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Abstract

With the advent of crowdsourcing services it has becomesquiitap and reasonably effective to
get a data set labeled by multiple annotators in a short ahaduime. Various methods have been
proposed to estimate the consensus labels by correctinfpddnias of annotators with different
kinds of expertise. Since we do not have control over theityuaf the annotators, very often
the annotations can be dominated by spammers, defined asemaavho assign labels randomly
without actually looking at the instance. Spammers can ntla&ecost of acquiring labels very
expensive and can potentially degrade the quality of the fioasensus labels. In this paper we
propose an empirical Bayesian algorithm called SpEM tleaaitvely eliminates the spammers and
estimates the consensus labels based only on the good @maofhe algorithm is motivated by
defining a spammer score that can be used to rank the anrsot&qoeriments on simulated and
real data show that the proposed approach is better thars @uad as) the earlier approaches in
terms of the accuracy and uses a significantly smaller nuoftsrnotators.

Keywords: crowdsourcing, multiple annotators, ranking annotatspammers

1. Introduction

Annotating a data set is one of the major bottlenecks in using supervisethpéorbuild good
predictive models. Getting a data set labeled by experts can be expansiteme consuming.
With the advent of crowdsourcing services (Amazon’s MechanicatToeing a prime example)
it has become quite easy and inexpensive to acquire labels from a larggenof annotators in
a short amount of time (see Sheng et al. 2008, Snow et al. 2008, aokirsand Forsyth 2008
for some natural language processing and computer vision case stuB@sgxample in AMT
therequestersare able to pose tasks known as HITs (Human Intelligence Tasks). Wddadled
providerg can then browse among existing tasks and complete them for a small moretargm
set by the requester.

A major drawback of most crowdsourcing services is that we do not¢t@vieol over the qual-
ity of the annotators. The annotators usually come from a diverse pdoting genuine experts,
novices, biased annotators, malicious annotators, and spammers. Herderito get good quality
labels requestors typically get each instance labeled by multiple annotatotisesedmultiple an-
notations are then consolidated either using a simple majority voting or more sagtiedticethods

1. Amazon’s Mechanical Turk can be founchat ps: // ww. nt ur k. com
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that model and correct for the annotator biases (Dawid and Sker@, 38%th et al., 1995; Raykar
etal., 2009, 2010; Yan et al., 2010) and/or task complexity (Carpet@8; 2Vhitehill et al., 2009;
Welinder et al., 2010).

In this paper we are interested in the situation where the annotations are tkahtiyapam-
mers In our context a spammer is a low quality annotator who assigns randofs (ghaybe
because the annotator does not understand the labeling criteria, déesknat the instances when
labeling, or maybe a bot pretending to be a human annotator). Spammeirgrificastly increase
the costof acquiring annotations (since they need to be paid) and at the samedorease the ac-
curacyof the final consensus labels. A mechanism to detect and eliminate spammeesisale
feature for any crowdsourcing market place. For example one camginetary bonuses to good
annotators and deny payments to spammers. This paper makes two ndxibLitions?

1. Spammer score to rank annotators The first contribution of this paper is to formalize the
notion of a spammer for binary and categorical labels. More specificallglefiae ascalar
metric which can be used tank the annotatorswith the spammers having a score close
to zero and the good annotators having a score close to one. We summaripeiltiple
parameters corresponding to each annotator into a single score indifdtor® spammer like
the annotator is. While this metric was implicit for binary labels in earlier worksvBand
Skene, 1979; Smyth et al., 1995; Carpenter, 2008; Raykar et al.; P@@d®nez et al., 2009)
the extension to categorical labels is novel and is quite different for te te computed
from the confusion rate matrix. An attempt to quantify the quality of the workased on
the confusion matrix was recently made by Ipeirotis et al. (2010) wheretthagformed
the observed labels into posterior soft labels based on the estimatedionmfiarix. While
we obtain somewhat similar annotator rankings, we differ from this work indbascore
is directly defined in terms of the annotator parameters. Having the sconedlefly in
terms of the annotator parameters makes it easy to specify a prior foriBaygproaches to
eliminate spammers and consolidate annotations.

2. Algorithm to eliminate spammers The second contribution is that we propose an algorithm to
consolidate annotations that eliminates spammers automatically. One of the comsexhly u
strategy is to inject some items into the annotatiaith known labelggold standard) and
use them to evaluate the annotators and thus eliminate the spafmmgially we would
like to detect the spammers with as few instances as possible and eliminate thefurtreer
annotations. In this work we propose an algorithm called SpEM that eliminaepdmmers
without using any gold standam@hd estimates the consensus ground truth based only on the
good annotators. The same algorithm can also be used if some labels doecaiso

We build on the earlier works of Dawid and Skene (1979), Smyth et al5)12&d Raykar
et al. (2009, 2010) who proposed algorithms that correct for thetatordiases by estimat-
ing the annotator accuracy and the actual true label jointly. A simple strategidwe to
use these algorithms to estimate the annotator parameters, detect and eliminaaentne s
(as defined by our proposed spammer score) and refit the model withhendyood annota-
tors. However this approach is not a principled approach and mightrdettnaontrol (for
example, how to define spammers and how many to remove, etc). The algorghprow
pose is essentially a formalization of this strategy. Our final algorithm eskgmtpeats

2. A preliminary version of this paper (Raykar and Yu, 2011) mainlyutised the score to rank annotators.
3. This is the strategy used by CrowdFlowkirt(p: / / cr owdf | ower . com docs/ gol d).
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this, ititeratively eliminates the spammers and re-estimates the labels based only on the good
annotators. A crucial element of our proposed algorithm is that we elimipat@araers by
thresholding on a hyperparameter of the prior (automatically estimated frodatagrather

than directly thresholding on the estimated spammer score.

The rest of the paper is organized as follows. In Section 2 we model thaators in terms of
the sensitivity and specificity for binary labels and extend it to categoribalda Based on this
model the notion of a spammer is formalized in Section 3. In Section 4 we pr@pBsgesian
point estimate by using a prior (Section 4.2) derived from the proposedmser score designed to
favor spammer detection. This is essentially a modification of the ExpectatioimiZzation (EM)
algorithm proposed by Dawid and Skene (1979), Smyth et al. (1998 Rapkar et al. (2009, 2010).
The hyperparameters of this prior are estimated via an empirical Bayesiaondnati$ection 5
leading to the proposed SpEM algorithm (Algorithm 1) that iteratively eliminatessgammers
and re-estimates the ground truth based only on the good annotatorsctiomSEewe discuss this
algorithm in context of other methods and also propose a few extensioS&ction 7 we extend
the same ideas to categorical labels. In Section 8 we extensively validadég@puach using both
simulated data and real data collected using AMT and other sources frimredifdomains.

2. Annotator Model

An annotator provides a noisy version of the true label.yet {0,1} be the label assigned to the
i instance by the!" annotator, and let; be the actual (unobserved) label. Following the approach
of Raykar et al. (2009, 2010) we model the accuracy of the annotparately on the positive and
the negative examples. If the true label is one sthesitivity(true positive rate) for th¢!" annotator

is defined as the probability that the annotator labels it as one.

al :=Priy! = 1)y, = 1].

On the other hand, if the true label is zero, #peecificity(1—false positive rate) is defined as the
probability that the annotator labels it as zero.

Bl :=Pry! = 0ly; = 0.

With this model we have implicitly assumed that andp! do not depend on the instance. Ex-
tensions of this basic model have been proposed to include item level li§ff{@arpenter, 2008;
Whitehill et al., 2009) and also to explicitly model the annotator performansedan the instance
feature vector (Yan et al., 2010). In principle the proposed algorithmbeaextended to these
kind of complicated models (with more parameters), however for simplicity wéhedgasic model
proposed in Raykar et al. (2009, 2010) in our formulation.

The same model can be extended to categorical labels. Suppose th@re areategories. We
introduce a multinomial parametef = (al;,...,al.) for each annotator, where

0

aik = Pr[yij =kly; =], aik =1
k=1

The termaik denotes the probability that annotafoassigns clask to an instance given the true
class isc. WhenC = 2, 0(’ll andO((’)O are sensitivity and specificity, respectively.
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3. Who is a Spammer? Score to Rank Annotators

Intuitively, a spammer assigns labels randomiyaybe because the annotator does not understand
the labeling criteria, does not look at the instances when labeling, or maydtepeetending to be a
human annotator. More precisely an annotator is a spammer if the probabitibsefved Iab<—:{yriJ

being one given the true labglis independent of the true label, that is,

Priy! = 1lyi] = Priy! = 1]. @)

This means that the annotator is assigning labels randomly by flipping a coin iijhP[yij =1]
without actually looking at the data. Equivalently (1) can be written as

Pyl =1y =1 = Pry/ =1y, =0],
al = 1-pl. 2)

Hence in the context of the annotator model defined in Section 2, a spamnmeaisatator for
whom

al+pl-1=0.
This corresponds to the diagonal line on the Receiver Operating Gbdstic (ROC) plot (see
Figure 1)* If al + Bl —1 < 0 then the annotator lies below the diagonal line and is a malicious
annotator who flips the labels. Note that a malicious annotator has discrimimpetagyr if we can
detect them and flip their labels. In fact the methods proposed in Dawid kee§1979) and
Raykar et al. (2010) can automatically flip the labels for the malicious annstdience we define
the spammer score for an annotator as

S =(al+pl—1)2 (3)

An annotator is a spammer ! is close to zero. Good annotators hasie> 0 while a perfect
annotator has! = 1.

Another interpretation of a spammer can be seen from the log odds. Usyes'Bale the
posterior log-odds can be written as

Priyi = 1iy/] _

Iy =
1 Pr[y.jly. U og P
Prly; = Oly;] Prly; lyi = 0] 1-p
wherep := Prly; = 1] is the prevalence of the positive class. If an annotator is a spammer (that is
(2) holds) then

log

Pry; = 1]/
og - Iy.j] —log P
Priyi = 0ly,] 1-p
Essentially the annotator provides no information in updating the posteriamddg-and hence does
not contribute to the estimation of the actual true label.

4. Note that(aj +pl )/2 is equal to the area shown in the plot and can be considered as anaomepiac approximation
to the area under the ROC curve (AUC) based on one observed(poir[}i,aj). It is also equal to the Balanced
Classification Rate (BCR). So a spammer can also be defined as havitgB8JC equal to 0.5. Another way to
think about this is that instead of using sensitivity and specificity we carar@npeterize an annotator in terms of
an accuracy paramete(lu(j + Bj) /2) and a bias paramete(rt;t(j —Bl )/2). A spammer is an annotator with accuracy
equal to 0.5. The biasedi{— B/ is large) or malicious annotatora(+ B! < 1) (see Figure 1) are also sometimes
called the spammers since they can potentially degrade the consendsishabe this paper we do not focus on

them, since their annotations can be calibrated or reversed by the ENtlaigor
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Figure 1: For binary labels each annotator is modeled by his/her sensitidtypecificity. A spam-
mer lies on the diagonal line (that ! = 1 — ') on this ROC plot.

3.1 Accuracy

This notion of a spammer is quite different from that of #eeuracyof an annotator. An annotator
with high accuracy is a good annotator but one with low accuracy is nessadly a spammer. The
accuracy of thg'" annotator is computed as

Accuracy = Pry! = yi] = ipr[yij = 1)y =kPry; =K = a/p+Bi(1-p), 4)
K=

wherep := Prly; = 1] is the prevalence of the positive class. Note that accuracy dependswvaa p
lence. Our proposed spammer score does not depend on prevahehessantially quantifies the
annotator’s inherent discriminatory power. Figure 2(a) shows the aoad equal accuracy on the
ROC plot. Note that annotators below the diagonal line (malicious annotaews)léw accuracy.
The malicious annotators flip their labels and as such are not spammers ihwleteat them and
then correct for the flipping. In fact the EM algorithms (Dawid and Skd®&9; Raykar et al.,
2010) can correctly flip the labels for the malicious annotators and hengehbald not be treated
as spammers. Figure 2(b) also shows the contours of equal scongr foroposed score and it can
be seen that the malicious annotators have a high score and only annal@aigréhe diagonal have
a low score (spammers).

3.2 Categorical Labels

We now extend the notion of spammers to categorial labels. As earlier a spassigns labels
randomly, that is, _ _
Prly! = kJyi] = Prly! = K], Vk.
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Figure 2: (a) Contours of equal accuracy (4) and (b) equal sparseoee (3).

This is equivalent to F[’yij =Kklyi=c|= Pr[yij =kly; =c/],vc,c,k=1,...,C, which means knowing
the true class label beingor ¢’ does not change the probability of the annotator’s assigned label.
This indicates that the annotatpis a spammer if

al =al,. ve d k=1,...C (5)

Let Al be theC x C confusion rate matrix with entrigl\!]x = ek, a spammer would have all
the rows ofAl equal to one another, for example, an annotator with a confusion n#etrix
0.50 025 025
0.50 025 025
0.50 025 025
Al'is arank one matrix of the fori) = ev/, for some column vector; € R that satisfies| e=1,
whereeis column vector of ones. In the binary case we had this natural notioraofreer as an an-
notator for whono! +BJ — 1 was close to zero. One natural way to summarize (5) would be in terms
of the distance (Frobenius norm) of the confusion matrix to the closestramipproximation, that

is,

, IS a spammer for a three class categorical annotation problem. Essentially

Shi=||AT—e0] |, (6)

whereV; solves

0j =arg r1/1in||Aj —ev/|[Z  subjectto v/e=1. 7)
j
Solving (7) yieldsv; = (1/C)ATe, which is the mean of the rows @f. Then from (6) we have

; 1
F c<c’

This is equivalent to subtracting the mean row from each row of the ciomfusatrix and then
summing up the squares of all the entries. So a spammer is an annotator farSthe close to
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zero. A perfect annotator hagd = C — 1. We normalize this score to lie between 0 and 1.
5] — ; Z (GJ —Gj )2
C(C-1) c<c Z o ok

WhenC = 2 this is equivalent to the score proposed earlier for binary labels.

4. Algorithm to Consolidate Multiple Annotations

Using the spammer score proposed in the earlier section to define a pri@sagbd an empirical
Bayesian algorithm to consolidate the multiple annotations and eliminate the spanmetarse-
ously. For ease of exposition we first start with binary labels and latenéxt¢o categorical labels
in Section 7.

4.1 Likelihood

Let N be the number of instances aMi be the number annotators. L&t = {y! ... .yM}N
be the observed annotations from tieannotators, and lgp = Prly; = 1] be the prevalence of
the positive class. Assuming the instances are independent, the likelihooel mmimeterQ =
[al,BL,...,aM BM, p] given the observation® can be factored as PP|6] = [N, Priyt, ..., yM|6].
Under the assumption that the annotation lalygls..,yM are independent given the true lalyel
the log likelihood can be written as

log P{D|6] = leog Pry.ly., 6] - Prly;|0] = Zlog aip+hi(1-p), (8)

where we denote

<

: . M C . j
g = r[yj|y':17aj]: [al}yi [1_(}]]17%7
Hre=tet=il

M
I'LPW. i =0,p'] = I'L[B’]l - pi.
Jf
This log likelihood can be efficiently maximized by the Expectation Maximization (&ggrithm
(Dempster et al., 1977) leading to the iterative algorithm proposed in thereadiks (Dawid and
Skene, 1979; Smyth et al., 1995; Raykar et al., 2010).

4.2 Automatic Spammer Detection Prior

Several authors have proposed a Bayesian approach by imposiiog ampthe parameters (Raykar
et al., 2009; Carpenter, 2008). For example, Raykar et al. (20688)reesl a beta prior for each
al andp! independently. Since we are interested in the situation when the annotatom®sity
dominated by spammers, based on the sgdré3) derived earlier we propose a prior callad-
tomatic Spammer DetectiASD) prior which favors the spammers. Specifically we assign the
following prior to the pair{a’, 3/} with a separate precision parametér- 0 (hyperparameter) for

each annotator: P j )
exp(—)\ (al+pI—1) > )

Prial, BI[AT] = >

N(AT)
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Figure 3: The proposed Automatic Spammer Detection prior (9) for differanes ofA!.

where the normalization teriM is given by (see Appendix A)

N(A) = /ol/olexp<_)‘j(aj+2[3j—l)2) daldp :\/?<\%/om¢(t)dt—1>,

where @ is the Gaussian cumulative distribution function. This prior is effectively adated
Gaussian om! + Bl — 1 with mean zero and variancgX!. Figure 3 illustrates the prior for two
different values of the precision parameter. Whérs large the prior is sharply peaked along the
diagonal corresponding to the spammers on the ROC plot.

We also assume that the ASD priors for each annotator are independansake of com-
pleteness we further assume a beta prior for the prevalence, that i$p[Reta,). DenoteX =
AL, AM py, po], we have

M
Pr(6|A] = Beta(p|py, p2) [ Pria B/[A]. (10)
=1

4.3 Maximum-a-posteriori Estimate Via EM Algorithm

Given the log likelihood (8) and the prior (10), the task is to estimate the pareste
[al,BL,...,aM BM p]. The maximum-a-posteriori (MAP) estimator is found by maximizing the
log-posterior, that is,

Ouap = arg max{In PriD|6)] +InPrig]}.

An EM algorithm can be derived for MAP estimation by relying on the interpietaof Neal and
Hinton (1998) which is an efficient iterative procedure to compute the salitipresence of miss-
ing/hidden data. We will use the unknown hidden true lapet [y1,...,yn] as the missing data.
The complete data log-likelihood can be written as

N
0gPID.410] = 5 [yi logpa + (1—y)log(1— )by .
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Each iteration of the EM algorithm consists of two steps: an Expectationép)-and a
Maximization(M)-step. The M-step involves maximization of a lower bound ordbeposterior
that is refined in each iteration by the E-step.

E-step: Given the observatio and the current estimate of the model parameetke con-
ditional expectation (which is a lower bound on the true likelihood) is compiged a

N
E{IogPD.4/6]} - 3 |ulogpa +(1-)log(L—ph .

where the expectation is with respect to0, 8], andy = Pry; = 1|y!,...,yM. 0] is the expected
label fory; conditioned on the observed annotations and the model parameters. dsieg tBeo-
rem we can compute
ap
ap+bi(l1-p)
M-step: Based on the current estimateand the observation®, we can estimate by maxi-
mizing the lower bound on the log posteriffap = argmax Lg, where

W O Pyl 0" lyi = 1,6] - Priy; = 1/6] = (11)

Lo = E{Iog PiD,y|6]} +logP{O|A]

§ [M'nga+ (1— ) log(1— p)bi | +logBetd p|p1, p2)
< N iopl— < [ Al

- + — N(A. 12
§: 2 (al+B §:1 ogN(A?) (12)

Equating the derivative afg with respect tg to zero, we estimatp as

pr— 145N 1 (1)

P= p1+p2—2+N’

The derivative with respect @ andp! can be computed as follows:

0L _ N iyl —alsNip N
aq?_ 10(,(1 o) L2 N(al+pl-1), (14)
aLe ZI ( )(1 y|) BJZ,N: (l—M) . . .

op) pa-p)  MNEHEeD (15)

Equating these derivatives to zero we obtain two cubic equéti_nmslving al andpl, respectively.
We can iteratively solve one cubic equation (for example,oftr by fixing the counterpart (for

5. The pair of cubic equations are given by
S . L . .. N . N ;
)\J(GJ)3+(BJ)\J,2)\1)(0(1)2,()\1,BJAJ,ZH)GJ+(Z\Hy;) = 0
N (B3 + (alN) —2A)(1)2 = (M —alA] — ZM B+ ( Zw. =0
For each equation we retain only the root that lies in the raddgé.
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example,p)) till convergence. Also note that wheri = 0 we get the standard EM algorithm
proposed by Dawid and Skene (1979). These two steps (the E- andpylesn be iterated till
convergence. We use majority votipg= 1/M z?"zlyi’ as the initialization fory to start the EM-
algorithm.

5. Algorithm to Eliminate Spammers

For each annotator we imposed the Automatic Spammer Detection prior of th@fariB! [A1] O
exp(—)\j (al +BI — 1)2/2), parameterized by precision hyperparamaterlf we know the hyper-
parameters\ = [Al,....AM] we can compute the MAP estimate efficiently via the EM algorithm
as described in the previous section. However it is crucial that we usigtite\! for each anno-
tator for two reasons: (1) For the good annotators we want the prec¢esionto be small so that
we do not over penalize the good annotators. (2) We can use the estihatedetect spammers.
Clearly, as the precisio)nj increases, that is, the variance tends to zero, thus concentrating the prio
sharply around the random diagonal line in the ROC plot. Hence, regaraif¢he evidence of the
training data, the posterior will also be sharply concentrated aralind3! = 1, thus that annotator
will not affect the ground truth and hence, it can be effectively rerdovEherefore, the discrete
optimization problem corresponding to spammer detection (should each tmrmancluded or
not?), can be more easily solved via an easier continuous optimization gverpayameters. In
this section we adopt an empirical Bayesian strategy (specificallyyfeell maximum likelihood

to automatically learn the hyperparameters from the data itself. This is in theo$pir@& commonly
used automatic relevance determination (ARD) prior used for featurdiseléy relevance vector
machine (Tipping, 2001) and Gaussian process classification (Rasmarss#Villiams, 2006).

5.1 Evidence Maximization

In type-ll maximum likelihoodpproach, the hyperparamet@rare chosen to maximize the marginal
likelihood (or equivalently the log marginal likelihood), that is,

A =arg rr;‘a>Pr[Q)|A] =arg rr;\aﬂog PD|A],

where the marginal likelihood PP|A] is essentially thesvidencefor A with the parameterg
marginalized or integrated out.

PIDIA] = /9 P{D|6]PHH|A|d6.

Since this integral is analytically intractable we use the Laplace method whiclvéisva second
order Taylor series approximation around the MAP estimate.

5.2 Laplace Approximation

The marginal likelihood can be rewritten as follows[PI\] = [, expW(0)]d6 where
W(0) =logP{D|6] + logPri@|A].

We approximatél using a second order Taylor series around the MAP estiﬁmcte,

N 1 N . N
W(O) ~ Y (Ouap) + 5(9 — Ovar)H (Omap, X) (8 — Ouap)
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whereH is the Hessian matrix. We have made use of the fact that the gradighewvéluated at
the MAP estimat&wuap is zero. Hence we have the following approximation to the log-marginal
likelihood.

~ ~ 1 ~ d
log PDIA] ~ log P{D|6mar] +log Pribumap|A] — 5 logde{—H (Bwap, A)] + 5 log 2r

The hyperparametepsare found by maximizing this approximation to the log marginal likelihood.
We use a simple iterative re-estimation method by setting the first derivativeaodee derivative
can be written as (see Appendix B for more details)

d 1 . = 1 .. 1 .
S4B — 124 3N = Zg(\]
T log P{DIA] ~ 2(0( +B' -1+ 2)\1.6(}\ ) 20()\ )s

where we have defined

V2 erf(,/A1/2)

M) =2= o erf(\/A1/2) + 2exp(—Ni /2) —

(16)

in which erf(x) = (2//T) f3 exp(—t?)dt is the error function, and

d ~
WH(GMAP7A) .

o(A) =Tr |[H Y (Buap, A)
See Appendix B for more details on computatiorogh’). Assumingd! = 3(A!) anda’ = o(A))
does not depend ox!, a simple update rule for the hyperparameters can be written by equating the
first derivative to zeré. _
: j
No—° y (17)
(al+Bi—1)2+0l

One way to think of this is that the penalization is inversely proportionabito+ Ej —1)?, that

is, good annotators get penalized less while the spammers suffer a la@egaton. Figure 4(b)
plots the estimated hyperparam&étfor each annotator as a function of the iteration number for a
simulation setup shown in Figure 4(a). The simulation has 5 good annotatbﬂoasrpammers It
can be seen that as expected for the good annoteltstarts decreasifigvhile for the spammer&;J
starts increasing with iteratiosBy using a suitable pruning threshold we can detect and eliminate
the spammers.

The final algorithm has two levels of iterations (see Algorithm 1): in an outar Wee update the
hyper-parameterﬁj and in an inner loop we find the MAP estimator for sensitivity and specificity
given the hyper-parameters. At each iteration we eliminate all the annotatersdm the estimated
Mis greater than a certain pruning threshold

6. In practice, one can iterate (17) and (16) several times to get bstiteage forA].

7. For numerical stability we do not let the hyper parameter go beloW.10

8. We have different rates of convergence for the good annotatdriha spammers. This is because of our assumption
thatd (16) does not depend on This is almost true for largk and is not a good approximation for small

9. For all our experiments for each annotator we set the pruning ticegh0.1 times the number of instances labeled
by him.
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Figure 4: lllustration of spammer elimination via evidence maximiza@nThe black cross plots
the actual sensitivity and specificity of each annotator. The simulation hastbagmota-
tors and 20 spammers and 500 instances. The red dot plots the sensitivifpeificity
as estimated by the SpEM algorithm. The green squares show the anndiatorated
as spammers. (b) The estimated hyperparamétéor each annotator as a function of
the iteration number. The pruning threshold is also shown on the plot.
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Algorithm 1 SpEM

Require: Annotationg/iJ €{0,1},j=1,...,M,i=1,...,N from M annotators ol instances.
1: Initialize A\l = 1/N, for j =1,..., M.
2: Initialize 4 = {1,...,M} the set of good annotators.
3: Initialize i = 1/M 31, y/ using soft majority voting.
4: repeat {Outer loop with evidence maximizatipn
5. repeat{EM loop}
6: {M-step}
7 Updatep based on (13).
8
9

Updatea!, B! based on (14)-(15)/] € 4.
; {E-steg
10: Estimatey; using (11)vi=1,...,N.
11:  until Change of expected posterior (12);.
12:  {Evidence Maximization}
13: forall j€ 4do

14: Update! based on (17).

15: if Al > T (the pruning thresholdhen
16: A4+ a\{j}

17: end if

18:  end for

19: until Change of expected posterior (1:2)>.

Ensure: Detected spammers in sgt,... . M}\ 4.

Ensure: Non-spammers it with sensitivitya! and specificity3!, for j € 4.
Ensure: Prevalence factop and expected hidden labgl vi =1,...,N.

In all our experiments we set the convergence tolerance e, = 10-3. The pruning threshold was setTo= 0.1N.

6. Discussions

1. Can we use the EM algorithm directly to eliminate spammers? Majority Voting and
EM algorithm do not have a mechanism to explicitly detect spammers. Howevepuld
define an annotator as a spammer if the estimgtéd- Ej — 1| <e. However it is not clear
what is the right to use. Also the spammers influence the estimatioﬁicﬂ’tndﬁj for the
good annotators. A fix to this would be to eliminate the spammers and get an irdprove
estimate of the ground truth. In principle this process could be repeatedrtileagence,
which essentially boils down to a discrete version of our proposed SpEditilign.

2. What is the advantage of different shrinkage for each annotatof? We could have imposed
a common shrinkage prior (that is, saile= A for all annotators) and then estimated dne
as shown earlier. While this is a valid approach, the advantage of our ASbipthat the
amount of shrinkage for each annotator is different and dependswigbod the annotator
is, that is, good annotators suffer less shrinkage while spammers sewte shrinkage.

3. Missing annotationsThe proposed SpEM algorithm can be easily extended to handle missing

annotations (which is more realistic scenario in crowdsourcing marketpldcstdvi; be the
number of annotators labeling tii& instance, and le; be the number of instances labeled
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by the_zjth annotator. Then in the EM loop, we just need to replddey N; for estimatinga!
andp’ in (14) and (15), and repladé by M; for updatingy; in (11).

4. Training a classifier directly The proposed algorithm can be readily extended to learn a
classifier along with the ground truth (Raykar et al., 2009). Let instarieave features
x; € RY, and define the classification problem as learning RY such that Ay = 1|z, w] =
pi = f(w'a;), with f a mapping function (for example, logistic function). To leanin
SpEM we just need to replace (13) with a Newton-Raphson step to updated replace
with pj in (11).

5. Partially known gold standard If the actual ground truth is available for some instances,
SpEM can readily incorporate them into the learning loop. The only chaegeeed to make
is to estimatqy in (11) only for the instances for which the ground truth is not available,
and fix; =y; if the ground truthy; is available. Therefore, the gold standard instances and
unlabeled instances will be used together to estimate the sensitivity and styeoffieach
annotator (and also to estimate the labels).

7. Extension to Categorical Annotations

We now extend the proposed algorithm to handle categorical annotatiosgngle solution for
categorical outcomes is to use a one-against-all strategy and run thg SplaM C times, each
time obtaining a spammer indicatdf for each annotator. One might then identify an annotats

a spammer if all of thaJ in theC runs indicate that this is a spammer. However in this section we
provide a more principled solution in line with the framework proposed forrgitadoels. Following

the same motivation as before, we define the ASD prior as follows

PHAI ] = N(ii) exp(—;é > (G‘ck—ai«k)2> )

which gives more probability mass to a spammer. A similar EM algorithm can bdoge@geunder
this prior, and evidence maximization follows naturally with Laplace approximatldnder the
same assumptions as earlier, the log-likelihood of the param%'@er[g\l, L, AM p pc| is

N c M , N c Mc
log P{D|6] = .leog [zlPr(yi =0) I‘Lpr(yil lyi = C)] _ _ZLIOg [Zl Pe I—Lkrll(aék)é(yi 7k)] ,
1= c= = 1= C= ]=1k=

wherep; = Pr(y; = ¢) andd(u,v) = 1 if u=vand 0 otherwise. If we know the missing labglithe
complete log likelihood can be written as

M C
log P{D,y|6] = Zzéy., Iog[pcrm yi’].

In the E-step we compute the conditional expectation as

N C M C . i
E{logP{D,y|6]} 212 og[ Pc H(alck)é(yi ,k)]
=

k=1
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wherepic = Priy; = cly?,...,yM 6] and is computed asc O pe 1}, [i_a (ol )5(3"7 k). Based on the
current estimategyc in the M-step we can estimate the parameters by maX|m|2|ng the lower bound
on the log posterior (along with the Lagrange multipligrfuap = argmay L, where

N

M C .
L = [IOg Pc + Z Z yi7 IOgO‘ék]
i=1c l j=1k=1
c
C,k Z logN(\)) + Z (1— > aék> .

k=1

(@]

|
Mg [

C

3%

=1 c<c k=1

We update the prevalence ps= (1/N) SN, pic and for theu(j:k we have

0L SN pcdyl k) A il ) v

aaék CX(J:k C C';C ( o« dk) % ( )
Z 0(

ayc k=1

The practical solution to sol¥& this for everya! o Is to fix theO(dk for ¢’ # ¢, solve the equation
array with a fixedyt, and then updatg as

9

' S Hied(y k) 1 Hic( yl.K)
C
C z ack
which follows by summing (18) for ak. As earlier in order to determine the hyperparameters we

obtain a simple iterative update by setting the derivative of the approximatadoginal likelihood
to zero.

aijlogPl{@M A~ t;i L adk)z_l\l&J);\JN()\J) ;o()\i),
where we have defined
o(A\) =Tr [H Y (Buap, A) aax (Bmap, A) | -
and L
N A () = ﬁw)

See Appendix C for more details on computatioro@ndd. Then the update is given by

i 3(\))
(1/C) Yoco Thor (ol ac’k) +0(A))
10. Keepmg all terms exce|o¢Ck fixed this is a quadratic equatloﬁr(c:(Ck +B(a Ck) +C =0 whereA = % B=

zd#adk andC = —-yN 1Mcé(yi ,K). We keep the root which lies between 0 and 1.
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8. Experimental Validation

We first experimentally validate the proposed algorithm on simulated data.eFsga)y shows the
simulation setup consisting of 5 good annotators (shown as red squagdeE)@spammers (shown

as black crosses). The good annotators have sensitivity and spedifitityeen 65 and 085.

All the spammers lie around the diagonal. We compare our proposed SpEhttalyagainst the
commonly used Majority Voting and the EM algorithm (Dawid and Skene, 197§ti$et al., 1995;
Raykar et al., 2009, 2010). All these methods estimate a probabilistic vé[8idj of the binary
ground truth {0,1}). Since we simulate the instances we know the actual binary ground truth and
hence can compute the area under the ROC curve (AUC) of the estimabedbpisiic ground truth.

8.1 Effect of Increasing Spammers

For the first experiment we deliberately choose 100 instances (withleneegp = 0.5), since it
is beneficial if we can detect the spammers with fewer instances. Figurels(e AUC of the
estimated probabilistic ground truth as a function of the fraction of spammensb@r of spam-
mers/total number of annotators), for each point we keep all the five goodtators and keep
adding more annotators from the pool of 100 spammers. All plots show the amelone standard
deviation error bars (over 100 repetitions). The pruning thresholthtBoeSpEM algorithm was set
to 20. Figure 5(d) plots the sensitivity for spammer detection which is esserthallfraction of
spammers correctly detected. The following observations can be made:

1. Asthe fraction of spammers increases the performance of the Majotityg\Miegrades dras-
tically as compared to the EM and the SpEM algorithm (refer Figure 5(b)g prbposed
SpEM algorithm has a better AUC than the EM algorithm especially when the spamme
dominate (when the fraction of spammers is greater than 0.7 in Figure 5¢®)variability
(one standard deviation error bars) for all the methods increases asrttieer of spammers
increases.

2. The clear advantage of the proposed SpEM algorithm can be seenure Bi@l) where it
can identify almost 90% of the spammers correctly as compared the EM algavithroan
identify about 40% correctly. Majority Voting and EM algorithm do not haveechanism to
explicitly detect spammers, we define an annotator as a spammer if the esﬂiﬁia{eﬁi —
1| < € (We have used = 0.05 in our experimentst.)

3. The SpEM algorithm iteratively eliminates the spammers and then re-estimaig® timel
truth without the spammers. Figure 5(c) plots the actual number of annataadrsere used
in the final model. Note that the EM and the Majority Voting use all the annotat@stitmate
the model parameters while the SpEM algorithm uses only a small fraction ofitioésdors.

To summarize, the proposed SpEM algorithm is slightly more accurate than tredekithm and
at the same time uses a small fraction of the annotators thus effectively eliminadisigof the
spammers.
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Figure 5: Effect of increasing the number of spamm(@sction 8.1) (a) The simulation setup has 5
good annotators (red squares) and 100 spammers (black crossd€)aimstances. (b)
The AUC of the estimated ground truth as a function of the fraction of spamife@he
actual number of annotators that were used. (d) The fraction of spanuoeectly de-
tected. All plots show mean and one standard deviation error bars (@9eefetitions).

8.2 Effect of Increasing Instances

For the proposed algorithm to be practically useful we would like to detectghemers with as
few examples as possible so that they can be eliminated early on. Figure thplptsformance for
the same setup as earlier as a function of the number of instances. Fram &{guwe see that the
AUC for the proposed method is much better than the EM algorithm especialiyfalter number
of instances. As the number of instances increases the accuracy M tilgdtithm is as good as the
proposed SpEM algorithm. The EM algorithm (and also the proposed Spéiginatically gives

11. The 0.05 value is just a heuristic based on a band around the dia§timaROC plot.

507



RAYKAR AND YU

5 good annotators 100 spammers 5 good annotators 100 spammers
1 | 1
> — 1
0 0—0—0=0=00% (L/O’O’(HH 7~0-0-0<
0.95 ] 0.9F ]
) ] § 0.8f
g2 - )/‘ g —a— Majority Voting
Eoss- / 307} EM Algorithm
° / ° —O— SpEM Proposed Algorithm
2 0.8- 2 0.6F
¥ /’/ £
g o075 / S 05f
= 2]
E 0.7¢ § 0.4 Y{H}//{}——_{HH)\(HHHH’
< 2> T
Z 0. GS[Q—(HHH)—(HJ\()———()—{)——()—()—(HH)—E g 0.3 rj/u/{}/{
3] 2
?( 0.6 — - $ 02
—o— Majority Voting
0.55 - EM Algorithm 0.1
‘ —O— SpEM Proposed Algorithm
o8 1 10° ° o 10°
Number of Instances Number of Instances
(a) Accuracy (b) Sparsity

Figure 6: Effect of increasing the number of instan¢8gction 8.2) (a) The AUC of the estimated
ground truth as a function of the number of instances. (b) The fractiaotofl spammers
that were eliminated. All plots show the mean and one standard deviatiorarsofover
100 repetitions). The simulation setup has 5 good annotators and 100 spanirher
pruning threshold was set tolN whereN is the total number of instances.

less emphasis for annotators with smam+ﬁi —1]. The reason SpEM achieves better accuracy is
that the parametei®! andﬁj are better estimated because of the ASD prior we imposed. This also
explains the fact that when we have a large number of instances both tlea@&BpEM algorithm
estimate the parameters equally well. The main benefit can be seen in Figunéh6(b the SpEM
algorithm can eliminate most of the spammers. For example with just 50 examplepHhé S
algorithm can detect 90% of the spammers and at the same time achieve a higher accuracy.

8.3 Effect of Missing Labels

In a realistic scenario an annotator does not label all the instances eFiquots the behavior of
the different algorithms as a function of the fraction of annotators labekey enstance. When
each annotator labels only a few instances all three algorithms achievsinglgr performance in
terms of the AUC. However the proposed SpEM algorithm can still eliminate npam@mers then
the EM algorithm.

8.4 Effect of Prevalence

Figure 8 plots the behavior of the different algorithms as a function of txaence of the positive
class. Note that when the prevalence is low the majority voting seems supeoitietcalgorithms
in terms of AUC. When the prevalence is small (or large) there are venefamples to reliably
estimate the sensitivity (or specificity).

508



ELIMINATING SPAMMERS AND RANKING ANNOTATORS FORCROWDSOURCING

5 good annotators 100 spammers 5 good annotators 100 spammers
T T T T T T T

[
[N

—&— Majority Voting

09k EM Algorithm | I )/o/(

—O0— SpEM Proposed Algorithm /
0.8- / / —o— Majority Voting
EM Algorithm
—O— SpEM Proposed Algorithm
0.7

o
©
T

)/O/O/<>————~0

L
o o
~ ©

AUC of the estimated ground truth

Senstivity for spammer detection
o o o . Q
B a (=2}
T T T T

L o . , —o—
0.6 - ))78/ 0.3F )/()/( —
Eﬁ)/( 02  Be—o— " -
0.5r
0.1
04 . . . . . 0 . . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Fraction of annotators per instance Fraction of annotators per instance
(a) Accuracy (b) Precision
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Figure 8: Effect of prevalencéSection 8.4) (a) The AUC of the estimated labels as a function of the
prevalence of the positive class. (b) The fraction of actual spammems¢haeliminated.
All plots show the mean and one standard deviation error bars (oveep@@tions). The
simulation setup has 5 good annotators and 50 spammers.

8.5 Effect of Pruning Threshold

The only tunable parameter of the SpEM algorithm is the pruning threshal@llfeur experiments
for each annotator we set the pruning threshold to 0.1 times the number oidestabeled by the
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Figure 9: Effect of pruning threshol{Section 8.5) (a) The AUC of the estimated labels as a function
of the pruning threshold. (b) The fraction of actual spammers that wieneated. All
plots show the mean and one standard deviation error bars (over léffliomg). The
simulation setup has 5 good annotators and 50 spammers.

annotator. However we can use this parameter to control the numberatbéons we want to use.
Figure 9 plots the performance for the same setup as earlier for diffgneming thresholds. From
Figure 9(b) we see that as the pruning threshold decreases the #grfsitigpammer elimination
increases thereby using less annotators. Interestingly the accuragycasases. If we had imposed
a common shrinkage prior (that is, samkfor all annotators) then we would expect a drop in
accuracy as the model becomes more sparse. The advantage of oyridEI3 that the amount
of shrinkage for each annotator is different and depends on howratecthe annotator is, more
accurate annotators suffer less shrinkage while spammers suffee sevimkage.

8.6 Experiments On Crowdsourced Data

We report results on some publicly available linguistic and image annotation alégated using
the Amazon Mechanical Turk and other sources. Table 1 summarizeséwetiaalong with a brief
description of the tasks. Table 2 summarizes the results for the binary tataitteknown ground
truth. We compare the proposed SpEM, EM (Dawid and Skene, 197%aRatal., 2010), and the
Majority Voting (MV) algorithm in terms of AUC and accuracy. To compute theusracy we use a
threshold of 0.5 on the estimated probabilities. In terms of the AUC all threeithig@rhave similar
performance. In terms of accuracy the SpEM and EM were better than\thedddrithm. The table
also shows the number of annotators eliminated as spammers by the proljgositana. Figure 10
plots the actual and the estimated annotator performance for the SpEM atgéuitivinary data
sets with known ground truth.
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Data Set Type N M M N* Brief Description
bluebird binary 108 39 39/39 108/108 bird identificati@mder et al., 2010 The an-

notator had to identify whether there was a Indigo Bunting aieB|
Grosbeak in the image.

rte binary 800 164 10/10 49/20 recognizing textual entailmesmt
et al., 2008) The annotator is presented with two sentenags an
given a binary choice of whether the second hypothesis seate
can be inferred from the first.

temp binary 462 76 10/10 61/16 event annotag@met ., 2008) Annotators are
presented with a dialogue and a pair of verbs from the diapgu
and need to label whether the event described by the first verb
occurs before or after the second.

localviewx binary 832 97 5/5 43/14  word sense disambiguati@R andes-
kenazi, 2010) Workers were asked to indicate if two defingiof
a word were related to the same meaning or different meanings

valence ordinal 100 38 10/10 26/20 affect recogniti@metal. 2008) Each annota-
tor is presented with a short headline and asked to rate gmalbv
positive or negative valence of the emotional content otied-
line.

sentimenk categorica¥ 1660 33 6/6 291/175 Irish economic sentiment analy-

SIS (Brew et al., 2010) Articles from three Irish online news
sources were annotated by a group of 33 volunteer users, who
were encouraged to label the articles as positive, negativie-
relevant.

Table 1: Data Sets. Ns the number of instances ail is the number of annotatordV* is the
mean/median number of annotators per instari¢eis the mean/median number of in-
stances labeled by each annotator. All the data sets except those malnked a known
gold standard. Except sentiment data set all others were collected usiagofis’s Me-
chanical Turk. The valence data set was converted to a binary scale @xperiments.

Data Spammers AUC Accuracy
S SpPEM EM MV SpEM EM MV
bluebird 114 .96 95 .88 91 90 .76
rte  12fea .96 96 .96 .93 93 .92
temp 3 .96 96 .97 .94 94 94
valence 1% .90 91 94 .86 .86 .80

localviewx 12k7 - - - - R .
sentimenk 1/ - - - - - R

Table 2: Comparison of the various methods for the data sets in TabIBpEM is the proposed
algorithm, EM is the algorithm proposed in Dawid and Skene (1979) and d&Raptkal.
(2010), and MV is the soft majority voting algorithm. S is the number of annatator
eliminated as spammers by the proposed algorithm. The accuracy and AlWGaave
only for data sets with known gold standard.
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Figure 10: SpEM results for binary datsets shown in Tabl&H2 black cross plots the actual sensi-
tivity and specificity of each annotator. The red dot plots the sensitivityspedificity
estimated by the SpEM algorithm. The green squares show the annotators telimina
as spammers. We plot the ROC for the estimated ground truth and the opeutihg p
corresponding to a threshold of 0.5.
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8.7 Ranking Annotators

The proposed spammer score can be used to rank the annotators.1Riglots the spammer scores
and rankings obtained for four data sets. The mean and the 95% CI abténieootstrapping are
also shown. The number at the top of the CI bar shows the number of iastanootated by that
annotator. The rankings are based on the lower limit of the 95% CI whi¢brgathe number of
instances labeled by the annotator into the ranking. An annotator who lablgla tew instances
will have very wide CI. Some annotators who label only a few instances raag & high mean
spammer score but the CI will be wide and hence ranked lower. Ideally ouddwike to have
annotators with a high score and at the same time label a lot of instances seetbah reliably
identify them. The authors (Brew et al., 2010) for the sentiment data setdshéh us some of the
gualitative observations regarding the annotators and they somewkat\aiiin our rankings. For
example the authors made the following comments about Annot&€@uivky annotator - had a lot
of debate about what was the meaning of the annotation question. I'desalganged his labeling
strategy at least once during the proces&ur proposed score gave a low rank to this annotator.

9. Conclusion

In this paper we formalized the notion of a spammer for binary and catebarinatations. Using
the score to define a prior we proposed an empirical Bayesian algoritied &pEM that simul-
taneously estimates the consensus ground truth and also eliminates the spafxperisnents on
simulated and real data show that the proposed approach is better thngood as) the earlier
approaches in terms of the accuracy and uses a significantly smaller nohaiperotators.

Appendix A. ASD Prior Normalization

In this appendix we analytically derive the normalization term for the prapdssD prior. The
normalization ternN(A!) can be computed as

N()\j):/ol/olexp<)\j(aj+2[3j_1)2) daldp
:/01 [/01 ?N(Bj?l—“j’;i)dﬁj]daj

=3[ etviianaet - [l - pjaa],

where ®(x) = (1/v/2m) [*, exp(—t?/2)dt is the Gaussian cumulative distribution function and
A (x;u,v) the Gaussian distribution afwith meanu and variance. Using the fact thaf ®(x)dx=
x®(x) + @(x), whereq is the standard normal arl(x) = (1/2)[1+ erf(t/+/2)] the normalization
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Figure 11: Annotator Rankingd he rankings obtained for the data sets in Table 1. The spammer
score ranges from 0 to 1, the lower the score, the more spammy the annbletonean
spammer score and the 95% confidence intervals (Cl) are shown, abfadme 100
bootstrap replications. The annotators are ranked based on the lowerfliimit 5%
CIl. The number at the top of the CI bar shows the number of instancetasamhby that
annotator. Note that the Cls are wider when the annotator labels only asemaes.

term can be further simplified as follows,

NN = Y2 (VRI(20(/NT) - 1)+ 20(VA) - 20(0))
_ \QZT" (merf(m) 1 20(VAAT) — 2cp(0)>
= % (\/ZTI)\ierf( A /2) +2exg A1 /2) —2)

on( 2 (VN
:\/;<W/o ¢(t)dt—l>.
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Appendix B. Derivatives of the Log-marginal—Binary Case

The derivative of the approximation to the log-marginal likelihood can be wrate

P .
;logP{D|A] ~ (Omar, A)

oAl

0 1 ~ 0
0 logPiBuselA] - 1T [ (Bunp A) o H

0 1
b gipi— = j
= —logPid’, BN - So(M)

where we have definem(A) = Tr [H*1(§MAP, A)%H (§MAP, A)} . From the ASD prior we can show
that

0 1 . -~ 1 _
Y Sl +Bi—1)2 j
logPria!,BI|A] = 2(0( +p'-1) +2)\j6()\ )

NI
where we have defined
50— |2 V2merf(\/A/2)
T V2merf(\/A/2) +2exp(—A/2) - 2|

To computes(A), let us compute the Hessian matrix first. Since IdgP#)] is again not tractable,
we use the following lower bound (as used by the EM algorithm earlier) to atetpe likelihood
term:

N
0gPfDIF) > 3 |wlogpa + (1-)log(1—pb|.

wherey; = Pr]y;|0] is the expected class label for itér(talculated in the E-step). Then we have

Y(0) = log PD|0] + log P{O|A]
M

~S [wlogpaﬂl—m)log(l—p)bi] - Afj(u‘#B"—l)z— S logC(A)).
2 2.2 )

Note that this is equal tdy as defined in (12). The first-order derivatives with respectitandf!
are:

ow(o) _ syl —al 3w,

oal al(1—al) (@ +p-1),
ow(O) _ sil-wA-y) BN i
ol Bi(1—p) 1 TR @R L)

The second-order derivatives are:
0°W(O) _ Sikyi-(200—1)—(a)?5il

oolgal [al(1—al)]2 (19)
PW(O)  PWEO) |,

daiopl ~ opidal |

*W(O) _ yi(l-mwA-y) (2B -1 (B)’5i(1-w) Y (20)
opiop) BI(1-p))?

2W(O) W) PWO) W)
daiook  dalapk  opidak  opiopK

=0,Vj#k
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If we arrange all the parameters column-wise as a ve@drp,...,aM g™}, then the Hessian

matrix can be written in a block diagonal fOI'H(é\MAp, A) =A(a,B) — B(A), where matrixA (a
diagonal matrix with entries equal to the first terms in (19) and (20)) depend and3 only, and
matrix B is a block diagonal matrix of the form

ANAl 0 o 0 O
ANAl 0 o 0 O
0 0 A2 )2 0 O
B(\) = 0 0 A2 )2 0O O
0 0 0 0 -~ AM )M
0 0 0 0 -~ AM )M

It is now easy to take the derivative H(@MAP,)\) with respect to\) and computes(A!). Let
Y= H‘l(OMAp,)\), a block diagonal matrix, then we have we have

. o -~
o(A)=Tr|H l(OMAP7>\>WH(0MAP7)\) = —3j_12j-1— L2j-12] — B2j2j-1 — X2} 2j-

Thatis,a(A}) is computed by taking the negative of the element-wise sum of the sub-rE4&ix-
1:2),2j—1:2j).

Appendix C. Derivatives of the Log Marginal—Categorical Labek

Similarly the second-order derivatives for the categorical case camitten as

%L Sty k) (C—DN

s : _ , (21)
00001y [ c

0°L M
oadal, C’

0°L 0°L

T Aand A An
0ay 00y, 00500,

If we rearrange all the parameters in the multinomial terhrcolumn-wise as a vector of the form
{a], 051, .., 08,01, ..., 0L, . ..,0Lc}, then Hessian matrix for the parameters {a?,...,aM}
can be written in a block diagonal form &s= diag(H?,...,HM), with Hi = diagiD!,...,D.),
where each matriD/ is aC x C matrix of the formD! = Ac(a’) + B(A)), whereA.(a!) is a
diagonal matrix with entries equal to the first term in (21) &t’) = A ((1/C)e€’ —I¢).

—C—pN A A Al
) Al —(C—1AI Al Al
BL(A) =5 : : : :
Al R V(e 1V VA
Al Al Al —(C—1)Al
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Therefore,%Hj is aC? x C? block diagonal matrix with{1/C)ee’ — Ic on every diagonal. This

greatly simplifies the computation ofA}). _
Since computing the normalization constbifd’) is analytically hard we numerically calculate
O(A!) by observing that

A 9
— J
N(AT) OA] NOY)
. Jsew(= R 11— gee) All) - 1 - ey Al an
Jsoxp(=% || (1 - dee") AT[2) dal

Ay =—

whereS= {AJ = [cxik] € RS Clag € [0,1],Ale= e}. We compute the integration numerically via
sampling.
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