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Abstract

Conditional independence relations involving latent variables do not necessarily imply observ-
able independences. They may imply inequality constraintson observable parameters and causal
bounds, which can be used for falsification and identification. The literature on computing such
constraints often involve a deterministic underlying datagenerating process in a counterfactual
framework. If an analyst is ignorant of the nature of the underlying mechanisms then they may
wish to use a model which allows the underlying mechanisms tobe probabilistic. A method of
computation for a weaker model without any determinism is given here and demonstrated for the
instrumental variable model, though applicable to other models. The approach is based on the
analysis of mappings with convex polytopes in a decision theoretic framework and can be imple-
mented in readily available polyhedral computation software. Well known constraints and bounds
are replicated in a probabilistic model and novel ones are computed for instrumental variable mod-
els without non-deterministic versions of the randomization, exclusion restriction and monotonicity
assumptions respectively.

Keywords: instrumental variables, instrumental inequality, causalbounds, convex polytope, latent
variables, directed acyclic graph

1. Introduction

Conditional independence relations represent equality constraints on theparameters of a joint prob-
ability distribution. Such relations cannot be empirically validated if they involve latent variables.
Collections of latent conditional independencies may imply inequality constraintson parameters
of the observable distribution. The classical motivation is theinstrumental variable(IV) model
(Durbin, 1954; Angrist et al., 1996). It includes the IV,A, and inference is required about the effect
of a variable,B, on another,C, in the presence of latent confounders,U . The IV model is defined by
A⊥⊥/ B, C⊥⊥A|(B,U) andU ⊥⊥A. The latter two involve the latent variableU so it was tradition-
ally thought that the model could not be empirically verified (Imbens and Angrist, 1994). However
Pearl (1995) derived the ‘instrumental inequality’

max
B

∑
C

{

max
A

P(C,B|A)

}

≤ 1, (1)
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a set of constraints which are implied by and can be used to falsify the discrete IV model. To
compute the constraints, Pearl (1995) defines the IV model as a deterministiccounterfactual model
(Rubin, 1974). Such models involve latent deterministic relations, which marginalise to produce
observed probabilistic relationships, and are technically equivalent to structural equation models
(Strotz and Wold, 1960) and other functional models (Heckerman and Shachter, 1995).

Without intervention data and further assumptions, the causal effect ofB onC cannot be point
identified (Durbin, 1954; Angrist et al., 1996), but, using the deterministic counterfactual model, it
can be bounded with the joint distribution ofA, B andC (Pearl, 1995; Robins, 1989; Manski, 1990).
Thus making it possible to acquire non-trivial information about the effectof the intervention when
intervention studies cannot be conducted; because of ethical, financialor other reasons. Using
the deterministic counterfactual approach and linear programming softwaredeveloped by Balke
(1995), the constraints on the causal effect ofB on C were improved by Balke and Pearl (1997)
and extended to other models by Kaufman et al. (2009). This linear programming approach within
a deterministic counterfactual model has become the standard tool for computing such constraints,
with some exceptions (Geiger and Meek, 1998; Kang and Tian, 2006).

As a technical construct for computations, deterministic counterfactual models are widely ac-
cepted as valuable. Applications of deterministic counterfactual models assume there are underlying
deterministic relations (Angrist et al., 1996) and pose no issues if the determinism can be practi-
cally justified. For certain applications though, for example, mutations that cause cancer (Aalen and
Frigessi, 2007), subject matter knowledge suggests that assumptions about the existence of deter-
ministic mechanisms are unrealistic and spawns controversy (Dawid, 2000).Even if an analyst is
unaware of the type of mechanisms involved in their study, it would be desirable to avoid determin-
istic counterfactuals if alternative computations are no more difficult. The method in §2 provides
such an alternative, which is agnostic to whether the underlying mechanisms are probabilistic or
deterministic, to deriving falsifiable constraints and causal bounds of the type previously described.
The method described does not use counterfactuals, which has certain advantages (Dawid, 2000),
but more importantly demonstrates that the determinism in the models is unnecessary.

In this discussion, causal inference is formalized within standard decisiontheory (Spirtes et al.,
1993; Pearl, 1993), with conditional independence assumptions (Lauritzen, 2001; Dawid, 2002).
The model has been successfully applied in defining direct effects (Geneletti, 2007) and dynamic
treatment strategies (Dawid and Didelez, 2010), to name a few. The approach in §2 and throughout
uses this framework and it is compared to the counterfactual framework in §3. The method is based
on the analysis of convex polytopes and can be implemented in standard polytope representation
software such as Polymake (Gawrilow and Joswig, 2000) or PORTA (Christof and Loebel, 1998).
Known constraints, which have been previously derived using deterministic counterfactuals, are
derived in §5. Graphical models for representing causal assumptions are described in §4. Non-
trivial modifications of the computation technique are considered in §6, §7 and §8 to derive novel
constraints and causal bounds when various assumptions in the IV model are weakened.

Example 1 Consider an IV model of partial compliance, where A∈ {1,2} is treatment assigned,
B∈ {0,1} is treatment taken and C is an outcome of interest. The counterfactual IV model involves
counterfactual variables(B1,B2) which represent a unit’s deterministic compliance behaviour when
A is set to1 (no treatment) or2 (treatment) respectively. Analyses of this model often make the
monotonicity assumption B2 ≥ B1, meaning that a unit which does not take treatment if assigned it,
will never take it.
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The deterministic counterfactual framework only allows the compliance behaviour in Example 1
to be modelled as deterministic. Monotonicity assumptions, used to compute boundsin IV models,
in the literature (Pearl, 1995; Balke and Pearl, 1997) are imposed in models which are stronger than
necessary. It is shown in §8 that the known bounds and novel boundscan be derived for a weaker
model. In the context of Example 1, monotonicity in the weaker model is equivalent to assuming
that units are more likely to take treatment if assigned it than if not assigned it.

The counterfactual IV model in Example 1 uses the exclusion restriction assumption (Imbens
and Angrist, 1994). This assumption restrictsC to be a deterministic function of compliance be-
haviour and treatment taken only. Stochastic exclusion restrictions are considered within the deter-
ministic counterfactual framework in Hirano et al. (2000). In a weaker fully probabilistic model, the
exclusion restriction assumptionC⊥⊥A|(B,U) is used in §2 to replicate results which were derived
under the stronger model (Balke and Pearl, 1993; Pearl, 1995; Balke and Pearl, 1997). Whilst vary-
ing the strength of the exclusion restriction, novel constraints are derived in §7 with the probabilistic
approach. This allows a sensitivity analysis to the non-deterministic exclusionrestriction, which is
important when assumptions involve unobservable variables (Shepherd et al., 2006).

Another assumption in the IV model in Example 1 is that treatment assignment is independent of
compliance behaviour. In the probabilistic framework, novel constraints are computed for a weaker
IV model with U ⊥⊥/ A, as described in §6. Applications to data are given in §9. The IV model
provides motivation for this discussion but the approach extends to other models. The notation used
throughout is listed in Appendix A.

2. Computation of Constraints in the Instrumental Variable Model

Consider a model involving the random variablesA, B, C andU , where the state space ofA is
{1,2}, B is {0,1} andC is {0,1}. U is unobservable by definition so no assumption is made
about it. Let~v∗ = (ζ∗00.1,ζ∗01.1, . . . ,ζ∗11.2) be a random vector with componentsζ∗cb.a, which are
random variables that are functions ofU , whereζ∗cb.a = P(C = c,B = b|A = a,U). Similarly, let
~v= (ζ00.1,ζ01.1, . . . ,ζ11.2) be a fixed vector of probabilities that are not functions ofU , whereζcb.a =
P(C= c,B= b|A= a). Let~τ∗ = (η∗

0,η∗
1,δ∗1,δ∗2), where

η∗
b = P(C= 1|B= b,U), δ∗a = P(B= 1|A= a,U). (2)

Since~τ∗ is a vector of probabilities then~τ∗ ∈ T since the components of~τ∗ satisfy the axioms of
probability, whereT = [0,1]4. To derive falsifiable constraints on~v for the IV model, it is necessary
to determine the set of~v which does not satisfy the assumptions in the IV model. Under the IV
model,C⊥⊥A|(B,U), which implies that

P(C,B|A,U) = P(C|B,U)P(B|A,U), (3)

and~v∗ can be parameterised by~τ∗. The relation in Equation (3) together with the codes in (2) define
a mappingΞ :~τ∗ ∈ T →~v∗ ∈V , where~τ∗ is unrestricted by the IV model andV = Ξ(T ) contains
all ~v∗ which obey the IV model. Since the components of each~v∗ obey the axioms of probability
thenV ⊆ Z, whereZ ⊂ [0,1]8 is the intersection of the hyperplanes defined by∑c,b ζ∗cb.a = 1 for
a∈ {1,2}.

Under the IV model,U ⊥⊥A, which implies thatζcb.a =EU(ζ∗cb.a) and thus all~v that obey the IV
model lie inH , whereH is the set of all possible convex combinations of all~v∗ ∈ V or the convex
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hull of V . Let V̂ = Ξ(T̂ ) andĤ be the convex hull ofV̂ , whereT̂ is the collection of extreme
vertices ofT . The verticesT̂ andV̂ are partially listed in Figure 1 (top) and the transformation
Ξ(·) is represented in Figure 1 (bottom).

η∗
0 η∗

1 δ∗1 δ∗2 ζ∗00.1 ζ∗01.1 ζ∗10.1 ζ∗11.1 ζ∗00.2 ζ∗01.2 ζ∗10.2 ζ∗11.2
0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 → 1 0 0 0 0 1 0 0
...

...
...

...
...

...
...

...
...

...
...

...
1 1 1 1 0 0 0 1 0 0 0 1

Z

Figure 1: Transformation of extreme vertices (top) of polytope (bottom).

SinceH = Ĥ , from Theorem 1 in Appendix B, then all~v that obey the IV model lie in̂H . The
proof of Theorem 1 does not use the specific form ofΞ(·), only its monotonicity in each coordinate.
A program such as Polymake (Gawrilow and Joswig, 2000) or PORTA (Christof and Loebel, 1998)
can be used to transform the representation ofĤ in terms of its extreme vertices to a representation
in terms of its facets or inequalities. The inequalities are constraints which are satisfied by~v if ~v
obeys the IV model. This specific computation produces the falsifiable ‘instrumental inequality’
constraints in (1) and is exactly the approach of Dawid (2003).

It is possible for the randomization or exclusion restriction assumption to fail without violation
of any of the constraints in (1). This is because there are distributions P(C,B,A,U) which either
violate the assumptionU ⊥⊥A or Equation (3) but give rise to margins P(C,B,A) that obey the
inequalities in (1). For example, if all~v∗ lie in H \V and randomization holds then the exclusion
restriction in Equation (3) is not satisfied but all~v∈H , which means that the inequalities in (1) are
satisfied. I conjecture that the condition thatU has a certain small state space is sufficient to imply
that it is possible for the IV model to fail without violation of any of the constraints in (1).

3. Geometry of Counterfactuals and Latent Variables

The binary IV model can be re-parameterised by replacingU in P(C,B|A,U) with~τ∗ and consid-
ering P(C,B|A,~τ∗). The polytopeH represents the model for P(C,B|A) and, sinceH = Ĥ , a
computationally and empirically indistinguishable model is formed by restricting~τ∗ to T̂ . In this
minimal representation of the model, where~τ∗ ∈ T̂ , the parametersη∗

b ∈ {0,1} andδ∗a ∈ {0,1}.
Thereforeη∗

b is a deterministic function ofB and the latent variableU and can be interpreted as
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a counterfactual variable which is the value ofC whenB = b for a given~τ∗, and similarly forδ∗a.
Similar comments are given in Lauritzen (2004).

If U is interpreted as the collection of variables which define a unit then~τ∗ is the vector of
potential responses for a unit and each vertex of the polytope corresponds to a certain type of unit.
In the partial compliance model of Example 1, the vertex~τ∗ = (0,0,0,0) corresponds to a unit
which is classified asnever recover(response is 0 regardless of treatment taken) and anever taker
(treatment taken is 0 regardless of treatment assigned).

The probabilistic model is parameterised by~τ∗ over the entire polytopeT whereas the counter-
factual model is parameterised by~τ∗ only at the extreme vertices of the polytopeT . In special cases
where latent determinism is realistic then such a parameterisation is meaningful and assumptions
about the non-existence of certain vertices of the polytope or~τ∗ ∈ T̂ can potentially be justified. If
latent determinism is known to be unrealistic (Aalen and Frigessi, 2007) and the reparameterisation
is a technical construct then it may be wise to steer clear of any interpretationbeyond simply saying
that they are the vertices of the polytope defining the model.

The concepts are demonstrated in the reformulation of the monotonicity assumption in §8. The
deterministic counterfactual approach assumes latent determinism and interprets the vertices as hav-
ing real meaning. Under the deterministic interpretation, the monotonicity assumption implies that
certain vertices are not valid for the model. The probabilistic approach defines monotonicity as
a constraint on the latent conditional distributions to lie in a particular half-space, still allowing
probabilistic behaviour.

4. Causal Graphical Models

The IV model considered so far, that is, without causal assumptions, is relatively simple. However
extensions of it will be considered later and it will be useful, though not vital, to use graphical
models to represent the assumptions involved. Graphs that are useful for representing conditional
independence and causal assumptions are described in §4.1 and §4.2 respectively.

4.1 Directed Acyclic Graph

A purely probabilistic directed acyclic graph (DAG) (Lauritzen, 1996) consists of a set ofvertices
or nodes, N , and a set ofdirected edges, E . If λ1,λ2 ∈N and(λ1,λ2) ∈ E then(λ2,λ1) /∈ E . It is
said that there is a directed edge fromλ1 to λ2, this is written asλ1 → λ2 andλ1 is called aparent
of λ2. In a DAG which represents the probability distribution of a set of random variables,X , every
λ ∈N corresponds to a random variableXλ ∈ X . The probability distribution function has the form

P(X ) = ∏λ∈N P{Xλ |Xpa(λ)}, (4)

where ‘pa(·)’ is the set of ‘parents’ of a node. This factorisation property is equivalent to a collection
of conditional independence relations, which can be derived from the DAG using the concepts of ‘d-
separation’ (Verma and Pearl, 1988) and a ‘moral graph’ (Lauritzen et al., 1990). The observational
assumptions of the IV model can be represented by the DAG in Figure 2 (left).

4.2 Augmented Directed Acyclic Graph

The notation ‘|| ’ (Lauritzen, 2001) is used for intervention conditioning and is equivalent to the
‘do(·)’ notation (Goldszmidt and Pearl, 1992) and the ‘Pman(·)’ notation (Spirtes et al., 1993). Using
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Figure 2: DAG which represents observational assumptions of the instrumental variable model
(left) and augmented DAG for IV model, which includes causal assumptions (right).

the notation, P(C||B= b) is the probability ofC given thatB is actively forced to take the valueb,
and not passively observed to take the valueb, as in P(C|B= b).

To derive intervention constraints, the assumptions represented by the augmented DAG (Spirtes
et al., 1993; Pearl, 1993; Lauritzen, 2001; Dawid, 2002) in Figure 2 (right) are considered, where
ACE(B → C) = α = P(C = 1||B = 1)−P(C = 1||B = 0) is the causal effect of interest. The
intervention nodeFB is a regime indicatordecision variable which represents the way in which
the value ofB arises. Conditional independence relations can be derived in the same way as for
the purely probabilistic DAGs since the probability distribution, conditional onFB, still factorises
according to Equation (4). The nodeFB takes the values ‘idle’, 0 or 1. If FB = idle thenB takes a
random value given by P{B|pa(B)}, but if FB is either 0 or 1 thenB= FB. Using previous notation
P(C||B= b) = P(C|FB = b). The relationC⊥⊥B|(FB = b,U) holds from the definition ofFB but is
not represented in Figure 2 (right). Square nodes are decision nodeswhich represent fixed strategies,
whereas circle nodes are random nodes which represent random variables.

The augmented DAGs which represent the IV model without randomization and the exclusion
restriction are given in Figure 3.
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Figure 3: Augmented DAGs which represent the causal IV model without randomization (left) and
without exclusion restriction (right).

The assumptions represented by the augmented DAGs in Figure 3 will be usedin §6 and §7
respectively to derive constraints. The augmented DAG in Figure 2 (right)still applies under mono-
tonicity since no extra conditional independences are assumed.
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5. Applications of Computation

Many results in the literature are recovered by specific applications of the general method described
in §2. It is based on parameterising with the factors of Equation (4) and transforming them according
to a mapping. By defining the appropriate mapping, the various constraints are obtainable. Key
requirements are the monotonicity of the mapping and that the space of valid parameters is the
convex hull of the transformed polytope. Constraints on other quantities, such as P(C|A), P(B|A),
P(C|B) etc., can be derived but some interesting examples are given in §5.1 and §5.2.

5.1 Falsifiable Constraints

Some applications, such as studies with partial compliance, require constraints involving the distri-
bution P(C,B|A), whereas others can only identify the pairwise conditional distributions P(C|A)
and P(B|A). For example, Mendelian randomization in genetic epidemiology involves the useof
a genotype (A) as an instrument for the effect of a phenotype (B) on a disease (C). However only
genotype-phenotype and genotype-disease data is usually available (Didelez and Sheehan, 2007)
and thus constraints involving P(C|A) and P(B|A) are needed.

To derive the constraints, consider the monotone mapping~τ∗ 7−→ (~γ∗,~θ∗) for the IV model of
Figure 2 (left), whereγ∗ca = P(C = c|A= a,U) andθ∗

ba = P(B= b|A= a,U). SinceU ⊥⊥A then
(~γ,~θ) lies in the convex hull of the set of(~γ∗,~θ∗) which satisfy the IV model, whereγca = P(C =
c|A= a) andθba = P(B= b|A= a). Similarly to the approach in §2, the constraints

θ01+θ02 ≥ γ01− γ02,
θ01+θ02 ≥ γ02− γ01,
θ11+θ12 ≥ γ01− γ02,
θ11+θ12 ≥ γ02− γ01,

are obtained, which are the same as in Ramsahai (2007).

5.2 Bounds on Fixed Interventions

From the motivating Mendelian randomization example in §5.1, it may be necessary to obtain causal
bounds in terms of the pairwise conditional distributions P(C|A) and P(B|A). Consider the model
in Figure 2 (right). SinceC⊥⊥FB |(B,U) andU ⊥⊥FB then P(C||B) = ∑U P(C|B,U)P(U). This
implies that(~γ,~θ,α) lies in the convex hull of(~γ∗,~θ∗,α∗), whereα∗ = P(C= 1|B= 1,U)−P(C=
1|B= 0,U) andα = EU(α∗). Therefore the monotone mapping~τ∗ 7−→ (~γ∗,~θ∗,α∗) can be used to
compute constraints on(~γ,~θ,α). The results of the computation are given in Appendix C and are
the same as those derived in Ramsahai (2007).

Similarly, constraints and causal bounds in terms of the identifiableζcb.a parameters can be
obtained by considering the mapping~τ∗ 7−→ (~v∗,α∗). The constraints involving the identifiable
ζcb.a parameters only are the same as those obtained in §2, which are given in (1), and the rest
constrainα. The bounds onα are given in Appendix C and are the same as those of Dawid (2003),
which are derived by Balke and Pearl (1997) in a deterministic model.

6. Relaxing the Randomization Assumption in the Instrumental Variable Model

It is possible for treatment assignment in a partial compliance study, which is suitable for an IV
model, to have invalid randomization, for example, if the doctor involved is aware of the health
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status of the patients. To analyze such a study, an analyst may opt for a model without randomization
or at least assess the effect of the assumption on the inference. Both require constraints to be
derived for a model withoutU ⊥⊥A, as in Figure 3 (left). The decision framework is used here for
computations without any assumptions of determinism. It is irrelevant to the computation whether
U causesA, A causesU or both have a common cause. This is because the model in Figure 3
(left) only makes assumptions about distributions in the observational regime and the regime with
intervention onB, since it includes the regime indicatorFB. No FA or FU regime indicators are
included so no assumptions are made about interventions onA or U .

If there is data on P(C|A) and P(B|A) but not P(C|B,A) then constraints and bounds involving
~γ and~θ are useful. Without the randomization assumption,U ⊥⊥A, (~γ,~θ,α) does not necessarily
lie in the convex hull of(~γ∗,~θ∗,α∗) and similarly for the other applications in §5. Assuming the
exclusion restriction in Equation (3) still holds,~τ∗ still fully parameterises P(C,B|A,U). Consider
the monotone mappingΞi(·):~τ∗ 7−→~v∗i , where~v∗i = (γ∗0i ,γ∗1i ,θ∗

0i ,θ∗
1i ,α∗) for i = 1,2, which can be

expressed as

α∗ = η∗
1−η∗

0, γ∗0i = (1−η∗
0)(1−δ∗i )+(1−η∗

1)δ∗i , θ∗
0i = 1−δ∗i

γ∗1i = η∗
0(1−δ∗i )+η∗

1δ∗i , θ∗
1i = δ∗i .

The transformation of̂T by Ξi(·) is given in Figure 4. Since the relationsC⊥⊥FB |(B,U), U ⊥⊥FB

η∗
0 η∗

1 δ∗i γ∗0i γ∗1i θ∗
0i θ∗

1i α∗

0 0 0 1 0 1 0 0
0 0 1 1 0 0 1 0
0 1 0 1 0 1 0 1
0 1 1 → 0 1 0 1 1
1 0 0 0 1 1 0 -1
1 0 1 1 0 0 1 -1
1 1 0 0 1 1 0 0
1 1 1 0 1 0 1 0

Figure 4: Transformation of̂T by Ξi(·) to the polytope which represents the IV model without
randomization, in terms of the pairwise conditional distributions P(C|A) and P(B|A).

andC⊥⊥A|(B,U) follow from Figure 3 andC⊥⊥B|(U,FB = B),

P(C||B) = ∑A ∑U P(C|B,U)P(U |A)P(A) = EA(α′
A), (5)

whereα′
A=∑U P(C|B,U)P(U |A). Since P(C|A)=EU |A{P(C|A,U)} and P(B|A)=EU |A{P(B|A,U)}

then~wi lies in the convex hull of the set of~v∗i , where~wi = (γ0i ,γ1i ,θ0i ,θ1i ,α′
i), and the method of §2

computes the tight constraints
0≤ γ0i +2γ1i −θ0i +α′

i ,
0≤ γ0i +θ0i +α′

i ,
0≤ γ1i +θ0i −α′

i ,
0≤ 2γ0i + γ1i −θ0i −α′

i ,

or
max{ γ0i +θ0i −2,−γ0i −θ0i } ≤ α′

i ≤ min{ −γ0i +θ0i +1,γ0i −θ0i +1 } ,

836



CONSTRAINTS FORNON-DETERMINISTIC MODELS

for all i. The constraints are tight since the vertices of the convex hull are a subset of the vertices of
the transformed polytope and any vertex is achievable if the value ofU , corresponding to the vertex,
occurs with probability one. Sinceα = EA(α′

A) from Equation (5) then

min
i

[

max

{

γ0i +θ0i −2
−γ0i −θ0i

}]

≤ α ≤ max
i

[

min

{

−γ0i +θ0i +1
γ0i −θ0i +1

}]

.

These bounds always span zero and are tight since the bounds onα′
i are achievable byα if P(A=

i) = 1. If marginalA data are available, the bounds can be improved to

ACE(B→C)≥ ∑i

[

max

{

γ0i +θ0i −2
−γ0i −θ0i

}

P(A= i)

]

,

ACE(B→C)≤ ∑i

[

min

{

−γ0i +θ0i +1
γ0i −θ0i +1

}

P(A= i)

]

,

or

−1+EA(|γ1A−θ0A|)≤ ACE(B→C)≤ 1−EA(|γ0A−θ0A|). (6)

Although the expression in (6) bounds the unobservable causal effect, there are no falsifiable con-
straints to invalidate the model. The bounds in (6) always span zero.

If a sample from P(C,B|A) is available, the mapping~τ∗ 7−→~v∗i can be used to compute observ-
able constraints and causal bounds. The computation is possible since P(C,B|A) =
EU |A{P(C,B|A,U)}, which implies that~wi lies in the convex hull of the set of~v∗i , where~v∗i =
(ζ∗00.i ,ζ∗01.i ,ζ∗10.i ,ζ∗11.i ,α∗) and~wi = (ζ00.i ,ζ01.i ,ζ10.i ,ζ11.i ,α′

i). The bounds−ζ01− ζ10 ≤ ACE(B→
C)≤ ζ00+ζ11 are obtained, whereζcb= P(C= c,B= b). All of the results in this section still hold
if the state space ofA is extended to{1,2, . . . , l} but the state space of(B,C) kept binary.

The bounds on ACE(B → C) by theζcb parameters are derived by Manski (1990) in a model
involving (B,C,C0,C1) under the assumptions that the potential outcomes(C0,C1) for a unit are
the same regardless of how treatment is assigned, that is, whether by intervention or observation,
and thusC is a deterministic function of(B,C0,C1) for a unit. The derivation, of the bounds on
ACE(B→ C) by theζcb parameters, given here only requires the analogous assumptionsU ⊥⊥FB

andC⊥⊥FB |(B,U). The additional variableAused here, which satisfies the conditionC⊥⊥A|(B,U),
trivially exists by constructing a variableA = B. Also, the conditional independence assumption
A⊥⊥FB represented in Figure 3 (left) is unnecessary since it is not used in the derivation.

7. Relaxing the Exclusion Restriction in the Instrumental Variable Model

The exclusion restriction assumption may often be inapplicable, for example, ifpatients in a study
with partial compliance become aware of their treatment assignment and this affects their outcome.
There could be a direct relation between treatment assignmentA and the outcomeC, for which the
model in Figure 3 (right) would be appropriate. The probabilistic nature of the exclusion restric-
tion within the decision framework allows the strength of the direct relation to be varied and the
sensitivity of inference to this assumption to be assessed.

A weaker alternative to the exclusion restriction assumption,C⊥⊥A|(B,U), in the binary IV
model is 0≤ |η∗

b1−η∗
b2| ≤ ε for b = 0,1, whereη∗

ba = P(C = 1|B = b,A = a,U) and 0≤ ε ≤ 1.

837



RAMSAHAI
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01 η∗
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11 η∗

12 δ∗1 δ∗2
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0 0 1 0.5 0 0
0 0 1 1 0 1
...

...
...

...
...

...

↓

ζ∗00.1 ζ∗01.1 ζ∗10.1 ζ∗11.1 ζ∗00.2 ζ∗01.2 ζ∗10.2 ζ∗11.2
1 0 0 0 1 0 0 0
1 0 0 0 0 0.5 0 0.5
0 0.5 0 0.5 1 0 0 0
0 0.5 0 0.5 0 0 0 1
1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...

Figure 5: Transformation to the extreme vertices corresponding to the polytope which represents
the IV model with the weaker exclusion restriction, forε= 0.5, in terms of the distribution
P(C,B|A).

The conditionε = 0 is equivalent to the exclusion restriction. Forε = 1, there are no constraints
on (η∗

b1,η
∗
b2) other than the axioms of probability and there are no falsifiable constraints orcausal

bounds for the IV model without the exclusion restriction. The augmented DAG in Figure 3 (right)
does not represent any assumptions aboutε but assumptions aboutε are required to obtain non-trivial
constraints and bounds. The application of the technique is considered for ε = 0.5. Consider the
mapping of~τ∗ = (η∗

01,η∗
02,η∗

11,η∗
12,δ∗1,δ∗2) to~v∗ = (ζ∗00.1,ζ∗01.1, . . . ,ζ∗11.2) for a model withA∈ {1,2}

andB,C∈ {0,1}. The transformation of some of the extreme vertices are given in Figure 5. Use of
the technique produces the causal bounds in Appendix D and the constraints

ζ00.1+ζ10.2−ζ10.1−ζ00.2 ≤ 1,
ζ10.1+ζ00.2−ζ00.1−ζ10.2 ≤ 1,
ζ11.1+ζ01.2−ζ01.1−ζ11.2 ≤ 1,
ζ01.1+ζ11.2−ζ11.1−ζ01.2 ≤ 1,

which is a weaker version of the ‘instrumental inequality’ of Equation (1) and can be violated if
the IV model with the weak exclusion restriction,ε = 0.5, is invalid. By adding the component
P(C|B,A,U) to~v∗, causal bounds on P(C|A,FB = B) = ∑U P(C|B,A,U)P(U) can be derived for
eachA and used to compute bounds on ACE(B→C) since P(C|FB =B) = ∑AP(C|A,FB =B)P(A).
Similarly to the bounds in §6, these bounds are tight. Althoughε is currently defined as a constant,
similar computations can be done ifε is allowed to be a function ofb, that is, |η∗

b1 −η∗
b2| has a

different range for eachb.

838



CONSTRAINTS FORNON-DETERMINISTIC MODELS

7.1 Bounds on Direct Effects

Without assumingC⊥⊥A|(B,U), if intervention onA is possible then the direct effect ofA on
C can be bounded with parameters of the distribution under no intervention. Consider extending
the sample space ofFB to include the random regimedA, which represents the regime in which
P(B|A,U,FB = da∗) = P(B|A= a∗,U). Consider the controlled direct effect (CDE) (Didelez et al.,
2006) and the random regime direct effect (RRDE)

CDE(B) = E(C|FB = B,FA = 2)−E(C|FB = B,FA = 1)
= EU{E(C|B,A= 2,U)−E(C|B,A= 1,U)}
= EU(η∗

B2−η∗
B1),

RRDE(a∗) = E(C|FB = da∗ ,FA = 2)−E(C|FB = da∗ ,FA = 1)
= EU [EB{E(C|B,A= 2,U)−E(C|B,A= 1,U) |A= a∗,U}]
= EU{(η∗

12−η∗
11)δ∗a∗ +(η∗

12−η∗
11)(1−δ∗a∗)}.

The RRDE is called the NDE in Didelez et al. (2006) but Robins and Richardson (2010) argue that
the parameter being referred to as NDE in Didelez et al. (2006) is not the same as the NDE in Pearl
(2001). Thus a separate name is given here to RRDE. By considering themapping of~τ∗ to the
vector with~v∗ and the extra componentη∗

B2−η∗
B1, the bounds on CDE(B) of Cai et al. (2008) can

be replicated. Similarly by mapping~τ∗ to a vector with~v∗ and EB(η∗
B2−η∗

B1 |A= a∗,U), bounds on
RRDE(a∗) are obtained, which are identical to the bounds on NDE(a∗) in Sjölander (2009). Unlike
here, both references use counterfactuals and use the definition of CDE and NDE, sometimes called
pure direct effect (Robins and Greenland, 1992), given in Pearl (2001).

8. Monotonicity Assumption in the Instrumental Variable Model

The monotonicity assumption in the literature (Imbens and Angrist, 1994; Angrist et al., 1996) is
formulated in a deterministic model. In a partial compliance study, a patient may be more likely
to take treatment under assignment but it may not be reasonable to assume that their behaviour is
deterministically related to treatment assignment. A monotonicity assumption in a weaker proba-
bilistic model is considered here and can be expressed mathematically for the binary IV model by
δ∗2 ≥ δ∗1, from Equation (2). It restricts the space of the vector of probabilities sothe constraints are
at least as strong as without it.

The IV model considered in this section includes the exclusion restriction andthe randomization
assumption, as in the augmented DAG in Figure 2 (right). As an illustrative example, consider the
computation of falsifiable constraints and causal bounds onϕ given~γ, without monotonicity, where
ϕ = ACE(A→ B) = θ01−θ02. This computation produces only trivial results. Under monotonicity,
T must be redefined to omit all~τ∗ which do not satisfy it. Therefore all of the vertices withδ∗2 < δ∗1
or ϕ∗ ≥ 0 should be removed to redefineT̂ , whereϕ∗ = P(B= 1|A= 2,U)−P(B= 1|A= 1,U).
The required mapping is~τ∗ 7−→ (~γ∗,ϕ∗) over the domain of the restrictedT . The transformation is
given in Figure 6 and the non-trivial constraints obtained are

max

{

γ01− γ02

−γ01+ γ02

}

≤ ϕ ≤ 1 ⇐⇒ |γ01− γ02| ≤ ϕ ≤ 1, (7)

or ACE(A→ B) ≥ |γ01− γ02| = |ACE(A→C)|. This makes sense since it is assumed thatϕ∗ ≥ 0
andB lies on the causal pathway fromA toC. The transformed polytope in Figure 6 is 3 dimensional
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η∗
0 η∗

1 δ∗1 δ∗2 γ∗01 γ∗11 γ∗02 γ∗12 ϕ∗

0 0 0 0 1 0 1 0 0
0 0 0 1 1 0 1 0 1
0 0 1 0 − − − − −
0 0 1 1 1 0 1 0 0
0 1 0 0 1 0 1 0 0
0 1 0 1 1 0 0 1 1
0 1 1 0 − − − − −
0 1 1 1 → 0 1 0 1 0
1 0 0 0 0 1 0 1 0
1 0 0 1 0 1 1 0 1
1 0 1 0 − − − − −
1 0 1 1 1 0 1 0 0
1 1 0 0 0 1 0 1 0
1 1 0 1 0 1 0 1 1
1 1 1 0 − − − − −
1 1 1 1 0 1 0 1 0

Figure 6: Transformation to the extreme vertices corresponding to the polytope which represents
the IV model, with the exclusion restriction, randomization and monotonicity assump-
tions, in terms of the distribution P(C|A). The dashes correspond to points ruled out by
monotonicity, which are represented by◦’s in Figure 7.

sinceγ∗11 = 1− γ∗01 andγ∗12 = 1− γ∗02; its projection in(γ∗01,γ∗02,ϕ∗) space is given in Figure 7. The
6 •’s are the vertices which are not removed after assuming monotonicity and the6 ◦’s, which
correspond to dashes in Figure 6, are the vertices which are removed. Figure 7 clearly demonstrates
that the constraints without monotonicity are trivial whereas those with it are not.

To determine the effect of the monotonicity assumption on the constraints and bounds with
(~γ,~θ) in §5, the same mapping is used as in the derivation of the bivariate bounds onα but applied
to the restrictedT andT̂ formed by removing the appropriate vertices. The falsifiable constraints
obtained areθ01−θ02 ≥ |γ01− γ02| (equivalent to Equation (7)) and the causal bounds

ACE(B→C)≥ max























2γ01− γ02+θ01−2
γ01−2γ02−θ02

γ01+θ01−2
−γ02−θ02

γ01− γ02+θ01−θ02−1























,

ACE(B→C)≤ min























2γ01− γ02−θ01+1
γ01−2γ02+θ02+1

γ01−θ01+1
−γ02+θ02+1

γ01− γ02−θ01+θ02+1























.

By considering the analogous mapping for~v∗, as defined in §2, the falsifiable constraints of Balke
and Pearl (1997) and the causal bounds of Balke and Pearl (1993)for the IV model with mono-
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1
0 γ∗01

1
γ∗02

-1

1

ϕ∗

Figure 7: The extreme vertices which satisfy monotonicity are the 6•’s, the 6◦’s are those which
do not. The convex hull of the transformed polytope for the IV model with themono-
tonicity assumption is the region above the shaded surface and without the monotonicity
assumption is the entire cuboid.

tonicity are recovered. The bounds correspond to results in Robins (1989) and Manski (1990). Thus
the IV model with monotonicity, introduced in this section, is empirically and computationally in-
distinguishable from the IV model with ‘no defiers’ considered in Example 1 and Angrist et al.
(1996).

9. Data Analysis

The relative frequencies for two data sets are given in Table 1 and described below.

9.1 Lipid Research Clinics Coronary Data

Consider the Lipid Research Coronary Primary Prevention Trial (Lipid Research Clinic Program,
1984), which was analysed by Efron and Feldman (1991) and Balke andPearl (1997). Subjects were
randomized into two groups, 172 men were given the placebo and 165 weregiven the treatment,
and the subjects’ cholesterol levels were measured. There was partial compliance with the treatment
assigned.

9.2 Vitamin A Supplementation

Another example of partial compliance is the study of Vitamin A supplementation in northern Suma-
tra, described by Sommer and Zeger (1991). The study consisted of children in 450 villages, 11588
children (221 villages) were assigned to the control group and 12094 (229 villages) to the treatment
group.
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Data Set a ζ̂00.a ζ̂01.a ζ̂10.a ζ̂11.a

Lipid Research 1 0.919 0 0.081 0
Clinic Program 2 0.315 0.139 0.073 0.473

Vitamin A 1 0.0064 0 0.9936 0
Supplementation 2 0.0028 0.0010 0.1972 0.7990

Table 1: Relative frequencies derived from the data sets in Lipid Research Clinic Program (1984)
and Sommer and Zeger (1991).

In these trials, the relative frequencies are the maximum likelihood estimates of the parameters
~v. Bounds on ACE(B→C) are computed under various assumptions from the data in Table 1 and
are given in Table 2. Sampling uncertainty is ignored here but can be properly considered using
techniques described in Ramsahai and Lauritzen (2011).

Study Assumptions Lower bound Upper bound
Lipid IV model 0.392 0.780

Research IV, no randomization -0.145 0.855
Clinic IV, partial exclusion restriction (ε = 0.5) 0.050 0.855

Program IV, monotonicity 0.392 0.780
IV model -0.1946 0.0054

Vitamin A IV, no randomization -0.587 0.413
Supplement. IV, partial exclusion restriction (ε = 0.5) -0.392 0.212

IV, monotonicity -0.1946 0.0054

Table 2: Causal bounds on ACE(B → C) computed from Lipid Research Clinic Program (1984)
and Vitamin A Supplementation Study under various assumptions.

From Table 2, the imposition of the monotonicity assumption has no effect and is unnecessary
for these data sets. However the randomized treatment assignment is important since the bounds
computed without randomization are very wide and not much can be inferredabout the causal effect.
Even though the bounds are much wider for the Lipid Research Clinic Program (1984) data, under
the partial exclusion restriction withε = 0.5, it can still be deduced that there is a positive causal
effect.

10. Discussion

The methods given here are applied while relaxing various assumptions thatare often used in the
deterministic counterfactual IV model. By removing the assumption that there are latent determin-
istic mechanisms, it is shown that the same bounds and constraints are obtainedand that the models
are empirically equivalent §3. The results for models which relax the randomization and exclusion
restriction assumptions are valuable for sensitivity analyses. They are also useful for applications in
which some of the assumptions in the IV model are known to be false.

In §7, the constraints and bounds were computed for the IV model with a partial exclusion
restriction forε = 0.5. It is not obvious how the methods described in this paper can be extended to
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compute bounds and constraints as a function ofε but that would be worthy of future investigation.
Such results would show how the bounds vary withε and whether the data places any restrictions
on the possible values ofε.

The ideas discussed can be extended to other models involving conditional independence since
it is the factorization of the probability distribution which determines the algebraicstructure of
the polytope representing the model. The model must satisfy the condition that the observable
distributions lie in the convex hull of the latent distribution. The vector of parameters P(X ) always
lies in the convex hull of P(X |U) but there is no guarantee that the factorisation of P(X |U) produces
any non-trivial constraints, whereX andU are collections of observed and unobserved variables
respectively. However there may be non-trivial constraints on conditional probabilities derived from
P(X ).
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Appendix A. Notation

The symbols used throughout are listed below.

ζ∗cb.a = P(C= c,B= b|A= a,U),
η∗

b = P(C= 1|B= b,U),
δ∗a = P(B= 1|A= a,U),
α = P(C= 1||B= 1)−P(C= 1||B= 0),
α∗ = P(C= 1|B= 1,U)−P(C= 1|B= 0,U),
γ∗ca = P(C= c|A= a,U),
θ∗

ba = P(B= b|A= a,U).

The symbols with∗ are functions ofU and the corresponding symbols without∗ are the marginals
overU .

Appendix B. Equivalence of Convex Hulls

Theorem 1 H = Ĥ .

Proof Following Dawid (2003), sincêV ⊆ V andĤ is the minimal convex set containinĝV then
Ĥ ⊆H .

Let m(~v∗) be an affine function, that is a linear function plus a constant, of~v∗, which returns
a scalar, for~v∗ ∈ V . A closed half space in[0,1]8 that contains~v is defined by an affine function
inequalitym(~v∗) ≥ 0 or m{Ξ(~τ∗)} ≥ 0 for~τ∗ ∈ T . From Equations (3) and (2),m{Ξ(~τ∗)} is a
monotonic function of any single component of~τ∗ when the other three are fixed. Therefore the
minimum ofm{Ξ(~τ∗)} overT is attained for some~τ∗ ∈ T̂ . Therefore

m{Ξ(~τ∗)} ≥ 0 for all~τ∗ ∈ T̂ ⇒ m{Ξ(~τ∗)} ≥ 0 for all~τ∗ ∈ T .
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This means that any half space containingV̂ also containsV . SinceĤ is the intersection of all half
spaces containinĝV thenV ⊆ Ĥ . SinceĤ is convex andH is the minimal convex set containing
V thenH ⊆ Ĥ .

Appendix C. Causal Bounds for Binary Instrumental Variable Model

For the binary IV model of Figure 2 (right), bounds onα in terms ofζcb.a are

α ≥ max















































ζ00.1+ζ11.2−1
ζ11.1+ζ00.2−1

−ζ01.1−ζ10.1+ζ11.1−ζ10.2−ζ11.2

−ζ10.1−ζ11.1−ζ01.2−ζ10.2+ζ11.2

−ζ01.1−ζ10.1

−ζ01.2−ζ10.2

−ζ00.1−ζ01.1+ζ00.2−ζ01.2−ζ10.2

ζ00.1−ζ01.1−ζ10.1−ζ00.2−ζ01.2















































,

and

α ≤ min















































1−ζ10.1−ζ01.2

1−ζ01.1−ζ10.2

ζ00.1−ζ01.1+ζ11.1+ζ00.2+ζ01.2

ζ00.1+ζ01.1−ζ01.2+ζ00.2+ζ11.2

ζ00.1+ζ11.1

ζ00.2+ζ11.2

ζ10.1+ζ11.1+ζ00.2+ζ11.2−ζ10.2

ζ00.1−ζ10.1+ζ11.1+ζ10.2+ζ11.2















































.

For the binary IV model of Figure 2 (right), bounds onα in terms ofγca andθba are

α ≥ max































































2γ01− γ02+2θ01−3
γ01+θ01−2
γ02+θ02−2

−γ01+2γ02+2θ02−3
−γ01+ γ02−θ01+θ02−1

−γ01−θ01

−γ02−θ02

γ01−2γ02−2θ02

−2γ01+ γ02−2θ01

γ01− γ02+θ01−θ02−1































































,
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and

α ≤ min































































−2γ01+ γ02+2θ01+1
γ01−2γ02+2θ02+1
2γ01− γ02−2θ01+2
−γ01+2γ02−2θ02+2

γ01− γ02−θ01+θ02+1
−γ02+θ02+1
γ01−θ01+1
γ02−θ02+1
−γ01+θ01+1

−γ01+ γ02+θ01−θ02+1































































.

Appendix D. Causal Bounds for Instrumental Variable Model Without Exclusion
Restriction

For the binary IV model without the exclusion restriction in §7, forε = 0.5, the following bounds
are obtained fora= 1,2

2{E(C|A= a,FB = 1)
−E(C|A= a,FB = 0)}

≥ max































































−2ζ01.a−2ζ10.a

−ζ01.a−2ζ10.a+ζ11.a+ζ00.a′ −ζ10.a′ −1
2ζ00.a−2−ζ01.a′ +ζ11.a′

−3ζ01.a−2ζ10.a−ζ11.a−ζ01.a′ +ζ11.a′

−3ζ01.a−2ζ10.a+ζ11.a−2ζ10.a′ −2ζ11.a′

−ζ01.a−2ζ10.a−3ζ11.a−3ζ01.a′ −2ζ10.a′ +ζ11.a′

2ζ11.a+ζ00.a′ −ζ10.a′ −2
−2ζ01.a′ −2ζ10.a′ −1
−3ζ01.a−4ζ10.a−ζ11.a+2ζ10.a′ +2ζ11.a′ −1
ζ01.a+2ζ10.a+3ζ11.a−3ζ01.a′ −4ζ10.a′ −ζ11.a′ −2































































,

and

2{E(C|A= a,FB = 1)
−E(C|A= a,FB = 0)}

≤ min































































2ζ00.a+2ζ11.a

2−2ζ10.a−ζ01.a′ +ζ11.a′

2−ζ01.a−2ζ10.a+ζ11.a−ζ01.a′ +ζ11.a′

1+2ζ00.a′ +2ζ11.a′

2−2ζ01.a+ζ00.a′ −ζ10.a′

3ζ00.a−ζ10.a+2ζ11.a+2ζ10.a′ +2ζ11.a′

3−3ζ01.a−2ζ10.a−ζ11.a+ζ00.a′ −ζ10.a′

4−3ζ01.a−2ζ10.a+ζ11.a−2ζ10.a′ −2ζ11.a′

4+ζ01.a−2ζ10.a−ζ11.a−3ζ01.a′ −2ζ10.a′ +ζ11.a′

4−ζ01.a+2ζ10.a+ζ11.a−3ζ01.a′ −4ζ10.a′ −ζ11.a′































































.

wherea′ = 2 if a= 1 anda′ = 1 if a= 2.
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