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Abstract

Sparse additive models are families dfvariate functions with the additive decomposition
f*= Zjesfj*i whereS is an unknown subset of cardinality< d. In this paper, we consider
the case where each univariate component functfoﬁes in a reproducing kernel Hilbert space
(RKHS), and analyze a method for estimating the unknowntfand * based on kernels combined
with ¢;-type convex regularization. Working within a high-dimamsal framework that allows
both the dimension and sparsitys to increase witm, we derive convergence rates in th&P)
andL?(P,) norms over the clasgy s 4 of sparse additive models with each univariate funcfipn
in the unit ball of a univariate RKHS with bounded kernel ftios. We complement our upper
bounds by deriving minimax lower bounds on tt&P) error, thereby showing the optimality of
our method. Thus, we obtain optimal minimax rates for mamgrasting classes of sparse additive
models, including polynomials, splines, and Sobolev @as$Ve also show that if, in contrast to
our univariate conditions, thetvariate function class is assumed to be globally boundheah imuch
faster estimation rates are possible for any spassityQ(+/n), showing that global boundedness
is a significant restriction in the high-dimensional sejtin

Keywords: sparsity, kernel, non-parametric, convex, minimax

1. Introduction

The past decade has witnessed a flurry of research on sparsityatotssin statistical models.
Sparsity is an attractive assumption for both practical and theoreticainga# leads to more
interpretable models, reduces computational cost, and allows for modéfiadglity even under
high-dimensional scaling, where the dimensibexceeds the sample simeWhile a large body of
work has focused on sparse linear models, many applications call foddftgoaal flexibility pro-
vided by non-parametric models. In the general setting, a non-paranegirassion model takes the
formy= f*(xq,..., %) +Ww, wheref* : RY — R is the unknown regression function, ands scalar
observation noise. Unfortunately, this general non-parametric modelosrkto suffer severely
from the so-called “curse of dimensionality”, in that for most natural fiomcclasses (e.g., twice
differentiable functions), the sample sizeequired to achieve any given error grows exponentially
in the dimensiord. Given this curse of dimensionality, it is essential to further constrain the co
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plexity of possible functiond*. One attractive candidate is the classadfiitive non-parametric
models(see Hastie and Tibshirani, 1986), in which the functiérhas an additive decomposition
of the form

d

Fr (%, xa) = f(X)), 1)
=1

where each component functidq‘i is univariate. Given this additive form, this function class no
longer suffers from the exponential explosion in sample size of the glemen-parametric model.
Nonetheless, one still requires a sample size d for consistent estimation; note that this is true
even for the linear model, which is a special case of Equation (1).

A natural extension of sparse linear models is the claspafse additive modelg which the
unknown regression function is assumed to have a decomposition of the for

f*(x1,%2. .., %) = ) (%), 2
1, A2 gsj j

whereSC {1,2,...,d} is some unknown subset of cardinali§l = s. Of primary interest is the

case when the decomposition is genuinely sparse, sa thal. To the best of our knowledge, this
model class was first introduced by Lin and Zhang (2006), and has bien studied by various
researchers (e.g., Koltchinskii and Yuan, 2010; Meier et al., 2009ikRaar et al., 2009; Yuan,

2007). Note that the sparse additive model (2) is a natural generalizdtibe sparse linear model,
to which it reduces when each univariate function is constrained to be.linea

In past work, several groups have proposed computationally effimiethods for estimating
sparse additive models (2). Justlasbased relaxations such as the Lasso have desirable properties
for sparse parametric models, more genétabased approaches have proven to be successful in
this setting. Lin and Zhang (2006) proposed the COSSO method, whicldextenLasso to cases
where the component functioris lie in a reproducing kernel Hilbert space (RKHS); see also Yuan
(2007) for a similar extension of the non-negative garrote (Breimarg)1®ach (2008) analyzes
a closely related method for the RKHS setting, in which least-squares losaatizesl by ar/;-
sum of Hilbert norms, and establishes consistency results in the cladsiedld) setting. Other
related/1-based methods have been proposed in independent work by Koltichimgkuan (2008),
Ravikumar et al. (2009) and Meier et al. (2009), and analyzed unglerdimensional scalingd(>>
n). As we describe in more detail in Section 3.4, each of the above papebtigsconsistency and
convergence rates for the prediction error under certain conditiotiseocovariates as well as the
sparsitys and dimensiord. However, it is not clear whether the rates obtained in these papers are
sharp for the given methods, nor whether the rates are minimax-optimalv®&sby Koltchinskii
and Yuan (2010) establishes rates for sparse additive models with gioaalcdylobal boundedness
condition, but as will be discussed at more length in the sequel, these ratest aninimax optimal
in general.

This paper makes three main contributions to this line of research. Ourdirsiltion is to
analyze a simple polynomial-time method for estimating sparse additive modelsasdiepupper
bounds on the error in the?(P) andL?(P,) norms. The estimatbtthat we analyze is based on a
combination of least-squares loss with téebased sparsity penalty terms, one corresponding to

1. The same estimator was proposed concurrently by Koltchinskii aad {2010); we discuss connections to this work
in the sequel.
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an/1/L?(P,) norm and the other afi /|| - || - norm. Our first main result (Theorem 1) shows that
with high probability, if we assume the univariate functions are boundedaegpendent, the error
of our procedure in the squaréd(P,) andL?(P) norms is bounded by (%99 1 sv2), where the
quantityv? corresponds to the optimal rate for estimating a single univariate functiorartanmly,
our analysis doesot require a global boundedness condition on the clags,, of all ssparse
models, an assumption that is often imposed in classical non-parametricignatyteed, as we
discuss below, when such a condition is imposed, then significantly fastsrohestimation are
possible. The proof of Theorem 1 involves a combination of techniquesnfayzingM-estimators
with decomposable regularizers (Negahban et al., 2009), combined witlhisyaechniques in em-
pirical process theory for analyzing kernel classes (e.g., Bartlett,e2@05; Mendelson, 2002;
van de Geer, 2000). Our second contribution is complementary in natutieatirit establishes
algorithm-independent minimax lower boundslgiiP) error. These minimax lower bounds, stated
in Theorem 2, are specified in terms of the metric entropy of the underlyingniate function
classes. For both finite-rank kernel classes and Sobolev-typesl#assse lower bounds match our
achievable results, as stated in Corollaries 1 and 2, up to constant fadioesegime of sub-linear
sparsity 6= 0(d)). Thus, for these function classes, we have a sharp characteripatios asso-
ciated minimax rates. The lower bounds derived in this paper initially app&atbd Proceedings
of the NIPS Conference (December 2009). The proofs of Theorérbased on characterizing
the packing entropies of the class of sparse additive models, combinedlagtical information
theoretic techniques involving Fano’s inequality and variants (e.g., Hakimin®78; Yang and
Barron, 1999; Yu, 1996).

Our third contribution is to determine upper bounds on minihd¥®) andL?(P,) error when
we impose a global boundedness assumption on the glasg. More precisely, a global bound-
edness condition means that the quarBity s ) = SUPres, sup, | z‘j’:l fj(xj)| is assumed to be
bounded independently @§,d). As mentioned earlier, our upper bound in Theorem 1 duss
impose a global boundedness condition, whereas in contrast, the awdlsischinskii and Yuan
(2010), or KY for short, does impose such a global boundednegtittom Under global bound-
edness, their work provides rates on ttf¢P) andL?(P,) norm that are of the same order as the
results presented here. It is natural to wonder whether or not thisafiffe is actually significant—
that is, do the minimax rates for the class of sparse additive models dep#&btirer or not global
boundedness is imposed? In Section 3.5, we answer this question in thetfi. In particular,
Theorem 3 and Corollary 3 provide upper bounds on the minimax rates,asired in either the
L2(P) andL?(Py)-norms, under a global boundedness condition. These rates aretfastehose
of Theorem 3 in the KY paper, in particular showing that the KY rates areptimal for problems
with s= Q(,/n). In this way, we see that the assumption of global boundedness, thdatielg
innocuous for classical (low-dimensional) non-parametric problemsbeayuite limiting in high
dimensions.

The remainder of the paper is organized as follows. In Section 2, wédertmackground on
kernel spaces and the class of sparse additive models considereddapéis Section 3 is devoted
to the statement of our main results and discussion of their consequenices;)des description
of our method, the upper bounds on the convergence rate that it agh@&wk a matching set of
minimax lower bounds. Section 3.5 investigates the restrictiveness of thd glofmam bounded-
ness assumption and in particular, Theorem 3 and Corollary 3 demonsattedte are classes of
globally bounded functions for which faster rates are possible. Seci@deloted to the proofs of
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our three main theorems, with the more technical details deferred to the Aippen@/e conclude
with a discussion in Section 5.

2. Background and Problem Set-up

We begin with some background on reproducing kernel Hilbert sphedéste providing a precise
definition of the class of sparse additive models studied in this paper.

2.1 Reproducing Kernel Hilbert Spaces

Given a subseX C R and a probability measur@ on X, we consider a Hilbert spack c L?(Q),
meaning a family of functiong: X — R, with [|g|| 2(g) < », and an associated inner produgct) ,¢
under which# is complete. The spac#’ is a reproducing kernel Hilbert space (RKHS) if there
exists a symmetric functiof : X x X — R such that for eaclk € X: (a) the functionK(-,x)
belongs to the Hilbert spac#, and (b) we have the reproducing relatibx) = (f, K(-,X)) 4
for all f € #. Any such kernel function must be positive semidefinite; under suitabldasty
conditions, Mercer’s theorem (1909) guarantees that the kernarhaigien-expansion of the form

¥)= 3 HA00R), ®

wherepy > i > Pz > ... > 0 are a non-negative sequence of eigenvalues,{gp_, are the
associated eigenfunctions, taken to be orthonormaP{®). The decay rate of these eigenvalues
will play a crucial role in our analysis, since they ultimately determine thewater the univariate
RKHS’s in our function classes.

Since the eigenfunctionp}y_, form an orthonormal basis, any functidne A has an ex-
pansion of thef(x) = 3’ ; a@k(x), whereax = (f, @2 = [x F(X)@(X)dQ(x) are (gener-
alized) Fourier coefficients. Associated with any two functionsHr—say f = 3’ ; ax@ and
0= Y 1 bk@—are two distinct inner products. The first is the usual inner produdt?{®),
(f,9)12(0) 1= Jx F(X)9(X)dQ(x). By Parseval's theorem, it has an equivalent representation in
terms of the expansion coefficients—namely

f gLZ Zakbk

The second inner product, denoted g) ,/, is the one that defines the Hilbert space; it can be written
in terms of the kernel eigenvalues and generalized Fourier coefficients a

o akby
(f,9u=> —.
k; Mk

Using this definition, the Hilbert ball of unit radius for a kernel with eigduea{}y_; and eigen-
functions{@},_, is given by

0

Byl = {1 = 5 a3 %<

\;?’N

For more background on reproducing kernel Hilbert spaces, wee tied reader to various standard
references (e.g., Aronszajn, 1950; Saitoh, 1988papf and Smola, 2002; Wahba, 1990).
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2.2 Sparse Additive Models Over RKHS

Foreachj =1,...,d, let # C L?(Q) be a reproducing kernel Hilbert space of univariate functions
on the domaiX C R. We assume that

E[fj(x)] :/X fi(x)dQ(x) = 0 for all f; € #A;, and for eachj =1,2,...,d.

As will be clarified momentarily, our observation model (5) allows for the iinility of a non-zero
meanf, so that there is no loss of generality in this assumption. For a given ssibsgt, 2, ..., d},
we define

H(S) :={f = 21‘,- | fj € #j, andfj € By (1) V j € S},
IE

corresponding to the class of functiohs X4 — R that decompose as sums of univariate functions
on co-ordinates lying within the s& Note that#(S) is also (a subset of) a reproducing kernel
Hilbert space, in particular with the norm

11505 =3 15115
(S gs 5

where]| - ||,z denotes the norm on the univariate Hilbert spageFinally, forse {1,2,...,[d/2|},
we define the function class

Faswi= U H(S. @)
Sc{1,2,...d}
IS=s

To ease notation, we frequently adopt the shorth@ng ¥, ¢ 4, but the reader should recall that
F depends on the choice of Hilbert spa({e‘:ﬁ}J 1, and moreover, that we are actually studying a
sequence of function classeslexed by(d,s).

Now letP = Q¢ denote the product measure on the spate RY. Given an arbitranf* € 7,
we consider the observation model

yi=f+f*(x)+w, fori=12,...,n, (5)

where{w;}! ; is an i.i.d. sequence of standard normal variates {and_, is a sequence of design
points de sampled in an i.i.d. manner frokh

Given an estimatd, our goal is to bound the errdr— f* under two norms. The first is the
usual () normon the spaceF; given the product structure @ and the additive nature of any
f € #, it has the additive decompositict»\n‘H2 = 2? 1l f,-H2 g In addition, we consider the

error in theempirical L2(P,)-normdefined by the sampleq 1, defined as

11122, Zlf

Unlike the LZ(IP’) norm, this norm does not decouple across the dimensions, but part ahali
ysis will establish an approximate form of such decoupling. For shorthaedrequently use the
notation|| f||2 = || f{| 2 and|[ f[|n = || f[|_2(,) for ad-variate functionf € #. With a minor abuse
of notation, for a unlvarlate functiof; € }[, we also use the shorthanf§;||> = || ;|| 2q) and

Iilln = Il fillLo@n)-
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3. Main Resultsand Their Consequences

This section is devoted to the statement of our three main results, and discoksmme of their
consequences. We begin in Section 3.1 by describing a reguldvizsstimator for sparse additive
models, and we state our upper bounds for this estimator in Section 3.2. Wethustr upper
bounds for various concrete instances of kernel classes. In S&8pmwe state minimax lower
bounds on th&?(IP) error over the clas$y s 4r, Which establish the optimality of our procedure. In
Section 3.4, we provide a detailed comparison between our results to pasand in Section 3.5
we discuss the effect of global boundedness conditions on optimal rates

3.1 A Regularized M-Estimator For Sparse Additive Models
For any function of the fornf = z‘le fj, the (L2(Qn), 1) and(#, 1)-norms are given by

d d
Ifllna:= 3 [filln, and [[flls0:= > Ifjlla
=1 =1

respectively. Using this notation and defining the sample nygan %_zi”:lyi, we define the cost
functional

1 n _ 2
L(f)= %_Zl(yi —Yn—F()) 4+ Al fllns+onll fll51-
i=

The cost functionalZ(f) is least-squares loss with a sparsity pendlfyl,1 and a smoothness
penalty| f| ;1. Here(An, pn) are a pair of positive regularization parameters whose choice will be
specified by our theory. Given this cost functional, we then considdvitestimator

fearg rrginL(f) subject tof = Z?:l fjand||fj||,, <1lforallj=1,2,...,d. (6)

In this formulation (6), the problem is infinite-dimensional in nature, since dliras optimization
over Hilbert spaces. However, an attractive feature ofNhigstimator is that, as a consequence of
the representer theorem (Kimeldorf and Wahba, 1971), it can beeddocan equivalent convex
program inR" x RY. In particular, for eachj = 1,2,...,d, let K! denote the kernel function for
co-ordinatej. Using the notation; = (X1, X2, - . ,x.d) for theith sample, we define the collection
of empirical kernel matricel) € R™", with entriesk, = K/ (xj,%;j). By the representer theorem,

any solutionf to the variational problem (6) can be written in the form

=}

d
f(z,...,zg Z zj,x|J

for a collection of weights{d; € R", j =1,...,d}. The optimal weightds,...,0q4) are any
minimizer to the following convex program:

1 _ d . d 1 ] d -
i Tl v Jy . 12 - iq:ll2 TKiq -
arg. min {ZnHy Yn ,;K GJHan; HlIK GJH2+an;\/G,KGJ}- ()

afKlaj<1

394



MINIMAX -OPTIMAL RATES FORSPARSEADDITIVE MODELS

This problem is a second-order cone program (SOCP), and thevar&as algorithms for finding
a solution to arbitrary accuracy in time polynomial(imd), among them interior point methods
(e.g., see 8§11 in Boyd and Vandenberghe 2004).

Various combinations of sparsity and smoothness penalties have beeimysest work on
sparse additive models. For instance, the method of Ravikumar et al.)(B0bBb8sed on least-
squares loss regularized with single sparsity constraint, and separab¢hesss constraints for
each univariate function. They solve the resulting optimization problem wsivack-fitting pro-
cedure. Koltchinskii and Yuan (2008) develop a method based on lgastes loss combined
with a single penalty terrrz?zlﬂfju}[. Their method also leads to an SOCP#if is a repro-
ducing kernel Hilbert space, but differs from the program (7) in ilagkhe additional sparsity
penalties. Meier et al. (2009) analyzed least-squares regularized wihadty term of the form

Z?:l \/)\1||fj\|%+)\2\|fj|]§{, whereA; and A, are a pair of regularization parameters. In their

method,\1 controls the sparsity whil&, controls the smoothness. H is an RKHS, the method
in Meier et al. (2009) reduces to an ordinary group Lasso problemdifiesient set of variables,
which can be cast as a quadratic program. The more recent work ohialkii and Yuan (2010)
is based on essentially the same estimator as problem (6), except that wéoakdomon-zero mean
for the function, and estimate it as well. In addition, the KY analysis involvasoager condition

of global boundedness. We provide a more in-depth comparison ohalysis and results with the
past work listed above in Sections 3.4 and 3.5.

3.2 Upper Bound

We now state a result that provides upper bounds on the estimation erifevextby the estima-
tor (6), or equivalently (7). To simplify presentation, we state our resulbénspecial case that
the univariate Hilbert spac#j, j =1,...,d are all identical, denoted k. However, the analysis
and results extend in a straightforward manner to the general setting ottlistivariate Hilbert
spaces, as we discuss following the statement of Theorem 1.

Letwy > o > ... > 0 denote the non-negative eigenvalues of the kernel operator defiréng
univariate Hilbert spacé{, as defined in Equation (3), and define the function

1 i . 2 1/2
Qn(t) i =— min{t<, ke .
)= Tl 3 minfe?, ]
Letv, > 0 be the smallest positive solution to the inequality

40v; > Qon(Vn), (8)

where the 40 is simply used for technical convenience. We refgy&s thecritical univariate rate
as it is the minimax-optimal rate fdr?(IP)-estimation of a single univariate function in the Hilbert
space# (e.g., Mendelson, 2002; van de Geer, 2000). This quantity will berexféo throughout
the remainder of the paper.

Our choices of regularization parameters are specified in terms of thétguan

Yn 1= kmax{vp,

logd
T}’ )
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wherek is a fixed constant that we choose later. We assume that each functiontivithinit ball of
the univariate Hilbert space is uniformly bounded by a constant multiple ofilili norm—that
is, for eachj = 1,...,d and eachfj € #,

[1jlles ::S;'p‘fj(xj)‘ <c|lfjlls- (10)
]

This condition is satisfied for many kernel classes including Sobolev spacé any univariate
RKHS in which the kernel functicrbounded uniformly by. Such a condition is routinely imposed
for proving upper bounds on rates of convergence for non-pdraneast squares in the univariate
cased = 1 (see, e.g., Stone, 1985; van de Geer, 2000). Note that this uniavianeledness does
not imply that the multivariate functions= ¥ ;s f; in F are uniformly bounded independently of
(d,s); rather, since such functions are the suns tfrms, they can take on values of the orgéx

The following result applies to any clagg 4, of sparse additive models based on a univariate
Hilbert space satisfying condition (10), and to the estimator (6) based.od. samplegx;,yi)iL ;
from the observation model (5).

Theorem 1 Let f be any minimizer of the convex prograi®) with regularization parameters
An > 16y, and p, > 16y2. Then provided thatyf = Q(log(1/yn)), there are universal constants
(C,cy,C2) such that

Pl max{|[f— 3, [F— ]2} > C{\i+spn} | < crexp(—cony).
We provide the proof of Theorem 1 in Section 4.1.

3.2.1 REMARKS

First, the technical conditiomy2 = Q(log(1/y)) is quite mild, and satisfied in most cases of interest,
among them the kernels considered below in Corollaries 1 and 2.

Second, note that settifg, = cy, andp, = cy? for some constant < [16,«) yields the rate
O(Sy2 +spn) = @(% +sv2). This rate may be interpreted as the sum of a subset selection term

(°99) and ans-dimensional estimation terms?). Note that the subset selection terf#23)
is independent of the choice of Hilbert spage whereas thes-dimensional estimation term is
independent of the ambient dimensidn Depending on the scaling of the tripla,d,s) and the
smoothness of the univariate RKH®, either the subset selection term or function estimation term
may dominate. In general, I?ﬁ—d = o(vﬁ), thes-dimensional estimation term dominates, and vice
versa otherwise. At the boundary, the scalings of the two terms areadeptiv

Finally, for clarity, we have stated our result in the case where the uaigadilbert spacet
is identical across all co-ordinates. However, our proof extends withrwtational changes to the
general setting, in which each co-ordingtis endowed with a (possibly distinct) Hilbert spagg.

In this case, thél-estimator returns a functiohsuch that (with high probability)
+ 5 V3, },

SXUPIfi(XJ)I:qup|<fj(-),K(.,Xi)>a{| < sup KX, %) [ i -
i i i

slogd

max | = 2, [T ]38} < C{

2. Indeed, we have
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wherev,, j is the critical univariate rate associated with the Hilbert spigeandSis the subset on
which f* is supported.

Theorem 1 has a number of corollaries, obtained by specifying partichtices of kernels.
First, we discussnrank operators, meaning that the kernel funcfidbcan be expanded in terms
of m eigenfunctions. This class includes linear functions, polynomial functiagsvell as any
function class based on finite dictionary expansions. First we presemtodlary for finite-rank
kernel classes.

Corollary 1 Under the same conditions as Theorem 1, consider an univariate keitiefinite
rank m. Then any solutiohto the problen(6) with A, = cy, andp, = cy2 with 16 < ¢ < o satisfies

slogd

P maxq || — £, - £} > c{>=_

+sr:}] < crexp( — c2(m+logd)).

Proof : It suffices to show that the critical univariate rate (8) satisfies the gpedin- O(m/n). For
a finite-rank kernel and arty> 0, we have

Qon(t) = %\/W <tf7
=

from which the claim follows by the definition (8). [ |

Next, we present a result for the RKHS’s with infinitely many eigenvalugisphose eigenval-
ues decay at a rai& ~ (1/k)?* for some parametex > 1/2. Among other examples, this type
of scaling covers the case of Sobolev spaces, say consisting of fumetith a derivatives (e.g.,
Birman and Solomjak, 1967; Gu, 2002).

Corallary 2 Under the same conditions as Theorem 1, consider an univariate kertiekigen-
value decay g~ (1/k)?® for somea > 1/2. Then the kernel estimator defined(6) with A, = cy,
andpp = cy2 with 16 < ¢ < o satisfies

slogd
n

P| max{|f— |2, ||f— 3} > { +s(%)ﬁl} < crexp( — ca(n7 1 +logd)).

Proof : As in the previous corollary, we need to compute the critical univariatevat&iven the

_ 1
assumption of polynomial eigenvalue decay, a truncation argument shai@;th(t) = O(tl\/’f)
_ 1
Consequently, the critical univariate rate (8) satisfies the scafing vﬁ 2 /,/n, or equivalently,
2 _ 20
Vi XN T, n

3.3 Minimax Lower Bounds

In this section, we derive lower bounds on the minimax error inLth@&)-norm that complement
the achievability results derived in Theorem 1. Given the function ¢lasse define the minimax
LZ(P)—errormp(Tdsﬂ) to be the largest quantity such that

inf fsupr*wan— )13 > Mp(Fys0)] > 1/2, (11)
n fxef
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where the infimum is taken over all measurable functions ofntkamples{(x;,yi)}{;, andP-
denotes the data distribution when the unknown functiofi*is Given this definition, note that
Markov'’s inequality implies that

£ M
inf SUpE|| fn— £*||5 > Me(Fasst)
fn fref 2

Central to our proof of the lower bounds is the metric entropy structureeotitfivariate re-
producing kernel Hilbert spaces. More precisely, our lower boulegend on theacking entropy,
defined as follows. LetG, p) be a totally bounded metric space, consisting of agsahd a metric
p: G x G — R,. Ane-packing of G is a collection{ f,... M} c G such thap(f', 1) > ¢ for
all'i # j. Thee-packing numbeM(g; G,p) is the cardinality of the largestpacking. The packing
entropy is the simply the logarithm of the packing number, namely the quantity (g7, p), to
which we also refer as the metric entropy. In this paper, we derive explinimax lower bounds
for two different scalings of the univariate metric entropy.

3.3.1 LOGARITHMIC METRIC ENTROPY

There exists somen > 0 such that
logM(g; B, (1),L%(P)) ~ mlog(1/e)  forallee (0,1). (12)

Function classes with metric entropy of this type include linear functions (Foclwm = k), uni-
variate polynomials of degrele (for which m = k+ 1), and more generally, any function space
with finite VC-dimension (van der Vaart and Wellner, 1996). This type afisg also holds for any
RKHS based on a kernel with rank(e.g., see Carl and Triebel, 1980), and these finite-rank kernels
include both linear and polynomial functions as special cases.

3.3.2 POLYNOMIAL METRIC ENTROPY
There exists some > 0 such that

logM(g; B,,(1),L2(P)) ~ (1/e)Y®  foralle e (0,1). (13)

Various types of Sobolev/Besov classes exhibit this type of metric entreggyde.g., Birman and
Solomjak, 1967; Gu, 2002). In fact, any RKHS in which the kernel eigeras decay at a rake*®
have a metric entropy with this scaling (Carl and Stephani, 1990; Carl agldel, 1980).

We are now equipped to state our lower bounds on the minimax risk (11):

Theorem 2 Given n i.i.d. samples from the sparse additive m@8givith sparsity s< d/4, there
is an universal constant € 0 such that:

(a) For a univariate classH with logarithmic metric entropy12) indexed by parameter m, we
have

M (Fasr) c{s"ogf]d/s) + s’:}
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(b) For a univariate class# with polynomial metric entropgl3) indexed by, we have

mP(Td,gﬂ) > C{slog(nd/s) + S(i)zgil}_

The proof of Theorem 2 is provided in Section 4.2. The most importanecpuence of Theorem 2 is
in establishing the minimax-optimality of the results given in Corollary 1 and 2; itiqodatr, in the
regime of sub-linear sparsity (i.e., for which ldg= O(log(d/s))), the combination of Theorem 2
with these corollaries identifies the minimax rates up to constant factors.

3.4 Comparison With Other Estimators

It is interesting to compare these convergence rate$(ik,) error with those established in the past
work. Ravikumar et al. (2009) show that any solution to their back-fitting nteih@onsistent in
terms of mean-squared error risk (see Theorem 3 in their paper),éuatialysis does not allow
s— oo, The method of Koltchinskii and Yuan (2008) is based regularizing thé-spgres loss with
the (A, 1)-norm penalty—that is, the regularizglj':1 || ;]| 4; Theorem 2 in their paper provides a
rate that holds for the triplgn, d, s) tending to infinity. In quantitative terms, however, their rates are

looser than those given here; in particular, their bound includes a tetine mirder§'ﬂgd, which is
larger than the bound in Theorem 1. Meier et al. (2009) analyze aadtiffist-estimator to the one
we analyze in this paper. Rather than adding two sepataté)-norm and ard||. ||, 1)-norm penal-
ties, they combine the two terms into a single sparsity and smoothness penattyeiFestimator,
Meier et al. (2009) establish a convergence rate of the ﬁ)(a@@) 2311) in the case ofi-smooth

Sobolev spaces (see Theorem 1 in their paper). Note that relative to bttesagiven here in The-
orem 2(b), this scaling is sub-optimal: more precisely, we either ﬁ?ﬁﬁe< (%)%ﬂ, when the

subset selection term dominates,(épﬁl < (@)%, when thes-dimensional estimation term
dominates. In all of the above-mentioned methods, it is unclear whethet arsi@rper analysis
would yield better rates. Finally, Koltchinskii and Yuan (2010) analyze #mesestimator as the
M-estimator (6), and for the case of polynomial metric entropy, establish the etes Theorem 1,
albeit under a global boundedness condition. In the following sectiostugs the implications of

this assumption.

3.5 Upper Bounds Under A Global Boundedness Assumption

As discussed previously in the introduction, the paper of Koltchinskii amanY(2010), referred

to as KY for short, is based on thd-estimator (6). In terms of rates obtained, they establish a
convergence rate based on two terms as in Theorem 1, but with a poettaat depends on the
global quantity

B= sup [[fll. = sup sup|f(x)],

fefd‘s}[ fefd,s,?{ X

assumed to be bounded independently of dimension and sparsity. Suslotgpebal boundedness
conditions are fairly standard in classical non-parametric estimation, viteyenave no effect on
minimax rates. In sharp contrast, the analysis of this section shows thpafgesadditive models in
the regimes= Q(,/n), such global boundedness carbstantially speed upinimax rates, showing
that the rates proven in KY are not minimax optimal for these classes. Tleglying insight is as
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follows: when the sparsity grows, imposing global boundednessssvariate functions substan-
tially reduces the effective dimension from its original size a lower dimensional quantity, which
we denote bysKg(s,n), and moreover, the quantitfg(s,n) — 0 whens = Q(y/n) as described
below.

Recall the definition (4) of the function clagg s 5. The model considered in the KY paper is
the smaller function class B

FasnB):= U H(SB),
Sc{1,2,...,d}
|Si=s

where#(SB) := {f =Y csfj | fj € #, andf; € B,(1) V j € Sand| f|. < B}.
The following theorem provides sharper rates for the Sobolev casehichvweach univariate

Hilbert space has eigenvalues decayingias k=2* for some smoothness parameter 1/2. Our
probabilistic bounds involve the quantity

6n::max( slog(d/s) B(SE|095)1/4)7 (14)

n ’ n
and our rates are stated in terms of the function

KB(S, n): Iogs( —1/2a 1/(4O(+2))20(71’
where it should be noted thKg(s,n) — 0 if s= Q(y/n).

With this notation, we have the followingpper boundon the minimax risk over the function
class? ,(B).

Theorem 3 Consider any RKH3{ with eigenvalue decay®®, and uniformly bounded eigenfunc-
tions (i.e.,||¢x||» < C < o for all k). Then there are universal constarits, cz,K) such that with
probability greater tharll — 2exp( — c1nd7), we have

min  max |f2f*||§<K2(1+B)cSn—z§“+1<KB(s,n)+n—1/<2“+1)|og(d/s)>, (15)
f

T ()

Me (%7 ,,(B))
as long as B2 = Q(log(1/8y)).

We provide the proof of Theorem 3 in Section 4.3; it is based on analyaregtly the least-
squares estimator ovef; }[( B). The assumption thdjtpc||. < C < o for all k includes the usual
Sobolev spaces in Whl0h< are (rescaled) Fourier basis functlons An immediate consequence of
Theorem 3 is that the minimax rates over the function cljﬁd§ 5{ ) can be strictly faster than
minimax rates for the clas$y s s, Which does not impose global boundedness Recall that the
minimax lower bound from Theorem 2 (b) is based on the quantity

2a

1,.2_  slog(d o
mp(fd,s.}[) = Cl{s(ﬁ) 2041 | Sog(n/S)} — Clsn*%_,_l <1+ nfl/(2(1+l) |Og(d/3)> ’
for a universal constafl;. Note that up to constant factors, the achievable rate (15) from Timedre

is the same except that the term 1 is replaced by the funkiés n). Consequently, for scalings of
(s,n) such thaKg(s,n) — 0, global boundedness conditions lead to strictly faster rates.
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Corollary 3 Under the conditions of Theorem 3, we have

Mp(Fas90) - Ci(1+n Y2+ Djog(d/s))
Mp(Fy's 5/ (B)) — Ck2(1+B) (Ka(s,n) +n-Y(2 1 log(d/s))

whenever B= O(1) and Kg(s,n) — 0.

— 400

3.5.1 REMARKS

The quantityKg(s, n) is guaranteed to decay to zero as long as the sparsity Bxglews in a non-
trivial way with the sample size. For instance, if we have Q(,/n) for a problem of dimension
d = O(nP) for any B > 1/2, then it can be verified thatg(s,n) = o(1). As an alternative view
of the differences, it can be noted that there are scalings,sfd) for which the minimax rate
IMp(Fys90) OVEr Fys g is constant—that is, does not vanishres: +co—while the minimax rate
mp(_{]:dfsi}[(B)) does vanish. As an example, consider the Sobolev class with smoothreg8s

corresponding to twice-differentiable functions. For a sparsity isde®(n*/°), then Theorem 2(b)
implies thatip (7 s 7) = Q(1), so that the minimax rate ovéy s 4 is strictly bounded away from
zero for all sample sizes. In contrast, under a global boundednediion, Theorem 3 shows that
the minimax rate is upper bounded®®& (7, (B)) = O(n~**/logn), which tends to zero.

In summary, Theorem 3 and Theorem 2(b) together show that the minimaxawee?, ¢ 5
and 7;,35{(8) can be drastically different. Thus, global boundedness is a stringewiiton in
the high-dimensional setting; in particular, the rates given in Theorem ®bé¢hdnskii and Yuan
(2010) are not minimax optimal when= Q(y/n).

4. Proofs

In this section, we provide the proofs of our three main theorems. For ciarfisesentation, we
split the proofs up into a series of lemmas, with the bulk of the more techniaatnengts deferred
to the appendices. This splitting allows our presentation in Section 4 to be eblativreamlined.

4.1 Proof of Theorem 1

At a high-level, Theorem 1 is based on an appropriate adaptation to thganametric setting of
various techniques that have been developed for sparse lineassiegrée.g., Bickel et al., 2009;
Negahban et al., 2009). In contrast to the parametric setting where alassidounds are suf-
ficient, controlling the error terms in the non-parametric case requires rwemeed techniques
from empirical process theory. In particular, we make use of varionsesdration theorems for
Gaussian and empirical processes (e.g., Ledoux, 2001; Massabt, PBer, 1989; van de Geer,
2000), as well as results on the Rademacher complexity of kernel cléBarkett et al., 2005;
Mendelson, 2002).

At the core of the proof are three technical lemmas. First, Lemma 1 provwdepger bound
on the Gaussian complexity of any function of the fofra Z?:l fj in terms of the normg - || 5
and|| - ||n1 previously defined. Lemma 2 exploits the notion of decomposability (Negadibain
2009), as applied to these norms, in order to show that the error funaionds to a particular
cone-shaped set. Finally, Lemma 3 establishes an upper bound bf(jeerror of our estimator
in terms of theL?(P,) error. The latter lemma can be interpreted as proving that our problem
satisfies non-parametric analog of a restricted eigenvalue condition (Eické, 2009), or more
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generally, of a restricted strong convexity condition (Negahban et &9)20he proof of Lemma 3
involves a new approach that combines the Sudakov minoration (Pisi€X) W& a one-sided tail
bound for non-negative random variables (Chung and Lu, 2006n&ihand Mason, 1996).
Throughout the proof, we useandc;, i = 1,2, 3,4 to denote universal constants, independent
of (n,d,s). Note that the precise numerical values of these constants may changknido line.
The reader should recall the definitionswgfandy, from Equations (8) and (9) respectively. For a
subsetA C {1,2,...,d} and a function of the fornf = Z?:l f;, we adopt the convenient notation

[fallng 1= Z\Hfjllm and [[falls1 1= Z\Hfjlla{- (16)
IE

Je

We begin by establishing an inequality on the error funcian= f — f*. Sincef and f* are,

respectively, optimal and feasible for the problem (6), we are guadntet,(f) < £(f*), and
hence that the error functiahsatisfies the bound

n

_Zi(Wi +F =¥+ Al ¥ ln2+nll Tl or2-

12 s -~ ~ =~ 1
%i;(wi + =Y —A06))2+ Al Tllna+onll f a1 < on
Some simple algebra yields the bound

1 ™ 2 1 n ~ — = 1 n -~ ~ o~
SIBIR <15 3 w0+ 5= Il 5 B06)|+ Al Bllna +pnlBl (17)

Following the terminology of van de Geer (2000), we refer to this boundiabasic inequality

4.1.1 ONTROLLING DEVIATION FROM THE MEAN

Our next step is to control the error due to estimating the mgan f|. We begin by observ-
ing that this error term can be written gs— f = 25", (yi — f). Next we observe that — f =
Yjesfj(%j) +wi is the sum of thes independent random variablés(x;j ), each bounded in ab-
solute value by one, along with the independent sub-Gaussian noiserveonsequently, the
variabley; — f is sub-Gaussian with parameter at mg&+1. (See, for instance, Lemma 1.4
in Buldygin and Kozachenko 2000). By applying standard sub-Gaugaiabounds, we have
P(lyn— f| > t) < 2exp(—2(”Tt21)), and hence, if we define the evefity,) = {|yn — f| < V/Syn},
we are guaranteed

a

P[C(vn)] = 1—2exp(——,").

For the remainder of the proof, we condition on the ev€({,). Under this conditioning, the
bound (17) simplifies to:

1~ 1n —~ —~ ~
2IBIRS IS > WBOO|+VSBln AnlBlns + onlBls
i=

where we have applied the Cauchy-Schwarz inequality to Mig;lﬁ(m} < HEHn.

402



MINIMAX -OPTIMAL RATES FORSPARSEADDITIVE MODELS

4.1.2 ONTROLLING THE GAUSSIAN COMPLEXITY TERM

The following lemma provides control the Gaussian complexity term on the r'zghrﬂ—l$ide of
inequality (17) by bounding the Gaussian complexity for the univariatetiomeA;, j = 1,2,...,d

in terms of their|| - ||, and|| - ||, norms. In particular, recalling that = k max{ '09

have the following lemma.

, Vn}, we

Lemma 1l Define the event
. 10 - -
Tom) i ={¥ 1= 120005 3 Wy 04)| < 8 181 L+ 80 1
i=

Then under the conditionyp = Q(log(1/yn)), we have
P(T (yn)) > 1— crexp(—Cony?).

The proof of this lemma, provided in Appendix B, uses concentration of uneder Lipschitz
functions of Gaussian random variables (e.g., Ledoux, 2001), conhbiitle peeling and weighting
arguments from empirical process theory (Alexander, 1987; van ée, @e00). In particular, the
subset selection ten(r?'%—gd) in Theorem 1 arises from taking the maximum overdatomponents.

The remainder of our analysis involves conditioning on the e¥égt) N C(yn). Using Lemma 1,
when conditioned on the evefit(y,) N C(yn) We have:

IAIZ < 2V/SVnllA]In+ (16yn+2An) [1B]]n1 + (16¥3+200) [A]] ¢ 1- (18)

4.1.3 EXPLOITING DECOMPOSABILITY

Recall thatS denotes the true support of the unknown functfon By the definition (16), we can
write || Afln1 = ||As|ln1+ HAscHn 1, WhereAg : = ZJeSAJ andAg = ZJGSPAJ Similarly, we have an
analogous representation mmuﬂ’l. The next lemma shows that conditioned on the e@@,),

the quantitie${3||5{’1 andllﬁlln,l are not significantly larger than the corresponding norms as applied
to the function)s.

Lemma 2 Conditioned on the events(y,) and C(yn), and with the choices, > 16y, and p, >
16y2, we have

~ ~ ~ ~ 1
AnllAlln.1+ PallBlls,1 < 4AnllAs]ina +4pnl|As 51 + stzn- (19)

The proof of this lemma, provided in Appendix C, is based on the decomilibsédee Negahban
etal. 2009) of thef - ||, ; and|| - [|n,2 norms. This lemma allows us to exploit the sparsity assumption,
since in conjunction with Lemma 1, we have now bounded the right-hand sitle afequality (18)
by terms involving onlﬁs.

For the remainder of the proof of Theorem 1, we assipie 16y, andpp > 16y2n. In particular,
still conditioning onC(yn) N7 (yn) and applying Lemma 2 to inequality (18), we obtain

1812 < 2y/Synl|Blln + 3Aal[B]In.1 + 3pnl[Al| s
. —~ —~ 3
< 2\[57\nHAHn+12)\nHAS||n,1+12l3nHASHﬂ{,1+?2$n7
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Finally, since botif; andf; belong taB,(1), we have|A; |5 < || fj | s+ || ;]| s < 2, which implies
that||As||s, 1 < 2s, and hence

187 < 2v/SAnB]|n + 1240 | As]In 1 + 255Pn- (20)

4.1.4 UPPERBOUNDING ||Ag]|n1

The next step is to control the terMS”n71 = zjesuﬁj |In that appears in the upper bound (20).

Ideally, we would like to upper bound it by a quantity of the ord&||As|> = v/5\/3 jes|Ajl13.
Such an upper bound would follow immediately if it were phrased in terms ofdpalation|| - ||2-
norm rather than the empiricdl-||, norm, but there are additional cross-terms with the empirical
norm. Accordingly, a somewhat more delicate argument is required, whegbrewide here. First
define the events

(M) = {1Aj]In < 2|Aj |2+ An},

andA4(\n) = m‘j’:lﬂl,- (An). By applying Lemma 7 from Appendix A with= A, > 16y, andb =2, we

conclude thanﬁj In < 2||E,- |2+ An with probability greater than 1 ¢; exp(—c;nA2). Consequently,
if we define the eventl(An) = NjesA;(An), then this tail bound together with the union bound
implies that

P[A%(An)] < s cLexp(—Cam\g) < crexp(—Cmy), (21)
. logs e
where we have used the fact thgt= Q(/ =="). Now, conditioned on the everit(A,), we have
IBslni= S [Bjlln < 2 [|Aj[l2+hn (22)

< 28| Agll2+Shn < 2V/S[A]|2+ Shn.
Substituting this upper bound (22) @ESHM into our earlier inequality (20) yields
1813 < 2v/S\l|A]ln+24y/SAn B+ 125\ + 25spn. (23)

At this point, we encounter a challenge due to the unbounded nature &iration class. In
particular, if |Al|> were upper bounded t@max(”ﬁ”n,\fs}\n,\/sﬁ), then the upper bound (23)
would immediately imply the claim of Theorem 1. If one were to assume globaldealmess of
the multivariate functions and f*, as done in past work of Koltchinskii and Yuan (2010), then an
upper bound onﬂEHz of this form would directly follow from known results (e.g., Theorem 2.1 in
Bartlett et al. 2005.) However, since we do not impose global boundedne need to develop a
novel approach to this final hurdle.

4.1.5 ONTROLLING ||EH2 FOR UNBOUNDED CLASSES

For the remainder of the proof, we condition on the ev@(k,) N7 (yn) N C(Yn). We split our
analysis into three cases. Throughout the proof, we make use of thétgua

3n 1= Bmax(v/S\n, /50n), (24)
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whereB € (1,) is a constant to be chosen later in the argument.
Case L:If ||Alj2 < ||Alln, then combined with inequality (23), we conclude that

18]12 < 2¢/SAnl|A[|n + 24+/S\n||B]|n + 12502 + 258p;,.

This is a quadratic inequality in terms of the quantjfwn, and some algebra shows that it implies
the bound|A||, < 15max y/Shn, \/SPn). By assumption, we then hay{||, < 15max/3An, \/Pn)
as well, thereby completing the proof of Theorem 1.

Case 2:If |A]2 < n, then together with the bound (23), we conclude that

1812 < 2¢/SAn|[A]|n + 24+/SAnBn + 125\2 + 255,

This inequality is again a quadratic j]m&Hn, moreover, note that by definition (24) df, we have
SA24-spp, = (62) Consequently, this inequality implies tH|, < C&,, for some constar@. Our
starting assumption implies thmuz < &, so that the claim of Theorem 1 follows in this case.

Case 3:0therwise, we may assume th)aﬁHz > &, and||A|l2 > ||A|n. In this case, the inequal-
ity (23) together with the bounii||» > ||A||, implies that

IA]3 < 2v/S\n| ]2+ 24v/S\n |12 + 125\ + 256pn. (25)

Our goal is to establish a lower bound on the left-hand-side—namely, theityuigh | 2—in terms
of ||A||3. In order to do so, we consider the function clag3n, pn) defined by functions of the form
9= 7y%_,0j, and such that

1
Anll9lina+Pnllgllar1 < 4Anl|Gs|ina +4Pnl|Os|l 571 + 355 (26)
lgsllin < 2V/9|gs[2+shn and (27)
lglln < 19]2- (28)

Conditioned on the event®(yn), 7 (Yn) andC(Yn), and with our choices of regularization parameter,
we are guaranteed that the error functidsatisfies all three of these constraints, and hence that
Ac G (An,pn). Consequently, it suffices to establish a lower bound|gi that holds uniformly
over the classj (An, pn). In particular, define the event

B(hn, ) :={\guﬁ > lgl2/2 forallge G(Anpn) such that [lgf2 > 6}

The following lemma shows that this event holds with high probability.

Lemma 3 Under the conditions of Theorem 1, there are universal constasisoh that

P[B(An,Pn)] > 1— crexp(—cony?).

We note that this lemma can be interpreted as guaranteeing a version otedsttiong convex-
ity (see Negahban et al., 2009) for the least-squares loss functionblguai@apted to the non-
parametric setting. Since we do not assume global boundedness, thiefpitde lemma requires
a novel technical argument, one which combines a one-sided tail boumdrienegative random
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variables (Chung and Lu, 2006; Einmahl and Mason, 1996) with the $udakioration (Pisier,
1989) for the Gaussian complexity. We refer the reader to Appendix Ihvéodetails of the proof.

Using Lemma 3 and conditioning on the evétihn, p,), we are guaranteed thigh||2 > ||EH§/2,
and hence, combined with our earlier bound (25), we conclude that

113 < 4v/An[|A]|2 -+ 48/Shn]|A]|2 +245A7 + 5080
HenceHEHn < HEHZ < Cmaxy/S\n,/SPn), completing the proof of the claim in the third case.

In summary, the entire proof is based on conditioning on the three evé&mts, A4(A,) and
B(An, pn). From the bound (21) as well as Lemmas 1 and 3, we have

P [T(Vn> NA(An) NV B(An, Pn) N C(Vn)] >1-¢ exp( - CZ”V%)7

thereby showing that md¥ f — £*[|2, || — f*||3} < Cmax(sA2,sp,) with the claimed probability.
This completes the proof of Theorem 1.

4.2 Proof of Theorem 2

We now turn to the proof of the minimax lower bounds stated in Theorem 2.dtbrdarts (a) and
(b), the first step is to follow a standard reduction to testing (see, e.g.miesKii, 1978; Yang and
Barron, 1999; Yu, 1996) so as to obtain a lower bound on the minimax®tsQtF  »/) in terms of
the probability of error in a multi-way hypothesis testing. We then apply difiteierms of the Fano
inequality (see Yang and Barron, 1999; Yu, 1996) in order to lowentddbe probability of error
in this testing problem. Obtaining useful bounds requires a precise thiaration of the metric
entropy structure offy s 4, as stated in Lemma 4.

4.2.1 REDUCTION TOTESTING

We begin with the reduction to a testing problem. L&t, ..., fM} be ad,-packing of ¥ inthe||-||»-
norm, and le® be a random variable uniformly distributed over the indeXset = {1,2,...,M}.
Note that we are usindyl as a shorthand for the packing numid(o,; 7, || - ||2). A standard
argument (e.g., Has’'minskii, 1978; Yang and Barron, 1999; Yu, 188%) yields the lower bound

inf supP[||f— f*||3 > &2/2] > infP[® # @),
f freF (©]

where the infimum on the right-hand side is taken over all estim&dinat are measurable functions
of the data, and take values in the index[&&lt

Note thaﬂP[é # O] corresponds to the error probability in a multi-way hypothesis test, where
the probability is taken over the random choice@fthe randomness of the design poiXts: =
{x}/'1, and the randomness of the observati¥fis= {y;}!' ;. Our initial analysis is performed
conditionally on the design points, so that the only remaining randomness ifbseevationsy;’
comes from the observation noié®; }! ;. From Fano’s inequality (Cover and Thomas, 1991), for

. ~ ~ Ixn(©;Y]")+log2
any estimato®, we haveP[©@ £ 0O | X{'| > 1— e L wherelxn(©;Y]") denotes the mutual
information betweer® andY;' with X[ fixed. Taking expectations ovet;, we obtain the lower
bound
Exp [Ixn(©;Y]")] 4log2

logM

P[O#£06]>1- (29)
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The remainder of the proof consists of constructing appropriate paskitsgof#, and obtaining
good upper bounds on the mutual information term in the lower bound (29).

4.2.2 GONSTRUCTINGAPPROPRIATEPACKINGS

We begin with results on packing numbers. Recall thaM@g; 7, || - ||2) denotes thé-packing
entropy of  in the|| - |2 norm.

Lemma4 (a) Foralld< (0,1) and s< d/4, we have
I0gM(5; 7, | 2) = O(10gM(- > By (1), - ) +tog ).
) I \/g! 9 S

(b) For a Hilbert class with logarithmic metric entrogt2) and such that|f||> < || f|| 4, there
exists se{ f1,..., fM} withlogM > C{slog(d/s) +sm}, and

5 < ||f*—fl, <85 forallk#¢e{1,2,...,M}

The proof, provided in Appendix E, is combinatorial in nature. We now tartie proofs of parts
(a) and (b) of Theorem 2.

4.2.3 RROOF OFTHEOREM 2(A)

In order to prove this claim, it remains to exploit Lemma 4 in an appropriate wal/t@ upper
bound the resulting mutual information. For the latter step, we make use of tieeatjeed Fano
approach (e.g., Yu, 1996).

From Lemma 4, we can find a sgt?,..., fM} that is ad-packing of ¥ in £,-norm, and such
that|| f* — f¢||, < 85 for all k,£ € [M]. Fork=1,...,M, let QX denote the conditional distribution
of Y] conditioned onX{! and the even{® = k}, and letD(QX||Q‘) denote the Kullback-Leibler
divergence. From the convexity of mutual information (Cover and Thoh@81), we have the
upper boundxs(©;Y7") < @ zl'}f'gle(Qk | Q). Given our linear observation model (5), we have

1 n 5 ank_fEHZ
I A Ky, Oy, _
D(Q Q) = 555 3 (00) = F(x))" = =,
and hence
Exp [Ixp (Y], © <77§Ex1 [l % — £4)/2] ;ka £)3.

Since our packing satisfigis — £¢||3 < 6432, we conclude that

Exo [Ixp(Y'; ©)] < 32n8°.

From the Fano bound (29), for ady> 0 such that%ﬂlogz < 211, then we are guaranteed that
[@ #0] > 3 . From Lemma 4(b), our packing set satisfiesNbg C{sm+ slog(d/s) } so that so
that the ch0|cee32 c{m4 slog( d/s }, for a suitably smalC’ > 0, can be used to guarantee the

error boundP[© # O] > 3.
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4.2.4 RROOF OFTHEOREM2(B)

In this case, we use an upper bounding technique due to Yang anchBA8@0) in order to upper
bound the mutual information. Although the argument is essentially the sameesdtrdit fol-
low verbatim from their claims—in particular, there are some slight differemice to our initial
conditioning—so that we provide the details here. By definition of the mutuaiirdton, we have

M
Ixp(©;Y]) = Z Q|| Py),

whereQX denotes the conditional distribution ¥f given® = k and still with X{' fixed, wherea®y
denotes the marginal distribution B¢.

Let us define the notion of a covering number, in particular for a totally dedmmetric space
(G,p), consisting of a sef and a metri : G x G — R. An g-covering set ofG is a collection
{f1,..., N} of functions such that for all € G there existk € {1,2,...,N} such thap(f, f¥) <e.
Thee-covering numbeN(g; G, p) is the cardinality of the smallestcovering set.

Now let{g!,...,g"} be ane-cover of F in the || - || norm, for a tolerance to be chosen. As
argued in Yang and Barron (1999), we have

M
Ixn(©;Y]) = Z (QV || Py) <DQ"H ZIP"

whereP! denotes the conditional distribution 6f giveng’ andX{". For eacl?, let us choosg’ ¥
as follows:¢*(k) € argmin—_;__n||g’ — fX||2. We then have the upper bound

M
n, o
Ixp(©;Y]) < z logN + 5 1g"* — |3}

Taking expectations ovef;', we obtain

. 1Y n ) eky2
Exn[lxn(©;Y])] < Mk;{ |09N+§Ex{‘ﬂ|9 ) — £k|2}

n 2
<logN + > £,
where the final inequality follows from the choice of our covering set.

From this point, we can follow the same steps as Yang and Barron (199®).pdlynomial
scaling (13) of the metric entropy guarantees that their conditions are eshtiafid we conclude
that the minimax error is lower bounded by a¥y> 0 such thand? > ClogN(&,; 7, || -||2). From
Lemma 4 and the assumed scaling (13), it is equivalent to solve the equation

ne? > c{slog<d/s>+s<¢§/6n>l/“},

slog( d/s

from which some algebra yieldg = C{ =%~ 4 (1) 2““} as a suitable choice.
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4.3 Proof of Theorem 3

Recall the definition offd’js}[(B) and# (S B) from Section 3.5; note that it guarantees thii|| <

B. In order to establish upper bounds on the minimax rate?{i®)-error overfy 4(B), we ana-
lyze a least-squares estimator—albit the same as the original M-estimator (6)—constrained to
fd&}[( B), namely

n

fearg min 5 Zi(yi —yn—f(x))2 (30)

fefrdsﬂ{(

Since our goal is to upper bound the minimax rate.3(P) error, it is sufficient to upper bound
the L?(P)-norm of f — f* wheref is any solution to (30). The proof shares many steps with the
proof of Theorem 1. First, the same reasoning shows that therrerf — f* satisfies the basic
inequality

iiﬁz( f!ZW. \+|yn—f\\—ZA %)
=

Recall the definition (14) of the critical raf. Once again, we first control the term error due
to estimating the meafy, — f| = |11, (yi — f)|. Since|f*(x)| is at mostB andw; is standard
Gaussian and independent, the random variblef = *(x) +w; is sub-Gaussian with parameter
vB2+1. The samples are all i.i.d., so that by standard sub-Gaussian tail baveHaye

. nt?
—f <2 ——).
Setting4(8,) = {|yn — f| < Bdn}, itis clear that
ndZ

Pl4(dn)] >1— 2exyi——)
For the remainder of the proof, we condition on the evagd), in which case Equation (17)
simplifies to

1~ 12 ~
SIBIE < [ =5 Wil ()] +B3n|A]n. (31)

Here we have used the fact 3ty ; A(x)| < ||A]n, by the Cauchy -Schwartz inequality.

Now we control the Gaussian complexity te@zI 1WA ] For any fixed subsed, define
the random variable

Zo(w,t; H(S2B)) := sup le. (32)
Aes(S2B)
Alln<t

We first bound this random variable for a fixed sulfSef size %, and then take the union bound
over all () possible subsets.
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Lemma5 Assume that the RKHE has eigenvaluef)y_, that satisfy u~ k=2* and eigenfunc-
tions such thaf|¢x/|» < C. Then we have

N st/%logs 2
P[3t > 0 such thatZn(w,t; (S 2B)) > 16BC - +3t8n] < crexp(—9ndy).

The proof of Lemma 5 is provided Appendix F.1. Returning to inequality (&%) note that by
definition,

f, ZWI x)| < maxZn(w 1A]|n; #H (S, 2B)).

Lemma 5 combined with the union bound implies that

o ~ st/dlogs ~
1A #(S.2B)) < 16BCy/ 2295 | 35,14l
IS=2s n

maxZ(w, ||A

with probability at least 1 ¢ (5) exp(—3nd2). Our choice (14) 0B, ensures that this probability
is at least 1- ¢; exp(—c,nd?). Combined with the basic inequality (31), we conclude that

~ sl/“ logs
18|12 < 32BCy/ 9% | 788, B (33)

with probability 1— c; exp(—cond?). R
By definition (14) ofdy, the bound (33) implies thafA|ln = O(8n) with high probability. In
order to translate this claim into a bound |phl|», we require the following result:

Lemma6 There exist universal constarts ¢, cz) such that for all t> cd,, we have

llgllz _

> = llgln = ngHz forall g € #(S 2B) with ||g|]2 > t (34)
with probability at leastl — c; exp(—czntz).

Proof The bound (34) follows by applying Lemma 7 in Appendix A wigh= # (S, 2B) andb = 2B.
The critical radius from equation (35) needs to satisfy the reladigr(en; H (S, 2B)) < 8—%. From

Lemma 11, the choicg? = 320BC/ 5/7'095 satisfies this relation. By definition (14) &f, we have
On > ce, for some universal constao,twh|ch completes the proof. [ |

This lemma implies that with probability at least; exp(—Cc2Bnd2), we have||A||2 < 2||A||n+
Cdn. Combined with our earlier upper bound (||, this completes the proof of Theorem 3.

5. Discussion

In this paper, we have studied estimation in the class of sparse additive rnroddiEh each uni-
variate function lies within a reproducing kernel Hilbert space. In conjancTheorems 1 and 2
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provide a precise characterization of the minimax-optimal rates for estimgtimghe L?(PP)-norm
for various kernel classes with bounded univariate functions. Ttlasses include finite-rank ker-
nels (with logarithmic metric entropy), as well as kernels with polynomially decpgigenvalues
(and hence polynomial metric entropy). In order to establish achievatiele, re analyzed a sim-
ple M-estimator based on regularizing the least-squares loss with two kirfgased norms, one
defined by the univariate Hilbert norm and the other by the univariate @alimorm. On the other
hand, we obtained our lower bounds by a combination of approximatiometti@and information-
theoretic techniques.

An important feature of our analysis is we assume only that each univanatgon is bounded,
but do not assume that the multivariate function class is bounded. As skstis Section 3.5,
imposing a global boundedness condition in the high-dimensional settingazhtola substantially
smaller function classes; for instance, for Sobolev classes and sggardi?y,/n), Theorem 3 shows
that it is possible to obtain much faster rates than the optimal rates for the tlgsarse additive
models with univariate functions bounded. Theorem 3 in our paper stimtshe rates obtained
under global boundedness conditions are not minimax optimal for Sobpémes in the regime
s=Q(VM).

There are a number of ways in which this work could be extended. Ou eamsidered only
a hard sparsity model, in which at masto-ordinate functions were non-zero, whereas it could
be realistic to use a “soft” sparsity model involvidig-norms. Some recent work by Suzuki and
Sugiyama (2012) has studied some extensions of this type. In addition alysiarnere was based
on assuming independence of the covariate$ = 1,2,...d; it would be interesting to investigate
the case when the random variables are endowed with some correlatior®ne might expect
some changes in the optimal rates, particularly if many of the variables arglstrdependent.
Finally, this work considered only the function class consisting of sums -@frdmate functions,
whereas a natural extension would be to consider nested non-paractegses formed of sums
over hierarchies of subsets of variables.
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Appendix A. A General Result On Equivalence Of L?(IP) And L?(PP,) Norms

Since it is required in a number of our proofs, we begin by stating andmy@ageneral result that
provides uniform control on the difference between the empitied} and populatiorj| - |2 norms
over a uniformly bounded function clags We impose two conditions on this class:

(a) itis uniformly bounded, meaning that there is sdme 1 such that|g||. <bforallge G.

(b) itis star-shaped, meaning thagiE G, thenAge G for all A € [0,1].
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For each co-ordinate, the Hilbert bl (2) satisfies both of these conditions; we upe- B, (2).
(To be clear, we cannot apply this result to the multivariate function clgssy, since it is not
uniformly bounded.)

Let{oi}] , be an i.i.d. sequence of Rademacher variables, afa;lgt ; be an i.i.d. sequence
of varlables fromX drawn according to some distributidh For eacht > 0, we define the local

Rademacher complexity
n

1
Qn(t, G) :=Exo[ sup i 0ig(x)]
lallz<t 1=
geg

We lete, denote the smallest solution (of size at legsy/h) to the inequality

g2

€ =1 35
Qj,n( ns g) 407 ( )
where our scaling by the constant 40 is for later theoretical conveni&uoh are, exists, because
the star-shaped property implies that the funcii@gm(t, G)/t is non-increasing in. This quantity
corresponds to the critical rate associated with the population Rademamhplezity. For any
t > €n, we define the ever (t) := {supgeg [/l0lln—0l2| > %}

llgll2<t

Lemma7 Suppose thatg|l. < b for all g € G. Then there exist universal constalfits, c;) such
that for any t> ¢,

P[£(t)] < crexp(—cont?).

In addition, for any g= G with ||g||> > t, we have|g|ln < ||g]l2(1+ ), and moreover, for all g G
with ||g||2 > bt, we have

1 3

= < < =

5lglz < llgln = 5llgll2, (36)
both with probability at leasl — c; exp(—czntz).

Lemma 7 follows from a relatively straightforward adaptation of knownliege.g., Lemma 5.16
in van de Geer, 2000 and Theorem 2.1 in Bartlett et al., 2005), so we onitdbé&details here.

Appendix B. Proof of Lemma 1

The proof of this lemma is based on peeling and weighting techniques fromieahpiocess theory
(Alexander, 1987; van de Geer, 2000) combined with results on theRacimacher and Gaussian
complexities of kernel classes (Bartlett et al., 2005; Mendelson, 26@R2)each univariate Hilbert
spaceH; = #, let us introduce the random variables

(37)
wherew; ~ N(0,1) are i.i.d. standard normal. The empirical and population Gaussian complexities
are given by

(W,t,}[ sup le.gJ x|J and  Zy(w,t; H) ::}EX[ sup Elw.gJ
g ly<a N lgjlle<2 M
llgjlln<t lgjll2<t

Qun(t,#) :=Ey[Zn(w;t,#)] and Qun(t,H) :=Ew[Za(w;t, #)].
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For future reference, we note that in the case of a univariate Hilbaxdesfi’ with eigenvalues
{M}e_1, results in Mendelson (2002) imply that there are universal constants, such that for
all t> > 1/n, we have

Z mln{tz,pk}]l/2 Qun(t, H) z min{t?, p} | 12 (38)

for all j. The same bounds hold for the local Rademacher complexity in our spas&bf repro-
ducing kernel Hilbert spaces.
LetVp; > 0 denote the smallest positive solutionf the inequality

Qun(r, H) < 4r2, (39)

The functionQMn(r, ) defines the local Gaussian complexity of the kernel class in co-ordinate
j. Recall the bounds (38) that apply to both the empirical and populationsidausomplexities.
Recall that the critical univariate ratg is defined in terms of the population Gaussian complexity
(see Equation (8)).

B.1 SomeAuxiliary Results

In order to prove Lemma 1, we also need some auxiliary results, stated keloswanas 8 and 9.

Lemma8 For any function class; and alld > 0, we have

P[|Zn(Wt, G) — Qun(t, G)| > 8t] < 2exp(—ngz), and (40)
P[|Za(W,t, G) — Qun(t, G)| > 8t] < 2exp< — ngz> (41)
Proof We have
2wt G) - Za(wt. )| < sup o 21 )< ol wl
llglln<t

showing thatfn(vv,t, G)is %—Lipschitz with respect to thé, norm. Consequently, concentration
for Lipschitz functions of Gaussian random variables (see LedowX,)2@elds the tail bound (40).
Turning to the quantity,(w,t, #), a similar argument yields that

Za(Wit, G) — Zn(W,t, G)| < Ey| sup f|Z

H9H2<t

< sup Ex[(Z Y )Y w—w(2 < — [w—w|2,
wup (3 7
g%t

where the final step uses Jensen’s inequality and the fadEgfgftx )] <t?foralli=1,...,n. The
same reasoning then yields the tail bound (41). |
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Our second lemma involves the eveity,) := {Vnj <y, forallj=1,2,...,d}, where we
recall the definition (39) 0¥, j, and thaty, := K max{vn, 1/ %}

Lemma9 Forall 1< j <d, we have
P[Unj < Yn] > 1— crexp(—Cony2).

Pr oof

We first bound the probability of the evefit,, j > yn} for a fixed 7. Letg e B, (1) be any
function such thafg||> >t > v,. Then conditioned on the sandwich relation (36) viitk 1, we are
guaranteed thag||, > 5. Taking the contrapositive, we conclude thjgt|, < 5 implies||g|l> <t,
and hence thzﬁn(w,t/Z, H) < Znp(w,t,#H) for all t > vy, under the stated conditioning.

For anyt > v,, the inequalities (36), (40) and (41) hold with probability at least
1— ¢ exp(—cont?). Conditioning on these inequalities, we cantsety, > vy, and thereby obtain

®

@v,n(ynaj'[) < 2 (W, Yn, H) + Y2
(b)
S Wzym +VZ
(c)
< Qun(2yn, H) + 2V
(d)
< 4ys,

where inequality (a) follows from the bound (40), inequality (b) follows ith&al argument, in-
equality (c) follows from the bound (41), and inequality (d) follows singe:2 €, and the definition
of €.

By the definition omej as the minimak such thatQMn(t,}[) < 4t2, we conclude that for
each fixedj = 1,...,n, we havev, ; < y, with probability at least 1 c; exp(—czny?). Finally, the

uniformity overj = 1,2,...,d follows from the union bound and our choiceyaf> k 'Ogd

B.2 Main Argument To Prove Lemma 1

We can now proceed with the proof of Lemma 1. Combining Lemma 9 with the uniandoaver
j=1,2,...,d, we conclude that that

P[D(Yn)] > 1 — c1exp(—Cony?),

as long as, > 1. For the remainder of our proofs, we condition on the e¥@fy,). In particular,
our goal is to prove that

1 n
52069 <C LRIl [il}  forall £y € o (42)
i=
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with probability greater than 1 c; exp(—cpny?). By combining this result with our choice gf
and the union bound, the claimed bound then follow®ph(y)].

If f; =0, then the claim (42) is trivial. Otherwise we renormalfzey definingg; : = f; /|| fj| 4,
and we write

H),

10 10 A
ﬁi;Wifj(Xii):HfjHﬂ{ Hi;\’vigj(xij> < |11l Zn(w;

where the final inequality uses the definition (37), and the fact|tbalt,, = 1. We now split the
analysis into two cases: (1pj[/n < Yn, and (2)|/g;|n > Yn.

Case 1:||gj||n < Yn. In this case, it suffices to upper bound the quarkitgw; yn, #). Note that
l9jl|2x = 1 and recall definition (37) of the random variable On one hand, sincg, > Vnj by
Lemma 9, the definition of,, j implies thatQMn(yn,ﬂ-[) < 4y2, and hence

E(Za(W; Yo H)] = Qun(Yo; H) < 4.

Applying the bound (40) from Lemma 8 with= y, = t, we conclude thaZ,(w; yn; #) < C y2 with
probability at least 1 c; exp{ — cznyﬁ}, which completes the proof in the case whiggé, < yi.

Case 2:||gj|ln > ¥n. In this case, we study the random variaBlgw; ri; #) for somer; > yn.
Our intermediate goal is to prove the bound

]P’{Zn(w;rj;}[) >Cr; yn} < crexp{ — cony?}. (43)

Applying the bound (40) with =r; andd = y,, we are guaranteed an upper bound of the form
Za(W;rj; H) < Qun(rj, #) 1Y with probability at least 1- crexp( — canya). In order to com-
plete the proof, we need to show tr@;n(r,-,}[) <rjYn. Sincerj > yn > Vp j, we have

Vn,j \g,un<vn,

lgillor< rl'

71
Vn,

where the final inequality uses the fact t@);n(ﬁm JH) < 49%71-. Onthe even®(y,) from Lemma 9,
we hava?n,j < ¥n, from which the claim (43) follows.

We now use the bound (43) to prove the bound (42), in particular via elifiggé operation
over all choices of; = || fj||n/||fjllss. (See van de Geer, 2000 for more details on these peeling
arguments.) We claim that it suffices to considex 1. It is equivalent to show thaig;||» < 1 for
anygj € By(1). Since||gj|l. < [|gjlls < 1, we have|gj|[7 = ;31 07(xj) <1, as required. Now
define the event

12 fi fi
i) = {20 € B (1) 15 06,06)| > 81 vn 1 andfghi® € (v 1)}
=

il 2 il 2

and the set§y = {2™ 1y, < mffjj‘l';{ < 2™y} form=1,2,...,M. By choosingM = 2log,(1/yn),
we ensure that'kan > 1, and hence that if the eveff(yn) occurs, then it must occur for function
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fj belonging to som&, so that we have a functiofj such thatmffj% <tm:=2"y,, and

1 Iyl
20600 > 81 il g™ = Clflto

which implies thatfn(w;tm, H) > 4tym. Consequently, by union bound and the tail bound (43), we
have

P[7j(yn)] <M crexp{ —con2} < crexp{ —chny2}

by the conditiomy? = Q(log(1/yn)), which completes the proof.

Appendix C. Proof of Lemma 2

Define the function

10 P
L(D):= %_Z(Wi + 0= A)) 4+ Aall £+ Bllna + all £+ Al
i=

and note that~byAdefirlition of oM -estimator, the error fAunctioE ‘— f— f* minimizesZ. From
the inequality£(A) < £(0), we obtain the upper bour@HAHﬁ < T1+T,, where

1 n . o _ 1 n__
Tyi= ‘H,ZWiA(Xi)‘—Hyn_ fHﬁ.ZA(Xi) , and
i= I=

d N d ~
T2:=An Y {1 In =1 +850n} +pn S {17 s — 1] 24}
=1 =1

Conditioned on the evert(yn), we have the bounfn — f||2 5" 1 A(x)| < v/Synl|A]ln, and hence
$IA)13 < To+ |2 S WA(X)| + /Synl|Alln, or equivalently

1, -~ 2 1n . 1
0 < S(lAln—v/S) ST2+\ﬁi;wiA<m\+§sﬁn. (44)

It remains to control the terffp. On one hand, for any € S, we have
170 = 1] +Ajlln = =[1Ajlln, and ([ F 1o =117 +Ajll5r = —[1A]]4-

On the other hand, for anye S, the triangle inequality yield§f;' ||n — || f; +Bj lIn < HEJ- |In, with a
similar inequality for the terms involving- || .. Combined with the bound (44), we conclude that

12 ~ ~ ~ ~ 1
0< ﬁ ‘Zi\NiA(Xi) + M {l18slln1— A |ln1} +Pn{llAs]l 31— Al 31} + ESVZn- (45)
1=
Recalling our conditioning on the eveft(y,), by Lemma 1, we have the upper bound

1 n A ~ —~
5, wae)| <8 {¥nllAllna+ VBl }-
=
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Combining with the inequality (45) yields
~ ~ ~ ~ ~ ~ 1
0<8 {ynllBlln1+¥allBllsra} +Aa{1Bslln1 — 1A lln1} +Pa{lBsllsra — 1B 502} + 5

< *HAHnlJr HAHHH?\ {|IBsln1— \AscHnl}ern{HAsHm—HAsch}Jr Wzn,

where we have recalled our choicegdf, pn). Finally, re-arranging terms yields the claim (19).

Appendix D. Proof of Lemma 3

Recalling the definitions (26), (27) and (28) of the function clg$&,, pn) and the critical radius
&, from Equation (24), we define the function cla@é{)\n,pn,én :={he G(An,pn) | hll2= én}
and the alternative event

B'(An,Pn) 1= {Hh||n>62/2 forallhe g()\n,pn,én)}

We claim that it suffices to show th& (A, pn) holds with probability at least 4 c; exp(— czny2
Indeed, given an arbitrary non-zero functga G (An, pn), consider the rescaled functibn= 2 \Lgl\
Sinceg € G(An,pPn) and G(An,pn) is star-shaped, we havec G(An,pn), and alsojh||z = o, by
construction. Consequently, when the evBt@\n, p,) holds, we havéih||2 > &2/2, or equivalently
19112 > ||gl|3/2, showing thatB(An, pn) holds. Accordingly, the remainder of the proof is devoted
to showing thatB’ (A, pn) holds with probability greater than-1c; exp(—cony?). Alternatively, if
we define the random variabla(G') : = sup {8 15N f2(x)}, then it suffices to show that

Z,(G') < 82/2 with high probability.

Recall from Section 4.2.4 the definition of a covering set; here we use tienraf a proper
covering, which restricts the covering to use only members of thg seettingNpr(€; G,p) denote
the propert covering number, it can be shown that(e; G,p) < N(€; G,p) < Npr(¢/2;G,p). Now
letg!,...,gN be a minimald,/8-proper covering of;’ in the L?(Py)-norm, so that for alff € G,
there existg = g* € G’ such that| f —g||, < 8,/8. We can then write

B-5 3 1200 = (8- 1 3 P00+ {7 3 (6906 - 200}

By the Cauchy-Schwartz inequality, we have

1§l<g< )— 2(x) = 1” > (906)  04))(000)+ 1)

¢ e

= [lg—fln \/n;(f(xa)ﬂtg()q))z

By our choice of the covering, we hajig— f | < 8,/8. On the other hand, we have
10 ] ~
\/ni;(f(Xng(Xi))Zg 2|\ |12+ 2|g|12 < \/4?% _ %5,
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where the final inequality follows sindgf ||n = ||glln = 3n. Overall, we have established the upper
boundi s, (g?(x) — f2(x)) < %ﬁ, and hence shown that

, 12 62
< N —n
Z(G) < glrgg.?-),(g'“ (& ”i; }+
whereN = Npr(Sn/S, G',||-|ln). For anyg in our covering set, sincg?(x) > 0, we may apply a
one-sided tail bound (e.g., Theorem 3.5 from Chung and Lu, 2006emmta 2.1 in Einmahl and
Mason, 1996) with = 62/4 to obtain the one-sided tail bound
noa
P[& — = (%) < ex n_), 46
SXOE LS o “

where we used the upper bound (g#x)) < E[g“(x)]. Next using the fact that the variables
{g; (Xj)}(jj:]_ are independent and zero-mean, we have

d 4
g'00] = 3 Bigfoo)+ (5) 3 Ellgtoo k)
1= J
d d d
< 43 Bigiio)+6 5 EiG0x)] 3 EG ()
i= = =
< 432 +60
< 108,

where the second inequality follows singg;||» < ||gj||4 < 2 for eachj. Combining this upper
bound onE[g*(x)] with the earlier tail bound (46) and applying union bound yields

X2
Bl max (8- %5 00} > 5 < expllogherB8. 6 -~ o). (47

k=12....,

It remains to bound the covering entropy Mg ( 6n/8 G, |l |ln). Since the proper covering en-
tropy Iongr(én/S G, |l-|ln) is at most Iog\l(én/16 G', |- |In), it suffices to upper bound the usual
covering entropy. Viewing the samplésl X2,...,%,) as fixed, let us define the zero-mean Gaus-
sian procesgWy,g € G’} viaWy 1= \[ St 1e.g(x.) where the variablege; };! ; are i.i.d. standard
Gaussian variates. By construction, we havé(Vdy—W;))] = ||g— f||2. Consequently, by the Su-
dakov minqration (see Pisier, 1989), foratt 0, we havee/logN(e; G, || - [[n) < AL [supye g We)-
Settinge = &,/16 and performing some algebra, we obtain the upper bound

n

—wogN (3+/16:G". |- [l < ;Es[;»eugpn_ £i9(x)]- (48)

The final step is to upper bound the Gaussian compl@g’t}zup% SiL1€9(x)]. Inthe proof of
geg’
Lemma 1, we showed that for any co-ordingte {1,2,...,d}, the univariate Gaussian complexity
is upper bounded as
1 n
E[ sup — 2 &9, ()] < C{wr+V¥aR; }-
lgjlln<ry M=
19ill 2 <R
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Summing across co-ordinates and recalling the fact that the coi@&tawaty change from line to
line, we obtain the upper bound

10
Ee[sup - s.g( D] < Csup{¥n |9llzn+Y2lI9l1.4}
QGG’ i geg’

spn}

@
< Csup{4yn [lgs|1n+ 4Vallgs] 1.0 + 55
geg’

(b)

< Csup{Vn l|gs||1.n+5Pn}
geg’

(c)

<C sup{vn [21/9]|9]|2 + Syn] +Spn},
geg’

where step (a) uses inequality (26) in the definitiorjafstep (b) uses the inequality; ||, < 2 for
each co-ordinate and henfgs||; 5 < 2s, and our choice of regularization parameggr> yz; and

step (c) uses inequality (27) in the definition@f. Since||g||2 = 5y for all g€ G', we have shown
that

82
[Sng s.g x)] < C{SV + v/Syndn + Spn } < C{ +§”}, (49)
geg’ M

where inequality (d) follows from our choice (24) df, and the constarB can be chosen as large
as we please. In particular, by choosBgufficiently large, and combining the bound (49) with the
Sudakov bound (48), we can ensure that

62

Combined with the earlier tail bound (47), we conclude that

Pl _max Zlg

which completes the proof of Lemma 3.

MO‘”
SN

<exp(—

Appendix E. Proof of Lemma 4

In this section, we present the proofs of Lemma 4 (a) and (b).

E.1 Proof of Part (a)
LetN = M( By (1), - |l2) — 1, and defind = {0,1,...,N}. Consider the set

d
G:={uer?| lullo:="Y I[u; #0] =s}. (50)
j=1
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Note that this set has cardinalitg| = (‘;)NS, since any element is defined by first choossrap-
ordinates are non-zero, and then for each co-ordinate, choosimgeno entry from a total oN
possible symbols.

For eachj = 1,....d, let {0, fl, f? ..., fN} be ad/\/s-packing of B, (1). Based on these
packings of the univariate function classes, we caréutgindex a collection of functions contained
inside F. In particular, anyu € & uniquely defines a functiog' = z‘jj:lg‘f’ € ¥, with elements
o — f;' if uj£0

: 0  otherwise.
Since||u|lo = s, we are guaranteed that at mesi-ordinates of are non-zero, so thate 7.

Now consider two functiong" andh" contained within the clasig”, u € &}. By definition, we
have

) d u v &2 d
U_ 12 = 2 > uj # Vj] o1
g 12 JZlH, |_SZ i # Vil, (51)

Consequently, it suffices to establish the existence of a “large” subsetS such that the
Hamming metrign (u,v) : = Z?:lH[Uj # vj] is at leasts/2 for all pairsu,v € 4, in which case we
are guaranteed thag — h||3 > &%. For anyu € &, we observe that

N\m

{ve& | pu(uv) < = }’ ()(N+1)

This bound follows because we simply need to choose a subset af 2izénereu andv agree, and
the remainings/2 co-ordinates can be chosen arbitrarily(ki+ 1)z ways. For a given sefl, we
write py (u,A4) < 3 if there exists some € A4 such thapy (u,v) < 5. Using this notation, we have

) N+ De),

{ue & | pr(u,a) < ;}' < |4 (g

where inequality (a) follows as long as

1(9) N

AN W

Thus, as long agq| < N*, there must exist some element & such thapy (u, 4) > 3, in which
case we can form the augmented get {u}. Iterating this procedure, we can form a set with
elements such thai (u,v) > 3 forallu,ve 4.

Finally, we lower boundN* We have

(N)®

) )™
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where inequality (i) follows by elementary combinatorics (see Lemma 5 in Raskuaitti, 2011 for
details). We conclude that fer< d/4, we have
. d 5
logN* = Q(slogg +slogM(7S,IB%H(1), 1-112))

thereby completing the proof of Lemma 4(a).

E.2 Proof of Part (b)

In order to prove part (b), we instead Nt= M(3;B,/(1), | ||2) — 1, and then follow the same steps.
Since logN = Q(m), we have the modified lower bound

d
logN* = Q(slogg +sm),
Moreover, instead of the lower bound (51), we have
s

d d
u_ w2 _ up VJ =
g —h|z= JZleJ 15 Z [uj #vj] > g

using our previous result on the Hamming separation. Furthermore, [sfpce< || f;||, for any
univariate function, we have the upper bound

d
o hvuzfzuf“’—f“w%sz 16— 112,

By the definition (50) of&, at most 3 of the termsfjJ — fjJ can be non-zero. Moreover, by
construction we havf;" — f,"||,, < 2, and hence

lg —h"|1Z < 8s.

Finally, by rescaling the functions by838/./s, we obtain a class dfi* rescaled function$g",u c
I'} such that N N
||§]U—hVH§ZE>27 and ”gu_th§564627

as claimed.

Appendix F. Results For Proof Of Theorem 3

The reader should recall from Section 3.5 the definitions of the functicmse@fdfa%(B) and
H(S,B). The function classH (S B) can be parameterized by the two-dimensional sequence
(ajk)jes ken Of co-efficients, and expressed in terms of two-dimensional sequérimsis func-
tions (@) k) jes ke and the sequence of eigenvalifgg)ken for the univariate RKHSH as follows:

2
00 0 5~ )
H(SB):={f= zsz k@ k| ¥ X <1V jeSand|f]. <B}.
{esk=1 &1 Mk
For any integeM > 1, we also consider the truncated function class

M 0 azk
H(SBM):={f= kx| ¥ == <1V jeSand||fll. <B}.
{ Je;kzl e kzl Hk }
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Lemma 10 We have the inclusiofi! (S B,M) C {f € #(S) | TjesS k1 [ajx| < BVM}.

Proof Without loss of generality, let us assume tlat {1,2,...,s}, and consider a functiof =
Yi-1fj € #(S,B,M). Since eaclf; acts on a different co-ordinate, we are guaranteed|thiat =

5_1|/fi|l~. Consider any univariate functioia = M a k@i k- We have
2i=11T] 2 k=12 k@j,
M M 5 1/2 12
>l < VM (3 i) S VM RO < VMG o
k=1 K=1

where step (a) uses the fact thgftf?(X;)] = yi_, a5 > i, 8%, for anyM > 1. Adding up the
bounds over all co-ordinates, we obtain

s M S
lalls = ajk < VMY [[fjlle = VM[flle < VMB,
24 2,

where the final step uses the uniform boundedness condition. |

F.1 Proof of Lemmab

Recalling the definition o, (w;t, H(S, 2B)) stated from (32), let us view it as a function of the
standard Gaussian random vecte#, ..., W,). It is straightforward to verify that this variable is
Lipschitz (with respect to the Euclidean norm) with parameter at myggh. Consequently, by
concentration for Lipschitz functions (see Ledoux, 2001), we have

2
P[Za(W;t, (S 2B)) > E[Zn(W;t, (S 2B))] + 3ty] < exp(— 9”25”).
Next we prove an upper bound on the expectations
Qun(t; H(S2B)) := Ey[ sup ZWI
geH ( SZB
lglln<t
Qun(t; H(S,2B)) 1= IEXW sup le.
geﬂ{ SZB
llgl2<t
Lemma 11 Under the conditions of Theorem 3, we have
~ st/9logs
max{an(t;}[(SZB)), @,n(t;ﬂ(SZB))} < 8BC —

Proof By definition, any functiorg € # (S 2B) has support at mosis2and without loss of gener-
ality (re-indexing as necessary), we assume $at{1,2,...,2s}. We can thus view functions in
(S, 2B) as having domaiiR?s, and we can an operatdr that maps fronR?s to [¢?(N)]?S, via

X= @ k(X) = @ (X)), forj=1,...,2s andk € N.
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Any function ing € # (S, 2B) can be expressed in terms of two-dimensional sequreg¢ and the
functions(®; k) asg(x) = 9(X1, X2, . ..,Xs) = Z,Zil Ske1 Pik(X)ajx = (P(x), &), where((-, -)) is
a convenient shorthand for the inner product between the two arrays.

For any functiorg € A (S 2B), triangle inequality yields the upper bound

sup *| ZW| ) < sup *| ZWI {(P.am(X), a1m) +A2 (52)
ge27£(528) N ge27£(s528) N

l
whereA; : = SURyc24/(s28) F S Wi (P10 (X)), @ Mt 10)) -

F.1.1 BOUNDING THE QUANTITIES Exw[A1] AND Ey[Aq]

By Holder’s inequality and Lemma 10, we have

n
Wi ZB\/
A<t sup Ha,mllumaXIElffbj,k(m)l < IZl D).
\[geZﬂ{SZB ik & vn Vvn

By assumption, we have; «(x;)| < C for all indices(i, j,k), implying thaty " ; ydbj k(X)) is zero-
mean with sub-Gaussian parameter bounde@ bynd we are taking the maximum o M such
terms. Consequently, we conclude that

Mlog(2Ms)
—

Eu[A1] < 4BC (53)

Note that the same bound holds 6y, [Aq].

F.1.2 BOUNDING THE QUANTITIES Exw[A2] AND Ey[Ag]

In order to control this term, we simply recognize that it corresponds togbel saussian com-
plexity of the sum of 2 univariate Hilbert spaces, each of which is an RKHS truncated to the
eigenfunctionq pk }k>=m+1. In particular, we have

1 n 1 2s n
7| W<<¢'-M+l:oo(xi)7 a‘,M+1:oo>>| < — | O, k( ) |
n iZl T NS e 21 g \f
—_——
bj_k
1 2s
| VD K
G2 k>§+1f
i 1 2s

ZL k>%+1 “k k> +1“kb
” 1 2s b2
B \le \ k> +1”k b

where step (i) follows by applying the Cauchy-Schwarz inequality, anm(8jexploits the fact that
2

as .
ZkzM+1ﬁk < 1forallj.

423



RASKUTTI, WAINWRIGHT AND YU

This bound no longer depends on the coefficientsr equivalently, the functiog), so that we
have shown that

1 2s 1 2s
Ew[A2] < —= Y Ew[, / wb?, ] < — WeEw (b5,
" vn ,Zl W[ kz%ﬂ J’k] vn le \/k>%+l MK

where the second step uses Jensen’s inequality to move the expectatierthiessguare root. Re-
calling thatbik = (Zleq)j’k(Xi)\%)z and using the independence of the noise varigme¢;' ;, we
have

Ew[0?)] = nicbik(m)Ew[W?] < C

Putting together the pieces, we conclude that

s s -5
_\mjzl kM1 VORYPS " ‘

Once again, a similar bound holds B y[As).
Substituting the bounds (53) and (54) into the inequality (52), we conclade th

Qun(27(S.2B)) < 4BCy | MIO%ZMS) +2Cs/ 2"2“’%““
1-2a
< 4BC MIOgnZMS)+2CS\/Mn ,

where the second inequality follows from the relatigr~ k=2%. Finally, settingMl = sa yields the
claim. Note that the same argument works for the Rademacher complexitynarmdy exploited
the sub-Gaussianity of the variabl@s This completes the proof of Lemma 11. |

Ew[A2] (54)

Returning to the proof of Lemma 5, combining Lemma 11 with the bound (40) in Lemma 8

2
n

~ 1/a
P[Zn(w;t, #(S,2B)) > SBCW+ 3t8y] < exp(— o0

2 )

Since||g||n < 2B for any functiong € # (S 2B), the proof Lemma 5 is completed using a peeling
argument over the radius, analogous to the proof of Lemma 1 (see Ag@nd
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