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Abstract

When learning models that are represented in matrix fornfer@ng a low-rank constraint can
dramatically improve the memory and run time complexityilesproviding a natural regularization
of the model. However, naive approaches to minimizing fiamst over the set of low-rank matrices
are either prohibitively time consuming (repeated singuédue decomposition of the matrix) or
numerically unstable (optimizing a factored represeatatf the low-rank matrix). We build on
recent advances in optimization over manifolds, and desem iterative online learning procedure,
consisting of a gradient step, followed bysacond-order retractiotvack to the manifold. While
the ideal retraction is costly to compute, and so is the ptigje operator that approximates it, we
describe another retraction that can be computed effigidhtias run time and memory complexity
of O((n+m)k) for a rankk matrix of dimensionm x n, when using an online procedure with
rank-one gradients. We use this algorithmQRETA, to learn a matrix-form similarity measure
over pairs of documents represented as high dimensionsbrgecLORETA improves the mean
average precision over a passive-aggressive approachdatsifed model, and also improves over
a full model trained on pre-selected features using the sasmory requirements. We further
adapt LORETA to learn positive semi-definite low-rank matrices, prorglian online algorithm
for low-rank metric learning LORETA also shows consistent improvement over standard weakly
supervised methods in a large (1600 classes and 1 milliogemausindmageNet multi-label
image classification task.

Keywords: low rank, Riemannian manifolds, metric learning, retraas$i, multitask learning,
online learning

1. Introduction

Many learning problems involve models represented in matrix form. Thesalmahetric learning,
collaborative filtering, and multi-task learning where all tasks operatetbeesame set of features.
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In many of these tasks, a natural way to regularize the model is to limit the faim& corresponding

matrix. In metric learning, a low-rank constraint allows to learn a low dimenti@paesentation

of the data in a discriminative way. In multi-task problems, low-rank constraphuigde a way to

tie together different tasks. In all cases, low-rank matrices can besemed in a factorized form
that dramatically reduces the memory and run-time complexity of learning anmémafe with that

model. Low-rank matrix models could therefore scale to handle substantially mere features

and classes than models with full rank dense matrices.

Unfortunately, the rank constraint is non-convex, and in the genasa, aninimizing a convex
function subject to a rank constraint is NP-hard (Natarajan, 1998)a result of these issues, two
main approaches have been commonly used to address the problem wigearder a low-rank
constraint. Sometimes, a matkit € R™™ of rankk is represented as a product of two low dimen-
sion matrice$V = ABT, A € R™¥ B € R™k and simple gradient descent techniques are applied to
each of the product terms separately (Bai et al., 2009). Secondctmwjgradient algorithms can
be applied by repeatedly taking a gradient step and projecting back to th#olaani low-rank
matrices. Unfortunately, computing the projection to that manifold becomesbjiieély costly for
large matrices and cannot be computed after every gradient step.

Work in the field has focused mostly on two realms. First, learning low-rasitipe semi-
definite (PSD) models (as opposed to general low-rank models), as indtkes wf Kulis et al.
(2009) and Meyer et al. (2011). Second, approximating a noisy matiwosdérvations by a low-
rank matrix, as in the work of Negahban and Wainwright (2010). Thisitasemmonly addressed
in the field of recommender systems. Importantly, the current paper doesldiess the problem
of low-rank approximation to a given data matrikut rather addresses the problem of learning a
low-rank parametric modeh the context of ranking and classification.

In this paper we propose new algorithms for online learning on the manifdtsvefank matri-
ces. Itis based on an operation caltettaction which is an operator that maps from a vector space
that is tangent to the manifold, into the manifold (Do Carmo, 1992; Absil et ab8R0Retrac-
tions include the projection operator as a special case, but also inclusteoptbrators that can be
computed substantially more efficiently. We use second order retractioesdtbgd LORETA —an
online algorithm for learning low-rank matricesoReTA has a memory and run time complexity of
O((n+m)k) per update when the gradients have rank one. We show below that éhefcask-one
gradients is relevant to numerous online learning problems.

We test LORETAIN two different domains and learning tasks. First, we learn a bilinear similarity
measure among pairs of text documents, where the number of featutdsrftex) representing each
document could become very largeoRETA performed better than other techniques that operate
on a factorized model, and also improves retrieval precision by 33% asarethwith training a
full rank model over pre-selected most informative features, using acabfe memory footprint.
Second, we applied@RETAto image multi-label ranking, a problem in which the number of classes
could grow to millions. IORETA significantly improved over full rank models, using a fraction of
the memory required. These two experiments suggest that low-rank optimizatidd become
very useful for learning in high-dimensional problems.

1. Some special cases are solvable (notably, PCA), relying mainly galamvalue decomposition (Fazel et al., 2005)
and semi-definite programming techniques. For SDP of kapk it is not known whether this problem is NP-hard.
Fork =1 it is equivalent to the MAX-CUT problem (Briét et al., 2010). Both SD# &VD scale poorly to large
scale tasks.
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This paper is organized as follows. We start with an introduction to optimizatianamifolds,
describing the notion of retractions. We then derive our low-rank onliswieg algorithm in three
variants: one which learns a general low-rank matrix, one which ledovg-eank PSD matrix, and
one which concentrates most of the learning in a reduced dimensional. spaally we test our
algorithms in two applications: learning similarity of text documents, and multi-layéding on a
set of one million images.

This paper extends a shorter version published in Advances in Nedoahation Systems
(Shalit et al., 2010), by adding a new PSD version of the algorithm, muchriacgée and wider
experiments, giving a full mathematical discussion and proofs, and adaimgugh complexity
analysis.

2. Optimization on Riemannian Manifolds

The field of numerical optimization on smooth manifolds has advanced signi§idarthe past
few years. For a recent exposition on this subject see Absil et al8J200e start with a short
introduction to embedded manifolds, which are the focus of this paper.

An embedded manifolis a smooth subset of an ambient spa&’e For instance, the set
{x:]x||]2 = 1,x € R"}, the unit sphere, is am-1 dimensional manifold embeddedrirdimensional
spaceR". As another example, therthogonal group @, which comprises of the set of orthogo-
nal n x n matrices, is ar{‘(”z;l) dimensional manifold embedded Ri™". Here we focus on the
manifold of low-rank matrices, namely, the set ofx m matrices of rankk wherek < m,n. It
is an (n+ m)k — k? dimensional manifold embedded ’R{*™, which we denoteM, ™", or plainly
M. Embedded manifolds inherit many properties from the ambient space, wHah simplifies
their analysis. For example, the natural Riemannian metric for embedded tdangsimply the
Euclidean metric restricted to the manifold.

Motivated by online learning, we focus here on developing a stochastiliagt descent proce-
dure to minimize a loss function over the manifold of low-rank matriceMk“m,

min L(W) st W e M

To illustrate the challenge in this problem, consider a simple stochastic gradisserd algorithm
(Figure 1). At every step of the algorithm, a gradient step updaté — [0 £(W') takes the model
outside of the manifoldM and has to be mapped back onto the manifold. The most common
mapping operation is tharojectionoperation, which, given a poikl¥* — J£(W") outside the man-
ifold, would find the closest point ifif. Unfortunately, the projection operation is very expensive
to compute for the manifold of low-rank matrices, since it basically involves gutan value de-
composition. Here we describe a wider class of operations cadteattions that serve a similar
purpose: they find a point on the manifold that is in the direction of the gradierexplain how re-
tractions are computed, we first describe the notiontahgent spacand theRiemannian gradient

of a function on a manifold.

2.1 Riemannian Gradient and the Tangent Space

Each pointW in an embedded manifol@# has a tangent space associated with it, dendjgdl/
as shown in Figure 2 (for a formal definition of the tangent space, seerfgix A). The tangent
space is a vector space of the same dimension as the manifold that can besdienéifnatural way
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Figure 1: Projection onto the manifold is just a particular case of a retractRetractions are
defined as operators that approximate the geodesic gradient flow on tiffelcha

with a linear subspace of the ambient space. It is usually simple to compute tredingctionRy
of any point in the ambient space onto the tangent spacH .

Given a manifoldM and a differentiable function : M — R, theRiemannian gradienf £(W)
of L onM at a pointW is a vector in the tangent spatg M. A very useful property of embedded
manifolds is the following: given a differentiable functidrdefined on the ambient space (and thus
on the manifold), the Riemannian gradientfoft pointW is simply the linear projectioRy of the
Euclidean gradient of onto the tangent spade, M .

Thus, if we denote the Euclidean gradientioin R™™ by (1.2, we havell £ (W) = Ry(0L). An
important consequence follows in case the manifold represents the sahtsf pbeying a certain
constraint. In this case the Riemannian gradient &f equivalent to the Euclidean gradient f
minus the component which is normal to the constraint. Indeed this hormal cemipis exactly
the component which is irrelevant when performing constrained optimization.

The Riemannian gradient allows us to compie 2 =Wt —nt0£ (W), for a given iterate point
W' and step sizg'. We now examine hoWvi*2 can be mapped back onto the manifold.

2.2 Retractions

Intuitively, retractionscapture the notion of "going along a straight line" on the manifold. The math-
ematically ideal retraction is called tleeponential mappin¢Do Carmo, 1992, Chapter 3): it maps
the tangent vectot € TwM to a point along a geodesic curve which goes throdgim the direc-

tion of  Figure 1. Unfortunately, for many manifolds (including the low-rank manitwdsidered
here) calculating the geodesic curve is computationally expensive (Mamdken et al., 2009). A
major insight from the field of Riemannian manifold optimization is that one can eisactions
which merely approximate the exponential mapping. Using such retractionsaimaithe conver-
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gence properties obtained with the exponential mapping, but is much closmpeutationally for a
suitable choice of mapping.

Definition 1 Given a point W in an embedded manifoM, a retraction is any function R :
TwM — M which satisfies the following two conditions (Absil et al., 2008, Chapter 4):

1. Centering: R/(0) =W.

2. Local rigidity: The curvey: (—€,&) — M defined by (1) = Ry (1) satisfies
vz (0) = &, wherey is the derivative of by .

It can be shown that any such retraction approximates the exponentigimgép a first or-
der (Absil et al., 2008) Second-order retractionsvhich approximate the exponential mapping to
second order around, have to satisfy in addition the following stricter condition:

Ay <de(TE) ‘T_O) _o,

dr?

for all £ € TwM, whereRy is thelinear projection from the ambient space onto the tangent space
TwM. When viewed intrinsically, the curv@y (t§) defined by a second-order retraction has zero
acceleration at poiw/, namely, its second order derivatives are all normal to the manifold. &$te b
known example of a second-order retraction onto embedded manifoldspsdjeetion operation
(Absil and Malick, 2010), which maps a poiKtto the pointY € M which is closest to it in the
Frobenius norm. That is, the projectionXfonto M is simply:

Proja,(X) = argmin|X —Y||ero
YeM

Importantly, such projections are viewed here as one type of a secdeidaqproximation to the
exponential mapping, which can be replaced by any other secondretdetions, when computing
the projection is too costly (see Figure 1).

Given the tangent space and a retraction, we now define a Riemannih@ngmdescent proce-
dure for the loss at pointW! € 9¢. Conceptually, the procedure has three steps (Figure 2):

1. Step 1: Ambient gradient: Obtain the Euclidean gradieﬁltL(Wt) in the ambient space.

2. Step 2: Riemannian gradient:Linearly project the ambient gradient onto the tangent space
TwM . Computes! = Ryt (OL(WY)).

3. Step 3: Retraction: Retract the Riemannian gradieit back to the manifold:W!*! =
R (&)

With a proper choice of step size, this procedure can be proved to hesleclanvergence for

any retraction (Absil et al., 2008). In practice, the algorithm merges tinese steps for efficiency,
as discussed in the next section.
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Figure 2: A three step procedure for computing a retracted gradiewirat\p!. Step 1: standard
(Euclidean) gradient step. Step 2: linearly project ambient gradienttangent space
TwM in order to get the Riemannian gradi€ht Step 3: retract the Riemannian gradient
&' back to the manifold.

3. Online Learning on the Low-rank Manifold

Based on the retractions described above, we now present an ontnighaigfor learning low-rank

matrices, by performing stochastic gradient descent on the manifold oflokvmatrices. We name
the algorithm LORETA (for a LOw rank RETraction Algorithin At every iteration the algorithm
suffers some loss, and performs a Riemannian gradient step followegktbyetion to the manifold

Mk”’m. Section 3.1 discusses general online updates. Section 3.2 discusges/tbemmon case
where the online updates induce a gradient of nraakl.

Algorithm 1 : Online algorithm for learning in the manifold of low-rank matrices

Input: Initial low-rank model matrixV® € 24", Examplego,x1,...). Loss functionZ. Gradient
descent step sizég°,nt,...).

Output: Final low-rank model matrisvfna € a4™™.

repeat:
Get exampleg
Calculate the stochastic loss gradidﬁ]zi(wt;xt)
Linearly project onto the tangent spaéé:= Ry (JL(W'; X))
Retract back to the manifolt'*1 = Ryt (—n'€")
until stopping condition is satisfied
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In what follows, lowercase Greek letters likglenote an abstract tangent vector, and uppercase
Roman letters likéA denote concrete matrix representations as kept in memory (taking float
numbers to store). We intermix the two notations, as+#1AZ, when the meaning is clear from the
context. The set afl x k matrices of rank is denotedr™K,

3.1 The General-Rank LORETA Algorithm

In online learning we are repeatedly given a rardeadient matrixZ = [1£W, and want to compute
a step orﬂl/[k”’m in the direction ofZ. As a first step we find its linear projection onto the tangent
spaceZ = Ry(Z).

We start with a lemma that gives a representation of the tangent 3pgt€ (Figure 2), ex-
tending the constructions given by Vandereycken and Vandewall®)2601the general manifold of
low-rank matrices.

Lemma 2 LetW e 4" ™ have a (non-unique) factorization W ABT, where Ac Rk, B e R™k,
Let A, € R™ (K and B, ¢ R™ (M) pe the orthogonal complements of A and B respectively, such
that ATA=0,BTB=0, ATA| = I, BTB, = Im_«. The tangent space tf,"" at W is:

M N{} [BT

TwM=<[A A ‘M € Rk N; e RIMKxK N ER(”k)Xk}.

Proof The proof is given in Appendix A. |

We note that the assumption thfatandB are both of full column rank is tantamount to assuming
that the modeW is exactly of rankk, and no less. Lef € Tw M be a tangent vector 4/ = ABT.
From the characterization above it follows tatan be decomposed in a unigue manner into three
orthogonal component§: = &AB + gABL L EALB \where:

g = AMBT, &% —ANIBT, &MB=A NBT. €y

It is easy to verify that each pair is orthogonal, following from the reIati@bA: 0, BIB =0.

We wish to find the three matricdd, N; and N, associated Wit = Rwv(Z), such thatZ =
AMB' + AN/ BT +A; N,BT. We can find each of the matricés, N; andN, separately, because
each belongs to a space orthogonal to the other two. Thus we solve theirfigliiiree problems:

argmin 2 —AME |2,

Mekak
argmin HZ—ANIBIH,%“),
NpeR(™ 0k
argmin = ||Z—A NoBT|2,,.
NpeR (KK

To find the minimum of each of these three equations, we compute the dexdvatid set them
to zero. The solutions involve the pseudoinverse& andB. SinceA andB are of full column rank,
their pseudoinverses afé = (ATA)~1AT, BT = (B"B)~!BT.
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M = (ATA)lATZB(B'B) 1= AlzB'", @)
N; =BTZTAATA) "1 =BTZTA",
N, = ATZB(B'B) 1= AT zB!".

The matrixAA' is the matrix projecting onto the column spacefpfand similarly forB. We
will denote these matrices B8, Pg, etc. For the matrices projecting ordg andB, ’s columns
we actually havePa, = ALAI because the columns &f, are orthogonal, and likewise fdéts, .
Substituting the expressionskguation(2) into expressions of the components of the Riemannian
gradient vector irequation(1), we obtain:

PP =PaZRs, &% =PaZRy,, T4P=PaZRs
We can now define the retraction. The following theorem presents thetretrave will apply.

Theorem 3 LetW e M"™, W = ABT, and W' = B'TAT. Let& € Twa"",
§=EAB L EABL L FAIB asin Equation(1), and let:
1 1 1
\VA :W_’_EEAB_'_EALB_éEABV\/TEAB_ EEALBWTE,AB ’
Vo =W+ %EAB_’_EABL _ %EAB\NTEAB— %EAB\NTEABL

The mapping
R (&) = VAW ™V,

is a second order retraction from a neighborho®g, C Tw "™ to M,

Proof The proof is given in Appendix B. |

A more succinct representation of this retraction is the following:

Lemma 4 The retraction R(&) can be presented as:
1 1 1
Rw(&) = [A <|k+ QM - SMZ) +A N, <|k— 2M>] :
1 1, 1.2 1 T
[B <|k+2|v|T -3 (MT) >+BLN1 (Ik—ZMT>] :

Proof The proof is given in Appendix C. |

As aresultfrom Lemma 4, we can calculate the retraction as the produat fwarank factors:
the first is am x k matrix, the second lx mmatrix. Given a gradierifl L(x) in the ambient space,
we can calculate the matricés, N; and N, which allow us to represent its projection onto the
tangent space, and furthermore allow us to calculate the retraction. Weawevall the ingredients

436



ONLINE LEARNING IN THE EMBEDDED MANIFOLD OF LOW-RANK MATRICES

Algorithm 2 : Naive Riemannian stochastic gradient descent

Input:  Matrices A € R, B € R™k st. W = ABT. Gradient matrixG € R™™ s.t.
G = —nOL(W) € R™™ where JL(W) is the gradient in the ambient space and> O is
the step size.

Output: MatricesZ; € Rk, Z, € R™K such thaZ,Z] = Ry(—nOL(W)).

Compute: matrix dimension
AT = (ATA)~IAT, BT = (B"B)1BT kxn, kxm
A, B, = orthogonal complements &f B nx (n—Kk), mx(m—Kk)
M = ATGB'T k x k
N; = BTGTATT (m—K) x k
N, = ATGB'™ (n—k) xk
Zy=A(lk+3M— IM2) + A N, (I — 3M) nx k
Z, =B(lk+5MT —3(MT)2) + B Ny (Ix— 3MT) mx k

necessary for a Riemannian stochastic gradient descent algorithm. r@¢edpre is outlined in
Algorithm 2.

Algorithm 2 explicitly computes and stores the orthogonal complement maticesdB |,
which in the low rank cask < m,n, have sizeD(mn), the same as the full siz&l. To improve
the memory complexity, we use the fact that the matrisesand B, always operate with their
transpose. SincA,; andB, have orthogonal columns, the matmgAI is actually the projection
matrix that we denoted earlier B, , and likewise foB, . Because of orthogonal complementarity,
these projection matrices are equalfe- Pa andl,, — Pg respectively. Thus we can write, N, =
(1—AA") B!, and a similar identity foB, N;.

Consider now the case where the gradient matrix is of raakd is available in a factorized
form Z = G, GJ, with G, € R™", G, € R™". Using the factorized gradient we can reformulate the
algorithm to keep in memory only matrices of size at most (nam) x k or max'n,m) x r. Optimiz-
ing the order of matrix operations so that the number of operations is minimized glgorithm
3. The runtime complexity of Algorithm 3 is readily computed based on matrix multiplicatio
complexity? and isO ((n+m)(k+r)?).

3.2 LORETA With Rank-one Gradients

In many learning problems, the gradient maiiﬁ)c(W) required for a gradient step update has a
rank of one. This is the case for example, when the matrix mé&tdactts as a bilinear form on two
vectors,p andg, and the loss is a piecewise linear functiorpdivq (as in Grangier and Bengio,
2008; Chechik et al., 2010; Weinberger and Saul, 2009; Shalev+&hetal., 2004 and Section 7.1
below). In that case, the gradient is the rank-one outer product nmaifix As another example,
consider the case of multitask learning, where the matrix méeperates on a vector inppt and
the loss is the squared lo§#/p — q||? between the multiple predictioMp and the true labelg.
The gradient of this loss i8Vp —q)p', which is again a rank-one matrix. We now show how to

2. We assume throughout this paper the use of ordinary (schoolbmaikix multiplication.
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Algorithm 3 : LORETA-r - General-rank Riemannian stochastic gradient descent

Input:  Matrices A € R™K, B € R sit. W = ABT. Matrices G, € R™", G, € R™ sit.
G1G) = —n0OL(W) € R™M, whereJL(W) is the gradient in the ambient space and 0 is the
step size.

Output: MatricesZ; € Rk, Z, € R™K such thaZ;Z] = Ry(—nOL(W)).

Compute: matrix dimension runtime complexity
AT = (ATA)~IAT BT = (B"B)"'BT kxn, kxm O((n+m)k?)
ag=A"-G;, by=B"-G, kxr, kxr O((n+ mkr)
a=Aa nxr O(nkr)
Q=b;"-a rxr O(kr?)
ag=—3%+ 38 Q+G1—3G1-Q nxr o(nr?)
Zi=A+tag-b' nxk O(nkr)
b, = (G]B) -B' rxm O(mkr)
bs=—1b,+3Q-b,+G] —3Q-G} rxm o(mr?)
Z] =B" +a;-b3 kxm O(mkr)

reduce the complexity of each iteration to be linear in the modelkaviken the rank of the gradient
matrix isr = 1.

Algorithm 4 : L ORETA-1 - Rank-one Riemannian stochastic gradient descent

Input: MatricesA € Rk, B € R™ s.t. W = ABT. MatricesA" andB', the pseudo-inverses #f
andB respectively. Vectorp € R™1, g € R™! s.t. pq" = —nOL(W) € R™™, where[JL(W) is
the gradient in the ambient space anpd 0 is the step size.

Output: MatricesZ; € R™K, Z, e R™k st. 7,7] = Ry(—nDL(W)). MatricesZ] andZz], the
pseudo-inverses af; andZ, respectively.

Compute: matrix dimension  runtime complexity
ap=A"-p,by=B".q kx1 O((n+m)k)
a=Aaq nx1 O(nk)
s=by"-a 1x1 O(k)
a3:a2(—%+§rs)+p(1—%s) nx 1 o(n)
Z1=A+az-b; nxk O(nk)
b,=(q"B)-Bf 1xm Q(mK)
bs=ba(—3+3s)+q"(1— 39 1xm o(m)
Z] =BT +a;-b3 kxm o(mKk)
ZI — rank_one pseudoinversaipdatéA, AT, ag, by) kxn O(nk)
Z;r — rank_one pseudoinversaipdatéB, B, bs,a;) kxm O(mK)

Given rank-one gradients, the most computationally demanding step in Algdith the com-
putation of the pseudo-inverse of the matrideandB, takingO(nk?) andO(mk) operations. All
other operations ar®(max(n,m) - k) at most. To speed up calculations we use the fact that for
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r = 1 the outputsZ; andZ, become rank-one updates of the input matriéesmdB. This enables

us to keep the pseudo-invers&’sandB' from the previous round, and perform a rank-one update
to them, following a procedure developed by Meyer (1973). The fuk@dare is included in Ap-
pendix D. This procedure is similar to the better known Sherman-Morrisonuia for the inverse

of a rank-one perturbed matrix, and its computational complexity farak matrix is O(nk) op-
erations. Using that procedure, we derive our final algorithorETA-1, the rank-one Riemannian
stochastic gradient descent. Its overall time and space complexity ar®foth m)k) per gradient
step. It can be seen that th@RETA-1 algorithm uses only basic matrix operations, with the most
expensive ones being low-rank matrix-vector multiplication and low-rank mateiix addition.
The memory requirement of dRRETA-1 is about 4k (assumingm = n), since it receives four in-
put matrices of sizek (A, B, A", B") and assuming it can compute the four outpis ZZ,ZI,Z;L),
in-place while destroying previously computed terms.

4. Online Learning of Low-rank Positive Semidefinite Matrices

In this section we adapt the derivation above to the special case of pos#@tividefinite (PSD)
matrices. PSD matrices are of special interest because they encodEadiidean metric. Am-by-
n PSD matriXWV of rankk can be factored & =Y YT, with Y € R™K, Thus, the bilinear fort"W z
is equal to(YX) T (Y 2, which is a Euclidean inner product in the space spanned’dgolumns.
These properties have led to an extensive use of PSD matrix models in mdtsioaliarity learning,
see, for example, Xing et al. (2002), Goldberger et al. (2005), Goimeand Roweis (2006), Bar-
Hillel et al. (2006) and Jain et al. (2008). The sehdfy-n PSD matrices of rankforms a manifold
of dimensionnk — k(kz_l), embedded in the Euclidean sp&&" (Vandereycken et al., 2009). We
denote this manifold by, (k,n).

We now give a characterization of the tangent space of this manifold, déenttereycken and

Vandewalle (2010).

Lemma5 Let W € §, (k,n) have a (non-unique) factorization W YY", where Ye R™K, Let
Y, € R™ (K be the orthogonal complement of Y such tha¥¥= 0, YTY, = In_. The tangent
space tas; (k,n) atW is:

TwSy(kn) =< [Y Y] S NTIVE T gepidk N e R0k g— o
Wo+\ K, 1 N 0 YI . ) y .
Proof See Vandereycken and Vandewalle (2010), Proposition 5.2. |

Let& € TwS. (k,n) be a tangent vector ¥ =Y YT. As shown by Vandereycken and Vandewalle
(2010),& can be decomposed into two orthogonal componéntstS+&P. Given a ranke- gradient
matrix Z, and using the projection matricBg andPR,, they show that:

Z+Z7
BS=R +2 R,
Z+Z7 Z+2Z7
& =R SRR R

Using this characterization of the tangent vector when given an ambiadiegtZ, one can

define a retraction analogous to that defined in Section 3. This retractiefersed to asR(,\z,) in
Vandereycken and Vandewalle (2010).
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Theorem 6 Let W e $, (k,n), W =YYT, and W' be its pseudo-inverse. L&tc TS, (k,n), & =
£S5+ &P, as described above, and let

vzw+%ES+EP ES\NTES EF’WTES

The mapping %SD VW1V is a second order retraction from a neighborhood
Ow C TW5+(k n) to 5+(k n).

Proof See Vandereycken and Vandewalle (2010), Proposition 5.10. |

Algorithm 5 : L ORETA-1-PSD- Rank-one Riemannian PSD stochastic gradient descent

Input: A matrixY € R™K, st W=YYT. The matrixyT, the pseudoinverse &t Vectorsp € R,
qeR™ st pg” =—n DL( ) € R™M, whereDL(W) is the gradient in the ambient space and
n > 0 is the step size.

Output: Matrix Z € R™K, s.t.2Z" = RISP(—n0L(W)). Matrix Z', the pseudo-inverse &

Compute: matrix dimension runtime

complexity
hi=Y'p kx1 O(nk)
h, =YTq kx1 O(nk)
np = h]_Th]_ 1x1 O(k)
Np = hzThz 1x1 O(k)
ﬁ]_ = th nx1 O(nk)
h, =Yh, nx1 O(nk)
S= thhz 1x1 0o(k)
li=(-1+ 332$)ﬁ +(-Lsp+ 32n1h2 nlq nx1 o(n)
lo=(—%+ 592+ (3 — 3§90+ 55mh1 — gnop nx1 o(n)
P]_ = |1h2 nxk O(nk)
P, = |2h1 nxk O(nk)
Z=Y+P+P nxk O(nk)
Ztemp_ rank_one pseudoinversaupdatéY,Y’ Il, h2) kxn O(nk)
Z" = rank_one _pseudoinversaipdatéY -+ Py, Zbmp 12, h1) kxn O(nk)

Following the derivation of algorithms 2-4, and after some rearrangemengbtain a PSD
version of the IORETA-1 algorithm. This PSD version is given in Algorithm (5). The algorithm
is very similar to LORETA-1, but instead of learning a general rakknatrix it learns a positive
semidefinite ranke matrix. The computational complexity and memory complexity of a gradient
step for this algorithm i©(nk), namely, it is linear in the reduced number of model parameters.

5. Manifold Identification

Until now, we formalized the problem of learning a low-rank matrix based dactorization
W = AB. At test time, computing the bilinear score using the model can be even fasésr w
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the data is sparse. For instance, given two vectpandx, with ¢; andc, non-zero values, com-
puting the bilinear fornx] ABT x, requiresO(c;k + k+kcz) = O((cy + ¢2)K) operations, and can be
significantly faster than the dense case. However, at training time dreta-1 algorithm still has
a complexity ofO((m+ n)k) for each iteration even when the data is sparse.

The current section describes an attempt to adamHaTA-1 such that it treats sparse data more
efficiently. The empirical evaluation of this adaptation showed mixed resultsy® include the
derivation for completeness. The main idea is to separate the low-rankfwojato two steps.
First, a projection to a low dimensional spa®ethat can be computed efficiently whgiis sparse.
Then, learning a second matrix, whose role is to tune the representatiorkidiimensional space.

To explain the idea, we focus on the case of learning a low-rank modehvgsicametrizes
a similarity function. The model iV = ABT, A € R™K B € R"™K. The similarity between two
vectorsp, g € R" is then given by

Sim(p,q) =p'Wq = (A"p)" - (Bq). 3)
This similarity measure can be viewed as the cosine similariffibetween the projected vectors

BTq andATp. We now introduce another similarity model which operates directly in the gegjec
space. Formally, we hawd € R**K, and the similarity model is
Sim(p,q) = (ATp)"M(B"q) = pTAMB'q. 4

Clearly, since the model in Equation (4) involves only linear matrix multiplicationsigssrip-
tive power is equivalent to that of the model Equation (3). However, stthe potential to be
learned faster. To speed the training we can iterate between learningténgomjections A,B us-
ing LORETA, and learning the inner low-dimensional similarity motielusing standard methods
operating in the low-dimensional space. Specifically, the idea is to execyngate steps d¥l for
every update step &,B (Algorithm 6). Afters update steps thl, it is decomposed using SVD to
obtainM =USV', and these factors are used to update the outer projectionsAisingU sqrt(S),
B« BVsqrt(S).

Consider the computational complexity: Given two sparse vegiors with c; andc, non-zero
values respectively, projecting them usiigndB to the low dimensional space takBsk(c; +¢7)),
and an update step of M tak€Xk?). DecomposingVl using SVD takesO(k®), so the overall
complexity fors updates i€ (k- (s(k+c1+¢2) +k?)). Whens > k the cost of decomposition is
amortized across mamyt updates and does not increase the overall complexity. The updat@of
takesO(k(n+m)) as before. This approach is related to the idea of manifold identificatiorri{®be
and Wright, 2007), where the learning &f B "identifies” a manifold of rank and the inner steps
operate to tune the representation within that subspace.

This iterative procedure could be a significant speed up compared toigieabO((m+ n)k).
Unfortunately, when we tested this algorithm in a similarity learning task (as iticBet.1), its
performance was not as good as that afRETA-1. The main reason was numerical instability:
The matrixM typically collapsed to match few directions &) and decomposing it has amplified
the sam@A directions. This approach awaits deeper investigation which is outsidedpe s€the
current paper.

6. Related Work

A recent summary of many advances in the field of optimization on manifolds & diy Absil
et al. (2008). Advances in this field have lately been applied to matrix complgteshavan et al.,
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Algorithm 6 : Manifold identification meta-algorithm

Input: Initial model matricesA € R™K B ¢ R™K st. W = ABT. MatricesA" and BT, the
pseudo-inverses & andB respectively. Loss function.

Output: MatricesA € Rk, Be R™k s t.W = ABT.

Parameters: ni1: LORETA step size n2: low-dimensional similarity learning step size.number
of low-dimensional learning steps per round

repeat:
[91.G2) = DL(ABT)
[A,B,A",B"] = LORETA (A,B,A",B",01,0,n1)
initialize M = I
fori=1:s
(01,02) = DL(AMBT)
M = full — rank— metric— learning(M, AT g1, BT gz, 1)
endfor
[U,SV]=svdM)
A=A-U - sqrt(9
B=B-V-sqrt(9
until stopping condition is satisfied

2010), tensor-rank estimation (Eldén and Savas, 2009; Ishteva €iHL), &nd sparse PCA (Journée
et al., 2010Db).

Broadly speaking, there are two kinds of manifolds used in optimization. l®iefeembedded
manifolds manifolds that form a subset of Euclidean space, and are the onespl@yén this work.
The second kind arquotient manifoldswhich are formed by defining an equivalence relation on
a Euclidean space, and endowing the resulting equivalence classes wjthr@priate Riemannian
metric. For example, the equivalence relatiordrdefined byx ~y <= 3\ > 0, x = Ay, yields a
guotient space called thieal projective spacghen given a proper Riemannian metric.

More specific to the field of low-rank matrix manifolds, work has been dan¢he general
problem of optimization with low-rank positive semi-definite (PSD) matrices. [&test and most
relevant is the work of Meyer et al. (2011). In this work, Meyer aniteegues develop a framework
for Riemannian stochastic gradient descent on the manifold of PSD matingspply it to the
problem of kernel learning and the learning of Mahalanobis distandesr fhain technical tool is
that of quotient manifolds mentioned above, as opposed to the embeddedlthamfuse in this
work. Another paper which uses a quotient manifold representation ieftdatirnée et al. (2010a),
which introduces a method for optimizing over low-rank PSD matrices.

In their 2010 paper (Vandereycken and Vandewalle, 2010), Vagydken et al. introduced a
retraction for PSD matrices in the context of modeling systems of partial eliffied equations. We
build on this work in order to construct our methods of learning genethP&D low-rank matrices.

In general, the problem of minimizing a convex function over the set of bowk-matrices was
addressed by several authors, including Fazel (2002). Recht(@0&0) and more recently Jain
et al. (2011) also consider the same problem, with additional affine cortsfrand its connection
to recent advances in compressed sensing. The main tools used in thesegra the trace norm
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(sum of singular values) and semi-definite programming. See also Faakl(2005) for a short
introduction to these methods.

More closely related to the current paper are the papers by Kulis et0@l9Y2and Meka et al.
(2008). Kulis et al. (2009) deal with learning low-rank PSD matrices, ws®lthe rank-preserving
log-det divergence and clever factorization and optimization in orderrigedan update rule with
runtime complexity of0(nk?) for ann x n matrix of rankk. Meka et al. (2008) use online learning
in order to find a minimal rank square matrix under approximate affine camstrahe algorithm
does not directly allow a factorized representation, and depends araeie” component, which
typically requires to compute an SVD.

Multi-class ranking with a large number of features was studied by Bai €@09), and in the
context of factored representations, by Weston et al. (2011) (WEABVSABIE combines pro-
jected gradient updates with a novel sampling scheme which is designed to miairaizieing loss
named WARP. WARP is shown to outperform simpler triplet sampling appreackiece WARP
yields rank-1 gradients, it can easily be adapted for Riemannian SGDRvebigave experiments
with such sampling schemes to future work.

7. Experiments

We tested IORETA in two learning tasks: learning a similarity measure between pairs of text doc-
uments using the 20-newsgroups data collected by Lang (1995), anchipéw rank image label
annotations based on a multi-label annotated set, usingrthgeNetdata set (Deng et al., 2009).
Matlab code for IORETA-1 is available online dtttp://chechiklab.biu.ac.il/research/LORETA

7.1 Learning Similarity on the 20 Newsgroups Data Set

In our first set of experiments, we looked at the problem of learning a sityilaeasure between
pairs of text documents. Similarity learning is a well studied problem, closelyecel® metric
learning (see Yang 2007 for a review). It has numerous applicationfomiation retrieval such as
guery by exampleand finding related content on the web.

One approach to learn pairwise relations is to measure the similarity of two dotsjme € R"
using a bilinear form parametrized by a modék R™":

Sw(p,q) = p'Wa.

Such models can be learned online (Chechik et al., 2010) and were shhaafnieve high precision.
Sometimes the matriw/ is required to be symmetric and positive definite, which means it actually
encodes a metric, also known as a Mahalanobis distance. Unfortunatedttse number of param-
eters grows as?, storing the matrixV in memory is only feasible for limited feature dimensionality.
To handle larger vocabularies, like those containing all textual terms fouadorpus, a common
approach is to pre-select a subset of the features and train a mod¢hevew dimensional data.
However, such preprocessing may remove crucial signals in the dataf é¥atures are selected in
a discriminative way.

To overcome this difficulty, we useddRETA-1 and LORETA-1-PSD to learn a rank{parametriza-
tion of the modeW. This model can be factorized W= AB", whereA,B € R"™K for the general
case, or ayV = AAT for the PSD case. In each of our experiments, we selected a subsétanf
tures, and trained a rarkkmodel. We varied the number of featureand the rank of the matrik
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S0 as to use a fixed amount of memory. For example, we used a rank-10withdeOK features,
and a rank-50 model with XOfeatures.

7.1.1 SMILARITY LEARNING WITH LORETA-1

We use an online procedure similar to that in Grangier and Bengio (2068} laechik et al. (2010).
At each round, three instances are sampled: a query docupaeRt, and two documents,, p_ €
R" such thap_ is known to be more similar tq thanp_. We wish that the model assigns a higher
similarity score to the paifg, p-.) than the paifqg,p-), and hence use the online ranking hinge loss
defined a$W(q7 P+; p—) = [1_ SN(qv p+) + SN<q7 p—)]+1 Where[2]+ = ma‘)(z7 O)

We initialized the model to be a truncated identity matrix, with only the krehes along the
diagonal. This corresponds in our case to choosingktimest informative terms as the initial data
projection.

7.1.2 DATA PREPROCESSING ANCFEATURE SELECTION

We used the 20 newsgroups data set (people.csail.mit.edu/jrennie/20Nepsgrcontaining 20
classes with approximately 1000 documents each. We removed stop wodid bot apply stem-
ming. The document terms form a vocabulary of 50,000 terms, and we skkestghset of these
features that conveyed high information about the identity of the class {lo@draining set) using
theinfogaincriterion (Yang and Pedersen, 1997). This is a discriminative criterioohwheasures
the number of bits gained for category prediction by knowing the presaraetesence of a term in a
document. The selected features were normalized ukid§ and then represented each document
as a bag of words. Two documents were considered similar if they sharedtthe class label, out
of the possible 20 labels.

7.1.3 EXPERIMENTAL PROCEDURE ANDEVALUATION PROTOCOL

The 20 newsgroups site proposes a split of the data into train and tesi\eetepeated splitting 5
times based on the sizes of the proposed splits (a train / test ratio of 65%)/ ®&%&valuated the
learned similarity measures using a ranking criterion. We view every dodupienhe test set as a
query, and rank the remaining test documenksy their similarity scores"Wp. We then compute
the precision (fraction of positives) at the topanked documents. We then average the precision
over all positions such that there exists a positive example in thertophis final measure is called
mean average precisigmand is commonly used in the information retrieval community (Manning
et al., 2008, Chapter 8).

7.1.4 GOMPARISONS

We compared bRETA with the following approaches.

1. Naive gradient descent(GD): similar to Bai et al. (2009). The model is represented as a
product of two matrice$V = AB'. Stochastic gradient descent steps are computed over the
factorsA andB, for the same loss used bYoRETA Iy (q, p+,p-). The GD steps are:

Anew=A-nNq(p-—p;)'B,
Brew=B—n(p- —p;)q"A.
We found this approach to be very unstable, and thus its results areasenped.
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2. Naive PSD gradient descentsimilar to the method above, except that now the model is con-
strained to be PSD. The model is represented as a producAA’. Stochastic gradient de-
scent steps are computed over the fagtéor the same loss used byoRETA: lw(q, p+,p-).

As shown by Meyer et al. (2011), this is in fact equivalent to Riemann@rhastic GD in the
manifold of PSD matrices when this manifold is endowed with a certain metric therautho
call theflat metric

The GD step is:

Anew=A—1 (q(p— —p+)" +(p- —p+)a") A.

The step sizey was chosen by cross validation. This approach was more stable in the PSD
case than in the general case, probably because the invariant ggads bnly the group

of orthogonal matrices (which are well-conditioned), as opposed to thggsf invertible
matrices which might be ill-conditioned.

3. lterative Passive-Aggressive (PA)since we found the above general GD procedlij¢o be
very unstable, we experimented with a related online algorithm from the fampasdive-
aggressive algorithms (Crammer et al., 2006). We iteratively optimizefoygeren a fixedB
and vice versa. The optimization is a tradeoff between minimizing thelygsand limiting
how much the models change at each iteration. The steps sizes for upflamB are
computed to be:

. lw (q, P+, p-) >
= min ,C 1,
A (HQHZ-\IBT(m—p)IIZ
. lw (9, P+,p-) >
N = mm( ,CJ.
® (P —p-)|2- [ATq|12

C is a predefined parameter controlling the maximum magnitude of the step sizendnp
cross-validation. This procedure is numerically more stable because nbthelization by
the norms of the matrices multiplied by the gradient factors.

4. Full rank similarity learning models. We compared with two full rank online metric learn-
ing methods, LEGO (Jain et al., 2008) and OASIS (Chechik et al., 2016 &gorithms
learn a full (non-factorized) model, and were run witk= 1000, in order to be consistent
with the memory constraint of @RETA-1. We have also compared with both full-rank mod-
els using rank 2000, that is, 4 times the memory constraint. We have not caohvaiéin batch
approaches such as Kulis et al. (2009), since they are not expecteal¢ao very large data
sets such as those our work is ultimately aiming towards.

In addition, we have experimented with the method for learning PSD matriceg agiolar
geometry characterization of the quotient manifold, due to Meyer et al.1j20This method'’s
runtime complexity iSO((n+m)k?), and we have found that its performance was not in line with
the methods described above.

7.1.5 RESULTS

Figure 3c shows the mean average precision obtained with all the abovedniettmrETA out-
performs the other approaches across all ranksRETA-PSD achieves slightly higher precision
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than LORETA. The reason may be that similarity was defined based on two samples beltmging
a common class, and this relation is symmetric and transitive, two relations wiadlespected

by PSD matrices but not by general similarity matrices. MoreoveR&ETA-PSD learned faster
along the training iterations when compared withHETA - see Figure 3a for a comparison of the
learning curves. Interestingly, for bothoRETA algorithms learning a low-rank model of rank 30,
using the best 16660 features, was significantly more precise than igarmich fuller model of
rank 100 and 5000 features, or a model using the full 50000 worduteriy but with rank 10 . The
intuition is that LORETA can be viewed as adaptively learning a linear projection of the data into
low dimensional space, which is tailored to the pairwise similarity task.

7.2 Image Multilabel Ranking

Our second set of experiments tackled the problem of learning to rarlk fabénages taken from
a large number of classék = 1660 with multiple labels per image.

In our approach, we learn a linear classifier ondeatures for each labele ¢ = {1,...,L},
and stack all models together to a single maikix R-*". At test time, given an image € R",
the producWp provides scores for every label for that imgge Given ground truth labeling, a
good model would rank the true labels higher than the false ones. Eadf tbevmatrix model can
be thought of as a sub-model for the corresponding label. Imposing-aalokvconstraint on the
model implies that these sub-models are linear combinations of a smaller nuniémndimodels.
Alternatively, we can view learning a factored rakikaodelW = ABT as learning a projection and
classifier in the projected space concurrently. The ma&tiprojects the data ontokadimensional
space, and the matrik consists ofL classifiers operating in the low-dimensional space. The data
we used for the experiment hadl500 labels, but the full ImageNet data set currentlya5000
labels, and is growing.

7.2.1 ONLINE LEARNING OF LABEL RANKINGS WITH LORETA-1

At each iteration, an imageis sampled, and using the current modéthe scores for all its labels
are computed//p. These scores are compared with the ground truth labgkadyi, ...,y } C C.
We wish for all the scores of the true labels to be higher than the scorgékefather labels by
a margin of 1. Thus, the learner suffers a multilabel multiclass hinge lossllawso Lety =
argmax,, (Wp)s, be the negative label which obtained the highest score, wiépgs is thegh
component of the score vectdfp.

The loss is thent(W,p,y) = 3i_1 [(Wp)y— (Wp)y, + 1], which is the sum of the margins
between the top-ranked false label and all the positive labels which vidlaadargin of one from
it. We used the subgradie@ of this loss for LORETA: for the set of indice$y, io,...ig C Yy which
incurred a non zero hinge loss, theow of G is p, and for the rowy Gis —d - p. The matrixG is
rank one, unless no loss was suffered in which case it is 0.

The non-convex and stochastic nature of the learning proceduredthsddo try several initial
conditions:

e Zero matrix: in this initialization we begin with a low-rank matrix composed entirely of
zeros. This matrix is not included in the low-rank manifaif"™, since its rank is less than
k. We therefore perform a simple pre-training session in which we addhgradients until
a matrix of rankk is obtained. In practice we added the firgt ubgradients (each such
subgradient being of rank one), and then performed an SVD to obtabesieankk model.
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Figure 3: (a) Mean average precision (mAP) over 20 newsgroupsedeas traced alongdRETA
learning for various ranks. Curve values are averages over 5tastirsplits. (b) Com-
parison of the learning curves oIRETA and LORETA-PSD. LORETA-PSD learns faster
than LORETA across all ranks (shown are results for ranks 10, 40 and 100mA®) of
different models with varying rank. For each rank, a different nundfdeatures was
selected using an information gain criterion, such that the total memory retntds
kept fixed (number of features rank is constant). 50000 features were used for rank
= 10. LEGO and OASIS were trained with the same memory (using 1000 feanck
rank=1000), as well as with 4 times the same memory (rank=2000). Emsrdeaote
the standard error of the mean over 5 train-test splits.

We chose R because we wanted to ensure that the matrix we obtain has rank greajaabr e
tok.
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Figure 4: ImageNet data. Mean average precision (mAP) as a functithe odnkk. Curves are
means over five train-test splits. Error bars denote the standard étf@ mean. Note
the different scale of the left and right figure. All hyper parametenewgelected using
cross validation. Three different initializations were used: the zero mategro padded
k x k identity matrix, and a product of two i.i.d. Gaussian matrices. See Section 7t2.1 fo

details.

e Zero-padded identity: we begin with a matrix composed of thex k identity matrixly, on
the top left corner, padded with zeros so as to fornh armn matrix. This is guaranteed to be
of rankk. The choice of the location of the identity matrix block is arbitrary.

¢ Independent Gaussianwe sample independently the entries of the two factor matAces
R™K BR™K from a standard normal distribution. This model is thus initialized as a product

of two random Gaussian matrices.

7.2.2 DATA SET AND PREPROCESSING

We used data from the ImageNet 2010 Challenge (www.imagenet.org/chesdleSyRC/2010/)
containing images labeled with respect to the WordNet hierarchy. Each inegmanually labeled
with a single class label (for a total of 1000 classes). We added labada¢brimage, using classes
along the path to the root of the hierarchy (adding 676 classes in total)iséérded ancestor labels
covering more than 10% of the images, leaving 1660 labels (5.2 labels per onayerage). We
used ImageNet’'s bag of words representation, based on vector gquariiFT features with a
vocabulary of 1000 words, followed hifsidf normalization.

7.2.3 EXPERIMENTAL PROCEDURE ANDEVALUATION PROTOCOL

We trained on two data sets. A medium scale one of 50000 images, and adéageeticonsisting
of 908210 images. We tested on 20000 images for the medium scale, artMaB6gRyes for the
large scale. The quality of the learned label ranking was evaluated usingetim average precision
(mAP) criterion mentioned in 7.1.3 above (Manning et al., 2008, Chapter 8).
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ImageNet 1M Precision vs. Time
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Figure 5: (a) Mean average precision (mAP) as function of single CBtkgsing time in seconds
for different algorithms and model ranks, presented on a log-scaldrixMRerceptron
(black squares) and Group Multi-Class Perceptron (purple crossed)oth full rank
(rank=1000), and their curves are reproduced on all six panetofaparison. For each
rank and algorithm (bReTA and PA), we used the best performing initialization scheme.
(b) mAP of the best performing model for different algorithms and time poi&tsor
bars represent standard deviation across 5 train-test splits.
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7.2.4 GOMPARISONS

We compared the performance ocbRETA on this task with three other approaches:

1. PA - lterative Passive-Aggressive same as described in Section 7.1.4 above for the 20
Newsgroups experiment.

2. Matrix Perceptron : a full rank stochastic subgradient descent. The model is initialized as a
zero matrix of size 1666 1000, and in each round the loss subgradient is subtracted from it.
After a sufficient number of rounds, the model is typically full rank andsge

3. Group Multi-Class Perceptron: a mixed (2,1) norm online mirror descent algorithm (Kakade
et al., 2010). This algorithm encourages a group-sparsity pattern withiteéinned matrix
model, thus presenting an alternative form of regularization when coxhpatie low-rank
models.

LoRETA and PA were run using a range of model ranks. For all three methodsgiinsize (or
the C parameter for PA) was chosen by 5-fold cross validation on a validsgio

7.2.5 RESULTS

Figure 4 plots the mAP precision ofdRETA and PA for different model ranks, while showing on
the right the mAP of the full rank 1000 Matrix Perceptron g&dl) norm algorithms. IORETA
significantly improves over all other methods across all ranks. Howexemote that IORETA,
being a non-convex algorithm, does depend significantly on the method ofizaitian, with the
zero-padded identity matrix being the best initialization for lower rank modedsttanzero matrix
the best initialization for higher rank models (rarkL50).

In Figure 5 we show the accuracy as a function of CPU tim on a single CPthdadifferent
algorithms and model ranks. We ran Matlab R2011a on an Intel Xeon 2.27n&dhine, and
used Matlab’s si ngl et hr ead flag to control multithreading. The higher-ranloRETA models
outperform all others both in the short time scalel(000 sec.) and the long time scate 100, 000
sec.). For some of the higher-rank models there is evident overtrainiagnad point, but this
overtraining could be avoided by adopting an early-stopping procedure

8. Discussion

We presented QRETA, an algorithm which learns a low-rank matrix based on stochastic Rie-
mannian gradient descent and efficient retraction to the manifold of low+raatrices. IORETA
achieves superior precision in a task of learning similarity in high dimensiea#life spaces, and
in multi-label annotation, where it scales well with the number of classes. Aia8&nt of LORETA
can be used efficiently for low-rank metric learning.

There are many ways to tie together different classifiers in a multi-class sétfadpave seen
here that a low-rank assumption coupled with a Riemannian SGD procedperiormed the (2,1)
mixed norm. Other approaches leverage the hierarchical structurenhemany of these tasks.
For example, Deng et al. (2011) use the label hierarchy of ImageNeiripute a similarity measure
between images.

For similarity learning, the approach we take in this paper uses a weakvisiperbased on
ranking similar pairs: one only knows that the p@jrp..) is more similar than the pajg,p_). In
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some cases, a stronger supervision signal is available, like the classsehaibjects are known. In
these cases, Deng et al. (2011) have shown how to use class identitestaict good features by
training an SVM classifier on each class and using its scaled output atueefe@hey show that
such features can lead to very good performance, with the addedtageahat the features can be
learned in parallel. The weak supervision approach that we take her¢oanaisdle the case, which
is particularly common in large scale data sets collected through web usirgyawhere weaker
supervision is much easier to collect.

In this paper, we used simple sampling schemes for both the similarity learninguatigle-
labelling experiments. More elaborate sampling techniques such as thpssgaddy Weston et al.
(2011), which focus on “hard negatives”, may vyield significant penance improvements. As
these approaches typically involve rank-one gradients when implementedimes learning algo-
rithms, they are well suited for being used in conjunction withRETA, and this will be the subject
of future work.

LoRETAYields a factorized representation of the low-rank matrix. For similarity legrirese
factors project to a low-dimensional space where similarity is evaluatedeeffic For classifica-
tion, it can be viewed as learning two matrix components: one that projectsgineimensional
data into a low dimension, and a second that learns to classify in the low dimenkidomoth
approaches, the low-dimensional space is useful for extracting thanekgructure from the high-
dimensional data, and for exploring the relations between large numbeessés.
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Appendix A. Proof of Lemma 2

We formally define the tangent space of a manifold at a point on the manifadd¢han describe an
auxiliary parametrization of the tangent space to the manitgfti" at a pointW € a4"™.

Definition 7 The tangent spaceyPM to a manifoldM™ C R" at a point We M is the linear space
spanned by all the tangent vectors at 0 to smooth cuyvés — M such thaty(0) =W. That is,
the set of tangents iR" to smooth curves within the manifold which pass through the point W.

In order to characterize the tangent spac8#f", we look into the properties of smooth curves
y, where for each, y(t) € M,"™.

For any such curve, because of the r&krdssumption, we may assume that fortall R, there
exist (non-unique) matriced(t) € RM™K, B(t) € R™K, such thay/(t) = A(t)B(t)". We now wish to
find the tangent vectors to these curves. By the product rule we have:

¥(0) = A0)B(0)" +A(0)B(0)".
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SinceW = y(0) = A(0)B(0)" = AB" we have foW = AB':
Tw M = {AxT FYBT X eR™KY ¢ R”Xk} . (5)

This is because any choice of matriéesy such thaX = B, Y = A will give us some tangent vector,
and for any tangent vector there exist such matrices. The spaceialote@ly a linear space. Being
a tangent space to a manifold, it has the same dimension as the mafiifeld)k — k2.

Recall the definition of the tangent space given in Lemma 1:

TwM™ =3 [A A] MNP (BT ‘M e R Ny e RIMKxK N, € R(K)xK (6)
k N, o [B] | T e '

To prove Lemma 2, it is easy to verify by counting that the dimension of theespadefined
in Equation (6) above i$n+m)k —k?. Using the notation above, we can see that by taking
MBT +N;BT andY = A, N,, the space defined in Equation (6) is includediipv,"" as defined in
Equation (5). Since it is a linear subspace of equal dimension, bothsspacs be equdll

Appendix B. Proof of Theorem 3

We state the theorem again here.

Theorem 8 LetW e M,"™, W = ABT, and W' = BITAT. Let& € TwM,"™, & = EAB - EABL L EALB,
asin 1, and let:

1 1 1

Vi=W S804+ 845 - éEAB\NTEAB - éEALBWTEAB :
1 1 1

Vo =W SEA8+ ERB — SEAWTERS — e TR

The mapping
Rw (&) =ViW'V;, (7
is a second order retraction from a neighborho®g, C Tw "™ to M,

Proof To prove that Equation (7) defines a retraction, we first showMhft'\» is a rankk matrix.
Note that there exist matricég € R™k andZ, € R™k such thatv;, = z;B™ and ,V; = AZ]. A
sufficient condition for the matrices, andZ, to be of full rank is that the matri¥ is of limited
norm. Thus, for all tangent vectors lying in some neighborh@adC T\,\,ﬁ\/[k”’m of 0 e TWMk”’m,
the above relation is indeed a retraction to the manifold. In practice this is agreblem, as the
set of matrices not of full rank is of zero measure, and in practice we toand these matrices to
always be of full rank. ThuRy(§) = ViW'V, = z;BTB(BTB)1(ATA)~IATAZ] = Z,Z], which,
given thatz; andZ, are of full column rank, is exactly a rarikk-n x m matrix.

Next we show thaRy (&) is a retraction, and of second order. It is obvious Rgt0) =W,
since the projection of the zero vector is zero, and §ffsEABL and&”:B are all zero.

Expandingv;W 1V, up to second order terms & many terms cancel and we end up with:

R\N(E) :W_’_EAB_’_EABJ_ +EALB+EALBWTEABJ_ +O(HEH3>
=W +&+E4PWTERB 1+ O(J1g)1%).
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Local first order rigidity is immediately apparent. If we expand the only sdcorder term,
EABWTEABL we see that it equals; NoNT BT . We claim this term is orthogonal to the tangent
spaceTwM,"". If we take, using the characterization in Lemma 2, an arbitrary tangettrvec
AMBT + ANT BT + A NoBT in Tw M,"™, we can calculate the inner product:

((ALN2N{BT), (AMBT + ANJ BT + A \,BT)) =

tr (B NtN; ATAMBT +B; NyN; ATANS B} + B NiNJATA \,BT) =

tr (BLNiNJATA LB =

tr (B"BLNiNJ ATA Np) =0
with the equalities stemming from the fact tmdltA =0, BIB = 0, and from standard trace identi-

ties. Thus, the second order term cancels out if we project the seeondtive of the curve defined
by the retraction, as required by the second-order condition

R <dRW(TE) yT_0> —0 VEeTwi.

dr2
We see that the second order term is contained in the normal space. mbigdms the proof
that the retraction is a second order retraction. |

Appendix C. Proof of Lemma 4

Let us see how can we calculate the needed terms explicitly. When evaluatirexphession

ViW™V,, we can use the algebraic relatiomgW' = P, andW'W = Ps. From this we can conclude
that: WWTEAB = gAB EABWT\W = EAB tABWTW = EALB andWWTEABL = §ABL These relations,

along with many terms that cancel out, lead to the following expression:

Rw (&) =VaW'V, =
W EAB | gABL | gAB %EAB\NTEAB\NTEAB 3 g £ABY T EABY T EABL
B g £A By TEABY TEAB | FALB\YTEABL _ AL By TEAByY TEAB,
n Tlﬁ EABY\TEABY TEABY TEABL | %3 £ALBYy TEABYy TEABYy TEAB
n él EABYy TEABYY TEABYY TEAB | %EALBWTEAB\NTEABEABL_

We now substitute the matricéé, N; and N, into the above relation. Most terms cancel out.
For example, we have the ident&$BWTEAB = AMZBT, EABWTEABWTEAB — AM3BT and so forth.
We obtain the following relation:

1
Rw(§) = AB" + AMB™ + AN/ BT + A N,BT — éA|\/|3BT

— gAMZNlTBI - gALNZMZBT + A NoNBT — AL NMN{ BT
1 1 1 1
+ ESAM3N1T B + e NoM3BT + @AM“BT + AL NoM2N{ BT .
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Collecting terms by the leftmost and rightmost factors, we obtain:

Rv(§) =A <|k+ M — Sm3 1M4> =

8 64
3 1
Al l,—>M2+ —M3|N/BT
+ <k 8 +16 ) 15
3vz. L3Rt
AN (lk—=-M2+ —-M3)B
+AL 2<k 8 +16 )

1
+AN, <|k— M + 4|\/|2> N BT

Finally, treating the first and fourth lines as a polynomial expressidv,iand taking its poly-
nomial square root, we can split the above sum into the product ofxak matrix and ak x m
matrix:

Rw(§) = [A <|k+ %M — ;w) +AN, <|k— ;M” :
[B (Ik+;MT—é(MT)2) +B.IN <|k_;MT>]T_

Appendix D. Rank One Pseudoinverse Update Rule

For completeness we develop below the procedure for updating thegiseerde of a rank-1 per-
turbed matrix (Meyer, 1973), following the derivation of Petersen artkeBen (2008). We wish
to find a matrixG such that for a given matriA along with its pseudo-invers&', and vectors of
appropriate dimensionandd, we have:

(A+cd")' =AT+G.
We have used the fact thathas a full column rank to simplify slightly the algorithm of Petersen
and Pedersen (2008).
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