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Abstract
The problem of ranking is to predict or to guess the ordering between objects on the basis of their
observed features. In this paper we consider ranking estimators that minimize the empirical convex
risk. We prove generalization bounds for the excess risk of such estimators with rates that are
faster than 1√

n . We apply our results to commonly used ranking algorithms, for instance boosting
or support vector machines. Moreover, we study the performance of considered estimators on real
data sets.

Keywords: convex risk minimization, excess risk, support vector machine, empirical process,
U-process

1. Introduction

The problem of ranking is to predict or to guess the ordering between objects on the basis of their
observed features. This problem has numerous applications in practice.We can mention informa-
tion retrieval, banking, quality control or survival analysis. The problem is closely related to the
classification theory, however it has its own specificity. In recent yearsmany authors have focused
their attention on this subject (Freund et al., 2004; Agarwal et al., 2005; Cossock and Zhang, 2006;
Rudin, 2006; Cĺemençon et al., 2008).

In the paper we consider a population of objects equipped with a relation of (linear) ordering.
For any two distinct objectso1 ando2 it holds eithero1 � o2 or o1 � o2 (or maybe both), but it
is unknown which is true. We lose little generality by assuming that real numbersy1 andy2 are
assigned to the objectso1 ando2 in such a way thato1 � o2 is equivalent toy1 ≤ y2. Moreover, let
d-dimensional vectorsx1 andx2 describe observed or measured features of the objects and let the
observation spaceX be a Borel subset ofRd. We are to construct a functionf : X ×X → R, called
a ranking rule, which predicts the ordering between objects in the following way:

if f (x1,x2)≤ 0, then we predict thaty1 ≤ y2.

To measure the quality of a ranking rulef we introduce a probabilistic setting. Let us assume that
two objects are randomly selected from the population. They are describedby a pair of independent
and identically distributed (with respect to the measureP) random vectorsZ1 = (X1,Y1) andZ2 =
(X2,Y2) taking values inX ×R. Random vectorsX1 andX2 are regarded as observations, whileY1

andY2 are unknown variables which define the ordering as above.
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Most natural approach is to look for a functionf which minimizes the risk (the probability of
incorrect ranking)

L( f ) = P(sign(Y1−Y2) f (X1,X2)< 0) (1)

in some family of ranking rulesF ,where sign(t)=1 for t >0, sign(t)=−1 for t <0 and sign(t)=0
for t = 0. Since we do not know the distributionP, we cannot solve this problem directly. But if we
possess a learning sampleZ1 = (X1,Y1), . . . ,Zn = (Xn,Yn), then we can consider a sample analog of
(1), namely the empirical risk

Ln( f ) =
1

n(n−1) ∑
i 6= j

I[sign(Yi −Yj) f (Xi ,Xj)< 0], (2)

whereI(·) is the indicator function. The ranking rule that minimizes (2) can be used as anestimator
of the function that minimizes (1). Notice thatLn( f ) is aU-statistic of the order two for a fixed
f ∈ F . The main difficulty in this approach lies in discontinuity of the function (2). It entails that
finding its minimizer is computationally difficult and not effective. This fact is probably the main
obstacle to wider use of such estimators in practice. To overcome this problemone usually replaces
the discontinuous loss function by its convex analog. This trick has been successfully used in the
classification theory and has allowed to invent boosting algorithms (Freund and Schapire, 1997) or
support vector machines (Vapnik, 1998). Therefore, instead of 0−1 loss function we consider a
convex and nonnegative loss functionψ : R→ R. Denote the ”convex” risk of a ranking rulef by

Q( f ) = E ψ[sign(Y1−Y2) f (X1,X2)],

and the ”convex” empirical risk as

Qn( f ) =
1

n(n−1) ∑
i 6= j

ψ f (Zi ,Z j),

whereψ f (z1,z2) = ψ[sign(y1 − y2) f (x1,x2)]. Notice thatQn( f ) is also aU-statistic of the order
two for a fixed functionf . Therefore, features ofU-process{Qn( f ) : f ∈ F } are the basis for
our consideration on statistical properties of the rulefn = argmin

f∈F
Qn( f ) as an estimator of the

unknown functionf ∗ = argmin
f∈F

Q( f ). Niemiro and Rejchel (2009) stated theorems about the strong

consistency and the asymptotical normality of the estimatorfn in the linear case, that is, when
we consider linear ranking rulesf (x1,x2) = θT (x1−x2) , whereθ ∈ R

d. Similar studies on the
asymptotic behaviour of estimators were done in Niemiro (1992) and Bose (1998).

In this paper we are interested in the excess risk of an estimatorfn (in the general model, not
necessarily linear). This is the case when one compares the convex risk of fn with the convex risk of
the best rule in the class. Generalization bounds are very popular for such studying in the learning
theory. They are probabilistic inequalities of the following form: for everyα ∈ (0,1)

P( Q( fn)−Q( f ∗)≤ η )≥ 1−α, (3)

whereη > 0 is some small number that depends on the levelα, the numbern of elements in the
sample, a family of ranking rulesF and a loss functionψ, but it is independent of an unknown dis-
tribution P. Similar objects were widely studied in the classification theory (Blanchard et al.,2003,
2008; Lugosi and Vayatis, 2004; Bartlett et al., 2006). In ranking onecan find them in Cĺemençon
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et al. (2005, 2008). In the latter two papers Authors proved that with somerestrictions on the class

F the numberη in (3) is equal toC
√

ln(1/α)
n , whereC is some constant. Their inequalities can be

applied to ranking analogs of support vector machines or boosting algorithms. Moreover, it was
shown in the classification theory that better rates than1√

n are possible to obtain in similar bounds
to (3). Noticing the close relation between ranking and the classification theory Clémençon et al.
(2008) formulated the question if one can get generalization bounds with ”fast rates” for the excess
risk in ranking? They gave a positive answer (Clémençon et al., 2008, Corollary 6) but only for esti-
mators that minimize the empirical risk with 0−1 loss. We have already mentioned about problems
with finding such minimizers. Convex loss functions and estimators that minimize the convex em-
pirical risk are used in practice. In this paper we indicate assumptions and methods that allowed us
to obtain generalization bounds with better rates than1√

n for the excess convex risk of such estima-
tors. Similar studies were done in Rejchel (2009), but here we strengthenand extend those results.
The construction of inequalities of the form (3) is based on the empirical andU-process theory.
Empirical processes are well-known and widely described in the literature,while U-processes are
not so popular. However, there are very comprehensive monographs about this theory (see de la
Pẽna and Gińe, 1999), which originates from Hoeffding (1948).

The paper is organized as follows: Section 2 is devoted to theoretical results. We show that using
Hoeffding’s decomposition our problem can be divided into two parts. In the first one (Sections 2.1
and 2.2) we are interested in properties of some empirical process. The second part (Section 2.3) is
devoted to aU-process that we obtain after Hoeffding’s decomposition. We state the main theorem
and describe its applications to commonly used ranking algorithms in Section 2.4. In Section 3 we
study the practical performance of described estimators on real data sets.

2. Generalization Bounds

First, let us write conditions on a family of ranking rulesF that we need in later work. For simplic-
ity, assume thatf (x1,x2) =− f (x2,x1) for every f ∈ F which implies that the kernel of aU-statistic
Qn( f ) is symmetric. Moreover, let the classF be uniformly bounded which means that there exists
some constantA1 > 0 such that for everyx1,x2 ∈ X and f ∈ F we have| f (x1,x2)| ≤ A1. We will
not repeat these conditions later.

Furthermore, we need some restrictions on the ”richness” of a family of ranking rulesF . They
are bounds for the covering number ofF and are similar to conditions that can be often found in the
literature (Pollard, 1984; de la Peña and Gińe, 1999; Mendelson, 2002). Thus, letµ be a probability
measure onX ×X and letρµ be aL2-pseudometric onF defined as

ρµ( f1, f2) =
1
A1

√∫
X×X

[ f1(x1,x2)− f2(x1,x2)]
2dµ(x1,x2). (4)

The covering numberN(t,F ,ρµ) of the classF with a pseudometricρµ and a radiust > 0 is the
minimal number of balls (with respect toρµ) with centers inF and radiit needed to coverF . Thus,
N(t,F ,ρµ) is the minimal numbermwith the property

∃F̄ ⊂F , |F̄ |=m ∀ f∈F ∃ f̄∈F̄ ρµ( f , f̄ )≤ t.

Consider the marginal distributionPX of the vectorX and two empirical measures:PX
n = 1

n ∑n
i=1 δXi

andνn = 1
n(n−1) ∑i 6= j δ(Xi ,Xj ), whereδ(·) is the counting measure. The familyF that we consider

satisfies one of the following conditions:
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Assumption AThere exist constantsDi ,Vi > 0, i = 1,2 such that for every measures of the form:
µ1 = PX ⊗PX

n , µ2 = νn and eacht ∈ (0,1] we have

N(t,F ,ρµi )≤ Dit
−Vi i = 1,2.

Assumption BThere exist constantsDi > 0, Vi ∈ (0,1), i = 1,2 such that for every measures of
the form:µ1 = PX ⊗PX

n , µ2 = νn and eacht ∈ (0,1] we have

lnN(t,F ,ρµi )≤ Dit
−Vi i = 1,2.

Families satisfying similar conditions to Assumption A are often called VC-classes or Euclidean
(Nolan and Pollard, 1987; Pakes and Pollard, 1989), while classes thatfulfill Assumption B are
known as satisfying the uniform entropy condition (van der Vaart and Wellner, 1996). As we will
see in Section 2.4 more restrictive Assumption A leads to better results.

The first tool that we use is Hoeffding’s decomposition (de la Peña and Gińe, 1999) of aU-
statisticQn( f )−Qn( f ∗) that allows to obtain the equality

Q( f )−Q( f ∗)− [Qn( f )−Qn( f ∗)] = 2Pn [Q( f )−Q( f ∗)−Pψ f +Pψ f ∗ ]−Un(hf −hf ∗),

where

Pψ f (z1) = E [ψ f (Z1,Z2)|Z1 = z1],

Pn(g) =
1
n

n

∑
i=1

g(Zi),

Un(hf −hf ∗) =
1

n(n−1) ∑
i 6= j

[hf (Zi ,Z j)−hf ∗(Zi ,Z j)] ,

hf (z1,z2) = ψ f (z1,z2)−Pψ f (z1)−Pψ f (z2)+Q( f ).

Therefore, Hoeffding’s decomposition breaks a difference betweena U-statisticQn( f )−Qn( f ∗)
and its expectation into the sum of iid random variables and a degenerateU-statisticUn(hf −hf ∗).
The degeneration of aU-statistic means that the conditional expectation of its kernel is the zero-
function, that is,E [hf (Z1,Z2)− hf ∗(Z1,Z2) |Z1 = z1] = 0 for eachz1 ∈ X ×R . In what follows,
we will separately look for probabilistic inequalities of the appropriate orderfor the empirical and
degenerate term.

2.1 Empirical Term

The empirical process theory is the basis for our consideration concerning the first component in
Hoeffding’s decomposition ofU-statistics. To get better rates in this case one has to be able to
uniformly bound second moments of functions from an adequate class by their expectations. This
fact combined with some consequence of Talagrand’s inequality (Talagrand, 1994) was the key to
obtain fast rates in the classification theory. In this subsection we want to apply this method to
ranking. First, we need a few preliminaries: letG be a class of real functions that is uniformly
bounded by a constantG > 0. Moreover, let us introduce an additional sequence of iid random
variablesε1, . . . ,εn (the Rademacher sequence). Variablesεi ’s take values 1 or−1 with probability
1
2 and are independent of the sampleZ1, . . . ,Zn. Having the Rademacher sequence let us denote

Rn(G) = sup
g∈G

1
n

n

∑
i=1

εi g(Zi),
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and call an expressionERn(G) the Rademacher average of the classG . The expectation in the
Rademacher average is taken with respect to both samplesZ1, . . . ,Zn andε1, . . . ,εn.

Besides, we should also introduce so called sub-root functions, which are nonnegative and non-
decreasing functionsφ : [0,∞) → [0,∞) such that for eachr > 0 the functionr 7−→ φ(r)/

√
r is

non-increasing. They have a lot of useful properties, for example they are continuous and have the
unique positive fixed pointr∗ (the positive solution of the equationφ(r) = r). Proofs of these facts
can be easily found in the literature (Bartlett et al., 2005). Finally, let the class

G∗ = {α g : g∈ G ,α ∈ [0,1]}
denote a star-hull ofG andPg= Eg(Z1). Now we can state the aforementioned theorem for empir-
ical processes which can be also found in Massart (2000) and Bartlettet al. (2005).

Theorem 1 Let the classG be such that for some constant B> 0 and every g∈ G we have Pg2 ≤
BPg. Moreover, if there exists a sub-root functionφ with the fixed point r∗, which satisfies

φ(r)≥ BERn(g∈ G∗ : Pg2 ≤ r)

for each r≥ r∗, then for every K> 1 andα ∈ (0,1)

P

(

∀g∈G Pg≤ K
K−1

Pn(g)+
6K
B

r∗+[22G+5BK]
ln(1/α)

n

)

≥ 1−α.

The proof of this theorem is based on Talagrand’s inequality applied to properly rescaled classG
and can be found in Bartlett et al. (2005). Theorem 1 says that to get better bounds for the empirical
term one needs to study properties of the fixed pointr∗ of a sub-rootφ. However, it gives no general
method for choosingφ, but it suggests to relate it toERn(g ∈ G∗ : Pg2 ≤ r). We will follow this
suggestion, similar reasoning was carried out in Bartlett et al. (2005) or Boucheron et al. (2005). Of
course, for everyn the function

r → ERn(g∈ G∗ : Pg2 ≤ r)

is nonnegative and non-decreasing. Replacing a classG by its star-hull is needed to prove the last
property from the definition of the sub-root function.

Using Theorem 1 we can state the following fact concerning the empirical term in Hoeffding’s
decomposition. The modulus of convexity of a functionψ that appears in this theorem is described
in the next subsection.

Theorem 2 Let the family of ranking rulesF satisfy Assumption A and be convex. Moreover, if the
modulus of convexity of a loss functionψ fulfills on the interval[−A1,A1] the conditionδ(t) ≥Ctp

for some constants C> 0 and p≤ 2, then for everyα∈(0,1) and K> 1

P

(

∀ f∈F Q( f )−Q( f ∗)≤ K
K−1

Pn(Pψ f −Pψ f ∗)+C1V1
lnn+ ln(1/α)

n

)

≥ 1−α,

where the constant C1 depends on K.
If the familyF satisfies Assumption B instead of Assumption A, then for everyα∈(0,1) and

K > 1 with probability at least1−α

∀ f∈F Q( f )−Q( f ∗)≤ K
K−1

Pn(Pψ f −Pψ f ∗)+C2max

(

lnn
n

,
1

nβ

)

+C3
ln(1/α)

n

where2
3 < β = 2

2+V1
< 1. Constants C2,C3 depend on K.
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Remark 3 Although the constants C1,C2,C3 can be recovered from the proofs we do not write their
explicit formulas, because our task is to prove bounds with better rates, that is, which decrease fast
with n→ ∞. For the same reason we do not attempt to optimize C1, C2 and C3.

Proof Consider the family of functions

PψF −Pψ f ∗ = {Pψ f −Pψ f ∗ : f ∈ F }.

A loss functionψ is convex so it is locally Lipschitz with constantLψ. SinceF is uniformly
bounded, thenPψF −Pψ f ∗ is also uniformly bounded by 2LψA1. Moreover, we show in the next
subsection that ifF is convex and the modulus of convexity ofψ satisfies the assumption given in
Theorem 2, then one can prove that for some constantB and every functionf ∈ F

E [Pψ f (Z1)−Pψ f ∗(Z1)]
2 ≤ B[Q( f )−Q( f ∗)]. (5)

The precise value of the constantB is given in Lemma 5 in Section 2.2. Therefore, the relation
that is demanded in Theorem 1 between second moments and expectations of functions from the

considered class holds. Applying this theorem to the class of functionsG =
{

Pψ f−Pψ f∗
2LψA1

: f ∈ F
}

and the sub-root function

φ(r) =
B

2LψA1
ERn(g∈ G∗ : Pg2 ≤ r)

we get the following probabilistic inequality

P

(

∀ f∈F Q( f )−Q( f ∗)≤ K
K−1

Pn(Pψ f −Pψ f ∗)+C1r∗+C2
ln(1/α)

n

)

≥ 1−α .

ConstantsC1,C2 and others that appear in this proof may change from line to line. To finish theproof
of the first part of the theorem we have to bound the fixed point of the sub-root φ by lnn

n . Described
method is similar to consideration contained in Mendelson (2003) or Bartlett et al. (2005).

First we need two additional notations:

G∗
r = {g∈ G∗ : Pg2 ≤ r}

for somer > 0 and

ξ = sup
g∈G∗

r

1
n

n

∑
i=1

g2(Zi).

Using Chaining Lemma for empirical processes (Pollard, 1984) we obtain

ERn(G
∗
r )≤

C1√
n
E

∫ √
ξ/4

0

√

lnN(t,G∗
r ,ρPn)dt, (6)

where

ρPn(g1,g2) =

√

1
n

n

∑
i=1

[g1(Zi)−g2(Zi)]2 .

Notice thatN(t,G∗
r ,ρPn) ≤ N(t,G∗,ρPn) ≤ N(t/2,G ,ρPn)

⌈

1
t

⌉

since from a cover of a familyG
with radiust/2 and a cover of the interval[0,1] with radiust/2 one can easily construct a cover of
a familyG∗. Besides, it is not difficult to show that

N(t,PψF ,ρPn)≤ N(t,ψF ,ρP⊗Pn)≤ N

(

t
Lψ

,F ,ρPX⊗PX
n

)

,
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since the first inequality follows from Nolan and Pollard (1987, Lemma 20) and to prove the second
one we use the fact thatψ is locally Lipschitz. Thus, Assumption A and above properties of covering
numbers imply that for some positive constantsC andC1

lnN(t,G∗
r ,ρPn)≤C1V1 ln

C
t
.

So the right side of (6) can be bounded byC1

√

V1
n E

∫√ξ/4
0

√

ln C
t dt. Using Mendelson (2003,

Lemma 3.8) and Jensen’s inequality we obtain

C1

√

V1

n
E

∫ √
ξ/4

0

√

ln
C
t

dt ≤C1

√

V1

n

√

Eξ

√

ln

(

C
Eξ

)

.

Furthermore, applying Talagrand (1994, Corollary 3.4) to the familyG∗
r we have

Eξ ≤ 8ERn(G
∗
r )+ r.

Summarizing we have just shown that

ERn(G
∗
r )≤C1

√

V1

n

√

8ERn(G∗
r )+ r

√

ln
C
r

which for the fixed pointr∗ implies

r∗ ≤ C1V1

n
ln

C
r∗

,

and now it is easy to get thatr∗ ≤CV1
lnn
n .

In the second part of the theorem we use less restrictive Assumption B. Reasoning is the same
as in the previous case, we need only to notice that

lnN(t,G∗
r ,ρPn)≤C

[

lnN
(

t,F ,ρPX⊗PX
n

)

+ ln
C1

t

]

≤C

[

t−V1 + ln
C1

t

]

.

Therefore, the right side of (6) can be bounded by

C√
n
E

∫ √
ξ/4

0

√
t−V1 dt+

C√
n
E

∫ √
ξ/4

0

√

ln
C1

t
dt. (7)

The second component in (7) has been just considered, so we focus on the first one. Notice that it is
equal to C√

n Eξ1/2−V1/4. Again, using Jensen’s inequality and Talagrand (1994, Corollary 3.4) itis
less than

C√
n
[8ERn(G

∗
r )+ r]1/2−V1/4

which implies that

ERn(G
∗
r )≤

C√
n

[

(8ERn(G
∗
r )+ r)

1
2−

V1
4 +

√

(8ERn(G∗
r )+ r) ln

C1

r

]

. (8)
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For the fixed pointr∗ the inequality (8) takes the form

r∗ ≤ C√
n

[

(r∗)
1
2−

V1
4 +

√

r∗ ln
C1

r∗

]

,

so

r∗ ≤Cmax

(

lnn
n

,
1

n
2

2+V1

)

and 2
3 < 2

2+V1
< 1, since 0<V1 < 1.

2.2 On the Inequality (5)

Theorem 2 in the previous subsection shows that better rates can be obtained if we are able to bound
second moments of functions from the familyPψF −Pψ f ∗ by their expectations. In this subsection
we indicate conditions that are sufficient for even stronger relationship,namely

E [ψ f (Z1,Z2)−ψ f ∗(Z1,Z2)]
2 ≤ B[Q( f )−Q( f ∗)]. (9)

The key object in further analysis is the modulus of convexity of the lossψ. This function was
very helpful in proving similar relation in the classification theory (Mendelson, 2002; Bartlett et al.,
2006). With minor changes we will use it in our studies.

Definition 4 The modulus of convexity ofψ is the functionδ : [0,∞)→ [0,∞] defined as

δ(t) = inf

{

ψ(x1)+ψ(x2)

2
−ψ

(

x1+x2

2

)

: |x1−x2| ≥ t

}

.

We illustrate this object with a few examples: for the quadratic functionψ(x) = x2 we obtainδ(t) =
t2/4, the modulus of convexity of the exponential function defined on the interval[−a,a] is equal
to δ(t) = t2

8exp(a) +o(t2), whereas forψ(x) = max[0,1−x] we haveδ(t) = 0.
If the classF is convex, then the riskQ : F → R is the convex functional. It allows to consider

the modulus of convexity ofQ, that is given by

δ̃(t) = inf

{

Q( f1)+Q( f2)
2

−Q

(

f1+ f2
2

)

: d( f1, f2)≥ t

}

,

whered is theL2-pseudometric onF , that is,

d( f1, f2) =
√

E [ f1(X1,X2)− f2(X1,X2)]2 .

The important property of the modulus of convexity is the fact that it can be often lower bounded by
Ctp for someC, p> 0. This relation is satisfied for many interesting convex functions, for instance
e−x, log2(1+e−2x) or [max(0,1−x)]2 (the last case needs minor changes in consideration). This
property implies the similar one for the modulus of convexity of the functionalQ, which is sufficient
to prove the relationship (9) between second moments and expectations of functions from the family
ψF −ψ f ∗ . The following lemma, which is based on Bartlett et al. (2006, Lemma 7 and Lemma 8),
can be stated:
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Lemma 5 If the familyF is convex and there exist constants C, p > 0 such that the modulus of
convexity ofψ satisfies

δ(t)≥Ctp, (10)

then
E [ψ f (Z1,Z2)−ψ f ∗(Z1,Z2)]

2 ≤ L2
ψDp[Q( f )−Q( f ∗)]min(1,2/p)

, (11)

where

Dp =

{

(2C)−2/p if p≥ 2,
21−pA2−p

1 C−1 if p< 2.

Proof Using Lipschitz property ofψ we can obtain

E [ψ f (Z1,Z2)−ψ f ∗(Z1,Z2)]
2

≤ L2
ψE [sign(Y1−Y2) f (X1,X2)−sign(Y1−Y2) f ∗(X1,X2)]

2

= L2
ψd2( f , f ∗). (12)

The second step of the proof is based on showing that if the modulusδ satisfies (10), then the
modulusδ̃ also fulfills a similar condition. Namely, letf1, f2 ∈ F satisfyd( f ,g)≥ t. Then from the
definition of the modulus of convexityδ and (10)

Q( f1)+Q( f2)
2

−Q

(

f1+ f2
2

)

= E

[

ψ f1(Z1,Z2)+ψ f2(Z1,Z2)

2
−ψ f1+ f2

2
(Z1,Z2)

]

≥ Eδ(|sign(Y1−Y2) f1(X1,X2)−sign(Y1−Y2) f2(X1,X2)|)
= Eδ(| f1(X1,X2)− f2(X1,X2)|)≥CE | f1(X1,X2)− f2(X1,X2)|p.

Easy calculation (see Bartlett et al., 2006, the proof of Lemma 8) indicates that the modulus̃δ fulfills

δ̃(t)≥Cpt
max(2,p) , (13)

whereCp = C for p ≥ 2 andCp = C(2A1)
p−2, otherwise. Moreover, from the definition of the

modulusδ̃ and the fact thatf ∗ is the minimizer ofQ( f ) in the convex classF we have

Q( f )+Q( f ∗)
2

≥ Q

(

f + f ∗

2

)

+ δ̃(d( f , f ∗))≥ Q( f ∗)+ δ̃(d( f , f ∗)).

Combining this fact with the inequality (12) and the property (13) of the modulusδ̃ we get

Q( f )−Q( f ∗)≥ 2δ̃

(

√

E [ψ f (Z1,Z2)−ψ f ∗(Z1,Z2)]2

Lψ

)

≥ 2Cp

(

√

E [ψ f (Z1,Z2)−ψ f ∗(Z1,Z2)]2

Lψ

)max(2,p)

which is equivalent to the inequality (11).

Thus, for convex functions that were mentioned before Lemma 5 we obtain inthe inequality
(11) the exponent equal to 1, because their modulus of convexity can be easily bounded from below
with p = 2. However, if p > 2, then the exponent belongs to the interval(0,1), but we can still
bound the considered empirical process by an expression of the orderbetter than 1√

n (Mendelson,
2002; Bartlett et al., 2006). Of course, we get better bounds if the exponent is closer to 1.
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2.3 Degenerate Component

In this subsection we obtain exponential inequalities for degenerateU-processes. We bound the
second term in Hoeffding’s decomposition by1

n that is sufficient to get better rates for the excess
risk of ranking estimators. Let us recall that considered object has the following form

{

Un(hf −hf ∗) =
1

n(n−1) ∑
i 6= j

[hf (Zi ,Z j)−hf ∗(Zi ,Z j)] : f ∈ F

}

, (14)

where
hf (z1,z2) = ψ f (z1,z2)−Pψ f (z1)−Pψ f (z2)+Q( f ).

Moreover, kernels of theU-process (14) are symmetric, uniformly bounded and degenerate.
Similar problems were also considered in Arcones and Giné (1994); de la Pẽna and Gińe (1999),

Major (2006) and Adamczak (2007).

Theorem 6 If a family of ranking rulesF satisfies Assumption A, then for everyα ∈ (0,1)

P

(

∀ f∈F |Un(hf −hf ∗) | ≤C1max(V1,V2)
ln(C2/α)

n

)

≥ 1−α

for some constants C1,C2 > 0.
If a family of ranking rulesF satisfies Assumption B, then for everyα ∈ (0,1)

P

(

∀ f∈F |Un(hf −hf ∗) | ≤
C3

1−max(V1,V2)

ln(C4/α)
n

)

≥ 1−α

for some constants C3,C4 > 0.

Remark 7 In Assumption B we restrict to V1,V2 < 1, whereas in the empirical process theory these
exponents usually belong to(0,2). This restriction is needed to prove Theorem 6, namely to calcu-
late the integral (19) in the proof of this theorem.

Proof Our aim is to bound the expression

E exp

(

λ
√

sup
f∈F

|(n−1)Un(hf −hf ∗) |
)

(15)

for everyλ > 0. Combining it with Markov’s inequality finishes the proof.
Introduce the Rademacher sequenceε1, . . . ,εn and the symmetrizedU-process defined as

Sn(hf −hf ∗) =
1

n(n−1) ∑
i 6= j

εiε j [hf (Zi ,Z j)−hf ∗(Zi ,Z j)].

Using Symmetrization forU-processes (de la Peña and Gińe, 1999) we can bound (15) by

C2E exp

(

C1λ
√

sup
f∈F

|(n−1)Sn(hf −hf ∗) |
)

. (16)

1382



ON RANKING AND GENERALIZATION BOUNDS

ConstantsC1,C2 that appear in this proof may differ from line to line. If we fixZ1, . . . ,Zn, then we
work with the Rademacher chaos process whose properties are well studied. By Arcones and Gińe
(1994, Formula 3.4 and 3.5) and Hölder’s inequality we bound (16) by

C2E exp

(

C1λ2
Eε sup

f∈F
|(n−1)Sn(hf −hf ∗) |

)

,

whereEε is conditional expectation with respect to the Rademacher sequence. To finish the proof
we study the expressionEε supf∈F |(n−1)Sn(hf −hf ∗) |. This step relies on Chaining Lemma for
U-processes (Nolan and Pollard, 1987, Lemma 5), similar reasoning can befound in Arcones and
Giné (1993) and Sherman (1993). For convenience let us denotehf −hf ∗ by h. Furthermore, for
fixedZ1, . . . ,Zn consider a stochastic process

{

Jn(h) =
1

En∑
i 6= j

εiε jh(Zi ,Z j) : h∈H

}

, (17)

whereE is the uniform bound on elements ofH . Define a pseudometricρ onH = {hf −hf ∗ : f ∈
F } as

ρ(h1,h2) =
1
E

√

1
n(n−1) ∑

i 6= j

[h1(Zi ,Z j)−h2(Zi ,Z j)]
2 .

The process (17) satisfies assumptions of Chaining Lemma forU-processes with the functionφ(x)=
exp
(

x
κ −1

)

, whereκ is some positive constant. Indeed,Jn(h1−h2) is the Rademacher chaos of the
order two, so from de la Peña and Gińe (1999, Corollary 3.2.6) there existsκ > 0 such that

Eε exp

(

|Jn(h1−h2)|
κ
√

Eε[Jn(h1−h2)]2

)

≤ e.

Moreover, it is easy to calculate thatEε[Jn(h1 − h2)]
2 ≤ ρ2(h1,h2), which implies that

Eεφ
(

|Jn(h1−h2)|
ρ(h1,h2)

)

≤ 1. Therefore, we obtain the inequality

Eε sup
f∈F

|(n−1)Sn(hf −hf ∗) | ≤C1

∫ 1/4

0
lnN(t,H ,ρ)dt. (18)

Besides, the covering number of the familyH1+H2 = {h1+h2 : h1 ∈H1,h2 ∈H2} clearly satisfies
the inequality

N(2t,H1+H2,ρ)≤ N(t,H1,ρ)N(t,H2,ρ).

If the family F fulfills Assumption A, then similarly to the proof of Theorem 2 we have
N(t,PψF ,ρPn)≤C1t−V1 andN(t,ψF ,ρ)≤C2t−V2. Therefore, for some constantsC,C1 > 0

N(t,H ,ρ)≤Ct−C1 max(V1,V2)

and the right-hand side of (18) is bounded (for some constantsC,C1,C2 > 0) by

C1max(V1,V2)
∫ 1/4

0
ln

C
t

dt ≤C2max(V1,V2).
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If the family satisfies Assumption B, then the right-hand side of (18) is bounded (for some constants
C,C1 > 0) by

C
∫ 1/4

0
t−max(V1,V2)dt ≤ C1

1−max(V1,V2)
. (19)

Summarizing we obtain for everyλ > 0

E exp

(

λ
√

sup
f∈F

|(n−1)Un(hf −hf ∗) |
)

≤C2exp(C1λ2)

and the form of the constantC1 depends on the assumption (A or B) that is satisfied by the family

F . Finally, we takeλ =
√

ln(C2/α)
C1

and use Markov’s inequality.

2.4 Main Result and Examples

Our task relied on showing that in ranking, similarly to the classification theory,the convex excess
risk can be bounded with better rates than1√

n which were proved in Clémençon et al. (2008). By
Hoeffding’s decomposition the effort was divided into the empirical term (Sections 2.1 and 2.2) and
the degenerateU-process (Section 2.3). Taking results of these three parts together we can state the
main theorem.

Theorem 8 Let the family of ranking rulesF satisfy Assumption A and be convex. Moreover, if the
modulus of convexity of a functionψ fulfills on the interval[−A1,A1] the conditionδ(t) ≥ Ctp for
some constants C> 0 and p≤ 2, then for everyα∈(0,1)

P

(

Q( fn)−Q( f ∗)≤C1max(V1,V2)
lnn+ ln(C2/α)

n

)

≥ 1−α (20)

for some constants C1,C2.

If the familyF satisfies Assumption B instead of Assumption A, then for everyα∈(0,1)

P

(

Q( fn)−Q( f ∗)≤C3max

(

lnn
n

,
1

nβ

)

+
C4

1−max(V1,V2)

ln(C5/α)
n

)

≥ 1−α

for some constants C3,C4,C5 andβ = 2
2+V1

∈
(

2
3,1
)

.

Remark 9 The dependence on exponents V1,V2 in the inequality (20) is the same as in Clémençon
et al. (2008, Corollary 6), where one considered minimizers of the empirical risk with 0−1 loss and
the familyF with finite Vapnik-Chervonenkis dimension.

Proof Let us slightly modify Hoeffding’s decomposition of theU-statisticQn( f )−Qn( f ∗), namely
for eachK > 2

(K−2)[Q( f )−Q( f ∗)]−K[Qn( f )−Qn( f ∗)]

= 2Pn
{

(K−1)[Q( f )−Q( f ∗)]−K(Pψ f−Pψ f ∗)
}

−K[Un(hf )−Un(hf ∗)].
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Therefore, the first part of Theorem 2, Lemma 5 and Theorem 6 are sufficient to prove that for every
α ∈ (0,1) andK > 2 with probability at least 1−α

∀ f∈F Q( f )−Q( f ∗)≤ K
K−2

[Qn( f )−Qn( f ∗)]+C1max(V1,V2)

[

lnn+ ln(C2/α)
n

]

for some constantsC1,C2. Moreover, for the rulefn that minimizes the empirical convex risk we
haveQn( fn)−Qn( f ∗)≤ 0. If the familyF satisfies Assumption B we use the second thesis of The-
orem 2 and further reasoning is the same.

Now we give three examples of ranking procedures that we can apply Theorem 8 to.

Example 1 Consider the familyF containing linear ranking rules

F = { f (x1,x2) = θT(x1−x2) : θ,x1,x2 ∈ R
d}

In this case our prediction of the ordering between objects depends on thehyperplane that the vector
x1−x2 belongs to. The familyF is convex. Moreover, the class{subgraph( f ) : f ∈ F }, where

subgraph( f ) = {(x1,x2, t) ∈ X 2×R : 0< t < f (x1,x2) or f (x1,x2)< t < 0},
is by Pakes and Pollard (1989, Lemma 2.4 and 2.5) a VC-class of sets. Thus, Pakes and Pollard
(1989, Lemma 2.12) implies that the familyF satisfies Assumption A. If we take a ”good” function
ψ (for example one of functions mentioned in Section 2.2), then we obtain generalization bounds
for the excess risk of the estimator fn of the orderlnn

n .

Theorem 8 can be also applied to a popular ranking procedure called ”boosting”. Here we are
interested in a ranking version of AdaBoost that uses the exponential loss function.

Example 2 LetR = {r : X ×X →{−1,1}} be a family of ”base” ranking rules with finite Vapnik-
Chervonenkis dimension. The output of the algorithm is an element of a convex T-hull ofR , where
T is the number of iterations of the procedure. Namely, it belongs to the family

convT(R ) = { f (x1,x2) =
T

∑
j=1

w j r j(x1,x2) :
T

∑
j=1

w j = A1,

w j ≥ 0, r j ∈ R for j = 1, . . . ,T} .
This class is obviously convex. The familyR has finite VC dimension, so a class

{Ar = {(x1,x2) : r(x1,x2) = 1} : r ∈ R }
is a VC-class of sets. The subgraph of each r∈ R has the following form

{(x1,x2) ∈ Ar andt ∈ (0,1)} ∪ {(x1,x2) ∈ Ac
r andt ∈ (−1,0)}.

Again using Pakes and Pollard (1989, Lemma 2.5 and 2.12) we obtain that N(t,R ,ρµ)≤Ct−V for
some constants C,V > 0 and every probability measure µ onX ×X . Quick calculation shows that

N(t,convT(R ),ρµ)≤C1t
−T(V+1),

soF satisfies Assumption A. Furthermore, the modulus of convexity ofψ(x)= exp(−x) fulfills on the
interval [−A1,A1] the conditionδ(t)> t2

8exp(A1)
. Thus, in this example we also obtain generalization

bounds for the excess convex risk of fn of the orderlnn
n .
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The last example is a ranking version of support vector machines.

Example 3 Let K :X 2×X 2 →R be a kernel that is symmetric, continuous and nonnegative definite
function. The last property means that for every natural number m, vectorsx̄1, . . . , x̄m ∈ X 2 and
α1, . . . ,αm ∈ R

m

∑
i, j=1

αiα jK(x̄i , x̄ j)≥ 0.

One can show (Cucker and Smale, 2002) that for every kernel K thereexists the unique Hilbert
space HK (called reproducing kernel Hilbert space) of real functions onX 2 that the inner product
of its elements is defined by K. Namely, HK is the completion of

span{K(x̄, ·) : x̄∈ X 2},

and the inner product is defined by

〈 f1, f2〉=
k

∑
i=1

m

∑
j=1

αiβ jK(x̄i , x̄ j)

for f1(·) = ∑k
i=1 αiK(x̄i , ·) and f2(·) = ∑m

j=1 β jK(x̄ j , ·).
Similarly to SVM in the classification theory our task is to linearly separate (with possibly wide

”margin”) two sets: {(Xi ,Xj) :Yi >Yj ,1≤ i 6= j ≤n} and{(Xi ,Xj) :Yi <Yj ,1≤ i 6= j≤n}, which can
be solved using Lagrange multipliers. This primary problem is ”transposed” from the X 2 ⊂ R

2d

to HK by the functionx̄ 7−→ K(x̄, ·) and by the ”kernel trick” we obtain the nonlinear procedure
- comprehensive descriptions are in Cortes and Vapnik (1995), Burges (1998), Vapnik (1998) and
Blanchard et al. (2008). Finally, we are to minimize the empirical convex risk of the form

Qn( f ) =
1

n(n−1) ∑
i 6= j

max[0,1−sign(Yi −Yj) f (Xi ,Xj)]+λ|| f ||2

in some ball with radius R in the Hilbert space HK , that is

F = { f ∈ HK : || f || ≤ R}

andλ > 0 is a parameter. Consider a Gaussian kernel of the form

K(x̄, x̄′) = exp
(

−σ2||x̄− x̄′||22
)

,

wherex̄, x̄′ ∈ X 2, ||x̄||2 =
√

∑2d
i=1 x̄2

i and σ > 0 is a scale parameter. Using Scovel and Steinwart
(2007, Theorem 3.1) we obtain that for every compact setX , σ ≥ 1 and0<V < 1

lnN(t,F ,C(X 2))≤Ct−V (21)

for some constant C dependent on V,d,σ and R. The covering number N(t,F ,C(X 2)) denotes the
minimal number of balls with centers in the space of continuous functions onX 2 with the metric
d( f1, f2) = max

x̄∈X 2
| f1(x̄)− f2(x̄)| needed to coverF . This definition differs from ours given in the

beginning of Section 2. But Steinwart (2001) proved that HK corresponding to the Gaussian kernel
is dense in C(X 2), so we can use the property (21) in our studies. Moreover, for every probability
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measure µ onX 2 we haveρµ( f1, f2) ≤ d( f1, f2), whereρµ is defined by (4). Thus, the familyF

satisfies Assumption B and is convex. The inequality (5) with B= 2(2Rλ+1)2

λ can be obtained using
almost the same arguments as Scovel and Steinwart (2005, Section 6.1). Therefore, we get

P

(

Q( fn)−Q( f ∗)≤C1max

(

lnn
n

,
1

nβ

)

+C2
ln(C3/α)

n

)

≥ 1−α

with 2
3 < β < 1.

In the paper we consider ranking estimators that minimize the convex empirical risk. The natural
question is: are these estimators also ”good” in the case of the primary 0− 1 loss function? Is
there any relation between the excess risk and the convex excess risk? Let us introduce, similarly to
Clémençon et al. (2008), two notations

ρ+(X1,X2) = P(Y1 >Y2 |X1,X2)

and
ρ−(X1,X2) = P(Y1 <Y2 |X1,X2).

It is easy to see that the ranking rule

f̄ (x1,x2) = 2I[ρ+(x1,x2)≥ρ−(x1,x2)]−1

minimizes the risk (1) in the class of all measurable functions. DenoteL∗ = L( f̄ ). Let Q∗ be the
minimal value ofQ( f ) for every measurable functionsf : X ×X →R. Bartlett et al. (2006) proved
the relation between the excess risks and the convex excess risk for the classification theory. How-
ever, Cĺemençon et al. (2008) noticed that those results can be applied to ranking. They obtained
that for every ranking rulef

γ(L( f )−L∗)≤ Q( f )−Q∗

for some invertible functionγ that depends onψ. Moreover,γ can be computed in most interesting
cases, for instance:γ(x) = 1−

√
1−x2 for ψ(x) = exp(−x).

Divide the differenceQ( f )−Q∗ into the sum of two terms

[Q( f )−Q( f ∗)]+ [Q( f ∗)−Q∗]. (22)

The first component in (22), so called ”estimation error”, tells us how closethe risk of f is to the risk
of the best element in the classF . The second term (”approximation error”) describes how much
we lose using the familyF . In the paper we study the estimation error, however approximation
properties of the familyF are also important problems. For instance they were considered in
Cucker and Smale (2002), Lugosi and Vayatis (2004) and Scovel andSteinwart (2007).

3. Experiments

This section is devoted to results of our experiments on real data sets (Frank and Asuncion, 2010).
We compare the performance of different SVM’s for ranking problems.In Section 2.4 we describe
a general method to obtain such procedures, but one can propose somesimplification of this idea
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that is useful in practice. Consider linearly separable case which means that there exists a vector
θ ∈ R

d such that
θTXi > θTXj for Yi >Yj , 1≤ i 6= j ≤ n.

Thus, our task is to assign differencesXi −Xj to classes defined by sign(Yi −Yj). We assume that the
distribution of the variableY is continuous, soP(Y1 =Y2) = 0. Therefore, we can use SVM for the
classification theory to solve ranking problems if we consider differencesof observations in place
of observations. Thus, instead of a kernelK : X 2×X 2 → R we can use a kernelK : X ×X → R if
we take

K ((x1,x2),(x3,x4)) = K(x1−x2,x3−x4).

The kernelK is symmetric, continuous and nonnegative definite by the same properties of the
kernelK. Therefore, all calculations done by a procedure are made inR

d instead ofR2d. Similar
considerations can be found in Herbrich et al. (2000) and Joachims (2006).

To our experiments we use ”e1071” package in ”R” (R Development CoreTeam, 2009; Dimi-
triadou et al., 2010). We choose three types of kernels:

a) linear –K(x1,x2) =< x1,x2 >Rd ,

b) polynomial –K(x1,x2) =< x1,x2 >
3
Rd ,

c) Gaussian –K(x1,x2) = exp
(

−1
2||x1−x2||2Rd

)

and two values of the parameterλ: 1 and 1
10 . Less value ofλ corresponds to the case when the

algorithm should be more adjusted to the sample. Greater value ofλ has an effect in wider margin.
We divide every considered data sets into two subsets. The first one is used as a learning sample

and we determine an estimator on it. On the second subset we test the estimator, that is, we take
two objects and check if the ordering indicated by the estimator is the same as the true one. We
repeat the experiment for every data set thirty times and average proportions of wrong decisions are
presented in tables below. We denote SVM with the linear kernel and the parameterλ equal to 1
and 1

10 by L(1) and L(10), respectively. Similarly, W(1) and W(10) stand for polynomial kernels,
and G(1) and G(10) for Gaussian kernels.

The first data set concerns experiments that the concrete compressivestrength was measured
(Yeh, 1998). There are more than 1000 observations, 9 features areconsidered such that the age
of material, contents of water, cement and other ingredients, and finally the concrete compressive
strength. In Table 1 we compare errors in predicting the ordering betweenobjects by six algorithms.
Notice that in both cases (a learning sample with 100 and 300 elements) SVM with Gaussian kernels

Error L(1) L(10) W(1) W(10) G(1) G(10)
n=100 0,198 0,196 0,199 0,196 0,179 0,185
n=300 0,191 0,189 - - 0,165 0,179

Table 1: Concrete compressive strength

have least errors, and among them G(1) is better. Proportions of wrongdecisions of remaining four
algorithms are similar. Besides, for linear and polynomial kernels greater adjustment to the sample
has an effect in slightly better effectiveness, contrary to G(1) and G(10). The mark ”-” in the
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table means that the algorithm did not calculate an estimate for 100 minutes. Comparing to three
following data sets it usually happens for polynomial SVM andn=300. Such numerical problems
occur, since the number of pairs of instances, that algorithms work with, increases with the square
of the sample sizen. It makes these procedures inefficient for largen. Some improvements can be
found in Joachims (2006).

In the second data set values of houses in the area of Boston are compared (Frank and Asuncion,
2010). Thirteen features were measured, for instance the crime rate, thedistance to five Boston
employment centres or pupil-teacher ratio by town. Our results are contained in Table 2. We notice

Error L(1) L(10) W(1) W(10) G(1) G(10)
n=100 0,153 0,157 0,148 0,153 0,133 0,132
n=300 0,132 0,133 - - 0,107 0,123

Table 2: Boston housing data

an improvement of every procedure in recognizing the ordering. Again G(1) and G(10) have least
errors. In this case estimators obtained for greater value of the parameterλ (except for G(1)) are
better.

Last two experiments are carried out on data sets concerning the quality ofred and white wine
(Cortez et al., 2009). In both cases one measured 11 features such that the content of alcohol, citric
acid, the density and pH. The quality of a wine was determined by wine experts. Results in Table

Red L(1) L(10) W(1) W(10) G(1) G(10)
n=100 0,226 0,227 0,281 0,271 0,257 0,285
n=300 0,214 0,216 - - 0,232 0,270

White
n=100 0,265 0,266 0,292 - 0,282 0,305
n=300 0,253 0,249 - - 0,268 0,303

Table 3: Wine quality

3 indicate lower efficiency of procedures than in previous examples. Forred wine as well as white
one we can notice the advantage of SVM with linear kernels, whose errorsare very similar. The
worst algorithm is G(10) which in previous experiments has one of the leasterror.
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