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Abstract

This paper proposes several novel methods, based on mdehméng, to detect malware in ex-
ecutable files without any need for preprocessing, such paaking or disassembling. The basic
method (Mal-ID) is a new static (form-based) analysis methogy that uses common segment
analysis in order to detect malware files. By using commomsed analysis, Mal-ID is able to
discard malware parts that originate from benign code. Mitech, Mal-ID uses a new kind of
feature, termed meta-feature, to better capture the prep@f the analyzed segments. Rather than
using the entire file, as is usually the case with machineniegrbased techniques, the new ap-
proach detects malware on the segment level. This studyirgismluces two Mal-ID extensions
that improve the Mal-ID basic method in various aspects. Mfrously evaluated Mal-ID and its
two extensions with more than ten performance measures;@ngared them to the highly rated
boosted decision tree method under identical settings. evhkiation demonstrated that Mal-ID
and the two Mal-ID extensions outperformed the boostedsdatitree method in almost all re-
spects. In addition, the results indicated that by extngctheaningful features, it is sufficient to
employ one simple detection rule for classifying execiedibés.

Keywords: computer security, malware detection, common segmenysisasupervised learning

1. Introduction

Nowadays the use of the Internet has become an integral part of middeand Internet browsers
are downloading to users a wide variety of content, including new computerase. One conse-
guence of this widespread use is that many computer systems are vulrterabkinfected with
malware—malicious software. Malware can be categorized into sevengbsf

1. Viruses—computer programs that are able to replicate themselves acidfilefeincluding
the operating systems (OS);

2. Worms—self-replicating computer software that is able to send itself to ctingputers on a
network or the Internet;
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3. Trojans—a software that appears to perform the desired functiomatlis actually imple-
menting other hidden operations such as facilitating unauthorized accesstpater sys-
tem;

4. Spyware—a software installed on a computer system without the userdddge to collect
information about the user.

The rate of malware attacks and infections is not yet leveling. In facgrdiow to O’Farrell
(2011) and Symantec Global Internet Security Threat Report TriEemd2010 (Symantec, 2010),
attacks against Web browsers and malicious code variants installed by of¢hase attacks have
increased.

There are many ways to mitigate malware infection and spread. Tools swgttiagrus and
anti-spyware are able to identify and block or identify malware based oreltavior (Franc and
Sonnenburg, 2009) or static features (see Table 1 below). A staticdentty be a rule or a signature
that uniquely identifies a malware or malware group. While the tools mitigating analmay vary,
at their core there must be some classification method to distinguish malwafsofitelsenign files.

Warrender et al. (1999) laid the groundwork for using machine learfoingtrusions detection.
In particular, machine learning methods have been used to analyze bieantables. For example,
Wartell el al. (2011) introduce a machine learning-based disassembhtlafgehat segments bina-
ries into subsequences of bytes and then classifies each subseagsiende or data. In this paper,
the term segment refers to a sequence of bytes of certain size thattwaatezkfrom an executable
file. While it sequentially scans an executable, it sets a breaking pointlape#ential code-to-code
and code-to-data/data-to-code transition. In addition, in recent yearg regearchers have been
using machine learning (ML) techniques to produce a binary classifieistaddle to distinguish
malware from benign files.

The techniques use three distinct stages:

1. Feature Extraction for file representation—The result of the feaktireotion phase is a vec-
tor containing the features extracted. An executable content is redutieshsformed into a
more manageable form such as:

(a) Strings—a file is scanned sequentially and all plain-text data is selected.

(b) Portable Executable File Format Fields—information embedded in Win32\&m@k-
bit executables. The information is necessary for the Windows OS loadeaaplica-
tion itself. Features extracted from PE executables may include all or pthe @dllow-
ing pieces of information: attribute certificate—similar to checksum but moreuliftio
forge; date/time stamp; file pointer—a position within the file as stored on diskylinke
information; CPU type; Portable Executable (PE) logical structure (inojudaction
alignment, code size, debug flags); characteristics—flags that indicalbetetsrof the
image file; DLL import section—Ilist of DLLs and functions the executable usgsort
section—which functions can be imported by other applications; resoureetaly—
indexed by a multiple-level binary-sorted tree structure (resources roaygaall kinds
of information. For example, strings for dialogs, images, dialog structuegsion in-
formation, build information, original filename, etc.); relocation table; and nudhgr
features.
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(c) n-gram—segments of consecutive bytes from different locations wihikiexecutables
of lengthn. Each n-gram extracted is considered a feature (Rokach et al.,.2008)

(d) Opcode n-gram—Opcode is a CPU specific operational code tHatmpesrspecific ma-
chine instruction. Opcode n-gram refers to the concatenation of Opauidesegments.

2. Feature Selection (or feature reduction)—During this phase the vaeiated in phase 1 is
evaluated and redundant and irrelevant features are discardaturd-eelection has many
benefits including: improving the performance of learning modules by negdlbe number
of computations and as a result the learning speed; enhancing gerienalcapability; im-
proving the interpretability of a model, etc. Feature selection can be dong aisimapper
approach or a correlation-based filter approach (Mitchell, 1997)ic@ilp, the filter approach
is faster than the wrapper approach and is used when many featuteJ brifilter approach
uses a measure to quantify the correlation of each feature, or a combiobteatures, to a
class. The overall expected contribution to the classification is calculatieskection is done
according to the highest value. The feature selection measure can bliEalaising many
techniques, such as gain ratio (GR); information-gain (IG); Fisheres@king technique
(Golub et al., 1999) and hierarchical feature selection (Henchiri apkladvicz, 2006).

3. The last phase is creating a classifier using the reduced featutescreated in phase 2 and a
classification technique. Among the many classification techniques, mostaif ivdive been
implemented in the Weka platform (Witten and Frank, 2005), the following hega bsed in
the context of benign/malware files classification: artificial neural nétsvgkNNSs) (Bishop,
1995) , decision tree (DT) learners (Quinlan, 1993), nave-Bay&3 @hssifiers (John and
Langley, 1995), Bayesian networks (BN) (Pearl, 1987), suppector machines (SVMs)
(Joachims, 1999), k-nearest neighbor (KNN) (Aha et al., 1991ngdeature intervals (VFI)
(Demirdz and Givenir, 1997), OneR classifier (Holte, 1993), Adaboost (Freuddsaapire,
1999), random forest (Breiman, 2001), and other ensemble methassafidm et al., 2009;
Rokach, 2010).

To test the effectiveness of ML techniques, in malware detection, teanasers listed in Table
1 conducted experiments combining various feature extraction methodswaiibngeveral feature
selection and classification algorithms.

Ye et al. (2009) suggested using a mixture of features in the malwaretidetprocess. The
features are called Interpretable Strings as they include both prograingssand strings repre-
senting the API execution calls used. The assumption is that the stringsecayppartant semantics
and can reflect an attacker’s intent and goal. The detection processvgth a feature parser that
extract the API function calls and looks for a sequence of consedwies that forms the strings
used. Strings must be of the same encoding and character set. The-featser uses a corpus of
natural language to filter and remove non-interpretable strings. Nextirthgssare ranked using
the Max-Relevance algorithm. Finally, a classification model is construoted /M ensemble
with bagging.

Ye et al. (2010) presented a variation of the method, presented abaveistts Hierarchical
Associative Classifier (HAC) to detect malware from a large imbalancedflispplications. The
malware in the imbalanced list were the minority class. The HAC methodology akse API
calls as features. Again, the associative classifiers were chosen thertanterpretability and
their capability to discover interesting relationships among API calls. The Hg&S two stages:
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to achieve high recall, in the first stage, high precision rules for beniggrams (majority class)
and low precision rules for minority class are used, then, in the seconel sit@gmalware files are
ranked and precision optimization is performed.

Instead of relying on unpacking methods that may fail, Dai et al. (2008)qsed a malware-
detection system, based on a virtual machine, to reveal and capture tieglrieatures. The system
constructs classification models using common data mining approaches. &irstmalware and
benign programs are executed inside the virtual machine and the instrucficenses are collected
during runtime. Second, the instruction sequence patterns are abstiaatddsequence is treated
as a feature. Next, a feature selection process in performed. In thetdgsta classification model
is built. In the evaluation the SVM model performed slightly better then the C4.5Imode

Yu et al. (2011) presented a simple method to detect malware variants. aFiristogram is
created by iterating over the suspected file binary code. An additionaghastois created for
the base sample (the known malware). Then, measures are calculatétintteethe similarity
between the two histograms. Yu et al. (2011) showed that when the similarighisthere is a high
probability that the suspected file is a malware variant.

The experiments definitely proved that is possible to use ML techniques fararetietection.
Short n-gram were most commonly used as features and yielded theebeks.r However, the
researchers listed did not use the same file sets and test formats andréhierisfvery difficult or
impossible to compare the results and to determine what the best method unoigs eanditions
is. Table 2 presents predictive performance results from variouanmsss.

When we examined the techniques, several insights emerged:

1. All applications (i.e., software files tested in the studies) that were deackleging a higher
level development platforms (such as Microsoft Visual Studio, Delphirdéiaft.Net) contain
common code and resources that originate from common code and edibuades. Since
most malware are also made of the same common building blocks, we believeld beu
reasonable to discard the parts of a malware that are common to all kinoftvedi®, leaving
only the parts that are unique to the malware. Doing so should increaséénertcte between
malware files and benign files and therefore should result in a lower nagatation rate.

2. Long n-gram create huge computational loads due to the number afefgaithis is known
as the curse of dimensionality (Bellman et al., 1966). All surveyed n-gsgaranents were
conducted with n-gram length of up to 8 bytes (in most cases 3-byte n-glaspjte the
fact that short n-gram cannot be unique by themselves. In many 8ases8-byte n-gram
cannot represent even one line of code composed with a high leveldgagun fact, we
showed in a previous paper (Tahan et al., 2010) that an n-gram sheuwtlleast 64 bytes
long to uniquely identify a malware. As a result, current techniques usiog s-gram rely
on complex conditions and involve many features for detecting malware files.

The goal of this paper is to develop and evaluate a novel methodologyppdrsing algorithms
for detecting malware files by using common segment analysis. In the gopoesthodology we
initially detect and nullify, by zero patching, benign segments and theredsmve the deficiency
of analyzing files with segments that may not contribute or even hinder ota¢sifi. Note that,
when a segment represents at least one line of code developed usgigleviel language; it can
address the second deficiency of using short features that may béngieas when considered
alone. Additionally, we suggest using meta-features instead of using pkimrés such as n-gram.
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Study Feature Rep+ Feature Set Classifiers
resentation | lection
Schultz et al.| PE, Strings,| NA RIPPER, Nave Bayes, and
(2001) n-gram Multi-Nave Bayes
Kolter and Mal-| n-gram NA TFIDF, Nave Bayes, SVM
oof (2004) Decision Trees, Boosted
Decision Trees, Boosted
Nave Bayes, and Boosted
SVM
Abou-Assaleh | n-gram NA K-Nearest Neighbors
et al. (2004)
Kolter and Mal-| n-gram Information: K-Nearest Neighbors, Nave
oof (2006) Gain Bayes, SVM, Decision
Trees, Boosted Decision
Trees, Boosted Nave Bayes
and Boosted SVM.
Henchiri  and| n-gram Hierarchica| Decision Trees, Nave
Japkowicz feature se- Bayes, and SVM
(2006) lection
Zhang et al| n-gram Information: Probabilistic Neural Net;
(2007) Gain work
Elovici et al.| PE and| Fisher Bayesian Networks, Artifi-
(2007) n-gram Score cial Neural Networks, and
Decision Trees
Ye et al. (2008) | PE Max- Classification Based on As-
Relevance | sociation (CBA)
Dai et al. (2009)| instruction Contrast SVM
sequence measure
Ye et al. (2009) | PE (API) Max- SVM ensemble with bagr
Relevance | ging
Ye et al. (2010) | PE (API) Max- Hierarchical  Associative
Relevance | Classifier (HAC)
Yu et al. (2011) | histogram NA Nearest Neighbors

Table 1: Recent research in static analysis malware detection in chraradlogler.

A meta-feature is a feature that captures the essence of plain feature e aongpact form. Using
those meta-features, we are able to refer to relatively long sequerkbygtés), thus avoiding the
curse of dimensionality.

2. Methods

As explained in Section 1, our basic insight is that almost all modern compppéications are
developed using higher level development platforms such as: Micidisofil Studio, Embarcadero
Delphi, etc. There are a number of implications associated with using theslepieent platforms:
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Method Study Features Feature FPR | TPR | Acc | AUC
selection
Artificial  Neural | Elovici | 5grams Fisher 0.038 0.89 | 0.94 | 0.96
Network et al Score top
(2007) 300
Bayesian Network | Elovici | 5grams Fisher 0.206 0.88 | 0.81 | 0.84
et al Score top
(2007) 300
Bayesian Network | Elovici | PE n/a 0.058| 0.93 | 0.94 | 0.96
et al
(2007)
Decision Tree Elovici | 5grams Fisher 0.039 0.87 | 0.93 | 0.93
et al Score top
(2007) 300
Decision Tree Elovici | PE n/a 0.035 0.92 | 0.95 | 0.96
et al
(2007)
Classification Ye etal.| PE Max- 0.125 0.97 | 0.93 | —
Based on Associar (2008) Relevance
tion
Boosted Decision Kolter | 4grams GainRatio | — | — | — ] 0.99
Tree and
Maloof
(2006)

Table 2: Comparison of several kinds of machine learning methods. FAPR, ACC and AUC
refers to False Positive Rate, True Positive Rate, Accuracy and tleelWirder Receiver
Operating Characteristic (ROC) Curve as defined in Section 3.2.

1. Since application development is fast with these platforms, both legitimatéogeve and
hackers tend to use them. This is certainly true for second-stage malware.

2. Applications share the same libraries and resources that originatethfealevelopment plat-
form or from third-party software companies. As a result, malware thatieen developed
with these tools generally resembles benign applications. Malware alsq teralsertain
degree, to use the same specialized libraries to achieve a malicious gteag¢saitachment
to a different process, hide from sight with root kits, etc). Therefoneay be reasonable to
assume that there will be resemblances in various types of malware dugritmgstommon
malware library code or even similar specific method to perform malicious ac@iboourse
such malware commonalities cannot be always guaranteed.

3. The size of most application files that are being produced is relativajg.laBince many
modern malware files are in fact much larger than 1 MB, analysis of therregypdications is
much more complex than previously when the applications themselves were sasaleti
as the malware attacking them.
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The main idea presented in this paper is to use a new static analysis methoda@bggeh
common segment analysis in order to detect files containing malware. As alodbed, many ap-
plications and malware are developed using the development platformschatariarge program
language libraries. The result is that large portions of executable cigieate from the program
language libraries. For example, a worm malware that distributes itself vid sragp contain a
benign code for sending emails. Consequently, since the email handliegscodt malicious and
can be found in many legitimate applications, it might be a good idea to identifypmtiens that
originate from a benign source and disregard them when classifyingesnutable file. In other
words, when given an unclassified file, the first step would be to detedil¢rsegments that origi-
nated from the development platform or from a benign third party libraryn@ge here the Common
Function) and then disregard those segments. Finally, the remaining segmeldse compared
to determine their degree of resemblance to a collection of known malwdrdse tesemblance
measure satisfies a predetermined threshold or rule then the file can hiied@ssmalware.

To implement the suggested approach, two kinds of repositories arediefine

1. CFL—Common Function Library. The CFL contains data structures constructed from
benign files.

2. TFL—Threat Function Library. The TFL contains data structures constructed from mal-
ware without segments identified as benign (i.e., segments that appeargin files).

Figure 1 presents the different stages required to build the neededrdatares and to classify
an application file. As can be seen in this figure, our Mal-ID methodology tge distinct stages
to accomplish the malware detection task: setup and detection. The setupistdgéhe CFL. The
detection phase classifies a previously unseen application as either malwanign. Each stage
and each sub-stage is explained in detail in the following subsections. &htéD\pseudo code is
presented in Figure 2.

2.1 The Setup Phase

The setup phase involves collecting two kinds of files: benign and malwese fihe benign files
can be gathered, for example, from installed programs, such as pregpeated under Windows XP
program files folders. The malware files can, for example, be dowatb&om trusted dedicated
Internet sites, or by collaborating with an anti-virus company. In this stuglyrtalware collection
was obtained from trusted sources. In particular, Ben-Gurion Usitye€Computational Center
provided us malware that were detected by them over time. Each andiévé&ym the collection is
first broken into 3-grams (three consecutive bytes) and then an@jgieorepository is constructed
from the 3-grams. The CFL repository is constructed from benign fildstaa TFL repository is
constructed from malware files. These repositories are later usedive tiee meta-features—as
described in Section 2.2.

Note that in the proposed algorithm, we are calculating the distribution of 3-grdtitia each
file and across files, to make sure that a 3-gram belongs to the examimeergemnd thus associate
the segment to either benign (CFL) or malware (TFL). Moreover, 8gréhat seem to appear
approximately within the same offset in all malware can be used to charadieeimalware. Before
calculating the 3-grams, the training files are randomly divided into 64 groups

The CFL and TFL repositories share the same data structure:
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Setup phase:

Build Common Function Library (CFL)

.

Build Threats Function Library (TFL)

Malware Detection Phase:

¢ Break the file into segments.

e Calculate segment entropy

e Extract features (3-grams) for
each segment.

For each file segment: For each file segment:
e Aggregate the features using the o Aggregate the features using the
CFL to creates indices TFL to creates indices

\/

Filter segments using the

computed indices

A 4

Second level index aggregation

!

Classify the file

Figure 1: The Mal-ID method for detecting new malware applications.

1. 3-gram-files-association®2entries, each of 64 bits. A bit value of 1 in a cell (i, j) indicates
the appearance of a specific 3-gram i in tHegroup of files. The 64-bit entry size was
selected since a previous study showed that this size is the most cosiveffederms of
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detection performance vs. storage complexity (Tahan et al., 2010). {Dipesmentations
may use larger entries.

1. 3-gram-relative-position-within-file:22 entries, each of 64 bits. A bit value of 1 in a cell (i,
j) indicates the appearance of 3-gram i in tRdjternal segment of a file (assuming the file
is divided into 64 equal length segments).

The CFL is constructed first and then the TFL:

1. Each file from the malware collection is broken into segments. The Mal-1Demmgntation
has used 64-byte segments.

2. Each segment is broken into 3grams and then tested against the CFthesatgorithm and
features described next. Segments that are not in the CFL are added tlLthe

It is important to note that the end result is the TFL, a repository made of segtioeind only
in malware and not in benign files.

2.2 The Detection Phase

The Mal-ID basic is a feature extraction process followed by a simple statiside rule.

It operates by analyzing short segments extracted from the file exanttaeth. segment com-
prises a humber of 3-grams depending on the length of the segment (eegmarg of length 4
bytes is comprised from two 3-grams that overlap by two bytes). Threerésacan be derived for
each segment: Spread, MFG, and Entropy. The Spread and the Mit@#feare derived using the
data structures prepared in the setup stage described in Section 2.1 above

The definition and motivation behind the new features are hereby provided

1. Spread: Recall that in the Mal-ID setup phase each file in the training set has lidedl
into 64 relative-position-areas. The Spread feature representsriedspf the signature’s
3-grams along the various areas for all the files in a given repositos/Sphead feature can
be calculated as follows: for each 3-gram, first retrieve the 3-grantivelposition-within-
file bit-field, and then perform ‘And’ operations over all the bit-fields aodnt the resulting
number of bits that are equal to 1. In other words, spread approximatesatkimum number
of occurrences of a segment within different relative locations in trais deor example, a
Spread equal to 1 means that the segment appears (at most) in one letativa in all the
files.

2. MFG: the maximum total number of file-groups that contain the segment. The MFG is calc

lated using the 3-gram-files-association bit-field, in the same manner thatlspiealculated.

3. Entropy: the entropy measure of the bytes within a specific segment candidate.itioatil
the new estimators presented above, the entropy feature is also usebl&tetdentification
of compressed areas (such as embedded JPEG images) and long gepegtionces that
contain relatively little information.

Note that the features, as described above, are imfetzt-featur esas they are used to represent
features of featurefeatures of the basic 3-grams). As explained next, using these méataetea
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Mal-ID can refer to relatively long sequences (64 bytes), thus avoitiaglata mining problem

known as

“the curse of dimensionality”, and other problems caused wéiag short n-gram as

features. The advantages of using Mal-ID meta-features will be demtmtsirathe evaluation
results section and in the discussion section.

2.3 TheMal-1D Basic Detection Algorithm

The input for the Mal-ID method is an unclassified executable file of any €nee the setup phase
has constructed the CFL and the TFL, itis possible to classify a file F asrbenis malware using
the algorithm presented in Figure 2.

1. Line 1. Divide file F into S segments of length L. All segments are insertedhintdlection
and any duplicated segments are removed. The end result is a collectioigué segments.
The Mal-ID implementation uses 2000 segments that are 64-bytes in length.

2. Line 3. For each segment in the collection:

(@)
(b)

(©)
(d)
(e)

(f)
(9)

(h)
(i)

Line 5. Calculate the entropy for the bytes within the segment.

Line 6. The algorithm gets two parameters EntropyLow and EntropyHigh entropy
thresholds are set to disregard compressed areas (such as emiRHGemages) and
long repeating sequences that contain relatively little information. In this lineheek
if the entropy is smaller than EntropyLow threshold or entropy is larger thrdrogy-
High. Is so then discard the segment and continue segment iteration. Prefimiaa
uation has found the values of EntropyLow=0.5 and EntropyHigh=0.6%&%mnize the
number of irrelevant segments that can be removed.

Line 9. Extract all 3-grams using 1 byte shifts.
Line 11. Using the CFL, calculate the CFL-MFG index.

Line 12. If the CFL-MFG index is larger than zero, then discard theneat and con-
tinue segment iteration. The segment is disregarded since it may appeaign files.

Line 14. Using the TFL, calculate the TFL-MFG index
Line 15. The algorithm gets the ThreatThreshold parameter which teditae mini-
mum occurrences a segment should appear in the TFL in order to be quatfi@al-

ware indicator. In this line we check if the TFL-MFG index is smaller or equahéo
ThreatThreshold. If so then discard the segment and continue with sejenation. In

the Mal-ID implementation only segments that appear two times or more remain in the

segment collection. Obviously a segment that does not appear in any realaranot
be used to indicate that the file is a malware.

Line 17. Using the TFL calculate the TFL-Spread index

Line 18. The algorithm gets the SR parameter which indicates the Spreaykt Re-
quired. If the TFL-Spread index equals zero or if it is larger than whatevm SR
threshold, then discard the segment and continue segment iteration. fieseuwf
these conditions is to make sure that all 3-grams are located in at least Inseg e
least 1 specific relative location. If a segment is present in more than SRedtxra-
tions it is less likely to belong to a distinct library function and thus should bexdiscl.
In our Mal-ID implementation, SR was set to 9.
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() Lines 21-25 (optional stage, aimed to reduce false malware detecsggment that
meets all of the above conditions is tested against the malware file grougttain
all 3-gram segments. As a result, only segments that actually reside in thamale
left in the segment collection. Preliminary evaluation showed that there is nificigt
performance gain performing this stage more than log (SegmentLen) * N@fiel-
warelnTraining iterations.

3. Lines 28-30. Second level index aggregation—Count all segmentarthéound in malware
and not in the CFL.

4. Line 32. Classify—If there are at least X segments found in the maltvaire set (TFL)
and not in the CFL then the file is malware; otherwise consider the file asrbevig have
implemented Mal-1d with X set to 1.

Please note that the features used by Mal-ID algorithm described atsowvefact meta-features
that describe the 3-grams features. The advantages of using Mal-IBfeattiaes will be described
in the following sections.

2.3.1 MaL-ID COMPLEXITY

Proposition 1 The computational complexity of the algorithm in Figure 2 iS8+ log(SL) - M -
MaxMalSiz¢ where SN denotes the number of segments; SL denotes segment\edgtigtes the
number of malware in the training set; and MaxMalSize denotes the maxiemgin of a malware.

Proof The computational complexity of the algorithm in Figure 2 is computed as followss: th
GenerateSegmentCollection complexity0&§SN); the complexity of loop number 1 (lines 3-26) is
O(SN+log(SL) - M - MaxMalSize; the complexity of loop number 2 (lines 29-30)d8SN). Thus,
the overall complexity i©(SN+log(SL) - M - MaxMalSize. [ |

2.4 Combining Mal-1D With ML Generated Models

We attempted to improve thdal-ID basicmethod by using Mal-ID features with various classifiers,
but instead of using the Mal-ID decision model described in Section 2, warletus ML algorithms
build the model using the following procedure:

1. We apply the common segment analysis method on the training set and oltfiéctan of
segments for both the CFL and the TFL as explained in Section 2.

2. For each file’s segment, we calculated the CFL-MFG, TFL-MFG and Eiespread based
on the CFL and TFL. The entropy measure is calculated as well.

3. We discretized the numeric domain of the above features using the mgukepvocedure of
Fayyad and Irani (1993). Thus for each feature we found the rapetsentative sub-domains
(bins).

4. For each file we count the number of segments associated with each dih. frEquency
count is represented twice: once as absolute numbers (number of $sparahthen as a
proportional distribution.
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SegmentColl=GenerateSegmentCollection(FileContent,SegmentsRequired,SegmentLen);
SegmentCheck=0;
ForEach Segment in SegmentColl do
{
Entropy = Entropy(Segment.string);
If (Entropy<=EntropyLow) or (Entropy>= EntropyHigh) then
{SegmentColl.delete(Segment); continue; }

O 001N DN W —

Segment3Grams:=SegmentTo3Grams(Segment);

10

11 CFL _MFG = CFL.Count_Files With All 3gram (Segment3Grams)

12 If (CFL_MFG>0) then { SegmentColl.delete(Segment); continue; }

13

14 TFL MFG = TFL.Count Files With All 3gram (Segment3Grams)

15 If (TFL_MFG< ThreatsThreshold) then { SegmentColl.delete(Segment); continue; }
16

17 TFL spread = TFL.CalcSpread (Segment3Grams);

18 If (TFL_spread =0) or (TFL_spread >SR) then

19 {SegmentColl.delete(Segment); continue; }

20

21 // optional stage

22 SegmentCheck++;

23 If (SegmentCheck>log(SegmentLen)*NumberOfMalwarelnTraining) then continue;
24 InMalwareFile = TFL.SearchInMalwareFiles(Segment); //search by bit-fields

25 If not InMalwareFile then { SegmentColl.delete(Segment); continue; }

26 }

27

28 SegmentsInMalwareOnly = 0;

29 ForEach Segment in SegmentColl do

30 { SegmentsInMalwareOnly = SegmentsInMalwareOnly +1; }

31

32 Malware Classfication Result = SegmentsInMalwareOnly > ThreatSegmentThreshold;

Figure 2: Mal-ID pseudo code.

5. An induction algorithm is trained over the training set to generate a classifie
We compare the following three machine learning induction algorithms:

1. C4.5—Single Decision Tree

2. RF—Rotation Forest (Rodriguez et al., 2006) using J48 decisiondrbase classifier. The
algorithm was executed with 100 iterations and the PCA method for projectindatiaein
every iteration.

3. NN—A multilayer perception with one hidden layer trained over 500 epoesitsy back-
propagation.
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Finally, using the model is used to detect the malware among the files in thettest se

2.5 Combining Mal-ID With ML Models Post Processing

We have attempted to improve tMal-1D basic method by using the following procedure:

1. First, theMal-ID basicmethod is used to construct the CFL and TFL. This stage is performed

only once before the file classification starts.

2. Next, zero patch each malware in the training set as follows: Iterateathvef the file seg-
ments and perform common segment analysis to detect the segments thaimge&FL.
The benign segments (the segments that appear in the CFL) are zeralpatahattempt to
reduce the number of n-gram that are clearly not relevant for detesgigments that appear
only in malware. The end result is a new file with the same length that hasimehasbenign
segments.

3. Finally, construct a classification model using Rotation Forest usindgeki8ion tree as base
classifier. The patched malware collection and the unchanged benigolféetion are used
for training.

To classify a file we first have to zero-patch the file as explained aboreueethe classification
model created earlier.

3. Experimental Evaluation

In order to evaluate the performance of the proposed methods for dgtewiwares, a comparative
experiment was conducted on benchmark data sets. The proposed medredsompared with
the method presented in the research of Kolter and Maloof (2004). Heaneh of Kolter and
Maloof (2006) found that the combination of 500 4-grams with gain ratio feaselection and
boosted decision tree provides the best performance over many otthgated method variations.
We will refer to our variation of Kolter and Maloof method &R500BDTas it uses Gain Ratio
feature selectiorb00 4-grams, and Boosted Decision Tree classifier. GRb00BDTmethod was
specifically selected because it was the best method known to us.
The following terms will be used when referring to the various methods:

1. GR500BDT—Our baseline method, which is described above.

2. Mal-IDP+GR500BDT—As explained in Section 2.5, we use Mal-ID to zero patch common

segments in the test files, and then G$@500BDTas usual.
3. Mal-ID basic—Mal-ID basicmethod as explained in Section 2.

4. Mal-IDF+ <induction algorithm-—as detailed in Section 2.4, Mal-ID features will be used
by induction algorithm.

(a) Mal-IDF+RF—Mal-ID features with Rotation Forest classification
(b) Mal-IDF+C4.5—Mal-ID features with C4.5
(c) Mal-IDF+NN—Mal-1D features with a multilayer perception.
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Specifically, the experimental study had the following goals:

1. To examine whether the proposed basic methods, could detect malWwieekeeping the
false alarm rate as small as possible.

2. Compare the performance of the varidial-ID basicextensions.

3. To analyze the effect of the common library size (benign and malwarp@dormance.

The following subsections describe the experimental set-up and the rthstikeere obtained.

3.1 Experimental Process

The main aim of this process was to estimate the generalized detection perder(nan the prob-
ability that a malware was detected correctly). The files repository wakonally partitioned into
training and test sets. The process was repeated 10 times and we repadridige result. The same
train-test partitioning was used for all algorithms.

For evaluating the proposed methodology 2627 benign files were gatlenegrograms in-
stalled under Windows XP program files folders, with lengths ranging fiéth to 24MB. An
additional 849 malware files were gathered from the Internet with lengthging from 6Kb to
4.25MB (200 executables were above 300KB). The detailed list of exahgrecutables can be
obtained in the following URLhtt p://ww. i se.bgu.ac.il/faculty/liorr/List.rar. The
malware and benign file sets were used withany decryption, decompression or any other pre-
processing. The malware types and frequencies are presentediia Bigthe evaluation computer
used an Intel Q6850 CPU with 4GB of RAM. The processing time was meassieg only 1 CPU
core, although the implemented algorithm natively supported multiple cores.

3.2 Evaluation Measures

We used the following performance measures:
e TP =true positive
e FP =false positive
e TN =true negative
e FN = false negative
e FPR=FP/N=FP/(FP + TN) = false positive rate
e TPR=TP/P=TP /(TP + FN) = true positive rate (also known as sensitivity)
e PPV =TP /(TP + FP) = positive predictive value
e NPV =TN/ (TN + FN) = negative predictive value
e ACC=(TP +TN)/ (P + N) = accuracy

e BER =0.5(FN/P + FP/N) = balanced error rate
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Figure 3: Distribution of malware types in data set.

e BCR = 1- BER = balanced correctness rate

e AUC = area under receiver operating characteristic (ROC) curve

Our measures, such as PPV versus NPV, as well as BER or BCR, trgtesadhe important
case of an unbalanced positive/negative instance case mix, which isgifterd in the literature.
Given the low rate of malware versus benign code, accuracy might beleandiisy measure. For
example, aMaximal Class Probability(MPC) classifier is a classifier that always predicts the most
frequent class. Thus, an MPC predicting “BENIGN” for every ins&ircan environment where
99% of the files are benign would, indeed, be 99% accurate. That wtadda its NPV, since
there is a 99% probability that the MPC is right when it predicts that the file i;yhetowever,
its PPV would be 0, or rather, undefined, since it never predicts a posltigs; in other words, its
sensitivity to positive examples is 0.

Furthermore, unlike many studies in the information security literature, we egedls-entropy
as one of our major performance measures. The cross-entropibgeday Caruana et al. (2004). It
is also referred in the literature by the termegative log-likelihooar log-loss Let p(x;) represents
the posterior probability of the instangeto be associated with the malware class according to the
classifier. Theaverage cross-entrofdg defined as the average overmaltest instances:

1 m
Entropy= ale(xi)
i=
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where thecross-entropyor a certain case is defined as:

| (%) = —logP(x;) if x; is malware
YV —log(1—P(x)) otherwise

The use of cross-entropy as a measure of knowledge gain allows ust thelmprovement
in a learning process, given an increasing number of examples, by nudtiether there is a posi-
tive information gain (i.e., a reduction in the entropy after learning, compartte entropy of the
previous learning phase). In particular, we would expect an algoritatrrdéally learns something
about the classification of both the positive and negative cases to deaterssfositive monotonic
improvement in the cross-entropy measure. It is important to show this @osibnotonic im-
provement since we would prefer an algorithm that generates classifeestable fashion. Such an
algorithm can be considered as more trustworthy than an algorithm whoe@bgaurve might be
chaaotic.

3.3 Results
The following sections describe various Mal-ID evaluation results startitly tive Mal-1D basic
model followed by the results of two enhancements aimed to improve Mal-IDnpesihce.

3.3.1 ResuLTs oFMAL-ID BAsIc MODEL

Table 3 presents the detection performance of the proposed method4arfZe benign files and
90% of the malware files that are used for training.

TPR FPR PPV NPV | Accuracy AUC BCR BER
0.909 0.006 0.944 0.99 0.986 0.951 0.952 0.048

Table 3: Predictive Performance fal-1D basic

Kolter and Maloof (2006) conducted rigorous research to find thedmsbination of n-gram
length, n-gram number, features selection and classification method répayed that the combi-
nation of five hundred 4-grams, gain ratio feature selection and boostésiah tree (AdaBoost.M1
with J48 as a base classifier) produced excellent results where the Ald©@wer 0.99. As you re-
call, we reproduced the work of Kolter and Maloof (gain ratio, 500 4vgravith boosted decision
tree; referred to a&R500BD7 to objectively compare the performance of our methods and theirs
under the same conditions such as data set content, data set trainincsiagyreliminary evalua-
tion indicated that Rotation Forest (RF) boosting method (Rodriguez et 86) 2@rformed better
than AdaBoost.M1 and many other non-boosting methods such as J48otbdr& was selected
for our evaluation. The results of the evaluation are presented in Taldiow.b

Method Features Feature selection FPR | TPR | Acc | AUC
GR500BDT]| 4grams Gain Ratio 0.094| 0.959| 0.948| 0.929
Mal-ID Mal-ID - 0.006| 0.909| 0.986| 0.951

Table 4. Comparison between Mal-ID aGR500BDT
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3.3.2 REsuULTS OFCOMBINING MAL-ID WITH ML GENERATED MODELS

As you recall we attempted to improve thMal-ID basic method by using Mal-ID features with
various classifiers. The following figures show comparison of vari@tedtion performance mea-
sures. Many detection performance measures were recorded ankdeges presented in the figures
below. Please note that "TrainPercentage” refers to the percentdmmigin data sets and ranges
from 30 to 70 percent. Malware data set percentages range fronB0(Qercent. The ratio between
malware and benign was kept fixed for all cases.

Figure 4 reports the average cross-entropy for a classifier bygimgrthe entropy of the pos-
teriori probability that it outputs to all test instances. As expected, we sedhb cross-entropy
decreases as the training set size increases. For the largest tratniMgls® basic shows the best
decrease in a posteriori cross-entropy.

Figure 5 presents the accuracy of ¥al-ID basicmodel as well that of th#al-IDF+NN and
Mal-IDF+RF models. As expected, the accuracy increases almost linearly as the trsghisige
increases. For small training set sizegl-IDF+RF outperforms the other methods. However, for
the largest training set, thdal-ID basicmodel eventually achieves the best results.

Figure 6 presents the TPR of all methodidal-IDF+C4.5 demonstrates the lowest TPR. The
Mal-IDF+NN andMal-IDF+RF models perform the best. Thdal-ID basic model benefits the
most from increasing the training set size. In small training sets, the diffedeetween thsal-ID
basicmodel and eitheMal-IDF+NN or Mal-IDF+RF are statistically significant. However, for
larger training sets the differences are no longer significant.

Model*TrainPercentage; LS Means
Current effect: F(12, 175)=5.3631, p=.00000
Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals

045

040 ¢

035 ¢

0.30
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0.05

—O— Mal-ID basic
0.00 -4 -Mal-IDF+NN
30 40 50 60 70 - Mal-IDF+RF

TrainPercentage —A— Mal-IDF+C4.5

Figure 4: Comparing the a posteriori cross-entropy of various detegtmiules as a function of
training set percentage increase.
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Model*TrainPercentage; LS Means
Current effect: F(8, 130)=2.5850, p=.01185
Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals
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Figure 5: Comparing the accuracy performance ofla¢-ID basicmodel with the machine learn-
ing methods on various training set size percentages.

Figure 7 presents the FPR of all methods. T™al-ID basic model demonstrates the best
performanceMal-IDF+C4.5, on the other hand, demonstrates the lowest FPR. The performance of
Mal-IDF+NN does not improve as the training set increases.MaklD basicmodel significantly
outperformsMal-IDF+C4.5 and Mal-IDF+NN. Additionally, a paired t-test indicates théal-ID
basics FPR is significantly lower than the FPR lgfal-IDF+RF with p < 0.0001.

Figure 8 presents the area under the ROC curve folelD basicmodel,Mal-IDF+NN and
Mal-IDF+RF. All models improve as the training set increases. M#-ID basic model shows
the lowest AUC but also benefits the most from increasing the training setHie lower AUC of
theMal-ID basicmodel can be explained by the fact that contrary to the other models]ahtD
basicmodel is adiscreteclassifier. Discrete classifiers produce only a single point in ROC space
(Fawcett, 2004) and therefore their calculated AUC appears lower.

When we examined the balanced error rate (BERMai-ID basic, Mal-IDF+NN and Mal-
IDF+RF Models, we noticed that the BER measure decreases for all models asitliregtisset
increasesMal-ID basicdemonstrated a significant and sharp decline in the BER as the training set
increases. In almost all cases, Mal-IDF+RF achieved the lowest BER. With the largest training
set there is no significant difference betweenta-ID basicmodel and théMal-IDF+RF model.

When we compared the NPV of thdal-ID basicmodel with the NPV of thélal-IDF+NN and
Mal-IDF+RF, we noticed, as expected, that the NPV increases almost linearly as thegrsén
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Model*TrainPercentage; LS Means
Current effect: F{12, 175)=14772, p=.13652
Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals
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Figure 6: Comparing the true positive rate of tal-ID basic model with the machine learning
methods on various training set size percentages.

size increases. For small training set si2da)-IDF+RF andMal-IDF+NN outperform the other
methods. Eventually, however, there is no statistically significant differécthe largest training
set.

When we compared the PPV of thal-1D basicmodel with the PPV of thial-IDF+NN, Mal-
IDF+C4.5 andMal-IDF+RF, we found out thaMal-ID basichas the best PPV for all training set
sizes. TheMal-IDF+RF performed better than thdal-IDF+NN and theMal-IDF+NN performed
better tharMal-IDF+C4.5.

To sum up, in many cases Mal-ID basic outperforms the methods that ustDMedtures
combined with a ML classifier and we conclude that a simple decision rule isisuffi

3.3.3 MOMBINING MAL-ID WITH ML M ODELS POST PROCESSING

As you recall, we have attempted to improve tal-ID basic method by using the method to
zero-patch the benign common library parts. To measure and comparddtieoéfthe Mal-ID
patching prior to classifying, we preformed an evaluation using four metht@&®500BDT Mal-
IDP+GR500BDT Mal-ID basic andMal-IDF+RF.

Figure 9 compares the accuracy performance using various trainisgest The results show
that withMal-IDP+GR500BDTwe were able to improve performance but only on relatively small
training sets. However, compared to the kno@R500BDT Mal-IDP+GR500BDTshow signif-
icant and consistent improvements in accuracy by about 2%. All Mal-Hatans were able to
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Model*TrainPercentage; LS Means
Current effect: F(12, 175)=1.1762, p=.30349
Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals
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Figure 7: Comparing the false positive rate of ¥al-ID basic model with the machine learning
methods on various training set size percentages.

outperformGR500BDTregardless of training set size. It should be noted that on the one fand w
should have expected to an improvement in the predictive performanae tivderaining set size
increases. On the other hand because we also increase the imbalanoetvatien benign and mal-
ware therefore we should have expected to a decrease in the pregatfioemance. Eventually we
observe that accuracy of GROBDTremains almost constant.

Figure 10 compares FPR performance under various training set Sleesesults indicate that
there is slight but constant improvement in terms of FPR when first perfgrangatch with Mal-1D
(Mal-IDP+GR500BDT) instead of using n-gram without patchingR500BD7). The performance
of all n-gram-based methods decreases sharply when the trainingnséttsmf more than 50%
benign files. The graph shows that in terms of FPR,Nl&-ID basic method always performs
slightly better than thé/al-IDF+RF method and both methods perform significantly better than
n-gram based methods. In other words, the graph shows that in terr®Rotlkere is a significant
difference between methods that use n-gram features and thosedhlée hgal-ID meta-features.

Table 5 summarizes the detection performance results for the various MaéiBods and the
GR500BDTbaseline and can help in choosing the best method when considering depenfior-
mance only. Other important considerations will be discussed below. Bhdgelemonstrate that
Mal-IDP+GR500BDTalways outperform&R500BDTbaseline andal-IDP+GR500BDTshould
be used when the highest TPR is desired and a high FPR is acceptablevaddal-1D basicand

968



AUTOMATIC MALWARE DETECTION

Model*TrainPercentage; LS Means
Curmrent effect; F(8, 130)=15.827, p=,00000
Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals
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Figure 8: Comparing the AUC of thial-ID basic model with the machine learning methods on
various training set size percentages.

Mal-IDF+RF seems to be the best choice for more balanced performance with extreméi? Rw
and for achieving the highest accuracy.

Method Feature selection FPR TPR | Acc AUC
GR500BDT(un-patched + RF) Gain Ratio 0.094 | 0.959 | 0.948 | 0.929
Mal-IDP+GR500BDT Gain Ratio 0.093 | 0.977 | 0.963 | 0.946
(patched + RF)

Mal-1D basic Mal-1D 0.006 | 0.909 | 0.986 | 0.951
Mal-IDF+RF (Mal-ID features| None 0.006 | 0.916 | 0.985 | 0.995
+ RF)

Table 5: A comparison of various Mal-ID methods and RF when using maximainirg size.

Table 6 presents the training time (in seconds) and detection time (in ms) of mlirdmeth-
ods. The evaluation computer used an Intel Q6850 CPU with 4GB of RAMirAés were mea-
sured using only 1 CPU core. The training time of Mal-ID based methodsraésclude building
the CFL and TFL which took around 30 seconds. As expected the trainingrtoreases with the
training size. In addition, GR500BDT training time does not include the n-deature extraction
and selection (which took more than ten minutes). The Ndabasicand Mal-IDF+C4.5 methods
demonstrated the best training time performance with less than one secoedlefBation time

969



TAHAN, ROKACH AND SHAHAR

DataShort*Method; LS Means
Currenteffect: F(12,175)=7.5601, p=.00000
Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals
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Figure 9: Comparing the accuracy of various Mal-ID-based methodghend-gram method on
various training set size percentages.

seems almost constant regardless of training set size. The only excispgidlaiIDF+RF in which
detection time increases almost linearly as the training set increases. Ndteethete of the trees
(number of nodes) which constitute the rotation forest usually increaisieshe training set. This
can be explained by the fact that the number of leaves in the tree is boopdee training set size.
Larger trees require a longer traversal time and features calculatiarall et in rotation forest,
the features used in the various nodes are linear combination of the ofeahales.

Table 7 reports the mean TPR bfal-ID basic for small malwares (size=350K) and large
malware (size-350K) using the largest training set. Note that the FPR is kept as reporiatbli
5 (i.e., FPR=0.006). The results show that the TPR for both small and laoge & very similar
indicating that MAL ID is not affected by the size of the examined malware.

In order to estimate the effect of obfuscation on detection rate, we heidedithe tested mal-
ware into two groups—obfuscated and non-obfuscated. Becausermenat informed which exe-
cutable was obfuscated, we have used the following method. We comgpthesexecutables using
Zip and sorted them according to the compression ratio. We used a thre$a@léh compression
ratio to decide which executable is probably obfuscated. The selectioisdhthshold was based
on experiments of compressing non- obfuscated executables. Aagdadthis threshold, about
37.5% of the malware are considered to be obfuscated. Table 8 reporizetin TPR oMal-ID
basicfor obfuscated and non-obfuscated groups using the largest traieingjlote that the FPR is
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DataShort*Method; LS Means
Currenteffect: F(12,175)=3.7074, p=.00005
Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals
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Figure 10: Comparing the FPR of various Mal-ID-based methods and ginem-method on vari-
ous training set size percentages.

kept as reported in Table 5 (i.e., FPR=0.006). The results show that Rdormoth obfuscated
and non-obfuscated group is very similar with slight advantage to detedifngaated malwares.

4. Discussion

This paper proposes a new approach for automatically detecting exiecotalwares of all kinds
and sizes. The results show that using tha&-ID basic and other Mal-ID variants are useful in
detecting malware. As can be seen from Table 3 Mia¢ID basic method performs very well in
respect to all measures. Not only is the accuracy very high (0.986)h&UPR is remarkably low
(0.006). In addition, the low Mal-ID BER indicates that the errors are almoi$ormly distributed
among the malicious and benign files.

As explained in Section 3.3.1, we choose to implen@@R600BDTas a baseline for comparing
the performance of thiglal-ID basicmethod.GR500BDTis very similar to the method proposed by
Kolter and Maloof (2006). The evaluation shows t&500BDTperformed well, but was unable
to achieve the AUC of 0.995 that Kolter and Maloof reported. This wasahigtdue to differences
in data set content, training size, the benign and malware ratio and possiblyfactors. As can
be seen from Table 4, under identical conditions the Mal-ID methodologyalske to outperform
GR500BDTin terms of FPR, accuracy and AUC. The FPRGR500BDTmethod came to almost
10%; Mal-ID FPR was more than 15 times lower.
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Train Percentage

Method 30 40 50 60 70
Training | MallD-Basic 0.05 0.08 0.11 0.15 0.21
Time Mal-IDF+RF 17.19 | 26.00 36.35 45.78 83.50
(in sec) | Mal-IDF+C4.5 0.12 0.17 0.22 0.33 0.43

Mal-IDF+NN 24.33 | 32.16 40.33 48.37 56.93

GR500BDT 21.74 | 34.91 59.86 64.88 75.19

Mal-IDP+GR500BDT | 20.93 | 31.42 42.96 55.65 63.43
Detection| MallD-Basic 27.86 | 27.86 27.86 27.86 27.86
Time Mal-IDF+RF 49.17 | 54.69 63.66 73.95 95.82
per file | Mal-IDF+C4.5 27.86 | 27.86 27.86 27.86 27.86
(inms) | Mal-IDF+NN 27.92 | 27.92 27.90 27.89 27.88

GR500BDT 29.63 | 29.83 29.83 29.85 29.83

Mal-IDP+GR500BDT | 29.01 | 29.01 29.02 28.98 28.97

Table 6: Training and Detection Time.

Malware Size TPR Number of Mal- | Mean Size
wares

Small 0.909 675 96K

Large 0.908 174 554K

Table 7: A comparison of TPR (True Positive Rate) Mal-ID basic for smadl large malwares
when using maximum training size.

Malwaretype TPR | Mean Compression
Ratio

Obfuscated 0.932 41%

Non-obfuscated 0.893 62%

Table 8: A comparison of TPR (True Positive Rate) Mal-ID basic for sbftted and non-
obfuscated malware when using maximum training size.

Once it was established that thtl-ID basicmethod performs well (in fact better than the best
baseline method) we wanted to examine Mal-ID behavior with different trags $@test iMal-ID
basicperforms in a stable and “trustworthy” manner. In addition, it was interestimtptermine if
combiningMal-ID basicwith ML-generated models, as explained in Section 3.3.2, would yield a
better performing malware detection method.

The results presented in Figure 4 to Figure 8 show that combining Mal-ID witFb&sed
models enabled us to improve many aspects ofMiaé& D basic method when training sets are
not maximal. However, as training set size increases, the benefit of cogbiial-ID basic with
ML-based models diminishes. At maximal training set size,Mtad-ID basic method almost al-
ways demonstrates the best performance or a performance that is sthtistjoal to the combined
methods. It is also important to note that, contrary to the other methods, all regdlsat we im-
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plemented indicated that tival-ID basicmethod benefited the most from training set increase and
always performed in an expected manner. Thus, it may be consideredstable and “trustworthy”
than the other methods.

It is interesting to note that while the performance of non-n-gram methddtID basicand
Mal-IDF+RF) continues to improve as more training data become available, the n-graih base
methods show a sharp decrease in performance in terms of FPR (see Ejur This can be
explained by the fact that n-gram methods induce relatively simple pattextnsath be learned with
comparatively small training sets (30%). The potential benefit of additteaiaing data is nullified
by the undesirable increase in the probability that relevant n-gram will beakeisly considered
as non-contributing features. In fact, it is well known that decision te@gase their chances of
overfitting when they have more nodes. But in order to have more nody:)¢ed a larger training
set. Thus a larger data set might increase the chance of overfittingapiacases were there are
many irrelevant and noisy features.

The comparison of our two additional methobi#gl-IDF+RF andMal-IDP+GR500BDT with
a GR500BDTbaseline is very important in proving the validity of Mal-ID itself and explaining its
excellent performance:

1. (@) Under identical conditions, boosted decision tree, operatinglafD basic meta-
features al-IDF+RF), outperformed boosted decision tree operating on n-gram
(GR500BDT. The comparison suggests that Mal-ID meta-features are useful in con
tributing to malware detection and probably more meaningful than simple n-gram
capturing a file's essence.

(b) Under identical conditions, boosted decision tree operatinlylaklD basic patched
files (Mal-IDP+GR500BDT) outperformed boosted decision tree operating on non-
patched files GR500BDT. The comparison suggests that the novel Mal-ID common
segment analysis approach is better than the common approach that treais filack
boxes or which interprets files PE header only.

SinceMal-ID basicandMal-IDF+RF methods benefit from both more meaningful features and
common segment analysis, they are able to achieve a better overall paeréerthan state-of-the-art
GR500BDT

Considering detection performance only when choosing a malware detestithod may not
be enough; it is important to consider other aspects as well.

4.1 Model Interpretability

Mal-ID basic uses only one static interpretable classification model andidherexperts in the
field can be more confident when accepting or rejecting a classificationgtance, oncélal-ID
basichas detected a yet unknown malware, it is possible to support or regeckassification. The
reason is that each detected segment, that passed the Mal-ID filter seqdaased in Section 2,
can be tracked back to a specific malware or malware group. Morabeespecific offset location
were the segments appear can be examined to determine the precise nalfare¢hofat, if any
exists. Disassembly or reverse engineering of the whole malware is nerloaguired. Even
without examining the segment code, one can make an educated guesthalmaiure of the threat
by examining the list of known malwares that the segment appears in. Taero#gthods do not
provide such benefits.
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4.2 Incremental

As more malwares are discovered, it is important to update the models from titimeeto With
Mal-ID basicit is particularly easy. Since the model is static, no reconstruction is negesda
that is required is to just to add or subtract files from the TFL. The CFLbeampdated in a similar
manner.

4.3 Anytime Detection

Recall that bothMal-ID basicandMal-IDF+RF operates on segments. Becalad-ID basicand
Mal-IDF+RF use relatively large segments and the model is not comprised of combiriatkfea
from the whole file, it is possible to stop detection at anytime during file scadetedmine if the
scanned part is malicious. n-gram-based methods are not designedtosdigiart of file but rather
whole files only.

4.4 Default Signature For Real-time Malware Detection Hardware

The end result of applyiniylal-ID basic method is a file segment or segments that appear in mal-
ware files only and thus may be used as a signature for anti-virus toolsletéeted malware seg-
ments can be used, as described by Filiol (2006), to generate signagsistant against black-box
analysis. Moreover, becaudéal-ID basic produces a simple signature and laaytime detection
traits, the signature can be used with commercially available real-time intrusion pi@vegstems
(IPS). IPSs require thanytime detection traito act as real-time malware filtering devices and thus
promote and provide users with default protection. Having both malwdeetiten and signature
generation could help shorten the window of vulnerability. Tahan et alLQRBave presented a
methodology with complete implementation for automatic signature generation, usitay &nd
compatible techniques, which archived excellent results in the evaluatiars, Tire method pre-
sented by Tahan et al. (2010) can be easily adopted to produce sigonpturaletection for the
solution presented in this paper.

4.5 LargeFiles Scalability

Nowadays it's quite common to embed large resources such as JPEG picaissall animations
into executables. This inflation is also true for malware. It is estintatet the mean malware size
has increased from 150K (in 2005) to 350K (in 2010). As files becongetathe effectiveness of
classification with small n-gram should decrease due to the increase intfi@ern other words,
the more n-gram with equal appearance probability, the greater the mifcédss probability
becomes. Sinc#lal-ID basicandMal-IDF+RF use relatively large segments (64 bytes) and in
addition filter-out high entropy parts, they should be less susceptible to ssgidation caused by
large files or files with high entropy traits. Figure 10 shows that the Mal-ID ou=lhat operate on
large segments (of 64 bytes) has less FPR misclassification then the methquetiadéd on small
n-gram (of 4 bytes). We further examined this hypothesis in Table 7.

1. Seenttp:// nakedsecurity. sophos. coml 2010/ 07/ 27/ | ar ge- pi ece- mal war e/ .
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4.6 Analysisof Mal-1D Performance on Obfuscated Malware

Based on the results presented so far, we hypothesize that the ptdabéd method performs
well in a mixed environment where both obfuscated (including compressatoypted) and plain
executable files exist. In this sense, we referred to malware as theyuene fin the Wild”.

There might be several reasons that can explain why the TPR of albfukbinaries appears
to be higher than the TPR of non-obfuscated binaries. One reasoreddwatbmany obfuscated
malwares are generated by automated tools that have distinctive propEdiesxample, malware
developers are sharing tools for facilitating the generation of new matwakFer example, in the
web siteht t p: // vx. net | ux. or g/, one can find many tools (such as Falckon Encrypter that is used
for obfuscation) that can be used by the malware developers bubaresed by benign software
developers. All malware that use the Falckon Encrypter, share thedsongtion segment.

The results of Table 8 agree with the previously-made observation that bhinitpies can
classify malware that are obfuscated (compressed or encryptedh)r bor example, Kolter and
Maloof (2006) have noted that ML can detect obfuscated malware. iSrptiper, we have inde-
pendently reconfirmed the validity of the above observation using our methdlis experiment,
we succeeded to keep FPR relatively low (FPR=0.006), however itcheunoted that this value
was obtained when our corpus contained 2,627 benign files and 849 madilea (i.e., a benign to
malware ratio of 3:1). In reality this ratio can be much higher and therefoeesbould expect to
obtain elevated FPR values.

There seem to be previously suggested explanations to this phenomerseordiAg to Kolter
and Maloof (2006), the success in detecting obfuscated malware relieaming certain forms of
obfuscation such as run-time decompression. Kolter and Maloof (2@d@)ude that “. . . this does
not seem problematic as long as those forms are correlated with maliciousgables”.

Additional explanations can be suggested to the ability to identify obfuscatldanea Studies
such as that presented by Newsome and Song, or by Newsome et &l) (@@@ed that in many
cases malware requires fixed sequences to be used in the body of tharenélhich must exist
before self-decryption or self-decompression) in order to exploitegip vulnerability and self-
propagate. Such fixed sequences can be used for detection. Thisexfghin the success in
detecting obfuscated malware.

Because the performance of MAL ID is achieved with no disassembly, @fe@nalysis, ex-
ecutable header analysis, unpacking nor any other preprocesigpathesize that the method
should be scalable to other Operating Systems and hardware types. Sthomnkink on cases
where preprocessing will be required. Theoretically an attacker cagifgally design a malware
that will make it hard for MAL ID to detect it. In particular, if a malware is dasig such that the
entropy measure will be high for all segments, it will be undiscovered bivigde D basic method.
In this case Mal-ID can be extended by incorporating an unpackeatpgbefore it, such as those
that are incorporated into anti-viruses tools (Kasparsky). Howeirailas to Kolter and Maloof
(2006), we decided to evaluate the raw power of our methods withoutsgfian unpacker.

5. Summary and Future Work

In this paper we have described novel methods based on machine legrmetect malware in
executable files without any need for preprocessing the executables.basic method that we
presented works on the segment level for detecting new malware instemihg the entire file
as usually done in machine learning based techniques.MEt¢D basic method and its derived
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variants were rigorously tested to evaluate their effectiveness under coaditions using a wide
variety of measures. The results demonstrate the effectiveness of thedsieth all cases, most
of the performance measures showed that the proposed methods siggifaaperformed the
baseline methodsR500BDTwhich is known for its excellent performance (Kolter and Maloof,
2004, 2006). For each method we have pinpointed its strong points agdstad cases where it
should be preferred over the others.

We believe this study has made several contributions to malware detectianaiesincluding
the introduction of:

1. a new and effective method for malware detection based on common rdegmnadysis and
supporting algorithms. The importance of common segment analysis to thespmicaal-
ware detection was identified and demonstrated. The results suggest thoel roa@thboost
performance for many methods that use n-gram.

2. new kinds of featuresMal-ID basicmeta-features. The results suggest that the meta-features
are much more effective than the commonly used n-gram and probably marengfil in
terms of file representation. We believe tMal-ID basic meta-features could inspire many
kinds of additional meta-features that could prove useful.

3. BCR, BER, PPV, NPV and entropy decrease for measuring therperfcwe of malware de-
tection methods. Using these measures, in addition to the commonly used pedemmea-
sures (TPR, FPR, accuracy and AUC), is not generally practicedetr, these features are
helpful in describing the behavior of a new method, particularly when it ispossible to
compare results under identical settings and data set imbalance.

The results also indicate that by extracting meaningful features, it is isuffio employ one
simple detection rule for classifying unknown executables.

In the future, we aim to examine the effect of systematically collecting andsiigpthe benign
file set on the performance of the proposed methods. In the evaluatiemgetigaconducted for this
study, the benign file set was collected randomly and the files used may &deelérge degree of
similarity. It is our assumption that systematically collecting and choosing comngonesgs will
provide a better representation of benign common segments and a moreathlswer FPR. A
robust and low FPR will enable the use of more sensitive malware detectibodsgor parameters
that affect malware detection) without increasing the FPR too much. Asudt,reve hope to see
further increase in the AUC measure. Finally the Mal-ID basic method waslafed as a crisp
classifier. Additional research is required for developing a methodaftking the examined files
according to their presumed threat level. One straightforward measure rsitib between the
segments found in the TFL and the segments found in the CFL. In addition, leniiliteresting to
test the proposed method on live network data and on an institutional neandretermine if it
detects malware that is not detected by other means. Finally, future workepegt the evaluation
Mal-1D on a larger scale with thousands of malware samples and tens cfthds of non-malware
samples. For this purpose, we might need to upscale software componeatstonzodate large
data set and suitable hardware. In addition, in order to use the propuwtbdd in practice by the
industry, fine tuning of the various parameters might be required.

Additional studies might be needed to fully evaluate the performance of MahHber various
obfuscation scheme, including use of recursive unpacking. In thisrpegfocused only on “pure”
Mal-1D methods and therefore we did not investigate the proper means tparate unpacker.
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