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Abstract

This paper proposes several novel methods, based on machinelearning, to detect malware in ex-
ecutable files without any need for preprocessing, such as unpacking or disassembling. The basic
method (Mal-ID) is a new static (form-based) analysis methodology that uses common segment
analysis in order to detect malware files. By using common segment analysis, Mal-ID is able to
discard malware parts that originate from benign code. In addition, Mal-ID uses a new kind of
feature, termed meta-feature, to better capture the properties of the analyzed segments. Rather than
using the entire file, as is usually the case with machine learning based techniques, the new ap-
proach detects malware on the segment level. This study alsointroduces two Mal-ID extensions
that improve the Mal-ID basic method in various aspects. We rigorously evaluated Mal-ID and its
two extensions with more than ten performance measures, andcompared them to the highly rated
boosted decision tree method under identical settings. Theevaluation demonstrated that Mal-ID
and the two Mal-ID extensions outperformed the boosted decision tree method in almost all re-
spects. In addition, the results indicated that by extracting meaningful features, it is sufficient to
employ one simple detection rule for classifying executable files.

Keywords: computer security, malware detection, common segment analysis, supervised learning

1. Introduction

Nowadays the use of the Internet has become an integral part of modernlife and Internet browsers
are downloading to users a wide variety of content, including new computer software. One conse-
quence of this widespread use is that many computer systems are vulnerableto and infected with
malware—malicious software. Malware can be categorized into several groups:

1. Viruses—computer programs that are able to replicate themselves and infect files including
the operating systems (OS);

2. Worms—self-replicating computer software that is able to send itself to othercomputers on a
network or the Internet;
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3. Trojans—a software that appears to perform the desired functionallybut is actually imple-
menting other hidden operations such as facilitating unauthorized access to acomputer sys-
tem;

4. Spyware—a software installed on a computer system without the user’s knowledge to collect
information about the user.

The rate of malware attacks and infections is not yet leveling. In fact, according to O’Farrell
(2011) and Symantec Global Internet Security Threat Report Trendsfor 2010 (Symantec, 2010),
attacks against Web browsers and malicious code variants installed by meansof these attacks have
increased.

There are many ways to mitigate malware infection and spread. Tools such asanti-virus and
anti-spyware are able to identify and block or identify malware based on its behavior (Franc and
Sonnenburg, 2009) or static features (see Table 1 below). A static feature may be a rule or a signature
that uniquely identifies a malware or malware group. While the tools mitigating malware may vary,
at their core there must be some classification method to distinguish malware filesfrom benign files.

Warrender et al. (1999) laid the groundwork for using machine learningfor intrusions detection.
In particular, machine learning methods have been used to analyze binary executables. For example,
Wartell el al. (2011) introduce a machine learning-based disassembly algorithm that segments bina-
ries into subsequences of bytes and then classifies each subsequenceas code or data. In this paper,
the term segment refers to a sequence of bytes of certain size that was extracted from an executable
file. While it sequentially scans an executable, it sets a breaking point at each potential code-to-code
and code-to-data/data-to-code transition. In addition, in recent years many researchers have been
using machine learning (ML) techniques to produce a binary classifier thatis able to distinguish
malware from benign files.

The techniques use three distinct stages:

1. Feature Extraction for file representation—The result of the feature extraction phase is a vec-
tor containing the features extracted. An executable content is reduced or transformed into a
more manageable form such as:

(a) Strings—a file is scanned sequentially and all plain-text data is selected.

(b) Portable Executable File Format Fields—information embedded in Win32 andWin64-
bit executables. The information is necessary for the Windows OS loader and applica-
tion itself. Features extracted from PE executables may include all or part ofthe follow-
ing pieces of information: attribute certificate—similar to checksum but more difficult to
forge; date/time stamp; file pointer—a position within the file as stored on disk; linker
information; CPU type; Portable Executable (PE) logical structure (including section
alignment, code size, debug flags); characteristics—flags that indicate attributes of the
image file; DLL import section—list of DLLs and functions the executable uses; export
section—which functions can be imported by other applications; resource directory—
indexed by a multiple-level binary-sorted tree structure (resources may include all kinds
of information. For example, strings for dialogs, images, dialog structures;version in-
formation, build information, original filename, etc.); relocation table; and manyother
features.
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(c) n-gram—segments of consecutive bytes from different locations withinthe executables
of lengthn. Each n-gram extracted is considered a feature (Rokach et al., 2008).

(d) Opcode n-gram—Opcode is a CPU specific operational code that performs specific ma-
chine instruction. Opcode n-gram refers to the concatenation of Opcodes into segments.

2. Feature Selection (or feature reduction)—During this phase the vectorcreated in phase 1 is
evaluated and redundant and irrelevant features are discarded. Feature selection has many
benefits including: improving the performance of learning modules by reducing the number
of computations and as a result the learning speed; enhancing generalization capability; im-
proving the interpretability of a model, etc. Feature selection can be done using a wrapper
approach or a correlation-based filter approach (Mitchell, 1997). Typically, the filter approach
is faster than the wrapper approach and is used when many features exist. The filter approach
uses a measure to quantify the correlation of each feature, or a combinationof features, to a
class. The overall expected contribution to the classification is calculated and selection is done
according to the highest value. The feature selection measure can be calculated using many
techniques, such as gain ratio (GR); information-gain (IG); Fisher score ranking technique
(Golub et al., 1999) and hierarchical feature selection (Henchiri and Japkowicz, 2006).

3. The last phase is creating a classifier using the reduced features vector created in phase 2 and a
classification technique. Among the many classification techniques, most of which have been
implemented in the Weka platform (Witten and Frank, 2005), the following have been used in
the context of benign/malware files classification: artificial neural networks (ANNs) (Bishop,
1995) , decision tree (DT) learners (Quinlan, 1993), nave-Bayes (NB) classifiers (John and
Langley, 1995), Bayesian networks (BN) (Pearl, 1987), support vector machines (SVMs)
(Joachims, 1999), k-nearest neighbor (KNN) (Aha et al., 1991), voting feature intervals (VFI)
(Demiröz and G̈uvenir, 1997), OneR classifier (Holte, 1993), Adaboost (Freund and Schapire,
1999), random forest (Breiman, 2001), and other ensemble methods (Menahem et al., 2009;
Rokach, 2010).

To test the effectiveness of ML techniques, in malware detection, the researchers listed in Table
1 conducted experiments combining various feature extraction methods alongwith several feature
selection and classification algorithms.

Ye et al. (2009) suggested using a mixture of features in the malware-detection process. The
features are called Interpretable Strings as they include both programs’ strings and strings repre-
senting the API execution calls used. The assumption is that the strings capture important semantics
and can reflect an attacker’s intent and goal. The detection process starts with a feature parser that
extract the API function calls and looks for a sequence of consecutivebytes that forms the strings
used. Strings must be of the same encoding and character set. The feature-parser uses a corpus of
natural language to filter and remove non-interpretable strings. Next, the strings are ranked using
the Max-Relevance algorithm. Finally, a classification model is constructed from SVM ensemble
with bagging.

Ye et al. (2010) presented a variation of the method, presented above, that uses Hierarchical
Associative Classifier (HAC) to detect malware from a large imbalanced listof applications. The
malware in the imbalanced list were the minority class. The HAC methodology also uses API
calls as features. Again, the associative classifiers were chosen due totheir interpretability and
their capability to discover interesting relationships among API calls. The HAC uses two stages:
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to achieve high recall, in the first stage, high precision rules for benign programs (majority class)
and low precision rules for minority class are used, then, in the second stage, the malware files are
ranked and precision optimization is performed.

Instead of relying on unpacking methods that may fail, Dai et al. (2009) proposed a malware-
detection system, based on a virtual machine, to reveal and capture the needed features. The system
constructs classification models using common data mining approaches. First, both malware and
benign programs are executed inside the virtual machine and the instruction sequences are collected
during runtime. Second, the instruction sequence patterns are abstracted. Each sequence is treated
as a feature. Next, a feature selection process in performed. In the laststage a classification model
is built. In the evaluation the SVM model performed slightly better then the C4.5 model.

Yu et al. (2011) presented a simple method to detect malware variants. First,a histogram is
created by iterating over the suspected file binary code. An additional histogram is created for
the base sample (the known malware). Then, measures are calculated to estimate the similarity
between the two histograms. Yu et al. (2011) showed that when the similarity is high, there is a high
probability that the suspected file is a malware variant.

The experiments definitely proved that is possible to use ML techniques for malware detection.
Short n-gram were most commonly used as features and yielded the best results. However, the
researchers listed did not use the same file sets and test formats and therefore it is very difficult or
impossible to compare the results and to determine what the best method under various conditions
is. Table 2 presents predictive performance results from various researches.

When we examined the techniques, several insights emerged:

1. All applications (i.e., software files tested in the studies) that were developed using a higher
level development platforms (such as Microsoft Visual Studio, Delphi, Microsoft.Net) contain
common code and resources that originate from common code and resource libraries. Since
most malware are also made of the same common building blocks, we believe it would be
reasonable to discard the parts of a malware that are common to all kinds of software, leaving
only the parts that are unique to the malware. Doing so should increase the difference between
malware files and benign files and therefore should result in a lower misclassification rate.

2. Long n-gram create huge computational loads due to the number of features. This is known
as the curse of dimensionality (Bellman et al., 1966). All surveyed n-gram experiments were
conducted with n-gram length of up to 8 bytes (in most cases 3-byte n-gram)despite the
fact that short n-gram cannot be unique by themselves. In many cases3- to 8-byte n-gram
cannot represent even one line of code composed with a high level language. In fact, we
showed in a previous paper (Tahan et al., 2010) that an n-gram shouldbe at least 64 bytes
long to uniquely identify a malware. As a result, current techniques using short n-gram rely
on complex conditions and involve many features for detecting malware files.

The goal of this paper is to develop and evaluate a novel methodology and supporting algorithms
for detecting malware files by using common segment analysis. In the proposed methodology we
initially detect and nullify, by zero patching, benign segments and therefore resolve the deficiency
of analyzing files with segments that may not contribute or even hinder classification. Note that,
when a segment represents at least one line of code developed using a high level language; it can
address the second deficiency of using short features that may be meaningless when considered
alone. Additionally, we suggest using meta-features instead of using plain features such as n-gram.
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Study Feature Rep-
resentation

Feature Se-
lection

Classifiers

Schultz et al.
(2001)

PE, Strings,
n-gram

NA RIPPER, Nave Bayes, and
Multi-Nave Bayes

Kolter and Mal-
oof (2004)

n-gram NA TFIDF, Nave Bayes, SVM,
Decision Trees, Boosted
Decision Trees, Boosted
Nave Bayes, and Boosted
SVM

Abou-Assaleh
et al. (2004)

n-gram NA K-Nearest Neighbors

Kolter and Mal-
oof (2006)

n-gram Information-
Gain

K-Nearest Neighbors, Nave
Bayes, SVM, Decision
Trees, Boosted Decision
Trees, Boosted Nave Bayes,
and Boosted SVM.

Henchiri and
Japkowicz
(2006)

n-gram Hierarchical
feature se-
lection

Decision Trees, Nave
Bayes, and SVM

Zhang et al.
(2007)

n-gram Information-
Gain

Probabilistic Neural Net-
work

Elovici et al.
(2007)

PE and
n-gram

Fisher
Score

Bayesian Networks, Artifi-
cial Neural Networks, and
Decision Trees

Ye et al. (2008) PE Max-
Relevance

Classification Based on As-
sociation (CBA)

Dai et al. (2009) instruction
sequence

Contrast
measure

SVM

Ye et al. (2009) PE (API) Max-
Relevance

SVM ensemble with bag-
ging

Ye et al. (2010) PE (API) Max-
Relevance

Hierarchical Associative
Classifier (HAC)

Yu et al. (2011) histogram NA Nearest Neighbors

Table 1: Recent research in static analysis malware detection in chronological order.

A meta-feature is a feature that captures the essence of plain feature in a more compact form. Using
those meta-features, we are able to refer to relatively long sequences (64 bytes), thus avoiding the
curse of dimensionality.

2. Methods

As explained in Section 1, our basic insight is that almost all modern computer applications are
developed using higher level development platforms such as: MicrosoftVisual Studio, Embarcadero
Delphi, etc. There are a number of implications associated with using these development platforms:
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Method Study Features Feature
selection

FPR TPR Acc AUC

Artificial Neural
Network

Elovici
et al.
(2007)

5grams Fisher
Score top
300

0.038 0.89 0.94 0.96

Bayesian Network Elovici
et al.
(2007)

5grams Fisher
Score top
300

0.206 0.88 0.81 0.84

Bayesian Network Elovici
et al.
(2007)

PE n/a 0.058 0.93 0.94 0.96

Decision Tree Elovici
et al.
(2007)

5grams Fisher
Score top
300

0.039 0.87 0.93 0.93

Decision Tree Elovici
et al.
(2007)

PE n/a 0.035 0.92 0.95 0.96

Classification
Based on Associa-
tion

Ye et al.
(2008)

PE Max-
Relevance

0.125 0.97 0.93 —–

Boosted Decision
Tree

Kolter
and
Maloof
(2006)

4grams Gain Ratio —– —– —– 0.99

Table 2: Comparison of several kinds of machine learning methods. FPR, TPR, ACC and AUC
refers to False Positive Rate, True Positive Rate, Accuracy and the Area Under Receiver
Operating Characteristic (ROC) Curve as defined in Section 3.2.

1. Since application development is fast with these platforms, both legitimate developers and
hackers tend to use them. This is certainly true for second-stage malware.

2. Applications share the same libraries and resources that originated from the development plat-
form or from third-party software companies. As a result, malware that has been developed
with these tools generally resembles benign applications. Malware also tends, to a certain
degree, to use the same specialized libraries to achieve a malicious goal (such as attachment
to a different process, hide from sight with root kits, etc). Thereforeit may be reasonable to
assume that there will be resemblances in various types of malware due to sharing common
malware library code or even similar specific method to perform malicious action. Of course
such malware commonalities cannot be always guaranteed.

3. The size of most application files that are being produced is relatively large. Since many
modern malware files are in fact much larger than 1 MB, analysis of the newer applications is
much more complex than previously when the applications themselves were smalleras well
as the malware attacking them.
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The main idea presented in this paper is to use a new static analysis methodology that uses
common segment analysis in order to detect files containing malware. As notedabove, many ap-
plications and malware are developed using the development platforms that include large program
language libraries. The result is that large portions of executable code originate from the program
language libraries. For example, a worm malware that distributes itself via email may contain a
benign code for sending emails. Consequently, since the email handling code is not malicious and
can be found in many legitimate applications, it might be a good idea to identify codeportions that
originate from a benign source and disregard them when classifying an executable file. In other
words, when given an unclassified file, the first step would be to detect the file segments that origi-
nated from the development platform or from a benign third party library (termed here the Common
Function) and then disregard those segments. Finally, the remaining segmentswould be compared
to determine their degree of resemblance to a collection of known malwares. If the resemblance
measure satisfies a predetermined threshold or rule then the file can be classified as malware.

To implement the suggested approach, two kinds of repositories are defined:

1. CFL—Common Function Library. The CFL contains data structures constructed from
benign files.

2. TFL—Threat Function Library. The TFL contains data structures constructed from mal-
ware without segments identified as benign (i.e., segments that appears in benign files).

Figure 1 presents the different stages required to build the needed data structures and to classify
an application file. As can be seen in this figure, our Mal-ID methodology uses two distinct stages
to accomplish the malware detection task: setup and detection. The setup stagebuilds the CFL. The
detection phase classifies a previously unseen application as either malware or benign. Each stage
and each sub-stage is explained in detail in the following subsections. The Mal-ID pseudo code is
presented in Figure 2.

2.1 The Setup Phase

The setup phase involves collecting two kinds of files: benign and malware files. The benign files
can be gathered, for example, from installed programs, such as programs located under Windows XP
program files folders. The malware files can, for example, be downloaded from trusted dedicated
Internet sites, or by collaborating with an anti-virus company. In this study the malware collection
was obtained from trusted sources. In particular, Ben-Gurion University Computational Center
provided us malware that were detected by them over time. Each and everyfile from the collection is
first broken into 3-grams (three consecutive bytes) and then an appropriate repository is constructed
from the 3-grams. The CFL repository is constructed from benign files and the TFL repository is
constructed from malware files. These repositories are later used to derive the meta-features—as
described in Section 2.2.

Note that in the proposed algorithm, we are calculating the distribution of 3-gramswithin each
file and across files, to make sure that a 3-gram belongs to the examined segment and thus associate
the segment to either benign (CFL) or malware (TFL). Moreover, 3-grams that seem to appear
approximately within the same offset in all malware can be used to characterize the malware. Before
calculating the 3-grams, the training files are randomly divided into 64 groups.

The CFL and TFL repositories share the same data structure:
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12

Figure 1: The Mal-ID method for detecting new malware applications. 

Setup phase:

Build Common Function Library (CFL)

Build Threats Function Library (TFL)

Malware Detection Phase: 

�Break the file into segments. 

�Calculate segment entropy 

� Extract features (3-grams) for 

each segment. 

For each file segment:

�Aggregate the features using the 

CFL to creates indices 

For each file segment:

�Aggregate the features using the 

TFL to creates indices 

Filter segments using the 

computed indices 

Second level index aggregation  

Classify the file  

Figure 1: The Mal-ID method for detecting new malware applications.

1. 3-gram-files-association: 224 entries, each of 64 bits. A bit value of 1 in a cell (i, j) indicates
the appearance of a specific 3-gram i in the jth group of files. The 64-bit entry size was
selected since a previous study showed that this size is the most cost effective in terms of
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detection performance vs. storage complexity (Tahan et al., 2010). Otherimplementations
may use larger entries.

1. 3-gram-relative-position-within-file: 224 entries, each of 64 bits. A bit value of 1 in a cell (i,
j) indicates the appearance of 3-gram i in the jth internal segment of a file (assuming the file
is divided into 64 equal length segments).

The CFL is constructed first and then the TFL:

1. Each file from the malware collection is broken into segments. The Mal-ID implementation
has used 64-byte segments.

2. Each segment is broken into 3grams and then tested against the CFL usingthe algorithm and
features described next. Segments that are not in the CFL are added to theTFL.

It is important to note that the end result is the TFL, a repository made of segments found only
in malware and not in benign files.

2.2 The Detection Phase

The Mal-ID basic is a feature extraction process followed by a simple static decision rule.
It operates by analyzing short segments extracted from the file examined.Each segment com-

prises a number of 3-grams depending on the length of the segment (e.g., a segment of length 4
bytes is comprised from two 3-grams that overlap by two bytes). Three features can be derived for
each segment: Spread, MFG, and Entropy. The Spread and the MFG features are derived using the
data structures prepared in the setup stage described in Section 2.1 above.

The definition and motivation behind the new features are hereby provided:

1. Spread: Recall that in the Mal-ID setup phase each file in the training set has been divided
into 64 relative-position-areas. The Spread feature represents the spread of the signature’s
3-grams along the various areas for all the files in a given repository. The Spread feature can
be calculated as follows: for each 3-gram, first retrieve the 3-gram-relative-position-within-
file bit-field, and then perform ‘And’ operations over all the bit-fields andcount the resulting
number of bits that are equal to 1. In other words, spread approximates the maximum number
of occurrences of a segment within different relative locations in train sets. For example, a
Spread equal to 1 means that the segment appears (at most) in one relativelocation in all the
files.

2. MFG: the maximum total number of file-groups that contain the segment. The MFG is calcu-
lated using the 3-gram-files-association bit-field, in the same manner that spread is calculated.

3. Entropy: the entropy measure of the bytes within a specific segment candidate. In addition to
the new estimators presented above, the entropy feature is also used to enable to identification
of compressed areas (such as embedded JPEG images) and long repeating sequences that
contain relatively little information.

Note that the features, as described above, are in factmeta-features as they are used to represent
features of features(features of the basic 3-grams). As explained next, using these meta-features,
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Mal-ID can refer to relatively long sequences (64 bytes), thus avoidingthe data mining problem
known as “the curse of dimensionality”, and other problems caused when using short n-gram as
features. The advantages of using Mal-ID meta-features will be demonstrated in the evaluation
results section and in the discussion section.

2.3 The Mal-ID Basic Detection Algorithm

The input for the Mal-ID method is an unclassified executable file of any size. Once the setup phase
has constructed the CFL and the TFL, it is possible to classify a file F as benign or as malware using
the algorithm presented in Figure 2.

1. Line 1. Divide file F into S segments of length L. All segments are inserted intoa collection
and any duplicated segments are removed. The end result is a collection of unique segments.
The Mal-ID implementation uses 2000 segments that are 64-bytes in length.

2. Line 3. For each segment in the collection:

(a) Line 5. Calculate the entropy for the bytes within the segment.

(b) Line 6. The algorithm gets two parameters EntropyLow and EntropyHigh. The entropy
thresholds are set to disregard compressed areas (such as embeddedJPEG images) and
long repeating sequences that contain relatively little information. In this line wecheck
if the entropy is smaller than EntropyLow threshold or entropy is larger than Entropy-
High. Is so then discard the segment and continue segment iteration. Preliminary eval-
uation has found the values of EntropyLow=0.5 and EntropyHigh=0.675 maximize the
number of irrelevant segments that can be removed.

(c) Line 9. Extract all 3-grams using 1 byte shifts.

(d) Line 11. Using the CFL, calculate the CFL-MFG index.

(e) Line 12. If the CFL-MFG index is larger than zero, then discard the segment and con-
tinue segment iteration. The segment is disregarded since it may appear in benign files.

(f) Line 14. Using the TFL, calculate the TFL-MFG index

(g) Line 15. The algorithm gets the ThreatThreshold parameter which indicates the mini-
mum occurrences a segment should appear in the TFL in order to be qualified as mal-
ware indicator. In this line we check if the TFL-MFG index is smaller or equal tothe
ThreatThreshold. If so then discard the segment and continue with segment iteration. In
the Mal-ID implementation only segments that appear two times or more remain in the
segment collection. Obviously a segment that does not appear in any malware cannot
be used to indicate that the file is a malware.

(h) Line 17. Using the TFL calculate the TFL-Spread index

(i) Line 18. The algorithm gets the SR parameter which indicates the Spread Range re-
quired. If the TFL-Spread index equals zero or if it is larger than what we term SR
threshold, then discard the segment and continue segment iteration. The purpose of
these conditions is to make sure that all 3-grams are located in at least 1 segment in at
least 1 specific relative location. If a segment is present in more than SR relative loca-
tions it is less likely to belong to a distinct library function and thus should be discarded.
In our Mal-ID implementation, SR was set to 9.
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(j) Lines 21-25 (optional stage, aimed to reduce false malware detection).A segment that
meets all of the above conditions is tested against the malware file groups thatcontain
all 3-gram segments. As a result, only segments that actually reside in the malware are
left in the segment collection. Preliminary evaluation showed that there is no significant
performance gain performing this stage more than log (SegmentLen) * NumberOfMal-
wareInTraining iterations.

3. Lines 28-30. Second level index aggregation—Count all segments that are found in malware
and not in the CFL.

4. Line 32. Classify—If there are at least X segments found in the malwaretrain set (TFL)
and not in the CFL then the file is malware; otherwise consider the file as benign. We have
implemented Mal-Id with X set to 1.

Please note that the features used by Mal-ID algorithm described above are in fact meta-features
that describe the 3-grams features. The advantages of using Mal-ID meta-features will be described
in the following sections.

2.3.1 MAL -ID COMPLEXITY

Proposition 1 The computational complexity of the algorithm in Figure 2 is O(SN+ log(SL) ·M ·

MaxMalSize) where SN denotes the number of segments; SL denotes segment length;M denotes the
number of malware in the training set; and MaxMalSize denotes the maximumlength of a malware.

Proof The computational complexity of the algorithm in Figure 2 is computed as follows: the
GenerateSegmentCollection complexity isO(SN); the complexity of loop number 1 (lines 3-26) is
O(SN+ log(SL) ·M ·MaxMalSize); the complexity of loop number 2 (lines 29-30) isO(SN). Thus,
the overall complexity isO(SN+ log(SL) ·M ·MaxMalSize).

2.4 Combining Mal-ID With ML Generated Models

We attempted to improve theMal-ID basicmethod by using Mal-ID features with various classifiers,
but instead of using the Mal-ID decision model described in Section 2, we letvarious ML algorithms
build the model using the following procedure:

1. We apply the common segment analysis method on the training set and obtain a collection of
segments for both the CFL and the TFL as explained in Section 2.

2. For each file’s segment, we calculated the CFL-MFG, TFL-MFG and the TFL-spread based
on the CFL and TFL. The entropy measure is calculated as well.

3. We discretized the numeric domain of the above features using the supervised procedure of
Fayyad and Irani (1993). Thus for each feature we found the most representative sub-domains
(bins).

4. For each file we count the number of segments associated with each bin. Each frequency
count is represented twice: once as absolute numbers (number of segments) and then as a
proportional distribution.
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SegmentColl=GenerateSegmentCollection(FileContent,SegmentsRequired,SegmentLen);

SegmentCheck=0; 

ForEach Segment in SegmentColl do 

{ 

Entropy  = Entropy(Segment.string); 

If (Entropy<=EntropyLow) or (Entropy>= EntropyHigh) then  

    {SegmentColl.delete(Segment); continue; } 

Segment3Grams:=SegmentTo3Grams(Segment); 

CFL_MFG = CFL.Count_Files_With_All_3gram (Segment3Grams) 

If (CFL_MFG>0) then { SegmentColl.delete(Segment); continue; } 

TFL_MFG = TFL.Count_Files_With_All_3gram (Segment3Grams) 

If (TFL_MFG< ThreatsThreshold) then { SegmentColl.delete(Segment); continue; } 

TFL_spread   = TFL.CalcSpread (Segment3Grams); 

If (TFL_spread =0) or  (TFL_spread >SR)  then   

    {SegmentColl.delete(Segment); continue; } 

// optional stage 

SegmentCheck++; 

If (SegmentCheck>log(SegmentLen)*NumberOfMalwareInTraining) then continue; 

InMalwareFile  = TFL.SearchInMalwareFiles(Segment);  //search by bit-fields 

If  not InMalwareFile  then { SegmentColl.delete(Segment); continue; } 

} 

SegmentsInMalwareOnly = 0; 

ForEach Segment in SegmentColl do 

{ SegmentsInMalwareOnly  = SegmentsInMalwareOnly +1; } 

Malware_Classfication_Result = SegmentsInMalwareOnly > ThreatSegmentThreshold; 

Figure 2: Mal-ID pseudo code. 

Mal-ID basic

Figure 2: Mal-ID pseudo code.

5. An induction algorithm is trained over the training set to generate a classifier.

We compare the following three machine learning induction algorithms:

1. C4.5—Single Decision Tree

2. RF—Rotation Forest (Rodriguez et al., 2006) using J48 decision tree as base classifier. The
algorithm was executed with 100 iterations and the PCA method for projecting thedata in
every iteration.

3. NN—A multilayer perception with one hidden layer trained over 500 epochsusing back-
propagation.
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Finally, using the model is used to detect the malware among the files in the test set.

2.5 Combining Mal-ID With ML Models Post Processing

We have attempted to improve theMal-ID basicmethod by using the following procedure:

1. First, theMal-ID basicmethod is used to construct the CFL and TFL. This stage is performed
only once before the file classification starts.

2. Next, zero patch each malware in the training set as follows: Iterate over all of the file seg-
ments and perform common segment analysis to detect the segments that appear in the CFL.
The benign segments (the segments that appear in the CFL) are zero patched in an attempt to
reduce the number of n-gram that are clearly not relevant for detectingsegments that appear
only in malware. The end result is a new file with the same length that has zerosin the benign
segments.

3. Finally, construct a classification model using Rotation Forest using J48decision tree as base
classifier. The patched malware collection and the unchanged benign file collection are used
for training.

To classify a file we first have to zero-patch the file as explained above then use the classification
model created earlier.

3. Experimental Evaluation

In order to evaluate the performance of the proposed methods for detecting malwares, a comparative
experiment was conducted on benchmark data sets. The proposed methodswere compared with
the method presented in the research of Kolter and Maloof (2004). The research of Kolter and
Maloof (2006) found that the combination of 500 4-grams with gain ratio feature selection and
boosted decision tree provides the best performance over many other evaluated method variations.
We will refer to our variation of Kolter and Maloof method asGR500BDTas it uses Gain Ratio
feature selection,500 4-grams, and Boosted Decision Tree classifier. TheGR500BDTmethod was
specifically selected because it was the best method known to us.

The following terms will be used when referring to the various methods:

1. GR500BDT—Our baseline method, which is described above.

2. Mal-IDP+GR500BDT—As explained in Section 2.5, we use Mal-ID to zero patch common
segments in the test files, and then useGR500BDTas usual.

3. Mal-ID basic—Mal-ID basicmethod as explained in Section 2.

4. Mal-IDF+<induction algorithm>—as detailed in Section 2.4, Mal-ID features will be used
by induction algorithm.

(a) Mal-IDF+RF—Mal-ID features with Rotation Forest classification

(b) Mal-IDF+C4.5—Mal-ID features with C4.5

(c) Mal-IDF+NN—Mal-ID features with a multilayer perception.
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Specifically, the experimental study had the following goals:

1. To examine whether the proposed basic methods, could detect malware while keeping the
false alarm rate as small as possible.

2. Compare the performance of the variousMal-ID basicextensions.

3. To analyze the effect of the common library size (benign and malware) on performance.

The following subsections describe the experimental set-up and the resultsthat were obtained.

3.1 Experimental Process

The main aim of this process was to estimate the generalized detection performance (i.e., the prob-
ability that a malware was detected correctly). The files repository was randomly partitioned into
training and test sets. The process was repeated 10 times and we report the average result. The same
train-test partitioning was used for all algorithms.

For evaluating the proposed methodology 2627 benign files were gatheredfrom programs in-
stalled under Windows XP program files folders, with lengths ranging from1Kb to 24MB. An
additional 849 malware files were gathered from the Internet with lengths ranging from 6Kb to
4.25MB (200 executables were above 300KB). The detailed list of examined executables can be
obtained in the following URL:http://www.ise.bgu.ac.il/faculty/liorr/List.rar. The
malware and benign file sets were used withoutany decryption, decompression or any other pre-
processing. The malware types and frequencies are presented in Figure 3. The evaluation computer
used an Intel Q6850 CPU with 4GB of RAM. The processing time was measured using only 1 CPU
core, although the implemented algorithm natively supported multiple cores.

3.2 Evaluation Measures

We used the following performance measures:

• TP = true positive

• FP = false positive

• TN = true negative

• FN = false negative

• FPR = FP / N = FP / (FP + TN) = false positive rate

• TPR = TP / P = TP / (TP + FN) = true positive rate (also known as sensitivity)

• PPV = TP / (TP + FP) = positive predictive value

• NPV = TN / (TN + FN) = negative predictive value

• ACC = (TP + TN) / (P + N) = accuracy

• BER = 0.5(FN/P + FP/N) = balanced error rate
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Figure 3: Distribution of malware types in dataset.
Figure 3: Distribution of malware types in data set.

• BCR = 1- BER = balanced correctness rate

• AUC = area under receiver operating characteristic (ROC) curve

Our measures, such as PPV versus NPV, as well as BER or BCR, try to address the important
case of an unbalanced positive/negative instance case mix, which is oftenignored in the literature.
Given the low rate of malware versus benign code, accuracy might be a misleading measure. For
example, a “Maximal Class Probability” (MPC) classifier is a classifier that always predicts the most
frequent class. Thus, an MPC predicting “BENIGN” for every instance in an environment where
99% of the files are benign would, indeed, be 99% accurate. That would also be its NPV, since
there is a 99% probability that the MPC is right when it predicts that the file is benign. However,
its PPV would be 0, or rather, undefined, since it never predicts a positive class; in other words, its
sensitivity to positive examples is 0.

Furthermore, unlike many studies in the information security literature, we use the cross-entropy
as one of our major performance measures. The cross-entropy described by Caruana et al. (2004). It
is also referred in the literature by the termsnegative log-likelihoodor log-loss. Let p(xi) represents
the posterior probability of the instancexi to be associated with the malware class according to the
classifier. Theaverage cross-entropyis defined as the average over allm test instances:

Entropy=
1
m

m

∑
i=1

I(xi)
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where thecross-entropyfor a certain case is defined as:

I (xi) =

{

−logP(xi) if xi is malware,
−log(1−P(xi)) otherwise.

The use of cross-entropy as a measure of knowledge gain allows us to plot the improvement
in a learning process, given an increasing number of examples, by notingwhether there is a posi-
tive information gain (i.e., a reduction in the entropy after learning, comparedto the entropy of the
previous learning phase). In particular, we would expect an algorithm that really learns something
about the classification of both the positive and negative cases to demonstrate a positive monotonic
improvement in the cross-entropy measure. It is important to show this positive monotonic im-
provement since we would prefer an algorithm that generates classifiersin a stable fashion. Such an
algorithm can be considered as more trustworthy than an algorithm whose learning curve might be
chaotic.

3.3 Results

The following sections describe various Mal-ID evaluation results starting with the Mal-ID basic
model followed by the results of two enhancements aimed to improve Mal-ID performance.

3.3.1 RESULTS OFMAL -ID BASIC MODEL

Table 3 presents the detection performance of the proposed method for 70% of the benign files and
90% of the malware files that are used for training.

TPR FPR PPV NPV Accuracy AUC BCR BER
0.909 0.006 0.944 0.99 0.986 0.951 0.952 0.048

Table 3: Predictive Performance ofMal-ID basic.

Kolter and Maloof (2006) conducted rigorous research to find the bestcombination of n-gram
length, n-gram number, features selection and classification method. Theyreported that the combi-
nation of five hundred 4-grams, gain ratio feature selection and boosted decision tree (AdaBoost.M1
with J48 as a base classifier) produced excellent results where the AUC was over 0.99. As you re-
call, we reproduced the work of Kolter and Maloof (gain ratio, 500 4-grams with boosted decision
tree; referred to asGR500BDT) to objectively compare the performance of our methods and theirs
under the same conditions such as data set content, data set training size, etc. A preliminary evalua-
tion indicated that Rotation Forest (RF) boosting method (Rodriguez et al., 2006) performed better
than AdaBoost.M1 and many other non-boosting methods such as J48, therefore RF was selected
for our evaluation. The results of the evaluation are presented in Table 4 below.

Method Features Feature selection FPR TPR Acc AUC
GR500BDT 4grams Gain Ratio 0.094 0.959 0.948 0.929
Mal-ID Mal-ID - 0.006 0.909 0.986 0.951

Table 4: Comparison between Mal-ID andGR500BDT.
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3.3.2 RESULTS OFCOMBINING MAL -ID W ITH ML GENERATED MODELS

As you recall we attempted to improve theMal-ID basic method by using Mal-ID features with
various classifiers. The following figures show comparison of various detection performance mea-
sures. Many detection performance measures were recorded and reported as presented in the figures
below. Please note that ”TrainPercentage” refers to the percentage ofbenign data sets and ranges
from 30 to 70 percent. Malware data set percentages range from 40 to90 percent. The ratio between
malware and benign was kept fixed for all cases.

Figure 4 reports the average cross-entropy for a classifier by averaging the entropy of the pos-
teriori probability that it outputs to all test instances. As expected, we see that the cross-entropy
decreases as the training set size increases. For the largest training set, Mal-ID basic shows the best
decrease in a posteriori cross-entropy.

Figure 5 presents the accuracy of theMal-ID basicmodel as well that of theMal-IDF+NN and
Mal-IDF+RF models. As expected, the accuracy increases almost linearly as the trainingset size
increases. For small training set sizes,Mal-IDF+RF outperforms the other methods. However, for
the largest training set, theMal-ID basicmodel eventually achieves the best results.

Figure 6 presents the TPR of all methods.Mal-IDF+C4.5 demonstrates the lowest TPR. The
Mal-IDF+NN andMal-IDF+RF models perform the best. TheMal-ID basic model benefits the
most from increasing the training set size. In small training sets, the difference between theMal-ID
basicmodel and eitherMal-IDF+NN or Mal-IDF+RF are statistically significant. However, for
larger training sets the differences are no longer significant.

28

Mal-ID basic

Figure 4: Comparing the a posteriori cross-entropy of various detectionmodules as a function of
training set percentage increase.
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28

Mal-ID basic
Figure 5: Comparing the accuracy performance of theMal-ID basicmodel with the machine learn-

ing methods on various training set size percentages.

Figure 7 presents the FPR of all methods. TheMal-ID basic model demonstrates the best
performance.Mal-IDF+C4.5, on the other hand, demonstrates the lowest FPR. The performance of
Mal-IDF+NN does not improve as the training set increases. TheMal-ID basicmodel significantly
outperformsMal-IDF+C4.5 andMal-IDF+NN. Additionally, a paired t-test indicates theMal-ID
basic’s FPR is significantly lower than the FPR ofMal-IDF+RF with p< 0.0001.

Figure 8 presents the area under the ROC curve for theMal-ID basicmodel,Mal-IDF+NN and
Mal-IDF+RF. All models improve as the training set increases. TheMal-ID basic model shows
the lowest AUC but also benefits the most from increasing the training set size. The lower AUC of
theMal-ID basicmodel can be explained by the fact that contrary to the other models, theMal-ID
basicmodel is adiscreteclassifier. Discrete classifiers produce only a single point in ROC space
(Fawcett, 2004) and therefore their calculated AUC appears lower.

When we examined the balanced error rate (BER) forMal-ID basic, Mal-IDF+NN andMal-
IDF+RF Models, we noticed that the BER measure decreases for all models as the training set
increases.Mal-ID basicdemonstrated a significant and sharp decline in the BER as the training set
increases. In almost all cases, theMal-IDF+RF achieved the lowest BER. With the largest training
set there is no significant difference between theMal-ID basicmodel and theMal-IDF+RF model.

When we compared the NPV of theMal-ID basicmodel with the NPV of theMal-IDF+NN and
Mal-IDF+RF, we noticed, as expected, that the NPV increases almost linearly as the training set
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Figure 6: Comparing the true positive rate of theMal-ID basic model with the machine learning
methods on various training set size percentages.

size increases. For small training set sizes,Mal-IDF+RF andMal-IDF+NN outperform the other
methods. Eventually, however, there is no statistically significant difference for the largest training
set.

When we compared the PPV of theMal-ID basicmodel with the PPV of theMal-IDF+NN, Mal-
IDF+C4.5 andMal-IDF+RF, we found out thatMal-ID basichas the best PPV for all training set
sizes. TheMal-IDF+RF performed better than theMal-IDF+NN and theMal-IDF+NN performed
better thanMal-IDF+C4.5.

To sum up, in many cases Mal-ID basic outperforms the methods that use Mal-ID features
combined with a ML classifier and we conclude that a simple decision rule is sufficient.

3.3.3 COMBINING MAL -ID W ITH ML M ODELS POST PROCESSING

As you recall, we have attempted to improve theMal-ID basic method by using the method to
zero-patch the benign common library parts. To measure and compare the effect of the Mal-ID
patching prior to classifying, we preformed an evaluation using four methods: GR500BDT, Mal-
IDP+GR500BDT, Mal-ID basic, andMal-IDF+RF.

Figure 9 compares the accuracy performance using various training setsizes. The results show
that withMal-IDP+GR500BDTwe were able to improve performance but only on relatively small
training sets. However, compared to the knownGR500BDT, Mal-IDP+GR500BDTshow signif-
icant and consistent improvements in accuracy by about 2%. All Mal-ID variations were able to
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Mal-ID basic

Mal-ID basic

Figure 7: Comparing the false positive rate of theMal-ID basicmodel with the machine learning
methods on various training set size percentages.

outperformGR500BDTregardless of training set size. It should be noted that on the one hand we
should have expected to an improvement in the predictive performance when the training set size
increases. On the other hand because we also increase the imbalance ratiobetween benign and mal-
ware therefore we should have expected to a decrease in the predictiveperformance. Eventually we
observe that accuracy of GR500BDTremains almost constant.

Figure 10 compares FPR performance under various training set sizes.The results indicate that
there is slight but constant improvement in terms of FPR when first performing a patch with Mal-ID
(Mal-IDP+GR500BDT) instead of using n-gram without patching (GR500BDT). The performance
of all n-gram-based methods decreases sharply when the training set consists of more than 50%
benign files. The graph shows that in terms of FPR, theMal-ID basic method always performs
slightly better than theMal-IDF+RF method and both methods perform significantly better than
n-gram based methods. In other words, the graph shows that in terms of FPR, there is a significant
difference between methods that use n-gram features and those that use the Mal-ID meta-features.

Table 5 summarizes the detection performance results for the various Mal-IDmethods and the
GR500BDTbaseline and can help in choosing the best method when considering detection perfor-
mance only. Other important considerations will be discussed below. The results demonstrate that
Mal-IDP+GR500BDTalways outperformsGR500BDTbaseline andMal-IDP+GR500BDTshould
be used when the highest TPR is desired and a high FPR is acceptable. HoweverMal-ID basicand
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Mal-ID basic
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Figure 8: Comparing the AUC of theMal-ID basicmodel with the machine learning methods on

various training set size percentages.

Mal-IDF+RF seems to be the best choice for more balanced performance with extremely lowFPR
and for achieving the highest accuracy.

Method Feature selection FPR TPR Acc AUC
GR500BDT(un-patched + RF) Gain Ratio 0.094 0.959 0.948 0.929
Mal-IDP+GR500BDT
(patched + RF)

Gain Ratio 0.093 0.977 0.963 0.946

Mal-ID basic Mal-ID 0.006 0.909 0.986 0.951
Mal-IDF+RF (Mal-ID features
+ RF)

None 0.006 0.916 0.985 0.995

Table 5: A comparison of various Mal-ID methods and RF when using maximum training size.

Table 6 presents the training time (in seconds) and detection time (in ms) of all examined meth-
ods. The evaluation computer used an Intel Q6850 CPU with 4GB of RAM. Alltimes were mea-
sured using only 1 CPU core. The training time of Mal-ID based methods doesnot include building
the CFL and TFL which took around 30 seconds. As expected the training timeincreases with the
training size. In addition, GR500BDT training time does not include the n-gramfeature extraction
and selection (which took more than ten minutes). The Mal-ID basicand Mal-IDF+C4.5 methods
demonstrated the best training time performance with less than one second. The detection time
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Figure 9: Comparing the accuracy of various Mal-ID-based methods andthe n-gram method on
various training set size percentages.

seems almost constant regardless of training set size. The only exceptionis Mal-IDF+RF in which
detection time increases almost linearly as the training set increases. Note thatthe size of the trees
(number of nodes) which constitute the rotation forest usually increases with the training set. This
can be explained by the fact that the number of leaves in the tree is boundedby the training set size.
Larger trees require a longer traversal time and features calculation. Recall that in rotation forest,
the features used in the various nodes are linear combination of the originalfeatures.

Table 7 reports the mean TPR ofMal-ID basic for small malwares (size<=350K) and large
malware (size>350K) using the largest training set. Note that the FPR is kept as reported inTable
5 (i.e., FPR=0.006). The results show that the TPR for both small and large group is very similar
indicating that MAL ID is not affected by the size of the examined malware.

In order to estimate the effect of obfuscation on detection rate, we have divided the tested mal-
ware into two groups—obfuscated and non-obfuscated. Because we were not informed which exe-
cutable was obfuscated, we have used the following method. We compressed the executables using
Zip and sorted them according to the compression ratio. We used a thresholdof 50% compression
ratio to decide which executable is probably obfuscated. The selection of this threshold was based
on experiments of compressing non- obfuscated executables. According to this threshold, about
37.5% of the malware are considered to be obfuscated. Table 8 reports the mean TPR ofMal-ID
basicfor obfuscated and non-obfuscated groups using the largest trainingset. Note that the FPR is
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Figure 10: Comparing the FPR of various Mal-ID-based methods and the n-gram method on vari-
ous training set size percentages.

kept as reported in Table 5 (i.e., FPR=0.006). The results show that the TPR for both obfuscated
and non-obfuscated group is very similar with slight advantage to detecting obfuscated malwares.

4. Discussion

This paper proposes a new approach for automatically detecting executable malwares of all kinds
and sizes. The results show that using theMal-ID basic and other Mal-ID variants are useful in
detecting malware. As can be seen from Table 3, theMal-ID basicmethod performs very well in
respect to all measures. Not only is the accuracy very high (0.986), but the FPR is remarkably low
(0.006). In addition, the low Mal-ID BER indicates that the errors are almostuniformly distributed
among the malicious and benign files.

As explained in Section 3.3.1, we choose to implementGR500BDTas a baseline for comparing
the performance of theMal-ID basicmethod.GR500BDTis very similar to the method proposed by
Kolter and Maloof (2006). The evaluation shows thatGR500BDTperformed well, but was unable
to achieve the AUC of 0.995 that Kolter and Maloof reported. This was probably due to differences
in data set content, training size, the benign and malware ratio and possibly other factors. As can
be seen from Table 4, under identical conditions the Mal-ID methodology was able to outperform
GR500BDTin terms of FPR, accuracy and AUC. The FPR ofGR500BDTmethod came to almost
10%; Mal-ID FPR was more than 15 times lower.
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Train Percentage
Method 30 40 50 60 70

Training MalID-Basic 0.05 0.08 0.11 0.15 0.21
Time Mal-IDF+RF 17.19 26.00 36.35 45.78 83.50

(in sec) Mal-IDF+C4.5 0.12 0.17 0.22 0.33 0.43
Mal-IDF+NN 24.33 32.16 40.33 48.37 56.93
GR500BDT 21.74 34.91 59.86 64.88 75.19
Mal-IDP+GR500BDT 20.93 31.42 42.96 55.65 63.43

Detection MalID-Basic 27.86 27.86 27.86 27.86 27.86
Time Mal-IDF+RF 49.17 54.69 63.66 73.95 95.82

per file Mal-IDF+C4.5 27.86 27.86 27.86 27.86 27.86
(in ms) Mal-IDF+NN 27.92 27.92 27.90 27.89 27.88

GR500BDT 29.63 29.83 29.83 29.85 29.83
Mal-IDP+GR500BDT 29.01 29.01 29.02 28.98 28.97

Table 6: Training and Detection Time.

Malware Size TPR Number of Mal-
wares

Mean Size

Small 0.909 675 96K
Large 0.908 174 554K

Table 7: A comparison of TPR (True Positive Rate) Mal-ID basic for small and large malwares
when using maximum training size.

Malware type TPR Mean Compression
Ratio

Obfuscated 0.932 41%
Non-obfuscated 0.893 62%

Table 8: A comparison of TPR (True Positive Rate) Mal-ID basic for obfuscated and non-
obfuscated malware when using maximum training size.

Once it was established that theMal-ID basicmethod performs well (in fact better than the best
baseline method) we wanted to examine Mal-ID behavior with different train sizes to test ifMal-ID
basicperforms in a stable and “trustworthy” manner. In addition, it was interestingto determine if
combiningMal-ID basicwith ML-generated models, as explained in Section 3.3.2, would yield a
better performing malware detection method.

The results presented in Figure 4 to Figure 8 show that combining Mal-ID with ML-based
models enabled us to improve many aspects of theMal-ID basic method when training sets are
not maximal. However, as training set size increases, the benefit of combining Mal-ID basicwith
ML-based models diminishes. At maximal training set size, theMal-ID basic method almost al-
ways demonstrates the best performance or a performance that is statistically equal to the combined
methods. It is also important to note that, contrary to the other methods, all measures that we im-
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plemented indicated that theMal-ID basicmethod benefited the most from training set increase and
always performed in an expected manner. Thus, it may be considered more stable and “trustworthy”
than the other methods.

It is interesting to note that while the performance of non-n-gram methods (Mal-ID basicand
Mal-IDF+RF) continues to improve as more training data become available, the n-gram based
methods show a sharp decrease in performance in terms of FPR (see Figure 10). This can be
explained by the fact that n-gram methods induce relatively simple patterns that can be learned with
comparatively small training sets (30%). The potential benefit of additionaltraining data is nullified
by the undesirable increase in the probability that relevant n-gram will be mistakenly considered
as non-contributing features. In fact, it is well known that decision treesincrease their chances of
overfitting when they have more nodes. But in order to have more nodes, they need a larger training
set. Thus a larger data set might increase the chance of overfitting especially in cases were there are
many irrelevant and noisy features.

The comparison of our two additional methods,Mal-IDF+RF andMal-IDP+GR500BDT, with
a GR500BDTbaseline is very important in proving the validity of Mal-ID itself and explaining its
excellent performance:

1. (a) Under identical conditions, boosted decision tree, operating onMal-ID basic meta-
features (Mal-IDF+RF), outperformed boosted decision tree operating on n-gram
(GR500BDT). The comparison suggests that Mal-ID meta-features are useful in con-
tributing to malware detection and probably more meaningful than simple n-gramin
capturing a file’s essence.

(b) Under identical conditions, boosted decision tree operating onMal-ID basic patched
files (Mal-IDP+GR500BDT) outperformed boosted decision tree operating on non-
patched files (GR500BDT). The comparison suggests that the novel Mal-ID common
segment analysis approach is better than the common approach that treats files as black
boxes or which interprets files PE header only.

SinceMal-ID basicandMal-IDF+RF methods benefit from both more meaningful features and
common segment analysis, they are able to achieve a better overall performance than state-of-the-art
GR500BDT.

Considering detection performance only when choosing a malware detection method may not
be enough; it is important to consider other aspects as well.

4.1 Model Interpretability

Mal-ID basic uses only one static interpretable classification model and therefore experts in the
field can be more confident when accepting or rejecting a classification. For instance, onceMal-ID
basichas detected a yet unknown malware, it is possible to support or reject the classification. The
reason is that each detected segment, that passed the Mal-ID filter stage asexplained in Section 2,
can be tracked back to a specific malware or malware group. Moreover, the specific offset location
were the segments appear can be examined to determine the precise nature ofthe threat, if any
exists. Disassembly or reverse engineering of the whole malware is no longer required. Even
without examining the segment code, one can make an educated guess about the nature of the threat
by examining the list of known malwares that the segment appears in. The other methods do not
provide such benefits.
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4.2 Incremental

As more malwares are discovered, it is important to update the models from time totime. With
Mal-ID basic it is particularly easy. Since the model is static, no reconstruction is necessary; all
that is required is to just to add or subtract files from the TFL. The CFL canbe updated in a similar
manner.

4.3 Anytime Detection

Recall that bothMal-ID basicandMal-IDF+RF operates on segments. BecauseMal-ID basicand
Mal-IDF+RF use relatively large segments and the model is not comprised of combined features
from the whole file, it is possible to stop detection at anytime during file scan anddetermine if the
scanned part is malicious. n-gram-based methods are not designed to diagnose part of file but rather
whole files only.

4.4 Default Signature For Real-time Malware Detection Hardware

The end result of applyingMal-ID basicmethod is a file segment or segments that appear in mal-
ware files only and thus may be used as a signature for anti-virus tools. Thedetected malware seg-
ments can be used, as described by Filiol (2006), to generate signaturesresistant against black-box
analysis. Moreover, becauseMal-ID basicproduces a simple signature and hasanytime detection
traits, the signature can be used with commercially available real-time intrusion prevention systems
(IPS). IPSs require theanytime detection traitto act as real-time malware filtering devices and thus
promote and provide users with default protection. Having both malware detection and signature
generation could help shorten the window of vulnerability. Tahan et al. (2010) have presented a
methodology with complete implementation for automatic signature generation, using similar and
compatible techniques, which archived excellent results in the evaluation. Thus, the method pre-
sented by Tahan et al. (2010) can be easily adopted to produce signatureupon detection for the
solution presented in this paper.

4.5 Large Files Scalability

Nowadays it’s quite common to embed large resources such as JPEG pictures and small animations
into executables. This inflation is also true for malware. It is estimated1 that the mean malware size
has increased from 150K (in 2005) to 350K (in 2010). As files become larger, the effectiveness of
classification with small n-gram should decrease due to the increase in file entropy. In other words,
the more n-gram with equal appearance probability, the greater the misclassification probability
becomes. SinceMal-ID basic andMal-IDF+RF use relatively large segments (64 bytes) and in
addition filter-out high entropy parts, they should be less susceptible to misclassification caused by
large files or files with high entropy traits. Figure 10 shows that the Mal-ID methods that operate on
large segments (of 64 bytes) has less FPR misclassification then the method that operated on small
n-gram (of 4 bytes). We further examined this hypothesis in Table 7.

1. Seehttp://nakedsecurity.sophos.com/2010/07/27/large-piece-malware/.
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4.6 Analysis of Mal-ID Performance on Obfuscated Malware

Based on the results presented so far, we hypothesize that the proposed Mal-ID method performs
well in a mixed environment where both obfuscated (including compressed or encrypted) and plain
executable files exist. In this sense, we referred to malware as they are found “in the Wild”.

There might be several reasons that can explain why the TPR of obfuscated binaries appears
to be higher than the TPR of non-obfuscated binaries. One reason can be that many obfuscated
malwares are generated by automated tools that have distinctive properties. For example, malware
developers are sharing tools for facilitating the generation of new malwares. For example, in the
web sitehttp://vx.netlux.org/, one can find many tools (such as Falckon Encrypter that is used
for obfuscation) that can be used by the malware developers but are not used by benign software
developers. All malware that use the Falckon Encrypter, share the samedecryption segment.

The results of Table 8 agree with the previously-made observation that ML techniques can
classify malware that are obfuscated (compressed or encrypted or both). For example, Kolter and
Maloof (2006) have noted that ML can detect obfuscated malware. In this paper, we have inde-
pendently reconfirmed the validity of the above observation using our method. In this experiment,
we succeeded to keep FPR relatively low (FPR=0.006), however it should be noted that this value
was obtained when our corpus contained 2,627 benign files and 849 malware files (i.e., a benign to
malware ratio of 3:1). In reality this ratio can be much higher and therefore one should expect to
obtain elevated FPR values.

There seem to be previously suggested explanations to this phenomenon. According to Kolter
and Maloof (2006), the success in detecting obfuscated malware relies on learning certain forms of
obfuscation such as run-time decompression. Kolter and Maloof (2006) conclude that “. . . this does
not seem problematic as long as those forms are correlated with malicious executables”.

Additional explanations can be suggested to the ability to identify obfuscated malware. Studies
such as that presented by Newsome and Song, or by Newsome et al. (2005) noticed that in many
cases malware requires fixed sequences to be used in the body of the malware (which must exist
before self-decryption or self-decompression) in order to exploit a specific vulnerability and self-
propagate. Such fixed sequences can be used for detection. This mightexplain the success in
detecting obfuscated malware.

Because the performance of MAL ID is achieved with no disassembly, Op-Code analysis, ex-
ecutable header analysis, unpacking nor any other preprocessing, we hypothesize that the method
should be scalable to other Operating Systems and hardware types. Still onecan think on cases
where preprocessing will be required. Theoretically an attacker can specifically design a malware
that will make it hard for MAL ID to detect it. In particular, if a malware is designed such that the
entropy measure will be high for all segments, it will be undiscovered by theMal-ID basic method.
In this case Mal-ID can be extended by incorporating an unpacker operating before it, such as those
that are incorporated into anti-viruses tools (Kasparsky). However, similar to Kolter and Maloof
(2006), we decided to evaluate the raw power of our methods without any use of an unpacker.

5. Summary and Future Work

In this paper we have described novel methods based on machine learningto detect malware in
executable files without any need for preprocessing the executables. The basic method that we
presented works on the segment level for detecting new malware instead of using the entire file
as usually done in machine learning based techniques. TheMal-ID basic method and its derived
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variants were rigorously tested to evaluate their effectiveness under many conditions using a wide
variety of measures. The results demonstrate the effectiveness of the methods. In all cases, most
of the performance measures showed that the proposed methods significantly outperformed the
baseline methodGR500BDTwhich is known for its excellent performance (Kolter and Maloof,
2004, 2006). For each method we have pinpointed its strong points and suggested cases where it
should be preferred over the others.

We believe this study has made several contributions to malware detection research, including
the introduction of:

1. a new and effective method for malware detection based on common segment analysis and
supporting algorithms. The importance of common segment analysis to the process of mal-
ware detection was identified and demonstrated. The results suggest the method can boost
performance for many methods that use n-gram.

2. new kinds of features—Mal-ID basicmeta-features. The results suggest that the meta-features
are much more effective than the commonly used n-gram and probably more meaningful in
terms of file representation. We believe thatMal-ID basicmeta-features could inspire many
kinds of additional meta-features that could prove useful.

3. BCR, BER, PPV, NPV and entropy decrease for measuring the performance of malware de-
tection methods. Using these measures, in addition to the commonly used performance mea-
sures (TPR, FPR, accuracy and AUC), is not generally practiced. However, these features are
helpful in describing the behavior of a new method, particularly when it is not possible to
compare results under identical settings and data set imbalance.

The results also indicate that by extracting meaningful features, it is sufficient to employ one
simple detection rule for classifying unknown executables.

In the future, we aim to examine the effect of systematically collecting and choosing the benign
file set on the performance of the proposed methods. In the evaluations that were conducted for this
study, the benign file set was collected randomly and the files used may have had a large degree of
similarity. It is our assumption that systematically collecting and choosing common segments will
provide a better representation of benign common segments and a more robust and lower FPR. A
robust and low FPR will enable the use of more sensitive malware detection methods (or parameters
that affect malware detection) without increasing the FPR too much. As a result, we hope to see
further increase in the AUC measure. Finally the Mal-ID basic method was developed as a crisp
classifier. Additional research is required for developing a method for ranking the examined files
according to their presumed threat level. One straightforward measure is the ratio between the
segments found in the TFL and the segments found in the CFL. In addition, it willbe interesting to
test the proposed method on live network data and on an institutional networkand determine if it
detects malware that is not detected by other means. Finally, future work mayrepeat the evaluation
Mal-ID on a larger scale with thousands of malware samples and tens of thousands of non-malware
samples. For this purpose, we might need to upscale software components to accommodate large
data set and suitable hardware. In addition, in order to use the proposedmethod in practice by the
industry, fine tuning of the various parameters might be required.

Additional studies might be needed to fully evaluate the performance of Mal-ID under various
obfuscation scheme, including use of recursive unpacking. In this paper we focused only on “pure”
Mal-ID methods and therefore we did not investigate the proper means to incorporate unpacker.
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