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Abstract
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In this paper we study the kernel multiple ridge regressiaméwork, which we refer to as multi-
task regression, using penalization techniques. The ¢tieal analysis of this problem shows that
the key element appearing for an optimal calibration is thheadance matrix of the noise between
the different tasks. We present a new algorithm to estinfdagecbvariance matrix, based on the
concept of minimal penalty, which was previously used in $hgyle-task regression framework
to estimate the variance of the noise. We show, in a non-asyfiosetting and under mild as-
sumptions on the target function, that this estimator caye®towards the covariance matrix. Then
plugging this estimator into the corresponding ideal pgriaehds to an oracle inequality. We illus-

trate the behavior of our algorithm on synthetic examples.
Keywords: multi-task, oracle inequality, learning theory

1. Introduction

A classical paradigm in statistics is that increasing the sample size (that isjrttienof observa-
tions) improves the performance of the estimators. However, in some casey lie impossible
to increase the sample size, for instance because of experimental limitatiopsfully, in many
situations practicioners can find many related and similar problems, and m@titese problems
as if more observations were available for the initial problem. The techniggieg this heuristic
are called “multi-task” techniques. In this paper we study the kernel reelgession procedure in a

multi-task framework.
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SOLNON, ARLOT AND BACH

One-dimensional kernel ridge regression, which we refer to as “stagl€ regression, has been
widely studied. As we briefly review in Section 3 one has, ginelata pointgX;,Y;){ ,, to estimate
a function f, often the conditional expectatioi(X) = E[Y;|X], by minimizing the quadratic risk
of the estimator regularized by a certain norm. A practically important task iditoate a regu-
larization parameter, that is, to estimate the regularization parameter directiyl&@. For kernel
ridge regression (a.k.a. smoothing splines), many methods have be@&sguidpased on different
principles, for example, Bayesian criteria through a Gaussian prodesgrigtation (see, e.g., Ras-
mussen and Williams, 2006) or generalized cross-validation (see, e.doa\E800). In this paper,
we focus on the concept of minimal penalty, which was first introducedimeBnd Massart (2007)
and Arlot and Massart (2009) for model selection, then extended to Esgianators such as kernel
ridge regression by Arlot and Bach (2011).

In this article we considep > 2 different (but related) regression tasks, a framework we refer
to as “multi-task” regression. This setting has already been studied inetiffpapers. Some em-
pirically show that it can lead to performance improvement (Thrun and iV&o, 1996; Caruana,
1997; Bakker and Heskes, 2003). Liang et al. (2010) also obtaitteebaetical criterion (unfortu-
nately non observable) which tells when this phenomenon asymptoticallysoc®everal different
paths have been followed to deal with this setting. Some consider a setting pulen, and formu-
late a sparsity assumption which enables to use the group Lasso, assurtiagidgferent functions
have a small set of common active covariates (see for instance Obozitadki2011; Lounici et al.,
2010). We exclude this setting from our analysis, because of the Hilbewi@ame of our problem,
and thus will not consider the similarity between the tasks in terms of sparditgther in terms of
an Euclidean similarity. Another theoretical approach has also been wséefof example, Brown
and Zidek (1980), Evgeniou et al. (2005) or Ando and Zhang (2005%emi-supervised learn-
ing), the authors often defining a theoretical framework where the multigestidem can easily
be expressed, and where sometimes solutions can be computed. The maingethaoretical
problem is the calibration of a matricial parametéi(typically of sizep), which characterizes the
relationship between the tasks and extends the regularization parametairigie-task regression.
Because of the high dimensional nature of the problem (i.e., the small nurnipainang observa-
tions) usual techniques, like cross-validation, are not likely to sucdaggriou et al. (2008) have a
similar approach to ours, but solve this problem by adding a convex edmtstiv the matrix, which
will be discussed at the end of Section 5.

Through a penalization technique we show in Section 2 that the only eleméatvwedo estimate
is the correlation matriX of the noise between the tasks. We give here a new algorithm to estimate
>, and show that the estimation is sharp enough to derive an oracle ineqoalihefestimation
of the task similarity matrixM, both with high probability and in expectation. Finally we give
some simulation experiment results and show that our technique corredywdtrathe multi-task
settings with a low sample-size.

1.1 Notations

We now introduce some notations, which will be used throughout the article.
e The integemn is the sample size, the integeis the number of tasks.
e For anyn x p matrixY, we define

y: VedY) = (YL]_, oo 7Yn71,Y172,. .. 7Yr*|72,. .. ,Y]_ﬂp,. .. ,Yn7p) S Rnp,
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that is, the vector in which the columid ;= (Yi,j)1<i<n are stacked.
e My(R) is the set of all matrices of size
e Sp(R) is the set of symmetric matrices of sipe
¢ Sy (R) is the set of symmetric positive-semidefinite matrices of pize
e Sy 7 (R)is the set of symmetric positive-definite matrices of gize
e = denotes the partial ordering gig(R) defined by:A<Bifand only ifB—Ac SJ(R).

e 1is the vector of sizep whose components are all equal to 1.

|||, is the usual Euclidean norm @i for anyk € N: Vu € R, HuH% =5k w2

2. Multi-task Regression: Problem Set-up

We considermp kernel ridge regression tasks. Treating them simultaneously and sliagingom-
mon structure (e.g., being close in some metric space) will help in reducing ¢nallgerediction
error.

2.1 Multi-task with a Fixed Kernel

Let X be some set and a set of real-valued functions ovér. We supposéF has a reproducing
kernel Hilbert space (RKHS) structure (Aronszajn, 1950), with &8tiand feature ma@ : X — 7.
We observeD, = (X, Y1,...,Y,P)1, € (X x RP)", which gives us the positive semidefinite kernel
matrix K = (K(X;,X,))1<i¢<n € S (R). For each task € {1,...,p}, D& = (%,y)I, is a sample
with distribution #;, for which a simple regression problem has to be solved. In this paper we
consider for simplicity that the different tasks have the same dé¥gf,. When the designs of
the different tasks are different the analysis is carried out similarly fipidg X = (X1, ... ,Xip),
but the notations would be more complicated.

We now define the model. We assur(n‘é, ...,fP) e FP ¥ is a symmetric positive-definite
matrix of sizep such that the vectorg/)}’_, are i.i.d. with normal distribution\( (0, %), with mean
zero and covariance matrk and

vie{L...nLvie{L....p}, vl = I(%) +¢ . (1)

This means that, while the observations are independent, the outputs offérerditasks can be
correlated, with correlation matrix between the tasks. We now place ourselves in the fixed-design
setting, that is(X;)!"_, is deterministic and the goal is to estimgte'(X), ..., fp(X;))in:l. Let us
introduce some notation:

® Unin = Mmin(Z) (resp.pmax) denotes the smallest (resp. largest) eigenvalue of
e C(Z) := Hmax/Mmin iS the condition number df.

To obtain compact equations, we will use the following definition:
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Definition 1 We denote by F the » p matrix (f/(X;))1<i<n 1<j<p and introduce the vector f=
vedF) = (f1(X1),..., f1(%n),..., fP(X0),..., FP(Xy)) € R"P, obtained by stacking the columns of
F. Similarly we define Y= (y!) € Mn.p(R), y:=vedY), E = (g]) € Mn.p(R) ande := veqE).

In order to estimatef, we use a regularization procedure, which extends the classical ridge
regression of the single-task setting. IMtbe ap x p matrix, symmetric and positive-definite.
Generalizing the work of Evgeniou et al. (2005), we estintéfe. .., fP) ¢ FP by

FMea;ggin{ ZZM —g' (% +Z;Mjlg‘ f } (2)

AlthoughM could have a general unconstrained form we may redttitt certain forms, for either
computational or statistical reasons.

Remark 2 Requiring that M= 0 implies that Equatiorf2) is a convex optimization problem, which
can be solved through the resolution of a linear system, as explained Mtzeover it allows an
RKHS interpretation, which will also be explained later.

Example 3 The case where the p tasks are treated independently can be considdiscsetting:
taking M= Ming(A) = %Diag()\l, ...,Ap) for anyA € RP leads to the criterion

Z[ Zl g (%)) +)\J||gJHT ) 3)

that is, the sum of the single-task criteria described in Section 3. Hencemiziimg Equation(3)
overA € RP amounts to solvendependentlyp single task problems.

Example 4 As done by Evgeniou et al. (2005), for evary € (0, +00)2, define

A (p—1)u —u
Msimitar(A, 1) := (A + pp)lp — p1l’ =
—H A (p—1)u

Taking M= Mgimilar(A, 1) in Equation(2) leads to the criterion

o3 3 0 -g 002 S [0+ 3 3 - @
npi;]:l I =1 4 2]: k=1 4

Minimizing Equation(4) enforces a regularization on both the norms of the functionargl the
norms of the differences! g- g¢. Thus, matrices of the form Milar(A, 1) are useful when the
functions d are assumed to be similar iff. One of the main contributions of the paper is to go
beyond this case and learn from data a more general similarity matrix M legtnasks.

Example 5 We extend Example 4 to the case where the p tasks consist of two gralgpsedfisks.
Let | be a subset ofl, ..., p}, of cardinalityl < k < p— 1. Let us denote bylthe complementary
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MULTI-TASK REGRESSION USINGMINIMAL PENALTIES

of Iin {1,...,p}, 1, the vector v with components=¢ 1|, andDiag(l ) the diagonal matrix d with
components;d = lic;. We then define
M

M (A, 1, V) := Al + uDiag(l) + v Diag(1¢) — L 1 -

\Y)
R S A
p—k

This matrix leads to the following criterion, which enforces a regularization ath fthe norms of
the functions gand the norms of the differences-gg* inside the groups | ancFi

1 n P j , 5 p - m _ 2 v ' 2
nn y_gjxl +A gj + — gl_g 4+ gj_g .
npi;gl( i ( )) ]ZlH Hf ZK%%H Hf}' 2(p—k) jeZCK;CH Hﬂ»’
()
As shown in Section 6, we can estimate the set | from data (see Jacob @08lfpa more general
formulation).

Remark 6 Since ) and 11" can be diagonalized simultaneously, minimizing Equatiénand
Equation(b) is quite easy: it only demands optimization over two independent parasnetkich
can be done with the procedure of Arlot and Bach (2011).

Remark 7 As stated below (Proposition 8), M acts as a scalar product between tke t8slecting
a general matrix M is thus a way to express a similarity between tasks.

Following Evgeniou et al. (2005), we define the vector-spga#f real-valued functions ovet' x
{1,...,p} by

G:={g: Xx{1,....,p} = R/Vje{1,....,p},09(,])) €EF} .

We now define a bilinear symmetric form ovgr

p P
Vg,he g ’ <gah>g: Z ZMJ|<9(>J)7h(ﬂI)>?,
j=11=
which is a scalar product as soonMss positive semi-definite (see proof in Appendix A) and leads
to a RKHS (see proof in Appendix B):

Proposition 8 With the preceding notations, -) 5 is a scalar product org.
Corollary 9 (G,(-,-)g) isa RKHS.

In order to write down the kernel matrix in compact form, we introduce thewatlg notations.

Definition 10 (Kronecker Product) Let Ae Mmn(R), B € Mpq(R). We define the Kronecker
product A B as being thgmp) x (ng) matrix built with px g blocks, the block of inde, j)
being Aj - B:

AiiB ... AnB

ARB= :

AniB ... AmnB
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The Kronecker product is a widely used tool to deal with matrices andt@nsducts. Some of its
classical properties are given in Section E; see also Horn and Jo(ir8@i).

Proposition 11 The kernel matrix associated with the desijn= (X;, DijeXx{1,...,p} and
the RKHS G, (-,-)g) isKu := M 1@ K.

Proposition 11 is proved in Appendix C. We can then applythe repre&etimeorem (Sclkopf
and Smola, 2002) to the minimization problem (2) and deducefthat Ayy with

A = Ak = Ku(Kv +nphp) = (M1@K) (M t®K) ‘H‘plan1

2.2 Optimal Choice of the Kernel

Now when working in multi-task regression, a s&t C 5;*(]1%) of matricesM is given, and the

goal is to select the “best” one, that is, minimizing oWérthe quadratic risk 2| fy — f||3. For
instance, the single-task framework corresponds+ol andM = (0,+). The multi-task case is
far richer. The oracle risk is defined as

FiR{IlN e ©

The ideal choice, called the oracle, is any matrix

M* e argmin{ H fim — sz} .
MeM 2

Nothing here ensures the oracle exists. However in some special sase®i( instance Example
12) the infimum of| fy — f||2 over the se{ fu, M € M} may be attained by a functiof ¢ 7P—
which we will call “oracle” by a slight abuse of notation—while the formerlgem does not have
a solution.

From now on we always suppose that the infimunf|pfy — f||2} over M is attained by some
function f* € #P. However the oracl&* is not an estimator, since it dependsfan

Example 12 (Partial computation of the oracle in a simple setting)lt is possible in certain sim-
ple settings to exactly compute the oracle (or, at least, some part of it)si@@mfor instance the
set-up where the p functions are taken to be equal (that'is; f - = fP). In this setting it is natural
to use the set

Momiar = {Msimnar@,u) — v+ pil- ST/ € © +oo>2} .

Using the estimatorfy = Amy we can then compute the quadratic risk using the bias-variance
decomposition given in Equati¢B6):

B[ £]] = 10w o 1 + MG - o))

Computationgreported in Appendix Pshow that, with the change of variablgs- A + py, the bias
does not depend gm and the variance is a decreasing functiompof Thus the oracle is obtained
whenfi= +, leading to a situation where the oracle functiors f.. ., fP* verify fb* =... = fP*,

It is also noticeable that, if one assumes the maximal eigenvaltistafys bounded with respect to
p, the variance is of orde®(p~—1) while the bias is bounded with respect to p.
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As explained by Arlot and Bach (2011), we choose

. 2
M € argmin{crit(M)} with crit(M) = kS Hy— fMH +penM) |,
MeM np 2

where the penalty term pé) has to be chosen appropriately.

Remark 13 Our model(1) does not constrain the functions,f.., fP. Our way to express the
similarities between the tasks (that is, between theid via the setM, which represents the a
priori knowledge the statistician has about the problem. Our goal is to builéstimator whose
risk is the closest possible to the oracle risk. Of course using an inapptefsetM (with respect

to the target functionsf . .., fP) may lead to bad overall performances. Explicit multi-task settings
are given in Examples 3, 4 and 5 and through simulations in Section 6.

The unbiased risk estimation principle (introduced by Akaike, 1970) reguir
, 1~ 2
E[crit(M)] ~ E [anfM — f‘u ,
which leads to the (deterministi@jeal penalty

S ELRE R ETRN

Since ﬂv. = Awy andy = f + ¢, we can write

~ 2 . 2
| B =], = || = 1]+ llels — 26, Ave) + 2. (tnp— A )
Sincee is centered an¥ is deterministic, we get, up to an additive factor independei of

perig() — ZELEAEL

that is, as the covariance matrixoifs Z® I,

2tr(Av - (Z®1y
pery () = 27 A EE) ™)

In order to approach this penalty as precisely as possible, we haverfilyshstimateZ. In the
single-task case, such a problem reduces to estimating the vagaoé¢he noise and was tackled
by Arlot and Bach (2011). Since our approach for estimakirigeavily relies on these results, they
are summarized in the next section.

Note that estimating is a mean towards estimatimd. The technique we develop later for this
purpose is not purely a multi-task technique, and may also be used in @diftemtext.
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3. Single Task Framework: Estimating a Single Variance

This section recalls some of the main results from Arlot and Bach (2011 Ywdaic be considered
as solving a special case of Section 2, witk= 1, =~ = 62 > 0 andM = [0, +]. Writing M = A
with A € [0, 40|, the regularization matrix is

VA € (0,40), Ay=Ak=K(EK+nly)™?t,
Ao = Ip andA, , = 0; the ideal penalty becomes

202tr(A
peny() = 22

By analogy with the case whepg is an orthogonal projection matrix, @) := tr(Ay) is called the
effective degree of freedom, first introduced by Mallows (1973;aeo the work by Zhang (2005).
The ideal penalty however dependsa@f in order to have a fully data-driven penalty we have to
replaces? by an estimatot? inside pefy(\). For everyA € [0, 4], define

(2tr(Ak) — tr(Ay kAnk))
. .

per}nin()‘) = per}nin()HK) =

We shall see now that it isminimal penaltyin the following sense. If for everg > 0

N .1
Ao(C) € argmm{ A kY —YHE +Cpenpin(A, K)} ,
A0+ LN

then—up to concentration inequalities?rgéc) acts as a mimimizer of

1 1
6c(\) = E |~ ALY = Y[Z-+Cpenn(\) | — 02 = = (A~ ) FZ-+ (€ — 0?) perhyn(A) -

The former theoretical arguments show that
e if C< 02, gc(M) decreases with @k) so that tho(C)) is huge: the procedure overfits;

e if C > 02, gc()) increases with di) when df)) is large enough so that @‘o(C)) is much
smaller than whef < @2,

The following algorithm was introduced by Arlot and Bach (2011) and tisis fact to estimate?.
Algorithm 14 Input: Y € R", K € 51 (R)

1. For every C> 0, compute

> (1
Ao(C) € argmln{ HANKY—YH§+Cpenmn()\,K)} .
Ae04] LN

2. Output: C such thatlf(Ao(C)) € [n/10,n/3).
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An efficient algorithm for the first step of Algorithm 14 is detailed by Arlotiaviassart (2009), and
we discuss the way we implemented Algorithm 14 in Section 6. The oQp@itAlgorithm 14 is a
provably consistent estimator of, as stated in the following theorem.

Theorem 15 (Corollary of Theorem 1 of Arlot and Bach, 2011)Let B = 150 Suppose
£ ~ N(0,02l,) with 6 > 0, and thathg € (0, +) and d, > 1 exist such that

1 Inn
df(Ao) < v and | (Ay, — In)F |5 < dno®y/ == . ®)

Then for evend > 2, some constantgid) and an evenf) exist such thaP(Q) > 1—n~0 and if

n>np(d), onQ,
(1—[3(2+6)\/"‘n”> 0?<C< <1+B(2+6)dn 'nﬁm) o’ . (9)

Remark 16 The values 10 and ry3 in Algorithm 14 have no particular meaning and can be
replaced by nk, n/kK’, with k> k' > 2. Only 8 depends on k and kAlso the bounds required in
Assumption(8) only impact the right hand side of Equati¢®) and are chosen to match the left
hand side. See Proposition 10 of Arlot and Bach (2011) for more details.

4. Estimation of the Noise Covariance Matrixz

Thanks to the results developped by Arlot and Bach (2011) (recapiulat8ection 3), we know
how to estimate a variance for any one-dimensional problem. In order to &s@mwhich has
p(p+ 1)/2 parameters, we can use several one-dimensional problems. Projéatimp some
directionz € RP yields

Y:=Y-z=F.z+E-z=FK+¢&; , (10)

with €, ~ A((0,02l,,) anda? := Var[e- 7 = z' 3z Therefore, we will estimate? for zc Z a well
chosen set, and use these estimators to build back an estimakon of
We now explain how to estimateusing those one-dimensional projections.

Definition 17 Let &z) be the outpué of Algorithm 14 applied to probletf10), that is, with inputs
Y, € R"and Ke S7(R).

The idea is to apply Algorithm 14 to the elementsf a carefully chosen set. Notinge thei-th
vector of the canonical basis BP, we introducez = {g, i€ {1,...,p}}U{e+ej, 1<i< j < p}.
We can see thai(g) estimates;j, while a(g + ej) estimates; ; + 2 j + 2%; j. Henceforth.Z;
can be estimated big(e +€j) —a(e) —a(ej))/2. This leads to the definition of the following map
J, which builds a symmetric matrix using the latter construction.

p(p+1)

Definition 18 LetJ: R~z — Sp(R) be defined by

‘](alv"'7ap)al,27'"aal,pa"'vap*l,p)i,i =g if 1< [ < P,

aj—a—a. .
J@g,...,8p,812,.,81p,---,8p-1p)ij = S——if1<i<j<p.
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This map is bijective, and for aB € Sp(R)
JX(B) = (B11,..-,Bpp,Br1+Bo2+2B12,...,Bp-1p 1+ Bpp+2Bp_1p) -
This leads us to defining the following estimator2of
T :=J(aey),... ,a(ep),a(er+e),...,ae1+¢€p),...,aep-1+€p)) . (11)

Remark 19 If a diagonalization basise/, .. .,efp) (whose basis matrix is)Rof X is known, or ifz
is diagonal, then a simplified version of the algorithm defined by Equétibyis

/z\simp"ﬁed =p' Diag(a(dl), ey a(e(p))P . (12)

This algorithm has a smaller computational cost and leads to better thedrbtoads(see Remark
24 and Section 5)2

Let us recall thatA € (0,4), Ay = Ay k = K(K+ nAlp)~2. Following Arlot and Bach (2011)
we make the following assumption from now on:

Vie{l,...,p}, 3o € (0,+),

1 2 Inn (13)
df(hoj) < VA and = (A, —In)Fe |

We can now state the first main result of the paper.

Theorem 20 Let = be defined by Equatiofil), a = 2 and assumé&l3) holds. For eveny > 2,
a constant p(d), an absolute constant;L> 0 and an evenf exist such thaP(Q) > 1— p(p+
1)/2xn~%andif n> ny(3), onQ,

~

(1-mMZ=zZ=(1+n)z (14)
where  n:=L31(2+9d)p

Theorem 20 is proved in Section E. It sholvestimates with a “multiplicative” error controlled
with large probability, in a non-asymptotic setting. The multiplicative nature of th & crucial
for deriving the oracle inequality stated in Section 5, since it allows to showé¢aépenalty defined
in Equation (7) is precisely estimated wheis replaced bﬁ.

An important feature of Theorem 20 is that it holds under very mild assungtiothe meari
of the data (see Remark 22). Therefore, it shavis able to estimate a covariance matmithout
prior knowledge on the regression functjomhich, to the best of our knowledge, has never been
obtained in multi-task regression.

Remark 21 (Scaling of(n, p) for consistency) A sufficient condition for ensuringis a consistent
estimator otz is
In(n
ez [ 0
which enforces a scaling between n, p arfel)c Nevertheless, this condition is probably not nec-
essary since the simulation experiments of Section 6 shok e be well estimate¢ht least for
estimator selection purposgs a setting where) > 1.
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Remark 22 (On assumption(13)) Assumption(13) is a single-task assumptigimade indepen-
dently for each tagk The upper bound/In(n)/n can be multiplied by any factat < dy <
\/n/In(n) (as in Theorem 16 at the price of multiplying) by d, in the upper bound of Equa-
tion (14). More generally the bounds on the degree of freedom and the bi@8)mnly influence
the upper bound of Equatigii4). The rates are chosen here to match the lower bound, see Propo-
sition 10 of Arlot and Bach (2011) for more details.

Assumptior{13) is rather classical in model selection, see Arlot and Bach (2011) foritgta
In particular, (a weakened version Pf(13) holds if the bias n'||(Ay — In)Fg |3 is bounded by
C1tr(Ay)~%, for some §,C;, > 0.

Remark 23 (Choice of the setz) Other choices could have been madedghowever ours seems
easier in terms of computation, sintB| = p(p+ 1)/2. Choosing a larger set leads to theoret-
ical difficulties in the reconstruction &, while taking other basis vectors leads to more complex
computations. We can also note that increasifgdecreases the probability in Theorem 20, since
it comes from an union bound over the one-dimensional estimations.

Remark 24 Whens = Sqmpiied s defined by Equatiof12), that is, when a diagonalization basis
of X is known, Theorem 20 still holds on a set of larger probability k pn~—2 with a reduced error
n = Li(a +8)4/In(n)/n. Then, a consistent estimation Diis possible whenever # O(n®) for
somed > 0.

5. Oracle Inequality

This section aims at proving “oracle inequalities”, as usually done in a mediettion setting:
given a set of models or of estimators, the goal is to upper bound the ribk stlected estimator
by the oracle risk (defined by Equation (6)), up to an additive term andl@piraative factor. We
show two oracle inequalities (Theorems 26 and 29) that correspond tasgibpe definitions of.
Note that “oracle inequality” sometimes has a different meaning in the literaeed@r instance
Lounici et al., 2011) when the risk of the proposed estimator is controlle¢kesisk of an estimator
using information coming from the true parameter (that is, available only ifigeovby an oracle).

5.1 A General Result for Discrete Matrix Setsm

We first show that the estimator introduced in Equation (11) is precise artoudgrive an oracle
inequality when plugged in the penalty defined in Equation (7) in the caseeviies finite.

Definition 25 LetZ be the estimator of defined by EquatiofiL1). We define

. _ ~ 2 ~
M e al\l;lger;]{m{ H fm —yH2+2tr (AM (Z® In))} .

We assume now the following holds true:

3(C,dyy) € (0,4)%  card M) < Crf' . (15)
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Theorem 26 Leta = maxd4,,2), 8 > 2 and assumé13) and (15) hold true. Absolute constants
Lo,k > 0, a constant p(3) and an even) exist such thaf(Q) > 1— k’p(p+C)n~? and the
following holds as soon asx ny(3). First, onQ,

ri)HfAm—fH <l+|n(l))2MieM{ | fu=t }+L20(Z)4tr( )(0(+6)2p3|:g])3 . (16)

Second, an absolute constantéxists such that

~ 2 ' N
[Tl = (g ) 2 Lint {25 =112 .
oDz + 87 VPIOLS (IIzllHHr:E) _

Theorem 26 is proved in Section F.

Remark 27 If S = fsimp“ﬁed is defined by Equatiol2) the result still holds on a set of larger
probability 1 — k' p(1+C)n~% with a reduced error, similar to the one in Theorem 29.

5.2 A Result for a Continuous Set of Jointly Diagonalizable Matrices

We now show a similar result when matrices# can be jointly diagonalized. It turns out a faster
algorithm can be used instead of Equation (11) with a reduced error kangest probability event
in the oracle inequality. Note that we no longer assumas finite, so it can be parametrized by
continuous parameters.

Suppose now the following holds, which means the matrice¥ afre jointly diagonalizable:

IP € Op(R), Mg{PTDiag(dl,...,dp)P,(di)f;le(o,+oo)P} . (18)

Let P be the matrix defined in Assumption (18)= PSP and recall thaf\, = K(K+nAlp)~t
Computations detailed in Appendix D show that the ideal penalty introduceduatieq (7) can be
written as

VM = P Diag(dy, ...,dp)P € M,
2tr (Ay - (Z®1 2 (19)
peng(M) = ( Mn(p )) (Ztr (Apg;) ZJ J) .

Equation (19) shows that under Assumption (18), we do not need to estimeagmtire matrix
> in order to have a good penalization procedure, but only to estimate thecaohthe noise ip
directions.

Definition 28 Let (ey,...,ep) be the canonical basis @P, (ui,...,up) be the orthogonal basis
defined by/j € {1,..., p}, uj = P'ej. We then define

Thm = PDiag(a(u), ..., a(up))P' |

where for every E {1,...,p}, a(u;j) denotes the output of Algorithm 14 applied to Problét;J,
and

. (1~ 2 ~
Mum eal\r/lger;{m{HfM—y"2+2tr<m-(ZHm®ln))} . (20)
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Theorem 29 Leta = 2, 6 > 2 and assum¢l3) and (18) hold true. Absolute constants k- 0, and
K", a constant f(8) and an evenQ exist such thalP(Q) > 1 - K”pn~2 and the following holds as
soon as > ny(9). First, onQ,

1~ 2 1\?. 1~ 2 ,In(n)3
~f. - < = = — 21
np {7 fH2—<l+In(n)> Mlggv[{anfM sz}Jrthr(Z)(2+6) n (21)
Second, an absolute constantéxists such that

~ 2 2 . 2

E i]fm ||| < 1+ = VE| inf inM—fH
np il e 2 In(n) Mear | NP 2 22)

I 3 f 2

+L4tr(Z)(2+6)2 n(n) + p H HZ )

n n%2 np

Theorem 29 is proved in Section F.

5.3 Comments on Theorems 26 and 29
Remark 30 Taking p= 1 (hence ¢Z) = 1 andtr(Z) = 6?), we recover Theorem 3 of Arlot and
Bach (2011) as a corollary of Theorem 26.

Remark 31 (Scaling of(n,E)) When assumptiofl5) holds, Equatior{16) implies the asymptotic
optimality of the estimatof; when

3 3 . 2
ot x PO i (R 1[}
p n Mem | NP 2

In particular, only (n, p) such that B < n/(In(n))3 are admissible. When assumpti¢i8) holds,
the scalings required to ensure optimality in Equat{@d) are more favorable:

trs x (In(:))B < N:Q;[{nlpr\M—sz} .

It is to be noted that p still influences the left hand sidetuia

Remark 32 Theorems 26 and 29 are non asymptotic oracle inequalities, with a multiplidatinve

of the form1+ o(1). This allows us to claim that our selection procedure is nearly optimal, since
our estimator is closéwith regard to the empirical quadratic nodnto the oracle one. Furthermore
the term1+ (In(n))~* in front of the infima in Equationgl6), (21), (17) and (22) can be further
diminished, but this yields a greater remainder term as a consequence.

Remark 33 (On assumption(18)) Assumptior(18) actually means all matrices i can be di-
agonalized in a unique orthogonal basis, and thus can be parametrizéielr eigenvalues as in
Examples 3, 4 and 5.

In that case the optimization problem is quite easy to solve, as detailed in R&®altf not,
solving(20) may turn out to be a hard problem, and our theoretical results do natrcibis setting.
However, it is always possible to discretize the®€br, in practice, to use gradient descent.
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Compared to the setting of Theorem 26, assumpil@) allows a simpler estimator for the
penalty(19), with an increased probability and a reduced error in the oracle inequality.

The main theoretical limitation comes from the fact that the probabilistic conagéortr tools
used apply to discrete sef® (through union bounds). The structure of kernel ridge regression
allows us to have a uniform control over a continuous set for the singledasiators at the
“cost” of n pointwise controls, which can then be extended to the multi-taskhgevia (18). We
conjecture Theorem 29 still holds witho{it8) as long asM is not “too large”, which could be
proved similarly up to some uniform concentration inequalities.

Note also that ifM;, ..., My all satisfy(18) (with different matrices B, then Theorem 29 still
holds for M = UK_; M with the penalty defined by Equati¢®0) with P= B when Me 9, and
P(Q) > 1— 9K p?n~?, by applying the union bound in the proof.

Remark 34 (Relationship with the trace norm) Our approach relies on the minimization of Equa-
tion (2) with respect to f. Argyriou et al. (2008) has shown that if we also minifBqeation(2)
with respect to the matrix M subject to the constrairitl—1 = 1, then we obtain an equivalent
regularization by the nuclear norrta.k.a. trace norjy which implies the prior knowledge that
our p prediction functions may be obtained as the linear combinationrfr basis functions. This
situation corresponds to cases where the matrix!N& singular.

Note that the link between our framework and trace néirm, nuclear normregularization is
the same than between multiple kernel learning and the single task frameWarlot and Bach
(2011). In the multi-task case, the trace-norm regularization, thouiitierit computationally, does
not lead to an oracle inequality, while our criterion is an unbiased estimateeofjneralization
error, which turns out to be non-convex in the matrix M. While DC prograng techniques (see,
e.g., Gasso et al., 2009, and references therein) could be broughatadénd local optima, the
goal of the present work is to study the theoretical properties of our ek, assuming we can
minimize the cost functiofe.g., in special cases, where we consider spectral variants, or kg bru
force enumeration

6. Simulation Experiments

In all the experiments presented in this section, we consider the framew@kadion 2 with

X =RY d =4, and the kernel defined byx,y € X, k(x,y) = [1%_,e""7il. The design points
X1,...,% € RY are drawn (repeatedly and independently for each sample) indeqignffem

the multivariate standard Gaussian distribution. For evegy{1,...,p}, fi(-) = s/™, alk(-,2)
wherem= 4 andz, ...,zn € RY are drawn (once for all experiments except in Experiment D) in-
dependently from the multivariate standard Gaussian distribution, indep#gyndrom the design
(Xi)1<i<n. Thus, the expectations that will be considered are taken conditionally tr.thEhe
coefficients(a!)1<i<m, 1<j<p differ according to the setting. Matlab code is available ontine.

6.1 Experiments

Five experimental settings are considered:

A| Various numbers of tasks:n= 10 anadvi, j, aij =1, thatis¥j, fl = fa:=S™,k(-,z). The
number of tasks is varyingp € {2k /k=1,...,25}. The covariance matrix & = 10- .

1. Matlab code can be found fattp://www.di.ens.fr/ ~ solnon/multitask_minpen_en.html
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B| Various sample sizesp=5,V]j, fl = fa andZ = g has been drawn (once for all) from the
WhishartW(ls,10,5) distribution; the condition number &g is ¢(Zg) ~ 22.05. The only
varying parameter is € {50k /k=1,...,20}.

C| Various noise levels:n=100,p =5 andvj, fl = fa. The varying parameter E= 2cti=
5t-1s witht € {0.2k/k=1,...,50}. We also ran the experiments for= 0.01 andt = 100.

D] Clustering of two groups of functions: p =10, n= 100, X = X¢ has been drawn (once
for all) from the WhishartW(l19,20,10) distribution; the condition number & is c(3g) ~
24.95. We pick the functionfp := S, aik(-,z) by drawing(as,...,0m) and(z,...,znm)
from standard multivariate normal distribution (independently in each rejoiigeand finally
fle=. =f5=1fp, fO=...= f10=_1p.

E| Comparison to cross-validation parameter selectionp =5, % = 10-1s, V|, fl = fa. The
sample size is taken ifi10, 50,100, 250}.
6.2 Collections of Matrices
Two different sets of matriced/ are considered in the Experiments A—C, following Examples 3
and 4:
Msimilar := {Msimilar()\alvl) =A+pwlp— gllT/()\vll) € (07+°°)2}
and Ming := {Ming(A) = Diag(A1,...,Ap) /A € (0,+)P} .

In Experiment D, we also use two different sets of matrices, following Exap

W[clus:: U {MI ()\7“7 U) /()\7U) € (0, +°°)2} U9\/[similar
Ic{L,....pHI¢{{1,....p},0}

and  Minterval := U {MI A /(A W) € (Oa+°°)27| = {la"'ak}} U Msimilar -
1<k<p-1

Remark 35 The setM,s contains2P — 1 models, a case we will denote by “clustering”. The other
set, Minterva, ONly has p models, and is adapted to the structure of the Experiment BaNais
setting “segmentation into intervals”.

6.3 Estimators

In Experiments A—C, we consider four estimators obtained by combining tiectons M of
matrices with two formulas foE which are plugged into the penalty (7) (that is, eitkémown or
estimated by):

Va € {similar,ind} ,VSe {Z,EHM} , ﬂLS = AMU.S = Ay, Y

~ (1 ~ 02 2
where Mq,seawrlggnvq[(:n{rmHy—fM“2+mtr(m.(S®ln))}

andeM is defined in Section 5.2. As detailed in Examples 3Afi—n S and ﬂnd,z are concatena-
tions of single-task estimators, where@@n”aniHM and fAsimnanz should take advantage of a setting
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where the functiong! are close inf thanks to the regularization terf; || f1 — f¥||%.. In Ex-
periment D we consider the following three estimators, that depend on tieeakfche collection
M:

VB € {clusintervalind}, f5:= fAmB =AGY

B
where MB € a'\;gi;n{[:n{nlp Hy— ?MH;L nzptr (AM . (i@ In))}

and= is defined by Equation (11).

In Experiment E we consider the estimanglrml‘,ﬁHM . As explained in the following remark the
parameters of the former estimator are chosen by optimizing (20), in pragticedosing a grid.
We also consider the estimatﬁnm"ancv where the parameters are selected by performing 5-fold
cross-validation on the mentionned grid.

Remark 36 (Optimization of (20)) Thanks to Assumptiafl8) the optimization problenf20) can
be solved easily. It suffices to diagonalize in a common basis the elemiettsand the problem
splits into several multi-task problems, each with one real parameter.optimization was then
done by using a grid on the real parameters, chosen such that theaedgrfreedom takes all
integer values frond to n.

Remark 37 (Finding the jump in Algorithm 14) Algorithm 14 raises the question of how to de-
tect the jump ofif(A), which happens around € g?. We chose to select an estimatrof 62
corresponding to the smallest index such tdﬁﬁo(é)) < n/2. Another approach is to choose the
index corresponding to the largest instantaneous jumpf&o(C)) (which is piece-wise constant
and non-increasing This approach has a major drawback, because it sometimes selectpdgu
away from the “real” jump arounds?, when the real jump consists of several small jumps. Both
approaches gave similar results in terms of prediction error, and weaeltloe first one because of
its direct link to the theoretical criterion given in Theorem 15.

6.4 Results

In each experiment\ = 1000 independent samplgss R"P have been generated. Expectations
are estimated thanks to empirical means oveNtsamples. Error bars correspond to the classical
Gaussian 95% confidence interval (that is, empirical standard-deviat&mtheN samples multi-
plied by 196/4/N). The results of Experiments A-C are reported in Figures 2-8. Thétgesfu
Experiments C—E are reported in Tables 1-3. The p-values corre$pdhd classical Gaussian
difference test, where the hypotheses tested are of the 8fape{q > 1} against the hypotheses
H; = {q < 1}, where the different quantitiesare detailed in Tables 2-3.

6.5 Comments

As expected, multi-task learning significantly helps whenfalare equal, as soon asis large
enough (Figure 1), especially for smal(Figure 6) and large noise-levels (Figure 8 and Table 1).
Increasing the number of tasks rapidly reduces the quadratic error withtesk estimators (Fig-
ure 2) contrary to what happens with single-task estimators (Figure 3).
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Figure 1: Increasing the number of tagk¢Experiment A), improvement of multi-task compared
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Figure 2: Increasing the number of tagk¢Experiment A), quadratic errors of multi-task estima-
tors (np) *E[|| fsimiiars — f||?]. Blue: S=3. Red:S= 5.
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Figure 3: Increasing the number of tagkéExperiment A), quadratic errors of single-task estima-
tors (np) *E[|| finas— f||%]. Blue:S=3. Red:S= 5.
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t 0.01 100
Elll tgmiars — 12/l finas — F117] 1.804:0.02 0.300+0.003
E[|| fgmiars — T11°] (2.27+£0.38) x 102 | 0.357+0.048
E[|| fsimilars — f]?] (1.20+0.28) x 102 | 0.823+0.080
E[|| fings — FlI°] (1.26+0.26) x 1072 | 1.514+0.07
E[|| fina.s — f11?] (1.204+0.24) x 102 | 4.47+0.13

Table 1: Results of Experiment C for the extreme valuds of

q E[q] | Stdqg] | p-value forHp = {q > 1}
| feus— 1|2/ fina— || | 0.668 | 0.294 <101
H finterval — fHZ/H fing — sz 0.660 | 0.270 <1015
| fintervai— f12/|| fous— f||2 | 1.00 | 0.165 0.50

Table 2: Clustering and segmentation (Experiment D).

q n | E[ql | Stdq] | p-value forHp = {q > 1}
I fsimilar.iHM - f”z/” fsimilar.cv — fHZ 10 | 0.35 | 0.46 < 10715
[ f simitar Sy — f112/|| fsimilarcv — f||> | 50 | 0.56 | 0.42 <1015
| fimitacs,y, — T I/l fsimilarcv — fI|? | 100 | 0.71 | 0.34 <1018
I fsimnar,iHM — £]12/]] fsimilar.cv — f|> | 250| 0.87 | 0.19 <1015

Table 3: Comparison of our method to 5-fold cross-validation (Experimgnt E

A noticeable phenomenon also occurs in Figure 2 and even more in Figuhe &stimator
ﬂnd’z (that is, obtained knowing the true covariance maiijixs less efficient tharﬂnd.i where the
covariance matrix is estimated. It corresponds to the combination of two fgatsultiplying the
ideal penalty by a small factor<t C,, < 1+0(1) is known to often improve performances in practice
when the sample size is small (see Section 6.3.2 of Arlot, 2009), and (ii) minimaltpalgorithms
like Algorithm 14 are conjectured to overpenalize slightly wheis small or the noise-level is
large (Lerasle, 2011) (as confirmed by Figure 7). Interestingly, théih@menon is stronger for
single-task estimators (differences are smaller in Figure 2) and disappbann is large enough
(Figure 5), which is consistent with the heuristic motivating multi-task learnimgcréasing the
number of task® amounts to increase the sample size”.

Figures 4 and 5 show that our procedure works well with smalhd that increasingdoes not
seem to significantly improve the performance of our estimators, except sirnpke-task setting
with Z known, where the over-penalization phenomenon discussed aboppelisa.

Table 2 shows that using the multitask procedure improves the estimation @cdotn in the
clustering setting and in the segmentation setting. The last line of Table 2 dossawothat the
clustering setting improves over the “segmentation into intervals” one, whistawaited if a model
close to the oracle is selected in both cases.

Table 3 finally shows that our parameter tuning procedure outperforfilsl Gross-validation.
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7. Conclusion and Future Work

This paper shows that taking into account the unknown similarity betyweaegression tasks can
be done optimally (Theorem 26). The crucial point is to estimateptkep covariance matrixz

of the noise (covariance between tasks), in order to learn the task similatitix i Our main
contributions are twofold. First, an estimator Dis defined in Section 4, where non-asymptotic
bounds on its error are provided under mild assumptions on the mean oftpéega@heorem 20).
Second, we show an oracle inequality (Theorem 26), more particularlyevgitmplified estimation
of Z and increased performances when the matrice® adre jointly diagonalizable (which often
corresponds to cases where we have a prior knowledge of whatlgi®me between the tasks
would be). We do plan to expand our results to larger 3étsvhich may require new concentration
inequalities and new optimization algorithms.

Simulation experiments show that our algorithm works with reasonable sample aimbthat
our multi-task estimator often performs much better than its single-task courtetpga to the
best of our knowledge, a theoretical proof of this point remains an ppasiem that we intend to
investigate in a future work.
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We give in Appendix the proofs of the different results stated in SectioA®8d 5. The proofs
of our main results are contained in Sections E and F.

Appendix A. Proof of Proposition 8

Proof Itis sufficient to show that:, -) 5 is positive-definite org. Takeg € G andS= (S j)1<i<j<p
the symmetric postive-definite matrix of sipeerifying & = M, and denotd =S = (T; j)1<i j<p.
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Let f be the element of; defined byvi € {1...p}, g(-,i) = Sk_; Tikf(-,k). We then have:

PP
(9.9)6 = 1I\/I.,<g(,i),9(,1)>ar

i=1]=
PP PP

= Zzlz Mi,jTi,kTJ'.,|<f('7k>af('7|)>'f
=1 Z1k=1=
P PP R P

_,:1k;|;T"j< (k). T(., ))fi;Mj,iTi,k
P PP

= (FCK) . f (- T
J:lkZlI: TI:J< (a )7 (7 ))T(M T)Lk
P P P

:kZ“;Tlvj(f('vk)af("|)>TJZLT|~,J'(M'T)J'~,k
P P

=3 SR, FCD))F(T-M Ty
K=1=1
P

=3 I KIZ
K=1

This shows thatg, g) ; > 0 and thatg,g); =0= f =0=9g=0. [ |

Appendix B. Proof of Corollary 9

Proof If (x,j) € X x {1,...,p}, the applicationf,..., fP) — fi(x) is clearly continuous. We
now show tha( G, (-,-) 5) is complete. If(gn)nen is @ Cauchy sequence gf and if we define, as

in Section A, the functions, by Vne N, Vi € {1...p}, gn(+,i) = ZleTi,kfn(-, k). The same com-
putations show thatf,(-,i))ney are Cauchy sequences $f, and thus converge. So the sequence
(fn)nen converges ing, and(gn)nen does likewise. [ |

Appendix C. Proof of Proposition 11

Proof We define

01, P(X)
d(x,j)=M"1. : :

Bp,j P(X)

with §; ; = 1i—j being the Kronecker symbol, that &,; = 1 if i = j and 0 otherwise. We now show
that® is the feature function of the RKHS. Fgre G and(x,1) € X x {1,..., p}, we have:
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o
o

<g>av)(xvl)>§: Mj,i<g<'aj)va)(xa|)i>5f
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Y MM a8mi (9(-, ]), P(X)
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P

Thus we can write:

k((X,i), (ya J)) = <6(X,I),&3(y, J)>g

M (M, @ (x), M L ®(y)) #

I
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ng
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I\

o
o
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il
A
I,
i

(]
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o |
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My 3n K (X.y) = M 'K (xy) -

il
A

Appendix D. Computation of the Quadratic Risk in Example 12

We consider here thdtl = --- = fP. We use the seéMgimilar:
Msimitar := {Msimnar@, W= A+ pwlp— glf /(A1) € (0, +oo>2}

Using the estimatoffy = Amy we can then compute the quadratic risk using the bias-variance
decomposition given in Equation (36):

B | [ 1] = 1w~ o 13-+ v - @)

Les us denote byey, ..., ep) the canonical basis @P. The eigenspaces pf 1117 are:

e spanf{e; +---+e,} corresponding to eigenvalye

2796



MULTI-TASK REGRESSION USINGMINIMAL PENALTIES

e span{e; —ey,...,ep— €1} corresponding to eigenvalue 0.

Thus, withfi = A + puwe can diagonalize in an orthonormal basis any matix, € M asM =
PTDWP, with D = D, j = Diag{A,[i,...,[i}. Les us also diagonalise in an orthonormal b#sis

K =Q"AQ, A= Diag{Jy,...,H}. Thus we can write (see Properties 38 and 39 for basic properties
of the Kronecker product):

A= Aw,, = (PT Q") | (D @8) (D' @8) +nply) | (PEQ) -

We can then note thab '@ A) (D1 A) + nplnp)*l is a diagonal matrix, whose diagonal entry
ofindex(j—1)n+i(ie{l,....n}, je{l,....p}is

{ hgifi=1,

p{- - -
TR ifj>1.
We can now compute both bias and variance.

Bias: We can first remark thatP' ® Q") = (P® Q)" is an orthogonal matrix and th&x 1 =
(1,0,...,0)". Thus, as in this setting! = --- = fP, we havef = 1® (f1(Xp),..., f1(Xy))"
and(P"®Q")f=(1,0,...,00"®@Q(f1(Xy),..., f1(X,)) . To keep notations simple we note
Q(f(Xq),..., fX (X)) " :=(91,...,0n) . Thus

_ _ -1
[Aw = Tap) FIE = 1P Q)T [(D™2@K) (D @K)+nphp) " — Inp| (P Q)3
= ||[(D* @) (D 4) +nphp) "~ Inp
X(1707~--70)T®(glv"'7gn)—rH§ .
As only the firstn terms of(P® Q) f are non-zero we can finally write

||<AM—|np>f|r%=i_§l< npA )Zg% .

Hi +npA

Variance: First note that
(PRQ(E®IN(PRQ) = (PIP 1) .

We can also note that:= PSP is a symmetric positive definite matrix, with positive diag-
onal coefficients. Thus we can finally write

it (E) = (o0 (000 (0 om)< )
x (P®Q)(Z®|n))
=1r ( [(D71®A) ((D71®A) _i_nplnp)_l}Z
x (P®Q)(Z®In)<P®Q)T>
n _ 2 _ 2 p
-3 [(t) 5 (i) 501

As noted at the end of Example 12 this leads to an oracle which has pfiutsctions equal.
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D.1 Proof of Equation (19)in Section 5.2

Let M € S (R), P € Op(R) such thatM = P Diag(dy,...,dp)P and = PZP'. We recall that
A, = K(K+nAly)~L. The computations detailed above also show that the ideal penalty introduced
in Equation (7) can be written as

: p _
peny(M) = Ztr(AMnf@) ) _ nzp (thf(Apdj)Zj,J)
&

Appendix E. Proof of Theorem 20

Theorem 20 is proved in this section, after stating some classical linearalgsiolts (Section E.1).

E.1 Some Useful Tools

We now give two properties of the Kronecker product, and then int@dueseful norm o, (R),
upon which we give several properties. Those are the tools needeavi® heorem 20.

Property 38 The Kronecker product is bilinear, associative and for every matric&@ D such
that the dimensions fifA® B)(C® D) = (AC) ® (BD).

Property 39 Let Ac Mp(R), B€ Mp(R), (A®B)" = (AT ®B").

Definition 40 We now introduce the norijfi- || on Sp(R), which is the modulus of the eigenvalue of
largest magnitude, and can be defined by

Isll== sup |2's7 .

ZeRP ||7|,=1
This norm has several interesting properties, some of which we will esstated below.
Property 41 The norm|| - ||| is a matricial norm:v(A,B) € Sp(R)?, [|AB]| < [IA]l]lB].

We will use the following result, which is a consequence of the precediogerty.

_1 1 _
vSe Sp(R), VT € S5 (R), [IT72ST 2| < ISIIIT ) -

We also have:

Proposition 42
VZ € Sp(R), [[Z@alll = [IZ[I -

Proof We can diagonaliz& in an orthonormal basisiU € Oy(R), 3D = Diag(H, ..., Hp), ==
U "DU. We then have, using the properties of the Kronecker product:

S@Ih=U"®In)(D®@In)(UcIn)
=Ualy) (Do) UI,) .

2798



MULTI-TASK REGRESSION USINGMINIMAL PENALTIES

We just have to notice that @ I, € Onp(R) and that:

D®ln = Diag(M, - .., H1,.--,Hps---,Hp) -
~—— —_——

ntimes ntimes

This norm can also be written in other forms:

Property 43 If M € 2,(R), the operator norm{M|[, := SURcrn (0 {%} is equal to the great-

est singular value of My/p(MTM). Henceforth, if S is symmetric, we ha{g| = ||S|2

E.2 The Proof

We now give a proof of Theorem 20, using Lemmas 46, 48 and 49, wiichtated and proved in
Section E.3. The outline of the proof is the following:

1. Apply Theorem 15 to problem (10) for evexys Z in order to

2. control|s—||,, with a large probability, wherg { € RP(P+1)/2 gre defined by

Si= (2171,...,Zp7p,21_’1—|—2272—|—22172,...,Zi’i—|—Zj’j—I—ZZH,...)
and {:=(a(er),...,a(ep),a(e1+e),...,a(er+ep),a(e2+€3),...,a(ep_1+€p)) .

3. Deduce thak = J(2) is close tos = J(s) by controlling the Lipschitz norm aof.

Proof 1. Apply Theorem 15We start by noticing that Assumption (13) actually holds true with all
Ao,j equal. Indeed, lefAgj)1<j<p be given by Assumption (13) and defihg := minj_1 . pAo .
Then, Ao € (0,4+) and dfAg) since allAgj satisfy these two conditions. For the last condition,
remark that for every € {1,...,p}, Ao < Agj @andA — [|(Ay — 1) |2 is a nonincreasing function
(as noticed in Arlot and Bach, 2011 for instance), so that

In(n)

2
ZSZH — . (23)

1 1
HH(A?\O_I”)FeszgHH(A?\o.j_ln)Fej n

In particular, Equation (8) holds witth, = 1 for problem (10) whateverc {ey,...,ep}.
Let us now consider the cage= & +e; with i # j € {1,..., p}. Using Equation (23) and that
2 2 2
H(B7\0 - I”)Fa+ej Hz < H<B7\o —In)Fq H2+ H(B)\O - I”)Fei H2+2<(B7\0 —In)Fe, (B7\o - I”)Fei> :
The last term is bounded as follows:
2((Bay — In)Fe (Bry — In)Fe,) < 21|(Brg — In)Fal - | (Brg — In)Fe |
<2v/niIn(n)y/ZiiZ;j
<v/nin(n)(Zi; +Zj,j)
< (1+¢(2))vnIn(n)(Xii + Zj,j + 2% j)
= (1+¢(2)V/nin(n)oZ e, .
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because Lemma 46 shows
2(Zij+2jj) < (1+c(2)(Zi+Zj, + 2% ) -
Therefore, Equation (8) holds with, = 1+ c() for problem (10) whatevez € Z.
2. Control||s—{||,: Letus define

1= B2+ 8)(1+o(2))y o

By Theorem 15, for everg € Z, an event, of probability greater than 4 n—2 exists on which, if
n>np(d),
(1-n1)oZ <a(2) < (1+n1)os .
So, onQ = ,c7 Qy,
10—l <N1lislle (24)
andP(Q) > 1— p(p+1)/2 x n~% by the union bound. Let

2z
HzHoo = SUp’zi,j‘ and Cl(p) ‘= sup { ” ||°° } '
bl sesp®) U IZl

Since||s|,, < 4||Z||,, andCi(p) = 1 by Lemma 48, Equation (24) implies that ©n
1€ —Slle, < 4n1 (|2l < 4nallZ]] - (25)

3. Conclusion of the prooft_et

Ca(p)i=  sup {IIIJ(Z)III}‘

LeRP(P+1)/2 HZHoo

By Lemma 49C;(p) < 3p. By Equation (25), o1f2,

15— 21 = 192) = IS I < Cal(p) I — Sl < 4N:Ca(P) I - (26)

Since L ) R . R
IZ 7255 2 —lpf| = IZ 2 (=)= 2| < IZ M= -2

and||Z|||IZ72]| = c¢(Z), Equation (26) implies that of,
1o 1 —
IZ7222 72 15| < 4n:Co(P)IZIIIIZ ]| = 4n1Ca(p)e(Z) < 6n1po(Z) -
To conclude, Equation (14) holds énwith

1= 6poZ)B(2 +8)(L+c(2)y) " < La(2+ B)py ez @7)

for some numerical constahi. |

Remark 44 As stated in Arlot and Bach (2011), we needny(d)/In(np(d)) > 504 and

v/No(3)/1In(no(8)) > 24(290+ 5).

Remark 45 To ensure that the estimated matEixs positive-definite we need that< 1, that is,
n

in(n) > 6B(2+90)pc(X) (14¢(%)) .
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E.3 Useful Lemmas
Lemma 46 Let p> 1, % € S5 (R) and ) its condition number. Then,

C(Z) —13j +Zj7j
c()+1 2 ’

Vi<i<j<p, Zij=>- (28)

Remark 47 The proof of Lemma 46 shows the const%@;—i cannot be improved without addi-
tional assumptions oB.

Eroof It suffices to show the result whem= 2. Indeed, (28) only involves { 2 submatrices
3(i, j) € 8 (R) for which

1<) <c(s) hence 0cdD 1 _ &)=
c(2)+1 c(2)+

1
1
So, somé € R exists such thak = || Z||R] DRy where
. ([ cogB) sin(0) (10 1
Ro = <—sin(6) cog0) D={p ») ad A= c()

Therefore,
5 _ iz (O (8) +ASIM(8) 15" sin(20)
= 1=l < 1;2Asin(29) Acog(0 +sin2(9)> .

So, Equation (28) is equivalent to

(L-A)sin(28) _ 1-A1+A
2 = 1+ 2

which holds true for ever§ € R, with equality for® = 1t/2 (mod. ). |

Lemma 48 For every p> 1, Cy(p) 1= SUpsc,m) [P =1 -

Proof With = = I, we have||Z||» = [|Z]| = 1, soCy(p) > 1.
Let us introduce(i, j) such thatZ; j| = ||Z]|. We then have, witle being thek™ vector of the
canonical basis dRP,

1/2
5.0 = o Zey| < |& el Y2 e] zej| Y2 < (|2]7)? .

Lemma 49 For every p> 1, let G(p) := SUR cppip+1)/2 “‘sz(ﬁim. Then,

NI W

<C(p) <

o

p .
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Proof For the lower bound, we consider

1 ...1
Z]_:(l,...,l, 4,...,4), then \](Zl):
—— N———
prsp%ﬂﬂm% 1 ... 1

so that||J(Q)|| = pand||{|je = 4.
For the upper bound, we have for evérg RP(P*1/2 andz € RP such that|z||, = 1

23Qz=| 5 2z3Qii|< Y [al[z|PQI< Q)12 -
1<ij<p 1<i,j<p
By definition ofJ, ||J(0) | < 3/2]|Z||.,. Remarking thatz||2 < p||Z||3 yields the result. [ |

Appendix F. Proof of Theorem 26

The proof of Theorem 26 is similar to the proof of Theorem 3 in Arlot andiB@011). We give
it here for the sake of completeness. We also show how to adapt its prdefrionstrate Theo-
rem 29. The two main mathematical results used here are Theorem 20 amgsgaoncentration
inequality from Arlot and Bach (2011).

F.1 Key Quantities and their Concentration Around their Means
Definition 50 We introduce, for & 7 (R),

A~

Mo(S) ea,\r/lger;l{in{HlfM—YH2+2tr(AM~(S®In))} (29)

Definition 51 Let Se Sp(R), we note $ the symmetric matrix where the eigenvalues of S have
been thresholded & That s, if S=U DU, with U € Op(R) and D= Diag(dy, ..., dp), then

S, :=U " Diag(max{dy,0},...,max{d,,0})U

Definition 52 For every Me M, we define

b(M) = [|(Am —Inp) {113 .

vi(M) =E[(g,Aug)] =tr(Am - (Z®1n)) ,

01(M) = (g, Ame) —E[(g,AmE)] = (€, AmE) —tr(Av - (Z®1y))
V2(M) =E [||Auel3] = tr(AGAw - (Z@ 1)) |

52(M) = [|Avelz —E [[[Avel3] = [|Auelz — tr(AyAw - (2@1n))
03(M) = 2(Ame, (Av —Inp) f)

04(M) = 2(e, (Inp—Aw) f) ,

A(M) = —251(M) +34(M) .
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Definition 53 Let Ga,Cg,Cc,Cp,Ce,Cr be fixed nonnegative constants. For every & we define
the event

QX — QX(MacAaCBa%acDaCEacF)
on which, for every Me M and®,, 6,063,064 € (0, 1]:

81 (M)] < B1tr (AfAW - (E@1n) ) + (Ca+Ceb; x| (30)
182(M)]| < 8ot (AfA - (£ 1n) ) + (Co +Cob x| (31)
183(M)| < 83]|(Inp— Aw) 115+ Ce85 ™[] (32)
18a(M)]| < 84l (Inp — Aw) ]2+ Cr 8, ||| (33)

Of key interest is the concentration of the empirical procegsamiformly overM € M. The
following Lemma introduces such a result, whghcontains symmetric matrices parametrized with
their eigenvalues (with fixed eigenvectors).

Lemma 54 Let
Ca=2,Cs=1C=2 Ch=1 Cc=30625 Cr =30625 .

Suppose thaf18) holds. TherP(Qy(M,Ca,Cg,Cc,Cp,Ce,Cr)) > 1 — petf?#in(Me—x  Suppose
that (15) holds. TherP(Qx (M ,Ca,Cs,Cc,Cp,Ce,Cr)) > 1—6pcard M )e ™~

Proof

First common step. LetM € M, By € Op(R) such thaiVl = Py DPy, with D = Diag(dy, . ..,dp).
We can write:

A =Pas,..0, = (Ru@1n) T [(D1@K) (D @K +nphp) | (Ru @ 1n)
=Q'A4,..4,Q .

with Q = Py ® I, and Adl;-»-’dp = (D 1®@K)(Dt®K+nphp) 1. Remark tha’@dl?__“dp is
block-diagonal, with diagonal blocks beiBg, , . .., Bq, using the notations of Section 3. With

§=Qe=(&',....& ) andf =Qf = (f~1T,..., ﬂ,T)T we can write

S| = & A8 — B[ € Agy...rB)|

2
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We can see that the quantiti@sdecouple, therefore

61(M)] :_Zl<€|aApdsl E[(&,Apa€)]
p
(M) = 3 Asai 5~ [Asai 1]
P ~
183(M)| = _212<qu5’ (Apg —In)fi)

|84(M I—ZlZ(vn —Apg) i)

Supposing(18). Assumption (18) implies that the matrRR used above is the same for all the
matricesM of M. Using Lemma 9 of Arlot and Bach (2011), where we hawencentration
results on the set®;, each of probability at least-1e!027-n(We~X we can state that, on the
setN’_, Qi, we have uniformly orf/

p

151(M)] < 2191Var[§i] tr(AlgApg) + (Ca-+Cgby H)xVarfg] |
182(M)| < ZlGZVar[”. Jtr(AjgApg) + (Cc +CoBy )xVarfg] |
133(M)| < Zegu Apd)ﬂHZJrCEeglear[é} ,

84(M)] < ;94H(In—qu>ﬁHj+cF921XVarm

Supposing(15). We can use Lemma 8 of Arlot and Bach (2011) where we hlagencentration
results on the set@J M, each of probability at least-1 6e* we can state that, on the set
ﬂ] 1MNvear Q;, we have uniformly oM the same inequalities written above.

Final common step. To conclude, it suffices to see that for every {1,..., p}, Varg] < ||Z]].

F.2 Intermediate Result

We first prove a general oracle inequality, under the assumption thaetiaty we use (with an
estimator ofz) does not underestimate the ideal penalty (invohandgoo much.
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Proposition 55 Let G, Cg,Cc,Cp,Ce > 0 be fixed constanty,> 0, 6s € [0,1/4) and Ks > 0. On
Qyin(n)(M,Ca,Cg,Cc,Cp, Ce), for every Sc S5 (R) such that

tr (AMO(S) ((S=2)® |n)>
(34)
> ~0str (Agyg - (Z01) inf {b('\"” VZ(I\\Z)(ITA Ts'n(n)\llzlll}

and for everyd € (0, (1—46s)/2), we have:

1
np

~

fH 112_|e_29498M6M{ HFM FH 2tr(Aw - ((i;z)+®ln))}

1 2
+m |:(2CA+3CC+6CD+6CE+6(CB+CF))V+

GsKs] In(m) =]l

4 np (35)

Proof The proof of Proposition 55 is very similar to the one of Proposition 5 in Arat Bach
(2011). First, we have

~ 2
[ fu = £ = bM) +va(M) + 82(M) +35(M) . (36)
~ 2 ~
| fu =y = 11 = 13— 2va(0M) — 281 (M) + Ba(M) +[Je3 - 37)
Combining Equation (29) and (37), we get:

|

| R R (38)
gN:Q;‘V[{HfM—fH2+2tr(AM-((S—Z)@In))+A(M)} .

~

—~ 2 ~
(s — fH2+2tr (Adys - ((5=2): 1)) +A(M(S)

On the evenQ, ), for everyB € (0, 1] andM € M, using Equation (30) and (33) with= 8, = 84,

B(M)] < B(5(M) +V2(M)) + (Ca+ 5 (Ca +Ce)yin(m) | ]| - (39)

0
Using Equation (31) and (32) withp = 63 = 1/2 we get that for everil € M Equation

[Ro =, = 360+ va(m)) (o +2C0 + 2Ce)yinmliz]]
which is equivalent to

(M) +va(M) < 2By —F |, +2(Co+2Co + 2Ceyin(ry 2 (40)
Combining Equation (39) and (40), we get

_ e 1
AM)| < 26 HFM - FH2+ <CA+ (2Cc + 4Cp + 4Ce )8+ (CB+CF)9> yinm 1=l -
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With Equation (38), and witlE; = Ca, C; = 2C¢ + 4Cp + 4Cg andC3 = Cg + Cr we get

~ 2
(1-20) H fins fH2+ 2tr (Ag, g ((S-Z); 1)) <

. ~ 2 Cs (41)

I\/IIQEV[{H fu — fH2+2tr(AM (5—-3)® |n))} + <c1+cze+ e) yinm 1=l -
Using Equation (34) we can state that

e b(Mo(S)) +Vo(Mo(S) + Ksin(M)IIZ ./,

tr (AMO(S) ((S Z)®In)) > 00S) tr (AMO(S) (Z@In))

so that

tr (Agyg - (5= 2)@1n) ) = 85 ((b(Mo(S) +va(Mo(S) + Ksin(m) S]] )
which then leads to Equation (35) using Equation (40) and (41). |

F.3 The Proof Itself

We now show Theorem 26 as a consequence of Proposition 55. Itlpcuiices to show thak
does not underestimaetoo much, and that the second term in the infimum of Equation (35) is
negligible in front of the quadratic err¢np) || fy — f||2.

Proof On the evenf) introduced in Theorem 20, Equation (14) holds. Let

y=poZ)(1+c(2)) -

By Lemma 56 below, we have:

inf
MeM

b(M) + va(M) + Ksin(n) || Ksin([IZ]
{ AN } > 2\ = i)

We supposed Assumption (15) holds. Using elementary algebra it is eakgwotisat, for every
symmetric positive definite matricés M andN of sizep, M = N implies that ttAM) > tr(AN). In
order to haveM ( ) satisfying Equation (34), Theorem 20 shows that it suffices to haveyviry
93 > 0,

In(n)

%)]HZH] =6B(2+90)yy/ —=
n )

20s ntr()

which leads to the choice

[ 3B(a+B)ytr(2)\?
o= (o)

We now takeBs = 6 = (9In(n))~%. LetQ be the set given by Theorem 20. Using Equation (35)
and requiring that Im) > 6 we get, on the sdd = QN Qa+8)in(n)(M,Ca,Cs,Cc,Cp, Ce,Cr) of
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probability 1— (p(p+ 1)/2+6pC)n~2, using thatr > 2:

i”f fH _<1+ 1 > inf {1fAMf2+2tr(AM-((§Z)+®|n))}
np In(n) / mear | np 2

(n) np

729132y2tr(z)2>}
4|12

% (a+6)2|n(n)2mzm )
np

2 71
+ <1— 3|n(n)> [ZCA+3CC+6CD+GCE+|I’I(FI) (l&:g+l&3|: +

Using Equation (27) and defining

N2 :=12B(a+9d)y Inr(1n) ,

PRI DRSS
TR

ZH
2
(a2

(-
np

Now, to get a classical oracle inequality, we have to showrbat(M) = natr(Av - (Z®1n)) is
negligible in front of| fyy — f||%. Lemma 56 ensures that:

we get

1

M
> [ZCA+3CC+6CD+6CE+In(n) (1&3-}-1&[:4-

x|l

>
YMeM,vx>0, 2 ntr ()

vi(M) < va(M) +X[[[Z]] -

With 0 < C, < 1, takingx to be equal to 7@82In(n)y?tr(Z)/(Cn||Z||) leads to

72B2In((r:1:y2tr(2) . 43)

Then, sincern(M) < v,(M) + b(M) and using also Equation (36), we get

N2vi(M) < 2Cpv2(M) +

~ 2
M) < | fu = £+ [B2(m)] + 1Bs(M) -
On Q we have that for ever§ € (0,1), using Equation (31) and (32),
|62<M>|+|63<M>|gze(})?m—in—|62<M>|—|63<M>|)+<cc+<co+cE>e—l><a+6>In<n>u|zr|| :

which leads to

‘fM B H 2 Cc+(Co+Ce)f?

SR ()M Iz

yQWNH%(ﬂ—1+%
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Now, combining this equation with Equation (43), we get

Cc+(Cp+Cg)ot
1+26

na M) < (14 7750 ) [ fa 1 20 (o +8)nm)j=]

N 72[32In(cr:1)y2tr(2)

Taking® = 1/2 then leads to

N2v(M) < (1+Co) | fu - fHj+cn<cc+2<co+cE>><a+6>ln<n>|Hz|||

7282In(n)ytr()
+ C, .

We now takeC, = 1/In(n). We now replace the constai@s, Cg, Cc, Cp, Cg, Cr by their values in
Lemma 54 and we get, for some constasit

(1— 3Inz(n)> o [18515+ In(n) <55305+ 742@;'!2) +6165< Inln ) ]
Jr72[32In((r:1)y2tr(

<LzIn(n
HIZIII2

From this we can deduce Equation (16) by noting th&t2pc(X)2.
Finally we deduce an oracle inequality in expectation by noting thatif fg — f? < Ra50Nn

Q, using Cauchy-Schwarz inequality

R R I AR -

SE[Rn,5]+rm\/4p(p+:zs)+6pC E[Hﬂz-“”j . (a4)

We can remark that, sindeAw||| < 1,

= 2 2 2 2 2
| fu =1, < 2llAmel3+ 20l (np—Au) I3 < 20lell3+8] 15 -

e | 1[] < s2(rmimn < a11i3)°

together with Equation (42) and Equation (44), induces Equation (1iny tlsat for some constant
L3 >0,

12/ PREDZHOE (5, 2 11i2) < VPO2O (s )

no/2

So
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Lemma 56 Letn p > 1be two integers, ¥ 0 andZ € 5p++(R). Then,

inf {tf(ATA'(Z®In))+XHIZH}>2 X[I=]l
A€ Map(R), A <1 tr(A-(Z®1n)) — 7\ ntr()

Proof First note that the bilinear form ofif,p(R), (A,B) — tr(ATB- (Z®1,)) is a scalar product.
By Cauchy-Schwarz inequality, for evetye Mnp(R),

tr(A- (Z21n))? <trH(E@I)r(ATA- (Z@1y)) .

Thus, since Z® I,,) = ntr(%), if c=tr(A- (Z®1,)) > 0,

T c?
tr(A"A- (Z®1n)) > Atr(T)

Therefore

TA.
- {tr(AA<Z®In>>+xuzm}2im { c +XHZH\}
A Mop(R),[|A|<1 tr(A-(Z®1n)) c>0 | ntr(X) C

F.4 Proof of Theorem 29

We now prove Theorem 29, first by proving titaty leads to a sharp enough approximation of the
penalty.

Lemma 57 LetSyw be defined as in Definition 28, = 2, k > 0 be the numerical constant defined
in Theorem 15 and assun{&3) and (18) hold. For everyd > 2, a constant §(d), an absolute
constant lp > 0 and an evenf2 exist such thaP(Qum) > 1— pn~2 and for every n> no(d), on
Qunwm, for every M inM
L—)tr(Au - (2@ 1) <tr(Av- (Zam®@1n) < (1+n)tr(Au- (1), (45)
[
where  n:=Lj;(a+09) nr(1n :

Proof Let P be defined by (18). LetM € M, and (di,...,dp) € (0,+)P such that
M = P Diag(ds,...,dp)P. Thus, as shown in Section D, we have with- PZP":

P ~
tr(Am - (Z@1n)) =) tr(Apg)Zj,j -
; pd; ) <j. ]
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let 5j be defined as in Definition 28 (and thﬁgM = PDiag(Gy,...,0p)P"), we then have by
Theorem 15 that for everye {1,..., p} an evenQ’ of probability 1— kn~% exists such that of
|Zj7j —6’j| < T]Zj’j. Since

p
tr(Awm - ( ZHM@I Z Apdj 01 )

taking Qum = mleQj suffices to conclude. [

Proof [of Theorem 2§ Adapting the proof of Theorem 26 to Assumption (18) first requires te tak
y =1 as Lemma 57 allows us. It then suffices to take the set
Q= Qnm NQ 245 In(n) (M ,Ca,Cs,Cc,Cp,Cg,Cr) (thus replacingt by 2) of probability 1- (p(p+
1)/2+ p)n~® > 1— p?n—2—supposingp > 2—if we require that 21tn) > 1027.
To get to the oracle inequality in expectation we use the same technique thax labiowe note

that/P(Q°) < L4 x p/n®2. We can finally define the constans by:

2pln(n) 2pIn(n)*
Lstr(Z)(2+ ) np 6/2||\Z|]|<L4y2tr a+6)Tp
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