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Abstract

In the supervised learning setting termed Multiple-Ins&ahearning (MIL), the examples are bags
of instances, and the bag label is a function of the labelssdhstances. Typically, this function
is the Boolean OR. The learner observes a sample of bags amdghlabels, but not the instance
labels that determine the bag labels. The learner is thanreghto emit a classification rule for
bags based on the sample. MIL has numerous applicationgnang heuristic algorithms have
been used successfully on this problem, each adapted tdismedtings or applications. In this
work we provide a unified theoretical analysis for MIL, whicblds for any underlying hypothesis
class, regardless of a specific application or problem donVde show that the sample complexity
of MIL is only poly-logarithmically dependent on the sizetbé bag, for any underlying hypothesis
class. In addition, we introduce a new PAC-learning alganitfor MIL, which uses a regular
supervised learning algorithm as an oracle. We prove tliateaft PAC-learning for MIL can be
generated from any efficient non-MIL supervised learnirgpethm that handles one-sided error.
The computational complexity of the resulting algorithrmoidy polynomially dependent on the
bag size.

Keywords: multiple-instance learning, learning theory, sample clexify, PAC learning, super-
vised classification

1. Introduction

We consider the learning problem termed Multiple-Instance Learning (Mitst introduced in
Dietterich et al. (1997). MIL is a special type of a supervised classificgtioblem. As in classical
supervised classification, in MIL the learner receives a sample of labg&dples drawn i.i.d from

an arbitrary and unknown distribution, and its objective is to discover &ifitztion rule with a
small expected error over the same distribution. In MIL additional structuassumed, whereby
the examples are receivedlzaysof instancessuch that each bag is composed of several instances.
It is assumed that each instance has a true label, however the learnebsetyes the labels of the
bags. In classical MIL the label of a bag is the Boolean OR of the labelseah8tances the bag
contains. Various generalizations to MIL have been proposed (segRegdt, 1998; Weidmann

et al., 2003). Here we consider both classical MIL and the more gegettalg, where a function
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SABATO AND TISBHY

other than Boolean OR determines bag labels based on instance labelsurithienf is known to
the learner a-priori. We term the more general settjegeralized MIL

It is possible, in principle, to view MIL as a regular supervised classifinaagk, where a bag
is a single example, and the instances in a bag are merely part of its interesdertation. Such a
view, however, means that one must analyze each specific MIL proldparately, and that results
and methods that apply to one MIL problem are not transferable to othepiblems. We propose
instead a generic approach to the analysis of MIL, in which the propeftiadviL problem are
analyzed as a function of the properties of the matching non-MIL problesmveishow in this work,
the connections between the MIL and the non-MIL properties are stnodgiseful. The generic
approach has the advantage that it automatically extends all knowledgeedhdds that apply to
non-MIL problems into knowledge and methods that apply to MIL, without irdtg specialized
analysis for each specific MIL problem. Our results are thus applicabldiferse hypothesis
classes, label relationships between bags and instances, and tasgst IMoreover, the generic
approach allows a better theoretical understanding of the relationshipnera, between regular
learning and multi-instance learning with the same hypothesis class.

The generic approach can also be helpful for the design of algorithineg, i allows deriving
generic methods and approaches that hold across different settorgsstance, as we show below,
a generic PAC-learning algorithm can be derived for a large class bfgvtiblems with different
hypothesis classes. Other applications can be found in follow-up oksefthe results we report
here, such as a generic bag-construction mechanism (Sabato et @),, &8 learning when bags
have a manifold structure (Babenko et al., 2011). As generic analysss ganight be possible to
improve upon it in some specific cases. Identifying these cases and ipmptighter analysis for
them is an important topic for future work. We do show that in some importaeiseamost notably
that of learning separating hyperplanes with classical MIL—our anallysight up to constants.

MIL has been used in numerous applications. In Dietterich et al. (199 Qrtlgedesign appli-
cation motivates this setting. In this application, the goal is to predict which mekwould bind
to a specific binding site. Each molecule has several possible conformétlmaes) it can take.
If at least one of the conformations binds to the binding site, then the moleculeeisdbpositive.
However, it is not possible to experimentally identify which conformation wassticcessful one.
Thus, a molecule can be thought of as a bag of conformations, whereceaformation is an in-
stance in the bag representing the molecule. This application employs the ésipatlass of Axis
Parallel Rectangles (APRs), and has made APRs the hypothesis cldssasf in several theoret-
ical works that we mention below. There are many other applications for, Mtluding image
classification (Maron and Ratan, 1998), web index page recommendation ¢t al., 2005) and
text categorization (Andrews, 2007).

Previous theoretical analysis of the computational aspects of MIL hasdme in two main
settings. In the first setting, analyzed for instance in Auer et al. (1838 and Kalai (1998) and
Long and Tan (1998), it is assumed that all the instances are drawn inndafigingle distribution
over instances, so that the instances in each bag are statistically indeppdddder this indepen-
dence assumption, learning from an i.i.d. sample of bags is as easy asddewmiran i.i.d. sample
of instances with one-sided label noise. This is stated in the following theorem.

Theorem 1 (Blum and Kalai, 1998) If a hypothesis class is PAC-learnable in polynomial time
from one-sided random classification noise, then the same hypothesisisIBAC-learnable in
polynomial time in MIL under the independence assumption. The commahtomplexity of
learning is polynomial in the bag size and in the sample size.
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MULTI-INSTANCE LEARNING WITH ANY HYPOTHESISCLASS

The assumption of statistical independence of the instances in each bageésgeh, very limiting,
as itis irrelevant to many applications.

In the second setting one assumes that bags are drawn from an arthigtebutionover bags
so that the instances within a bag may be statistically dependent. This is cleaHymuoe useful in
practice, since bags usually describe a complex object with internal seutius it is implausible
to assume even approximate independence of instances in a bag. Fopaligelsis class of APRs
and an arbitrary distribution over bags, it is shown in Auer et al. (1998)itlihere exists a PAC-
learning algorithm for MIL with APRs, and this algorithm is polynomial in both thee ©f the
bag and the dimension of the Euclidean space, then it is possible to polynomi&leBA DNF
formulas, a problem which is solvable only®? = AP (Pitt and Valiant, 1986). In addition, if
it is possible to improperly learn MIL with APRs (that is, to learn a classifier tvismot itself an
APR), then it is possible to improperly learn DNF formulas, a problem whishriod been solved
to this date for general distributions. This result implies that it is not possili#é@learn MIL on
APRs using an algorithm which is efficient in both the bag size and the prabdimensionality.
It does not, however, preclude the possibility of performing MIL effidiem other cases.

In practice, numerous algorithms have been proposed for MIL, eanlsiftg on a different
specialization of this problem. Almost none of these algorithms assume statistiegkeimdence
of instances in a bag. Moreover, some of the algorithms explicitly exploit predudependences
between instances in a bag. Dietterich et al. (1997) propose sevarathwealgorithms for finding
an APR that predicts the label of an instance and of a bag. Diversatp@vsron and Lozano-
Pérez, 1998) and EM-DD (Zhang and Goldman, 2001) employ assumptiotiseostructure of
the bags of instances. DPBoost (Andrews and Hofmann, 2003), mi-&«MMI-SVM (Andrews
et al., 2002), and Multi-Instance Kernelsg@er et al., 2002) are approaches for learning MIL
using margin-based objectives. Some of these methods work quite welldticertaHowever, no
generalization guarantees have been provided for any of them.

In this work we analyze MIL and generalized MIL in a general framewardependent of a
specific application, and provide results that hold for any underlyingtingsis class. We assume a
fixed hypothesis class defined over instances. We then investigate tiensiigp between learning
with respect to this hypothesis class in the classical supervised leartiimy s&ith no bags, and
learning with respect to the same hypothesis class in MIL. We addressarotilescomplexity and
computational feasibility.

Our sample complexity analysis shows that for binary hypothesis and thdeshreal-valued
hypotheses, the distribution-free sample complexity for generalized MMvgonly logarithmically
with the maximal bag size. We also provide poly-logarithmic sample complexity lsdonthe case
of margin learning. We further provide distribution-dependent sample lexitypbounds for more
general loss functions. These bound are useful when only thegavbesy size is bounded. The
results imply generalization bounds for previously proposed algorithmbifor Addressing the
computational feasibility of MIL, we provide a new learning algorithm with @dole guarantees for
a class of bag-labeling functions that includes the Boolean OR, used sicabBIIL, as a special
case. Given a non-MIL learning algorithm for the desired hypothesss clahich can handle one-
sided errors, we improperly learn MIL with the same hypothesis class. drsreiction is simple to
implement, and provides a computationally efficient PAC-learning of MIL, witly @ polynomial
dependence of the run time on the bag size.

In this work we consider the problem of learning to classify bags usingedddlisample of bags.
We do not attempt to learn to classify single instances using a labeled samplgsoide point out
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that it is not generally possible to find a low-error classification rule foramses based on a bag
sample. As a simple counter example, assume that the label of a bag is therBoBl@hthe labels
of its instances, and that every bag includes both a positive instanceragative instance. In this
case all bags are labeled as positive, and it is not possible to distinguishaigpes of instances
by observing only bag labels.

The structure of the paper is as follows. In Section 2 the problem is formafipet and
notation is introduced. In Section 3 the sample complexity of generalized Mhiriary hypotheses
is analyzed. We provide a useful lemma bounding covering numbers foritM8ection 4. In
Section 5 we analyze the sample complexity of generalized MIL with real-vélusetions for
large-margin learning. Distribution-dependent results for binary legraimd real-valued learning
based on the average bag size are presented in Section 6. In Sectigmmésamt a PAC-learner for
MIL and analyze its properties. We conclude in Section 8. The appendudies technical proofs
that have been omitted from the text. A preliminary version of this work has pablished as
Sabato and Tishby (2009).

2. Notations and Definitions

For a natural numbes, we denoték] = {1,...,k}. For a real numbex, we denotéx] , = max{0,x}.
log denotes a base 2 logarithm. For two vectasse R", (x,y) denotes the inner product »fand
y. We use the function sigrR — {—1,+1} where sigtix) = 1 if x> 0 and sigiix) = —1 otherwise.
For a functionf : A — B, we denote byf ¢ its restriction to a se€ C A. For a univariate function
f, denote its first and second derivativesdyand f” respectively.

Let X be the input space, also called the domain of instances. A bag is a finitedskdrof
instances fronk. Denote the set of allowed sizes for bags in a specific MIL probleiR @yN. For
any setA we denoteA® £ U,.gA". Thus the domain of bags with a sizeRand instances from
X is xR, A bag of sizen is denoted by = (x[1],...,x[n]) where eacl(j] € X is an instance in
the bag. We denote the number of instanceslay |x]. For any univariate functiori : A — B, we
may also use its extension to a multivariate function from sequences of eleéménis sequences
of elements irB, defined byf (a[1],...,alk]) = (f(a[1]),..., f(alk])).

Let| C R an allowed range for hypotheses over instances or bags. For instande-1,+1}
for binary hypotheses and= [—B, B| for real-valued hypotheses with a bounded rangeC |1~
is a hypothesis class for instances. Every MIL problem is defined byed firg-labeling function
@ : 1R — | that determines the bag labels given the instance labels. Formally, evemcimsta
hypothesis : X — | defines a bag hypothesis, denotechbyx (R — | and defined by

vxe X® hx) 2 gh(x(]),...,h(x]r])).

The hypothesis class for bags givéfandy is denoted” £ {h | h e #(}. Importantly, the identity
of Y is known to the learner a-priori, thus eaphdefines a different generalized MIL problem. For
instance, in classical MIU, = {—1,+1} andy is the Boolean OR.

We assume the labeled bags are drawn from a fixed distribDtaver X(R x {—1, +1}, where
each pair drawn fror® constitutes a bag and its binary label. Given a rangeR of possible label
predictions, we define a loss functién{—1,+1} x| — R, where/(y,y) is the loss incurred if the
true label isy and the predicted label s The true loss of a bag-classifier X(R — [ is denoted by
¢(h,D) & Ex yv)~plf(Y;h(X))]. We say that a sample or a distribution aeealizableby 7 if there

is a hypothesié € # that classifies them with zero loss.
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The MIL learner receives a labeled sample of b&@s,y1),- -, (Xm,Ym)} C xR x {-1L,+1}
drawn fromD™, and returns a classifidr: X(R — I. The goal of the learner is to retumthat
has a low Iossf(ﬁ,D) compared to the minimal loss that can be achieved with the bag hypothesis
class, denoted b§f (#,D) £ inf, _57¢(h,D). The empirical loss of a classifier for bags on a labeled
sampleSis /(h,S) £ Ex v)s[/(Y, h(X))]. For an unlabeled set of ba§s- {Xi}ieim, we denote the
multi-set of instances in the bags 8by S’ £ {x[j] | i € [m], ] € [|xi|]}. Since this is a multi-set,
any instance which repeats in several bagSimrepresented the same amount of tim&in

2.1 Classes of Real-Valued bag-functions

In classical MIL the bag function is the Boolean OR over binary labels,ithat {—1,+1} and
Y=O0R:{-1,+1}® — {—1 +1}. A natural extension of the Boolean OR to a function over reals
is the max function. We further consider two classes of bag functionsresés, each representing
a different generalization of the max function, which conserves a diffesubset of its properties.

The first class we consider is the class of bag-functions that extend nmerB®tmlean functions.
Monotone Boolean functions map Boolean vector§+td,+1}, such that the map is monotone-
increasing in each of the inputs. The set of monotone Boolean functiorad#yethe set of func-
tions that can be represented by some composition of AND and OR fundiiwssit includes the
Boolean OR. The natural extension of monotone Boolean functions tfurezlons over real vec-
tors is achieved by replacing OR with max and AND with min. Formally, we defitensions of
monotone Boolean functions as follows.

Definition 2 A function fromR" into R is an extension of an-ary monotone Boolean functiohit
belongs to the se#, defined inductively as follows, where the input to a functiangsR":

(DVieln], z—Zj]e My
(QVkeNT, f1,...,fk € My = z— maxc{fj(2)} € Mp;
(3)Vke Nt f1,....fxke M=z~ minjciq{ fj(2)} € M.

We say that a bag-functioty : R(® — R extends monotone Boolean functions if for ak IR,
Wrn € M.

The class of extensions to Boolean functions thus generalizes the maofuinca natural way.

The second class of bag functions we consider generalizes the maiofulbg noting that for
bounded inputs, the max function can be seen as a variant of the infimity{{®., = max|Zi]|.
Another natural bag-function over reals is the average function,atefia)(z) = %ziew z, which
can be seen as a variant of the 1-ndjzfly = 3¢y |2[i]|. More generally, we treat the case where
the hypotheses map into= [—1, 1], and consider the class of bag functions inspired Ipyreorm,
defined as follows.

Definition 3 For p € [1,), the pnorm bag functionpp : [—1,+1](® — [~1,+1] is defined by:

n

1/p
VzeR", Yp(z) £ <r11 _zl(z[i] + 1)”) -1
For p = o, Definee, = limp_e Pp.
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Since the inputs ol are in[—1,+1], we havey,(z) = n~Y/P.||z+ 1|, — 1 wheren is the length
of z. Note that the average function is simgly, andWe = ||z+ 1|l — 1 = max. Other values gb

fall between these two extremes: Due to fraorm inequality, which states that for gdle [1, «)

andx € R", 2||x||l1 < n~YP||x|| < ||X]|., we have that for abt € [-1,+1]"

average= P1(z) < Pp(z) < Po(z) = max.

Many of our results hold when the scale of the output of the bag-functigeldated to the scale
of its inputs. Formally, we consider cases where the output of the badgidurdoes not change by
much unless its inputs change by much. This is formalized in the following defimifia.ipschitz
bag function.

Definition 4 A bag functionp : R(® — R is c¢-Lipschitz with respect to the infinity norfior ¢ > 0
if
vne RvVabeR" |w(a)—w(b)| <clla—blw.

The average bag-function and the max bag functions are 1-Lipschitzedver, all extensions
of monotone Boolean functions are 1-Lipschitz with respect to the infinitynrethis is easy to
verify by induction on Definition 2. Allp-norm bag functions are also 1-Lipschitz, as the following
derivation shows:

[Wp(@) —wp(b)| =n~YP-[a+Lfjp—[Ib+Lfjp| < n"*P- la—b]|p < [|a—bl|.

Thus, our results for Lipschitz bag-functions hold in particular for the bbag-function classes we
have defined here, and in specifically for the max function.

3. Binary MIL

In this section we consider binary MIL. In binary MIL we let= {—1,+1}, thus we have a binary
instance hypothesis clagg C {—1,+1}*. We further let our loss be the zero-one loss, defined
by £o/1(y,¥) = 1]y # ¥]. The distribution-free sample complexity of learning relative to a binary
hypothesis class with the zero-one loss is governed by the VC-dimensibe bf/pothesis class
(Vapnik and Chervonenkis, 1971). Thus we bound the VC-dimensigH @fs a function of the
maximal possible bag size= maxR, and of the VC-dimension of{. We show that the VC-
dimension of# is at most logarithmic irr, and at most linear in the VC-dimension #f, for
any bag-labeling function : {—1,+1}(R) — {—1,+1}. It follows that the sample complexity of
MIL grows only logarithmically with the size of the bag. Thus MIL is feasibleref@ quite large
bags. In fact, based on the results we show henceforth, Sabato 20H0) (have shown that MIL
can sometimes be used to accelerate even single-instance learning. \&egdtotiide lower bounds
that show that the dependence of the upper bourrdaml on the VC-dimension of is imperative,

for a large class of Boolean bag-labeling functions. We also show a mgtidvier bound for the
VC-dimension of classical MIL with separating hyperplanes.

3.1 VC-Dimension Upper Bound

Our first theorem establishes a VC-Dimension upper bound for geregtaliL. To prove the
theorem we require the following useful lemma.
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Lemma 5 For any RC N and any bag functiog : {—1,4+1}® — {—1,+1}, and for any hypoth-
esis classH C {—1,+1}* and a finite set of bagsS xR,

| His| < |His|-

Proof Lethy,hy € # be bag hypotheses. There exist instance hypothgsgs € # such that
g, = h fori = 1,2. Assume thalhy s # hps. We show thatl|s) # g2/, thus proving the lemma.
From the assumption it follows thgt s # J,s. Thus there exists at least one bag Ssuch that

0,(X) # G(x). Denote its size by. We have(gz (X[1]). ., g1 (M) # W(Ga(X[1]) ..., G2(x[n]))-
Hence there exists pe [n] such thag; (x[j]) # d2(x[j]). By the definition ofS”, x[j] € S”. There-

foregys # g2js-- u

Theorem 6 Assume that# is a hypothesis class with a finite VC-dimension d. Let and
assume that R [r]. Let the bag-labeling functiog : {-1,+1}® — {—1, 41} be some Boolean
function. Denote the VC-dimension&fby d. We have

dr <max{16,2dlog(2er)}.

Proof For a set of hypothesek denote byJ | the restriction of each of its membersApso that
InE {hia | h € 7}. Sinced, is the VC-dimension off, there exists a set of bags” X of size

dr that is shattered by, so that|#|s| = 2%. By Lemma 5| s| < |#{|s.|, therefore & < |#s)|.
In addition, R C [r] implies |S’| < rd;. By applying Sauer’'s lemma (Sauer, 1972; Vapnik and
Chervonenkis, 1971) t6{ we get

4 e\ _ (erd )’
zslﬂsﬂg(d)S q )

Wheree is the base of the natural logarithm. It follows thiat< d(log(er) — logd) + dlogd;. To
provide an explicit bound fad,, we bounddlogd; by dividing to cases:

1. Eitherdlogd, < 3d;, thusd, < 2d(log(er) —logd) < 2dlog(er),
2. or3d, <dlogd;. In this case,

(a) eitherd; < 16,

(b) ord, > 16. In this case/d; < d;/logd; < 2d, thusdlogd: = 2dlog+/d; < 2dlog2d.
Substituting in the implicit bound we gdt < d(log(er) —logd) +2dlog 2d < 2d log(2er).

Combining the cases we hage< max{16,2dlog(2er)}. [ |
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3.2 VC-Dimension Lower Bounds

In this section we show lower bounds for the VC-dimension of binary Midjdating that the
dependence od andr in Theorem 6 is tight in two important settings.

We say that a bag-functiofp : {—1,+1}(® — {—1,+1} is r-sensitiveif there exists a num-
bern € Rand a vectorc € {—1,+1}" such that for at least different numbersjy,..., j, € [n],
w(c[l],...,c[jil,...,c[n]) # w(c[1],...,—clji],...,c[n]). Many commonly used Boolean functions,
such as OR, AND, Parity, and all their variants that stem from negating sbre inputs, are
r-sensitive for every € R. Our first lower bound shows if is r-sensitive, the bound in Theorem 6
cannot be improved without restricting the set of considered instana#hsgis classes.

Theorem 7 Assume that the bag functign: {—1,+1}® — {—1,+1} is r-sensitive for some &
N. For any natural d and any instance domathwith |X| > rd|log(r) |, there exists a hypothesis

classH with a VC-dimension at most d, such that the VC dimensioH & at least dlog(r) |.

Proof Sincey is r-sensitive, there are a vectore {—1,+1}" and a setl C n such thatJ| =r
andVj € J,y(c[1],...,c[n]) # w(c[l],...,—c[j],...,c[n]). Sincey maps all inputs tqd —1,+1}, it
follows thatVj € J,@(c[1],...,—c[j],...,c[n]) = —yP(c[1],...,c[n]). Denotea = Y(c[1],...,c[n]).
Then we have

Viedyye{-1,+1}, Ww(c[l],...,c[j] V,...,c[n])=a-y. (1)
For simplicity of notation, we henceforth assume w.l.0.g. thatr andJ = [r].

Let SC X" be a set ofd|log(r) | bags of size, such that all the instances in all the bags are

distinct elements ak'. Divide Sinto d mutually exclusive subsets, each wjtbg(r) | bags. Denote
bagp in subset by x(,1). We define the hypothesis class

H 2 {hky,...,kg] | Vi € [d],k € [21°90]]},

wherehky, ..., kq] is defined as follows (see illustration in Table 1): Bog X which is not an
instance of any bag i1§, hiki,...,ks] = —1. Forx = Xyli], let b be bit p in the binary
representation of the numberand define

cli]-a(@bpj-1y—1) j=k,
cli] J # ke.

We now show thaSS is shattered bﬁ[, indicating that the VC-dimension off is at least
|S =d|log(r)]. To complete the proof, we further show that the VC-dimensio{at no more
thand.

First, we show thais shattered by Let (o)} peliogr) | ted) b€ some labeling over—1,+1}
for the bags ir. For eacht € [d] let

hka, ..., Ka] (X(p) []]) = {

[log(r)]
2 Yy +1 _op-1
ke =1+ p; 5 2P-1

Then by Equation (1), for aip € [|log(r) |] andt € [d],

Ak, - ke (K(p) = WE[),....,Clk] - (20 1) — 1) clF])
= a(2bpk 1) — 1) = 2Dp-1) — 1= Y(po)-
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t|p Instance labeh(x(p)[r]) Bag labelh(x;)
11— - — + — - — - T
12— - - + - - - - +
3/ - - - - - - _ _ —
1[l- - - - - — — + -
2|2/ - - - — - — 4 +
3|]- - - - - - - + -
11— — — — — — — C _
32| - + - - - - - - +
3/ - - - - - - _ _ _

Table 1: An example of the hypothedes- h[4,8, 3], with y = OR (so that is the all—1 vector),
r = 8, andd = 3. Each line represents a bagSneach column represents an instance in
the bag.

Thushlky, ..., kqy] labelsSaccording to{y ) }-

Second, we show that the VC-dimensionffis no more thaml. Let A C X of sized + 1. If
there is an element iA which is not an instance i8then this element is labeledl by allh € #,
thereforeA is not shattered. Otherwise, all elementsAiare instances in bags B Since there
ared subsets of5, there exist two elements it which are instances of bags in the same subset
t. Denote these instances kip;,t)[j1] andx(pz,t)[j2]. Consider all the possible labelings of the
two elements by hypotheses . If Ais shattered, there must be four possible labelings for these
elements. However, by the definition lojky, ..., Kq] it is easy to see that ify = j, = j then there
are at most two possible labelings by hypothese#/irand if j; # j, then there are at most three
possible labelings. Thusis not shattered by, hence the VC-dimension &f is no more thanl. B

Theorem 10 below provides a lower bound for the VC-dimension of MiLtlhe important
case where the bag-function is the Boolean OR and the hypothesis clasxiagh of separating
hyperplanesiR". Forw € R", the functiorhy,, : R" — {—1,+1} is defined byhy (x) = sign((w,x)).
The hypothesis class of linear classifiersig = {h, | w € R"}. Letr € N. We denote the VC-
dimension of W, for R= {r} andyy = OR by d,,. We prove a lower bound fad , using two
lemmas: Lemma 8 provides a lower bound digg, and Lemma 9 linksl, , for smalln with d, , for
largen. The resulting general lower bound, which holdsrfer maxR, is then stated in Theorem 10.

Lemma 8 Let d , be the VC-dimension dfl/,, as defined above. Thepgd> |log(2r)].

Proof Denotel = [log(2r)|. We will construct a se® of L bags of size that is shattered byt4.
The construction is illustrated in Figure 1.

Letn=(ny,...,Nk) be a sequence of indices frdhy, created by concatenating all the subsets of
[L] in some arbitrary order, so thiit= L2-~1, and every index appears 2 < r times inn. Define
a setA = {ay | k € [K]} € R® whereax £ (cog2rk/K),sin(2rk/K), 1) € R3, so thatay, ..., ax are
equidistant on a unit circle on a plane embeddeRinDefine the set of bagd= {X3,...,X_} such
thatx; = (x[1],...,x[r]) where{x[j] | j € [r]} = {a |k =i}.
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Figure 1: Anillustration of the constructed shattered set, witht andL = log4+ 1= 3. Each dot
corresponds to an instance. The numbers next to the instances dermg thevhich an
instance belongs, and match the sequéidefined in the proof. In this illustration bags
1 and 3 are labeled as positive by the bag-hypothesis representeddnjithiane.

We now show thaSis shattered byiti: Let (ys, ...,y ) be some binary labeling &f bags, and
letY = {i | yi = +1}. By the definition ofn, there existjs, jo such thaty = {nx | j1 <k < j2}.
Clearly, there exists a hyperplanec R3 that separates the vectdia | j1 < k < jo} from the rest
of the vectors imA. Thus sigii(w,ax)) = +1if and only if j; <k < j». It follows thathy(X;) = +1

if and only if there is & € {]1,..., j2} such thagy is an instance ix;, that is such that, =i. This
condition holds if and only if € Y, henceh,, classifiesSaccording to the given labeling. It follows
thatSis shattered byis, therefored, 3 > |§ = [log(2r) |. [ |

Lemma 9 Let kn,r be natural number such thatk n. Then @, > [n/k]d k.

Proof For a vectorx € R¥ and a numbet € {0,...,|n/k|} define the vectos(x,t) £ (0,...,0,
x(1],...,xK],0,...,0) € R", wherex[1] is at coordinatekt + 1. Similarly, for a bagx; =
(xi[1],...,x[r]) € (RY)", define the bag(xi,t) £ (s(xi[1],t),...,s(xi[r],1)) € (R")". o

Let Sc = {Xi }icia, € (R¥)" be a set of bags with instancesRfi that is shattered byv/. Define
Sh, a set of bags with instances RY": S, £ {s(Xi,t)]}icdtefin/k)) S (R™)". Then$, is shattered
by Mh: Let {Yit) bield. i teln/k)) 0€ SOme labeling fo&,. S isﬁshgttered byik, hence there are
separatorsvs, ..., Win/k € RK such thatvi € [drk],t € [N/K],  Bw (Xi) = Yig)-

Setw = thQ/OkJ s(w,t). Then(w,s(x,t)) = (w, x). Therefore

hw(s(Xi,t)) = OR(sign((w, s(xi[1],1))),. .., sign((w,s(xi[r],1))))
= OR(sign({wi, xi[1])),...,sign((wi, xi[]))) = P (%) = Y(iy)-
S, is thus shattered, henden > |S,| = [n/k]dr k. [

The desired theorem is an immediate consequence of the two lemmas abowtinytimat when-
everr € R, the VC-dimension ofi, is at least; .

Theorem 10 Let M}, be the class of separating hyperplane&ihas defined above. Assume that the
bag function isp = OR and the set of allowed bag sizes is R. L.etmaxR. Then the VC-dimension
of Wy is at least|n/3||log 2r |.
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3.3 Pseudo-dimension for Thresholded Functions

In this section we consider binary hypothesis classes that are gentoateckal-valued functions
using thresholds. Lef C RX be a set of real valued functions. The binary hypothesis class of
thresholded functions generated $Byis T = {(x,2) — sign(f(x) —z) | f € F,z€ R}, wherexe X
andz € R. The sample complexity of learning withy and the zero-one loss is governed by the
pseudo-dimension of , which is equal to the VC-dimension ®f (Pollard, 1984). In this section
we consider a bag-labeling functiap: R(® — R, and bound the pseudo-dimension %f thus
providing an upper bound on the sample complexity of binary MIL With The following bound
holds for bag-labeling functions that extend monotone Boolean functiefised in Definition 2.

Theorem 11 Let ¥ C R* be a function class with pseudo-dimension d . L&t R], and assume
thaty : R — R extends monotone Boolean functions. Letelthe pseudo-dimension $f Then

dr < max{16,2dlog(2er)}.

Proof First, by Definition 2, we have that for any which extends monotone Boolean functions,
anyn € Rand anyy € R",

sign(W(y[1],...,y[n]) —2) = sign(W(y[1] — z...,y[n| — 2))
= Y(signy[l] - z...,y[n| - 2)). (2)

This can be seen by noting that each of the equalities holds for each gb¢hations allowed by
My for eachn, thus by induction they hold for all functions i#,, and all combinations of them.

For a real-valued functiofi letts : X x R — {—1,+1} be defined bys (y,z) = sign(f(y) — ).
We haveTy = {tf | f € F}, andT-= {ty | f € #}. In addition, for allf € ¥, ze R, n€ Rand
X € X", we have

tr(X,2) = sign(f (x) — ) = sign((f (x(1]),..., f(x[n])) — 2)
— y(sign F(x[1)) — 2., F(xin]) ~2)) )
= w(tf(x[l}vz)v e ,tf(X[n :2) = H(ZZ),

where the equality on line (3) follows from Equation (2). Therefore
Tr={tr|feF}={t|feF}={h[heTy} =Ty

The VC-dimension off4 is equal to the pseudo-dimensionsf which isd. Thus, by Theorem 6
and the equality above, the VC-dimensionTgfis bounded by maidL6, 2dlog(2er)}. The proof is

completed by noting that,, the pseudo-dimension ¢, is exactly the VC-dimension o 0

This concludes our results for distribution-free sample complexity of Bivdty In Section 6
we provide sample complexity analysis for distribution-dependent binaky &4 a function of the
average bag size.
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4. Covering Numbers Bounds for MIL

Covering numbers are a useful measure of the complexity of a functiogs, dae they allow
bounding the sample complexity of a class in various settings, based onnagiéowergence guar-
antees (see, e.g., Anthony and Bartlett, 1999). In this section we proléaenaa that relates the
covering numbers of bag hypothesis classes with those of the underlgiiag@e hypothesis class.
We will use this lemma in subsequent sections to derive sample complexity upyraatfor addi-
tional settings of MIL. LetF C R” be a set of real-valued functions over some dordaiA y-cover
of # with respect to a normi-||, defined on functions is a set of functiogsZ R” such that for any
f € F there exists @ € C such that|f —g||. <y. Thecovering numbefor giveny > 0, ¥ ando,
denoted byA((y, F,0), is the size of the smallest sugitovering for .

Let SC A be a finite set. We consider coverings with respect tolLt&) norm for p > 1,
defined by

1 1/p
1]l = <!3 ZSH(S)“)) .

Forp =, L (S) is defined by f || = maxcs|f(S)|. The covering number of for a sample
sizemwith respect to thé, norm is

Nn(Y, F.p) £ sup ALY, F,Lp(9).

SCA:|S=m

A small covering number for a function class implies faster uniform comrerg rates, hence
smaller sample complexity for learning. The following lemma bounds the coverngper of
bag hypothesis-classes whenever the bag function is Lipschitz withctdegibe infinity norm (see
Definition 4). Recall that all extensions of monotone Boolean functionéir{fien 2) and allp-
norm bag-functions (Definition 3) are 1-Lipschitz, thus the following lemmiadéor them with
a=1.

Lemma 12 Let RC N and suppose the bag functigrnt R(® — R is a-Lipschitz with respect to the
infinity norm, for some a 0. Let SC X(R) be a finite set of bags, and let r be the average size of a
bagin S. For any > 0, p € [1,], and hypothesis clas# C R*,

(.. Lp(S) < N Y75 HiLo(S).

Proof First, note that by the Lipschitz condition a for any bagx of sizen and hypotheses
h,ge #H,

[IN(X) =g(x)| = [W(h(x[1]), ..., h(x[n])) = W(g(X[L])),...,g(x[n]))| < amaxih(x) —g(x)|. (4)

Xex

Let C be a minimaly-cover of # with respect to the norm defined hy,(S”), so that|C| =
N(Y, H,Lp(S”)). For everyh € # there exists @ € C such thaflh—g|_ sy < Y. Assumep < .

3010
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Then by Equation (4)

1/p 1/p
IA=lys <|325|h i>|p> §<|S|Z§rgg><|h p)

» e e
§<|S| zgxerm(x)—g(x)w) - ( |h<x>—g<x>|p>
S\ P (1 v
-a('s) <|SJ| o= ()‘p>

= ar'/P|h g, s) < ar/P-y.

It follows that C is a(arl/py)—covering for# . For p = o we have

A=l max\h (X) —9(x)| < amaxmax|h(x) —g(x)|

XeS XeX

= amax|h(x) — g(x)| = alh—g|l.s) <ay=a-r/P.y.
xeS-

Thus in both caseg; is aar'/Py-covering for#, and its size is\((y, #, Lp(S)). Thus

N (@' Py, H,Lp(S)) < N(Y, H,Lp(S”)).
We get the statement of the lemma by substitutimgth |

As an immediate corollary, we have the following bound for covering numdseasgiven sample
size.

arl/P

Corollary 13 Letre N, and let RC [r]. Suppose the bag functign: R® — R is a-Lipschitz with
respect to the infinity norm for some>a0. Lety > 0, p € [1,], and# € R*. For any m> 0,

Mﬂ( )<Mm( 1/p }[7 p)

5. Margin Learning for MIL: Fat-Shattering Dimension

Large-margin classification is a popular supervised learning appredubh has received atten-
tion also as a method for MIL. For instance, MI-SVM (Andrews et al., 2@&mpts to optimize
an adaptation of the soft-margin SVM objective (Cortes and Vapnik, 1&@B)IL, in which the
margin of a bag is the maximal margin achieved by any of its instances. It hdseao shown,
however, whether minimizing the objective function of MI-SVM, or other nrafgrmulations for
MIL, allows learning with a reasonable sample size. We fill in this gap in Thmeddebelow, which
bounds they-fat-shattering dimension (see, e.g., Anthony and Bartlett 1999) of Miie dbjec-
tive of MI-SVM amounts to replacing the hypothesis cl@sof separating hyperplanes with the
class of bag-hypothese#$ where the bag function i = max. Since max is the real-valued exten-
sion of OR, this objective function is natural in our MIL formulation. The dittion-free sample
complexity of large-margin learning with the zero-one loss is proportionalgdatishattering di-
mension (Alon et al., 1997). Thus, we provide an upper bound on thehfdtering dimension
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of MIL as a function of the fat-shattering dimension of the underlying hygsithclass, and of the
maximal allowed bag size. The bound holds for any Lipschitz bag-fundtieiny; > 0 be the desired
margin. For a hypothesis clabls denote its-fat-shattering dimension by RgtH)

Theorem 14 Letre N and assume R [r]. Let Ba > 0. Let# C [0,B]* be a real-valued hypoth-
esis class and assume that the bag functior{0, B|(?) — [0,aB] is a-lipschitz with respect to the
infinity norm. Then for aly € (0,aB]

o ' R242
Fatly, H) < max{33, 24Fa(%a,}[) log? (6204;86[ ' Fal(%a,}[) : r) } : (5)

This theorem shows that for margin learning as well, the dependence lod¢hsize on the sample
complexity is poly-logarithmic. In the proof of the theorem we use the followirgresults, which
link the covering number of a function class with its fat-shattering dimension.

Theorem 15 (Bartlett et al., 1997)Let F be a set of real-valued functions andyet 0. For m>
Fat(16y,F),
eUIOF)/E < Afy(y, F, e0).

The following theorem is due to Anthony and Bartlett (1999) (Theorem)1®8owing Alon
et al. (1993).

Theorem 16 Let F be a set of real-valued functions with rangd0nB|. Lety > 0. Forallm> 1,

4Bzm> Fat % ,F)log(4eBnyy)

'

Theorem 12.8 in Anthony and Bartlett (1999) deals with the case Fat(¥,F). Here we only
requirem > 1, since ifm < Fat ) then the trivial upper boun#ln(y, 7, 00) < (B/y)™ < (B/y) ()
implies Equation (6). o

Proof [of Theorem 14] From Theorem 15 and Lemma 12 it follows thanfior Fat{16y, # ),

< @Iog%(yv?[y 00) < GIOQMm(y/a, j—[’ OO) (7)

By Theorem 16, for alim> 1, if Fat(y/4) > 1 then

Nen(Y, F,0) <2 ( (6)

Fat(16y, #)

B y 4eB 4B’°m
WS 5 10gNm(Y, A e0) < 1+ Fat(y, ) log( ym>|09< ¥ )
y 8eB 4B’m
< Fat(Z,ﬂ{) log( v n’5 log <y2> (8)

4B%m
V2

The inequality in line (8) holds since we have added 1 to the second faatith@value of the other

factors is at least 1. The last inequality follows sincg # 2%, we have 8B/y < 4B2/y?. Equa-

tion (9) also holds if Fd//4) < 1, since this implies Fag/4) = 0 andA\g(y, #H, o) = 1. Combining

Equation (7) and Equation (9), we get thatif> Fat(16y, #) then

aB — y », 4B%a%rm
< — < L )
vy < e’ Fat16y, #H) < 6Fa(4a,}[) log~( v ) (10)

< Fai}, #)log?(=). 9
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Setm= [Fat(16y,#)] < Fa{(16y, %)+ 1. If Fa(16y,#) > 1, we have thain > Fat(16y, #() and
alsom < 2Fa{16y, H). Thus Equation (10) holds, and

_ 2.2
Fat(16y, H) < 6Fa(4—ya,}[) Iogz(4i2a
2.2

< 6Fa(%,ﬂ ) I0@12(8Bza

aB
Yy < —
Y=< 26’

r- (Fa(16y, ) + 1))

.r-Fat(16y, H)).

Now, it is easy to see that if Fdiby, #) < 1, this inequality also holds. Therefore it holds in general.
Substitutingy with y/16, we have that

_ 242
WS g Faly.H) < Fal gl Ao 2 r Faty H)). (1)

Note that the condition opholds, in particular, for aly < aB.

To derive the desired Equation (5) from Equation (11), et 6Faly/64a,H) andn =
20488%a?/y?. DenoteF = Fatly,#/). Then Equation (11) can be restatedras< Blog?(nrF ).
It follows that+/F /log(nrF) < /B, Thus

vF log< F) v/Blog(+/Bnr).

log(nrF) log(nrF)

Therefore VE
F
W(Iog(an)/Z log(log(nrF))) < +/Blog(Bnr)/
hence 2log(log(nrF )
og(log(nr
- = = 7 < .
A= ogrEy VF < v/Blog(pnr)
Now, it is easy to verify that lodog(x))/log(x) < 1 for all x> 33-2048. Assumé& > 33 and
y<aB. Then
nrFE = 20482arF /y? > 2048 > 33.2048

Therefore loglog(nrF))/log(nrF) < 7, which implies 3vF < /Blog(Bnr). Thus F <
4Blog?(Bnr). Substituting the parameters with their values, we get the desired boundi istate
Equation (5). |

6. Sample Complexity by Average Bag Size: Rademacher Compligx

The upper bounds we have shown so far provide distribution-freelearomplexity bounds, which
depend only on the maximal possible bag size. In this section we show thmeif ¢ve bag size is
unbounded, we can still have a sample complexity guarantee, #thegebag size for the input
distribution is bounded. For this analysis we use the notion of Rademacimeoaty (Bartlett

and Mendelson, 2002). Létbe some domain. The empirical Rademacher complexity of a class of
functions# € RA{=1+1} with respect to a sampB= { (%, i) }icm € Ax {—1,+1} is

a1l Cf v v
R(F,S = EECH fseug% ai f(x, y)ll,
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whereo = (01, ...,0m) aremindependent uniforni+1}-valued variables. The average Rademacher
complexity of ¥ with respect to a distributioD overA x {—1,+1} and a sample siz@is

Rin(F,D) £ Espn[R(F,9)].

The worst-case Rademacher complexity over samples ofrsige

R (F) = SUpR(F,S).

SCA™
This quantity can be tied to the fat-shattering dimension via the following result:

Theorem 17 (See, for example, Mendelson, 2002, Theorem4. 118t m > 1 and y > 0.
If R "(F) < ythen they-fat-shattering dimension ¢f is at most m.

Letl C R. Assume a hypothesis cladsC I~ and a loss functioi : {-1,41} xI - R. Fora
hypothesi € H, we denote by, the function defined b, (x,y) = £(y,h(x)). GivenH and/, we
define the function clagd, 2 {h, | he€ H} € RA*{-1+1},

Rademacher complexities can be used to derive sample complexity bountist{Bad Mendel-
son, 2002): Assume the range of the loss functioj®,i$]. For anyd € (0,1), with probability of
1— % over the draw of sampleSC A x {—1,+1} of sizemdrawn fromD, everyh € H satisfies

¢(h,D) <4(h,S)+2Rn(He, D) + 8InEnZ/6) (12)
Thus, an upper bound on the Rademacher complexity implies an upper bouhd average loss

of a classifier learned from a random sample.

6.1 Binary MIL

Ouir first result complements the distribution-free sample complexity bounda¢natprovided for
binary MIL in Section 3. The average (or expected) bag size undert@bdison D over x(R) x

{1 +1} is Exy)-pllX|]. Our sample complexity bound for binary MIL depends on the average
bag size and the VC dimension of the instance hypothesis class. Recallalmdrtione loss is
defined by/o/1(y,y) = 1]y # ¥]. For a sample of labeled examp®s- {(x;, Vi) }icm, We useSx to
denote the examples &f that isSx = {Xi }ic[m-

Theorem 18 Let # C {—1,+1}* be a binary hypothesis class with VC-dimension d. L&t R
and assume a bag functiap: {—1,+1}® — {~1,+1}. Let r be the average bag size under
distribution D over labeled bags. Then

din(4er)

R(H 1y, D) <17\ —

Proof Let Sbe a labeled bag-sample of size Dudley’s entropy integral (Dudley, 1967) states that

K(ﬁ%/ps) < \]/-rZTL/Ow \/InN(%?[KO/l?LZ(S)) dy (13)

1 —
:jrzﬁ O VINAY. H iy, La(S) dy.
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The second equality holds since for any 1, N(y,?[go/l,Lz(S)) = 1, thus the expression in the
integral is zero.

If Cis ay-cover for# with respect to the norry(Sx), thenc, ., Is ay/2-cover forH , ,, With

respect to the norr(S). This can be seen as follows: Ltet,, € ﬁgo/l for somehe #. Letf € C
such that|f —hl|,,s,) <Y. We have

1/2
1
H ffo/l - h€0/1||L2(S) = <m Z | ffo/l(xv y) - héo/l(x7y)‘2>
(xy)€S
1/2
< 1o/ (y, f Z0/1(yah(x))\2>
(xy)eS

1/2
= (; ;(irf<x>—h<x>>2> = Sl —hlsy <v/2

S

Therefore(y, , is ay/2-cover forL,(S). It follows that we can bound thecovering number of
ﬂ-[go/l by:

(Y H gy, L2(S)) < N2y, H, La(S)).- (14)
Letr(S) be the average bag size in the sanfylehat isr(S) = |S”|/|S. By Lemma 12,

(Y H, La(S¢)) < N(Y/VT(9), H,La(SX)). (15)
From Equation (13), Equation (14) and Equation (15) we conclude that

R (11,9 < 72 [ \in 22/ VTS LoS))

By Dudley (1978), for any# with VC-dimensiond, and anyy > 0,

INALY, H, Lo(S2)) < 2dIn (4e>

y2
R(H 1,9 / 1/20|| erlS
< 17\fm </0 Vin(er(s)) dy+ /le/ln(l/vz) dv>
_17\/ (In(er(S +F din(der(S))

m

Therefore

The function,/In(x) is concave fox > 1. Therefore we may take the expectation of both sides of
this inequality and apply Jensen’s inequality, to get

Km(?[éo/ﬂ D) = Es.pm [K(?[go/l,S)} < Es. pm [17 CW:T(S))]
- 17\/d|n(4e-Ersr:Dm[r(S)}) 17 dlng:,er)‘
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We conclude that even when the bag size is not bounded, the sample cityrgflbinary MIL with
a specific distribution depends only logarithmically on the average bag sizs idigkribution, and
linearly on the VC-dimension of the underlying instance hypothesis class.

6.2 Real-Valued Hypothesis Classes

In our second result we wish to bound the sample complexity of MIL whemhrer loss functions
that accept real valued predictions. This bound will depend on thegwdrag size, and on the
Rademacher complexity of the instance hypothesis class.

We consider the case where both the bag function and the loss functidipachitz. For the
bag function, recall that all extensions of monotone Boolean functiam&igschitz with respect
to the infinity norm. For the loss functiof: {—1,+1} x R — R, we require that it is Lipschitz
in its second argument, that is, that there is a constant0 such that for aly € {—1,+1} and
y1,¥2 € R, [4(y,y1) — £(y,y2)| < @yr —Y2|. This property is satisfied by many popular losses. For
instance, consider the hinge-loss, which is the loss minimized by soft-mardih Bi6 defined as
i (y,Y) = [1—W]+, and is 1-Lipschitz in its second argument.

The following lemma provides a bound on the empirical Rademacher complexXitiLofas a
function of the average bag size in the sample and of the behavior of tls¢-ease Rademacher
complexity over instances. We will subsequently use this bound to bounde¢hege Rademacher
complexity of MIL with respect to a distribution. We consider losses with thgeéh 1|. To avoid
degenerate cases, we consider only losses such that there exis&t ankedabeled bagx,y) C

R x {—1,+1} and hypothesds,g € # such thah,(x,y) = 0 andg,(x,y) = 1. We say that such
aloss has &ill range

Lemma 19 Let# C [0,B]X be a hypothesis class. LetRN, and let the bag functiog: R® — R
be a-Lipschitz with respect to the infinity norm. Assume a loss funétidn-1,+1} x R — [0,1],
which is g-Lipschitz in its second argument. Further assume thas a full range. Suppose there
is a continuous decreasing function (0, 1] — R such that

vye (0,1, f(y)eN= R (H) <v.

Let S be a labeled bag-sample of size m, with an average bag size rfortahe € (0, 1],

o 10 4e§a§Bzrm
R(H,S) < 4g+\/mlog< ) ( / 431612 )

Proof A refinement of Dudley’s entropy integral (Srebro et al., 2010, Lemma #t8es that for
all € € (0,1], for all real function classe$ with range[0, 1] and for all setsS,

R(7.9 <4+ 0 [ \inal( 7. La(s) ay (16)

Since the range of is [0, 1], this holds forF = }[g. In addition, for any se§, theL,(S) norm is
bounded from above by the,(S) norm. Therefore\ (y, F,L2(S)) < N(Y, F,L(S)). Thus, by
Equation (16) we have

_ 1 —
R(H,,S) < 46+ j% | VA e, La(S) dy (17)
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Now, leth,g € # and consideh,,g, € . Sincel is ap-Lipschitz, we have
1he = Glli..(s) = .maX!ﬁe(fi,yi) —0e(Xi, ¥i)| = {Qﬁlf(yi,ﬁ(%)) —£(yi,9(xi))|

< azmax|h(x.) g(xi)| = azllh—glli.(so
ie[m]

It follows that if ¢ C # is ay/az cover for # then ¢, C H, is a y-cover for #,. Therefore
A(Y, }[E,Loo( 9) < A(Y/az,#H,L.(Sx)). By Lemma 12,

N(Y/a2, H Lo (Sx)) < N(V/2182, H,Leo(SX)) < Nim(Y/B282, H ,0).
Combining this with Equation (17) it follows that

R(H1,S )<4e+—/ \/Mm Y/aq@g, H , ) dy (18)

Now, lety € (0,1], and lety, = sup{y, <v| f(y,) € N}. Smceﬂ(f(:’/f) ) < VYo, by Theorem 17
they,-fat-shattering dimension off is at mostf (y,). It follows that

Fatly, ) < Fallyo, H) < f(y,) < 1+ f(y).

The last inequality follows from the definition gf, sincef is continuous and decreasing. There-
fore, by Theorem 16,

W<B, 10gAs(y 7)< L+ (1(2) + Dlog( 2 iog (2T)

< (f(l{) +1) I09(4eBm) log <4e;2 m) (19)
y 4eBZm
(f(4)+1) log? (T)- (20)

The inequality in line (19) holds since we have addedépg 1 to the third factor, and the value of
the other factors is at least 1. The last inequality follows sinceB.

We now show that the assumptigr< B does not restrict us: By the assumptions/oithere
areh,g € # and a labeled ba¢x,y) such thath,(X,y) = 1 andg,(X,y) = 0. Letn = |x]. By the
Lipschitz assumptions we have

= [he(X,y) =G (Xy)| = [£(y;h(X)) = £(y,8(x))| < azlh(X) —g(¥)|
= a2[W(h(x[1]),...,h(x[n])) = W(g(x[1]), .., 9(x[n]))| <aza1maxlh( [i]) =9(x[i])] < aa2B.

J€

Thus 1< a3a,B. It follows that for ally € (0,1], y/aia; < B. Thus Equation (20) can be combined
with Equation (18) to get that for adl € (0, 1],

de ZBZ
R(H:,S) <4s+/\/ (o +1)Iog( 4% AT ay

10 4ea§a282rm
<4e+-—lo ( 2 >/ VALl dag;) T
\F 09 Y

<y \Tn log <4eafa282rm) ( / dy)
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The last inequality follows from the fact thefa+ b < /a-++/b for non-negativea andb, and from
i< ]

Based on Lemma 19, we will now bound the average Rademacher compledtiLpfs a
function of the worst-case Rademacher complexity over instances, aexteeted bag size. Since
the number of instances in a bag sample of a certain size is not fixed, fartdfepn the bag sizes in
the specific sample, we will need to consider the behavigt0f( ) for different values ofm. For
many learnable function classes, the Rademacher complexity is propotﬁoﬁﬁl or to '”\L;%“) for
some non-negativ@. The following theorem bounds the average Rademacher complexity of MIL
in all these cases. The resulting bound indicates that here too there islagailighmic dependence
of the sample complexity on the average bag size. Following the proof we ah@pplication of
the bound to a specific function class.

Theorem 20 Let# C [0,B]* be a hypothesis class. LetRN, and let the bag functio : R® —

R be g-Lipschitz with respect to the infinity norm. Assume a loss funétigr-1,+1} x R — [0, 1],
which is g-Lipschitz in its second argument. Further assume tHads a full range. Suppose that
there are C[3,K > 0 such that for all m> K,

ClnP(m)
ym

Then there exists a numberNO that depends only on,@ and K such that for any distribution D
with average bag size r, and for all pa 1,

Ren () <

4+ 10log4ezadB?rm?) (N + %Clnﬁﬂ(l&%a%m))
vm '
Proof Let Sbe a labeled bag sample of siage and letr"be its average bag size. Dendtéx) =

CInP(x), and defind (y) = %. We will show that?{f‘(‘fg y, thus allowing the use of Lemma 19.

We haveRy, < T(m)/+/m, thus it suffices to show that(f(y))//f(y) <y.
Letz(y) = /F(y)/T(f(y)). We will now show thaz(y) T (Z(y)) > $ T (1/y?). Since the function

xT (x2) = CxInP(x?) is monotonic increasing for> 1, we will conclude thaz(y) > 1/yforall y< 1.
It is easy to see that for all values BfC > 0, there is a number > 0 such that for alk > n,

Ren(H,D) <

C2In(x) < x-2 ",

For suchx we have

T (x/T3(x)) :CInB(czmxzﬁ(x)) — C(In(x) — In(C2In?B(x)))P
> C(In(x) — (1—27YB)In(x)))P = CInB(x) /2 = T(x) /2. (21)

Lety, € (0,1) such thatf (y,) = k= max{n,K}. Sincef(y) is monotonic decreasing wit} for all
Y <YVYo, f(y) > k. Therefore, foy <.,

f(y)

(Y) 1+/f(y) 21 _
TFY) )25 T(F(Y) =SV =Ty

f f
T2(f(y))" — 2T(f(y)) 2

3018

2AY)T(Z(y) =

T(=



MULTI-INSTANCE LEARNING WITH ANY HYPOTHESISCLASS

The middle inequality follows from Equation (21), and the last equality follawsfthe definition
of f(y). We conclude that(y) > % Therefore, for ally <.,

T(f(y)
f(y)

Rey) () < =1/2y) <v.

Define f as follows:

Fory<\ys, clearlyﬂi{s(‘:g(}[) <y, and fory > v,

Rig () = REVIH) = R (H) < ve <.

Therefore for ally € (0,1], ﬂ(fs(“?(}[) <y. By Lemma 19, for alk € (0, 1],

s Bun( S o o

10 4e%a282rm 42132
=4e+-——lo 2 > ( / Vkdy+ / >
f o0 ( da1azYs dy 18.2
4ea§a§Bzrm 4asaoVe
§4£+\—m1log <82> <1+ \/R+/s f(4a1a2)dy>. (22)

DenoteN = 1+ vk. Now, if B > 0 we have

4a185Ys y 4a1aYs v daragy. T ( 163% a% /y2)
< p— —
/e f (4a1a2) dy < / \/ f (4a1a2) dy 2a1a2/£ y dy

dagdzYo |nB 16a2a 168232 dagazyo
~2aaC Sy P 2 1)
€
alaZCI B+1(16a1a2y2 a1a,C n B+1(16a1a2)
B+1 €2 -~ B+1 €2 ’
The same inequality holds also 8= 0, since in that case
4a182Yo y dasoV. T (16a2a3 /y?)
/ ,/f(4aa)dy_2a1a2/8 —dy
4a1a2y
= 2a;a,C / fdy 2a;a,C [In(y)]4alazy = 2a1a,CIn( a1a2y0>
4agay,  @a1aC (| 5iq 16a%a3
< = —=2)).
< 2aa;ClIn(—_—~) 811 (In (=)

Therefore we can further bound Equation (22) to get

— 4eal:2L Bzrm alaZC B 16<';12a2
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Settinge = 1//mwe get

4+ 10logdeeagB?m?) (N + %2C InP 2 (16a2a8m) )
vm ‘

Now, for a given sampl&denote its average bag size lip). We have

R(Hy,9) <

Ren(H¢,D) = Espm[R (H, )]
4+ 10log(dea3B? (S)MP) (N + a1aC |n8+1(16a§a§m))

B+1
<E
—_— \/ﬁ]
3 4+ 10log(4e&a3B?rm?) (N + er In‘3+1(16a§a§m)>
< N .
In the last inequality we used Jensen’s inequality and the factibain[f(S)] =r. This is the
desired bound, hence the theorem is proven. [ |

To demonstrate the implications of this theorem, consider the case of MIL withmsogin
kernel SVM. Kernel SVM can operate in a general Hilbert space, whie denote byZ. The
domain of instances i& = {x € 7 | ||x|| < 1}, and the function class is the class of linear separators
with a bounded norni/(C) = {hy | w e 7, ||w|| <C}, for someC > 0, whereh,, = (X,w). The loss
is the hinge-losgy, defined above, which is 1-Lipschitz in the second argument. We havégBar
and Mendelson, 2002)

0
REAW(C)py) < o = .

Thus we can apply Theorem 20 wifh= 0. Note that?/(C) C [-C,C]*¥, thus we can apply the
theorem withB = 2C by simply shifting the output of eadh, by C and adjusting the loss function
accordingly. By Theorem 20 there exists a numiesuch that for any 1-Lipschitz bag-functign
(such as max) and for any distributi@nhover labeled bags with an average bag size ofe have

4+ 10log(16eC’rm?) (N4 CIn(16m))
7 .

We can use this result and apply Equation (12) to get an upper boundedosth of MIL with
soft-margin SVM.

Ren(H(,D) <

7. PAC-Learning for MIL

In the previous sections we addressed the sample complexity of genedlizedhowing that it
grows only logarithmically with the bag size. We now turn to consider the compo#dtispect of
MIL, and specifically the relationship between computational feasibility of &d computational
feasibility of the learning problem for the underlying instance hypothesis.

We consider real-valued hypothesis clast®es [—1,+1]*, and provide a MIL algorithm which
uses a learning algorithm that operates on single instances as an oragd@oWthat if the oracle
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can minimize error with respect t, and the bag-function satisfies certain boundedness conditions,
then the MIL algorithm is guaranteed to PAC-leah In particular, the guarantees hold if the bag-
function is Boolean OR or max, as in classical MIL and its extension to rdak#dypotheses.

Given an algorithm4 that learns# from single instances, we provide an algorithm called
MILearn that usesq to implement aveak learnerfor bags with respect t&f. That is, for any
weighted sample of bagILearn returns a hypothesis frot that has some success in labeling
the bag-sample correctly. This will allow the useMifL.earn as the building block in a Boosting
algorithm (Freund and Schapire, 1997), which will find a linear combinatiomypotheses from
H that classifies unseen bags with high accuracy. Furthermafeisfefficient then the resulting
Boosting algorithm is also efficient, with a polynomial dependence on the makegadize.

We open with background on Boosting in Section 7.1. We then describe diel@grner in and
analyze its properties in Section 7.2. In Section 7.3 we provide guarameeBaosting algorithm
that uses our weak leaner, and conclude that the computational complERt¢Zdearning for MIL
can be bounded by the computational complexity of agnostic PAC-learnirsgnigle instances.

7.1 Background: Boosting with Margin Guarantees

In this section we give some background on Boosting algorithms, which weugélito derive an
efficient learning algorithm for MIL. Boosting methods (Freund and $itkal997) are techniques
that allow enhancing the power ofageak learner—a learning algorithm that achieves error slightly
better than chance—to derive a classification rule that has low error inpainsample. The idea is
to iteratively execute the weak learner on weighted versions of the inpuilsaand then to return
a linear combination of the classifiers that were emitted by the weak learnestim@and.

Let A be a domain of objects to classify, and Kt [-1,+1]* be the hypothesis class used
by the weak learner. A Boosting algorithm receives as input a labeledls&sp{(x,yi) }", C
Ax {—1,+1}, and iteratively feeds to the weak learner a reweighed versi@h@énote then— 1-
dimensional simplex bm = {w € R™ | ¥jciyW = 1,Vi € [m],w(i] > 0}. For a vectow € Ap,

Sy = {(W[i],x, i)}, is the sampleS reweighed byw. The Boosting algorithm runs ik rounds.

On roundt it sets a weight vectow; € A, calls the weak learner with inp&,,, and receives a
hypothesidy € H as output from the weak learner. Afterounds, the Boosting algorithm returns

a classifierf, : A— [—1,+1], which is a linear combination of the hypotheses received from the
weak learnerf, = YtelK a¢hy, whereay,. .., 0k € R.

The literature offers plenty of Boosting algorithms with desirable properfiesconcreteness,
we use the algorithradaBoost * (Ratsch and Warmuth, 2005), since it provides suitable guarantees
on themarginof its output classifier. For a labeled examptey), the quantityy f, (x) is the margin
of f, when classifyingk. If the margin is positive, then signf, classifiesx correctly. The margin
of any functionf on a labeled sampl®= {(x,yi)}{", is defined as

M(f,S) = miny; f(x).

ie[m|

If M(f,S) is positive, then the entire sample is classified correctly bysign

If Sis an i.i.d. sample drawn from a distribution &rx {—1,+1}, then classification error df,
on the distribution can be bounded basedwif,,S) and the pseudo-dimensidrof the hypothesis
classH. The following bound (Schapire and Singer, 1999, Theorem 8) haithsprobability 1— o
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over the training samples, for any> d:

]P)[Y fo(X) < 0] <0 (\/d|n2<m/d)/M2<fo,S) + In(l/5)) . (23)

m

In fact, inspection of the proof of this bound in Schapire and Singerq)L8&veals that the only
property of the hypothesis clabsthat is used to achieve this result is the following bound, due to
Haussler and Long (1995), on the covering number of a hypothesssttlagth pseudo-dimension

d:

d
We (0,1, Nly, H,) < (3;”) . (24)

Thus, Equation (23) holds whenever this covering bound holds—aHatwill be useful to us.

For AdaBoost *, a guarantee on the size of the marginfotan be achieved if one can provide
a guarantee on thedgeof the hypotheses returned by the weak learner. The edge of a hypoth-
esis measures of how successful it is in classifying labeled examples :lfet> [—1,+1] be a
hypothesis and ldD be a distribution oveA x {—1,+1}. The edge oh with respect tdD is

F(h,D) £ Ex y)-plY -h(X)].
For a weighted and labeled sam@e- {(Wi,%;, Vi) }icjm € Ry x Ax {—1,+1},

rh9= 5 wyih(x).
ie[m|
Note that ifh(x) is interpreted as the probability ofto emit 1 for inputx, then l_réh’D) is the
expected misclassification errortobn D. Thus, a positive edge implies a labeling success of more
than chance. FoAdaBoost *, a positive edge on each of the weighted samples fed to the weak
learner suffices to guarantee a positive margin of its output clasifier

Theorem 21 (Ratsch and Warmuth 2005) AssumeAdaBoost *receives a labeled sample S of
size m as input. Suppose thatlaBoost * runs for k rounds and returns the classifiey. flIf

for every round tc K], I (ht,Sy,) > p, then M f,,S) > p—/2Inm/k.

We present a simple corollary, which we will use when analyzing Boostingviih.. This
corollary shows thafidaBoost * can be used to transform a weak learner that approximates the
best edge of a weighted sample to a Boosting algorithm that approximatessthmégin of a
labeled sample. The proof of the corollary employs the following well knoasult, originally
by von Neumann (1928) and later extended (see, e.g., Nash and 5&®é). For a hypothe-
sis classH, denote by cfH) the set of all linear combinations of hypotheseddin We say that
H C [-1,+1]* is compact with respect to a sam@e= {(x;, Vi) }iepmj € Ax {—1,+1} if the set of
vectors{(h(x1),...,h(xm)) | h€ H} is compact.

Theorem 22 (The Strong Min-Max theorem) If H is compact with respect to S, then

min supl” (h,Sy) = sup M(f,S).
WEAm heH feco(H)
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Corollary 23 Suppose thafdaBoost * is executed with an input sample S, and assume that H
is compact with respect to S. Assume the weak learner usédidBoost * has the following
guarantee: For anw € Ap, if the weak learner receives,&s input, then with probability at least
1-9dit returns a hypothesisJdsuch that

I (ho,Sv) > g(supl (h, Sw)),
heH
where g [—1,+1] — [—1,+1] is some fixed non-decreasing function. Then for any input sample S,
if AdaBoost * runs k rounds, it returns a linear combination of hypotheses Qte[k} athe, such
that with probability at leasi — ko

M(f.,S) >g( sup M(f,S))—+/2Inm/k.

feco(H)

Proof By Theorem 22, mifea,, SURhcq I (h,Sy) = SUPtcor) M(,S). Thus, for any vector of
weightsw in the simplex, sup.y ' (h, Sy) > supccqr)M(f,S). It follows that in each round, the
weak learner that receive§,, as input returns a hypothesis, such thatl(h,Sy) >
g(suphen M(h,Sw)) > 9(SUPrcconyM(F,S)). By Theorem 21, it follows thatM(f.,S) >

g(squeco(H)M(faS))_ \/2|nm/k- u

7.2 The Weak Learner

In this section we will present our weak learner for MIL and providergogees for the edge it
achieves. Our guarantees depend on boundedness propertiebafthenction, which we de-
fine below. To motivate our definition of boundedness, considemptherm bag functions (see
Definition 3), defined bypp(z) = (LS4 (2fi] +1)P) /P _ 1. Recall that this class of functions in-
cludes the max functionlt.) and the average functiog{) as two extremes. AssunieC [r] for
somer € N. Itis easy to verify that for any natural any sequence,...,z, € [-1,+1], and all
pe (1], L
ﬁiezwzi <Wp(z,---,z0) <y z+n-1

ie[n|

SinceR C [r], it follows that for all(zy,. .., z,) € [-1,+1]®,

1
Fie%agwp(zl,---,zn)g > zt+r-1 (25)

ie[n|

We will show that in cases where the bag function is linearly bounded in tineo$iits argu-
ments, as in Equation (25), a single-instance learning algorithm can béousadn MIL. Our weak
learner will be parameterized by the boundedness parameters of ttiernwtign, defined formally
as follows.

Definition 24 A functiony : [—1,+1]® — [~1,+1] is (a,b,c,d)-boundedf for all (z,...,z,) €
a z z+b<uy(zm,...,zy)<c Z z +d.

ien] i€[n|
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Thus, for allp € [1,), Y, over bags of size at mosis (%,O, 1,r —1)-bounded.

Before listing the weak learnéILearn, we introduce some notationbyes denotes a special

bag-hypothesis that labels all bagsiak ¥x € X®,  hpes(X) = 1. We denoteH , £ H U {hpos}.
Let 4 be an algorithm that receives a labeled and weighted instance sample asinpreturns a
hypothesis € #. The result of running? with input Sis denoted4(S) € H.

The algorithmMILearn, listed as Algorithm 1 below, accepts as input a bag sar8@ad a
bounded bag-functiop. It also has access to the algorithth We sometimes emphasize that
MILearn uses a specific algorithd as an oracle by writinglILearn®. MILearn constructs a
sample of instance§ from the instances that make up the bag§,itabeling each instance 1§
with the label of the bag it came from. The weights of the instances depentethev the bag they
came from was positive or negative, and on the boundedness prepdicHaving constructe§,
MILearn calls4 with §. It then decides whether to return the bag-hypothesis induced by agplyin
P to A(S), or to simply returrhpos

It is easy to see that the time complexityMifLearn is bounded byO(f(N) + N), whereN is
the total number of instances in the bagsSpnd f (n) is an upper bound on the time complexity
of 4 when running on a sample of sizte As we presently show, the output BfLearn is a
bag-hypothesis itt{ . whose edge o6 depends on the best achievable edgeSfor

Algorithm 1: MILearn?
Assumptions

e He [—1,+1]X

e Algorithm 4 receives a weighted instance sample and returns a hypotheXis in
Input:
e S& {(wi,Xi,¥i) }ie—a labeled and weighted sample of bags,

e Y—an(a,b,c,d)-bounded bag-function.

Output: h, € # ..

[N

Q41 <@, d_g) < C

N

S < {(ay Wi, X [j], ¥i) Yiem,jelr-
h < A4(S).

4 if T (h,S) > T (hpos, S) then

‘ hs < h,

else
| ho < hpos

8 Returnh,.

w

~N o O
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The guarantees fotILearn? depend on the properties gf. We define two properties that we
consider for4. The first property is that the edge of the hypothesigeturns is close to the best
possible one on the input sample.

Definition 25 (e-optimal) An algorithm4 that accepts a weighted and labeled sample of instances
in X and returns a hypothesis i is e-optimalif for all weighted samples S R, x X x {—1,+1}
with total weight W,

r(A4(s),S) > supl (h,S) —eW.

he#

The second property is that the edge of the hypothesisziaturns is close to the best possible one
on the input sample, but only compared to the edges that can be achielggdifieses that label
all the negative instances 8fwith —1. For a hypothesis clagg and a distributiorD over labeled
examples, we denote the set of hypotheseX ithat label all negative examplesinhwith —1, by

Q(H,D) = {he H | Pyy)plh(X) = —1|Y = —1] = 1}.

For alabeled sampltg Q(#,S) £ Q(#,Us) whereUs is the uniform distribution over the examples
inS.
Definition 26 (one-sidede-optimal) An algorithmA4 that accepts a weighted and labeled sample

of instances inX and returns a hypothesis i is one-sidece-optimalif for all weighted samples
SC Ry x X x {—1,+1} with total weight W,

raes),s > sup (h,S —ew.
heQ(#,9)

Clearly, any algorithm which igs-optimal is also one-sidegtoptimal, thus the first requirement
from 4 is stronger. In our results below we compare the edge achieved NEirgrn to the best
possible edge for the sam@e Denote the best edge achievable$doy a hypothesis irff by

y* = supl(h,S).
he#H

We denote by, the best edge that can be achieved by a hypothe§l$ﬁ, S). Formally,

y; £ sup '(hS9).
heQ(#,9)

Denote the weight of the positive bags in the input sangig W, = Yiyi—+1W and the weight of
the negative bags By = 3;.,.__1w;. We will henceforth assume without loss of generality that
the total weight of all bags in the input sample is 1, thatis+W_ = 1.

Note that for any(a,b,c,d)-boundedy, if there exists any sequend,...,z, such that
W(z,...,zy) = —1, then

a%z&bg—lgc;zﬁrd. (26)
ie[n] ie[n]
This implies
-1-d -1-b
< >»z< .
¢ i€ a
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Rearranging, we get — Sb— £ + 1 > 0, with equality if Equation (26) holds with equalities. The
next theorem provides a guaranteeNal.earn that depends on the tightness of this inequality for
the given bag function. As evident from Theorem 21, to guarantesigiy@omargin for the output

of AdaBoost * when used witMILearn as the weak learner, we need to guarantee that the edge of
the hypothesis returned b Learn is always positive. Since the best edge cannot be more than 1,
we emphasize in the theorem below that the edge achievEillsarn is positive at least when the
best edge is 1 (and possibly also for smaller edges, depending on #megtars). We subsequently
show how these general guarantees translate to a specific result foaxtfeinction, and other bag
functions with the same boundedness properties.

Theorem 27 Letr e N and RC [r]. Lety: [-1,+1]® — [-1,+1] be an(a, b, ¢,d)-bounded bag-
function such tha® < a<c. Lete € [0, %), and assume thatd £b— £ +1=n. Denote Z= ¢.
Consider running the algorithmILearn” with a weighted bag sampk of total weightl, and let
h, be the hypothesis returned MyLearn?. Then

1. If 4 is e-optimal then

_ zy—z+1
Mg > 277

—2(1+1)—rce
B 1+(1-3)(1-

)

N~

Thus,I(h,,S) > 0 whenever

1 n,1 1. rce
1- 4= (S+ =)+ —.
Vol-Zt5Grn)t3

In particular, if n < 2(1—rce)/(Z+1) andy* = 1thenrl (h,,S) > 0.
2. If 4 is one-sided-optimal, andy)(zi,...,zy) = —lonlyifz =... = z,= —1, then

Vi — HZ+1)—rcezZ
2Z2-1-3(Z-1)

rh,,S >

Thus, (h.,S) > 0 whenever
Y, > %(Z+ 1) +rceZ.

In particular, if n < 2(1—rcez)/(Z+1) andy’,. = 1thenl (h,,S) > 0.

The proof of the theorem is provided in Appendix A. This theorem is statgémeral terms, as it
holds for any bounded. In particular, if{) is any function between an average and a max, including
any of thep-norm bag functiongs, defined in Definition 3, we can simplify the result, as captured
by the following corollary.

Corollary 28 Let H C [-1,+1]X. Let RC [r], and € € [0,1). Assume a bag function

r

W:[~1,+1)® — [~1,+1] such that for any ...,z € [-1,+1],

1
N z<W(z.....z) < maxz.
nie%]Z. <WP(z,...,7Zn) < ie[n]xz'

Let h, be the hypothesis returned B§Learn?. Then
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1. If 4 is e-optimal for some € [0,1/r], then

— Iy +1-r?(1+¢)
> :
Fhe,S) 2 2r—1

Thusr (h,,S) > Owhenevey* > 1— 3 + . In particular, if y* = 1 thenr (h,,S) > 0.

2. If 4 is one-sidect-optimal some < [0,1/r?], then

2
WWSZ%?%S
Thusr (h,,S) > 0 whenevey, > r2e. In particular, ify'. = 1 thenl" (h,,S) > 0.
Proof Letz,...,z, € [-1,+1]. We have
maxz < z z—(n—1)min(z) < Z z+n—1
i iET

Therefore, by the assumption dn for anyn € R

W(z,...,2) < gzwrn—lﬁ %zwrr—l.
ie[n] ie[n]

In addition
1

1
= ; z<- ; z <y(z,...,zn).
Bi&m Nifw

Thereforey is (%,O, 1,r —1)-bounded. It follows thaZ = r in this case, and —Zb—Z+1=0.
Claim (1) follows by applying case (1) of Theorem 27 with= 0.
For claim (2) we apply case (2) of Theorem 27. Thus we need to shaw thez,...,z,) = —1

andz,...,z, € [-1,+1], thenzy = ... = z, = —1. We have that
1
1o a<y(z,...z) < -1
ie[n]
Therefore% Yiemz =—1. Since naz can be smaller thanrl,z; = ... =z, = —1. Thus case (2)
of Theorem 27 holds. We get our claim (2) directly by subsituting the bedness parameters of
Y in Theorem 27 case (2). |

7.3 From Single-Instance Learning to Multi-Instance Learning

In this section we combine the guaranteesidhearn with the guarantees olaBoost *, to show
that efficient agnostic PAC-learning of the underlying instance hypustitésmplies efficient PAC-
learning of MIL. For simplicity we formalize the results for the natural casemnlthe bag function
is = max. Results for other bounded bag functions can be derived in a sinsldofa

First, we formally define the notions of agnostic and one-sided PAC-lgaaigorithms. We
then show that given an algorithm on instances that satisfies one of th@s#éi@hs, we can con-
struct an algorithm for MIL which approximately maximizes the margin on an ibpgtsample.
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Specifically, if the input bag sample is realizablesy then the MIL algorithm we propose will find
a linear combination of bag hypotheses that classifies the sample with zemaed with a positive
margin. Combining this with the margin-based generalization guarantees mekitiddection 7.1,

we conclude that we have an efficient PAC-learner for MIL.

Definition 29 (Agnostic PAC-learner and one-sided PAC-learner)LetB(g, 8, S) be an algorithm
that accepts as inp@i, € € (0,1), and a labeled sample §(X x {—1,+1})™, and emits as output
a hypothesis k& #. B is anagnostic PAC-learndor # with complexity ¢e,d) if B runs for no
more than ¢g,d) steps, and for any probability distribution D ovér x {—1,+1}, if S is an i.i.d.
sample from D of size(e, d), then with probability at least — & over S and the randomization of
B,

r(B(g,0,5),D) > supl (h,D) —¢.

he H

B is aone-sided PAC-learndérunder the same conditions, with probability at ledst &

r(B(o,S),D)> sup I(hD)—c¢.
heQ(7{,D)

Algorithm 2: 0Z;
Assumptions
e £0¢€(0,1).

e Breceives a labeled instance sample as input and returns a hypoth#sis in
e Algorithm B is a one-sided (or agnostic) PAC-learning algorithm with complex(ityd).

Input: Alabeled and weighted instance sam$le { (Wi, X, Vi) }iejm € Ry x X x {—1,+1}.
Output: A hypothesis inH

1 Foralli € [m], pi < Wi/ ¥icm W

2 Foreaclt € [c(g,0)], independently draw a randojnsuch thatj; = i with probability p;.

3 S {(Xje: ¥io) helee.5))-

4 h« B(9

5 Returnh.

Given an agnostic PAC-learné for # and parameters 6 € (0,1), the algorithmofe.), listed
above as Algorithm 2, is agroptimal algorithm with probability + 6. Similarly, if B is a one-
sided PAC-learner, thetj)f6 is a one-sided-optimal algorithm with probability 6. Our MIL

algorithm is then simphAdaBoost * with MILearn®s as the (high probability) weak learner. It is
easy to see that this algorithm learns a linear combination of hypothesegfranWe also show
below that under certain conditions this linear combination induces a positikginmen the input
bag sample with high probability. Given this guaranteed margin, we bound tieeajization error
of the learning algorithm via Equation (23).

The computational complexity aﬁgfs is polynomial inc(g,d) and in the instance-sample size

m. Therefore, the computational compIexityl\ﬁ]‘LearnOg?3 is polynomial inc(g, 8) and inN, where
N is the total number of instances in the input bag sarple
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For 1-Lipschitz bag functions which have desired boundednessniegdoth the sample com-
plexity and the computational complexity of the proposed MIL algorithm arermoiyal in the
maximal bag size and linear in the complexity of the underlying instance hyp®ttlass. This
is formally stated in the following theorem, for the case of a realizable distribwtien labeled
bags. Note that in particular, the theorem holds for all pregorm bag-functions, since they are
1-Lipschitz and satisfy the boundedness conditions.

Theorem 30 Let # C [-1,+1]* be a hypothesis class with pseudo-dimension d A_ké a one-
sided PAC-learner forH with complexity ¢£,0). Letre N, and let RC [r]. Assume that the bag
functiony : [—1,+1](R — [—1, +1] is 1-Lipschitz with respect to the infinity norm, and that for any
(z,...,z0) € [-1,+P®

1
=Y z<Y(z,...,z,) < maxz.
nien] ie[n|

Assume that is compact with respect to any sample of size m. Let D be a distribution over
X R x{—1,+1} which is realizable by, that is there exists an & # such thafPx v).p[N(X) =
Y] = 1. Assume n» 10dIn(er), and lete = 712 and k= 32(2r — 1)2In(m).

For all 6 € (0,1), if AdaBoost * is executed for k rounds on a random sample- ®™,
with MILearn%s/ as the weak learner, then with probability— &, the classifier § returned by
AdaBoost * satisfies

B £() <0 < O (\/drzln(r)lnz(m)+In(2/6)) | o)

m

Proof SinceB is a one-sided PAC-learning algorithrﬁgfa/2k is one-sidecs-optimal with proba-
bility at least 1— 6/2k. Therefore, by case (2) of Corollary 28M'fLearnif5/k receives a weighted
bag sampl&,, with probability 1— 8/2k it returns a bag hypothesdlis € A | such that

SUR,cq@z.g T (N Sw) — r’e
2r—1 '

(e, Sw) =

Thus, by Corollary 23, iAdaBoost * runs fork rounds then with probability + 8/2 it returns a
linear combination of hypotheses fraf. such that

sup, — o M(f,9) —r%
M(f,,S) > fec“”@f”_ - —\/2Inm/k. (28)

Due to the realizability assumption f@r, there is arh Q(?[, S) that classifies correctly the bag
sampleS. It follows that for any weightingv € A, of S I'(h,Sy) = 1. Itis easy to verify that since
7 is compact with respect @ then so i)(#,S). Thus, by Theorem 22, SWP.o0(77.5) M(f,S) =
miny, SUR.co(rs) I (h,Sy) = 1. Substituting andk with their values, setting SYPso( (7 5)) M(f,S) =
1 in Equation (28) and simplifying, we get that with probability- $/2

1

M(f,,S) > .
( S)—8r—4

(29)
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We would now like to apply the generalization bound in Equation (23), buthisrwe need to
show that Equation (24) holds fa¥. We have the following bound on the covering numberg{of
forallye (0,1]:

NV, 7,9) < Nl . 7, 9) < (i;(;”)d.

The first inequality is due to Corollary 13 and the fact thas 1-Lipschitz, and the second inequality
is due to Haussler and Long (1995) and the pseudo-dimensi&h(sée Equation (24) above). This
implies

Nin(Y, H ,00) < (erm)d = (?)d-ed'”(” = (yl()?lﬂ(er))d -(10In(er))den()

d
_ em . gd(In(10In(en))+In(r))
y-10dIn(er) ’

Therefore, form > 10dIn(er)

d
— em d(In(101In(er))+In(r))
< < NPT Ty ’
Nonl Y, H 1, 0) < L+ Nn(Y, H ) < 1+ (y. 10d|n(er)> ©

d
< (€M ) gd(n(10inen)-+in(er))
~ \ly-10dIn(er)

Now, In(10In(er)) +In(er) =In(10)+In(In(er))+In(er) <In(10)+2In(er) < 3+2In(er) <5In(er).
Therefore,

5dl
Nonly, H 1 y00) < [ ——o d_e5dln(er) <  ém n(en _(_em 10din(er)
T =\ y-10dIn(er) = \y-10dIn(er) =\ y-1odin(en) )

Thus, form > 10dIn(er), Equation (24) holds fof{, when substitutingl with d, = 10dIn(er).

This means the generalization bound in Equation (23) holds when substidutiith d, as well. It
follows that with probability - 6/2

PlY f,(X) <0 <O (\/df In?(my/dr)/M?(f..,S) +In(1/5)) .

m

Now, with probability 1—- 8/2, by Equation (29) we haw!(f,,S) > 1/(8r — 4). Combining the
two inequalities and applying the union bound, we have that with probab#ity 1

Bl fo(x)<o]<o<\/dr(8r4)2|n2(m/dr)+ln(2/6))

m

m

o (\/10d|n(er)(8r4)2In2(m)+ln(2/5)> |

Due to the O-notation we can simplify the right-hand side to get Equation (27).
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Similar generalization results for Boosting can be derived for margindteguas well, using
covering-numbers arguments as discussed in Schapire et al. (19@8hdorem above leads to the
following conclusion.

Corollary 31 Ifthere exists a one-sided PAC-learning algorithm fémwith polynomial run-time in
% and%, then there exists a PAC-learning algorithm for classical MIL%nwhich has polynomial
run-time inr and 3.

Corollary 31 is similar in structure to Theorem 1: Both state that if the singlerinstaroblem is
solvable with one-sided error, then the realizable MIL problem is solvalbleorem 1 applies only
to bags with statistically independent instances, while Corollary 31 appliegtdrawn from an
arbitrary distribution. The assumption of Theorem 1 is similarly weaker, agyitrequires that the
single-instance PAC-learning algorithm handle random one-sided mdige,Corollary 31 requires
that the single-instance algorithm handle arbitrary one-sided noise. U$esoCorollary 31 does
not contradict the hardness result provided for APRs in Auer et 88§)L Indeed, this hardness
result states that if there exists a MIL algorithm fbdimensional APRs which is polynomial in
bothr andd, then® ? = A_P. Our result does not imply that such an algorithm exists, since there
is no known agnostic or one-sided PAC-learning algorithm for APRs wikiplolynomial ind.

7.3.1 EXAMPLE: HALF-SPACES

We have shown a simple and general way, independent of hypothessistolareate a PAC-learning
algorithm for classical MIL from a learning algorithm that runs on singléanses. Whenever
an appropriate polynomial algorithm exists for the non-MIL learning problihe resulting MIL
algorithm will also be polynomial im. To illustrate, consider for instance the algorithm proposed
in Shalev-Shwartz et al. (2010). This algorithm is an agnostic PAC-learihiizzy kernelized
half-spaces with ah-Lipschitz transfer function, for some constdnt- 0. Its time complexity
and sample-complexity are at most p(QI%/)'- . In(%)). Since this complexity bound is polynomial
in 1/e and in /9, this algorithm can serve as the algoritt#nin Theorem 30, and Corollary 31
holds. Thus, we can generate an algorithm for PAC-learning MIL with dexity that depends
directly on the complexity of this learner, and is polynomiat,ir% and%. The full MIL algorithm
for fuzzy kernelized half-spaces can thus be described as follows:ARBoost * with the weak

IearnerMILearnofﬁ, whereMILearn is listed in Algorithm 1,036 is listed in Algorithm 2, andB
is the agnostic PAC-learner from Shalev-Shwartz et al. (2010). The topdaBoost * is a labeled
sample of bags, and the output is a real-valued classifier for bags.

More generally, using the construction we proposed here, any aglveamt in the development
of algorithms for agnostic or one-sided learning of any hypothesis ckssl&tes immediately to an
algorithm for PAC-learning MIL with the same hypothesis class, and witresponding complexity
guarantees.

8. Conclusions

In this work we have provided a new theoretical analysis for Multiple Ircgtdrearning with any
underlying hypothesis class. We have shown that the dependence sértipde complexity of
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generalized MIL on the number of instances in a bag is only poly-logarithmis,ithplying that the
statistical performance of MIL is only mildly sensitive to the size of the bag. artadysis includes
binary hypotheses, real-valued hypotheses, and margin learningwddiah are used in practice in
MIL applications. Our sample complexity results can be summarized as folldveseais the VC
dimension or pseudo-dimension of the underlying hypothesis clasg, igrntie maximal/average
bag size.

e The VC dimension of binary MIL i©(dlog(r)).

e For non-trivial bag functions, there are hypothesis classes suchhiatC dimension of
binary MIL is Q(dlog(r)).

e The VC dimension of binary MIL with separating hyperplanes in dimendimQ(dlog(r)).

e The pseudo-dimension of binary MIL for bag functions that are extessad monotone
Boolean functions i©(dlog(r)).

e Covering numbers for MIL hypotheses with Lipschitz bag functions candumded by cov-
ering numbers for the single instance hypothesis class.

e The fat-shattering dimension of real-valued MIL with Lipschitz bag-functiois
poly-logarithmic in the bag size and quasilinear in the fat shattering dimensitre cfin-
gle instance hypothesis class.

e The Rademacher complexity of binary MIL with a bounded average bag isize
O(y/dlog(r)/m) wheremis the sample size.

e The Rademacher complexity of real-valued MIL with a Lipschitz loss functimhealipschitz
bag function is upper bounded by a logarithmic dependence on the eveaggsize and a
quasilinear dependence on the Rademacher complexity of the instan¢hdsipalass.

For classical MIL, where the bag-labeling function is the Boolean OR fanis natural ex-
tension to max, we have presented a new learning algorithm, that classiiedypaxecuting a
learning algorithm designed for single instances. This algorithm provaiflyl®arns MIL. In both
the sample complexity analysis and the computational analysis, we have shbweootigections
between classical supervised learning and Multiple Instance Learninighwolds regardless of
the underlying hypothesis class.

Many interesting open problems remain for the generic analysis of MILattiqular, our re-
sults hold under certain assumptions on the bag functions. An interestingjapstion is whether
these assumptions are necessary, or whether useful results candweddor other classes of bag
functions. Another interesting question is how additional structure withinga du&ch as sparsity,
may affect the statistical and computational feasibility of MIL. These interggtinblems are left
for future research.
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Appendix A. Proof of Theorem 27

The first step in providing a guarantee for the edge achieveéd byarn, is to prove a guarantee for
the edge achieved on the bag sample by the hypothesis returngdnbostep (3) of the algorithm.
This is done in the following lemma.

Lemma 32 Assume : [—1,+1](R — [-1,+1] is an(a, b, ¢c,d)-bounded bag function with< a <
¢, and denote Z £. Consider running the algorithmILearn with a weighted bag sample of
total weightl. Let h be the hypothesis returned by the oradlén step (3) ofMILearn. Let W be
the total weight of the sample &eated inMILearn, step (2). Then

1. If 4 is e-optimal,

r(h, )>ZV*+(%—Z+(1—E)(d Zb))W, +Zb—d—eW.
2. If 4 is one-sidec-optimal, andlp(zb cooZn)=-1onlyifz =...=2z,= —1, then
rh,S > yj ( (1——)(d Zb))W, +Zb— d+Z—%—sW

Proof Forallhe€ #, and for allX = (X, ..., %)) € X we haveh(x) = w(h(xy),...,h(xy)). Since
Y is (a,b,c,d)-bounded, it follows that

ay h(x h(x) <c¥ h(x)+d. (30)
In addition, sincea andc are positive we also have

(A9 ~d)/c< 3 hx) < (AK) ~b)/a (31)

Xex

Assume the input bag sampleSs= {(Wi,Xi, i) }icjm. Denotel, = {i € [m] | y; = +1} andl_ =
{i € [m] | yi = —1}. Leth € # be a hypothesis. We have

rhs =Y whx)— S wh(x)

iely el
>N w(@h h(x wi(c'y h(x (32)
i€l | ;2% I ;g%
= vviaz wiC Zh + wib—'§ wd. (33)
el XEXi XEXi el iel”

line (32) follows from Equation (30). As evident by steps (1,2Mdf.earn, In the sample§ all
instances from positive bags have weigtit-1) = a, and all instances from negative bags have
weighta(—1) = c. Therefore

rhs)=3 3 wyahx) =Y way hx— 5 we Y h(x).

i€[m] XEX; iel; XEXi iel_ XEXi
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Combining this equality with Equation (33) we get
r(ﬁ,é)zr(h,S)—l— wib— w;id.

iely el
Sincey i, Wi =W, andyic W =W_ =1-W,, it follows that
F(h,S >r(hg)+bw, —dW. =r(h,S)+ (b+d)W, —d. (34)

Now, for any hypothesik we can conclude from Equation (31) that

rhs)= Zavw Zh Z cW, Zh(x)

XEXi XEXi

aw (h(xi) - )/C—Z cwi (h(xi) —b)/a

IE

— 5 2Whx) - ;wih(xi)—Zadw/CJr chw/a

i€l icl_ i€ iel_
_ a ¢ _ ad ch
5 r(h,S)+ (E—a)ie wih(x )—*W+ W
c_ — — a c — ad cb cb
ar(h ) + (E—*)iE+Wlh(Xl)—(?+E)W++E~

In the last equality we used the fact thit = 1—W, .. SinceZ = £, it follows that

o 1 - d
rh,§)>2zr(h, )+(Z_Z) Wih(xi)—(Z+Zb)W++Zb (35)
iely
We will now lower-bound the right-hand-side of Equation (35). Note t%wuz < 0 sincec > a.
Therefore we need an upper bound fg,, wih(xi). We consider each of the two cases in the
statement of the lemma separately.

A.0.2 CASE1l: 41SE-OPTIMAL
We havey ., wih(X) < Tici, Wi = W,.. Therefore, by Equation (35) for atye #
1 d

r(hS)>2zrh+(;-2-5-ZbW. +2b (36)
For a naturah, seth? such thaf” (ﬁ:,é) >V — % We have (see explanations below)
F(h,S=r(h,s)+(b+dW, —d (37)
> (h"S)+ (b+d)W, —d—ewW (38)
2ZF(HQSH(%—Z—;—Zb)w++2b+(b+d)w+—d—sw (39)
:ZF(HZSH(% —Z+(1- %)(d—Zb))WJrJer—d—sW
> Z(W—%)Jr(%—Z+(1—%)(d—Zb))W++Zb—d—sW.

Equation (37) is a restatement of Equation (34). Equation (38) follows fhee-optimality of 4.
Equation (39) follows from Equation (36). By takimg— o, this inequality proves case (1) of the
lemma.
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A.0.3 CASE2: 4 1S ONE-SIDED-£-OPTIMAL
We havey e, Wih(Xi) < Tici, Wi =W, Lethe€ Q(#,S). Thenfor alli € I, h(x;) = —1. Therefore

r(hS =% wh(x)— 5 wih(x)

i€+ iel_

=5 wh(xi)+ Y wi
iely el
= W,ﬁ()?,) +W_.

i€+

Thereforey;;, wh(xi) = (h,S) —W_ =T (h,S) +W, — 1. Combining this with Equation (35) we
get

r(h,s)=2zrhs+ (% —2) Y wih(x) - (g +Zb\W, +Zb
=Zr(h,9+ (% ~Z)(r(h,S)+W, —1)— (% +ZbW, +Zh
:%r(ﬁ,’)ﬂ%—Z-%-Zb)w++2b—%+z. (40)

For a naturah, seth’, € Q(#,S) such thaf (h',S) > y: — . Forallbags € I, h} (x;) = —1.
Thus(h? (x[1]),...,h7 (x[|x])) = —1. By the assumption ot in case (2) of the lemma, this
implies that for alli € 1_,j € [|xi[], h}.(x[j]) = —1. Thereforeh} € Q(#,S). We have (see
explanations below)

r(h,S >r(h,S)+(b+d)w, —d 1)
- %F(HLSH(%—Z—g—Zb)M +Zb—%+Z+(b+d)W+—d—sW 43)
1_-n = 1 1 1
= ST+ (5~ Z+ (1= 5)(d=Zb)W, +Zb—d+Z— = — W
1 1. 1 1 1
> SV~ )+ (5 —Z+ (1= 5)(d - ZD)W, +Zb—d+Z— = —eW.

Equation (41) is a restatement of Equation (34). Equation (42) follows filte one-sided-
optimality of 4 and the fact thah”, € Q(#,S). Equation (43) follows from Equation (40). By
consideringh — oo, this proves the second part of the lemma. |

Proof [of Theorem 27MILearn selects the hypothesis with the best edg&betweerh; andhps

Therefore B B o
M (hy,S) = maxT (hpos, S), I (h,9)).

We have

r(hIOOS7 S = Z WiYihpos()Ti) = z wiyi =W, —W_ =2W, — 1.

ie[m| ie[m|
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Thus
r(h,,S) =max2wW, — 1,1 (h,9)). (44)

We now lower-boundr (h,,S) by bounding™ (h;,S) separately for the two cases of the theorem. Let
W be the total weight 0§ . SinceRC [r],a<c¢, andEiE[m}vvi =1, we have

Zaw+ z Zva.grc%wi:rc (45)
ie[m

iy =+1XEX inyi=— 1 XEXi

A.0.4 CASEL1l: 41S€-OPTIMAL

From Lemma 32 and Equation (45) we have
m.)>zw+(}—z+u——Xd Zb))W, +Zb—d —rce

:ZW+(%—Z+(1—%)(Z—1+H))W+—(Z—1+r])—rca

1
:ZW+(n—2)(1—Z)W++l—r]—Z—rcs.

The second line follows from the assumptior- Zb— Z + 1 = n. Combining this with Equa-
tion (44) we get

_ 1
M(ho,S) > max{2W, —1, Zy* + (n—2)(1— Z)\M +1-n—Z-rce}.
The right-hand-side is minimal when the two expressions in the maximum aré dduis occurs

when
Zy*+2—n—2Z—rce

2+(2-n)1-37)

W, =W, £

Therefore, for any value &/,

_Zy - Z+2-3(1+3)—rce
1+(1-3)(1-32)

Case 2:4is one-sideds-optimal From Lemma 32 and Equation (45) we have

rh,,S >2W, -1

r,s > y; ( (1—2)(d Z0))W, +Zb— d+Z—%—rce
y; ( Z+(1_Z)(Z 14+n))Wy —(Z— 1+n)+2—%—rce

1 1
:ZﬂJr(r]—2)(1—Z)W++1—r]—2—rce.

The second line follows from the assumptibr Zb= Z — 1+ 1. Combining this with Equation (44)
we get

M (hs,S) > max{2W, —1, %V; +(N—-2)(1— %)WJr +1-n-— % —rce}.

The right-hand-side is minimal when the two expressions in the maximum aré ddpisoccurs
when
Vi —1+(2-n—-rce)Z

_ AN
Wi =We = 2Z+(2—n)(Z-1)
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SubstitutingV, for W, in the lower bound, we get

Y. — 2(Z+1)—rceZ

M(ho,S) >2W, — 1=
(he,5) 2z-1-%z-1
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