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Abstract
In this paper we study the kernel multiple ridge regression framework, which we refer to as multi-
task regression, using penalization techniques. The theoretical analysis of this problem shows that
the key element appearing for an optimal calibration is the covariance matrix of the noise between
the different tasks. We present a new algorithm to estimate this covariance matrix, based on the
concept of minimal penalty, which was previously used in thesingle-task regression framework
to estimate the variance of the noise. We show, in a non-asymptotic setting and under mild as-
sumptions on the target function, that this estimator converges towards the covariance matrix. Then
plugging this estimator into the corresponding ideal penalty leads to an oracle inequality. We illus-
trate the behavior of our algorithm on synthetic examples.

Keywords: multi-task, oracle inequality, learning theory

1. Introduction

A classical paradigm in statistics is that increasing the sample size (that is, the number of observa-
tions) improves the performance of the estimators. However, in some cases itmay be impossible
to increase the sample size, for instance because of experimental limitations. Hopefully, in many
situations practicioners can find many related and similar problems, and might use these problems
as if more observations were available for the initial problem. The techniquesusing this heuristic
are called “multi-task” techniques. In this paper we study the kernel ridge regression procedure in a
multi-task framework.

c©2012 Solnon, Arlot and Bach.
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One-dimensional kernel ridge regression, which we refer to as “single-task” regression, has been
widely studied. As we briefly review in Section 3 one has, givenn data points(Xi ,Yi)

n
i=1, to estimate

a function f , often the conditional expectationf (Xi) = E[Yi |Xi ], by minimizing the quadratic risk
of the estimator regularized by a certain norm. A practically important task is to calibrate a regu-
larization parameter, that is, to estimate the regularization parameter directly from data. For kernel
ridge regression (a.k.a. smoothing splines), many methods have been proposed based on different
principles, for example, Bayesian criteria through a Gaussian process interpretation (see, e.g., Ras-
mussen and Williams, 2006) or generalized cross-validation (see, e.g., Wahba, 1990). In this paper,
we focus on the concept of minimal penalty, which was first introduced by Birgé and Massart (2007)
and Arlot and Massart (2009) for model selection, then extended to linear estimators such as kernel
ridge regression by Arlot and Bach (2011).

In this article we considerp≥ 2 different (but related) regression tasks, a framework we refer
to as “multi-task” regression. This setting has already been studied in different papers. Some em-
pirically show that it can lead to performance improvement (Thrun and O’Sullivan, 1996; Caruana,
1997; Bakker and Heskes, 2003). Liang et al. (2010) also obtained atheoretical criterion (unfortu-
nately non observable) which tells when this phenomenon asymptotically occurs. Several different
paths have been followed to deal with this setting. Some consider a setting where p≫ n, and formu-
late a sparsity assumption which enables to use the group Lasso, assuming allthe different functions
have a small set of common active covariates (see for instance Obozinskiet al., 2011; Lounici et al.,
2010). We exclude this setting from our analysis, because of the Hilbertiannature of our problem,
and thus will not consider the similarity between the tasks in terms of sparsity, but rather in terms of
an Euclidean similarity. Another theoretical approach has also been taken (see for example, Brown
and Zidek (1980), Evgeniou et al. (2005) or Ando and Zhang (2005)on semi-supervised learn-
ing), the authors often defining a theoretical framework where the multi-taskproblem can easily
be expressed, and where sometimes solutions can be computed. The main remaining theoretical
problem is the calibration of a matricial parameterM (typically of sizep), which characterizes the
relationship between the tasks and extends the regularization parameter from single-task regression.
Because of the high dimensional nature of the problem (i.e., the small number of training observa-
tions) usual techniques, like cross-validation, are not likely to succeed.Argyriou et al. (2008) have a
similar approach to ours, but solve this problem by adding a convex constraint to the matrix, which
will be discussed at the end of Section 5.

Through a penalization technique we show in Section 2 that the only element wehave to estimate
is the correlation matrixΣ of the noise between the tasks. We give here a new algorithm to estimate
Σ, and show that the estimation is sharp enough to derive an oracle inequality for the estimation
of the task similarity matrixM, both with high probability and in expectation. Finally we give
some simulation experiment results and show that our technique correctly deals with the multi-task
settings with a low sample-size.

1.1 Notations

We now introduce some notations, which will be used throughout the article.

• The integern is the sample size, the integerp is the number of tasks.

• For anyn× p matrixY, we define

y= vec(Y) := (Y1,1, . . . ,Yn,1,Y1,2, . . . ,Yn,2, . . . ,Y1,p, . . . ,Yn,p) ∈ R
np,
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that is, the vector in which the columnsY j := (Yi, j)1≤i≤n are stacked.

• Mn(R) is the set of all matrices of sizen.

• Sp(R) is the set of symmetric matrices of sizep.

• S+
p (R) is the set of symmetric positive-semidefinite matrices of sizep.

• S++
p (R) is the set of symmetric positive-definite matrices of sizep.

• � denotes the partial ordering onSp(R) defined by:A� B if and only if B−A∈ S+
p (R).

• 1 is the vector of sizep whose components are all equal to 1.

• ‖·‖2 is the usual Euclidean norm onRk for anyk∈ N: ∀u∈ R
k, ‖u‖2

2 := ∑k
i=1u2

i .

2. Multi-task Regression: Problem Set-up

We considerp kernel ridge regression tasks. Treating them simultaneously and sharingtheir com-
mon structure (e.g., being close in some metric space) will help in reducing the overall prediction
error.

2.1 Multi-task with a Fixed Kernel

Let X be some set andF a set of real-valued functions overX . We supposeF has a reproducing
kernel Hilbert space (RKHS) structure (Aronszajn, 1950), with kernel k and feature mapΦ :X →F .
We observeDn = (Xi ,Y1

i , . . . ,Y
p

i )
n
i=1 ∈ (X ×R

p)n, which gives us the positive semidefinite kernel
matrix K = (k(Xi ,Xℓ))1≤i,ℓ≤n ∈ S+

n (R). For each taskj ∈ {1, . . . , p}, D j
n = (Xi ,y

j
i )

n
i=1 is a sample

with distributionP j , for which a simple regression problem has to be solved. In this paper we
consider for simplicity that the different tasks have the same design(Xi)

n
i=1. When the designs of

the different tasks are different the analysis is carried out similarly by defining Xi = (X1
i , . . . ,X

p
i ),

but the notations would be more complicated.
We now define the model. We assume( f 1, . . . , f p) ∈ F p, Σ is a symmetric positive-definite

matrix of sizep such that the vectors(ε j
i )

p
j=1 are i.i.d. with normal distributionN (0,Σ), with mean

zero and covariance matrixΣ, and

∀i ∈ {1, . . . ,n},∀ j ∈ {1, . . . , p}, y j
i = f j(Xi)+ ε j

i . (1)

This means that, while the observations are independent, the outputs of the different tasks can be
correlated, with correlation matrixΣ between the tasks. We now place ourselves in the fixed-design
setting, that is,(Xi)

n
i=1 is deterministic and the goal is to estimate

(
f 1(Xi), . . . , f p(Xi)

)n
i=1. Let us

introduce some notation:

• µmin = µmin(Σ) (resp.µmax) denotes the smallest (resp. largest) eigenvalue ofΣ.

• c(Σ) := µmax/µmin is the condition number ofΣ.

To obtain compact equations, we will use the following definition:
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Definition 1 We denote by F the n× p matrix ( f j(Xi))1≤i≤n,1≤ j≤p and introduce the vector f:=
vec(F) = ( f 1(X1), . . . , f 1(Xn), . . . , f p(X1), . . . , f p(Xn)) ∈ R

np, obtained by stacking the columns of
F. Similarly we define Y:= (y j

i ) ∈Mn×p(R), y := vec(Y), E := (ε j
i ) ∈Mn×p(R) andε := vec(E).

In order to estimatef , we use a regularization procedure, which extends the classical ridge
regression of the single-task setting. LetM be a p× p matrix, symmetric and positive-definite.
Generalizing the work of Evgeniou et al. (2005), we estimate( f 1, . . . , f p) ∈ F p by

f̂M ∈ argmin
g∈F p

{
1

np

n

∑
i=1

p

∑
j=1

(y j
i −g j(Xi))

2+
p

∑
j=1

p

∑
ℓ=1

M j,l 〈g j ,gℓ〉F
}

. (2)

AlthoughM could have a general unconstrained form we may restrictM to certain forms, for either
computational or statistical reasons.

Remark 2 Requiring that M� 0 implies that Equation(2) is a convex optimization problem, which
can be solved through the resolution of a linear system, as explained later.Moreover it allows an
RKHS interpretation, which will also be explained later.

Example 3 The case where the p tasks are treated independently can be consideredin this setting:
taking M= Mind(λ) := 1

p Diag(λ1, . . . ,λp) for anyλ ∈ R
p leads to the criterion

1
p

p

∑
j=1

[
1
n

n

∑
i=1

(y j
i −g j(Xi))

2+λ j‖g j‖2
F

]
, (3)

that is, the sum of the single-task criteria described in Section 3. Hence, minimizing Equation(3)
overλ ∈ R

p amounts to solveindependentlyp single task problems.

Example 4 As done by Evgeniou et al. (2005), for everyλ,µ∈ (0,+∞)2, define

Msimilar(λ,µ) := (λ+ pµ)Ip−µ11⊤ =




λ+(p−1)µ −µ
...

−µ λ+(p−1)µ


 .

Taking M= Msimilar(λ,µ) in Equation(2) leads to the criterion

1
np

n

∑
i=1

p

∑
j=1

(y j
i −g j(Xi))

2+λ
p

∑
j=1

∥∥g j
∥∥2
F
+

µ
2

p

∑
j=1

p

∑
k=1

∥∥g j −gk
∥∥2

F
. (4)

Minimizing Equation(4) enforces a regularization on both the norms of the functions gj and the
norms of the differences gj − gk. Thus, matrices of the form Msimilar(λ,µ) are useful when the
functions gj are assumed to be similar inF . One of the main contributions of the paper is to go
beyond this case and learn from data a more general similarity matrix M between tasks.

Example 5 We extend Example 4 to the case where the p tasks consist of two groups ofclose tasks.
Let I be a subset of{1, . . . , p}, of cardinality1≤ k≤ p−1. Let us denote by Ic the complementary
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of I in {1, . . . , p}, 1I the vector v with components vi = 1i∈I , andDiag(I) the diagonal matrix d with
components di,i = 1i∈I . We then define

MI (λ,µ,ν) := λIp+µDiag(I)+νDiag(Ic)− µ
k

1I 1
⊤
I − ν

p−k
1Ic1⊤Ic .

This matrix leads to the following criterion, which enforces a regularization on both the norms of
the functions gj and the norms of the differences gj −gk inside the groups I and Ic:

1
np

n

∑
i=1

p

∑
j=1

(y j
i −g j(Xi))

2+λ
p

∑
j=1

∥∥g j
∥∥2
F
+

µ
2k ∑

j∈I
∑
k∈I

∥∥g j −gk
∥∥2

F
+

ν
2(p−k) ∑

j∈Ic
∑
k∈Ic

∥∥g j −gk
∥∥2

F
.

(5)
As shown in Section 6, we can estimate the set I from data (see Jacob et al., 2008 for a more general
formulation).

Remark 6 Since Ip and 11⊤ can be diagonalized simultaneously, minimizing Equation(4) and
Equation(5) is quite easy: it only demands optimization over two independent parameters, which
can be done with the procedure of Arlot and Bach (2011).

Remark 7 As stated below (Proposition 8), M acts as a scalar product between the tasks. Selecting
a general matrix M is thus a way to express a similarity between tasks.

Following Evgeniou et al. (2005), we define the vector-spaceG of real-valued functions overX ×
{1, . . . , p} by

G := {g : X ×{1, . . . , p}→ R/∀ j ∈ {1, . . . , p} , g(·, j) ∈ F } .

We now define a bilinear symmetric form overG ,

∀g,h∈ G , 〈g,h〉G :=
p

∑
j=1

p

∑
l=1

M j,l 〈g(·, j),h(·, l)〉F ,

which is a scalar product as soon asM is positive semi-definite (see proof in Appendix A) and leads
to a RKHS (see proof in Appendix B):

Proposition 8 With the preceding notations〈·, ·〉G is a scalar product onG .

Corollary 9 (G ,〈·, ·〉G) is a RKHS.

In order to write down the kernel matrix in compact form, we introduce the following notations.

Definition 10 (Kronecker Product) Let A∈ Mm,n(R), B ∈ Mp,q(R). We define the Kronecker
product A⊗B as being the(mp)× (nq) matrix built with p× q blocks, the block of index(i, j)
being Ai, j ·B:

A⊗B=




A1,1B . . . A1,nB
...

...
...

Am,1B . . . Am,nB


 .
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The Kronecker product is a widely used tool to deal with matrices and tensor products. Some of its
classical properties are given in Section E; see also Horn and Johnson(1991).

Proposition 11 The kernel matrix associated with the designX̃ := (Xi , j)i, j ∈ X ×{1, . . . , p} and
the RKHS(G ,〈·, ·〉G) is K̃M := M−1⊗K.

Proposition 11 is proved in Appendix C. We can then apply the representer’s theorem (Scḧolkopf
and Smola, 2002) to the minimization problem (2) and deduce thatf̂M = AMy with

AM = AM,K := K̃M(K̃M +npInp)
−1 = (M−1⊗K)

(
(M−1⊗K)+npInp

)−1
.

2.2 Optimal Choice of the Kernel

Now when working in multi-task regression, a setM ⊂ S++
p (R) of matricesM is given, and the

goal is to select the “best” one, that is, minimizing overM the quadratic riskn−1‖ f̂M − f‖2
2. For

instance, the single-task framework corresponds top= 1 andM = (0,+∞). The multi-task case is
far richer. The oracle risk is defined as

inf
M∈M

{∥∥∥ f̂M − f
∥∥∥

2

2

}
. (6)

The ideal choice, called the oracle, is any matrix

M⋆ ∈ argmin
M∈M

{∥∥∥ f̂M − f
∥∥∥

2

2

}
.

Nothing here ensures the oracle exists. However in some special cases (see for instance Example
12) the infimum of‖ f̂M − f‖2 over the set{ f̂M, M ∈M } may be attained by a functionf ∗ ∈ F p—
which we will call “oracle” by a slight abuse of notation—while the former problem does not have
a solution.

From now on we always suppose that the infimum of{‖ f̂M − f‖2} overM is attained by some
function f ⋆ ∈ F p. However the oracleM⋆ is not an estimator, since it depends onf .

Example 12 (Partial computation of the oracle in a simple setting)It is possible in certain sim-
ple settings to exactly compute the oracle (or, at least, some part of it). Consider for instance the
set-up where the p functions are taken to be equal (that is, f1 = · · ·= f p). In this setting it is natural
to use the set

Msimilar :=

{
Msimilar(λ,µ) = (λ+ pµ)Ip−

µ
p

11⊤ /(λ,µ) ∈ (0,+∞)2
}

.

Using the estimator̂fM = AMy we can then compute the quadratic risk using the bias-variance
decomposition given in Equation(36):

E

[∥∥∥ f̂M − f
∥∥∥

2

2

]
= ‖(AM − Inp) f‖2

2+ tr(A⊤
MAM · (Σ⊗ In)) .

Computations(reported in Appendix D) show that, with the change of variablesµ̃= λ+ pµ, the bias
does not depend oñµ and the variance is a decreasing function ofµ̃. Thus the oracle is obtained
wheñµ=+∞, leading to a situation where the oracle functions f1,⋆, . . . , f p,⋆ verify f1,⋆ = · · ·= f p,⋆.
It is also noticeable that, if one assumes the maximal eigenvalue ofΣ stays bounded with respect to
p, the variance is of orderO(p−1) while the bias is bounded with respect to p.
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As explained by Arlot and Bach (2011), we choose

M̂ ∈ argmin
M∈M

{crit(M)} with crit(M) =
1

np

∥∥∥y− f̂M
∥∥∥

2

2
+pen(M) ,

where the penalty term pen(M) has to be chosen appropriately.

Remark 13 Our model(1) does not constrain the functions f1, . . . , f p. Our way to express the
similarities between the tasks (that is, between the fj ) is via the setM , which represents the a
priori knowledge the statistician has about the problem. Our goal is to build an estimator whose
risk is the closest possible to the oracle risk. Of course using an inappropriate setM (with respect
to the target functions f1, . . . , f p) may lead to bad overall performances. Explicit multi-task settings
are given in Examples 3, 4 and 5 and through simulations in Section 6.

The unbiased risk estimation principle (introduced by Akaike, 1970) requires

E [crit(M)]≈ E

[
1

np

∥∥∥ f̂M − f
∥∥∥

2

2

]
,

which leads to the (deterministic)ideal penalty

penid(M) := E

[
1

np
‖ f̂M − f‖2

2

]
−E

[
1

np

∥∥∥y− f̂M
∥∥∥

2

2

]
.

Since f̂M = AMy andy= f + ε, we can write

∥∥∥ f̂M −y
∥∥∥

2

2
=
∥∥∥ f̂M − f

∥∥∥
2

2
+‖ε‖2

2−2〈ε,AMε〉+2〈ε,(Inp−AM) f 〉 .

Sinceε is centered andM is deterministic, we get, up to an additive factor independent ofM,

penid(M) =
2E [〈ε,AMε〉]

np
,

that is, as the covariance matrix ofε is Σ⊗ In,

penid(M) =
2tr
(
AM · (Σ⊗ In)

)

np
. (7)

In order to approach this penalty as precisely as possible, we have to sharply estimateΣ. In the
single-task case, such a problem reduces to estimating the varianceσ2 of the noise and was tackled
by Arlot and Bach (2011). Since our approach for estimatingΣ heavily relies on these results, they
are summarized in the next section.

Note that estimatingΣ is a mean towards estimatingM. The technique we develop later for this
purpose is not purely a multi-task technique, and may also be used in a different context.
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3. Single Task Framework: Estimating a Single Variance

This section recalls some of the main results from Arlot and Bach (2011) which can be considered
as solving a special case of Section 2, withp = 1, Σ = σ2 > 0 andM = [0,+∞]. Writing M = λ
with λ ∈ [0,+∞], the regularization matrix is

∀λ ∈ (0,+∞) , Aλ = Aλ,K = K(K+nλIn)
−1 ,

A0 = In andA+∞ = 0; the ideal penalty becomes

penid(λ) =
2σ2 tr(Aλ)

n
.

By analogy with the case whereAλ is an orthogonal projection matrix, df(λ) := tr(Aλ) is called the
effective degree of freedom, first introduced by Mallows (1973); see also the work by Zhang (2005).
The ideal penalty however depends onσ2; in order to have a fully data-driven penalty we have to
replaceσ2 by an estimator̂σ2 inside penid(λ). For everyλ ∈ [0,+∞], define

penmin(λ) = penmin(λ,K) :=
(2tr(Aλ,K)− tr(A⊤

λ,KAλ,K))

n
.

We shall see now that it is aminimal penaltyin the following sense. If for everyC> 0

λ̂0(C) ∈ argmin
λ∈[0,+∞]

{
1
n

∥∥Aλ,KY−Y
∥∥2

2+Cpenmin(λ,K)

}
,

then—up to concentration inequalities—λ̂0(C) acts as a mimimizer of

gC(λ) = E

[
1
n
‖AλY−Y‖2

2+Cpenmin(λ)
]
−σ2 =

1
n
‖(Aλ − In) f‖2

2+(C−σ2)penmin(λ) .

The former theoretical arguments show that

• if C< σ2, gC(λ) decreases with df(λ) so that df(̂λ0(C)) is huge: the procedure overfits;

• if C > σ2, gC(λ) increases with df(λ) when df(λ) is large enough so that df(̂λ0(C)) is much
smaller than whenC< σ2.

The following algorithm was introduced by Arlot and Bach (2011) and uses this fact to estimateσ2.

Algorithm 14 Input: Y ∈ R
n, K ∈ S++

n (R)

1. For every C> 0, compute

λ̂0(C) ∈ argmin
λ∈[0,+∞]

{
1
n

∥∥Aλ,KY−Y
∥∥2

2+Cpenmin(λ,K)

}
.

2. Output: Ĉ such thatdf(̂λ0(Ĉ)) ∈ [n/10,n/3].
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An efficient algorithm for the first step of Algorithm 14 is detailed by Arlot and Massart (2009), and
we discuss the way we implemented Algorithm 14 in Section 6. The outputĈ of Algorithm 14 is a
provably consistent estimator ofσ2, as stated in the following theorem.

Theorem 15 (Corollary of Theorem 1 of Arlot and Bach, 2011)Let β = 150. Suppose
ε ∼N (0,σ2In) with σ2 > 0, and thatλ0 ∈ (0,+∞) and dn ≥ 1 exist such that

df(λ0)≤
√

n and
1
n

∥∥(Aλ0 − In)F
∥∥2

2 ≤ dnσ2

√
lnn
n

. (8)

Then for everyδ ≥ 2, some constant n0(δ) and an eventΩ exist such thatP(Ω) ≥ 1−n−δ and if
n≥ n0(δ), onΩ,

(
1−β(2+δ)

√
lnn
n

)
σ2 ≤ Ĉ≤

(
1+β(2+δ)dn

√
ln(n)

n

)
σ2 . (9)

Remark 16 The values n/10 and n/3 in Algorithm 14 have no particular meaning and can be
replaced by n/k, n/k′, with k> k′ > 2. Only β depends on k and k′. Also the bounds required in
Assumption(8) only impact the right hand side of Equation(9) and are chosen to match the left
hand side. See Proposition 10 of Arlot and Bach (2011) for more details.

4. Estimation of the Noise Covariance MatrixΣ

Thanks to the results developped by Arlot and Bach (2011) (recapitulated in Section 3), we know
how to estimate a variance for any one-dimensional problem. In order to estimate Σ, which has
p(p+ 1)/2 parameters, we can use several one-dimensional problems. ProjectingY onto some
directionz∈ R

p yields
Yz :=Y ·z= F ·z+E ·z= Fz+ εz , (10)

with εz ∼ N (0,σ2
zIn) andσ2

z := Var[ε · z] = z⊤Σz. Therefore, we will estimateσ2
z for z∈ Z a well

chosen set, and use these estimators to build back an estimation ofΣ.
We now explain how to estimateΣ using those one-dimensional projections.

Definition 17 Let a(z) be the output̂C of Algorithm 14 applied to problem(10), that is, with inputs
Yz ∈ R

n and K∈ S++
n (R).

The idea is to apply Algorithm 14 to the elementszof a carefully chosen setZ. Notingei thei-th
vector of the canonical basis ofRp, we introduceZ = {ei , i ∈ {1, . . . , p}}∪{ei +ej , 1≤ i < j ≤ p}.
We can see thata(ei) estimatesΣi,i , while a(ei +ej) estimatesΣi,i +Σ j, j +2Σi, j . Henceforth,Σi, j

can be estimated by(a(ei +ej)−a(ei)−a(ej))/2. This leads to the definition of the following map
J, which builds a symmetric matrix using the latter construction.

Definition 18 Let J : R
p(p+1)

2 → Sp(R) be defined by

J(a1, . . . ,ap,a1,2, . . . ,a1,p, . . . ,ap−1,p)i,i = ai if 1≤ i ≤ p ,

J(a1, . . . ,ap,a1,2, . . . ,a1,p, . . . ,ap−1,p)i, j =
ai, j −ai −a j

2
if 1≤ i < j ≤ p .
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This map is bijective, and for allB∈ Sp(R)

J−1(B) = (B1,1, . . . ,Bp,p,B1,1+B2,2+2B1,2, . . . ,Bp−1,p−1+Bp,p+2Bp−1,p) .

This leads us to defining the following estimator ofΣ:

Σ̂ := J(a(e1), . . . ,a(ep),a(e1+e2), . . . ,a(e1+ep), . . . ,a(ep−1+ep)) . (11)

Remark 19 If a diagonalization basis(e′1, . . . ,e
′
p) (whose basis matrix is P) of Σ is known, or ifΣ

is diagonal, then a simplified version of the algorithm defined by Equation(11) is

Σ̂simplified= P⊤Diag(a(e′1), . . . ,a(e
′
p))P . (12)

This algorithm has a smaller computational cost and leads to better theoretical bounds(see Remark
24 and Section 5.2).

Let us recall that∀λ ∈ (0,+∞), Aλ = Aλ,K = K(K+nλIn)−1. Following Arlot and Bach (2011)
we make the following assumption from now on:

∀ j ∈ {1, . . . , p} , ∃λ0, j ∈ (0,+∞) ,

df(λ0, j)≤
√

n and
1
n

∥∥∥(Aλ0, j − In)Fej

∥∥∥
2

2
≤ Σ j, j

√
lnn
n





(13)

We can now state the first main result of the paper.

Theorem 20 Let Σ̂ be defined by Equation(11), α = 2 and assume(13) holds. For everyδ ≥ 2,
a constant n0(δ), an absolute constant L1 > 0 and an eventΩ exist such thatP(Ω) ≥ 1− p(p+
1)/2×n−δ and if n≥ n0(δ), onΩ,

(1−η)Σ � Σ̂ � (1+η)Σ (14)

where η := L1(2+δ)p
√

ln(n)
n

c(Σ)2 .

Theorem 20 is proved in Section E. It showsΣ̂ estimatesΣ with a “multiplicative” error controlled
with large probability, in a non-asymptotic setting. The multiplicative nature of the error is crucial
for deriving the oracle inequality stated in Section 5, since it allows to show theideal penalty defined
in Equation (7) is precisely estimated whenΣ is replaced bŷΣ.

An important feature of Theorem 20 is that it holds under very mild assumptions on the meanf
of the data (see Remark 22). Therefore, it showsΣ̂ is able to estimate a covariance matrixwithout
prior knowledge on the regression function, which, to the best of our knowledge, has never been
obtained in multi-task regression.

Remark 21 (Scaling of(n, p) for consistency) A sufficient condition for ensurinĝΣ is a consistent
estimator ofΣ is

pc(Σ)2

√
ln(n)

n
−→ 0 ,

which enforces a scaling between n, p and c(Σ). Nevertheless, this condition is probably not nec-
essary since the simulation experiments of Section 6 show thatΣ can be well estimated(at least for
estimator selection purposes) in a setting whereη ≫ 1.
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Remark 22 (On assumption(13)) Assumption(13) is a single-task assumption(made indepen-
dently for each task). The upper bound

√
ln(n)/n can be multiplied by any factor1 ≤ dn ≪√

n/ ln(n) (as in Theorem 15), at the price of multiplyingη by dn in the upper bound of Equa-
tion (14). More generally the bounds on the degree of freedom and the bias in(13) only influence
the upper bound of Equation(14). The rates are chosen here to match the lower bound, see Propo-
sition 10 of Arlot and Bach (2011) for more details.

Assumption(13) is rather classical in model selection, see Arlot and Bach (2011) for instance.
In particular, (a weakened version of) (13) holds if the bias n−1‖(Aλ − In)Fei‖2

2 is bounded by
C1 tr(Aλ)

−C2, for some C1,C2 > 0.

Remark 23 (Choice of the setZ) Other choices could have been made forZ, however ours seems
easier in terms of computation, since|Z| = p(p+1)/2. Choosing a larger setZ leads to theoret-
ical difficulties in the reconstruction of̂Σ, while taking other basis vectors leads to more complex
computations. We can also note that increasing|Z| decreases the probability in Theorem 20, since
it comes from an union bound over the one-dimensional estimations.

Remark 24 WhenΣ̂ = Σ̂simplified as defined by Equation(12), that is, when a diagonalization basis
of Σ is known, Theorem 20 still holds on a set of larger probability1−κpn−δ with a reduced error
η = L1(α+ δ)

√
ln(n)/n. Then, a consistent estimation ofΣ is possible whenever p= O(nδ) for

someδ ≥ 0.

5. Oracle Inequality

This section aims at proving “oracle inequalities”, as usually done in a model selection setting:
given a set of models or of estimators, the goal is to upper bound the risk ofthe selected estimator
by the oracle risk (defined by Equation (6)), up to an additive term and a multiplicative factor. We
show two oracle inequalities (Theorems 26 and 29) that correspond to two possible definitions of̂Σ.

Note that “oracle inequality” sometimes has a different meaning in the literature (see for instance
Lounici et al., 2011) when the risk of the proposed estimator is controlled bythe risk of an estimator
using information coming from the true parameter (that is, available only if provided by an oracle).

5.1 A General Result for Discrete Matrix SetsM

We first show that the estimator introduced in Equation (11) is precise enough to derive an oracle
inequality when plugged in the penalty defined in Equation (7) in the case whereM is finite.

Definition 25 Let Σ̂ be the estimator ofΣ defined by Equation(11). We define

M̂ ∈ argmin
M∈M

{∥∥∥ f̂M −y
∥∥∥

2

2
+2tr

(
AM · (Σ̂⊗ In)

)}
.

We assume now the following holds true:

∃(C,αM ) ∈ (0,+∞)2, card(M )<CnαM . (15)
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Theorem 26 Let α = max(αM ,2), δ ≥ 2 and assume(13) and (15) hold true. Absolute constants
L2,κ′ > 0, a constant n1(δ) and an event̃Ω exist such thatP(Ω̃) ≥ 1− κ′p(p+C)n−δ and the
following holds as soon as n≥ n1(δ). First, onΩ̃,

1
np

∥∥∥ f̂M̂ − f
∥∥∥

2

2
≤
(

1+
1

ln(n)

)2

inf
M∈M

{
1

np

∥∥∥ f̂M − f
∥∥∥

2

2

}
+L2c(Σ)4 tr(Σ)(α+δ)2 p3 ln(n)3

np
. (16)

Second, an absolute constant L3 exists such that

E

[
1

np

∥∥∥ f̂M̂ − f
∥∥∥

2

2

]
≤
(

1+
1

ln(n)

)2

E

[
inf

M∈M

{
1

np

∥∥∥ f̂M − f
∥∥∥

2

2

}]

+L2c(Σ)4 tr(Σ)(α+δ)2 p3 ln(n)3

np
+L3

√
p(p+C)

nδ/2

(
|||Σ|||+ ‖ f‖2

2

np

)
.

(17)

Theorem 26 is proved in Section F.

Remark 27 If Σ̂ = Σ̂simplified is defined by Equation(12) the result still holds on a set of larger
probability1−κ′p(1+C)n−δ with a reduced error, similar to the one in Theorem 29.

5.2 A Result for a Continuous Set of Jointly Diagonalizable Matrices

We now show a similar result when matrices inM can be jointly diagonalized. It turns out a faster
algorithm can be used instead of Equation (11) with a reduced error and alarger probability event
in the oracle inequality. Note that we no longer assumeM is finite, so it can be parametrized by
continuous parameters.

Suppose now the following holds, which means the matrices ofM are jointly diagonalizable:

∃P∈ Op(R) , M ⊆
{

P⊤Diag(d1, . . . ,dp)P, (di)
p
i=1 ∈ (0,+∞)p

}
. (18)

Let P be the matrix defined in Assumption (18),Σ̃ = PΣP⊤ and recall thatAλ = K(K+nλIn)−1 .
Computations detailed in Appendix D show that the ideal penalty introduced in Equation (7) can be
written as

∀M = P⊤Diag(d1, . . . ,dp)P∈M ,

penid(M) =
2tr
(
AM · (Σ⊗ In)

)

np
=

2
np

(
p

∑
j=1

tr(Apdj )Σ̃ j, j

)
.

(19)

Equation (19) shows that under Assumption (18), we do not need to estimatethe entire matrix
Σ in order to have a good penalization procedure, but only to estimate the variance of the noise inp
directions.

Definition 28 Let (e1, . . . ,ep) be the canonical basis ofRp, (u1, . . . ,up) be the orthogonal basis
defined by∀ j ∈ {1, . . . , p}, u j = P⊤ej . We then define

Σ̂HM = PDiag(a(u1), . . . ,a(up))P
⊤ ,

where for every j∈ {1, . . . , p}, a(u j) denotes the output of Algorithm 14 applied to Problem (Puj ),
and

M̂HM ∈ argmin
M∈M

{∥∥∥ f̂M −y
∥∥∥

2

2
+2tr

(
AM · (Σ̂HM ⊗ In)

)}
. (20)
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Theorem 29 Let α = 2, δ ≥ 2 and assume(13)and (18)hold true. Absolute constants L2 > 0, and
κ′′, a constant n1(δ) and an event̃Ω exist such thatP(Ω̃)≥ 1−κ′′pn−δ and the following holds as
soon as n≥ n1(δ). First, onΩ̃,

1
np

∥∥∥ f̂M̂HM
− f
∥∥∥

2

2
≤
(

1+
1

ln(n)

)2

inf
M∈M

{
1

np

∥∥∥ f̂M − f
∥∥∥

2

2

}
+L2 tr(Σ)(2+δ)2 ln(n)3

n
. (21)

Second, an absolute constant L4 exists such that

E

[
1

np

∥∥∥ f̂M̂HM
− f
∥∥∥

2

2

]
≤
(

1+
1

ln(n)

)2

E

[
inf

M∈M

{
1

np

∥∥∥ f̂M − f
∥∥∥

2

2

}]

+L4 tr(Σ)(2+δ)2 ln(n)3

n
+

p

nδ/2

‖ f‖2
2

np
.

(22)

Theorem 29 is proved in Section F.

5.3 Comments on Theorems 26 and 29

Remark 30 Taking p= 1 (hence c(Σ) = 1 and tr(Σ) = σ2 ), we recover Theorem 3 of Arlot and
Bach (2011) as a corollary of Theorem 26.

Remark 31 (Scaling of(n, p)) When assumption(15) holds, Equation(16) implies the asymptotic
optimality of the estimator̂fM̂ when

c(Σ)4 trΣ
p

× p3(ln(n))3

n
≪ inf

M∈M

{
1

np

∥∥∥ f̂M − f
∥∥∥

2

2

}
.

In particular, only(n, p) such that p3 ≪ n/(ln(n))3 are admissible. When assumption(18) holds,
the scalings required to ensure optimality in Equation(21)are more favorable:

trΣ× (ln(n))3

n
≪ inf

M∈M

{
1

np

∥∥∥ f̂M − f
∥∥∥

2

2

}
.

It is to be noted that p still influences the left hand side viatrΣ.

Remark 32 Theorems 26 and 29 are non asymptotic oracle inequalities, with a multiplicativeterm
of the form1+o(1). This allows us to claim that our selection procedure is nearly optimal, since
our estimator is close(with regard to the empirical quadratic norm) to the oracle one. Furthermore
the term1+(ln(n))−1 in front of the infima in Equations(16), (21), (17) and (22) can be further
diminished, but this yields a greater remainder term as a consequence.

Remark 33 (On assumption(18)) Assumption(18) actually means all matrices inM can be di-
agonalized in a unique orthogonal basis, and thus can be parametrized by their eigenvalues as in
Examples 3, 4 and 5.

In that case the optimization problem is quite easy to solve, as detailed in Remark 36. If not,
solving(20)may turn out to be a hard problem, and our theoretical results do not cover this setting.
However, it is always possible to discretize the setM or, in practice, to use gradient descent.
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Compared to the setting of Theorem 26, assumption(18) allows a simpler estimator for the
penalty(19), with an increased probability and a reduced error in the oracle inequality.

The main theoretical limitation comes from the fact that the probabilistic concentration tools
used apply to discrete setsM (through union bounds). The structure of kernel ridge regression
allows us to have a uniform control over a continuous set for the single-taskestimators at the
“cost” of n pointwise controls, which can then be extended to the multi-task setting via (18). We
conjecture Theorem 29 still holds without(18) as long asM is not “too large”, which could be
proved similarly up to some uniform concentration inequalities.

Note also that ifM1, . . . ,MK all satisfy(18) (with different matrices Pk), then Theorem 29 still
holds forM =

⋃K
k=1Mk with the penalty defined by Equation(20) with P= Pk when M∈Mk, and

P(Ω̃)≥ 1−9Kp2n−δ, by applying the union bound in the proof.

Remark 34 (Relationship with the trace norm) Our approach relies on the minimization of Equa-
tion (2) with respect to f . Argyriou et al. (2008) has shown that if we also minimizeEquation(2)
with respect to the matrix M subject to the constrainttrM−1 = 1, then we obtain an equivalent
regularization by the nuclear norm(a.k.a. trace norm), which implies the prior knowledge that
our p prediction functions may be obtained as the linear combination of r≪ p basis functions. This
situation corresponds to cases where the matrix M−1 is singular.

Note that the link between our framework and trace norm(i.e., nuclear norm) regularization is
the same than between multiple kernel learning and the single task frameworkof Arlot and Bach
(2011). In the multi-task case, the trace-norm regularization, though efficient computationally, does
not lead to an oracle inequality, while our criterion is an unbiased estimate of the generalization
error, which turns out to be non-convex in the matrix M. While DC programming techniques (see,
e.g., Gasso et al., 2009, and references therein) could be brought to bear to find local optima, the
goal of the present work is to study the theoretical properties of our estimators, assuming we can
minimize the cost function(e.g., in special cases, where we consider spectral variants, or by brute
force enumeration).

6. Simulation Experiments

In all the experiments presented in this section, we consider the framework of Section 2 with
X = R

d, d = 4, and the kernel defined by∀x,y ∈ X , k(x,y) = ∏d
j=1e−|x j−y j |. The design points

X1, . . . ,Xn ∈ R
d are drawn (repeatedly and independently for each sample) independently from

the multivariate standard Gaussian distribution. For everyj ∈ {1, . . . , p}, f j(·) = ∑m
i=1 α j

i k(·,zi)
wherem= 4 andz1, . . . ,zm ∈ R

d are drawn (once for all experiments except in Experiment D) in-
dependently from the multivariate standard Gaussian distribution, independently from the design
(Xi)1≤i≤n. Thus, the expectations that will be considered are taken conditionally to thezi . The
coefficients(α j

i )1≤i≤m,1≤ j≤p differ according to the setting. Matlab code is available online.1

6.1 Experiments

Five experimental settings are considered:

A⌋ Various numbers of tasks:n= 10 and∀i, j, α j
i = 1, that is,∀ j, f j = fA := ∑m

i=1k(·,zi). The
number of tasks is varying:p∈ {2k/k= 1, . . . ,25}. The covariance matrix isΣ = 10· Ip.

1. Matlab code can be found athttp://www.di.ens.fr/ ˜ solnon/multitask_minpen_en.html .
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B⌋ Various sample sizes:p= 5,∀ j, f j = fA andΣ = ΣB has been drawn (once for all) from the
WhishartW(I5,10,5) distribution; the condition number ofΣB is c(ΣB) ≈ 22.05. The only
varying parameter isn∈ {50k/k= 1, . . . ,20}.

C⌋ Various noise levels:n= 100,p= 5 and∀ j, f j = fA . The varying parameter isΣ = ΣC,t :=
5t · I5 with t ∈ {0.2k/k= 1, . . . ,50}. We also ran the experiments fort = 0.01 andt = 100.

D⌋ Clustering of two groups of functions: p = 10, n = 100, Σ = ΣE has been drawn (once
for all) from the WhishartW(I10,20,10) distribution; the condition number ofΣE is c(ΣE)≈
24.95. We pick the functionfD := ∑m

i=1 αik(·,zi) by drawing(α1, . . . ,αm) and (z1, . . . ,zm)
from standard multivariate normal distribution (independently in each replication) and finally
f 1 = · · ·= f 5 = fD, f 6 = · · ·= f 10 =− fD.

E⌋ Comparison to cross-validation parameter selection:p= 5, Σ = 10· I5, ∀ j, f j = fA. The
sample size is taken in{10,50,100,250}.

6.2 Collections of Matrices

Two different sets of matricesM are considered in the Experiments A–C, following Examples 3
and 4:

Msimilar :=

{
Msimilar(λ,µ) = (λ+ pµ)Ip−

µ
p

11⊤ /(λ,µ) ∈ (0,+∞)2
}

and Mind := {Mind(λ) = Diag(λ1, . . . ,λp)/λ ∈ (0,+∞)p} .

In Experiment D, we also use two different sets of matrices, following Example 5:

Mclus :=
⋃

I⊂{1,...,p},I /∈{{1,...,p}, /0}

{
MI (λ,µ,µ) /(λ,µ) ∈ (0,+∞)2}∪Msimilar

and Minterval :=
⋃

1≤k≤p−1

{
MI (λ,µ,µ) /(λ,µ) ∈ (0,+∞)2, I = {1, . . . ,k}

}
∪Msimilar .

Remark 35 The setMclus contains2p−1 models, a case we will denote by “clustering”. The other
set,Minterval, only has p models, and is adapted to the structure of the Experiment D. Wecall this
setting “segmentation into intervals”.

6.3 Estimators

In Experiments A–C, we consider four estimators obtained by combining two collectionsM of
matrices with two formulas forΣ which are plugged into the penalty (7) (that is, eitherΣ known or
estimated bŷΣ):

∀α ∈ {similar, ind} , ∀S∈
{

Σ, Σ̂HM

}
, f̂α,S := f̂M̂α,S

= AM̂α,S
y

where M̂α,S∈ argmin
M∈Mα

{
1

np

∥∥∥y− f̂M
∥∥∥

2

2
+

2
np

tr(AM · (S⊗ In))

}

andΣ̂HM is defined in Section 5.2. As detailed in Examples 3–4,f̂ind,Σ̂HM
and f̂ind,Σ are concatena-

tions of single-task estimators, whereasf̂similar,Σ̂HM
and f̂similar,Σ should take advantage of a setting
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where the functionsf j are close inF thanks to the regularization term∑ j,k‖ f j − f k‖2
F . In Ex-

periment D we consider the following three estimators, that depend on the choice of the collection
M :

∀β ∈ {clus, interval, ind} , f̂β := f̂M̂β
= AM̂β

y

where M̂β ∈ argmin
M∈Mβ

{
1

np

∥∥∥y− f̂M
∥∥∥

2

2
+

2
np

tr
(

AM · (Σ̂⊗ In)
)}

andΣ̂ is defined by Equation (11).
In Experiment E we consider the estimatorf̂similar,Σ̂HM

. As explained in the following remark the
parameters of the former estimator are chosen by optimizing (20), in practice by choosing a grid.
We also consider the estimator̂fsimilar,CV where the parameters are selected by performing 5-fold
cross-validation on the mentionned grid.

Remark 36 (Optimization of (20)) Thanks to Assumption(18) the optimization problem(20) can
be solved easily. It suffices to diagonalize in a common basis the elements of M and the problem
splits into several multi-task problems, each with one real parameter. Theoptimization was then
done by using a grid on the real parameters, chosen such that the degree of freedom takes all
integer values from0 to n.

Remark 37 (Finding the jump in Algorithm 14) Algorithm 14 raises the question of how to de-
tect the jump ofdf(λ), which happens around C= σ2. We chose to select an estimatorĈ of σ2

corresponding to the smallest index such thatdf(̂λ0(Ĉ))< n/2. Another approach is to choose the

index corresponding to the largest instantaneous jump ofdf(̂λ0(C)) (which is piece-wise constant
and non-increasing). This approach has a major drawback, because it sometimes selects a jump far
away from the “real” jump aroundσ2, when the real jump consists of several small jumps. Both
approaches gave similar results in terms of prediction error, and we chose the first one because of
its direct link to the theoretical criterion given in Theorem 15.

6.4 Results

In each experiment,N = 1000 independent samplesy ∈ R
np have been generated. Expectations

are estimated thanks to empirical means over theN samples. Error bars correspond to the classical
Gaussian 95% confidence interval (that is, empirical standard-deviationover theN samples multi-
plied by 1.96/

√
N). The results of Experiments A–C are reported in Figures 2–8. The results of

Experiments C–E are reported in Tables 1–3. The p-values correspondto the classical Gaussian
difference test, where the hypotheses tested are of the shapeH0 = {q> 1} against the hypotheses
H1 = {q≤ 1}, where the different quantitiesq are detailed in Tables 2–3.

6.5 Comments

As expected, multi-task learning significantly helps when allf j are equal, as soon asp is large
enough (Figure 1), especially for smalln (Figure 6) and large noise-levels (Figure 8 and Table 1).
Increasing the number of tasks rapidly reduces the quadratic error with multi-task estimators (Fig-
ure 2) contrary to what happens with single-task estimators (Figure 3).

2788



MULTI -TASK REGRESSION USINGM INIMAL PENALTIES

0 2 4 6 8 10 12 14 16 18 20
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

p

R
at

io
 o

f t
he

 q
ua

dr
at

ic
 e

rr
or

s

 

 

With the estimated Σ

Figure 1: Increasing the number of tasksp (Experiment A), improvement of multi-task compared
to single-task:E[‖ f̂similar,Σ̂ − f‖2/‖ f̂ind,Σ̂ − f‖2].
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Figure 2: Increasing the number of tasksp (Experiment A), quadratic errors of multi-task estima-
tors(np)−1

E[‖ f̂similar,S− f‖2]. Blue: S= Σ̂. Red:S= Σ.
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Figure 3: Increasing the number of tasksp (Experiment A), quadratic errors of single-task estima-
tors(np)−1

E[‖ f̂ind,S− f‖2]. Blue: S= Σ̂. Red:S= Σ.
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Figure 4: Increasing the sample sizen (Experiment B), quadratic errors of multi-task estimators
(np)−1

E[‖ f̂similar,S− f‖2]. Blue: S= Σ̂. Red:S= Σ.
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Figure 5: Increasing the sample sizen (Experiment B), quadratic errors of single-task estimators
(np)−1

E[‖ f̂ind,S− f‖2]. Blue: S= Σ̂. Red:S= Σ.
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Figure 6: Increasing the sample sizen (Experiment B), improvement of multi-task compared to
single-task:E[‖ f̂similar,Σ̂ − f‖2/‖ f̂ind,Σ̂ − f‖2].
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Figure 7: Increasing the signal-to-noise ratio (Experiment C), quadraticerrors of multi-task estima-
tors(np)−1

E[‖ f̂similar,S− f‖2]. Blue: S= Σ̂. Red:S= Σ.
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Figure 8: Increasing the signal-to-noise ratio (Experiment C), improvement of multi-task compared
to single-task:E[‖ f̂similar,Σ̂ − f‖2/‖ f̂ind,Σ̂ − f‖2].
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t 0.01 100
E[‖ f̂similar,Σ̂ − f‖2/‖ f̂ind,Σ̂ − f‖2] 1.80±0.02 0.300±0.003

E[‖ f̂similar,Σ̂ − f‖2] (2.27±0.38)×10−2 0.357±0.048

E[‖ f̂similar,Σ − f‖2] (1.20±0.28)×10−2 0.823±0.080
E[‖ f̂ind,Σ̂ − f‖2] (1.26±0.26)×10−2 1.51±0.07

E[‖ f̂ind,Σ − f‖2] (1.20±0.24)×10−2 4.47±0.13

Table 1: Results of Experiment C for the extreme values oft.

q E [q] Std[q] p-value forH0 = {q> 1}
‖ f̂clus− f‖2/‖ f̂ind− f‖2 0.668 0.294 < 10−15

‖ f̂interval− f‖2/‖ f̂ind− f‖2 0.660 0.270 < 10−15

‖ f̂interval− f‖2/‖ f̂clus− f‖2 1.00 0.165 0.50

Table 2: Clustering and segmentation (Experiment D).

q n E [q] Std[q] p-value forH0 = {q> 1}
‖ f̂similar,Σ̂HM

− f‖2/‖ f̂similar,CV − f‖2 10 0.35 0.46 < 10−15

‖ f̂similar,Σ̂HM
− f‖2/‖ f̂similar,CV − f‖2 50 0.56 0.42 < 10−15

‖ f̂similar,Σ̂HM
− f‖2/‖ f̂similar,CV − f‖2 100 0.71 0.34 < 10−15

‖ f̂similar,Σ̂HM
− f‖2/‖ f̂similar,CV − f‖2 250 0.87 0.19 < 10−15

Table 3: Comparison of our method to 5-fold cross-validation (Experiment E).

A noticeable phenomenon also occurs in Figure 2 and even more in Figure 3:the estimator
f̂ind,Σ (that is, obtained knowing the true covariance matrixΣ) is less efficient than̂find,Σ̂ where the
covariance matrix is estimated. It corresponds to the combination of two facts:(i) multiplying the
ideal penalty by a small factor 1<Cn < 1+o(1) is known to often improve performances in practice
when the sample size is small (see Section 6.3.2 of Arlot, 2009), and (ii) minimal penalty algorithms
like Algorithm 14 are conjectured to overpenalize slightly whenn is small or the noise-level is
large (Lerasle, 2011) (as confirmed by Figure 7). Interestingly, this phenomenon is stronger for
single-task estimators (differences are smaller in Figure 2) and disappears whenn is large enough
(Figure 5), which is consistent with the heuristic motivating multi-task learning: “increasing the
number of tasksp amounts to increase the sample size”.

Figures 4 and 5 show that our procedure works well with smalln, and that increasingn does not
seem to significantly improve the performance of our estimators, except in thesingle-task setting
with Σ known, where the over-penalization phenomenon discussed above disappears.

Table 2 shows that using the multitask procedure improves the estimation accuracy, both in the
clustering setting and in the segmentation setting. The last line of Table 2 does not show that the
clustering setting improves over the “segmentation into intervals” one, which was awaited if a model
close to the oracle is selected in both cases.

Table 3 finally shows that our parameter tuning procedure outperforms 5-fold cross-validation.
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7. Conclusion and Future Work

This paper shows that taking into account the unknown similarity betweenp regression tasks can
be done optimally (Theorem 26). The crucial point is to estimate thep× p covariance matrixΣ
of the noise (covariance between tasks), in order to learn the task similarity matrix M. Our main
contributions are twofold. First, an estimator ofΣ is defined in Section 4, where non-asymptotic
bounds on its error are provided under mild assumptions on the mean of the sample (Theorem 20).
Second, we show an oracle inequality (Theorem 26), more particularly witha simplified estimation
of Σ and increased performances when the matrices ofM are jointly diagonalizable (which often
corresponds to cases where we have a prior knowledge of what the relations between the tasks
would be). We do plan to expand our results to larger setsM , which may require new concentration
inequalities and new optimization algorithms.

Simulation experiments show that our algorithm works with reasonable sample sizes, and that
our multi-task estimator often performs much better than its single-task counterpart. Up to the
best of our knowledge, a theoretical proof of this point remains an openproblem that we intend to
investigate in a future work.
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We give in Appendix the proofs of the different results stated in Sections 2,4 and 5. The proofs
of our main results are contained in Sections E and F.

Appendix A. Proof of Proposition 8

Proof It is sufficient to show that〈·, ·〉G is positive-definite onG . Takeg∈G andS= (Si, j)1≤i≤ j≤p

the symmetric postive-definite matrix of sizepverifyingS2=M, and denoteT =S−1=(Ti, j)1≤i, j≤p.

2794



MULTI -TASK REGRESSION USINGM INIMAL PENALTIES

Let f be the element ofG defined by∀i ∈ {1. . . p}, g(·, i) = ∑n
k=1Ti,k f (·,k). We then have:

〈g,g〉G =
p

∑
i=1

p

∑
j=1

Mi, j〈g(·, i),g(·, j)〉F

=
p

∑
i=1

p

∑
j=1

p

∑
k=1

p

∑
l=1

Mi, jTi,kTj,l 〈 f (·,k), f (·, l)〉F

=
p

∑
j=1

p

∑
k=1

p

∑
l=1

Tl , j〈 f (·,k), f (·, l)〉F
p

∑
i=1

M j,iTi,k

=
p

∑
j=1

p

∑
k=1

p

∑
l=1

Tl , j〈 f (·,k), f (·, l)〉F (M ·T) j,k

=
p

∑
k=1

p

∑
l=1

Tl , j〈 f (·,k), f (·, l)〉F
p

∑
j=1

Tl , j(M ·T) j,k

=
p

∑
k=1

p

∑
l=1

〈 f (·,k), f (·, l)〉F (T ·M ·T)k,l

=
p

∑
k=1

‖ f (·,k)‖2
F .

This shows that〈g,g〉G ≥ 0 and that〈g,g〉G = 0⇒ f = 0⇒ g= 0.

Appendix B. Proof of Corollary 9

Proof If (x, j) ∈ X ×{1, . . . , p}, the application( f 1, . . . , f p) 7→ f j(x) is clearly continuous. We
now show that(G ,〈·, ·〉G) is complete. If(gn)n∈N is a Cauchy sequence ofG and if we define, as
in Section A, the functionsfn by ∀n∈ N, ∀i ∈ {1. . . p}, gn(·, i) = ∑p

k=1Ti,k fn(·,k). The same com-
putations show that( fn(·, i))n∈N are Cauchy sequences ofF , and thus converge. So the sequence
( fn)n∈N converges inG , and(gn)n∈N does likewise.

Appendix C. Proof of Proposition 11

Proof We define

Φ̃(x, j) = M−1 ·




δ1, jΦ(x)
...

δp, jΦ(x)


 ,

with δi, j = 1i= j being the Kronecker symbol, that is,δi, j = 1 if i = j and 0 otherwise. We now show
thatΦ̃ is the feature function of the RKHS. Forg∈ G and(x, l) ∈ X ×{1, . . . , p}, we have:
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〈g,Φ̃(x, l)〉G =
p

∑
j=1

p

∑
i=1

M j,i〈g(·, j),Φ̃(x, l)i〉F

=
p

∑
j=1

p

∑
i=1

p

∑
m=1

M j,iM
−1
i,mδm,l 〈g(·, j),Φ(x)〉F

=
p

∑
j=1

p

∑
m=1

(M ·M−1) j,mδm,l g(x, j)

=
p

∑
j=1

δ j,l g(x, j) = g(x, l) .

Thus we can write:

k̃((x, i),(y, j)) = 〈Φ̃(x, i),Φ̃(y, j)〉G

=
p

∑
h=1

p

∑
h′=1

Mh,h′〈M−1
h,i Φ(x),M−1

h′, jΦ(y)〉F

=
p

∑
h=1

p

∑
h′=1

Mh,h′M
−1
h,i M−1

h′, jK(x,y)

=
p

∑
h=1

M−1
h,i (M ·M−1)h, jK(x,y)

=
p

∑
h=1

M−1
h,i δh, jK(x,y) = M−1

i, j K(x,y) .

Appendix D. Computation of the Quadratic Risk in Example 12

We consider here thatf 1 = · · ·= f p. We use the setMsimilar:

Msimilar :=

{
Msimilar(λ,µ) = (λ+ pµ)Ip−

µ
p

11⊤ /(λ,µ) ∈ (0,+∞)2
}

Using the estimator̂fM = AMy we can then compute the quadratic risk using the bias-variance
decomposition given in Equation (36):

E

[∥∥∥ f̂M − f
∥∥∥

2

2

]
= ‖(AM − Inp) f‖2

2+ tr(A⊤
MAM · (Σ⊗ In)) .

Les us denote by(e1, . . . ,ep) the canonical basis ofRp. The eigenspaces ofp−111⊤ are:

• span{e1+ · · ·+ep} corresponding to eigenvaluep,
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• span{e2−e1, . . . ,ep−e1} corresponding to eigenvalue 0.

Thus, withµ̃= λ+ pµ we can diagonalize in an orthonormal basis any matrixMλ,µ ∈M asM =
P⊤Dλ,µ̃P, with D = Dλ,µ̃ = Diag{λ, µ̃, . . . , µ̃}. Les us also diagonalise in an orthonormal basisK:
K = Q⊤∆Q, ∆ = Diag{µ1, . . . ,µn}. Thus we can write (see Properties 38 and 39 for basic properties
of the Kronecker product):

AM = AMλ,µ = (P⊤⊗Q⊤)
[
(D−1⊗∆)

(
(D−1⊗∆)+npInp

)−1
]
(P⊗Q) .

We can then note that(D−1⊗∆)
(
(D−1⊗∆)+npInp

)−1
is a diagonal matrix, whose diagonal entry

of index( j −1)n+ i (i ∈ {1, . . . ,n}, j ∈ {1, . . . , p}) is
{

µi
µi+npλ if j = 1 ,

µi
µi+np̃µ if j > 1 .

We can now compute both bias and variance.

Bias: We can first remark that(P⊤⊗Q⊤) = (P⊗Q)⊤ is an orthogonal matrix and thatP× 1 =
(1,0, . . . ,0)⊤. Thus, as in this settingf 1 = · · ·= f p, we havef = 1⊗ ( f 1(X1), . . . , f 1(Xn))

⊤

and(P⊤⊗Q⊤) f = (1,0, . . . ,0)⊤⊗Q( f 1(X1), . . . , f 1(Xn))
⊤. To keep notations simple we note

Q( f 1(X1), . . . , f 1(Xn))
⊤ := (g1, . . . ,gn)

⊤. Thus

‖(AM − Inp) f‖2
2 = ‖(P⊗Q)⊤

[
(D−1⊗K)

(
(D−1⊗K)+npInp

)−1− Inp

]
(P⊗Q) f‖2

2

= ‖
[
(D−1⊗∆)

(
(D−1⊗∆)+npInp

)−1− Inp

]

× (1,0, . . . ,0)⊤⊗ (g1, . . . ,gn)
⊤‖2

2 .

As only the firstn terms of(P⊗Q) f are non-zero we can finally write

‖(AM − Inp) f‖2
2 =

n

∑
i=1

(
npλ

µi +npλ

)2

g2
i .

Variance: First note that
(P⊗Q)(Σ⊗ In)(P⊗Q)⊤ = (PΣP⊤⊗ In) .

We can also note that̃Σ := PΣP⊤ is a symmetric positive definite matrix, with positive diag-
onal coefficients. Thus we can finally write

tr(A⊤
MAM · (Σ⊗ In)) = tr

(
P⊗Q)⊤

[
(D−1⊗∆)

(
(D−1⊗∆)+npInp

)−1
]2

× (P⊗Q)(Σ⊗ In)

)

= tr

([
(D−1⊗∆)

(
(D−1⊗∆)+npInp

)−1
]2

× (P⊗Q)(Σ⊗ In)(P⊗Q)⊤
)

=
n

∑
i=1

[(
µi

µi +npλ

)2

Σ̃1,1+

(
µi

µi +np̃µ

)2 p

∑
j=2

Σ̃ j, j

]
.

As noted at the end of Example 12 this leads to an oracle which has all itsp functions equal.

2797



SOLNON, ARLOT AND BACH

D.1 Proof of Equation (19) in Section 5.2

Let M ∈ S++
p (R), P ∈ Op(R) such thatM = P⊤Diag(d1, . . . ,dp)P andΣ̃ = PΣP⊤. We recall that

Aλ = K(K +nλIn)−1. The computations detailed above also show that the ideal penalty introduced
in Equation (7) can be written as

penid(M) =
2tr
(
AM · (Σ⊗ In)

)

np
=

2
np

(
p

∑
j=1

tr(Apdj )Σ̃ j, j

)
.

Appendix E. Proof of Theorem 20

Theorem 20 is proved in this section, after stating some classical linear algebra results (Section E.1).

E.1 Some Useful Tools

We now give two properties of the Kronecker product, and then introduce a useful norm onSp(R),
upon which we give several properties. Those are the tools needed to prove Theorem 20.

Property 38 The Kronecker product is bilinear, associative and for every matrices A,B,C,D such
that the dimensions fit,(A⊗B)(C⊗D) = (AC)⊗ (BD).

Property 39 Let A∈Mn(R), B∈MB(R), (A⊗B)⊤ = (A⊤⊗B⊤).

Definition 40 We now introduce the norm||| · ||| onSp(R), which is the modulus of the eigenvalue of
largest magnitude, and can be defined by

|||S||| := sup
z∈Rp,‖z‖2=1

∣∣∣z⊤Sz
∣∣∣ .

This norm has several interesting properties, some of which we will use are stated below.

Property 41 The norm||| · ||| is a matricial norm:∀(A,B) ∈ Sp(R)
2, |||AB||| ≤ |||A||||||B|||.

We will use the following result, which is a consequence of the preceding Property.

∀S∈ Sp(R), ∀T ∈ S++
p (R), |||T− 1

2 ST−
1
2 ||| ≤ |||S||||||T−1||| .

We also have:

Proposition 42
∀Σ ∈ Sp(R), |||Σ⊗ In|||= |||Σ||| .

Proof We can diagonalizeΣ in an orthonormal basis:∃U ∈ On(R), ∃D = Diag(µ1, . . . ,µp), Σ =
U⊤DU . We then have, using the properties of the Kronecker product:

Σ⊗ In = (U⊤⊗ In)(D⊗ In)(U ⊗ In)

= (U ⊗ In)
⊤(D⊗ In)(U ⊗ In) .
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We just have to notice thatU ⊗ In ∈ Onp(R) and that:

D⊗ In = Diag(µ1, . . . ,µ1︸ ︷︷ ︸
n times

, . . . ,µp, . . . ,µp︸ ︷︷ ︸
n times

) .

This norm can also be written in other forms:

Property 43 If M ∈Mn(R), the operator norm‖M‖2 := supt∈Rn\{0}
{

‖Mt‖2
‖t‖2

}
is equal to the great-

est singular value of M:
√

ρ(M⊤M). Henceforth, if S is symmetric, we have|||S|||= ‖S‖2

E.2 The Proof

We now give a proof of Theorem 20, using Lemmas 46, 48 and 49, which are stated and proved in
Section E.3. The outline of the proof is the following:

1. Apply Theorem 15 to problem (10) for everyz∈ Z in order to

2. control‖s−ζ‖∞ with a large probability, wheres,ζ ∈ R
p(p+1)/2 are defined by

s := (Σ1,1, . . . ,Σp,p,Σ1,1+Σ2,2+2Σ1,2, . . . ,Σi,i +Σ j, j +2Σi, j , . . .)

and ζ := (a(e1), . . . ,a(ep),a(e1+e2), . . . ,a(e1+ep),a(e2+e3), . . . ,a(ep−1+ep)) .

3. Deduce that̂Σ = J(ζ) is close toΣ = J(s) by controlling the Lipschitz norm ofJ.

Proof 1. Apply Theorem 15:We start by noticing that Assumption (13) actually holds true with all
λ0, j equal. Indeed, let(λ0, j)1≤ j≤p be given by Assumption (13) and defineλ0 := min j=1,...,p λ0, j .
Then,λ0 ∈ (0,+∞) and df(λ0) since allλ0, j satisfy these two conditions. For the last condition,
remark that for everyj ∈ {1, . . . , p}, λ0 ≤ λ0, j andλ 7→ ‖(Aλ − I)Fej‖2

2 is a nonincreasing function
(as noticed in Arlot and Bach, 2011 for instance), so that

1
n

∥∥(Aλ0 − In)Fej

∥∥2
2
≤ 1

n

∥∥∥(Aλ0, j − In)Fej

∥∥∥
2

2
≤ Σ j, j

√
ln(n)

n
. (23)

In particular, Equation (8) holds withdn = 1 for problem (10) whateverz∈ {e1, . . . ,ep}.
Let us now consider the casez= ei +ej with i 6= j ∈ {1, . . . , p}. Using Equation (23) and that

Fei+ej = Fei +Fej , we have

∥∥(Bλ0 − In)Fei+ej

∥∥2
2
≤
∥∥(Bλ0 − In)Fei

∥∥2
2+
∥∥(Bλ0 − In)Fej

∥∥2
2
+2〈(Bλ0 − In)Fei ,(Bλ0 − In)Fej 〉 .

The last term is bounded as follows:

2〈(Bλ0 − In)Fei ,(Bλ0 − In)Fej 〉 ≤ 2‖(Bλ0 − In)Fei‖ · ‖(Bλ0 − In)Fej‖
≤ 2
√

nln(n)
√

Σi,iΣ j, j

≤
√

nln(n)(Σi,i +Σ j, j)

≤ (1+c(Σ))
√

nln(n)(Σi,i +Σ j, j +2Σi, j)

= (1+c(Σ))
√

nln(n)σ2
ei+ej

,
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because Lemma 46 shows

2(Σi,i +Σ j, j)≤ (1+c(Σ))(Σi,i +Σ j, j +2Σi, j) .

Therefore, Equation (8) holds withdn = 1+c(Σ) for problem (10) whateverz∈ Z.
2. Control‖s−ζ‖∞: Let us define

η1 := β(2+δ)(1+c(Σ))
√

ln(n)
n

.

By Theorem 15, for everyz∈ Z, an eventΩz of probability greater than 1−n−δ exists on which, if
n≥ n0(δ),

(1−η1)σ2
z ≤ a(z)≤ (1+η1)σ2

z .

So, onΩ :=
⋂

z∈Z Ωz,
‖ζ−s‖∞ ≤ η1‖s‖∞ , (24)

andP(Ω)≥ 1− p(p+1)/2×n−δ by the union bound. Let

‖Σ‖∞ := sup
i, j

∣∣Σi, j
∣∣ and C1(p) := sup

Σ∈Sp(R)

{‖Σ‖∞
|||Σ|||

}
.

Since‖s‖∞ ≤ 4‖Σ‖∞ andC1(p) = 1 by Lemma 48, Equation (24) implies that onΩ,

‖ζ−s‖∞ ≤ 4η1‖Σ‖∞ ≤ 4η1|||Σ||| . (25)

3. Conclusion of the proof:Let

C2(p) := sup
ζ∈Rp(p+1)/2

{ |||J(ζ)|||
‖ζ‖∞

}
.

By Lemma 49,C2(p)≤ 3
2 p. By Equation (25), onΩ,

|||Σ̂−Σ|||= |||J(ζ)−J(s)||| ≤C2(p)‖ζ−s‖∞ ≤ 4η1C2(p)|||Σ||| . (26)

Since
|||Σ− 1

2 Σ̂Σ− 1
2 − Ip|||= |||Σ− 1

2 (Σ− Σ̂)Σ− 1
2 ||| ≤ |||Σ−1||||||Σ− Σ̂||| ,

and|||Σ||||||Σ−1|||= c(Σ), Equation (26) implies that onΩ,

|||Σ− 1
2 Σ̂Σ− 1

2 − Ip||| ≤ 4η1C2(p)|||Σ||||||Σ−1|||= 4η1C2(p)c(Σ)≤ 6η1pc(Σ) .

To conclude, Equation (14) holds onΩ with

η = 6pc(Σ)β(2+δ)(1+c(Σ))
√

ln(n)
n

≤ L1(2+δ)p
√

ln(n)
n

c(Σ)2 (27)

for some numerical constantL1.

Remark 44 As stated in Arlot and Bach (2011), we need
√

n0(δ)/ ln(n0(δ)) ≥ 504 and√
n0(δ)/ ln(n0(δ))≥ 24(290+δ).

Remark 45 To ensure that the estimated matrixΣ̂ is positive-definite we need thatη < 1, that is,
√

n
ln(n)

> 6β(2+δ)pc(Σ)(1+c(Σ)) .
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E.3 Useful Lemmas

Lemma 46 Let p≥ 1, Σ ∈ S++
p (R) and c(Σ) its condition number. Then,

∀1≤ i < j ≤ p, Σi, j ≥−c(Σ)−1
c(Σ)+1

Σi,i +Σ j, j

2
, (28)

Remark 47 The proof of Lemma 46 shows the constantc(Σ)−1
c(Σ)+1 cannot be improved without addi-

tional assumptions onΣ.

Proof It suffices to show the result whenp = 2. Indeed, (28) only involves 2× 2 submatrices
Σ̃(i, j) ∈ S++

2 (R) for which

1≤ c(Σ̃)≤ c(Σ) hence 0≤ c(Σ̃)−1

c(Σ̃)+1
≤ c(Σ)−1

c(Σ)+1
.

So, someθ ∈ R exists such thatΣ = |||Σ|||R⊤
θ DRθ where

Rθ :=

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)
D =

(
1 0
0 λ

)
and λ :=

1
c(Σ)

.

Therefore,

Σ = |||Σ|||
(

cos2(θ)+λsin2(θ) 1−λ
2 sin(2θ)

1−λ
2 sin(2θ) λcos2(θ)+sin2(θ)

)
.

So, Equation (28) is equivalent to

(1−λ)sin(2θ)
2

≥−1−λ
1+λ

1+λ
2

,

which holds true for everyθ ∈ R, with equality forθ ≡ π/2 (mod.π).

Lemma 48 For every p≥ 1, C1(p) := supΣ∈Sp(R)
‖Σ‖∞
|||Σ||| = 1 .

Proof With Σ = Ip we have‖Σ‖∞ = |||Σ|||= 1, soC1(p)≥ 1.
Let us introduce(i, j) such that|Σi, j | = ‖Σ‖∞. We then have, withek being thekth vector of the
canonical basis ofRp,

|Σi, j |= |e⊤i Σej | ≤ |e⊤i Σei |1/2|e⊤j Σej |1/2 ≤ (‖Σ‖1/2
2 )2 .

Lemma 49 For every p≥ 1, let C2(p) := supζ∈Rp(p+1)/2
|||J(ζ)|||
‖ζ‖∞

. Then,

p
4
≤C2(p)≤

3
2

p .
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Proof For the lower bound, we consider

ζ1 = (1, . . . ,1︸ ︷︷ ︸
p times

, 4, . . . ,4︸ ︷︷ ︸
p(p−1)

2 times

) , then J(ζ1) =




1 . . . 1
...

...
...

1 . . . 1




so that|||J(ζ)|||= p and‖ζ‖∞ = 4.
For the upper bound, we have for everyζ ∈ R

p(p+1)/2 andz∈ R
p such that‖z‖2 = 1

z⊤J(ζ)z=

∣∣∣∣∣ ∑
1≤i, j≤p

zizjJ(ζ)i, j

∣∣∣∣∣≤ ∑
1≤i, j≤p

|zi |
∣∣zj
∣∣ |J(ζ)| ≤ ‖J(ζ)‖∞ ‖z‖2

1 .

By definition ofJ, ‖J(ζ)‖∞ ≤ 3/2‖ζ‖∞. Remarking that‖z‖2
1 ≤ p‖z‖2

2 yields the result.

Appendix F. Proof of Theorem 26

The proof of Theorem 26 is similar to the proof of Theorem 3 in Arlot and Bach (2011). We give
it here for the sake of completeness. We also show how to adapt its proof todemonstrate Theo-
rem 29. The two main mathematical results used here are Theorem 20 and a gaussian concentration
inequality from Arlot and Bach (2011).

F.1 Key Quantities and their Concentration Around their Means

Definition 50 We introduce, for S∈ S++
p (R),

M̂o(S) ∈ argmin
M∈M

{∥∥∥F̂M −Y
∥∥∥

2
+2tr(AM · (S⊗ In))

}
(29)

Definition 51 Let S∈ Sp(R), we note S+ the symmetric matrix where the eigenvalues of S have
been thresholded at0. That is, if S=U⊤DU, with U ∈ Op(R) and D= Diag(d1, . . . ,dp), then

S+ :=U⊤Diag(max{d1,0} , . . . ,max{dn,0})U .

Definition 52 For every M∈M , we define

b(M) = ‖(AM − Inp) f‖2
2 ,

v1(M) = E [〈ε,AMε〉] = tr(AM · (Σ⊗ In)) ,

δ1(M) = 〈ε,AMε〉−E [〈ε,AMε〉] = 〈ε,AMε〉− tr(AM · (Σ⊗ In)) ,

v2(M) = E
[
‖AMε‖2

2

]
= tr(A⊤

MAM · (Σ⊗ In)) ,

δ2(M) = ‖AMε‖2
2−E

[
‖AMε‖2

2

]
= ‖AMε‖2

2− tr(A⊤
MAM · (Σ⊗ In)) ,

δ3(M) = 2〈AMε,(AM − Inp) f 〉 ,

δ4(M) = 2〈ε,(Inp−AM) f 〉 ,

∆̂(M) =−2δ1(M)+δ4(M) .
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Definition 53 Let CA,CB,CC,CD,CE,CF be fixed nonnegative constants. For every x≥ 0 we define
the event

Ωx = Ωx(M ,CA,CB,CC,CD,CE,CF)

on which, for every M∈M andθ1,θ2,θ3,θ4 ∈ (0,1]:

|δ1(M)| ≤ θ1 tr
(

A⊤
MAM · (Σ⊗ In)

)
+(CA+CBθ−1

1 )x|||Σ||| (30)

|δ2(M)| ≤ θ2 tr
(

A⊤
MAM · (Σ⊗ In)

)
+(CC+CDθ−1

2 )x|||Σ||| (31)

|δ3(M)| ≤ θ3‖(Inp−AM) f‖2
2+CEθ−1

3 x|||Σ||| (32)

|δ4(M)| ≤ θ4‖(Inp−AM) f‖2
2+CFθ−1

4 x|||Σ||| (33)

Of key interest is the concentration of the empirical processesδi , uniformly overM ∈M . The
following Lemma introduces such a result, whenM contains symmetric matrices parametrized with
their eigenvalues (with fixed eigenvectors).

Lemma 54 Let

CA = 2, CB = 1, CC = 2, CD = 1, CE = 306.25, CF = 306.25 .

Suppose that(18) holds. ThenP(Ωx(M ,CA,CB,CC,CD,CE,CF)) ≥ 1− pe1027+ln(n)e−x. Suppose
that (15)holds. ThenP(Ωx(M ,CA,CB,CC,CD,CE,CF))≥ 1−6pcard(M )e−x.

.

Proof

First common step. Let M ∈M , PM ∈ Op(R) such thatM = P⊤
MDPM, with D = Diag(d1, . . . ,dp).

We can write:

AM = Ad1,...,dp = (PM ⊗ In)
⊤
[
(D−1⊗K)

(
D−1⊗K+npInp

)−1
]
(PM ⊗ In)

= Q⊤Ãd1,...,dpQ ,

with Q = PM ⊗ In and Ãd1,...,dp = (D−1 ⊗K)(D−1 ⊗K + npInp)
−1. Remark that̃Ad1,...,dp is

block-diagonal, with diagonal blocks beingBd1, . . . ,Bdp using the notations of Section 3. With

ε̃ = Qε = (ε̃1
⊤
, . . . , ε̃p

⊤
)⊤ and f̃ = Q f = ( f̃1

⊤
, . . . , f̃p

⊤
)⊤ we can write

|δ1(M)|= 〈ε̃, Ãd1,...,dpε̃〉−E

[
〈ε̃, Ãd1,...,dpε̃〉

]
,

|δ2(M)|=
∥∥∥Ãd1,...,dpε̃

∥∥∥
2

2
−E

[∥∥∥Ãd1,...,dpε̃
∥∥∥

2

2

]
,

|δ3(M)|= 2〈Ãd1,...,dpε̃,(Ãd1,...,dp − Inp) f̃ 〉 ,

|δ4(M)|= 2〈ε̃,(Inp− Ãd1,...,dp) f̃ 〉 .
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We can see that the quantitiesδi decouple, therefore

|δ1(M)|=
p

∑
i=1

〈ε̃i ,Apdi ε̃i〉−E [〈ε̃i ,Apdi ε̃〉] ,

|δ2(M)|=
p

∑
i=1

‖Apdi ε̃i‖2
2−E

[
‖Apdi ε̃i‖2

2

]
,

|δ3(M)|=
p

∑
i=1

2〈Apdi ε̃i ,(Apdi − In) f̃i〉 ,

|δ4(M)|=
p

∑
i=1

2〈ε̃i ,(In−Apdi ) f̃i〉 .

Supposing(18). Assumption (18) implies that the matrixP used above is the same for all the
matricesM of M . Using Lemma 9 of Arlot and Bach (2011), where we havep concentration
results on the sets̃Ωi , each of probability at least 1−e1027+ln(n)e−x we can state that, on the
set

⋂p
i=1 Ω̃i , we have uniformly onM

|δ1(M)| ≤
p

∑
i=1

θ1Var[̃εi ] tr(A
⊤
pdi

Apdi )+(CA+CBθ−1
1 )xVar[̃εi ] ,

|δ2(M)| ≤
p

∑
i=1

θ2Var[̃εi ] tr(A
⊤
pdi

Apdi )+(CC+CDθ−1
2 )xVar[̃εi ] ,

|δ3(M)| ≤
p

∑
i=1

θ3

∥∥∥(In−Apdi ) f̃i
∥∥∥

2

2
+CEθ−1

3 xVar[̃εi ] ,

|δ4(M)| ≤
p

∑
i=1

θ4

∥∥∥(In−Apdi ) f̃i
∥∥∥

2

2
+CFθ−1

4 xVar[̃εi ] .

Supposing(15). We can use Lemma 8 of Arlot and Bach (2011) where we havep concentration
results on the sets̃Ω j,M, each of probability at least 1− 6e−x we can state that, on the set
⋂p

j=1
⋂

M∈M Ω̃i , we have uniformly onM the same inequalities written above.

Final common step. To conclude, it suffices to see that for everyi ∈ {1, . . . , p}, Var[̃εi ]≤ |||Σ|||.

F.2 Intermediate Result

We first prove a general oracle inequality, under the assumption that the penalty we use (with an
estimator ofΣ) does not underestimate the ideal penalty (involvingΣ) too much.
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Proposition 55 Let CA,CB,CC,CD,CE ≥ 0 be fixed constants,γ > 0, θS∈ [0,1/4) and KS≥ 0. On
Ωγ ln(n)(M ,CA,CB,CC,CD,CE), for every S∈ S++

p (R) such that

tr
(

AM̂o(S)
· ((S−Σ)⊗ In)

)

≥−θStr
(

AM̂o(S)
· (Σ⊗ In)

)
inf

M∈M

{
b(M)+v2(M)+KSln(n)|||Σ|||

v1(M)

} (34)

and for everyθ ∈ (0,(1−4θS)/2), we have:

1
np

∥∥∥ f̂M̂o(S)
− f
∥∥∥

2

2
≤ 1+2θ

1−2θ−4θS
inf

M∈M

{
1

np

∥∥∥F̂M −F
∥∥∥

2

2
+

2tr(AM · ((S−Σ)+⊗ In))
np

}

+
1

1−2θ−4θS

[
(2CA+3CC+6CD +6CE +

2
θ
(CB+CF))γ+

θSKS

4

]
ln(n)|||Σ|||

np
(35)

Proof The proof of Proposition 55 is very similar to the one of Proposition 5 in Arlot and Bach
(2011). First, we have

∥∥∥ f̂M − f
∥∥∥

2

2
= b(M)+v2(M)+δ2(M)+δ3(M) , (36)

∥∥∥ f̂M −y
∥∥∥

2

2
= ‖ f̂M − f‖2

2−2v1(M)−2δ1(M)+δ4(M)+‖ε‖2
2 . (37)

Combining Equation (29) and (37), we get:

∥∥∥ f̂M̂o(S)
− f
∥∥∥

2

2
+2tr

(
AM̂o(S)

· ((S−Σ)+⊗ In)
)
+ ∆̂(M̂o(S))

≤ inf
M∈M

{∥∥∥ f̂M − f
∥∥∥

2

2
+2tr(AM · ((S−Σ)⊗ In))+ ∆̂(M)

}
.

(38)

On the eventΩγ ln(n), for everyθ∈ (0,1] andM ∈M , using Equation (30) and (33) withθ= θ1 = θ4,

|∆̂(M)| ≤ θ(b(M)+v2(M))+(CA+
1
θ
(CB+CF))γ ln(n)|||Σ||| . (39)

Using Equation (31) and (32) withθ2 = θ3 = 1/2 we get that for everyM ∈M Equation

∥∥∥F̂M −F
∥∥∥

2

2
≥ 1

2
(b(M)+v2(M))− (CC+2CD +2CE)γ ln(n)|||Σ||| ,

which is equivalent to

b(M)+v2(M)≤ 2
∥∥∥F̂M −F

∥∥∥
2

2
+2(CC+2CD +2CE)γ ln(n)|||Σ||| . (40)

Combining Equation (39) and (40), we get

|∆̂(M)| ≤ 2θ
∥∥∥F̂M −F

∥∥∥
2

2
+

(
CA+(2CC+4CD +4CE)θ+(CB+CF)

1
θ

)
γ ln(n)|||Σ||| .
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With Equation (38), and withC1 =CA, C2 = 2CC+4CD +4CE andC3 =CB+CF we get

(1−2θ)
∥∥∥ f̂M̂o(S)

− f
∥∥∥

2

2
+2tr

(
AM̂o(S)

· ((S−Σ)+⊗ In)
)
≤

inf
M∈M

{∥∥∥ f̂M − f
∥∥∥

2

2
+2tr(AM · ((S−Σ)⊗ In))

}
+

(
C1+C2θ+

C3

θ

)
γ ln(n)|||Σ||| .

(41)

Using Equation (34) we can state that

tr
(

AM̂o(S)
· ((S−Σ)⊗ In)

)
≥ b(M̂o(S))+v2(M̂o(S))+KSln(n)|||Σ|||

v1(M̂o(S))
tr
(

AM̂o(S)
· (Σ⊗ In)

)

so that

tr
(

AM̂o(S)
· ((S−Σ)⊗ In)

)
≥−θS

(
(b(M̂o(S))+v2(M̂o(S))+KSln(n)|||S|||

)
,

which then leads to Equation (35) using Equation (40) and (41).

F.3 The Proof Itself

We now show Theorem 26 as a consequence of Proposition 55. It actually suffices to show that̂Σ
does not underestimateΣ too much, and that the second term in the infimum of Equation (35) is
negligible in front of the quadratic error(np)−1‖ f̂M − f‖2.
Proof On the eventΩ introduced in Theorem 20, Equation (14) holds. Let

γ = pc(Σ)(1+c(Σ)) .

By Lemma 56 below, we have:

inf
M∈M

{
b(M)+v2(M)+KSln(n)|||Σ|||

v1(M)

}
≥ 2

√
KSln(n)|||Σ|||

ntr(Σ)
.

We supposed Assumption (15) holds. Using elementary algebra it is easy to show that, for every
symmetric positive definite matricesA, M andN of sizep, M � N implies that tr(AM)≥ tr(AN). In
order to haveM̂o(Σ̂) satisfying Equation (34), Theorem 20 shows that it suffices to have, for every
θS> 0,

2θS

√
KSln(n)|||Σ|||

ntr(Σ)
= 6β(2+δ)γ

√
ln(n)

n
,

which leads to the choice

KS=

(
3β(α+δ)γ tr(Σ)

θS|||Σ|||

)2

.

We now takeθS = θ = (9ln(n))−1. Let Ω be the set given by Theorem 20. Using Equation (35)
and requiring that ln(n) ≥ 6 we get, on the set̃Ω = Ω∩Ω(α+δ) ln(n)(M ,CA,CB,CC,CD,CE,CF) of
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probability 1− (p(p+1)/2+6pC)n−δ, using thatα ≥ 2:

1
np

∥∥∥ f̂M̂ − f
∥∥∥

2
≤
(

1+
1

ln(n)

)
inf

M∈M





1
np

∥∥∥ f̂M − f
∥∥∥

2

2
+

2tr
(

AM · ((Σ̂−Σ)+⊗ In)
)

np





+

(
1− 2

3ln(n)

)−1[
2CA+3CC+6CD +6CE + ln(n)

(
18CB+18CF +

729β2γ2 tr(Σ)2

4|||Σ|||2
)]

× (α+δ)2 ln(n)2|||Σ|||
np

.

Using Equation (27) and defining

η2 := 12β(α+δ)γ
√

ln(n)
n

,

we get

1
np

∥∥∥ f̂M̂ − f
∥∥∥

2
≤
(

1+
1

ln(n)

)
inf

M∈M

{
1

np

∥∥∥ f̂M − f
∥∥∥

2

2
+η2

tr(AM · (Σ⊗ In))
np

}

+

(
1− 2

3ln(n)

)−1[
2CA+3CC+6CD +6CE + ln(n)

(
18CB+18CF +

729β2γ2 tr(Σ)2

4|||Σ|||2
)]

×(α+δ)2 ln(n)2|||Σ|||
np

.

(42)

Now, to get a classical oracle inequality, we have to show thatη2v1(M) = η2 tr(AM · (Σ⊗ In)) is
negligible in front of‖ f̂M − f‖2. Lemma 56 ensures that:

∀M ∈M , ∀x≥ 0, 2

√
x|||Σ|||
ntr(Σ)

v1(M)≤ v2(M)+x|||Σ||| .

With 0<Cn < 1, takingx to be equal to 72β2 ln(n)γ2 tr(Σ)/(Cn|||Σ|||) leads to

η2v1(M)≤ 2Cnv2(M)+
72β2 ln(n)γ2 tr(Σ)

Cn
. (43)

Then, sincev2(M)≤ v2(M)+b(M) and using also Equation (36), we get

v2(M)≤
∥∥∥ f̂M − f

∥∥∥
2

2
+ |δ2(m)|+ |δ3(M)| .

On Ω̃ we have that for everyθ ∈ (0,1), using Equation (31) and (32),

|δ2(M)|+ |δ3(M)| ≤ 2θ
(∥∥∥ f̂M − f

∥∥∥
2

2
−|δ2(M)|− |δ3(M)|

)
+(CC+(CD+CE)θ−1)(α+δ) ln(n)|||Σ||| ,

which leads to

|δ2(M)|+ |δ3(M)| ≤ 2θ
1+2θ

∥∥∥ f̂M − f
∥∥∥

2

2
+

CC+(CD +CE)θ−1

1+2θ
(α+δ) ln(n)|||Σ||| .
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Now, combining this equation with Equation (43), we get

η2v1(M)≤
(

1+
4Cnθ
1+2θ

)∥∥∥ f̂M − f
∥∥∥

2

2
+2Cn

CC+(CD +CE)θ−1

1+2θ
(α+δ) ln(n)|||Σ|||

+
72β2 ln(n)γ2 tr(Σ)

Cn
.

Takingθ = 1/2 then leads to

η2v1(M)≤ (1+Cn)
∥∥∥ f̂M − f

∥∥∥
2

2
+Cn(CC+2(CD +CE))(α+δ) ln(n)|||Σ|||

+
72β2 ln(n)γ tr(Σ)

Cn
.

We now takeCn = 1/ ln(n). We now replace the constantsCA, CB, CC, CD, CE, CF by their values in
Lemma 54 and we get, for some constantL2,

(
1− 2

3ln(n)

)−1[
1851.5+ ln(n)

(
5530.5+

729β2γ2

4|||Σ|||2
)
+616.5

(
1+

1
ln(n)

)
1

ln(n)

]

+
72β2 ln(n)γ2 tr(Σ)

Cn
≤ L2 ln(n)γ2 tr(Σ)2

|||Σ|||2

From this we can deduce Equation (16) by noting thatγ ≤ 2pc(Σ)2.
Finally we deduce an oracle inequality in expectation by noting that ifn−1‖ fM̂ − f‖2 ≤ Rn,δ on

Ω̃, using Cauchy-Schwarz inequality

E

[
1

np

∥∥∥ f̂M̂ − f
∥∥∥

2

2

]
= E

[
1Ω̃
np

∥∥∥ f̂M̂ − f
∥∥∥

2

2

]
+E

[
1Ω̃c

np

∥∥∥ f̂M̂ − f
∥∥∥

2

2

]

≤ E
[
Rn,δ

]
+

1
np

√
4p(p+1)+6pC

nδ

√
E

[∥∥∥ f̂M̂ − f
∥∥∥

4

2

]
. (44)

We can remark that, since|||AM||| ≤ 1,

∥∥∥ f̂M − f
∥∥∥

2

2
≤ 2‖AMε‖2

2+2‖(Inp−AM) f‖2
2 ≤ 2‖ε‖2

2+8‖ f‖2
2 .

So

E

[∥∥∥ f̂M̂ − f
∥∥∥

4

2

]
≤ 12

(
np|||Σ|||+4‖ f‖2

2

)2
,

together with Equation (42) and Equation (44), induces Equation (17), using that for some constant
L3 > 0,

12

√
p(p+1)/2+6pC

nδ

(
|||Σ|||+ 4

np
‖ f‖2

2

)
≤ L3

√
p(p+C)

nδ/2

(
|||Σ|||+ 1

np
‖ f‖2

2

)
.
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Lemma 56 Let n, p≥ 1 be two integers, x≥ 0 andΣ ∈ S++
p (R). Then,

inf
A∈Mnp(R),|||A|||≤1

{
tr(A⊤A· (Σ⊗ In))+x|||Σ|||

tr(A· (Σ⊗ In))

}
≥ 2

√
x|||Σ|||
ntr(Σ)

Proof First note that the bilinear form onMnp(R), (A,B) 7→ tr(A⊤B · (Σ⊗ In)) is a scalar product.
By Cauchy-Schwarz inequality, for everyA∈Mnp(R),

tr(A· (Σ⊗ In))
2 ≤ tr(Σ⊗ In) tr(A⊤A· (Σ⊗ In)) .

Thus, since tr(Σ⊗ In) = ntr(Σ), if c= tr(A· (Σ⊗ In))> 0,

tr(A⊤A· (Σ⊗ In))≥
c2

ntr(Σ)
.

Therefore

inf
A∈Mnp(R),|||A|||≤1

{
tr(A⊤A· (Σ⊗ In))+x|||Σ|||

tr(A· (Σ⊗ In))

}
≥ inf

c>0

{
c

ntr(Σ)
+

x|||Σ|||
c

}

≥ 2

√
x|||Σ|||
ntr(Σ)

.

F.4 Proof of Theorem 29

We now prove Theorem 29, first by proving thatΣ̂HM leads to a sharp enough approximation of the
penalty.

Lemma 57 Let Σ̂HM be defined as in Definition 28,α = 2, κ > 0 be the numerical constant defined
in Theorem 15 and assume(13) and (18) hold. For everyδ ≥ 2, a constant n0(δ), an absolute
constant L1 > 0 and an eventΩ exist such thatP(ΩHM) ≥ 1− pn−δ and for every n≥ n0(δ), on
ΩHM, for every M inM

(1−η) tr(AM · (Σ⊗ In))≤ tr(AM · (Σ̂HM ⊗ In))≤ (1+η) tr(AM · (Σ⊗ In)) , (45)

where η := L1(α+δ)
√

ln(n)
n

.

Proof Let P be defined by (18). LetM ∈ M , and (d1, . . . ,dp) ∈ (0,+∞)p such that
M = P⊤Diag(d1, . . . ,dp)P. Thus, as shown in Section D, we have withΣ̃ = PΣP⊤:

tr(AM · (Σ⊗ In)) =
p

∑
j=1

tr(Apdj )Σ̃ j, j .
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let σ̃ j be defined as in Definition 28 (and thusΣ̂HM = PDiag(σ̃1, . . . , σ̃p)P⊤), we then have by
Theorem 15 that for everyj ∈ {1, . . . , p} an eventΩ j of probability 1−κn−δ exists such that onΩ j

|Σ̃ j, j − σ̃ j | ≤ ηΣ̃ j, j . Since

tr(AM · (Σ̂HM ⊗ In)) =
p

∑
j=1

tr(Apdj )σ̃ j ,

takingΩHM = ∩p
j=1Ω j suffices to conclude.

Proof [of Theorem 26] Adapting the proof of Theorem 26 to Assumption (18) first requires to take
γ = 1 as Lemma 57 allows us. It then suffices to take the set
Ω̃ = ΩHM ∩Ω(2+δ) ln(n)(M ,CA,CB,CC,CD,CE,CF) (thus replacingα by 2) of probability 1− (p(p+

1)/2+ p)n−δ ≥ 1− p2n−δ—supposingp≥ 2—if we require that 2 ln(n)≥ 1027.
To get to the oracle inequality in expectation we use the same technique than above, but we note

that
√
P(Ω̃c)≤ L̃4× p/nδ/2. We can finally define the constantL4 by:

L3 tr(Σ)(2+δ)2 pln(n)3

np
+

p

nδ/2
|||Σ||| ≤ L4γ2 tr(Σ)(α+δ)2 pln(n)3

np
.

References

Hirotogu Akaike. Statistical predictor identification.Annals of the Institute of Statistical Mathe-
matics, 22:203–217, 1970.

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple
tasks and unlabeled data.Journal of Machine Learning Research, 6:1817–1853, December 2005.
ISSN 1532-4435.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task feature learn-
ing. Machine Learning, 73(3):243–272, 2008.

Sylvain Arlot. Model selection by resampling penalization.Electron. J. Stat., 3:557–624 (elec-
tronic), 2009. ISSN 1935-7524. doi: 10.1214/08-EJS196.

Sylvain Arlot and Francis Bach. Data-driven calibration of linear estimators with minimal penalties,
July 2011. arXiv:0909.1884v2.

Sylvain Arlot and Pascal Massart. Data-driven calibration of penalties for least-squares regression.
Journal of Machine Learning Research, 10:245–279 (electronic), 2009.

Nachman Aronszajn. Theory of reproducing kernels.Transactions of the American Mathematical
Society, 68(3):337–404, May 1950.

Bart Bakker and Tom Heskes. Task clustering and gating for bayesianmultitask learning.Journal
of Machine Learning Research, 4:83–99, December 2003. ISSN 1532-4435. doi: http://dx.doi.
org/10.1162/153244304322765658.

2810



MULTI -TASK REGRESSION USINGM INIMAL PENALTIES
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