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Abstract

High density clusters can be characterized by the connexatponents of a level sét(A) =
{x: p(x) > A} of the underlying probability density functiom generating the data, at some ap-
propriate level > 0. The complete hierarchical clustering can be charae@ii a cluster tree
T = U, L(A). In this paper, we study the behavior of a density level sémesel(A) and cluster
tree estimatel’ based on a kernel density estimator WAith kernel bandwhdtive define two no-
tions of instability to measure the variability bfA) and 7 as a function oh, and investigate the
theoretical properties of these instability measures.

Keywords: clustering, density estimation, level sets, stabilityd®lcselection

1. Introduction

A common approach to identifying high density clusters is based on usingsietgetf the density
function (see, for instance, Hartigan, 1975; Rigollet and Vert, 2008}.Xy, ..., X, be a random
sample from a distributio® on RY with density p. For A > 0 define the level set(\) = {x:

p(x) > A}. Assume that (A\) can be decomposed into disjoint, connected kéts = U;\':(Al) Cj.
Following Hartigan (1975), we refer t6, = {Cy,...,Cy)} as thedensity clusterst levelA. We
call the collection of clusters
T = U O\
A>0

the cluster treeof the densityp. Note that7 does indeed have a tree structureAjB € 7 then
either, AC B, orBC Aor ANB = 0. The cluster tree summarizes the cluster structure of the
distribution; see Stuetzle and Nugent (2009).

x. Also in the Machine Learning Department.
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It is also possible to index the level sets by probability content. Foro0< 1, define the level
setM(a) = L(Aq), where

Aa =sup{A: P(L(A)) > a}.

If the density does not contain any jumps or flat parts, then there is a emeetoorrespondence
between the level sets indexed by the density level and the probability toritba cluster tree
obtained from the clusters &f(a) for 0 < a < 1 is equivalent toZ. Relabeling the tree in terms
of a may be convenient becauads more interpretable thak, but the tree is the same. Figure 1
shows the cluster tree for a density estimate of a mixture of three normals @uséfgrence rule
bandwidth). The cluster tree’s two splits and subsequent three leakesmond to the density
estimate’s modes. The tree is also indexed\byhe density estimate’s height, on the left and
the probability content, on the right. For example, the second split comdsgoA = 0.086 and
o = 0.257. We note here that determining the true clusters for even this seeminglg siniariate
distribution is not trivial for allA; in particular, values ok near 004 and 009 will give ambiguous
results.
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Figure 1. The cluster tree for a Gaussian kernel density estimate (nafesdmce rule bandwidth)
of a sample from the mixturé4/7)N(0,1) + (2/7)N(3.5,1) + (1/7)N(7,1); the tree is
indexed by both\ (left) anda (right). The dashed curve indicates the true underlying
density. The gray lines indicatg0.04), L(0.09).

In this paper we study some properties of clusters defined by densitysktgehnd cluster trees.
In particular, we consider their estimators based on a kernel density esamétghow how the
bandwidthh of the kernel affects the risk of these estimators. Then we investigate tive rod
stability for density-based clustering. Specifically, we propose two measfrinstability. The
first, denoted byz, ,(h), measures the instability of a given level set. The second, denoted by
n(h), is @ more global measure of instability.
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STABILITY OF DENSITY-BASED CLUSTERING

Investigation of the stability properties of density clusters is the main focuggfaper. Stabil-
ity has become an increasingly popular tool for choosing tuning parametelsstering; see von
Luxburg (2009), Lange et al. (2004), Ben-David et al. (2006 y;-Bkr et al. (2002), Carlsson and
Memoli (2010), Meinshausen andiBlmann (2010), Fischer and Buhmann (2003), and Rinaldo
and Wasserman (2010). The basic idea is this: clustering proceduvéslihedepend on one or
more tuning parameters. If we choose a good value of the tuning parathetenve expect that
the clusters from different subsets of the data should be similar. While tlasmends simple, the
reality is rather complex. Figure 2 shows a plogfandrl’, for our example. We see tha, ,(h)
is a complicated function df while I',(h) is much simpler. Our results will explain this behavior.

N ]
o
[ep]
@
—_
< o
c o
[x]
g
e ]
e T T T T T T
0 2 4 6 8 10
Bandwidth h
(o]
<
—_
=
N
~ _
~
<
e T T T T T T
0 2 4 6 8 10
Bandwidth h

Figure 2: Plots of the fixed-instability (top)=, (h) for A = 0.09 and of the total variation instabil-
ity Mn(h) (bottom) for the mixture distribution in Figure 1 as functions of the bandwidth
h.

Below we briefly describe our contributions.

e We consider plug-in estimates of the level dets) corresponding to fixed density levels
and also to the level setgAy) corresponding to fixed probability conterdsusing kernel
density estimators. We analyze the statistical properties of these plug-in estenatéor-
mulate conditions on the density of the data generating distribution and on thel kKeaih
guarantee accurate recovery of the level setstzecomes large.
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e We formulate a notion of cluster stability of the level sets based on a splitting dfi¢heata
that quantifies the variability of the level set estimators we consider. Wdroohan esti-
mator of the cluster instability and analyze its performance lzscome large, and argue that
stability can provide a guidance on the optimal choice of the bandwidth panasiz result
of our analysis, we are able to provide a rigorous characterization téthbs sets for which
the the uncertainty is larger and, therefore, for which the cluster trebeastimated with
a smaller degree of accuracy. Our results suggest that the sample cibyrfiolesuccessful
reconstruction of the cluster tree may vary significantly depending on ehe#h estimating
a portion of the tree that is far removed from a branching region or ndtfarthose portion
of the tree we provide some rates.

e We formulate and analyze a stronger notion of cluster stability that is basédectotal
variation distance between kernel density estimates computed over diffetarsubsamples.
This second kind of stability is more global and has natural and interestmgections with
the problem of optimally estimating a densitylin norm.

After the writing of the first draft of this paper we learned of the interesting relevant contri-
butions by Chaudhuri and Dasgupta (2010), Kpotufe and von Lgx{a@11) and Steinwart (2011)
who all consider the problem of estimating the cluster tree. Our results pravitifferent per-
spective on this issue as we concern ourselves with quantifying, bassthbility criteria, the
uncertainty of the cluster tree estimate. Furthermore, these papers ondgtehnize the optimal
scaling of parameters to guarantee cluster tree recovery and do natepeodata-driven way to
choose these parameters. In this paper, we investigate stability as a nredetsfadaptive choice
of parameters such as the kernel bandwidth.

The paper is organized as follows. In Section 2 we describe the assumpticime density
and recall some facts abgut kernel density estimation. In Section 3 weawttrEug-in estimates
L(A) of the level set (M), 7T of the cluster tree”, andM(a) of the level set indexed by probability
contentM(a). In Section 4 we define and study a notion of the stability @f) and extend it g
We also consider an alternative version of our results when the levelrecitsdexed by probability
content. We then describe another notion of stability of cluster trees bastdab variation that
leads to a constructive procedure for selecting the kernel bandwid8edtion 5 we consider some
numerical examples. Section 6 contains a discussion of the results andttie @re in Section
A. Throughout, we use symbols likecy, C;,...,C,C1,Cy, . .., to denote various positive constants
whose value can change in different expressions.

2. Preliminaries

In this section we introduce some notation, state the assumptions on the density besusing
throughout and review some useful facts about kernel density estimation

2.1 Notation

Forx € RY, let ||x|| denote its Euclidean norm. LB(x,£) = {y: [|[x—Y|| <€} c RY denote a ball
centered ax with radiuse. For two setd andB in RY, their Hausdorff distance is

do(A,B) =inf{e: AC (Bde) and BC (Ade)},
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whereAd € = JyaB(X,€), and

AAB = (ANB°) | J(A°NB)

denotes the symmetric set difference. Finally, wedet - 2 he the volume of the-dimensional

(5+1)
Euclidean unit ball.

For sequences of real numbédes } and{b,}, we writea, = O(by) if there exists & > 0 such
that |a,| < Clby| for all n large enough, and we will write,, = w(by) if there exists a constant
C > 0 such thata,| > C|by| for all n large enough. Whefa,} and{b,} are sequences of random
variables described by a probability measBreve will write a, = Op(by) if, for any € > 0, there
exists a constar > 0 such thata,| < C|b,| with P-probability at least + € for all n large enough.

We will be considering samples ofindependent and identically distributed random vectors
from an unknown probability measufeon RY with Lebesgue densitp. If X andY are such
samples, we will denote witlx y the probability measures associated to them and Bsth the
corresponding expectation operator. ThusZifs an event depending ox andY, we will write
Px y(A4) for its probability. Finally, for a sampl& = (Xy,...,X,), we will denote withB the
empirical measure associated with it; explicitly, for any measurabla seR¢,

Py (A) = iil(xi eA).

2.2 Assumptions

We will use the following assumptions on the dengitgnd its local behavior around a given density
levelA.

(A0) Compact Support¥he supporSof pis compact.

(A1) Lipschitz Density Assume that

pex(A) = {p: Ip(X) — p(y)| < Allx—yl|, forallxye S}

for someA > 0.

(A2) Local density regularity ah- For a given density level of intereat there exist constants
0 < K1 <Ko < w and 0< gy such that, for alk < &g,

K1€ < P({x: |p(x) —A| < &}) <KzE.

It is possible to formulate condition (A2) more generally in terms of powers, diiat ise?.
However, as argued in Rinaldo and Wasserman (2010), the above statgpieally holds with
a =1 for almost all\.

Assumptions (Al) and (A2) impose some mild regularity conditions on the der{gify):im-
plies that the density cannot change drastically anywhere, while (A2) inthhéthe density cannot
be too flat or steep locally around the level set. In particular, (A2) isssog to ensure that small
error in estimating the density level does not translate into a huge error iizingahe level set.
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We remark that this assumption is an extension of the Tsybakov noise-margiition for classifi-
cation (see Mammen and Tsybakov, 1999; Tsybakov, 2004) to the dénatyset context and has
been used in other work on density level-set estimation, such as Polo®ik)(TI%ybakov (1997),
Cuevas et al. (2006), Rigollet and Vert (2009), Singh et al. (2006) Rinaldo and Wasserman
(2010). Finally notice that (AO) and (A1) together imply that the denpiig bounded by some
positive constanpmnax < ©. These assumptions are stronger than necessary, but they simplify the
proofs. Notice in particular, that assumptions (A1) and (A2) each ruléhewcase of sharp clusters,

in which Sis the disjoint union of a finite number of compact sets over whidh bounded from
below by a positive constant. Finally, we remark that some of our results mljlirequire a subset

of these assumptions.

2.3 Estimating the Density

To estimate the densitg based on the i.i.d. sampk = (Xy,...,X,), we use the kernel density

estimator
1 n 1

where the kerneK is a symmetric, non-negative function with compact support such that
Jre K(2)dz= 1 andh > 0 is the bandwidth. In some results we will consider specificallysiiteer-
ical kernel K(u) = % u € RY, wherelg 1) (-) denotes the indicator function of the Euclidean
ball B(0,1).
Forh > 0, let pn(u) = Ex[pnx(u)]. Note thatp, is the Lebesgue density of the probability
measure
Ph = P K,

wherex denotes convolution of probability measures d&ddenotes the probability measure of a
random variable with densitgn(z) = h~9K(z/h), z€ RY.

We note that the compactnesskofand assumption (AO) op imply that the support oF;, is
compact, while assumption (A1) gnfurther yields thapy, € (A), both statements holding for all
h > 0 (for a formal proof of the second claim, see the end of the proof of LeB)nBelow, we will
be concerned with given values of the density leveind of the probability parametere (0,1)
and will impose the following assumptions.

(B2) Local density regularity ak- For a given density level, there exist positive constark$ <
K5, €0 andH bounded away from 0 ard, such that, for all 6< € < €,

Kie < inf P({X: |pn(X) —A| <€}) < sup P({x: |pn(X) —A| < €}) < Kbe.
0<h<H 0<h<H

(B3) Local density regularity ati- For a given probability value, there exist positive constants
K3, No andH bounded away from 0 and, such that, for all 6 n < |no|,

SUP 0o (Mn(a),Mn(a +n)) <Ksa|n|,
0<h<H

whereMp(a) = {u: ph(u) > A }.
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STABILITY OF DENSITY-BASED CLUSTERING

Conditions (B2) and (B3) are used only for some specific results frastidde4.1 and Section
3.2, respectively. This will be explicitly mentioned in the statement of sucHtsedn particular,
condition (B2) is needed in order to explicitly state the behavior of the instabiligsore we define
below. We conjecture that (B2) follows from condition (A2) on the truesityrp and using kernels
with compact support. This assumption holds for all density levels that afeonalose to a local
maxima or minima of the density. Assumption (B3) characterizes the regularitg ¢dibl sets of
pn and essentially states that the boundary of these level sets is well-bedraedt space-filling
(see Tsybakov, 1997; Singh et al., 2009, for analogous conditiBo#).assumptions (B2) and (B3)
could be stated more generally by assuming some uniformityloamda respectively, but for the
sake of readability we state them as point-wise conditions.

Our analysis depends crucially on the quanfifyh,x — phlle = SUR,crd | Phx (U) — pr(u)|, for
which we use a probabilistic upper established by&Gind Guillou (2002), to which the reader is
referred for details. To this end, we will make the following assumption on ¢nedtK :

f:{K<Xh'> ,xeRd,h>O}

satisfies, for some positive numbé&tsandyv,

V \Y
SuBN (5, La(P).lF o) < ()

whereN(T;d;€) denotes the-covering number of the metric spa€g d), F is the envelope
function of # and the supremum is taken over the set of all probability meaguesRY.
The quantitiey/ andv are called the VC characteristics %f.

Assumption (VC) holds for a large class of kernels, including, any cottypsupported polynomial
kernel and the Gaussian kernel. The lemma below follows frongé Gird Guillou (2002) (see also
Rinaldo and Wasserman, 2010).

(VC) The class of functions

Lemma 1 Assume that the kernel satisfies the VC property, and that

supsup/ KZ(t—x)dP(x) < B < c.
teRd h>0/R¢

There exist positive constantg,KK; and C, which depends on B and the VC characteristic of K
such that the following hold:

1. For everye > 0and h> 0, there exists (€, h) such that, for all > n(g, h)
Px (|| Px — Prlle > €) < Kye™kee ", (1)
2. Leth,— 0as n— o in such a way that

nh
logn — 00, 2)

Then, there exist a constang Knd a number §= no(d, K3) such that, setting, = , / Kﬂﬁqg”,

=

: ®3)

Px (|| Pryn.x — Phalleo > €n) <

for all n > np(d, K3z).
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The numbers (&,h) and rp depend also on the VC characteristic of K and on B. Furthermore,
n(e, h) is decreasing in botl and h.

This result requires virtually no assumptionsand only minimal assumptions on the kernel,
which are satisfied by the most commonly used kernels.
The constraint in Equation (2), which in general cannot be dispenstd as a subtle but
important implication for our later results on instability. In fact, it implies that thedeadth pa-
. . 1/d
rameterh, is only allowed to vanish at a slower rate th IR% . As a result, our measures

of instability defined in Sections 4.1 and 3.2 can be reliably estimated for valdles bandwidth
1/d 1/d _

h> ('0%) . Indeed, the threshold vah(e'%) is of the same order of magnitude of the

maximal spacing among the points in a sample of sitem P (see, for instance, Penrose, 2003).

3. Estimating the Level Set and Cluster Tree

For a given density levél and kernel bandwidth, the estimated level setlT:ﬁ,x (A) ={x: Pnhx(x) >

A}. The clusters (connected componentsi@i()\) are denoted bf‘h,)\ and the estimated cluster
treeis

a?m = U Eh,»
A>0
3.1 FixedA

We measure the quality &7X(A) as an estimator df(A) using the loss function
L(h, X, A :/ R p(u)du,
( ) L(N)ALyx () )

where we recall thak denotes the symmetric set difference. The performance of plug-in estéanator
of density level sets has been studied earlier, but we state the resulis laeferm that provides
insights into the performance of instability measures proposed in the néixirsec

Theorem 2 Assume that the density p satisfies conditions (A0) and (A1) and=ef z|K(z)dz
(which is finite by compactness of K). For any sequence t((logn/n)%/9), let

e Kslogn
n— nl’ﬁ

rhn7€n7)\ = P({U: ’p(u) _)\| < ADh’]"‘Sn}) .
Then, for all "> n(ng,A,A,D,d),

and

1
Px (L(hn, X,A) < Thgon) = 1— =
If assumption (A2) holds for the density lexethen for all n> n(ng,A,A,D, €p,d),

1
Py (L(hn,x,)\) < KZ(ADhn—}—Sn)) >1-2.
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The following corollary characterizes the optimal scaling of the bandwidtarpeterh,, that
balances the approximation and estimation errors.

Corollary 3 The value of h that minimizes the bound.6is

1
h”_C'(Iogn) ’

where c¢> 0 is an appropriate constant.

3.2 Fixeda

Often it is more natural to index the density clusters by the probability massicedta the cor-
responding high-density regions, instead of the associated density. I@Vedslevel set estimator
indexed by the probability conteate (0,1) is given as

A~

Mhx (0) = Cnx Anax),
where

Ahax = sup{)\  Pe({u: Phx(u) >A}) > a} (4)

andpn x is the kernel density estimate computed using the Matéth bandwidthh. This estimator
was studied by Cadre et al. (2009), though using different technapu different settings than
ours.

Leta € (0,1) be fixed and define

Ana =Sup{A: P(pn(X) >A) >a}.

We first show that the deviation —Aq| is of orderh, uniformly overa, under the very general
assumption that the true densjiys Lipschitz.

Lemma 4 Assume the true density p satisfies the conditions (A0) and (Al). Thamyfor> 0,

sup |Aha —Aq| < ADh,
ae(0,1)

where D= |4 ||Z||K(2)dz.

Remark: More generally, ifp is assumed to be ¢lder continuous with paramet@rthen, under
additional mild integrability conditions oK, it can be shown thahnq — Aq| = O(h®), uniformly
ina.

The following lemma bounds the deviation|df, g x —Anal-

Lemma 5 Assume that the true density satisfies (A0)-(Al) and the density levelf q@tgorre-
sponding to probability content satisfy (B3). Then, for any < h <H, anye < no—1/n, and all
n>n(g,h),

Py (\tha,x — Anal > €(AKs + 1) + AKs /n) < Kqe Kentfe? | gnene?/32 (5)

where A is the Lipschitz constant akrglis the constant in (B3).
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Using Lemma 4 and Lemma 5, we immediately obtain the following bound on the devidtion o
the estimated level,, o x from the true density levély corresponding to probability conteat

Corollary 6 Under the same conditions of Lemma 5,
Py (yihg,x ~ Aa| > ADh+ £(AK3 + 1) + AKs /n) < Ky Kentf'e? | gngne?/32

We now study the performance of the level set estimator indexed by plibpabntent using
the following loss function

£*(h, X, a) = P(M(0)AMx (1)) = /M e, PO

Theorem 7 Assume that the density p satisfies conditions (AO) and (A1) and the &vef g,
indexed by probability content satisfies (B3). For any sequence=h w((logn/n)/9), let

e /|Kzlogn
n— nf’ﬂ

Cin=ADh,+&n, Cyn=ADh,+ (AKz+1)gn+AKz/Nn

and set

and
rhnyﬁn,(x = P({U: ‘p(u) _)\G| < Cl,n +C2,n}) .

Then, for i = w((logn/n)¥/%) and h, < H, we have for all > n(no, no,Ks, d),

2
PX(L*(hn,X7a) S rhnvgma) Z 1— ﬁ

In particular, if assumption (A2) also holds for density lekg) then, for all n> n(ng, no, Ks),
2
Px (L (hn, X, ) < Ka(Cn+Con)) 21—~

Corollary 8 The value of h that minimizes the upper boundiois

1
n T d+2
Mha=c(
’ logn

where ¢> 0is a constant.

4. Stability

The lossL is a useful theoretical measure of clustering accuracy. Balancing the terthe upper
bound on the loss gives an indication of the optimal scaling behavibr Bt estimating the loss

is difficult and the value of the constaain the expression fohy, is unknown. Thus, in practice,
we need an alternative mgthod to deterntindnstead of minimizing the loss, we consider using
the stability offh,x (A) and‘Zy to chooséh. As we discussed in the introduction, stability ideas have
been used for clustering before. But the behavior of stability measandsecquite complicated. For
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example, in the context of k-means clustering and related methods, Bed-@aV. (2006) showed
that minimizing instability leads to poor clustering. On the other hand, Rinaldo aasbé&k¥man
(2010) showed that, for density-based clustering, stability-based nsetiaodsometimes lead to
good results. This motivates us to take a deeper look at stability for densgitechg. In this
section, we investigate two measures of cluster stability.

The first measure of cluster stability we analyze isléwel set stabilitywhich we denote, for a
fixed density level and a varying bandwidth valle with =, ,(h). Assuming for convenience that
the sample size isrB we randomly split the data into three pie¢&sY, Z) each of sizen. Let pn x
be the density estimator constructed frafand p,y be the density estimator constructed fr¥m
The sample instability statistic is

A~ o~

=xn(h) =Pz (Lhx(M)ALry (M), (6)

whereP; denote the empirical measure inducedZyrhe measurg, (h) is the stability of a fixed
level set, as a function di. We will see that=,, has surprisingly complex behavior. See Figure
2. First of all,=,(0) = 0. This is an artifact and is due to the fact that the level sets get small as
h— 0. Ashincreasesz) ,(h) first increases and then gets smaller. Once it gets small enough, the
level sets have become stable and we have reached a good vdludiofvever, after this point,
=xn(h) continues to rise and fall. The reason is thathagts largerpn(x) decreases. Every time

we reach a value df such that a mode gb, has heigh@\, =, (h) will increase. =, y(h) is thus

a non-monotonic function whose mean and variance become large at jpartialues ofh. This
behavior will be described explicitly in the theory and simulations that followa Agsactical matter,
since=, y(h) vanishes for very small values bf we recommend to exclude all valueslobefore

the first local maximum oE, ,(h). Then, a reasonable choice lofis the smallest valué* for
which =) ,,(h) remains less than some maximal pre-specified probability \afee the empirical
instability, such as 5% or 10%, for dil> h*. The parameteB is an entirely subjective quantity to

be chosen by the practitioner, akin to the type-l-error parameter in sthhgpothesis testing, and
guantifies the maximal amount of empirical instability that one is willing to accept.

The second measure of cluster stability we consider isotiadvariationstability, denoted, for a
varying value of the bandwidth, asl,(h). Assuming again for simplicity that the sample is of size
2n, we randomly split the data into two paft¥,Y) of equal sizes. Then, for a given bandwidth
h, we compute separately on each of the two samlasdY the kernel density estimat x and
Phy, respectively. The total variation stability is defined to be the quantity

Mn(h) = sup

17 . N
= §/|ph,x(u) — Phy(u)|du, (7)
BeB

/Bﬁh,x(u)du—/Bﬁh,Y(u)du

where the supremum is over all Borel sBtdNote that the total variation stability is a functiontof
Unlike the level set stability, the total variation stability is a global measure ofeslstability in the
sense that it takes into account the difference betvpagnand pny overall all measurable sets, not
just over the level sets. Thus, total variation stability is a much stronger noticluster stability.
In fact, whenl"y(h) is small, the whole cluster tree is stable. It turns out that the behavio(bf
is much simpler. It is monotonically decreasing as a functioh.ofn this case we recommend
choosingh to be the smallest bandwidth valtié for which the instability is no larger than a pre-
specified probability valueR € (0,1), that isl'(h*) <.

The motivation for choosing the bandwidth paramétierthe way described above is as follows.
We cannot estimate loss exactly. But we can use the instability to estimate vari@hilitghoice of
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h corresponds to making the bias as small as possible while maintaining corgreéhewariability.
This is very much in the spirit of the Neyman-Pearson approach to hygeteesng where one tries
to make the power of a test as large as possible while controlling the probabilétise positives.
Put another wayp}, = P* Ky, has a blurred version of the shape informatio®inMe are choosing
the smallest h such that the shape informationijrcéh be reliably recovered.

Before getting into the details, which turn out to be somewhat technical, hargdasy loose
description of the results. For larbel ,(h) ~ 1/v/nh. On the other hand, ,,(h) tends to oscillate
up and down corresponding to the presence of modes of the densiggitms where it is small, it
also behaves like &/ nhd.

4.1 Level Set Stability

For the analysis of the level set stability we focus on a single level setéddexsome density level
valueA > 0. Consider two independent samples= (X1,...,%y) andY = (Y1,...,Ys) and set

E.)\7n(h) = [Exy (P (ll-\h,x()\)Al/—\hY()\))) :

The quantityé, ,(h) measures the expected disagreement between level sets based on ties samp
as a function of the bandwidthn

The definition of¢, , depends o which, of course, we do not know. To estimdse,(h) we
use the sample instability statistic defined above in Equation (6), where it a®mad for simplicity
that the sample size isx&and the data were randomly split into three piegesy, Z) each of sizen.
It is immediate to see that the expectation of the sample instability statistic is prefigéhy, that
is

Exn(h) = Exyz[Zxn(h)].

Note that since we are using the empirical distribufenthe sample instability can be rewritten
as

Sl = 5312 € G M)

n
= 3 (SOPux(Z) ) # gy (7))

=
The above equation show that, for a fixetE, ,(h) is obtained as the fraction of the observations
inZwherephx(Zi) <A < Pny(Zi) or Phx(Zi) > A > Pny(Zi). This representation is closely tied to
the use of thesample level set® construct the cluster tree (Stuetzle and Nugent, 2009) where each
level set is represented only by the observations associated with itsatedr@mponents rather
than the feature space. Using the empirical distribuBiprmlso removes the need to determine the
exact shape of the level sets of the density estimate. The top graph oé Riglmows the sample
instability as a function oh for A = 0.09 for our example distribution depicted in Figure 1. Note
that the instability initially drops and then oscillates before dropping to zeme-af.08, indicating
the multi-modality seen in Figure 1. More discussion of this example is in Section 5.

. . 1i/d . .
As mentioned at the end of section 2.3, for valueb af "’% , the kernel density estimate

Ph is no longer a reliable estimate pf. The following simple but important boundary properties of
=n andg describes the behavior of the empirical and expected instability Wiegither too small
or too large.
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Lemma 9 For fixed n and\ > 0,

L'Lnoz)\,n(h) = rl]ma)\,n(h) = HE]O:)\,n(h) = A'm Zxn(h) =0,

— 00
where the last two limits occurs almost surely. In particu&r, (h) = O(h), as h— 0.

We now study the behavior of the mean functiyn,(h). Letu e RY, h> 0 ande > 0, and
define

Th(u) =Px(Prx(u) >A) and Upe={u: |pn(u) —A| <e}. (8)
Theorem 10 Let ue RY, h> 0ande > 0.

1. The following identity holds:

Banlh) =2 [ Th(U)(L-T0(u)dP(W)

2. Also, for all n> n(g, h),

e Ang < Enn(h) < e Bne 1 2Kpe Ken¥e

where ke = P(Une),

Ane = sup 21 (u) (1 —Th(u))

ueUp ¢

and
Ane = Inf 27 (u) (1 —Th(u)).

ueUne

Part 2 of the previous theorem implies that the behaviok & essentially captured by the
behavior of the probability content¢. This quantity is, in general, a complicated function of both
hande. While it is easy to see that, for fixddand a sufficiently well-behaved densjyr, ¢ — 0 as
€ — 0, for fixedg, rh¢ can instead be a non-monotonic functiorhofSee, for example, the bottom
right plot in Figure 3, which displays the valuges; as a function oh € [0,4.5] and fore equal
to 0.02, Q05 and 01 for the mixture density of Figure 1. In particular, the fluctuations,gfas
a function ofh are related to the values bffor which the critical points ofp, are in the interval
[A —&,A+¢€]. The main point to notice is thaf ¢ is a complicated, non-monotonic function of
This explains whye,(h) is non-monotonic irh.

We now provide an upper and lower bound on the valugs,elandAy, ., respectively, under the
simplifying assumption tha is the spherical kernel. Notice that, while; remains bounded away
from o for any sequence, — 0 andh, = w(n~1/9), the same is not true fok, ¢, which remains

bounded away from 0 as long as= O(ﬁ) andh, = w(n~Y/9).
Lemma 11 Assume that K is the spherical kernel andQet € <A /2. For a givend € (0,1), let

Bs_sup{h sup P(B uh))Sl—é}.

ueUne
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£=0.002 £=0.005

0.10

0.05

0.00

Figure 3: Top plots and left bottom plot: two densit@scorresponding to the mixture distribution
of Figure 1 forh = 0, the true density (in black) arfd= 4.5 (in red); the horizontal lines
indicate the level set value af= 0.09,A +¢€ andA — ¢, for € equal to 002, 005 and 01.
Right bottom plot: probability content valuegs as a function ofi € [0,4.5] for the three
values ofe.

Then, for all h< h(d,¢),

and

beafo-o ) o)

where® denote the cumulative distribution function of a standard normal randonabigrand

33/ 2
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The dips in Figure 2 correspond to values for whpgtdoes not have a mode at heightin this
case, (B2) holds and we havge = ©(¢). Now choosinge = /logn/(nhd) for the upper bound
ande ~ /1/(nh") for the lower bound, we have thah andA,; are bounded, and the theorem

yields
Cl Czlogn
<
V nhd Ennl \/ nhd

Next we investigate the extent to whic), ,(h) is concentrated around its medp,(h) =
E[=xn(h)]. We first point out that, for any fixeld, the variance of the instability can be bounded by

Ehn(h)(l/z_z)\,n(h))'
Lemma 12 For any h> 0,

Var[E)\,n(h)] < E)\,n(h) (n;_nl - E)\ n( )) ~ E)\,n(h) (; - E)\,n(h)) .

The previous results highlight the interesting feature that the empirical iliistatill be less
variable around the values bffor which the expected instability is very small (close to 0) or very
large (close to 12).

Lemma 13 Suppose that b 0, € > 0,n € (0,1) and t> 0 are such that
t(1—1N) > e + 2Ke e )
where k¢ = P(Un¢). Then, for all n> n(g, h),
Pxvz (|2an(h) — Exn(h)| > t) < & MG 4 2K e e

where

3—2n 3—n
C,=9(1- - :
n=9(t-n) (3(1—n) 3(1—r1>>
4.2 Stability of Level Sets Indexed by Probability Content
As in the fixedA case, we assume for simplicity that the sample has sizn8 split it equally in
three partsX, Y andZ. We now define the fixed-instability as
Zan(h) = Pz(Mnx (0)AMny (a)),
where N ~
Mpx () = {X: Phx(X) > Anax},

with Xhﬂqﬁx estimated as in (4) using the pointsXnwe similarly estimateﬁhﬁy(a). As before,ﬁz
denote the empirical measure arising frdm Again, we use the observations to represl@a&,
I\ﬁh,Y as done foiZ, y(h) for a fixedA. Examples oy n(h) as a function oh,a can be seen in
Section 5.
The expected instability is
Eq,n(m = EX,Y,Z[Ea,n(h)]-

We begin by studying the behavior of the expected instability.
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Theorem 14 Let ue RY, h> 0 ande > 0, and set
Tho(U) = Px (Phx(u) >7\h,a,x) and Uy 2e o = {u: [pn(u) —Agn| < 2¢}.
1. The expected instability can be expressed as

€an(h) =Exyz[Zan(h)] = Z/Rd Tho (U)(1— Tha(u))dP(u).

2. Lete <no—1/n ande = g(Akz+ 1)+ Akz/n. Then, for all n> n(g, h),
P(Unzza)Bnea < En(h) < PUnz o) Anea +4Kse e+ 1ene ™/,

where

Anea = SUP 2Thq(U)(1—Tha(u))

ueuh,ZE.u

and
Anea= inf 2Mq(U)(1—Tha(U)).
UeUh.ZE,cx
3. Assume in addition that K is the spherical kernel and gh&tinfy, }\*‘T'“. Foragivend € (0,1),

let
h(é,s,a):sup{h: sup P(B(u,h)) < 1—5}.

UEUhz o

Then, for all h< h(d,¢,a),

2
+4K1e—K2nhd82 + 1&1e—n82/32>

Anea <2 (1 ) (3 g 2Vg ) n C(8,Ana)

3Aha v/nhd

and

2
Pnea = 2 (1 ® (3 nhfg ;"d ) — C(j’%“) — 4K e Kente 16ne”€2/32) ,
h,a n

where® denote the cumulative distribution function of a standard normal randonaliar

and
33 /| 2
C(év)\h,d) - Z 6Vd)\h,o( .

As for the fluctuations oEq n(h) around its mean, we can easily obtain a result similar to the
one we obtain in Lemma 13.

Lemma 15 Leth>0,€>0,n € (0,1) and t be such that
t(1-n) = rhea+ 4K e KeME” 4 1 gngne?/32
where he o = P({u: |pn(U) — Ang| < 28}), with € = g(Ak3 + 1) + Akg/n. Then, for all > n(g, h),
Pyvz (|Zan(h) —Ean(h)| > t) < & ™ 4 4K e "e"e* 4 1ne /32

3-2n 3—n
o=t (3(1—n)_ 3(1—n)>'

The proof is basically the same as the proof of Lemma 13, except that veethagstrict our
analysis to the event described in Equation (29). We omit the detalils.

where
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4.3 Stability for Density Cluster Trees

The stability properties of the cluster tree can be easily derived from shiéisave have established
so far. To this end, for a fixekd > 0, define the level set gd,

Ln(A) = {u: pn(u) > A}
and recall its estimator based on the kernel density estinpatar
Lhx(N) = {u: Px(u) > A}.

Let Nn(A), Nnx(?\) be the number of connected components of thelsg#s) andfhyx()\), respec-
tively. Notice thaﬂih’x()\) is a random set. Also, denote with, ...,Cy, andCl,...,CNh " the

X
connected components bf(A) andfhx()\), respectively.

When building cluster trees, the value of the bandwidils kept fixed and the values of the
level A vary instead. It has been observed empirically (see, for instance [8taatz Nugent, 2009)
that the uncertainty of cluster tree estimators depend on the particular aluat evhich the tree
is observed. In order to characterize the behavior of the cluster treg@repose the following
definition, which formalize the case in which the clust€s. ..,Cy, ) persist for each\’ in a
neighborhood oA.

Definition 16 A level set valud is (h,€)-stable, withe > 0 and h> 0, if
Nn(A) =Na(A), VN e (A—g A +¢)
and, foranyA —e€ <A1 < A2 < A+Eg,
Ci(A2) CCi(A1), Vi=1,...,Na(N).

If the level A is (h,€)-stable, then the cluster tree estimate at I@vis an accurate estimate of the
true cluster tree, in a sense made precise by the following result, whosefpitows easily from
the proofs of our previous results and Lemma 2 in Rinaldo and Wasseran)(2

Lemma 17 If A is (h,€)-stable, then, for all large & n(g,A), with probability at leastl — %

1. Ny(A) = Nox(A);

2. there exists a permutatiamon {1,...,Ny(A)} such that, for every connected component C
of Ln(A — €) there exists onéo(j) for which

Cj < Co(j);

3. P(Lhx(M)ALL(N)) < P({u: |pn(u) —=A| < €}).
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Remarks.

1. If pr is smooth (which is the case if, for instance, the kerngb are smooth), the values of
A which are noth, ¢)-stable are values for which the 4&¢ , ¢ contains critical points opy,
that is

inf ||[Opn(u)||=0 forsome\ € (A —g A +¢),
ueUA/?h‘S
wherelpy denotes the gradient @f. For those values, the probability Bf,(A) # Nh,x()\)
can be quite large, since the ﬂ?@t)(ALh()\) may have a relatively large-mass.

2. Conversely, ifon is smooth (which is the case if, for instance, the kerngd are smooth) and
infueu, .. 10PR(U)[| > , thenA is (h,€)-stable for a small enough

The above result has a somewhat limited practical value, because the ofcaidin €)-stableA
depends on the unknown densfy. In order to get a better sense of whikk are (h, €)-stable or
not, we once again resort to evaluate the instability of the clustering solutiafatéasplitting. In
fact, essentially all of our previous results about instability from sectiodrrly over to these new
settings by treatindp fixed and letting\ vary. To express this changes explicitly, we will adopt a
slightly different notation for quantities we have already consideredaitiqular, we let

Urve = {u:|pn(u)—Al<e},
r)\,s = P(U)\,s)7
m(Uu) = Px(Prx(u)>A7),

Ave = SURey,, 2m(u)(1—m(u))
and
Are = inf 2m (U)(1— ().

We divide the sample size into three distinct groupsY andZ, of equal sizes. For a fixed
bandwidthh, we define the instability of the density cluster tree as the random funGfignR>o —
[0,1] given by R R

A— Pz(Lh_’x ()\)ALh‘yy()\))

and denote its expectation by
Thn(A) = Exy.z[Thn(A)].

For any fixedh, the behavior off,n(A) andthn(A) is essentially governed hy .. The following
result describes some of the properties of the density tree instability. We omibd§ because it
relies essentially on the same arguments from the proofs of the resultdbddsarsection 4.1.

Corollary 18

1. For anyA > 0, the expected cluster tree instability can be expressed as
Tha(A) = 2/m(u)(1— 5,(u))dP(u).

2. For anye > 0andA > 0,
A)\,ar)\,s <Thn(A) < A)\,srke + 2|.(1e7K2nhdsz7

for all n large enough.
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3. Assume that K is the spherical kernel. For any 0, let0 < € < % and let

0= 1—supP(B(u,h)).

Then,

Ppe<2 <1 ® <\/W52§;’> + C\(/i’l))z,

and

where® denote the cumulative distribution function of a standard normal randonaliar

and
33/ 2
C(B,A) _— Z m.

4. Forany h>0,¢>0,n € (0,1) lett by such that
t(l—n)>re+ 2K1e‘K2”52hd,
Then, for all n> n(g, h),

Pz ([Tan(A) = Thn(A)] > 1) < & " 4+ 2Ky Mee’,

3—-2n 3—n
=9 <3(1—n) y 3(1—n)> '

Collectively, the results above results show that the cluster trgg oin be estimated more
accurately for values of for which the quantity’, . remain small, witre a term vanishing im. In
particular, the level sets with larger instability are then the ones that are close to a critical level
of pp or for which the gradient opy, is not defined, vanishes of has infinite norm for some points
in {X: pn(X) = A}. This suggests that the sample complexity for accurately reconstructing of th
cluster tree may vary significantly depending on the particular level of teewrnih levels closer to
a branching point exhibiting a higher degree of uncertainty and, therafequiring larger sample
sizes.

with

4.4 Total Variation Stability

In the previous section, we established stability of the cluster tree for a lixed all levelsh
that are(h, €)-stable. A more complete measure of stability would be to establish stability of the
entire cluster tree. However, it appears that this is not feasible. Herevestigate an interesting
alternative: we compare the entire distributipgx to the entire distributiorp,y. The idea is that
if these two distributions are stable over all measurable sets, then this impliesaiblis gaver any
class of subsets, including all clusters.

More precisely, we consider the stronger notion of instability correspgridithe total variation
stability as defined in (7). Recall that we assume that the data have sam e aiméwe randomly
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split them into two sets of size X andY, with which we compute the he kernel density estimates
Pnx andpny, for a given value of the bandwidth Then, the total variation stability is defined as

/phx uydu— /th u)dul =

where where the supremum is over all Borel #&tnd the second equality is a standard identity.
Requiringl,(h) to be small is a more demanding type of stability. In particuuincludes all
level sets for alh. Thus, wher(h) is small, the entire cluster tree is stable. Note fhah) is
easy to interpret: it is the maximum difference in probability between the twatgersimators.
And of course X 'h(h) < 1. The bottom graph in Figure 2 shows the total variation instability for
our example distribution in Figure 1. Note thaf(h) first drops drastically ak increases and then
continues to smoothly decrease.

We now discuss the propertiesiof(h). Note first that”,(h) ~ 1 for smallh so the behavior as
h gets large is most relevant.

= Sup
BeB

/\phx ~ Phy(u)|du

Theorem 19 Let #, be a finite set of bandwidths such that,| = Hn?, for some positive H and
€ (0,1). Fixad e (0,1).

1. (Upper bound.) There exists a constant C such that, for &lm = ny(d,H,a), and such
thatd > H/n,
Pxy (Fn(h) <t, forallhe #;) >1-9,

where = /9",

2. (Lower bound.) Suppose that K is the spherical kernel and thatrtiepility distribution P
satisfies the conditions

ajhdvy < inf P(B(u, h)) < supP(B(u, h)) < hdvgap, VYh>0, (10)
ue

uesS

for some positive constants & ap, where S denotes the support of P. Letble such that
sup,P(B(u,h,)) < 1—4. There exists a t, depending @nbut not on h, such that, for all
h < h, and for n> ng = no(a,a4,a, h,delta)

/1
ny (Fn(h) >t nhd> >1-0.

3. My(0) = 1andl p(e) = 0.

Remarks.

1. Note that the upper bound is uniformhrwhile the lower bound is pointwise im Making
the lower bound uniform is an open problem. However, if we place a mora&er bound on
the bandwidths ir#, then the bound could be made uniform. The latter approach was used
in Chaudhuri and Marron (2000).
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2. Conditions (10) are quite standard in support set estimation. In partieiian the lower
bound holds, the suppoftis said to bestandard See, for instance, Cuevas and Rgdez-
Casal (2004).

In low dimensions, we can computg(h) by numerically evaluating the integral
du.
5 [ 1Bnx(W) = By (W] du

In high dimensions it may be easier to use importance sampling as follows. g(Lgt=
(1/2)(Pnx (u) + Pny(u)). Then,

/‘phx th )‘g(U)dU%*

whereUs,...,Uy is a random sample from We can thus estimaf&,(h) with the following algo-
rithm:

1. Draw Bernoulli(1/2) random variables, . .., Zy.
2. DrawUsq,...,Uy as follows:

(a) If zy = 1: drawX randomly fromXg, ..., X,. DrawW ~ K. SetU; = X 4+ hW.
(b) If Z, =0: drawY randomly fromYy,...,Y,. DrawW ~ K. SetU; =Y + hW.
3. Set

= S | Pnx (Ui) — Py (Ui)]
ol = N 4 [Prx (Ui) + Pry (Ui)|

It is easy to see that; has densityy and thatl(h) — Mn(h) = Op(1/+/N) which is negligible
for largeN.

5. Examples

We present results for two examples where, although the dimensionality isgtmating the con-
nected components of the true level sets is surprisingly difficult. For theeftesnple, we begin
by illustrating how the instability changes for given values\gfi and then split each data set 200
times to find point-wise confidence bands #y,(h) for fixed A, a and forl'y(h). We then present
selected results for a bivariate example.

5.1 Instability as Function of h for Fixed A

Returning to the example distribution in Section 1, 600 observations were shinmhe the fol-
lowing mixture of normalsi(4/7)N(0,1) + (2/7)N(3.5,1) + (1/7)N(7,1). The original sample is
randomly split into three samples of 200. All kernel density estimates use #reeEpnikov kernel
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Figure 4: Comparind_nx(0.02) and Ly (0.02) with h = 0.15 (top left), h = 0.35 (top right),
h = 0.75 (bottom left) anch = 0.95 (bottom right) for data sampled from the mixture
distribution of Figure 1. The two kernel density estimates are obtained usngsam-
ple (solid line) and th& sample (dotted line). Points in tlZesample are showed as short
vertical lines on thex-axis, and are colored in red when they belonﬁ,{Q(A)Afh,y()\).

(Scott, 1992). We examine the stabilityat= 0.02, a height at which the true density’s connected
components should be unambiguous, Ard0.09, the height used in our earlier motivating graphs.

We start by illustrating the instability for selected valuesdaf Figures 4, 5. In each subfigure,
Ph.x, Pny are graphed for th& set of observations. Levels= 0.02,0.09 are marked respectively
with a horizontal line. Those observationsZrthat belong td_hx(A) and not toLyy () (or vice
versa) are marked in red; the overall fraction of these observatiags,id). In general, we can
see that ab increases, the number of the rBabservations decreases. Poe 0.02, note that the
location that most contributes to the instability is the valley arazird5. Oncehis large enough to
smooth this valley to have height abave= 0.02, the instability is negligible. Turning to= 0.09
(Figure 5), even for larger values bf the differences between the two density estimates can be
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Figure 5: Comparingx (0.09) andLyy (0.09) for h=0.5 (top left),h = 1.75 (top right),h = 3.75
(bottom left) anch = 6 (bottom right) for data sampled from the mixture distribution of
Figure 1. The two kernel density estimates are obtained using gample (solid line)
and theY sample (dotted line). Points in ttllesample are showed as short vertical lines
on thex-axis, and are colored in red when they belon§ﬁ7Q(A)AEh7y(A).

quite large. Wherh is large enough such that both density estimates lie entirely belevd.09,
our instability drops to and remains at zero.

Figure 6 shows the overall behavior Bf ,(h) as a function oh. As expected, foh = 0.02,
=).n(h) jumps for the first non-zerb and then quickly drops to almost zerolvy- 1 (Figure 6, left).
At A = 0.09, a height with a wide range of possible level sets (depending on tisitydestimate
and the value of), =, ,(h) first drops and then oscillates as previously describel iasreases,
indicating multi-modality (Figure 6, right).
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Figure 6: =) n(h) as a function of the bandwidth for A = 0.02 (left) and 009 (right) for data
sampled from the mixture distribution of Figure 1.

5.2 Instability as Function h for Fixed o

In Section 4.2 we consider the sample instabiity,(h) as a function oh anda. As done before,
we show=q »(h) for selected values di anda = 0.50 and 095 in Figure 7. In each subfigure,
Ph.x, Py again are graphed for the set of observations. The probability content of the density
estimates are respectively indicated on the left and right axes. The wakie$50,0.95 are also
marked with solid and dashed horizontal lines for the two density estimatese Tiservations in

Z that belong tdVin x (o) and not toMny (@) (or vice versa) are marked in red; the overall fraction
of these observations &, n(h). In general, we can see thatlacreases (for both values af,

the number of re@ observations decreases. This decrease happens more quicklytfer tadues

of a (as expected).

In Figure 8, we displayg,(h, o) as a function ofi for a = 0.50,0.95. For level sets that contain
at least 50% probability content, such Iﬁs,x(O.SO), the instability quickly drops ak increases
and then oscillates dsapproaches values that correspond to density estimates with uncertainty at
those levels. Again, this ambiguity occurs due to the presence of the sewmed(we would see
similar behavior with respect to the smallest mode i 0.80). Ash continues to increase, the
density estimates become smooth enough that there is very little differencechétiyg (0.50),
Mhy (0.50). This behavior also occurs when= 0.95 albeit more quickly (Figure 8, top right)
since level sets that contain at least 95% probability content occur at losights and are more
stable.

Figure 8c is the corresponding heat mapdog 0,0.01,...,1.0 andh=0,0.01,...,10. White
sections indicaté&q n(h) ~ 0; black sections indicate higher instability values. In this particular
example, the maximum instability of 0.425 is foundhat 0.03,a = 0.46. Note that arount =
3, we have very low instability values for almost all valuesogfand hence this value of kernel
bandwidth would be a good choice that yields stable clustering.
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Figure 7: Top: comparin@/inx(0.50) and My (0.50) for h = 2 (left) andh = 5 right). Bottom:
comparingM x (0.95) and My (0.95) for h = 0.4 (left) andh = 3.5 (right). The data
were sampled from the mixture distribution of Figure 1. The two kernel deestignates
are obtained using thé sample (solid line) and thé sample (dotted line). Points in the
Z sample are showed as short vertical lines onxtaeis, and are colored in red when
they belong tdVip x (a)AMpy (a)).

5.3 Instability Confidence Bands

The results in the previous subsections were for splitting the original sampldéirae into three
groups of 200 observations. Here we briefly include a snapshot af thie distribution of our
instability measures look like over repeated splits. For computational reagenssed the binned
kernel density estimate, again with the Epanechnikov kernel, and discitetifeature space over
200 bins; see Wand (1994). Increasing the number of bins improvepphexdmation to the kernel
density estimate; the use of two hundred bins was found to give almost idem#zdis to the
original kernel density estimate (results not shown). We split the origeralb$e 200 times and
find 95% point-wise confidence intervals &5 ,(h), [n(h), and=q n(h) for a = 0.50,0.95 and as
a function ofh. The results are depicted in Figure 9. The confidence bands are plotied] ithe
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Figure 8: Top:=,(h,a = 0.50) (left) and=,(h,a = 0.95) (right) as a function oh. Bottom: heat
map of=q n(h) as function ofh,a for the example of Figure 1. The data were sampled
from the mixture distribution of Figure 1.

medians in black. The distribution of the instability measures for each valhdsélso plotted
using density strips (see Jackson, 2008); on the grey-scale, danlkes indicate more common
instability values. The density strips allow us to see how the distribution ch@ngegist the 50,
95% percentiles). For example, for the plot on the top left in Figure 9, nateitfht beforeh = 2,

the upper half of the distribution d, ,(h) is more concentrated. This shift corresponds to the
increase in instability in the presence of the additional modes.

5.4 Bivariate Moons

We also include a bivariate example with two equal-sized moons; this data seewittingly simple
structure can be quite difficult to analyze. The scatterplot of the data defthe Figure 10 show
two clusters, each shaped like a half moon. Each cluster contains 300aitats @ he plot on the
right in Figure 10b shows a two-dimensional kernel density estimate usipgaeEhnikov kernel
with h = 0.60 (for illustrative purposes) and 10,000 evaluation points. We can ate/tie levels
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Figure 9: 95% point-wise confidence bandsgr,(h) (top left),y(h) (top right),=,(h,a = 0.50)
(bottom left) and=n(h,a = 0.95) (bottom right) for data sampled from the mixture dis-
tribution of Figure 1.

aroundh = 0.012 show clear multi-modality, the connectedness of the level sets akourd01 is
less clear.

To examine instability, we use a product Epanechnikov kernel density estimiid the same
bandwidthh for both dimensions. Figure 11 shows the sample instalaljty(h) as a function oh
for A =0.10,0.20,0.30 as well as the total variation instability(h) as a function oh. As expected,
the higher the\, the more quickly the sample instability drops. We also see the possible peasfenc
multi-modality for all three values df in =) ,(h). On the other hand, the total variation instability
drops smoothly ak increases.

Figure 12 contains the instability as a functionhoéind probability contentt for all values of
h, a (Figure 12d) and specifically fax = 0.50,0.0750.95. Again, as expecte&n(h,a) drops
ash increases for smaller values af Note that fora = 0.95, the instability remains relatively
low regardless of the value &f When examining the heat map, we see that for small values of
h, level sets corresponding to probability content around 0.4-0.6 ayewestable. This behavior
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Figure 10: Bivariate moons (left) and contours of a Epanechnikovekelensity estimate (right)
for the example discussed in Section 5.4.

is not unexpected given that the moons are of equal sizes and difficéptrate due to sampling
variability. We would expect to have difficulty finding stable level sets “in thedigd

6. Discussion

We have investigated the properties of the density level set and clustestmeator based on kernel
density estimates, and we have proposed and analyzed various mezsimsability for these
quantities. We believe these measures of instability can be of guidance isinpdloe bandwidth
parameter and also as exploratory tools to gain insights into the propertiehape of the data-
generating distribution.

Our analysis leaves some some open questions that we think deserve dtitéhédon. First,
we have focused on kernel density estimators but the same ideas caadowitis other density
estimators or more, generally, with other clustering methods for which umiaigtlyning parameters
have to be chosen in a data-driven fashion. See, for instance, Megem and Bhimann (2010)
for a related stability-based approach to clustering.

We have assumed the existence of the Lebesgue dgmbity this assumption can be relaxed
using methods in Rinaldo and Wasserman (2010) to allow for distributionsosgiegpon lower-
dimensional, well-behaved subsets. This extension is potentially importanideeitavould allows
us to include cases where the distribution has positive mass on lower dimargtioctures such as
points and manifolds.

We have formulated our assumptions and results about stability of the l&vahskof the cluster
tree in a point-wise manner, for given valueshodinda. As suggested by a reviewer, it would be
desirable to extend them to hold uniformly across level sets. This can levadHby requiring (A2),
(B2) and (B3) to hold uniformly over values afanda. In fact, we believe that it is likely that,
for most densities, such uniform assumptions hold for a wide rangis diut certainly they cannot
hold forall A’s. Indeed, our results indicate that these uniformity assumptions ameniadas only
for level sets\ for which the functiorr, ¢ (A) remains small and does not fluctuate too wildly.
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Figure 11: =, (h) as a function oh for A = 0.10 (top left) 020 (top right) and B0 (bottom left).
Mn(h) as a function oh (bottom right) for the data depicted in Figure 10.

Finally, in computing the various measures of instability, we have considesed gingle split
of the data into non-overlapping sub-samples. In fact, one can randep®gatrthe splitting process
and combine over many splits, which is how we obtained the confidence bBRudgire 9. Though
the increase in the computational costs may be significant, repeated sulnganguld yield a
reliable estimate of the uncertainty of the chosen instability measures and werdtbtie be highly
informative about the sample. We believe that the properties,afan be established using the
theory of U-statistics.
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Appendix A. Proofs

Proof of Theorem 2: Let 4, ¢, denote the event thfiPn, x — P, ||~ < €n. Then, for alin > ng, by
Equation (3)Px(4n,¢,) > 1— % Also observe that Assumption (Al) implies that, for dny O,
the sup-norm density approximation error can be bounded as

[k () Py poo

1 X—
< SUIO/@K (h y) Al[x—y||dy
X

— ADh (11)

[ph—Pplle = sup
X

The second step in the previous display follows sifi¢&(z)dz= 1 and using the Lipschitz as-
sumption (A1) on the density, and the last step sifile||K(z)dz= D. Putting the estimation and
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approximation error together, and using the triangle inequality, we obtairothéte eventdy, ¢,
|| Phy.x — Plleo < ADHy +€n, (12)

for all n > ng. Using Equation (12), we have that, gl
€n < A, the set

L()\)Afhmx()\) = {u: p(u) > A, P, x(u) <AU{u: p(u) <A, pPh,x(u) > A}

is contained in

and for alln > ny(np,A) so thatADh, +

n,€n

{u: p(u) >\, p(u) <A+ADh,+gn} U {u: p(u) <A, p(u) >\ —ADh, —¢n},

which is equal to
{u: |p(u) —A| < ADh,+¢&n}.

Then, on4, ¢, and for alln > ny(ng,A) large enough
L (0, X, A) = P(L(A)ALp, x (M) < Ty enis

so thatPx (L(hn,X,A) < 1q) > Px (An,e,) > 1— 3, as claimed.
If (A2) is in force for the density level, then for alln > ny(ngp, A, A, D, &p) so thatADh, + €, <
€0, we havery ¢ \ < K2(ADh, +¢€,), which proves the second claim.
Proof of Lemma 4: Using (A1) and the fact thafys K(z)dz= 1, Equation (11) states that for any
h>0
[[Ph — plleo < ADh.

Then, for anya € (0,1) andh > 0,
{u: p(u) > Anq+ADh} C {u: pn(u) > Ang} C {u: p(u) > Anq —ADh}.
And as aresult,
P({u: P(t) > Ana +ADh}) < P({u: pa(u) > Ana}) < P{u: p(U) > Ang — ADh}).
SinceP({u: p(u) > Aq}) = a =P({u: pn(u) > Ang}), we have
P({u: p(u) > Anq +AD}) < P({u: p(u) > Aq}) < P({u: p(u) > Anq —ADhR}).

Consequently,
)\h,a +ADh> Ay > Ahq —ADO

It follows that for anya € (0,1) andh > 0
|)\h7a - )\a‘ S ADh

Proof of Lemma 5: Let G, = {{u: pn(u) > A},A > 0} denote the class of level sets pf and
define the events

%,s={SUD\'3><(C)—P(C)|§€} and  Ane = {||Phx — Pnlle < €}

Ceth
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Then, since the-th shatter coefficients (see, for instance, Devroye et al., 1996) isfn,
Px(BE) <8ne ™/ and Py(4g,) < Kie ", (13)

where the first inequality follows from the VC inequality (see, for instafeyroye et al., 1996)
and the second inequality is just (1). Then, /@, we obtain

{u: pn(u) >A+e} C{u: prx(u) > A} C{u: pa(u) >A—¢}, VA>O0.
Thus, on4y,
Pu({u: pn(u) > A +e}) < Pe({u: Pax(u) > A}) < Pe({u: pa(u) > A —g}),
uniformly over allA > 0. In particular, the previous inequality hold alsof@r,nx (which is positive
with probability one) for anyr € (0,1) andh > 0.
Recalling that, by definition,
B ({u: Prx(U) > Anax})—al <1/n,
we obtain, on the eventg, . and 4 ¢,

~ 1 ~ 1
P({u: pn(u) > Anax +€})— n —e<a <P{u: pn(u) >Anax —€})+ ﬁ +€. (14)

Sincea = P({u: pn(u) > Ang}), the first inequality in (14) can be written as

1 —~
at t+e= P{u: pn(u) > Ay g 1eh) = P({u: pn(u) > Anox +€})
and the second one as
1 -
a-——€= P({u: pn(u) > Ay g_1_¢}) < P{u: pn(u) > Anax —€}),

both holding on the event$, . and 4n,. Combining the last two expressions, we obtain, on the
same events, for any € (0,1) andh > 0,

Aot Lye — & < Mhax < Ana 1 e +E. (15)
We will now show that, for level sets g, indexed by satisfying (B3), and for ang € (—no,No)

and O< h<H,
|Ahat+n —Anal < AKs[n|. (16)

Recalling that + 1/n < no, Equations (15) and (16) will then imply

1 3 1
Ana —AK3 <5+ n) —€< Ahax < Ana+AKs <s+ n) +¢,

on the eventsh, ¢ and 4y, for level sets ofp, indexed bya satisfying (B3) and with G< h <H.
Finally, using (13), the claim will follow.
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In order to show (16), for a sé& C RY, let 0A denote its boundary. Then, notice that, be-
causepy, is Lipschitz and hence continuous, for every oMy (a), pn(X) = Ang and, for every
y € OMn(a +n), pn(y) = Ana+n. Furthermore, for any point € dMp(a), there exists a point
Y = Y(X) = infeomy(asn) [X— 2| Thus, for|n| < no,

X =Yl < dw(Mn(a), Mn(a+n)) < k3[n|,

where the last inequality follows for level sets@f indexed bya that satisfy (B3) and & h < H.
Therefore,

Aha+n —Ahal = [Pa(Y) — Pr(X)| < Allx—y|| < Aks|n],

where in the first inequality we used the fact that, by (Ad)is Lipschitz with constanf. Indeed,
for anyx # vy, using the Lipschitz assumption (A1) @

[Ph(X) = Pr(Y)| < /Rd |p(x+zh) — p(y+zh)| K (2)dz< Alx—y| /Rd K(2)dz=Allx—y]|

Proof of Theorem 7: Let 4y, ¢, be event defined in the proof of Theorem 2, and recall that for alll
n > ng, by Equation (S)Px(/‘zlﬁmsn) < 1/nand that, Equation (12) states that

[[Phx — Plleo < Can (17)

on that event, for alh > ng. Also, let®, ¢, be the event defined in Lemma 5 such ﬂﬁa(?ﬁnﬁn) <

8ne ™1/32, Then from the proof of Lemma 5, we have that on the evipt, N B, e,, for hy =
w((logn/n)¥9) andh, < H,
|)\hn,a,x - }\a| < CZ,n (18)

for all n > n3(no, No, K3). Also, sincen is large enough, we have

8neer/32 < }
=n

Therefore, for all such large, both (17) and (18) hold with probability at least
2
IEDX (ﬂhn,sn N fPhn,sn) > 1- ﬁ

Thus, onh, ¢, N Ph, ¢, for hn = w((logn/n)*/9) andh, < H, we have that, for at > ng(no, no,K3),
the set

M (at)AMnx (0) = {u: p(U) > A, Prx (U) < Anax } U {U: p(U) < Ag, Prx (W) > Anax ]
is contained in
{u: p(U) > Ag, P(U) < Angx +Crn} U{u: p(u) < A, P(U) > Anax —Cun}-
which, in turn, is a subset of

{u: p(u) > Aq, p(u) <Aq+Cin+Con}U{u: p(u) <Aq,p(u) >Ag —C1n—Con}.
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The final set is jus{u: [p(u) —Aq| < Cin+Czn}. Therefore, for forhy = w((logn/n)*/¢) and
h, < H, we have, for alh > n3(ng, no, K3),

. 2
IEDx (‘L (hn,X,O() < rhmsn,u) > HDX ("‘Zlhnf-n ﬁg)hnygn) > 1- ﬁ

Proof of Lemma 9: We only prove the second claim, since the proof of the limits is straightforward.
For simplicity, we will provide the proof for the case of a spherical kerKgk) = 1) <1, X € RY,
The extension to other compactly supported kernels is analogous.

Let h be strictly smaller than

min< min||X — X;|[,min|[Y; = Y;||,min||X = Yi]| 7.
{min] 6 L inl 1%, Lmin] 6 v,

For many distributions, this occurs almost surely lfioe O(l/nd) (see, e.g., Penrose, 2003; De-
heuvels et al., 1988). By the compactness of the suppdtt &dr any suchh, the sets

B(Xy,h),...,B(Xn,),B(Y1,h),...,B(Ya, h)

are disjoint. Thereforepnx(u) = 1/(nh") if and only if u € B(X,h) for onei and, similarly,
Pny (u) = 1/(nh") if and only if u € B(Yj, h) for onej. Furthermore,

Loy — (U Bm,m) U (Usm,h)) .
i j

As aresult=) n(h) is the fraction ofz;’s contained in(UiB(X;,h)) U (UiB(Y;,h)). Thus,

A~ o~

Zxn(h) = P2 (LnxALny |X,Y) 4B/n,

where2 denotes equality in distribution ari~ Binomial(n, pp), with 0 < pg < 2n pmaxvgh? and
Pmax = || Pl|w. ThereforeEz[=y n(h)|X,Y] < 2pmaxvanh and hence it follows that

EA,n(h) = EX,Y,Z[E)\,n(h)} < meadenhd = O(hd)v

ash — 0.
Proof of Theorem 10:

1. SinceX, Y andZ are independent samples from the same distribuiag,(u) and phy (u)
are independent and identically distributed, for any RY andh > 0. Also, notice that for

~

every measurable sét Ez(Pz(A)) = P(A). Thus,

Exn(h) = Exvz[Pz({u: Prx(u) > AA{u: Pry(u) > A})]
Ex y[P({u: phx(u) > A, Pry(U) <A}) +P{u: phx(U) <A, Phy(u) >A})]
= 2Exy[P({u: Pax(u) >\, Pry(u) <A}

= 2 Py (Pux(u) > A, P (1) < A) AP, (19)
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where the last identity follows from Fubini theorem. The integrand in the @saton can
be written as

Py y (Phx(U) > A, Pry(U) <A) = Px(Phx(u) >A)Py (Pry(u) <A)
= Px(Phx(u) >N Px (Phx(u) <A)
= Th(u)(1-Th(u),
from which (8) follows.
2. LetA, denote the event
lPh — Phxlleo V [[ PR — Phy [l < €. (20)

By (1), Pxy(A5,) < 2K, e~ Kenhf'e?, Letting 14,, denote the indicator function of the event
-qh,ea ’

Exn(h) < Exyz[Pz({u: Prx(u) > AHA{U: Pry (u) > A} 1g,, (X, Y)] +Pxy(Fre),
and, using the same reasoning that led to (19),
En(h) < Z/Rd Py ({Prx (W) > A, Pry (U) < A} N Ane) dP(U) + Py (A )
Notice that, on,
{u: Prx(u) > A, Phy(u) <A} C{u: A—e < pp(u) <A+£} =Upg,

and therefore, sigiPhx(u) —A) = sign(pn(u) —A) for all u ¢ Upe. Thus, the previous ex-
pression fok) »(h) is upper bounded by

Z/U Pxy ({Pnx(u) > A, Pry(U) <A} N Ane) dP(u) + 2K e Kenife?
he
which, using independence, is no larger than

2 TH(U) (1 — 14(u))dP(u) + ZKle—Kznhdgz < P(Une)Bne + 2K1e7K2nhd€2.
Uh.s

As for the lower bound, from (19) we obtain, trivially,

Gn(M) 22 ) Th(U)(1—Th(u))dP(u) > P(Une)Ane-

Proof of Lemma 11.1f K is the spherical kernel, note thtx (u) =n~1s ; Bi(u), where

oy (U=%  leuh)(Xi)
B =h K< h ) (hvg)

with lgn (-) denoting the indicator function of the ba(u,h). Let 0?(u,h) = Var(B;(u)) and
be(u,h) = E|Bi(u) — p(u,h)3 wherep(u,h) = E(Bi(u)) = pn(u). Finally, let p,, = P(B(u,h)).
Then,

_ pu,h(l - pu,h)

O'Z(U’h) = (thd)z (21)
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and
(U, h) — Puh(1—Ppun) [(1— pu,h)2+ pﬁ,h < Pun(1— pun)
’ (hvg)3 = (hdvg)3

where the last inequality holds sin¢e— pyn)?+ pﬁh <1, for alluandh. As a result,

Ks(u,h) _

1/2
o3(u,h) — '

(pu h(l Py, h))

By assumptionh < h(d,€) ande < A/2. In order to avoid trivialities, we further assume that
P(Unhg) > 0. Then, uniformly over all1in Uy,

(A —¢&)vgh? < pyp < (A +€)vght

and
(1_ pu,h) > d.

03 (u, h \/ dvghd( )\ €) \/ hdévd)\

with the last inequality holding because of our assumptighA /2. From (21), we then obtain

Thus,

O(A—¢) 2 (A+¢)
< h) < )
vghd  — o (uh) < vghd
Thus, a a
1 2
g < o?(u,h) < =1
where 5\ 2

uniformly overu € Up.
Writing 62(u,h) = a(u, h) /h and using the Berry-Eégn bound (Wasserman, 2004, p. 78), we

obtain
(U) = pa(u)) 33 pa(u,h) — /C(3A)
uh) §t> ~P0 = T @AV

sup|P
t

[

h,X

a(

where® is the cumulative distribution function of the standard Normal distribution.
Now,

Hence
VAl (A~ ph(w) | C(BN) VAR~ py(w) ), C(BA)
1_¢< a(u,h) >_ vnhd _T[h(u)<1_¢< a(u,h) >+ N
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Using the fact thati € Up¢, and taking advantage of the uniform bourads< a(u,h) < ap, the
previous inequalities imply

Using the inequalities

and

1_¢<_ nhds> _q)(\/nr\de) <
dp dp

we obtain the bounds

nhde\ C(3,M) v nhdg C
cb(— 2% )—ng(U)§1—¢< 2% >+W (23)
and
vnhde\  C(3,A) vnhde C
l—q)( a )—WSW(U)SCD( ar >+\/W’ (24)

respectively. Thus, uniformly over al< A /2 and allh < h(d,¢), Equations (23) and (24) yield

o varee)  ce)\’
Ang =2 supTh(u)(1-mh(u)) < 2( ¢<— )er),

ueUp ¢ ap

and

2
Ae =2 inf TH(U)(L-To(1)) > z<1_¢<W€>_C<6,A>>7

ueUpe

respectively, whera; anday are given in (22).

Proofof Lemma 12.Letting =1, ¢ ar, 1 We have

—)\ n le

where, conditionally orX andy, theAJ-,s are independent and identically distributed Bernoulli
random variables witfz[1;|X,Y] = P(LhxALny). Thus

V[Zan(h)] = Exvz[ a(h)] —&(h)

= anXY[EZ [(ELadi+ 34110 1X, Y]] —&(h)
E“( ) 4 = 1By v Pz('—h XALhY)} —&2(h)
E“‘( ) 4 D AExy P(Lh, XALhY)} —&2(h)
Exn()+2n ()_22()
E)\,n( ) (7 - E)\,n(h)) :

IN

941



RINALDO, SINGH, NUGENT AND WASSERMAN

Proof of Lemma 13.
Let&(h,X,Y) = Ez[=)\ n(h)|X,Y] and letA, ¢ be the event given in (20), whegeh > 0, so that
Pxy(45,) < 2K1exp{—nKzh?e?} by (1). Then, we can write

Pxxz (|Zan(h) = &xn(h)| > t) = Pxyz (|Zan(h) —&(0,X,Y) + &0, X,Y) =& n(h)| > 1),

which is therefore upper bounded by
Pxvz (|Znn() = E(0,X,Y) +E(0,X,Y) = Exn(h)| > 1 Ane) +2Ks exp{ ~nkeh%e?}

The first term in the previous expression is no larger than the sum of

Exy [Pz ([Ean() —&(MX.Y)| > tn|X.Y) 1 7he] (25)

and
Pxy (|E(N,X,Y) =&y n(h)] > t(1—N); Ang) . (26)

foranyn € (0,1). We will first show that, if (9) is satisfied, the probability (26) is zero. ledgfirst
observe that
Ez[=xn()|X,Y] = P(LnxALny)

and that, o,

LhxALny = {u: Prx(u) > A, Py (u) < AYU{U: Phx(U) <A, Pry(u) > A}
{u: pn(u) >A—¢€,pn(u) <A+¢}

{u: [pn(u) —A[ <&}

Uh,Ea

N

Therefore, oy,
E(hvan) = EZ[E)\n(h)|x>Y] < Me < t(l_ n) (27)

By part 2 of Theorem 10, (9) further implies thatl —n) > &, ,(h). As a result, on
/qh781 }E(h7x7Y) _E.)\,n(h)| St(l_n)! which yIEIdS

PX,Y (‘E(h>X7Y) - E)\,n(h)‘ > t(l_ n);’qh,e) = Oa

as claimed.
We now proceed to bound from above (25). Since

_ 13
:)\,n(h) = n i; l{ZaEEh.xAEh.Y}’

Bernstein’s inequality (see, for instance, Massart, 2006, Proposif@rylds that, for any > 0
and conditionally orX andY,

Pz ([Zan(h) — & X,Y)| > m(x,v) < exp{_gcz(x,y, h)g (3(5282”\”1)) } (28)
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whereg(u) = 1+u—+/1+2ufor allu> 0, and
0%(X,Y,h) = Varz[Z) n(h)|X,Y].
It is easy to see that
0?(X,Y,h) < Ez [Z(h)|X,Y] = ng(h,X,Y)

and, therefore, restricting to the evelite, 02(X,Y,h) < nt(1—n), just like in (27).

Using the fact thae 295 is increasing irx for x > 0, we conclude that, on the evefi{¢, the
right hand side of (28) is bounded from above by

exp{—Qnt(l— n)g (3(1n_ n)> } ’

which is independent ok andY. Thus, the previous expression is an upper bound for (25) and,
therefore, fofPx v,z (|=xn(h) — &y n(h)| >1). The claim now follows from simple algebra.

Proof of Theorem 14.
1. The proof is almost the same as the proof of part 1 of Theorem 10 &merefore omitted.

2. Let A,z denote the event

max{ || = Prlless Ao = Anax s 1By = Pl Ao = Anayl} <€ (29)

whereg = €(Akz + 1) + Akz/n. Then, using (1), (5) and the fact thak €, the union bound
yields
Py v(4C) < 4Kye KoM | 16ne /32 = C(h,g,n) (30)

Now, on4,z, {u: phx(u) >tha’x, Phy (u) < Xhﬂy} is a subset of

{U: p(U) > Anax — & Pr(U) < Anay +E},

which is equal to
{uz]pn(U) —Anal < 28} =Upgq.

Therefore, sigpn.x (u) —/Xh,a,x) = SigN(pn(U) — Ana) for all u ¢ Uy, 4. Next, just like in
the proof of part 2 of theorem 10, using this fact and the result of teedart we have that
&a.n(h) is no larger than

Exvz[Pz ({u: Prox(U) > Anax }ALU: Py (U) > Ay D, (X,Y)] + Pxy (AS5).

The previous expression can be written as

Z/Rd Py v ({ Pn,x (u) >/Xh,a,X> Py (u) Sih,q,v}ﬂﬁlh,g)dp(u) +Pxy(Ae),
which is less than

2/u Py ({Brux (U) > Ahax, Py (U) < Anoy } N Anz)dP(u) +C(h,g,n).
h,2€,a
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This quantity is bounded from above by
2| Pxy(Phx(u) > Mnax, Py () < Mnay)dP(U) +Clhe,n),
h,2¢,a

which is finally smaller than

2 /U T (U)(1 T ()dP(U) + C(h.£,1) < P(Up 5 ) Anea +C(h.€1N).

As for the lower bound, from the result of first part we obtain, trivially,

Can(h) = 2y, Tha(W)(1—Tha(u))dP(u)
> P(Unza)Anea-

. To compute an upper bound &,  and a lower bound foby, ¢ «» We use the Berry-Egen
bound and the stated assumptions. The proof is very similar to the proof of lémreacept
that the result holds only on the evefi};. Therefore, we only provide a sketch of the
arguments. '

The assumptions that< infy, A‘Zh, implies that, for anyi € Uy, % 4,

1 dAgh _ O(Agh—2¢) Aan+28) 1 3\gn
< ' < =,
hd 2vq — hdvy hdvy ~ hd 2y

< o?(u,h) <

Because of this and the fact that, gz, |pn(u) —Xm,x\ < 3¢ for all u € Uy, 5 4, the same
Berry-Esseen arguments used in the proof of lemma 11 yield

3Evnhe\  C(8,Ang) B o 3V C(8Mna)
1—¢< ~ >— o = Thaz(W) <1 q:( - >+ NI

whereTy, o z(u) = Px <{ﬁh.,x(u) > Anax} ﬂﬂhg), a1 = O\na/(2v4), @ = 3\na/(2vg), and
C(8,Ma) = 2/ 5va—- Now notice that

Tha(U) > Thgg(u) > 1-® (

3&v/nid ) ~ C(8,Ma)

a vnhd
and
Tha(U) < Thaa(U) + P(AS,) < 1- 0 (—3§T> T CS’%‘” chen)

whereC(h, &, n) is defined in (30). Therefore,

2
ea<2(1-0| — : C(h,s, ,
Poea < ( ( az >+ vnhd +(£n)>

and

FVN ) C(6Ana) ?
Area =2 (1—CD < a ) e C(h,g, n)) :
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Proof of Theorem 19. (1) Since the sample space is compag) < o, whereS denotes the
support ofP andu denotes the Lebesgue measure. Therefore, we obtain the inequality

S . S S, .
rolh) < B vl < B 1o = e+ By — ol
d .
= K(S)||Pnx — Pnllw-:
Next, letC = (“(S”KZ# so that fom > Ky
. U(S)2log(na+1Ky)
h Kznhd '
Then,
. t
Pxy (Tn(h) >ty forsomehe #,) < Py (lph,x — Phlleo > FhS) for someh & %>
o th
< }P’x<ph,—phoo>>
hez% |IPh.x — Pnl| (S
< Y Kiexp{—Konthh?/(W(S)?)}
heH,
1 H
< Hnana-i—l = n
< 9,

where the third inequality stems from (1) and the assumptionntbatg is large enough, and the
last inequality follows from the assumed conditiondn
(2) Consider any < h,.. Note that

o(h) > Fnslh) = 5 [ [Bux(u) — By (Wldu

Let

The variance oD(u) is

Var (Vitf(phx (U) ~ By (1)) = i (Var(Bx(u) + Var(phy (1))
= 2nhVar(phx(u))

1 n
miz\'(HXi—UH Sh))
2n?hd

- mvw(l (% —ul| < h))

= 2nhVar

Y

2
- WP(B(U,h))(l—P(B(Uah)))-
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Now, foru € S by (10),
P(B(u,h))(1—P(B(u,h))) < P(B(u,h)) < azh’vg

and
P(B(u,h))(1—P(B(u,h))) > P(B(u,h))d > a;h%vgd.

Hence,
2a;vqd < Var(D(u)) < 2apvyq, Yue S

which shows that the variance Bfu) is bounded above and below by positive functions that do not
depend orh. By a similar calculation, CqD(u),D(v)) is bounded above and below by functions
that do not depend dm for allu,ve S

Now, for anyu,

D(u) = D1(u) — D2(u) = V(P — P)(fy) — VN (Qn — P)(fu)

where R, is the empirical measure based ®p, ..., X, Qn is the empirical measure based on
Y1,...,Yn, and fy(-) = h™9K(|lu—-||/h). Note thatD; andD, are independent, mean O stochas-
tic processes. We can reggrdnhd(P, — P)(f): f € #} as an empirical process, whefe= { f, :

u e S} and similarly for{v/nhd(Q, — P)(f) : f € F}. For fixedh, the collection¥ is a Donsker
class. Hence, for everye S D1 (u) andD2(u) converge to two independent mean 0 Gaussian pro-
cesses. By the continuous mapping theorem, for ewerys, D(u) converges to a mean 0 Gaussian
processG with some covariance kerngl By the calculations above, there exist positive bounded
functionsr (u,v) < s(u,v) such that (u,v) < k(u,v) < s(u,v) and such that neithernor s depend

onh. Hence
P ()>t\/n ( (h)>t)
XY | n,S h) > Hd EX,Y v nhel n,S =

Pxy (rn(h) > t\/ﬂ)
~ Pyy (;/S|D(u)|du2t>

P<;/|G(u)|du2t> +o(),

Y

where the last probability is the law of the Gaussian proéessThe o(1) term is less tha®/2
whenn > ng. SinceG has strictly positive varianc& ([ |G| > 0) = 1. Clearly,P([ |G| > 2t) is
decreasing in. Hence, for eacB, there is a positivé such thaﬁP’(%f IG| >t) >1-3/2.

(3) The proof of this part is straightforward and is omitted.
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