QKer(AT)(Df(A}\t))z
f(AAt11) — fa < F(AN) — fa— 61 (AN
= VAR xOf(C1))(f(AN) — fa)?
= T = G Ao B w22

Applying Lemma 33 with

f(AN) — fa
f(Aho)

VA R™ x Df(C+))2}
3n(B+w/(2c))?

gives the result. |

1 .
& = and r:= 2m|n{1,

In order to produce a rat@(In(1/€)) under attainability, strong convexity related the subopti-
mality to asquareddual distance] - |2 (cf. Equation 21). On the other hand, the ratgn(1/¢))
under weak learnability came from a fortuitous cancellation with the denomih@ag) (cf. Equa-
tion 19), which is equal to the total suboptimality since Theorem 11 proviges0. But in order
to merge the subproblem dual distances via Lemma 47, the differing prapgréieting fast rates
must be ignored. (In the case of attainability, this process introduges

This incompatibility is not merely an artifact of the analysis. Intuitively, the finitd afinite
margins sought by the two piecég, A, are in conflict. For a beautifully simple, concrete case of
this, consider the following matrix, due to Schapire (2010):

-1 +1
S=1|+1 -1{.
-1 —

The optimal solution here is to push both coordinatea afinboundedly positive, with margins
approaching0, 0, ). But pushing any coordinat ); too quickly will increase the objective value,
rather than decreasing it. In fact, this instance will provide a lower bourdiftee mechanism of
the proof shows that the primal weights grow extremely slowlypds(t)).
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Theorem 28 Fix g = In(1+exp(-)) € G, the logistic loss, and suppose the line search is exact.
Then for any t 1, f(S\t) — fs> 1/(8t).

(The proof, in Section G.6, is by brute force.)

Finally, note that this third setting does not always entail slow convergehgain taking the
view of the rows ofSbeing points{—s }3, consider the effect of rotating the entire instance around
the origin byri/4. The optimization scenario is unchanged, however coordinate descenbw be
arbitrarily close to the optimum in one iteration by pushing a single primal weigrgraely high.
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Appendix A. Common Notation

Symbol  Comment

RM m-dimensional vector space over the reals.
RT Non-negativen-dimensional real vectors.
int(S) The interior of set.
R, Positivem-dimensional real vectors, that is, (&").

RM™RM_ Res_pectiv.ely—]RT, —RT,. _
Om, 1m m-dimensional vectors of all zeros and all ones, respectively.

€ Indicator vector: 1 at coordinateO elsewhere. Context will provide the ambient
dimension.
Im(A) Image of linear operatok.
Ker(A)  Kernel of linear operatoA.
s Indicator function on a s&k
1s(X) 1= {2 i;g

domh)  Domain of convex functio, that is, the sefx € R™: h(x) < «}.
h* The Fenchel conjugate of

h*(@) = sup (@.x)—h(x).
xedom(h)
(Cf. Section 3 and Section B.2.)
0-coercive A convex function with all level sets compact is called Oaieer(cf. Section 5.2).

Go Basic loss family under consideration (cf. Section 2).

G Refined loss family for which convergence rates are established (@fo8®).
n,B Parameters corresponding to soge G (cf. Section 6).

Dp The general dual feasibility seba := Ker(AT) NR™ (cf. Section 3).

Y(A,S)  Generalization of classical weak learning rate (cf. Section 4).

fa The minimal objective value of o A: fa :=infy f(AN) (cf. Section 2).

L|J£ Dual optimum (cf. Section 3).

Pg I[P projection onto closed nonempty convex Sewvith ties broken in some consis-
tent manner (cf. Section 4).

DE IP distance to closed nonempty convex SebE(@) := ||@— PE(@) | p.

Appendix B. Supporting Results from Convex Analysis, Optimzation, and Linear
Programming

This appendix collects various supporting results from the literature.

B.1 Theorems of the Alternative

Theorems of the alternative consider the interplay between a matrix (or anfdvices) and its
transpose; they are typically stated as two alternative scenarios, exaetlyf avhich must hold.
These results usually appear in connection with linear programming, whekads lemma is used
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to certify (or not) the existence of solutions. In the present manuscript,atfeeused to establish
the relationship between IfA) and Ke(A'"), appearing as the first and fourth clauses of the various
characterization theorems in Section 5.

The first such theorem, used in the setting of weak learnability, is perhajpddist theorem of
alternatives (Dantzig and Thapa, 2003, Bibliographic Notes, SectiorChapter 2). Interestingly,
a streamlined presentation, using a related optimization problem (which cédg beawritten as
f o Afrom this manuscript), can be found in Borwein and Lewis (2000, The@g.6).

Theorem 29 (Gordan, Borwein and Lewis, 2000, Theorem 2.2.1§or any Ac R™", exactly one
of the following situations holds:

INERNANER™ ;
e RT\ {Om} . AT @= 0.

A geometric interpretation is as follows. Take the rowsAdb bem points inR". Then there are
two possibilities: either there exists an open homogeneous halfspace auntimpoints, or their
convex hull contains the origin.

Next is Stiemke’s Theorem of the Alternative, used in connection with attdéityab

Theorem 30 (Stiemke, Borwein and Lewis, 2000, Exercise 2.2.8pr any Ac R™", exactly one
of the following situations holds:

IN € R".AN € R™\ {O};
JeeRT, .AT@=0n.

The geometric interpretation here is that either there exists a closed hornagdrafspace con-
taining allm points, with at least one point interior to the halfspace, or the relative intefithe
convex hull of the points contains the origin (for the connection to relatiegiors, see for instance
Hiriart-Urruty and Lemagchal 2001, Remark A.2.1.4).

Finally, a version of Motzkin’s Transposition Theorem, which can entbed¢heorems of alter-
natives due to Farkas, Stiemke, and Gordan (Ben-Israel, 2002).

Theorem 31 (Motzkin, Dantzig and Thapa, 2003, Theorem 2.16Jor any Be R#" and Ce RP*",
exactly one of the following situations holds:

IAeR".BAeRZ_ACAERP,
Jps € R2\ {0,},c € R .B s +C qgc = On.

For this geometric interpretation, take any matix R™", broken into two submatricds e R*"
andC € RP*", with z+ p=m; again, consider the rows #fasmpoints inR". The first possibility is
that there exists a closed homogeneous halfspace containingaihts, thez points corresponding
to B being interior to the halfspace. Otherwise, the origin can be written as @xaovnbination
of thesem points, with positive weight on at least one elemenBof
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B.2 Fenchel Conjugacy

The Fenchel conjugate of a functibndefined in Section 3, is

h* (@)= sup (x,q) —h(x),
xedom(h)

where donfh) = {x: h(x) < «}. The main property of the conjugate, indeed what motivated its
definition, is that{h*(Oh(x)) = x (Hiriart-Urruty and Lema&chal, 2001, Corollary E.1.4.4). To
demystify this, differentiate and set to zero the contents of the above seigzetichel conjugate
acts as an inverse gradient map. For a beautiful description of Fesaitjabacy, please see Hiriart-
Urruty and Lemagchal (2001, Section E.1.2).

Another crucial property of Fenchel conjugates is the Fenchel-Ymewyality, simplified here
for differentiability (the “if” can be strengthened to “iff” via subgradients

Proposition 32 (Fenchel-Young, Borwein and Lewis, 2000, Proposiin 3.3.4) For any convex func-
tion h and xe dom(h), ¢ € dom(h*),

h(x)+h"(9) = (x, @),
with equality ifo= Oh(x).

B.3 Convex Optimization

Two standard results from convex optimization will help produce convexgeates; note that these
results can be found in many sources.
First, a lemma to convert single-step convergence results into genevargence results.

Lemma 33 (Lemma 20 from Shalev-Shwartz and Singer 2008).et 1 > €; > €, > ... be given
with &1 < & — re? for some re (0,1/2]. Theng < (r(t+1))~2.

Although strong convexity in the primal grants the existence of a lower bogrguadratic, it
grants upper bounds in the dual. The following result is also standardhirex@nalysis, see for
instance Hiriart-Urruty and Lemachal (2001, proof of Theorem E.4.2.2).

Lemma 34 (Lemma 18 from Shalev-Shwartz and Singer 2008).et h be strongly convex over com-
pact convex set S with modulus c. Then for @nw; + @, € Oh(S),

(@ @2) — 1 (00) < (0N (). @) + o | @21

Appendix C. Basic Properties ofg € Go

Lemma 35 Let any ge G be given. Then g is strictly convex;>g0, g strictly increases (g> 0),
and d strictly increases. Lastlyimy_,.g(X) = .

Proof (Strict convexity andy strictly increases.) For any<'y,

9(y) =g+ [ g'Odt> g+ - inf ¢'(1)>g(x.

te[xy]
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thusg’ strictly increases, granting strict convexity (Hiriart-Urruty and Legacdal, 2001, Theorem
B.4.1.4).

(g strictly increases, that ig, > 0.) Suppose there existsith g (y) < 0, and choose any< y.
Sinced strictly increasesy (x) < 0. But that means

: . Do
JNim g(2) > lim_g(x) +(z—=X)g (x) = =,

a contradiction.

(g > 0.) If there existedy with g(y) < 0, then the strict increasing property would invalidate
Iimx_>_oo g(X) == 0

(limy 0 g(X) = .) Let any sequencéc;}{ 1 « be given; the result follows by convexity and
g > 0, since

lim g(ci) > lim g(c1) +d(c1)(ci — 1) = .

Next, a deferred proof regarding propertiegodfor g € Go.
Proof of Lemma 2 g* is strictly convex becauggis differentiable, and* is continuously differen-
tiable on intfdom(g*)) because@ is strictly convex (Hiriart-Urruty and Leméchal, 2001, Theorems
E.4.1.1,E4.1.2).

Next, wheng < 0: limy_,_» g(X) = 0 grants the existence gfsuch that for anx <y, g(x) <1,
thus

g'(p = SEDCPX— g(X) > suppx — 1 = oo.

X<y
(g > 0 precludes the possibility @ — .)
Take@ = 0; then
g'(¢) = sup—g(x) = —infg(x) = 0.

Wheng= dg'(0), by the Fenchel-Young inequality (Proposition 32),
g'(9) =9'(d'(0)) = 0-g'(0) — g(0) = —9(0).

Moreoverg*(g'(0)) = 0 (Hiriart-Urruty and Lema&chal, 2001, Corollary E.1.4.3), which com-
bined with strict convexity ofg* meansg’(0) minimizesg*. g* is closed (Hiriart-Urruty and
Lemagéchal, 2001, Theorem E.1.1.2), which combined with the above givesdh&gt) = [0, »)

or domg*) = [0,b] for someb > 0, and the rest of the form of . [

Finally, properties of the empirical risk functidnand its conjugaté *.

Lemma 36 Let any ge Go be given. Then the corresponding f is strictly convex, twice con-
tinuously differentiable, andf > On. Furthermore,dom(f*) = dom(g*)™ C RT, f*(0m) =0,

f* is strictly convex, f is continuously differentiable on the interior of its domain, and finally
f(0) =319 (@)-
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Proof First,
m

m
(@) = sup(@,x) — f(x) = sup 3 x@ —g(x) = Zg*(cn)-
XeRM XERM{= i=
Next, strict convexity of* (cf. Lemma 2) means, fot#y, (Jg*(x) — Og*(y),x—Yy) > 0 (Hiriart-
Urruty and Lemagchal, 2001, Theorem E.4.1.4); thus, givang, € R™ with @ # @, strict con-

vexity of f* follows from

m

(OF (@) —DOF (@2), L — @) = _;<Dg*((<p1)i) — 0g™((92)i), (@i — (@2)i) > 0.

The remaining properties follow from propertiesgpdndg* (cf. Lemma 35 and Lemma 2). H

Appendix D. Approximate Line Search

This section provides two approximate line search methods @ $: an iterative approach, out-
lined in Section D.1 and analyzed in Section D.2, and a closed form choiiegolin Section D.3.

The iterative approach follows standard line search principles fronineam optimization (Bert-
sekas, 1999; Nocedal and Wright, 2006). It requires no parametels the ability to evaluate
objective values and their gradients, and as such is perhaps of goeattical interest. Due to
this, and the fact that its guarantee is just a constant factor worse thalosieel form method, all
convergence analysis will use this choice.

The closed form step size is provided for the sake of comparison to dtloedres from the
boosting literature. The drawback, as mentioned above, is the need todemain parameters,
specifically a second derivative bound, which may be loose.

Before proceeding, note briefly that this section is the only place wharaedealness of the
entries ofA is used. Without this assumption, the second derivative upper boundd santain the
term maxj AZ which in turn would appear in the various convergence rates of Section 6

D.1 The Wolfe Conditions

Consider any convex differentiable functibna current iterate, and a descent direction(that is,
Oh(x) "v < 0). By convexity, the linearization d¢fatx in directionv, symbolicallyh(x) +aOh(x) "v,
will lie below the function. But, by continuity, it must be the case that, for eng (0,1), the ray
h(x) + ac,0h(x) "v, depicted in Figure 8, must lie abovefor some small region aroung this
gives the first Wolfe condition, also known as the Armijo condition (cf. Ntzdend Wright 2006,
Equation 3.4 and Bertsekas 1999, Exercise 1.2.16):

h(x+ av) < h(x) +acOh(x) "v. (26)
Unfortunately, this rule may grant only very limited decrease in objectiveeyalincea > 0 can
be chosen arbitrarily small and still satisfy the rule; thus, the second Wafgition, also called a

curvature condition, which depends one (ci,1), forces the step to be farther away:

Oh(x4av) "'v> c0h(x) "v. (27)
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Routine WOLFE.
Input Convex functiorh, iteratex, descent direction.
Output Step sizen > 0 satisfying Equation 26 and Equation 27.

1. Bracketing step.

(b) While amax satisfies Equation 26:
L] Setamax = zamax

2. Bisection step.

(a) Setomin =0 andd := Omax/2.
(b) While a does not satisfy Equation 26 and Equation 27:
i. If o violates Equation 26:
e SetOmax.= 0.
ii. Else,a must violate Equation 27:
e SetUmin := 0.
iii. Setd := (Amin+ Omax)/2.

(c) Returna.

Figure 7: Bracketing and bisecting search for step size satisfying Waifgittons.

This requires the new gradient (in directighto be closer to 0, mimicking first order optimality
conditions for the exact line search. Note that the new gradient (in diregtionay in fact be
positive; this does not affect the analysis.

In the case of boosting, with functidro A, current iteraté, directionv; 1 € {£e;,,, } satisfying
O(foA)(At) "1 = —||O(f 0 A)(At) ||, these conditions become

(foA) (M +aVir1) < (foA)(At) —ac]|T(f o A)(At)]|cs (28)
O(foA) (M +0Ver1) Ver1 > —Co||O(F o A)(Ap)]fo- (29)

An algorithm to find a point satisfying these conditions, presented in Figuisesimple enough:
grow a as quickly as possible, and then bisect backwards for a satisfactory gos compared
with the presentation in Nocedal and Wright (2006, Algorithm 3%),« is searched for rather than
provided, and convexity removes the need for interpolation.

Proposition 37 Given a continuously differentiable convex bounded below function h, itgrate
and direction vWOLFE terminates with am > 0 satisfying Equation 26 and Equation 27.

Proof The bracketing search must terminatels a descent direction, so the linearizatiorhat;
with slopec; [Oh(x) v will eventually intersech (sinceh it is bounded below).

The remainder of this proof is illustrated in Figure 8. logtbe the greatest positive real sat-
isfying Equation 26; due to convexity, evemy> 0 satisfying this first condition must also satisfy
a € [0,a1]. Crucially, 01 < Omax-
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A

Figure 8: The mechanism behinddFE: the set of points satisfying Equation 26 and Equation 27
is a closed interval, and bisection will find interior points. In this figure, dddines
denote various relevant slopes.

Next, leta, be the smallest positive real satisfying Equation 27; existence of sudhtdgmws
from the existence of points satisfying both Wolfe conditions (NocedaMdright, 2006, Lemma
3.1). By convexity,

(Oh(x+ av) — Oh(x),v) > 0,

and therefore every > 0 satisfying Equation 27 must satisfy> a-.
Finally, a; # ap, sincec; < ¢z, meaning

Oh(x+ayv) 'v=c0n(x) "'v < c10h(x) 'v < Oh(x+azv) "v.

Combining these facts, the intervialp, 1] is precisely the set of points which satisfy Equa-
tion 28 and Equation 27. The bisection search maintains the invadaps< a; anddmax > a1,
meaning no valid solution is ever thrown outt2,01] C [Omin, Omax]- [02,01] has nonzero width
(sincea # ay), and every bisection step halves the widthoafin, 0may, thus the procedure termi-
nates. [ ]

D.2 Improvement Guaranteed by WOLFE Search

The following proof, adapted from Nocedal and Wright (2006, Lemmg Brbvides the improve-
ment gained by a single line search step. The usual proof dependsipschitz parameter on the
gradient, which is furnished here Ig/(x) < ng(x).

Proposition 38 (See Nocedal and Wright 2006, Lemma 3.1%ix any g€ G. If ¢, 1 is chosen by
WoLFE applied to function b A at iterateA; in direction ;1 with ¢; = 1/3and ¢ = 1/2, then
[ATOf (AN 1S
f(A(A < f(AN) — ————7 2.
(A +agavei1)) < F(AN) 6N (AN
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Proof First note that every € [0, a 1] satisfies
fF(AA+aviy1)) < F(AN).
By the fundamental theorem of calculus,
(O(f o A) (Mt + s 1Ver1) — O(Fo A)(Ar)) "Wisa

= [T TR(F 0 A (A + e 1)1l
== 0 t+1 t t+1)Vt+1

m
<or1 sup S g'(8 A+ avia) (Aj,,,)?
a€[0,0¢4+1]i=

< N1 Sup Zlg (6" A(\ + Vit 1))

a€0,0t41] i

< Nog1 F(AN),

which used boundedness of the entriedin
The rest of the proof continues as in Nocedal and Wright (2006, rEne®.2). Specifically,
subtractingJ(f o A)(A¢) " w1 from both sides of Equation 29 yields

(O(F o AY At +eavers) — O(F o AY(A)) "Vea > (C2— 1)O(F 0 A)(Ae) Ve
Combining these two gives

o > (Cz—l)D(f OA)()\ )TVH_l (1 Cz)HD(f OA) )\t)Hoo
e nf(AN) nf(A)

Plugging this into Equation 28 yields

ca(1-c)[|O(f o AA)IE

(foA) A+ aaves) < (FoA)(N) — nf(AA)

Note briefly that the simpler iterative strategy of backtracking line searcbdmdd to require
knowledge of the sorts of parameters appearing in the closed form choice

D.3 Non-iterative Step Selection

The same techniques from the proof of Proposition 38 can provide addosa choice ofo;. In
particular, it follows that anyx € {a > 0: f(A\;) > f(A(A +0vi4+1))} is upper bounded by the
guadratic
a?nf(An
FA +aves1)) < F(AN) —af]AT O (AN o+ ”Z(t)
This quadratic is minimized at
o IATDE (ANl
nf(Ax)
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moreover, this minimum is attained within the interval above, which in particular implies

_IATOf AN Z

FOAR -+ o)) < AN = TS

Whenn is simple and tight, this yields a pleasing expression (for instaneel wheng = exp(-)).
In general, howeven might be hard to calculate, or simply very loose, in which case performing a
line search like VOLFE is preferable.

Appendix E. Approximate Coordinate Selection

Selecting a coordinat§ translates into selecting some hypothdsis #/; this is in fact a key
strength of boosting, sinc& need not be written down, and a weak learning oracle can select
he € #. But for certain hypothesis class2§ it may be impossible to guarantbeis truly the best
choice.

Observe how these statements translate into gradient descent. Spedfiealhpices 1 made
by boosting satisfies

Vi 1 O(Fo A)(Ar) = VAT OF (AN) = —|ATOF (AN oo

On the other hand, the usual choice= —0(f o A)(A)/||ATOf(AN)|2 of gradient descenti{
steepest descent) grants
viO(foA)(\) = —[|ATOf (AN ||2;

note that this choice ofis potentially a dense vector.

Remark 39 Suppose the relaxed condition that the weak learner need merely hgwemalation
over the provided distribution; in optimization terms, the returned directioatisfes

viO(foA)(A) <O.

This choice is not sufficient to guarantee convergence, let aloneeaspnable convergence rate.
As an example boosting instance, consider either of the matrices

:Li T ~1 41 -1

Ar = , Api=|+1 -1 -1,
110 -1 -1 -1
0 0 -1

the first of which uses confidence-rated predictors, the secondiciivghweak learnable; note that
both instances embed the matrix S due to Schapire (2010), used for lourddin Section 6.3.

For eitherinstanceg;, e;,e1,e, €y, ... is a sequence of descent directions. But, for either matrix,
to approach optimality, the weight on the third column must go to infinity.

A first candidate fix is to choose some appropri@te- 0, and require

viO(foA)(A) < —Col|OF(AN)]|1;
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but note, by Theorem 7 and Theorem 11, that this is only possible uretgs lwarnability. (Drop-
ping the term||Cf (AA¢)||1 also fails; suppos@é grants a minimize: plugging this in makes the
left hand side exactly zero, and continuity thus grants arbitrarily small sglue
Instead consider requiring the weak learning oracle to return some legiott least a fraction
co € (0,1] as good as the best weak learner in the class; written in the present foamee
directionv must satisfy
VIO(f o A)(A) < —Col|ATOF (AN o

Inspecting the proof of Proposition 20, it follows that this approximate siefewould simply intro-
duce the constare§ in all rates, but would not degrade their asymptotic relationship to suboptimality
€.

Appendix F. Generalizing the Weak Learning Rate

This appendix develops the generalizatygh, S) of the classical weak learning rate.

F.1 Choosing a Generalization toy

Any generalizatiory of y should satisfy the following properties.
e When weak learnability holdy, = y.
e For any boosting instancg, e (0, ).

e V provides an expression similar to Equation 5, which allows the full gradidog tmnverted
into a notion of suboptimality in the dual.

Taking the form of the classical weak learning rate from Equation 3 as @Imibe template
generalized weak learning rate is

o A" @]
VASCD)= W infycsollo— 0l

for some set$, C, andD (for instance, the classical weak learning rate MT andC =D =
{Om}). In order to provide an expression similar to Equation 5, the domain of thaunfi must
include every suboptimal dual iterafef (A);).

Any choiceC which does not include all of KéAT) is immediately problematic: this allows
@< SnKer(A") to be selected, where®y' ¢ = 0, andy = 0. But note that without being careful
aboutD, it is still possible to force the value 0.

Remark 40 Another generalization is to define

1A @l

V/(R) = Y (A RT Ker(AT) {wi)) = inf To—wll
+\ VA —Ya

This form agrees with the originglwhen weak learnability holds, and will lead to a very convenient
analog to Equation 5.

Unfortunately,y’ may be zero. Specifically, take the matrix S defined in Section 6.3, due to
Schapire (2010), where
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Furthermore, for anya € (0,1), define

@a:=0 [((ﬂ eIm(S); Yo = (1—a) [iﬁ] +qu¢,€ Ker(S").
0
Then

T T —a

oesters ) [~ Gl <00 |+ Yo~ WLy 00 L

The natural correction to these worries is toGet D = Ker(A"). But there is still sensitivity
due toS.

Remark 41 Set A:= 1, meaningKer(AT) {z(1,~1) : ze R}, and S= B(1,,+/2), the ball of
radius v/2 around 1,; note that $1Ker(A") = 0,. Considery (A, S Ker(A"),Ker(A")), and the
sequencg@ }i* ; where

B 1 i+1
N | [i—l] '

Note that||@ — 12||2 = V2, thus@ € S. Furthermore, A@ # 0, so@ ¢ SnKer(AT). As such,

.
V(A SKer(AT),Ker(AT)) < inf A" @[]ex
- PSWKer(AT( @)l

1133 (VI (] e
VR[]

Using /Yy < (1+Y)/2, the numerator has upper bound

13 (12v/i2+ 1= [1]) flo = [2V/i2 4+ 12
=2i(v/1+i2-1)

<2i((2+i7%)/2—1) =1/i.

(30)

The denominator is

112v/i2+1- ['“]Hl—rﬁ +1\+|¢ﬁ_
—ViZF )+ (ViZ+ 1 )

= 2.
Thus Equation 30 is bounded aboveibfy(2i)~ = 0.

The difficulty here was the curvature 8fwhich allowed elements arbitrarily close to Kar )
without actually being inside this subspace. This possibility is averted in this sogapuby re-
quiring polyhedrality ofS. This choice is sufficiently rich to allow the various dual-distance upper
bounds of Section 6.
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F.2 Proof of Theorem 9

The proof of Theorem 9 requires a few steps, but the strategy is dfiaighrd. First note that
Y(A,S) can be rewritten as

.
YAS = inf IA 9l
ges\Ker(AT) [|@—Pgyan) (D)2
o IAT (@~ P& eriar) (@)l
gesikerAT) 0= Pg oam (@2

_ S IAY]e m o pl
= inf vIs v ER™ {Om}, 39 € Sov=0—Pgyoar) (@)

= inf{HATva “Iv[1=1,3p€ S3c > 0.cv=0p— Pé‘nKer(AT)((p)}’ (31)

where the second equivalence u@érdDéqur(AT)((p) = Op.

In the final form,v ¢ Ker(AT), and soA"v # Oy; that is to say, the infimand is positive for every
element of its domain. The difficulty is that the domain of the infimum, written in this Vgaypt
obviously closed; thus one can not simply assert the infimum is attainableoait/.

The goal then will be to reparameterize the infimum to have a compact domaitedfmical
convenience, the result will be mainly proved for #Renorm (where projections behave nicely),
and norm equivalence will provide the final result.

Lemma 42 Given Ac R™" and a polyhedron & R™ with SnKer(A") # 0 and S\ Ker(A") # 0,

AT(@—PZ . ar (0) ]2
inf A | ZS‘K"‘“A)()H :pe S\ Ker(AT) b > 0. (32)
”(p_ PSWKer(AT)((p) ”2

To produce the desired reparameterization of this infimum, the following ctesization of poly-
hedral sets will be used.

Definition 43 For any nonempty polyhedral setSR™, let Hs index a finite (but possibly empty)
collection of affine functionsyg R™ — R so that S= Ngemg{X € R™: go(X) < 0} (with the con-
vention that S= R™ whenHs = 0). For any xe S, letIg(x) denote theactive seffor x: a € I5(X)

iff ga(X) = 0. Lastly, define a relation-s over points in S: given,y € S, x~gY iff Is(X) = I5(y).
Observe that-gis an equivalence relation over points within S, anddebe the set of equivalence
classes.

The equivalence relationg thus partitionsSinto the members of's, each of which has a very
convenient structure.

Lemma 44 Let a polyhedral set & R™ be given, and fix a nonempty& Cs. Then F is convex,
and F is equal to its relative interior (i.e., E ri(F)). Finally, fixing an arbitrary 3 € F, the
normal cone at any pointe F is orthogonal to the vector space parallel to the affine hull of F (i.e.,

Ne(2) = (aff(F) — {z})* = (aff(F) — {zo})").
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Throughout the remainder of this section, normal and tangent conesevatitsidered at points
within a setF € (s. As Lemma 44 establishes, any $et (s is relatively open(F = ri(F)),
however, the required properties of normal and tangent conesya®gded by Hiriart-Urruty and
Lemagchal (2001, Sections A.5.2 and A.5.3), suppolesedconvex sets. But it is always the
case that (F) = ri(cl(F)) (Hiriart-Urruty and Lema&chal, 2001, Proposition A.2.1.8); as such,
the normal and tangent cones at the desired relative interior points masjusll be constructed
against o[F ), and thus the aforementioned properties safely hold.

Proof If S=R™ (meaningHs is empty) or dinjfF) = O (F is a single point), everything follows
directly, thus suppos8# R™, and fix a nonempt¥ € (s with dim(F) > 0.

Let anyxo,x; € F and < [0,1] be given, and defingg := (1 —B)xo + Bx1. Since eaclyy

definingSis affine,

9a(Xg) = (1—B)da (X0) + Bda (X1). (33)
By construction ofCs, ga(Xo) = 0 iff g« (x1) = 0 and otherwise both are negative, tiyg$xg) = 0
iff ga(X0) = ga(X1) = 0, meaningls(xg) = Is(Xo) = Is(X1), S0Xg € F andF is convex.

Now let anyyp € F be given;y € ri(F) when there exists &> 0 so that

B(yo,d) naff(F) C F (34)

(Hiriart-Urruty and Lemagchal, 2001, Definition A.2.1.1). To this end, first defdn® be half the
distance to the closest hyperplane defirfiwghich is not active fowo:

1
d:== min min{|ly — 'y eR™, =0}.
3o min  min{y —yoll2: Y € R, ga(y) =0}
Since there are only finitely many such hyperplanes, and the distancentsemmzerod > 0. Let
anyyp < B(y,8) Naff(F) be given; by definition of affF ), there must exig € R andy; € F so that

¥g = (1—B)yo+ By:1. By Equation 33, for any € Is(Yo) = Is(Y1),

9a(Yp) = (1—B)gu(Yo) + Bga(y1) = 0.

On the other hand, for any € Hs\ Is(Yo), it must be the case thgg(yg) < 0, sinceyg € B(yo,9),
and due to the choice @ Returning to the definition of relative interior in Equation 34, it follows
thatyo € ri(F), and ri(F) = F sinceyp € F was arbitrary.

For the final property, for angy,z € ri(F) = F, the tangent con@&: (z) has form(aff(F) — {z})
(Hiriart-Urruty and Lemagchal, 2001, see Proposition A.5.2.1 and discussion within Section A.5.3),
and note affF ) — {z} = aff(F) + {zo — 2} — {20} = aff(F) — {z}. Lastly,Ng(2) = T (2)* (Hiriart-
Urruty and Lemagchal, 2001, Proposition A.5.2.4). |

The relevance to Equation 32 and Equation 31 is that projections from gaigh S onto
SN Ker(A") (itself a polyhedron, as is verified in the proof of Lemma 42) must land on some
equivalence class @g-ker(ar), and these projections are easily characterized.

Lemma 45 Let any nonempty polyhedraSR™ and K C R™ be given, and fix any nonempty
F € Csk and % € F. Define

Pe = {c(¢— P&« (9) :c>0,0€ SPE(¢) €F},
Dr = Ne(xe)N{y—xr :ye R™ Vo € Is(Xg) . da(y) < 0},

where N (xg) is the normal cone of F atx Then B = Dg.
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Note that the final active sé§(xg ) is with respect t&, not SNK.

Proof (C) Let anyg@ e Swith y:= PénK(cp) € F be given, where the latter is well-defined sifcand
henceSNK are nonempty. By Lemma 44,< ri(F), andNg () = Ne (X ), meaningp— g € Ne (Xg )
(Hiriart-Urruty and Lemagchal, 2001, Proposition A.5.3.3). Singes S for anya € Is(y) =
Is(xr) € Hs, ga(¢) <0, s0

O—We{yeRM:gu(y) <O} —{W} = ({yeR™:gua(y) <O} —{W—x}) — {x}
={yeR™:ga(y) <0} —{x},

the final equality following sincgq (Xr) = ga (W) = 0 andgy defines an affine hyperplane, meaning
the corresponding affine halfspace is closed under translatiogs-by-. This holds for alla €
Is(Xg ), thus@— W € Dg, and sinceéDg is a convex cone, for any> 0, ¢c(¢— W) € Dg.
(D) Define
d:=min{|[xe —Z||2: o € Hs\ Is(xg),z€ R™, gq(2) = 0}.

For any fixeda, this minimum is positive sincgqy(Xxg) < 0, while polyhedrality ofS grants that
o ranges over a finite set, together meantng 0. Now let anyv € Dg be given, and sep:=
Xg 4+ 0Vv/(2||v|]|2). The form of Dg immediately grant®, (@) < O for a € Is(xg), but notice for
a € Hs\ Is(xe), it still holds thatgq (@) < 0, sincegy(xs) < 0 and||@—xe|l2 < 3. Sov =
(2||V]|2/8)(®— P« (®)) wherep € SandP% (¢) = X- € F, meaningy € Pr. [ |

The result now follows by considering all elements(@fierar)-
Proof of Lemma 42 For convenience, sé¢ := Ker(A"). Note thatk (and henceSNK) is a
polyhedron; indeed, it has the form

K=Ker(A") = {@cR™: AT@= 0}
n

:_ﬂ ({CPG R™:g'ATe<0}n{pcR™:a'ATp> o}),

i=1

Next, noteCsk has at least one nonempty equivalence class, Snde¢ is nonempty by assump-
tion. Rewriting Equation 32 as in Equation 31, and fixingkarwithin each nonempt¥ € Csk,
Lemma 45 grants

Eq. 32= inf{HATsz S|IVl2=1,3c > 0,39 € S.@9— P34« (@) =cv

——

= _min inf {|A"V]2: V|2 = 1,3¢ > 0,39 S.¢— P4 (9) = cuPx () € F }
S
FA0"
= _min inf{HATsz Vil2 = 1,v € N (%e),Vat € Is(Xe) + a (X +V) < o}.
S
"
SinceS\ Ker(A") # 0 andSnKer(A"), at least one infimum has a nonempty domain (for the others,
take the convention that their value-so). Each infimum with a nonempty domain in this final
expression is of a continuous function over a compact set (in fact, agadisl cone intersected

with the boundary of the uni ball), and thus it has a minimizer which corresponds to some
c(@— P4« (@) € Ker(AT), wherec > 0. It follows that

ATT=cAT (9—P% (@) #0.
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meaning each of these infima is positive. But si8tgpolyhedral (s has finitely many equivalence
classes|(Cs| < 2/Hsl) ' meaning the outer minimum is attained and positive. |

Finally, as mentioned above, the desired result follows by norm equiza&len
Proof of Theorem 9 For the upper bound, note as in the proof of Lemma 42 $imeiker(A") # 0
and the infimand is positive for every element of the domain, so the infimum is fifotehe lower
bound, by Lemma 42 and norm equivalence,

-
YAS) = inf - 1Al
@<S\Ker(AT) InflJJESTKer(AT) |o— W1

- IA g
> <> inf - 2 > 0.
VMmN gesiker(AT) infycgierar) [0 — W2

Appendix G. Miscellaneous Technical Material

This appendix collects remaining technical material.

G.1 The Logistic Loss is withinG

Remark 46 This remark develops bounds on the quantitie for the logistic loss g= In(1+
exp(-)). First note that the initial level setgS= {x € R™: f(x) < f(A\o)} is contained within a cube
(—o0,b]™, where b< mIn(2); this follows since fA\o) = f(0m) = min(2), whereas ¢gmin(2)) =
In(1+exp(min(2))) > min(2).

For convenience, the analysis will be mainly written with respect torhin(2). Let any xe
(—co,b] be given, and note’ g= exp(-) /(1 +exp(-)), and ¢ = exp(-) /(1 +exp(-))2.

To determiney, notel < 1+ exp(x) < 1+exp(b). Sinceln is concave, it follows for all 2
[1,1+exp(b)] that the secant line throug(i, 0) and (1+ exp(b),In(1+exp(b))) is a lower bound:

In(1+exp(b))—0 In(1+exp(b))—0
'n(z)2< 1+ expb) — 1 >Z_ 1+expb) — 1

= In(1+ exp(b)) exp(—b)(z— 1).

As such, for xe (—oo,b|, In(1+exp(x)) > exp(x) In(1+ exp(b)) exp(—b), so

g'(x) exp(X) < exp(b) < exp(b)

g(x)  (1+expx))2In(1+expx)) ~ (1+expx))2In(1+expb)) ~ In(1+expb))’

Consequently, a sufficient choicenis= exp(b)/In(1+exp(b)) < 2™/(min(2)).
For g(x) < Bd'(x), usingIn(x) < x—1,

g(x)  In(1+exp(x))  exp(x)
g - e = eew = Hexmb).
1+exp(x) 1+-exp(x)

That is, it suffices to s@:= 1+exp(b) = 1+ 2™
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G.2 Proof of Theorem 4

Proof of Theorem 4 Writing the objective as two Fenchel problems,
fa =inf f(AN) +1gn (A),

d :=sctplmf*(—cp> — 1z (AT Q).
Since contf) = R™ (set of points wheref is continuous) and dofmn») = R", it follows that
Adom(1gn) Ncont(f) = Im(A) # 0, thusd = fa (Borwein and Lewis, 2000, Theorem 3.3.5). More-
over, sincefa < f(Oy) andd > —f*(0y) = 0O, the optimum is finite, and thus the same theorem
grants that it is attainable in the dual.
To complete the dual problem, note for anyg R" that

Ign(A) = SUP(A, ) — 1o (W) = Lo, (A).

HERN
From this, the term-13.(A" @) allows the search in the dual to be restrictecpto Ker(A"). Next,
replacep € Ker(A") with — € Ker(AT), which combined with dortf*) C RT (from Lemma 36)
means it suffices to considere Ker(A") "RT = ®4. (Note that the negation was simply to be
able to interpret feasible dual variables as nonnegative measures.)

Next, f*(@) = 39" ((@)i) was proved in Lemma 36.

Finally, the uniqueness cu|ﬁ,'; was established by Collins et al. (2002, Theorem 1), however a
direct argument is as follows by the strict convexityféf(cf. Lemma 36). Specifically, if there were
some other optimal/ # y, the point(y + y/')/2 is dual feasible and has strictly larger objective
value, a contradiction. [ |

G.3 Proof of Proposition 13

Proof of Proposition 13 It holds in general that 0-coercivity grants attainable minima (cf. Hiriart-
Urruty and Lemagchal 2001, Proposition B.3.2.4 and Borwein and Lewis 2000, Propo4itio8).
Conversely, lek with h(x) = infxh(x) and any directionl € R™ with ||d||> = 1 be given. To demon-
strate O-coercivity, it suffices to show

h(x+td) ~h(g _ o

lim
t—o0
(Hiriart-Urruty and Lemag&chal, 2001, Proposition B.3.2.4.iii). To this end, first note, fortanRr,
that convexity grants
h(x+td) > h(x+4d) + (t — 1) (Oh(x+d),d).
By strict monotonicity of gradients (Hiriart-Urruty and Lerdahal, 2001, Section B.4.1.4) and
first-order necessary conditionsh(x) = O),

(Oh(X+d),d) = (Oh(X+d) — Oh(X),X+d —X) = ¢ > 0,

Combining these,

i NOHD) =) 04 d) + (L= De—h(x)

fim n jim n =c>0.
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G.4 Proof of Lemma 24

Proof of Lemma 24 Sinced > infy f(AA), the level se§y := {x € R™: (f +1;ma))(X) < d} is
nonempty. SincgH (A)| = m, Theorem 14 provide§+ (i, a) is O-coercive, meaning; is compact.
Now consider the rectanglé defined as a product of intervais= @ , [a;, by], where

g :=inf{x :x€ S}, bi :=sup{x : x € &}

By construction,C O &, and furthermore any smaller axis-aligned rectangle must violate some
infimum or supremum above, and so must fail to include a piec®.ofn particular, the tightest
rectangle exists, and it 8.

Next, note thatlf(x) = (¢'(x1),d' (X2),...,d (Xm)), thusD = @™ ,d([a, bi]), an axis-aligned
rectangle in the dual. Singgis strictly convex and dofg) = R, bothgd'(a) andd'(b;) are within
int(dom(g*)) (for all i), and saJf(C) C int(dom(f*)). _

Finally, Proposition 13 grants thdt+1;,,a) has a minimizer; thus choose akye R" so that
f(AN) = infy f(AN). By optimality conditions of Fenchel problemp; = Of(AN) (cf. the optimal-
ity conditions in Borwein and Lewis (2000, Exercise 3.3.9.), and the ppb®heorem 4, where a
negation was inserted into the dual to allow dual points to be interpreted asgetive measures).

But the dual optimum is dual feasible, aAl € &, so

Of(C)N®a D {OF(AN)}NDa= {W]} N DA 0.

G.5 Splitting Distances alongAg, A+
Lemma 47 Let A= [ﬁﬂ be given as in Theorem 27, and let a set& x S, be given with
S CR™and S CR™ and SnPa # 0. Then, for anyp= L‘m with @ € R™ andg@, € R™,

DéW(DA((p) = Dl&)ﬁq)AO (qb) + Daﬂq)M ((p+)
Proof Recall from Theorem 17 thay = ®a, X P4, thus

SN®A = (SHNDPp,) X (S NP, ),

andSN ®a # 0 grants tha N P, # 0 andS; NP4, # 0. Define now the notatiof]o : R™ — R™
and[]; : R™ — R™, which respectively select the coordinates corresponding to the rowg, of
and the rows oA\, .

Leto= [fm € R™ be given; in the above notatiomy = [@o and@; = [@|.. By the above
Cartesian product and intersection properties,

P%omd:Ao (%)

PémcDA+ (1

] € SN Dy,
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and so

[(po] B Péomquo (%)
A P]S-FH(DA+ ((P+)

- Dé)ﬂlDAO ((ﬂ)) + Dé+0q3A+ ((p+)
1

Do, (@) <

On the other hand, sind&q,, (9) € (S9N Pay) X (S N@a, ),

Déomano (o) + Dém% (oy) < H(PO - [Pénqu((P)]OHl + H(P+ - [Pénan((P)hHl = D§7¢A(<P)~

G.6 Proof of Theorem 28

Proof of Theorem 28 This proof proceeds in two stages: first the gap between any solution with
I* normB is shown to be large, and then it is shown thatltheorm of the BoosTsolution (under
logistic loss) grows slowly.

To start, KefS") = {z(1,1,0) : z€ R}, and—g* is maximized ag/(0) with value —g(0) (cf.
Lemma 2). Thuspl = (¢/(0),d'(0),0), and fs = — f*(Wl) = 2g(0) = 2In(2).

Next, by calculus, given ang,

Hxil\quBf(SM —fo=1 <S[E§ED —2In(2)

= (2In(2) +In(1+exp(—B))) — 2In(2)
=In(1+exp(—B)).
Now to bound thd! norm of the iterates. By the nature of exact line search, the coordinates
of A are updated in alternation (with arbitrary initial choice); thusuetlenote the value of the

coordinate updated in iteratianandy; be the one which is held fixed. (In particulsy= u;_1.)
The objective function, written in terms ¢fk, ), is

In (1+exp(vi — )) +In (14+expty —w)) +In (1+exp(—u — v))
= In(2+expvi — W) +expU; — ) + 2exp(—l — V) + exp(—2u) + exp(—2v) ).

Due to the use of exact line search, and the factuh&tthe new value of the updated variable, the
derivative with respect ta; of the above expression must equal zero. In particular, producing this
equality and multiplying both sides by the (nonzero) denominator yields

—exp(vi — W) +exp(uy — i) —2exp(—u — ) — 2exp(—2u) = 0.
Multiplying by exp(u: + ) and rearranging, it follows that, after line searghandv; must satisfy
exp(2u) = exp(2wv) + 2expvi — W) + 2. (35)

First it will be shown fort > 1, by induction, thaty > v;. The base case follows by inspection
(sinceup = Vp = 0 and sau; = In(2)). Now the inductive hypothesis granis> v; the casex =
can be directly handled by Equation 35, thus supppsev;. But previously, it was shown that the
optimall* bounded choice has both coordinates equal; as such, the curretet, itgith coordinates
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(u,w), is worse than the iteratex, ), and thus the line search will move in a positive direction,
giving Ur+1 > Vey1.

It will now be shown by induction that, far> 1, uy < %In(4t). The base case follows by the
direct inspection above. Applying the inductive hypothesis to the updeeahove, and recalling
Vi1 = U and that the weights increase (i@.,1 > Vi.1 = W),

exp(2u+1) = exp(2u) +2expuy — U 1) + 2 < exp(2u) + 2exp(uy — Uy ) +2 <4t +4 < 4(t+1).

To finish, recall by Taylor expansion that i+ q) > q— q—;; consequently for > 1

= . - 1 1 1/1\%_1
— > — > — > — — = — >
f(SN\) — fs inf  f(S\)—fs>1In <1+4t> > 2<4t> >
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