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Abstract

The problem of ranking is to predict or to guess the orderietyvben objects on the basis of their
observed features. In this paper we consider ranking estimthat minimize the empirical convex
risk. We prove generalization bounds for the excess riskuoh stimators with rates that are
faster tha% . We apply our results to commonly used ranking algorithmsijrfstance boosting
or support vector machines. Moreover, we study the perfoo@af considered estimators on real
data sets.
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1. Introduction

The problem of ranking is to predict or to guess the ordering betweentslga the basis of their

observed features. This problem has numerous applications in pradécean mention informa-

tion retrieval, banking, quality control or survival analysis. The proble closely related to the

classification theory, however it has its own specificity. In recent yeansy authors have focused
their attention on this subject (Freund et al., 2004; Agarwal et al., 2008s@ck and Zhang, 2006;
Rudin, 2006; Gdmencon et al., 2008).

In the paper we consider a population of objects equipped with a relatidme#i) ordering.
For any two distinct objecte; and o, it holds eithero; < 0, or 01 > 0, (or maybe both), but it
is unknown which is true. We lose little generality by assuming that real nunyheasdy, are
assigned to the objects ando, in such a way thab; < 0, is equivalent to/; < y». Moreover, let
d-dimensional vectorg; andx; describe observed or measured features of the objects and let the
observation spac¥ be a Borel subset @Y. We are to construct a functioh: X x X — R, called
a ranking rule, which predicts the ordering between objects in the followag w

if f(x1,%2) <0, then we predict that; < y».

To measure the quality of a ranking ruleve introduce a probabilistic setting. Let us assume that
two objects are randomly selected from the population. They are desbnjteepair of independent
and identically distributed (with respect to the meaf®yeandom vectorg; = (X1,Y:) andZ; =
(X2,Y2) taking values inX x R. Random vector¥; andX; are regarded as observations, wije
andY, are unknown variables which define the ordering as above.
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Most natural approach is to look for a functidnwhich minimizes the risk (the probability of
incorrect ranking)
L(f) = P(Sigl’(Yl —Yz) f (X]_,Xz) < 0) (1)

in some family of ranking ruleg , where sigit) = 1 fort > 0, signt) = —1 fort < 0 and sigift) =0
fort = 0. Since we do not know the distributid® we cannot solve this problem directly. But if we
possess a learning sam@le= (X1,Y1),...,Zy = (X, Yn), then we can consider a sample analog of
(1), namely the empirical risk

Ln(f) =

n(n—1) i;MSign(Yi—Yj)f(Xi,Xj) <0, )

wherell(-) is the indicator function. The ranking rule that minimizes (2) can be used estiamator
of the function that minimizes (1). Notice thha§(f) is aU-statistic of the order two for a fixed
f € F. The main difficulty in this approach lies in discontinuity of the function (2).nltadls that
finding its minimizer is computationally difficult and not effective. This fact iskbly the main
obstacle to wider use of such estimators in practice. To overcome this prohkeosually replaces
the discontinuous loss function by its convex analog. This trick has bemessfully used in the
classification theory and has allowed to invent boosting algorithms (Freuh&ehapire, 1997) or
support vector machines (Vapnik, 1998). Therefore, instead-oi @oss function we consider a
convex and nonnegative loss functign R — R. Denote the "convex” risk of a ranking ruleby

Q(f) = E W[sign(Yr —Y2) f(Xg, X2)],

n I ( ]) : LIJ 1y4&] />

whereWs(z1,2) = W[sign(y:s — y2) f(x1,X2)]. Notice thatQ,(f) is also aU-statistic of the order

two for a fixed functionf. Therefore, features dfi-process{Qn(f) : f € ¥} are the basis for

our consideration on statistical properties of the réje= argfmiann(f) as an estimator of the
S

unknown functionf* = argfmian( f). Niemiro and Rejchel (2009) stated theorems about the strong
€

consistency and the asymptotical normality of the estimétan the linear case, that is, when
we consider linear ranking rule(x,x;) = 87 (x; —X2), where8 ¢ RY. Similar studies on the
asymptotic behaviour of estimators were done in Niemiro (1992) and BoS8&).19

In this paper we are interested in the excess risk of an estinfig{@an the general model, not
necessarily linear). This is the case when one compares the convek fiskith the convex risk of
the best rule in the class. Generalization bounds are very populardiorssudying in the learning
theory. They are probabilistic inequalities of the following form: for every (0, 1)

P(Q(fn) —Q(f")<n )=1-aq, ®3)

wheren > 0 is some small number that depends on the levehe numbem of elements in the
sample, a family of ranking rule® and a loss functior, but it is independent of an unknown dis-
tribution P. Similar objects were widely studied in the classification theory (Blanchard €03,
2008; Lugosi and Vayatis, 2004; Bartlett et al., 2006). In rankingaarefind them in Gmencon
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et al. (2005, 2008). In the latter two papers Authors proved that with sestections on the class
F the numben in (3) is equal tcﬁ«/%, whereC is some constant. Their inequalities can be
applied to ranking analogs of support vector machines or boosting algatittMoreover, it was
shown in the classification theory that better rates tljﬁrare possible to obtain in similar bounds
to (3). Noticing the close relation between ranking and the classificationytii@émencon et al.
(2008) formulated the question if one can get generalization bounds \aghrédtes” for the excess
risk in ranking? They gave a positive answerg@kncon et al., 2008, Corollary 6) but only for esti-
mators that minimize the empirical risk with-01 loss. We have already mentioned about problems
with finding such minimizers. Convex loss functions and estimators that minimizetivex em-
pirical risk are used in practice. In this paper we indicate assumptions ahdadsehat allowed us
to obtain generalization bounds with better rates tﬁ@mor the excess convex risk of such estima-
tors. Similar studies were done in Rejchel (2009), but here we strengtiteextend those results.
The construction of inequalities of the form (3) is based on the empiricaldapdocess theory.
Empirical processes are well-known and widely described in the literaiumiée U-processes are
not so popular. However, there are very comprehensive monagpbut this theory (see de la
Pdia and Gigk, 1999), which originates from Hoeffding (1948).

The paper is organized as follows: Section 2 is devoted to theoreticdbrésle show that using
Hoeffding’s decomposition our problem can be divided into two parts. éritht one (Sections 2.1
and 2.2) we are interested in properties of some empirical process. ddwedsgart (Section 2.3) is
devoted to &J-process that we obtain after Hoeffding’s decomposition. We state the neaireth
and describe its applications to commonly used ranking algorithms in SectiomZéction 3 we
study the practical performance of described estimators on real data sets

2. Generalization Bounds

First, let us write conditions on a family of ranking rulésthat we need in later work. For simplic-
ity, assume thaf (x1,x2) = — f(x2,X1) for everyf € F which implies that the kernel ofd-statistic
Qn(f) is symmetric. Moreover, let the clagsbe uniformly bounded which means that there exists
some constamdy; > 0 such that for everyy,x; € X and f € & we have|f(x1,%2)| < A;. We will
not repeat these conditions later.

Furthermore, we need some restrictions on the "richness” of a family &fmrgmules ¥ . They
are bounds for the covering number%fand are similar to conditions that can be often found in the
literature (Pollard, 1984; de la Ra and Gik, 1999; Mendelson, 2002). Thus, |ebe a probability
measure ok’ x X and letp, be alL2-pseudometric ot defined as

ou(fa, f2) = All\/ [ 1k s x)dua o) @)

The covering numbeN(t, #,p,) of the class# with a pseudometrip, and a radiug > 0 is the
minimal number of balls (with respect pp) with centers inf and radiit needed to covef . Thus,
N(t, #,py) is the minimal numbemwith the property

3Fcr Flem Vier ez pu(fif) <t

Consider the marginal distributid®* of the vectorX and two empirical measureByX = 2 57, &
andv, = n(n—l_l)zi# O(x.x;)» Whered, is the counting measure. The famify that we consider
satisfies one of the following conditions:
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Assumption A'here exist constantd;, Vi > 0, i = 1,2 such that for every measures of the form:
W = PX®PX, 1w = v, and each < (0,1] we have

N(t, F,py) <Dt i=12
Assumption Brhere exist constanf8; > 0, V; € (0,1), i = 1,2 such that for every measures of
the form:py = PX ® Py, p2 = vn and each € (0,1] we have
INN(t, F,py) <D™  i=12

Families satisfying similar conditions to Assumption A are often called VC-clagsEsididean
(Nolan and Pollard, 1987; Pakes and Pollard, 1989), while classefutfithtAssumption B are
known as satisfying the uniform entropy condition (van der Vaart anltinéfe 1996). As we will
see in Section 2.4 more restrictive Assumption A leads to better results.

The first tool that we use is Hoeffding's decomposition (de l1a&Pand Gig, 1999) of dJ-
statisticQn(f) — Qn(f*) that allows to obtain the equality

Q(F) —Q(f) = [Qn(f) = Qn(f*)] = 2P [Q(F) — Q(f") — PWs +PW-] —Un(ht —hy-),

where

PUt(z1) = EWi(Z1,2)|Z=1z],

PO = 30
Un(hf —hg) = n(nl_l) ; [ht(Z,Z)) —he(Zi,Z5)]
17]

hi(z1,22) = Wi(z1,22) —PUr(z2) — P () +Q(F).

Therefore, Hoeffding’s decomposition breaks a difference betwddrstatisticQn(f) — Qn(f*)

and its expectation into the sum of iid random variables and a degehkssttisticU,(hs — hg+).

The degeneration of d-statistic means that the conditional expectation of its kernel is the zero-
function, that is,E [ht(Z1,2Z2) — h+(Z1,2Z2) | Z1 = z3) = O for eachz; € X x R. In what follows,

we will separately look for probabilistic inequalities of the appropriate ofolethe empirical and
degenerate term.

2.1 Empirical Term

The empirical process theory is the basis for our consideration cangdire first component in
Hoeffding’s decomposition of) -statistics. To get better rates in this case one has to be able to
uniformly bound second moments of functions from an adequate classibgxpectations. This

fact combined with some consequence of Talagrand’s inequality (Talgi@94) was the key to
obtain fast rates in the classification theory. In this subsection we wantpty #ps method to
ranking. First, we need a few preliminaries: lgtbe a class of real functions that is uniformly
bounded by a consta@ > 0. Moreover, let us introduce an additional sequence of iid random
variableses, . .., g, (the Rademacher sequence). Varialgl&stake values 1 or-1 with probability

% and are independent of the sample. .., Z,. Having the Rademacher sequence let us denote

n

Ra(G) = SUIO% & 9(Z),
geg NiE
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and call an expressioBR,(G) the Rademacher average of the clgssThe expectation in the
Rademacher average is taken with respect to both saiiples, Z, andey, ..., €.

Besides, we should also introduce so called sub-root functions, wteatoanegative and non-
decreasing functiong : [0,0) — [0,) such that for eaclh > 0 the functionr — @(r)//r is
non-increasing. They have a lot of useful properties, for examplearecontinuous and have the
unique positive fixed point* (the positive solution of the equatiapir) = r). Proofs of these facts
can be easily found in the literature (Bartlett et al., 2005). Finally, let the clas

G'={ag:ge G,ac[0,1]}

denote a star-hull off andPg=Eg(Z;). Now we can state the aforementioned theorem for empir-
ical processes which can be also found in Massart (2000) and Bettdtt(2005).

Theorem 1 Let the classg be such that for some constantB0 and every g= G we have P§ <
B Pg Moreover, if there exists a sub-root functipmwvith the fixed pointt, which satisfies

®r) >BERy(ge 6" : PE <)
for each r> r*, then for every K> 1 anda € (0,1)

P (vgeg Pg< Kri 1P h(9) +6§Kr +[22G + 5BK] (1n/a)> >1-a
The proof of this theorem is based on Talagrand’s inequality applied peedyorescaled clasg
and can be found in Bartlett et al. (2005). Theorem 1 says that to tiet beunds for the empirical
term one needs to study properties of the fixed pdimtf a sub-rootp. However, it gives no general
method for choosing, but it suggests to relate it 8R,(g € G*:Pg? < r). We will follow this
suggestion, similar reasoning was carried out in Bartlett et al. (2005()theron et al. (2005). Of
course, for everyl the function

r—ERy(ge G PF <r)

is nonnegative and non-decreasing. Replacing a ¢fasy its star-hull is needed to prove the last
property from the definition of the sub-root function.

Using Theorem 1 we can state the following fact concerning the empiricaliteHoeffding’s
decomposition. The modulus of convexity of a functipthat appears in this theorem is described
in the next subsection.

Theorem 2 Let the family of ranking ruleg satisfy Assumption A and be convex. Moreover, if the
modulus of convexity of a loss functigrfulfills on the interval—A;,A;] the conditiond(t) > CtP
for some constants € 0 and p< 2, then for everya €(0,1) and K> 1

K Inn+In(1/a)
* - - 7 > _
K_1 Ph(PYt — PPs+) +CiVy N >1—aq,
where the constant{@epends on K

If the family # satisfies Assumption B instead of Assumption A, then for ever(®, 1) and
K > 1 with probability at leastl — a

P(vfef Q) - Q) <

Vier Q(f)—Q(f") < K‘ilpn(PllJf _Pl.IJf*)+C2maX<m 1> +c3|n(1n/a)

n’nf

where$ < B = 54 < 1. Constants g Cs depend on K

1377



REJCHEL

Remark 3 Although the constants,GCy, C3 can be recovered from the proofs we do not write their
explicit formulas, because our task is to prove bounds with better ratessthahich decrease fast
with n— co. For the same reason we do not attempt to optimize3z and G.

Proof Consider the family of functions

PYs — Py = {PYs —Pyys: f e F}.

A loss functiony is convex so it is locally Lipschitz with constahfy,. Since # is uniformly
bounded, the® i+ — Py is also uniformly bounded bylZ,A;. Moreover, we show in the next
subsection that iff is convex and the modulus of convexity gfsatisfies the assumption given in
Theorem 2, then one can prove that for some con&amd every functiorf € F

E [PWs(Z1) — PWs-(Z1)]* < BIQ() —Q(f)]. (5)

The precise value of the constdbtis given in Lemma 5 in Section 2.2. Therefore, the relation
that is demanded in Theorem 1 between second moments and expectationstioint from the
considered class holds. Applying this theorem to the class of func&om{ szfl_;':\lff* fe T}
and the sub-root function

00r) = g ERIGE G PE <)

we get the following probabilistic inequality

K P, (Pl.|Jf — Pl.',lf*) +Cir* —I—sz(:Lm) >1-a
K-1 n
Constant€;,C, and others that appear in this proof may change from line to line. To finigirtioé
of the first part of the theorem we have to bound the fixed point of thecotap by '”T” . Described
method is similar to consideration contained in Mendelson (2003) or Bartldit(0a5).

First we need two additional notations:

Gr={9€ G :PF<r}

P<vfef QH-Q(f) <

for somer > 0 and

= sup g %(Z).
gEGr

Using Chaining Lemma for empirical processes (Pollard, 1984) we obtain

E Ra( Gr S = \/ InN(t’Gr*van)dtv (6)
PRy (01, G2) = \/ % _Zl[gl(zi) —02(Z)]?.

Notice thatN (t, G, pr,) < N(t,G*,pr,) < N(t/2,G.pr,) [] since from a cover of a family;
with radiust /2 and a cover of the intervdl, 1] with radiust/2 one can easily construct a cover of
a family G*. Besides, it is not difficult to show that

where

t
N(t,PllJ:r,ppn) <N (tawfapPGQF’n) <N <Lwa.(]:apPX®Pﬁ() )
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since the first inequality follows from Nolan and Pollard (1987, Lemma 2@)aprove the second
one we use the fact thais locally Lipschitz. Thus, Assumption A and above properties of covering
numbers imply that for some positive constaitandC,

C
InN (t, gr*,ppn) <C\1In T

So the right side of (6) can be bounded tby\/znlJEfo\/g/4 In% dt. Using Mendelson (2003,
Lemma 3.8) and Jensen’s inequality we obtain

Vi (V&4 [ C \/VT C

Furthermore, applying Talagrand (1994, Corollary 3.4) to the fagilyve have

EE < 8ERy(G)+.

Summarizing we have just shown that

ERa(Gr) gcl\/?/SERn(g:)H ,/m%

which for the fixed point* implies

and now it is easy to get that < cvl'”T” .
In the second part of the theorem we use less restrictive AssumptionaBoRiag is the same
as in the previous case, we need only to notice that

C C
INN(t, G*,pp,) <C [InN(t, F,Pprepx) +In tl] <C [tvl +In tl} .

Therefore, the right side of (6) can be bounded by

C . (V¥ - C \/5/4\/Tl
ﬁE/o WdtJrﬁE/o Iant. (7)

The second component in (7) has been just considered, so we fotius first one. Notice that it is
equal to\% E&Y2-\1/4 Again, using Jensen’s inequality and Talagrand (1994, Corollary 3id) it
less than

£ * /2_ 1/
Jr [BER(Gr) 42w
which implies that
c 1V C
ERn(gr*) < % (BERn(gr*){-r)z 4 +\/(8ERn(§r*)+r)lnr1] ' (8)
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For the fixed point* the inequality (8) takes the form

C 1V C
r<-— (r*)TTlJm/r*In—l ,
v/n r
o)
Inn 1
r*<Cmax| —,—
n nZvi
2 2 H
ands < v, < 1,since O<Vy < 1. |

2.2 On the Inequality (5)

Theorem 2 in the previous subsection shows that better rates can be dlitaiaare able to bound
second moments of functions from the fanfly + — Py¢- by their expectations. In this subsection
we indicate conditions that are sufficient for even stronger relationshipely

E [Wt(Z1,Z2) — Wt-(Z1,Z2)])? < BIQ() — Q(f*)). 9)

The key object in further analysis is the modulus of convexity of the yosbhis function was
very helpful in proving similar relation in the classification theory (Mendel2®02; Bartlett et al.,
2006). With minor changes we will use it in our studies.

Definition 4 The modulus of convexity gfis the functiond : [0, ) — [0, ] defined as

5(t):inf{w—w<xl+xz) X1 — | Zt} .

2 2

We illustrate this object with a few examples: for the quadratic funafior = x*> we obtaind(t) =
t2/4, the modulus of convexity of the exponential function defined on the int¢rala) is equal
to d(t) = #;a) 4 0(t?), whereas for(x) = max0, 1 — x] we haved(t) = 0.

If the class¥ is convex, then the risQ : ¥ — R is the convex functional. It allows to consider
the modulus of convexity aD, that is given by

3(t) :inf{w—q<f1;f2> cd(fy, fo) Zt} :

whered is thel.?-pseudometric orF , that is,

d(f1, T2) = \/E[F1(Xe. Xe) — fo(Xa, Xo)2.

The important property of the modulus of convexity is the fact that it carftea tower bounded by

CtP for someC, p > 0. This relation is satisfied for many interesting convex functions, for instance
e, log,(14 e ) or [max0,1—x)]? (the last case needs minor changes in consideration). This
property implies the similar one for the modulus of convexity of the functi@hathich is sufficient

to prove the relationship (9) between second moments and expectationstidfis from the family

Yg — Ys-. The following lemma, which is based on Bartlett et al. (2006, Lemma 7 and Lemma 8)
can be stated:
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Lemma 5 If the family # is convex and there exist constantspC> O such that the modulus of
convexity of) satisfies

3(t) > CtP, (10)
then .
E [@5(Z1,Z2) — W+ (Z1, Z2)]? < LEDp[Q(F) — Q(f)MN(2/P) (11)
where
5 _{ (20)2° i px2,
P7 2t-PAl Pt if p<2

Proof Using Lipschitz property oy we can obtain

E[W(Z1,2Z2) — W+ (Z1, 22))?
< LGE[sign(Ys —Y2) f (X1, X2) — sign(Y1 — Y2) *(Xz, X2)]?

= LGo2(f, ). (12)

The second step of the proof is based on showing that if the modusasisfies (10), then the
modulusd also fulfills a similar condition. Namely, Idt, f, € F satisfyd(f,g) >t. Then from the
definition of the modulus of convexiyand (10)

Q(f) +Q(f2) ( f1+ fz) _E [UJfl(Zl,Zz) +Wr,(Z1,22)

5 5 5 - UJ@(Zl,Zz)

> E 6(|sigr‘(Y1 — Yz) f]_()(]_7 Xz) — sign(Yl —Yz) fg(Xl, Xz) |)
= EJ3(|f1(Xy,X2) — fa(X1,X2)|) > CE | f1(Xq, X2) — f2(X1,X2)|P.

Easy calculation (see Bartlett et al., 2006, the proof of Lemma 8) indicatetenmodulus fulfills
3(t) > Cpt™H2P) (13)
whereCp = C for p> 2 andC, = C(2A1)" 2, otherwise. Moreover, from the definition of the

modulusd and the fact that* is the minimizer ofQ(f) in the convex clasg we have

AN+, Q<f+2f*> +8(d(f. %)) > Q(F) +8(d(, 7).

Combining this fact with the inequality (12) and the property (13) of the modbilue get

VE Wi (Z1,22) — Yt (Za, Zz)]2>
Ly

Q(f) —Q(f") > 25(

> 2C, (\/E (Wi (Z1,2Z) — lIJf*(Zl,Zz)F) e

Ly
which is equivalent to the inequality (11). |

Thus, for convex functions that were mentioned before Lemma 5 we obtaie imequality
(11) the exponent equal tg hecause their modulus of convexity can be easily bounded from below
with p = 2. However, if p > 2, then the exponent belongs to the inter/@l1), but we can still
bound the considered empirical process by an expression of thelmwter than% (Mendelson,
2002; Bartlett et al., 2006). Of course, we get better bounds if thenexypas closer to 1
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2.3 Degenerate Component

In this subsection we obtain exponential inequalities for degenergimcesses. We bound the
second term in Hoeffding’s decomposition ﬁyhat is sufficient to get better rates for the excess
risk of ranking estimators. Let us recall that considered object hasllog/iing form

{Un(hf —hs) = I”l(nl—l) ; [hf(Zi,Zj)—hf*(Zi,Zj)] fe f}, (14)
iZ)

where
ht(z1,22) = Wt (z1,22) — PWt(z1) — PWt(z2) + Q(F).

Moreover, kernels of the-process (14) are symmetric, uniformly bounded and degenerate.
Similar problems were also considered in Arcones an@@if894); de la Fiea and Gig (1999),
Major (2006) and Adamczak (2007).

Theorem 6 If a family of ranking rulesf satisfies Assumption A, then for everg (0, 1)

In(Cy/a
P( Vier |Un(hs —hs) <C1max(V1,V2)(§/)> >1-a

for some constants;(0C, > 0.
If a family of ranking rules? satisfies Assumption B, then for everg (0,1)

< Cs In(C4/0() >1—q
- 1—max(V1,V2) n -

for some constants{3C4 > 0.
Remark 7 In Assumption B we restrict tg W, < 1, whereas in the empirical process theory these
exponents usually belong t0,2). This restriction is needed to prove Theorem 6, namely to calcu-

late the integral (19) in the proof of this theorem.

Proof Our aim is to bound the expression

Eexp()\\/sum(nl)un(hf —hs+) ) (15)
feF

for everyA > 0. Combining it with Markov’s inequality finishes the proof.
Introduce the Rademacher sequesge. ., €, and the symmetrizeld -process defined as

S (hf —hg) = n(nl_l);siej[hf(zi,zj) —hi(Z,Zj)].
i7]

Using Symmetrization fod -processes (de la Re and Gik, 1999) we can bound (15) by

CE exp (Cl)\\/fsuy(n— 1)S, (hs —h¢) ) . (16)
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Constant€y,C, that appear in this proof may differ from line to line. If we X, ..., Z,, then we
work with the Rademacher chaos process whose properties are wedldstBg Arcones and Gin
(1994, Formula 3.4 and 3.5) andlder’s inequality we bound (16) by

G exp (Cl)\ZEs sup|(n—1)S, (hs — h+) ]) ,
feF

wherelE; is conditional expectation with respect to the Rademacher sequenceistotfia proof
we study the expressidie sup;. # |(n—1)S, (hs —h¢<) |. This step relies on Chaining Lemma for
U-processes (Nolan and Pollard, 1987, Lemma 5), similar reasoning danrin Arcones and

Giné (1993) and Sherman (1993). For convenience let us dénoeté- by h. Furthermore, for
fixedZ,,...,Z, consider a stochastic process

{Jn(h):Eln;sisjh(zi,zj):he}[}, a7
iZ]

wherekE is the uniform bound on elements #f. Define a pseudometrgon H = {h; —h¢-: f €
F}as

1 1 2
p(hy,hz) = E\/n(n—l) % (h(Zi,Z)) — he(Zi,Z5)]°
The process (17) satisfies assumptions of Chaining Lemnt&-foncesses with the functigpix) =
exp(% — 1), wherek is some positive constant. Indegd(h, — hy) is the Rademacher chaos of the
order two, so from de la P& and Gig (1999, Corollary 3.2.6) there exists> 0 such that

Ee exp [n(ha — )| <e
K\/Es[\]n(hl—hz)]z
Moreover, it is easy to calculate thae|[J,(hy — h2)]? < p?(hg,hy), which implies that

IEgp(%}g)') < 1. Therefore, we obtain the inequality

1/4
E, sup|(n— 1)S, (ht — hr-) | gcl/ INN (t, 7, p) dt. (18)
feF 0

Besides, the covering number of the family + #5 = {h1 +hy : hy € #Hy, hy € H} clearly satisfies
the inequality
N(2t, H1 + Ho,p) < N(t, H1,p) N(t, H2, p).

If the family ¥ fulfills Assumption A, then similarly to the proof of Theorem 2 we have
N(t,PYs,pp,) < Cit™V2 andN(t, s, p) < Cot~V2. Therefore, for some constar@sC; > 0

N(t, #,p) < CtCLmaxViVo)

and the right-hand side of (18) is bounded (for some cons@is C, > 0) by
1/4 C
C]_ max(Vl,V2) / In ? dt < Cz max(Vl,Vg).
0
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If the family satisfies Assumption B, then the right-hand side of (18) is baliffde some constants
C,C1>0) by

C / 1/4t—max(VlvV2) dt<— L (19)
0 —1- max(Vl,Vz) '

Summarizing we obtain for evedy> 0

E exp <)\\/sup|(n— 1)Un (hf — hy+)

> < Coexp(C1A?)
feF

and the form of the consta@ depends on the assumption (A or B) that is satisfied by the family

F . Finally, we take\ = % and use Markov's inequality. [ |

2.4 Main Result and Examples

Our task relied on showing that in ranking, similarly to the classification théloeyconvex excess
risk can be bounded with better rates thi%pwhich were proved in @mencon et al. (2008). By
Hoeffding’s decomposition the effort was divided into the empirical terec(i®ns 2.1 and 2.2) and
the degeneratd-process (Section 2.3). Taking results of these three parts togethanvetate the
main theorem.

Theorem 8 Let the family of ranking ruleg” satisfy Assumption A and be convex. Moreover, if the
modulus of convexity of a functigpfulfills on the interval|—Aq, Aq] the conditiond(t) > CtP for
some constants € 0 and p< 2, then for evernya €(0,1)

Inn+In(Cy/a)
)

P <Q( )~ Q(f*) < Crmax(Va. V) >1-a (20)

for some constants;GC;.
If the family ¥ satisfies Assumption B instead of Assumption A, then for eve(9, 1)

Inn 1 Cq In(Cs/a)
= >1_
n’ nl3> + 1—max(Vy,Vz) n 21l-a

P <Q(fn) —Q(f") < CsmaX<

for some constants{C,,Cs and3 = val € (%, 1) :

Remark 9 The dependence on exponents in the inequality (20) is the same as inébiencon
et al. (2008, Corollary 6), where one considered minimizers of therealrisk with 0— 1 loss and
the familyF with finite Vapnik-Chervonenkis dimension.

Proof Let us slightly modify Hoeffding’s decomposition of thiestatisticQn(f) — Qn(f*), namely
for eachK > 2

(K=2)[Q(f) = Q(f*)] = K[Qn(f) — Qn(f")]
= 2P, {(K=1)[Q(f)—Q(f")] =K (Pt —Pyr-) } =K [Un(ht)—=Un(hy-)].
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Therefore, the first part of Theorem 2, Lemma 5 and Theorem 6 #reient to prove that for every
a € (0,1) andK > 2 with probability at least + o

Vier Q)= Q) € o [Qn(f) ~ Qn(f*)] + CimaxVa, Vo) ['nnmw]

n

for some constant€;,C,. Moreover, for the rulef, that minimizes the empirical convex risk we
haveQn(fn) — Qn(f*) < 0. If the family 7 satisfies Assumption B we use the second thesis of The-
orem 2 and further reasoning is the same. |

Now we give three examples of ranking procedures that we can applyréim 8 to.
Example 1 Consider the familyf containing linear ranking rules
F = {f(x1,%) =07 (xg —X2) : 0,x1,x2 € RY}

In this case our prediction of the ordering between objects depends bypleeplane that the vector
X1 — X2 belongs to. The family is convex. Moreover, the clagsubgraptif) : f € ¥}, where

subgraphif) = {(x¢,x2,t) € X2 xR:0 <t < f(xg,%) or f(x1,x2) <t < 0},

is by Pakes and Pollard (1989, Lemma 2.4 and 2.5) a VC-class of sets, Pakes and Pollard
(1989, Lemma 2.12) implies that the famflysatisfies Assumption A. If we take a "good” function
Y (for example one of functions mentioned in Section 2.2), then we obtain geatoa bounds

for the excess risk of the estimatgrdf the order'”Tn .

Theorem 8 can be also applied to a popular ranking procedure calledtibg’. Here we are
interested in a ranking version of AdaBoost that uses the exponensdlliostion.

Example 2 Let® = {r: X x X — {—1,1}} be a family of "base” ranking rules with finite Vapnik-
Chervonenkis dimension. The output of the algorithm is an element aivaxd -hull ofR , where
T is the number of iterations of the procedure. Namely, it belongs to the family

convr (R) = {f (X1, %) = Jilerj(xl,xz) : éle = A,
wj>0rjeRforj=1,...,T}.
This class is obviously convex. The famRyhas finite VC dimension, so a class
{Ar={(x1,%) 1 r(x1, %) =1} :r € R}
is a VC-class of sets. The subgraph of eagh® has the following form
{(x1,%2) € Ar andt € (0,1)} U {(x1,%2) € A andt € (—1,0)}.

Again using Pakes and Pollard (1989, Lemma 2.5 and 2.12) we obtain tfia®p,) < CtV for
some constants,®@ > 0 and every probability measure p dhx X. Quick calculation shows that

N (t,convr (R ), pu) < Cat TV,

so ¥ satisfies Assumption A. Furthermore, the modulus of convexjtixpt= exp(—Xx) fulfills on the
interval [—Aq, A1 the conditiond(t) > ﬁ;@ . Thus, in this example we also obtain generalization

bounds for the excess convex risk gbfthe order'”Tn .

1385



REJCHEL

The last example is a ranking version of support vector machines.

Example 3 LetK: X2 x X2 — R be a kernel that is symmetric, continuous and nonnegative definite
function. The last property means that for every natural numbeveatorsxy, ..., X, € X2 and

ay,...,0m€eR
m

> oK (%, Xj) > 0.

i,]=1
One can show (Cucker and Smale, 2002) that for every kernel K thésés the unique Hilbert
space h (called reproducing kernel Hilbert space) of real functions6fithat the inner product
of its elements is defined by Kamely, H is the completion of

spafK(x,-) : xe X?},
and the inner product is defined by

k m

(f1,f2) = Zl ZlaiBjK(fiafj)
i=1j=

for f1() = YK, aiK (%) and () = ¥, BiK(%;.).

Similarly to SVM in the classification theory our task is to linearly separate (wiisipty wide
"margin”) two sets: {(X;,X;):Y; > Y, 1<i#j <n}and{(X,X;):Y<Yj,1<i#j <n}, which can
be solved using Lagrange multipliers. This primary problem is "transgb$®m the X2 ¢ R
to Hk by the functiorx — K(x;-) and by the "kernel trick” we obtain the nonlinear procedure
- comprehensive descriptions are in Cortes and Vapnik (1995), Byi#98), Vapnik (1998) and
Blanchard et al. (2008). Finally, we are to minimize the empirical conigkaf the form

1

Qn(f):m

Zmax[o,l—sigr‘(Yi —Y)) f (X, X))] + Al ]2
i#]

in some ball with radius R in the Hilbert spacg Hhat is
F={feHc:|[f[ <R}
andA > O is a parameter. Consider a Gaussian kernel of the form
K (X, X) = exp(—a?|[x—X1[3),

wherex; X € X2, ||x]|2 = /32, X ando > O is a scale parameter. Using Scovel and Steinwart
(2007, Theorem 3.1) we obtain that for every compacfiset > 1andO<V < 1

InN(t, F,C(x?)) <ct™V (21)

for some constant C dependent oml\& and R The covering number f, 7,C(X?)) denotes the

minimal number of balls with centers in the space of continuous functioms?omith the metric

d(fq, f2) = mag\ f1(x) — f2(X)| needed to covefF. This definition differs from ours given in the
XeX

beginning of Section 2. But Steinwart (2001) proved thatdrresponding to the Gaussian kernel
is dense in €X?), so we can use the property (21) in our studies. Moreover, for everyaility
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measure p o2 we havep,(fi, f2) < d(fy, f2), wherep, is defined by (4). Thus, the famif§

satisfies Assumption B and is convex. The inequality (5) W&hggRiLl)z can be obtained using
almost the same arguments as Scovel and Steinwart (2005, Sectiomlgddfore, we get

P (Q(fn) —Q(f) gclmax('”” L > +c2'“(crf/°‘)) >1-q

n'nB
with 3 <B < 1.

In the paper we consider ranking estimators that minimize the convex empisicalThe natural
guestion is: are these estimators also "good” in the case of the primary l@ss function? Is
there any relation between the excess risk and the convex excesseisk® ihtroduce, similarly to
Clémencon et al. (2008), two notations

P+ (X1, X2) =P(Y1 > Y2 | X1, X2)

and
P— (Xl, Xz) = P(Yl < Y2 ’ Xl, Xz).

It is easy to see that the ranking rule

f_(xl’X2> = 2lp, (x4,00)>p_ (xa30)] — 1

minimizes the risk (1) in the class of all measurable functions. Delnbte L(f). Let Q* be the
minimal value ofQ( f) for every measurable functioris X x X — R. Bartlett et al. (2006) proved
the relation between the excess risks and the convex excess risk féasb#ication theory. How-
ever, Cemencon et al. (2008) noticed that those results can be applied to rafkiey obtained
that for every ranking rulé

y(L(f)-L") <Q(f) Q"
for some invertible functioy that depends ow. Moreover,y can be computed in most interesting
cases, for instancg(x) = 1 — /1 — x2 for P(x) = exp(—Xx).
Divide the difference(f) — Q* into the sum of two terms

[Q(f) = Q(F)] +[Q(f") — Q7. (22)

The first componentin (22), so called "estimation error”, tells us how dluseisk of f is to the risk

of the best element in the clags The second term ("approximation error”) describes how much
we lose using the familyF. In the paper we study the estimation error, however approximation
properties of the familyF are also important problems. For instance they were considered in
Cucker and Smale (2002), Lugosi and Vayatis (2004) and Scovebtaiolvart (2007).

3. Experiments

This section is devoted to results of our experiments on real data set& @rdmsuncion, 2010).
We compare the performance of different SVM’s for ranking problem&ection 2.4 we describe
a general method to obtain such procedures, but one can proposesisopfiication of this idea
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that is useful in practice. Consider linearly separable case which meanthéne exists a vector
8 € RY such that
0% >08'X; for Yi>Yj, 1<i#j<n

Thus, our task is to assign differencgs- X to classes defined by sigf—Y;). We assume that the
distribution of the variabl& is continuous, s®(Y1 = Y2) = 0. Therefore, we can use SVM for the
classification theory to solve ranking problems if we consider differentesservations in place
of observations. Thus, instead of a kerget X2 x X2 — R we can use a kernél : X x X — R if
we take

K((X1,%2), (X3,%4)) = K(Xg — X2,X3 — Xa).

The kernelX is symmetric, continuous and nonnegative definite by the same properties of th
kernelK. Therefore, all calculations done by a procedure are mad® imstead ofR?d. Similar
considerations can be found in Herbrich et al. (2000) and Joachira§)20

To our experiments we use "el1071” package in "R” (R Development Ceaen, 2009; Dimi-
triadou et al., 2010). We choose three types of kernels:

a) linear K (xq,X2) =< Xg,%X2 >pd,

3

b) polynomial K (x1,X2) =< X1, X2 >pds

c) Gaussian K (x1,Xz) = exp(—3||x1 — X2 |]2Rd)

and two values of the parameter 1 and%). Less value o\ corresponds to the case when the
algorithm should be more adjusted to the sample. Greater valhibad an effect in wider margin.

We divide every considered data sets into two subsets. The first oredisiss learning sample
and we determine an estimator on it. On the second subset we test the estinaaier, ke take
two objects and check if the ordering indicated by the estimator is the same asdlmné. We
repeat the experiment for every data set thirty times and average poogasf wrong decisions are
presented in tables below. We denote SVM with the linear kernel and thengsma equal to 1
andl—l0 by L(1) and L(10), respectively. Similarly, W(1) and W(10) stand fotymomial kernels,
and G(1) and G(10) for Gaussian kernels.

The first data set concerns experiments that the concrete comprsissivgth was measured
(Yeh, 1998). There are more than 1000 observations, 9 featuremsalered such that the age
of material, contents of water, cement and other ingredients, and finallyotieeate compressive
strength. In Table 1 we compare errors in predicting the ordering betwgects by six algorithms.
Notice that in both cases (a learning sample with 100 and 300 elements) SVMavittsian kernels

Error | L(1) | L(10) | W(1) | W(10) | G(1) | G(10)
n=100| 0,198 0,196 | 0,199| 0,196 | 0,179] 0,185
n=300| 0,191 0,189| - - | 0,165] 0,179

Table 1: Concrete compressive strength

have least errors, and among them G(1) is better. Proportions of wemigjons of remaining four
algorithms are similar. Besides, for linear and polynomial kernels gregiestatent to the sample
has an effect in slightly better effectiveness, contrary to G(1) and)a(The mark -” in the
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table means that the algorithm did not calculate an estimate for 100 minutes. Quoripathree
following data sets it usually happens for polynomial SVM an@®00. Such numerical problems
occur, since the number of pairs of instances, that algorithms work wittedses with the square
of the sample size. It makes these procedures inefficient for larg&ome improvements can be
found in Joachims (2006).

In the second data set values of houses in the area of Boston are edr{fpaank and Asuncion,
2010). Thirteen features were measured, for instance the crime ratgisthrce to five Boston
employment centres or pupil-teacher ratio by town. Our results are codtaiff@ble 2. We notice

Error | L(1) | L(10) | W(1) | W(10) | G(1) | G(10)
n=100]| 0,153 0,157 0,148 0,153 | 0,133| 0,132
n=300| 0,132 0,133| - - [0,107] 0,123

Table 2: Boston housing data

an improvement of every procedure in recognizing the ordering. Agéin &d G(10) have least
errors. In this case estimators obtained for greater value of the paran@ecept for G(1)) are
better.

Last two experiments are carried out on data sets concerning the quakdg ahd white wine
(Cortez et al., 2009). In both cases one measured 11 features sttttethantent of alcohol, citric
acid, the density and pH. The quality of a wine was determined by wine exptesults in Table

Red | L(1) | L(20) | W(2) | W(10) | G(1) | G(10)
n=100| 0,226 | 0,227 | 0,281| 0,271 | 0,257 | 0,285
n=300| 0,214 | 0,216 - - 0,232 0,270
White

n=100| 0,265 | 0,266 | 0,292 - 0,282 | 0,305
n=300| 0,253 | 0,249 - - 0,268 | 0,303

Table 3: Wine quality

3 indicate lower efficiency of procedures than in previous examplestelgorine as well as white
one we can notice the advantage of SVM with linear kernels, whose emengery similar. The
worst algorithm is G(10) which in previous experiments has one of the éeast
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