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Abstract

Conditional independence relations involving latent aalés do not necessarily imply observ-
able independences. They may imply inequality constraintsbservable parameters and causal
bounds, which can be used for falsification and identificatidhe literature on computing such
constraints often involve a deterministic underlying dgémerating process in a counterfactual
framework. If an analyst is ignorant of the nature of the ulyitleg mechanisms then they may
wish to use a model which allows the underlying mechanismsetprobabilistic. A method of
computation for a weaker model without any determinism v&igihere and demonstrated for the
instrumental variable model, though applicable to othedet® The approach is based on the
analysis of mappings with convex polytopes in a decisioomgitc framework and can be imple-
mented in readily available polyhedral computation sofevaVell known constraints and bounds
are replicated in a probabilistic model and novel ones amegpeied for instrumental variable mod-
els without non-deterministic versions of the randomaatiexclusion restriction and monotonicity
assumptions respectively.

Keywords: instrumental variables, instrumental inequality, cabsainds, convex polytope, latent
variables, directed acyclic graph

1. Introduction

Conditional independence relations represent equality constraints pardmeters of a joint prob-
ability distribution. Such relations cannot be empirically validated if they involtenkavariables.
Collections of latent conditional independencies may imply inequality constramfsarameters
of the observable distribution. The classical motivation isittetrumental variablglV) model
(Durbin, 1954; Angrist et al., 1996). It includes the A, and inference is required about the effect
of a variable B, on anotherC, in the presence of latent confoundéys,The IV model is defined by
Al B,CLLA|(B,U)andU LLA. The latter two involve the latent variableso it was tradition-
ally thought that the model could not be empirically verified (Imbens and i8ndr994). However
Pearl (1995) derived the ‘instrumental inequality’

méaxg {m/gxP(C,B|A)} <1, 1)
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a set of constraints which are implied by and can be used to falsify the @id&fenodel. To
compute the constraints, Pearl (1995) defines the IV model as a deternunistiterfactual model
(Rubin, 1974). Such models involve latent deterministic relations, which nadiggnto produce
observed probabilistic relationships, and are technically equivalentuotstal equation models
(Strotz and Wold, 1960) and other functional models (Heckerman anth&ral995).

Without intervention data and further assumptions, the causal eff@&bafC cannot be point
identified (Durbin, 1954; Angrist et al., 1996), but, using the deterministimterfactual model, it
can be bounded with the joint distribution&fB andC (Pearl, 1995; Robins, 1989; Manski, 1990).
Thus making it possible to acquire non-trivial information about the effétite intervention when
intervention studies cannot be conducted; because of ethical, finamoddher reasons. Using
the deterministic counterfactual approach and linear programming softlesetoped by Balke
(1995), the constraints on the causal effecBabn C were improved by Balke and Pearl (1997)
and extended to other models by Kaufman et al. (2009). This linear pnogjray approach within
a deterministic counterfactual model has become the standard tool for toghpuch constraints,
with some exceptions (Geiger and Meek, 1998; Kang and Tian, 2006).

As a technical construct for computations, deterministic counterfactua¢ismade widely ac-
cepted as valuable. Applications of deterministic counterfactual modelsmagbare are underlying
deterministic relations (Angrist et al., 1996) and pose no issues if the deismméan be practi-
cally justified. For certain applications though, for example, mutations thaeazancer (Aalen and
Frigessi, 2007), subject matter knowledge suggests that assumptiangtabexistence of deter-
ministic mechanisms are unrealistic and spawns controversy (Dawid, 2806 if an analyst is
unaware of the type of mechanisms involved in their study, it would be désit@bvoid determin-
istic counterfactuals if alternative computations are no more difficult. The rdeth82 provides
such an alternative, which is agnostic to whether the underlying mechanienpsadabilistic or
deterministic, to deriving falsifiable constraints and causal bounds of pleepeviously described.
The method described does not use counterfactuals, which has cenamtages (Dawid, 2000),
but more importantly demonstrates that the determinism in the models is unngcessar

In this discussion, causal inference is formalized within standard dectstomy (Spirtes et al.,
1993; Pearl, 1993), with conditional independence assumptions (Lenyri2d01; Dawid, 2002).
The model has been successfully applied in defining direct effectse{&@&n2007) and dynamic
treatment strategies (Dawid and Didelez, 2010), to name a few. The appro@2 and throughout
uses this framework and it is compared to the counterfactual framewof ifie method is based
on the analysis of convex polytopes and can be implemented in standardpeolgforesentation
software such as Polymake (Gawrilow and Joswig, 2000) or PORTAS©Ghand Loebel, 1998).
Known constraints, which have been previously derived using detetiigisunterfactuals, are
derived in 85. Graphical models for representing causal assumptierdeacribed in 84. Non-
trivial modifications of the computation technique are considered in 86, @ 8&ro derive novel
constraints and causal bounds when various assumptions in the IV medetakened.

Example 1 Consider an IV model of partial compliance, wherecA1,2} is treatment assigned,

B € {0,1} is treatment taken and C is an outcome of interest. The counterfactual d¢lnimvolves
counterfactual variable§B1, B,) which represent a unit’s deterministic compliance behaviour when
A is set tol (no treatment) or2 (treatment) respectively. Analyses of this model often make the
monotonicity assumptiorn,B> B;, meaning that a unit which does not take treatment if assigned i,
will never take it.
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The deterministic counterfactual framework only allows the compliance l@irem Example 1
to be modelled as deterministic. Monotonicity assumptions, used to compute bouxdaodels,
in the literature (Pearl, 1995; Balke and Pearl, 1997) are imposed in moliels are stronger than
necessary. It is shown in 88 that the known bounds and novel baamdse derived for a weaker
model. In the context of Example 1, monotonicity in the weaker model is equivedeassuming
that units are more likely to take treatment if assigned it than if not assigned it.

The counterfactual IV model in Example 1 uses the exclusion restrictiamge®n (Imbens
and Angrist, 1994). This assumption restri€t$o be a deterministic function of compliance be-
haviour and treatment taken only. Stochastic exclusion restrictions aseleoed within the deter-
ministic counterfactual framework in Hirano et al. (2000). In a weakiy firobabilistic model, the
exclusion restriction assumpti@hlL A| (B,U) is used in 82 to replicate results which were derived
under the stronger model (Balke and Pearl, 1993; Pearl, 1995; BadkBearl, 1997). Whilst vary-
ing the strength of the exclusion restriction, novel constraints are dar&7 with the probabilistic
approach. This allows a sensitivity analysis to the non-deterministic excleestmction, which is
important when assumptions involve unobservable variables (Sheprard2®06).

Another assumption in the IV model in Example 1 is that treatment assignment jieimaient of
compliance behaviour. In the probabilistic framework, novel constraiets@nputed for a weaker
IV model withU /L. A, as described in 86. Applications to data are given in 89. The IV model
provides motivation for this discussion but the approach extends to ottd®@isad he notation used
throughout is listed in Appendix A.

2. Computation of Constraints in the Instrumental Variable Model

Consider a model involving the random variabkesB, C andU, where the state space Afis
{1,2}, Bis {0,1} andC is {0,1}. U is unobservable by definition so no assumption is made
about it. LetV* = ({g01,4611,----Ci12) be a random vector with componergs, ,, which are
random variables that are functionslf where(f,, = P(C =c¢,B=Db|A=a,U). Similarly, let

V= ({o01,Co11,---,C112) be afixed vector of probabilities that are not functionslpfvhere{cp, =
P(C=c,B=Db|A=a). LetT* = (ng,Nni,d;,9;), where

ny=P(C=1|B=hU), & =PB=1/A=aU). (2)

Sincet* is a vector of probabilities theti* € 7 since the components of satisfy the axioms of
probability, whereT = [0, 1]*. To derive falsifiable constraints @for the IV model, it is necessary

to determine the set af which does not satisfy the assumptions in the IV model. Under the IV
model,C LL A|(B,U), which implies that

P(C,B|A,U)=P(C|B,U)P(B|AU), 3

andv* can be parameterised By. The relation in Equation (3) together with the codes in (2) define
amappings : T* € T — V* € 7, wheret* is unrestricted by the IV model anld = =(‘7) contains
all v* which obey the IV model. Since the components of eéthbey the axioms of probability
then? C z, wherez C [0,1]® is the intersection of the hyperplanes definedsty, %, , = 1 for
ae{1,2}.

Under the IV modellJ LI A, which implies that ., = Ey (L%, ,) and thus ali’ that obey the IV

cha
model lie in#, where# is the set of all possible convex combinations ofalE 7’ or the convex
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hull of V. Let ¥/ = E(‘f‘) and be the convex hull ofl/, where is the collection of extreme
vertices of7. The verticesT and ¥ are partially listed in Figure 1 (top) and the transformation
=(-) is represented in Figure 1 (bottom).

0, & Coor Cor1 Clor Q11 Gooz Corz Cloz Cino
0 O 1 0 0 0 1 0 0 0
o 1 —- 1 0 0 0 0 1 0 0

o oz
o o=

Figure 1: Transformation of extreme vertices (top) of polytope (bottom).

SinceH = #, from Theorem 1 in Appendix B, then allthat obey the IV model lie it¥{. The
proof of Theorem 1 does not use the specific forr& 0f, only its monotonicity in each coordinate.
A program such as Polymake (Gawrilow and Joswig, 2000) or PORTAghand Loebel, 1998)
can be used to transform the representatiof/oh terms of its extreme vertices to a representation
in terms of its facets or inequalities. The inequalities are constraints whictatséexl byv if v
obeys the IV model. This specific computation produces the falsifiable ‘msintal inequality’
constraints in (1) and is exactly the approach of Dawid (2003).

It is possible for the randomization or exclusion restriction assumption to fiibut violation
of any of the constraints in (1). This is because there are distributi@®BPA,U) which either
violate the assumptiobd LL A or Equation (3) but give rise to marging@®B, A) that obey the
inequalities in (1). For example, if a* lie in #\ 7’ and randomization holds then the exclusion
restriction in Equation (3) is not satisfied but @k #/, which means that the inequalities in (1) are
satisfied. | conjecture that the condition thhthas a certain small state space is sufficient to imply
that it is possible for the IV model to fail without violation of any of the conisiisin (1).

3. Geometry of Counterfactuals and Latent Variables

The binary IV model can be re-parameterised by replatirig P(C,B|A,U) with T* and consid-
ering RC,B|A,T*). The polytope#{ represents the model for(® B|A) and, since’/ = 7, a
computationally and empirically indistinguishable model is formed by restridting 7. In this
minimal representation of the model, wharec 7, the parameterg; € {0,1} andd; € {0,1}.
Thereforen;, is a deterministic function oB and the latent variablg and can be interpreted as
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a counterfactual variable which is the value®fvhenB = b for a givent*, and similarly ford}.
Similar comments are given in Lauritzen (2004).

If U is interpreted as the collection of variables which define a unit #ieis the vector of
potential responses for a unit and each vertex of the polytope corrdspo a certain type of unit.
In the partial compliance model of Example 1, the vertéx= (0,0,0,0) corresponds to a unit
which is classified amever recovefresponse is 0 regardless of treatment taken) amevar taker
(treatment taken is O regardless of treatment assigned).

The probabilistic model is parameterisedidyover the entire polytop& whereas the counter-
factual model is parameterised Hyonly at the extreme vertices of the polytope In special cases
where latent determinism is realistic then such a parameterisation is meanindfatsumptions
about the non-existence of certain vertices of the polytoge er7 can potentially be justified. If
latent determinism is known to be unrealistic (Aalen and Frigessi, 2007) andplarameterisation
is a technical construct then it may be wise to steer clear of any interpreltatyamd simply saying
that they are the vertices of the polytope defining the model.

The concepts are demonstrated in the reformulation of the monotonicity assanmggi®. The
deterministic counterfactual approach assumes latent determinism anddtgéhng vertices as hav-
ing real meaning. Under the deterministic interpretation, the monotonicity assumnpipties that
certain vertices are not valid for the model. The probabilistic approachegefnonotonicity as
a constraint on the latent conditional distributions to lie in a particular halespstill allowing
probabilistic behaviour.

4. Causal Graphical Models

The IV model considered so far, that is, without causal assumptiorelaisvely simple. However
extensions of it will be considered later and it will be useful, though not,vitause graphical
models to represent the assumptions involved. Graphs that are ugefeppfesenting conditional
independence and causal assumptions are described in 84.1 andsgé@ively.

4.1 Directed Acyclic Graph

A purely probabilistic directed acyclic graph (DAG) (Lauritzen, 199&)gists of a set ofertices
ornodes A/, and a set oflirected edgesE. If A1,A2 € AL and(A1,A2) € E then(A, A1) ¢ E. Itis
said that there is a directed edge framto A,, this is written as\;1 — A, andA; is called aparent
of A2. In a DAG which represents the probability distribution of a set of randariables X, every
A € A corresponds to a random variablg € X. The probability distribution function has the form

P(X) = Maea P{A [ Xpan) } (4)

where ‘pd-)’ is the set of ‘parents’ of a node. This factorisation property is edeiuao a collection
of conditional independence relations, which can be derived from & Wing the concepts of ‘d-
separation’ (Verma and Pearl, 1988) and a ‘moral graph’ (Lauritzah,e1990). The observational
assumptions of the IV model can be represented by the DAG in Figure 2 (left)

4.2 Augmented Directed Acyclic Graph

The notation {|’ (Lauritzen, 2001) is used for intervention conditioning and is equivaierihe
‘do(-)’ notation (Goldszmidt and Pearl, 1992) and thgsR.)’ notation (Spirtes et al., 1993). Using
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Figure 2: DAG which represents observational assumptions of the ingttaimeariable model
(left) and augmented DAG for IV model, which includes causal assumpti@ig)

the notation, FC|| B = b) is the probability ofC given thatB is actively forced to take the valug
and not passively observed to take the vdiuas in RC|B = b).

To derive intervention constraints, the assumptions represented bygimeated DAG (Spirtes
et al., 1993; Pearl, 1993; Lauritzen, 2001; Dawid, 2002) in Figuréghtjrare considered, where
ACE(B—C)=a=P(C=1||B=1)—P(C=1||B=0) is the causal effect of interest. The
intervention noddg is aregime indicatordecision variable which represents the way in which
the value ofB arises. Conditional independence relations can be derived in the saymasviar
the purely probabilistic DAGs since the probability distribution, conditionaFgnstill factorises
according to Equation (4). The noéig takes the valueddle’, 0 or 1. If Fg = idle thenB takes a
random value given by {B|pa(B)}, but if Fg is either O or 1 the = Fg. Using previous notation
P(C||B=b) =P(C|Fs =b). The relatiorC LL B|(Fg = b,U) holds from the definition offg but is
not represented in Figure 2 (right). Square nodes are decision whiEsrepresent fixed strategies,
whereas circle nodes are random nodes which represent randiaiples.

The augmented DAGs which represent the IV model without randomizatidthanexclusion
restriction are given in Figure 3.

Fs Fs

N %

Figure 3: Augmented DAGs which represent the causal IV model witlemgomization (left) and
without exclusion restriction (right).

The assumptions represented by the augmented DAGs in Figure 3 will benu§6dand 87
respectively to derive constraints. The augmented DAG in Figure 2 (sgh@pplies under mono-
tonicity since no extra conditional independences are assumed.
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5. Applications of Computation

Many results in the literature are recovered by specific applications ottiergl method described
in 82. Itis based on parameterising with the factors of Equation (4) ansftraning them according
to a mapping. By defining the appropriate mapping, the various constrastsbtainable. Key
requirements are the monotonicity of the mapping and that the space of vadichgtars is the
convex hull of the transformed polytope. Constraints on other quantitieh,as PC|A), P(B|A),
P(C|B) etc., can be derived but some interesting examples are given in 85.1 @2nd 85

5.1 Falsifiable Constraints

Some applications, such as studies with partial compliance, require cotssinaiplving the distri-
bution RC,B|A), whereas others can only identify the pairwise conditional distributid@s &)
and RB|A). For example, Mendelian randomization in genetic epidemiology involves thefuse
a genotype (A) as an instrument for the effect of a phenotype (B) aseask (C). However only
genotype-phenotype and genotype-disease data is usually availabie@ahd Sheehan, 2007)
and thus constraints involving®| A) and RB|A) are needed.

To derive the constraints, consider the monotone mapping— (\7*,@*) for the IV model of
Figure 2 (left), whergi, = P(C =c|A=a,U) and6}, = P(B=b|A=a,U). SinceU LL A then
(V,0) lies in the convex hull of the set ¢f*,6*) which satisfy the IV model, wherg, = P(C =
c|A=a) andBpy = P(B=Db|A=a). Similarly to the approach in 82, the constraints

801+ 602 > Yo1— Yo,
801+ 802 > Yoz — You,
811+ 612 > Yo1— Yo,
811+ 612 > Yoz — You,

are obtained, which are the same as in Ramsahai (2007).

5.2 Bounds on Fixed Interventions

From the motivating Mendelian randomization example in 85.1, it may be negéssdotain causal
bounds in terms of the pairwise conditional distributiof€ PA) and RB|A). Consider the model

in Figure 2 (right). Sinc&€ 1L Fg|(B,U) andU _LL Fg then RC||B) = 5, P(C|B,U)P(U). This
implies that(y, 6, a) lies in the convex hull ofy*,8*,a*), wherea* = P(C=1|B=1,U) —P(C =
1|B=0,U) anda = Ey (a*). Therefore the monotone mappitiy— (V*,8*,a*) can be used to
compute constraints ofy, é,a). The results of the computation are given in Appendix C and are
the same as those derived in Ramsahai (2007).

Similarly, constraints and causal bounds in terms of the identifiéklg parameters can be
obtained by considering the mappitg — (V*,a*). The constraints involving the identifiable
(cpa parameters only are the same as those obtained in 82, which are given am@lthe rest
constraina. The bounds o are given in Appendix C and are the same as those of Dawid (2003),
which are derived by Balke and Pearl (1997) in a deterministic model.

6. Relaxing the Randomization Assumption in the Instrumenal Variable Model

It is possible for treatment assignment in a partial compliance study, whidlitéke for an 1V
model, to have invalid randomization, for example, if the doctor involved is ewaithe health
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status of the patients. To analyze such a study, an analyst may opt for witbdet randomization
or at least assess the effect of the assumption on the inference. Bptihereonstraints to be
derived for a model without) LI A, as in Figure 3 (left). The decision framework is used here for
computations without any assumptions of determinism. It is irrelevant to the datigguwhether
U causesA, A causedJ or both have a common cause. This is because the model in Figure 3
(left) only makes assumptions about distributions in the observational regichtha regime with
intervention onB, since it includes the regime indicatBg. No Fa or iy regime indicators are
included so no assumptions are made about interventioAsook) .

If there is data on f€|A) and RB|A) but not RC|B, A) then constraints and bounds involving
y and® are useful. Without the randomization assumptigniL A, (V,é,a) does not necessarily
lie in the convex hull of(V*,é*,a*) and similarly for the other applications in 85. Assuming the
exclusion restriction in Equation (3) still holds; still fully parameterises (€,B|A,U). Consider
the monotone mapping;(-): T — V*, whereV;" = (v, v;;, 85,03, 0) for i = 1,2, which can be
expressed as

a*=ni—nNg Yo =(1-nyL-)+(1-n7)d, 65=1-9
Vi = No(1—9) +nidf, =9

The transformation of” by =i(-) is given in Figure 4. Since the relatio@sLL Fg|(B,U),U LL Fg

No N1 & Yo Vi O 6y o

0 0 0 1 0 1 0 0
0 0 1 1 0 0 1 0
0 1 0 1 0 1 0 1
0 1 1 — 0 1 0 1 1

1 0 0 0 1 1 0 -1
1 0 1 1 0 0 1 -1
1 1 0 0 1 1 0 0
1 1 1 0 1 0 1 0

Figure 4: Transformation of” by =i(-) to the polytope which represents the IV model without
randomization, in terms of the pairwise conditional distributio(S |A) and RB|A).

andC LL A|(B,U) follow from Figure 3 andC Ll B|(U,Fg = B),
P(C|[B) = 3a5u P(C|B,U)P(U |A)P(A) = Ea(aa), ()

wherea), = 3, P(C|B,U)P(U |A). Since RC|A) = Eyja{P(C|A,U)} and RB|A) = Eyja{P(B|AU)}
thenw lies in the convex hull of the set &f, wherew; = (Yoi, i, B0i, 01i, 0} ), and the method of §2
computes the tight constraints
0 < Yoi + 2y1i — B0i + 0],
0 < Yoi + 6gi + af,
0 < i + 8¢ —af,
0 < 2yoi + Y1 — B0i — 01,
or
max{ Yoi +6i —2,—Yoi —60i } <o <min{ —Yoi+60i+1,¥6i —60i+1 },
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for all i. The constraints are tight since the vertices of the convex hull are atspiltbe vertices of
the transformed polytope and any vertex is achievable if the value cérresponding to the vertex,
occurs with probability one. Sinae= Ea(a,) from Equation (5) then

- Yoi + 60 — 2 | —Yoi +60i +1
min [max{ —Yoi — Boi H sas miax[mln{ Yoi — 60 +1 H

These bounds always span zero and are tight since the bounndsaom achievable bw if P(A =
i) = 1. If marginalA data are available, the bounds can be improved to

ACE(B—C) >, {max{ VO‘;;GO‘ e_o i2 } P(A= i)} ,

. —VYoi + Boi .
ACE(B—C) <3 [mln{ V:J/ioj_GOio":_ll } P(A— |)] ,

or
—1+En(|yza— B0a|) < ACE(B— C) < 1—Ea(|Yoa— Boa|).- (6)

Although the expression in (6) bounds the unobservable causal, gffece are no falsifiable con-
straints to invalidate the model. The bounds in (6) always span zero.

If a sample from FC,B| A) is available, the mapping® — V;* can be used to compute observ-
able constraints and causal bounds.  The computation is possible si@®|R) =
Euja{P(C,B|AU)}, which implies thatw; lies in the convex hull of the set af*, whereV =
(€0 Co1i>Ca0i» i) @andWi = (oo, Coti,C10i,11i,0]). The bounds-{o; — {10 < ACE(B —

C) < oo+ {11 are obtained, wher&,, = P(C = ¢,B = b). All of the results in this section still hold
if the state space dis extended td1,2,...,l} but the state space 0B,C) kept binary.

The bounds on ACBB — C) by the{c, parameters are derived by Manski (1990) in a model
involving (B,C,Co,C1) under the assumptions that the potential outcof@sC;) for a unit are
the same regardless of how treatment is assigned, that is, whether bgimignvor observation,
and thusC is a deterministic function ofB,Cy,C;) for a unit. The derivation, of the bounds on
ACE(B — C) by thelcp parameters, given here only requires the analogous assumbpltichég
andC L Fg| (B,U). The additional variabl& used here, which satisfies the conditinl A| (B,U),
trivially exists by constructing a variable = B. Also, the conditional independence assumption
A 1L Fg represented in Figure 3 (left) is unnecessary since it is not used in tilratcen.

7. Relaxing the Exclusion Restriction in the Instrumental Vaiable Model

The exclusion restriction assumption may often be inapplicable, for examplatiéits in a study
with partial compliance become aware of their treatment assignment and #dutsaffeir outcome.
There could be a direct relation between treatment assignfnand the outcom€, for which the
model in Figure 3 (right) would be appropriate. The probabilistic nature ekttclusion restric-
tion within the decision framework allows the strength of the direct relation toabed and the
sensitivity of inference to this assumption to be assessed.

A weaker alternative to the exclusion restriction assumptn] A|(B,U), in the binary IV
model is 0< |ny; — Nyl < €for b= 0,1, wheren;, =P(C=1|B=b,A=aU) and 0<¢e < 1.
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Figure 5: Transformation to the extreme vertices corresponding to the pelythich represents
the IV model with the weaker exclusion restriction, §o¢ 0.5, in terms of the distribution
P(C,B|A).

The conditione = 0 is equivalent to the exclusion restriction. Foe 1, there are no constraints
on (Ng;,Ny,) other than the axioms of probability and there are no falsifiable constraictusal
bounds for the IV model without the exclusion restriction. The augmented DAigure 3 (right)
does not represent any assumptions abbut assumptions abogiare required to obtain non-trivial
constraints and bounds. The application of the technique is considered=f0.5. Consider the
mapping oft* = (N§1,Ng2> Ni1: Nigs 01, 05) tOV* = ({01, Lh11s - - - Lip o) fOoramodel withA e {1,2}
andB,C € {0,1}. The transformation of some of the extreme vertices are given in FigureéofJ
the technique produces the causal bounds in Appendix D and the éotsstra

€001+ €102 — 101 — o2 < 1,
€101+ €002 —Coo1— (102 < 1,
C111+Co12—Co11— (112 < 1,
Cor1+C112—C111—Co12 < 1,

which is a weaker version of the ‘instrumental inequality’ of Equation (1) ean be violated if
the IV model with the weak exclusion restriction= 0.5, is invalid. By adding the component
P(C|B,A,U) to V*, causal bounds on(B|A,Fg = B) = 3, P(C|B,A,U)P(U) can be derived for
eachA and used to compute bounds on ABE- C) since RC|Fg =B) = SAP(C|A Fg = B)P(A).
Similarly to the bounds in 86, these bounds are tight. Althoughcurrently defined as a constant,
similar computations can be donesifis allowed to be a function df, that is,|nj; —n;,| has a
different range for each.
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7.1 Bounds on Direct Effects

Without assumingC LL A|(B,U), if intervention onA is possible then the direct effect 8f on

C can be bounded with parameters of the distribution under no interventionsidés extending
the sample space &% to include the random regimas, which represents the regime in which
P(B|A,U,Fs =ds) = P(B|A=a*,U). Consider the controlled direct effect (CDE) (Didelez et al.,
2006) and the random regime direct effect (RRDE)

CDE(B) = E(C|Fe=B,Fa=2)—E(C|FRR=B,Fa=1)
= Ey{E(C|B,A=2,U)—E(C|B,A=1U)}
= BEu(Ng2—Ng1)>

E(C|Fs =da,Fa=2) —E(C|Fg = da,Fa=1)
= BEu{(Nf—N1)% + (12— N1y) (135 )}-

The RRDE is called the NDE in Didelez et al. (2006) but Robins and Ricbar(010) argue that
the parameter being referred to as NDE in Didelez et al. (2006) is nottine asithe NDE in Pearl
(2001). Thus a separate name is given here to RRDE. By consideringapping oft* to the
vector withv* and the extra componeng, — ng;, the bounds on CD@) of Cai et al. (2008) can
be replicated. Similarly by mappirg to a vector wittv* and Es(ng, —ng,; |A=a",U), bounds on
RRDEa") are obtained, which are identical to the bounds on NDEin Sjolander (2009). Unlike
here, both references use counterfactuals and use the definitiorEoAQIDNDE, sometimes called
pure direct effect (Robins and Greenland, 1992), given in P2adl).

RRDE(a")

8. Monotonicity Assumption in the Instrumental Variable Model

The monotonicity assumption in the literature (Imbens and Angrist, 1994; Aregrad., 1996) is
formulated in a deterministic model. In a partial compliance study, a patient may teelikely
to take treatment under assignment but it may not be reasonable to assttheitiaehaviour is
deterministically related to treatment assignment. A monotonicity assumption in amgakea-
bilistic model is considered here and can be expressed mathematically fonaéing i model by
o5 > 07, from Equation (2). It restricts the space of the vector of probabilitighs@onstraints are
at least as strong as without it.

The IV model considered in this section includes the exclusion restrictiotharrdndomization
assumption, as in the augmented DAG in Figure 2 (right). As an illustrative dgaougnsider the
computation of falsifiable constraints and causal bounds greny, without monotonicity, where
¢ = ACE(A — B) = 891 — B02. This computation produces only trivial results. Under monotonicity,
T must be redefined to omit all which do not satisfy it. Therefore all of the vertices with< &;
or ¢* > 0 should be removed to redefiffe whered* = PB=1A=2U)-PB=1]A=1U).
The required mapping & — (y*,$*) over the domain of the restrictefl. The transformation is
given in Figure 6 and the non-trivial constraints obtained are

Yor=VYoz | oo 1 vl <1 .
max{ —Yo1+ Yoz }_¢_ = Moy <@ <1, (7)

or ACE(A — B) > |yo1— Yoz| = |ACE(A — C)|. This makes sense since it is assumed ¢Hiat 0
andB lies on the causal pathway frofto C. The transformed polytope in Figure 6 is 3 dimensional
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No N1 0 & Yoo Yii Yoo Yiz 97
O 0 O O 1 0 1 ©O 0
0O 0 0 1 1 0 1 ©O 1
O 0 1 O - - = = =
0O 0 1 1 1 0 1 ©O 0
0O 1 0 O 1 0 1 0O 0
0O 1 0 1 1 0 O 1 1
0O 1 1 O - - - - =
o 1 1 1 —» O 1 0 1 0
1 0 0 O o 1 0o 1 0
1 0 0 1 O 1 1 0 1
1 0 1 O - - - - =
1 0 1 1 1 0 1 ©O 0
1 1 0 O O 1 ©O 1 0
1 1 0 1 O 1 O 1 1
1 1 1 O — - - =
1 1 1 1 0 1 0 1 0

Figure 6: Transformation to the extreme vertices corresponding to the pelythich represents
the IV model, with the exclusion restriction, randomization and monotonicity assump
tions, in terms of the distribution(B|A). The dashes correspond to points ruled out by
monotonicity, which are represented &g in Figure 7.

sincey;; = 1—Yg,; andy;, = 1 —j,; its projection in(yg;, Yo, §*) space is given in Figure 7. The
6 e’s are the vertices which are not removed after assuming monotonicity arl dise which
correspond to dashes in Figure 6, are the vertices which are remdgede F clearly demonstrates
that the constraints without monotonicity are trivial whereas those with it@te n

To determine the effect of the monotonicity assumption on the constraints amdievith
(V,8) in §5, the same mapping is used as in the derivation of the bivariate bourdburapplied
to the restrictedl and‘7 formed by removing the appropriate vertices. The falsifiable constraints
obtained ar®y; — 602 > |Yo1 — Yoz| (equivalent to Equation (7)) and the causal bounds

2Yo1—Yo2+601— 2
Yo1 — 2Yoz — Bo2
ACE(B — C) > max Yo+ 601 —2 ,
—Yo2 — Bo2
[ Yor—Yo2+601—602—1 )

([ 2Yo1—Yo2—Bo1+1
Yo1— 2Yo2+602+1
ACE(B — C) < min Yo — 601 +1

—Yo2+ 602+ 1
Yo1—Yo2— 601+ 602+1 )

By considering the analogous mapping #r as defined in 82, the falsifiable constraints of Balke
and Pearl (1997) and the causal bounds of Balke and Pearl (1&9®8)e IV model with mono-
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Figure 7: The extreme vertices which satisfy monotonicity are ths,&he 60’s are those which
do not. The convex hull of the transformed polytope for the IV model withnttoemo-
tonicity assumption is the region above the shaded surface and without tloéamiaity
assumption is the entire cuboid.

tonicity are recovered. The bounds correspond to results in RobiB8)Y&a8d Manski (1990). Thus
the IV model with monotonicity, introduced in this section, is empirically and compunaifipin-
distinguishable from the IV model with ‘no defiers’ considered in Exampl&d Angrist et al.
(1996).

9. Data Analysis

The relative frequencies for two data sets are given in Table 1 andloedbelow.

9.1 Lipid Research Clinics Coronary Data

Consider the Lipid Research Coronary Primary Prevention Trial (LipiseRech Clinic Program,
1984), which was analysed by Efron and Feldman (1991) and BalkEeantl(1997). Subjects were
randomized into two groups, 172 men were given the placebo and 165giverethe treatment,
and the subjects’ cholesterol levels were measured. There was pantipliance with the treatment
assigned.

9.2 Vitamin A Supplementation

Another example of partial compliance is the study of Vitamin A supplementatiorrihera Suma-
tra, described by Sommer and Zeger (1991). The study consisted akechiid450 villages, 11588
children (221 villages) were assigned to the control group and 12@®¥vfages) to the treatment

group.
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Data Set a Cooa Cora (10a (11a
Lipid Research | 1 | 0.919 0 0081 0
Clinic Program | 2 | 0.315 Q139 Q073 Q0473

Vitamin A 1 | 0.0064 0 09936 0
Supplementation 2 | 0.0028 00010 01972 (07990

Table 1: Relative frequencies derived from the data sets in Lipid Rgs€dinic Program (1984)
and Sommer and Zeger (1991).

In these trials, the relative frequencies are the maximum likelihood estimates patameters
V. Bounds on ACEB — C) are computed under various assumptions from the data in Table 1 and

are given in Table 2. Sampling uncertainty is ignored here but can beryamnsidered using
techniques described in Ramsahai and Lauritzen (2011).

Study Assumptions Lower bound Upper bound
Lipid IV model 0.392 0.780
Research IV, no randomization -0.145 0.85p
Clinic IV, partial exclusion restrictiong(= 0.5) 0.050 Q855
Program IV, monotonicity 0392 Q780
IV model -0.1946 0.0054
Vitamin A IV, no randomization -0.587 0.413
Supplement, 1V, partial exclusion restrictiong(= 0.5) -0.392 0212
IV, monotonicity -0.1946 D054

Table 2: Causal bounds on ACE— C) computed from Lipid Research Clinic Program (1984)
and Vitamin A Supplementation Study under various assumptions.

From Table 2, the imposition of the monotonicity assumption has no effect ammhécassary
for these data sets. However the randomized treatment assignment is irhportanthe bounds
computed without randomization are very wide and not much can be infepad the causal effect.
Even though the bounds are much wider for the Lipid Research Clinic #ro(k984) data, under

the partial exclusion restriction with= 0.5, it can still be deduced that there is a positive causal
effect.

10. Discussion

The methods given here are applied while relaxing various assumptiorar¢hatten used in the
deterministic counterfactual IV model. By removing the assumption that therdatant determin-
istic mechanisms, it is shown that the same bounds and constraints are obtairtbdt the models
are empirically equivalent 83. The results for models which relax the raimddion and exclusion
restriction assumptions are valuable for sensitivity analyses. They aras@ful for applications in
which some of the assumptions in the IV model are known to be false.
In 87, the constraints and bounds were computed for the IV model withtglpexclusion

restriction fore = 0.5. It is not obvious how the methods described in this paper can be egtemde
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compute bounds and constraints as a functiontmit that would be worthy of future investigation.
Such results would show how the bounds vary veitlnd whether the data places any restrictions
on the possible values ef

The ideas discussed can be extended to other models involving conditidepkimdence since
it is the factorization of the probability distribution which determines the algelstaiccture of
the polytope representing the model. The model must satisfy the condition éhabservable
distributions lie in the convex hull of the latent distribution. The vector of pesters P.X) always
lies in the convex hull of BX |U) but there is no guarantee that the factorisation(af RJ ) produces
any non-trivial constraints, whert® andU are collections of observed and unobserved variables
respectively. However there may be non-trivial constraints on conditfmobabilities derived from
P(X).
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Appendix A. Notation

The symbols used throughout are listed below.

s .=P(C=cB=b/A=aU),
ny=P(C=1[B=bU),
5 =P(B=1|A=aU),
a=PC=1||B=1)—PC=1||B=0),
a*=P(C=1|B=1U)-PC=1|B=0,U),
Yea=P(C=c|A=aU),

r =P(B=b|A=aU).

The symbols with are functions ofJ and the corresponding symbols withGudre the marginals
overU.

Appendix B. Equivalence of Convex Hulls

Theorem 1 H = H.

Proof Following Dawid (2003), sincg’ C 9 and# is the minimal convex set containirg then
HCH.

Let m(V*) be an affine function, that is a linear function plus a constan@*pfvhich returns
a scalar, fo* € 7. A closed half space if0, 12 that containg/ is defined by an affine function
inequalitym(v*) > 0 orm{=(t*)} > 0 for T* € 7. From Equations (3) and (2i{=(1*)} is a
monotonic function of any single component@fwhen the other three are fixed. Therefore the
minimum ofm{=(1*)} overT is attained for som#&* € 7. Therefore

m{=(t*)} > 0forallt* € T = m{=(t*)} >0forallt* € T.
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This means that any half space contain‘fﬂgilso containg/. Since? is the intersection of all half
spaces containing’ then?’ C . Since# is convex and# is the minimal convex set containing
vV thenH C AH. [ |

Appendix C. Causal Bounds for Binary Instrumental Variable Model

For the binary IV model of Figure 2 (right), bounds ann terms of{ 4 are

Coo1+C112—1
C111+Coo2—1
—Co11— €101+ 111 — Q102 — (112
—C101—C111—Cor2 — Q102+ 112
—Cor1—C101
—Co12—C102
—Co0.1— Cor1+ Coo2 — {o12 — (102
{ Coo1—Co11—C101 — o002 — Co12

o > max

and

1— {101 —Co12
1—C{o11—Ca02
Co0.1 —Cor1+ €111+ o2+ {o12
Co0.1+Cor1—Cor2+Loo2+ {112
Coo1+ (111
Coo2+ (112
€101+ €111+ Coo2+ {112 — Q102
Coo1—C101+ 111+ Ca02+a12

o < min

For the binary IV model of Figure 2 (right), bounds ann terms ofy.; andBy, are

2Yo1— Yo2+ 2601 — 3
Yo+ 601 —2
Yo2+602—2

—Yo1+ 2Yo2+ 2602 — 3
—Yo1+Yo2—B01+602—1
—Yo1— Bo1
—Yo2 — 6802
Yo1— 2Yoz2 — 2002
—2Yo1+ Yoz — 2601
Yo1— Yoz + 801 — 0602 —1

o > max
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and
—2Yo1+ Yo2+ 2601+ 1
Yo1— 2Yo2+ 26802+ 1
2Yo1— Yoz — 2601+ 2
—Yo1+ 2Yo2 — 2602+ 2
Yo1—Yo2— 6801+ 602+ 1
—Yoz2+802+1
Yor— 601 +1
Yoz — 6802+ 1
—Yo1+601+1
—Yo1+ Yo2+ 601 —602+1 J

o <min

Appendix D. Causal Bounds for Instrumental Variable Model Without Exclusion
Restriction

For the binary IV model without the exclusion restriction in 87, §o 0.5, the following bounds
are obtained foa=1,2

( —2{o1a— 2(10a
—Cora—2C10a+C11a+{ooa — C10a — 1
2o0a—2—Cora + (114
—3Cora— 2C10a— {11a— Cora + (112

AEC|A=aFg=1) max —3lora— 2C10a+11a— 20104 — 20114

—E(C|A=aFR=0)} — —Cora— 20102 — 3112 — 3ora — 20102 + (114 ’

2¢11a+ 002 — {100 — 2

_2Z01.a’ - 2110.61’ -1

—3Co1a —4C10a — C11a+ 20104 + 20119 — 1

Cora+2C10a+3C11a— 3Cora —410a — 11 —

N

and

200a+ 20112

2—2C10a—Cora + (114
2—Cora—2C10a+C11a— Cora + (114
1+20p0a +20114

2—2Co1a+ Cooa — C10

300.a — C10a+ 2C11a+ 20104 + 20114
3—3Cora— 2(10a—C11a+ Cooa — (104
4—3Cora—2C10a+C11a— 20104 — 2(114

4+ Cora—2C10a— C11a— 3ora — 20104 + (114
4—Cora+2C10a+C11a—3ora — 4102 — (114

wheread =2ifa=1andad =1ifa=2.

2(E(C|A=a,Fs=1)

E(ClA=aFs=0) =N
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