Journal of Machine Learning Research 13 (2012) 1435-1468 bmited 5/11; Revised 12/11; Published 5/12

Structured Sparsity via Alternating Direction M ethods

Zhiwe (Tony) Qin ZQ2107@COLUMBIA.EDU
Donald Goldfarb GOLDFARB@COLUMBIA.EDU
Department of Industrial Engineering and Operations Resea

Columbia University

New York, NY 10027, USA

Editor: Francis Bach

Abstract

We consider a class of sparse learning problems in high diifoeal feature space regularized by

a structured sparsity-inducing norm that incorporatesrgtnowledge of the group structure of
the features. Such problems often pose a considerableenbalto optimization algorithms due

to the non-smoothness and non-separability of the regal@oh term. In this paper, we focus
on two commonly adopted sparsity-inducing regularizatemrms, the overlapping Group Lasso
penaltyly /I>-norm and thé; /l.-norm. We propose a unified framework based on the augmented
Lagrangian method, under which problems with both typesegtilarization and their variants
can be efficiently solved. As one of the core building-blookshis framework, we develop new
algorithms using a partial-linearization/splitting tedue and prove that the accelerated versions
of these algorithms requir@(%) iterations to obtain am-optimal solution. We compare the

performance of these algorithms against that of the altegalirection augmented Lagrangian
and FISTA methods on a collection of data sets and apply tletwa real-world problems to
compare the relative merits of the two norms.

Keywords: structured sparsity, overlapping Group Lasso, altergatirection methods, variable
splitting, augmented Lagrangian

1. Introduction

For feature learning problems in a high-dimensional space, sparsity ieaheé vector is usually a
desirable property. Many statistical models have been proposed in thaulieeta enforce sparsity,
dating back to the classical Lasso modeirégularization) (Tibshirani, 1996; Chen et al., 1999).
The Lasso model is particularly appealing because it can be solvedyogffierent proximal gradi-
ent methods; for example, see Combettes and Pesquet (2011). HaweVsrsso does not take into
account the structure of the features (Zou and Hastie, 2005). In reahgpplications, the features
in a learning problem are often highly correlated, exhibiting a group streictitructured sparsity
has been shown to be effective in those cases. The Group Lasso (vieaeland Lin, 2006; Bach,
2008; Roth and Fischer, 2008) assumes disjoint groups and enkpaesity on the pre-defined
groups of features. This model has been extended to allow for groaparth hierarchical as well
as overlapping (Jenatton et al., 2011; Kim and Xing, 2010; Bach, 208i) wide array of appli-
cations from gene selection (Kim and Xing, 2010) to computer vision (Heaag, 2009; Jenatton
et al., 2010). For image denoising problems, extensions with non-integek $ikes and adaptive
partitions have been proposed by Peyre and Fadili (2011) and Realtg2011). In this paper, we
consider the following basic model of minimizing the squared-error loss widgalarization term
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to induce group sparsity:

min L(x) +Q(x), (1)
XeRM
where
L(x) = %HAx—bHZ, AcR™M
Qi i, (X) =AY scsWsllXsl[, or
Qx) = 12 2
X {Qh/lw(x)zxzsgwsuxsuw , @

S ={s1,--+,85} is the set of group indices witl$| = J, and the elements (features) in the groups
possibly overlap (Chen et al., 2010; Mairal et al., 2010; Jenatton etCdll; Bach, 2010). In this
model,A,ws, S are all pre-defined|| - || without a subscript denotes thenorm. We note that the
penalty termQ;, /1, (x) in (2) is different from the one proposed by Jacob et al. (260fhough
both are called overlapping Group Lasso penalties. In particular2jlgapinot be cast into a non-
overlapping group lasso problem as done by Jacob et al. (2009).

1.1 Related Work

Two proximal gradient methods have been proposed to solve a closetvafigl) with anly /I,
penalty,
min L(X) + Qi 1,(X) +AlIX]]1, ®3)

XERM

which has an additiond}-regularization term orx. Chen et al. (2010) replac®,, ,(x) with a
smooth approximatiof, (x) by using Nesterov’s smoothing technique (Nesterov, 2005) and solve
the resulting problem by the Fast Iterative Shrinkage Thresholdingitdgo(FISTA) (Beck and
Teboulle, 2009). The parametgis a smoothing parameter, upon which the practical and theoretical
convergence speed of the algorithm critically depends. Liu and Ye j20d®apply FISTA to solve

(3), but in each iteration, they transform the computation of the proximabégeassociated with
the combined penalty term into an equivalent constrained smooth problesolzedt by Nesterov’s
accelerated gradient descent method (Nesterov, 2005). Mairal (@04D) apply the accelerated
proximal gradient method to (1) with /I penalty and propose a network flow algorithm to solve
the proximal problem associated wih, . (X). The method proposed by Mosci et al. (2010) for
solving the Group Lasso problem in Jacob et al. (2009) is in the same spitieanethod of Liu

and Ye (2010), but their approach uses a projected Newton method.

1.2 Our Contributions

We take a unified approach to tackle problem (1) with Hefiy- andls/l.-regularizations. Our
strategy is to develop efficient algorithms based on the Alternating Lineanzgthod with Skip-
ping (ALM-S) (Goldfarb et al., 2011) and FISTA for solving an equérda constrained version
of problem (1) (to be introduced in Section 2) in an augmented Lagrangiaroch&timework.
Specifically, we make the following contributions in this paper:

e We build a general framework based on the augmented Lagrangian meibet, which
learning problems with both /1, andls /I, regularizations (and their variants) can be solved.
This framework allows for experimentation with its key building blocks.

1. This norm has been further investigated and renamed as latent Gassp (Obozinski et al., 2011).
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e We propose new algorithms: ALM-S with partial splitting (APLM-S) and FISA#h partial
linearization (FISTA-p), to serve as the key building block for this franmwiV/e prove that
APLM-S and FISTA-p have convergence rate€f ) andO(;} ) respectively, wherk s the
number of iterations. Our algorithms are easy to implement and tune, and tihney dmjuire
line-search, eliminating the need to evaluate the objective function at eveatjdate

e We evaluate the quality and speed of the proposed algorithms and framayeinist state-of-
the-art approaches on a rich set of synthetic test data and comp#séltrendls /1, models
on breast cancer gene expression data (Van De Vijver et al., 2002 ardeo sequence
background subtraction task (Mairal et al., 2010).

2. A Variable-Splitting Augmented L agrangian Framewor k

In this section, we present a unified framework, based on variable sphitidghe augmented La-
grangian method for solving (1) with both/I,- andl; /l.-regularizations. This framework refor-
mulates problem (1) as an equivalent linearly-constrained problem iy tie following variable-
splitting procedure.

Lety € R2s=sl8l be the vector obtained from the vectoe R™ by repeating components &f
so that no component gof belongs to more than one group. Mdt= Y ¢|s. The relationship
betweerx andy is specified by the linear constraidk =y, where thgi, j)-th element of the matrix
CecRMxMis

co— { 1, if y; is areplicate ok;,
“J71 0, otherwise.

For examples o€, refer to Chen et al. (2010). Consequently, (1) is equivalent to

i 1 ~
min  Fopj(X,y) = 5[|Ax—b[|*+Q(y) (4)
st. Cx=y,

whereﬁ(y) is the non-overlapping group-structured penalty term correspondiQgytpdefined in
2).

Note thatC is a highly sparse matrix, and = C'C is a diagonal matrix with the diagonal
entries equal to the number of times that each entry isfincluded in some group. Problem (4)
now includes two sets of variablgsandy, wherex appears only in the loss teroix) andy appears
only in the penalty ternﬁ(y).

All the non-overlapping versions d®(-), including the Lasso and Group Lasso, are special
cases of)(+), withC =1, that is,x =y. Hence, (4) in this case is equivalent to applying variable-
splitting onx. Problems with a composite penalty term, such as the Elastic\et||1 -+ Az[/x||?,
can also be reformulated in a similar way by merging the smooth part of the péraity)||x||?
in the case of the Elastic Net) with the loss functldp).

To solve (4), we apply the augmented Lagrangian method (Hestenes,A®@68ll, 1972; No-
cedal and Wright, 1999; Bertsekas, 1999) to it. This method, Algorithm lirmzes the augmented
Lagrangian

1 1 ~
L(xy,v) = 5[lAX— bl|? —vT (Cx—y) + Zl||CX—Y\|2+Q(Y) ®)
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exactly for a given Lagrange multiplierin every iteration followed by an update¥oThe parame-
terpyin (5) controls the amount of weight that is placed on violations of the cans@a =y. Algo-
rithm 1 can also be viewed as a dual ascent algorithm appliBfMo= minyy L(x,y, V) (Bertsekas,
1976), wherev is the dual variable%l is the step-length, andx—vy is the gradientl,P(v). This

Algorithm 1 AuglLag

1: Choosed,y°,\P.
: for1=0,1,--- do

(XL y+1) « argmingy L(x,y,V)

N Y lll(C)é+1_y|+1)

Updateu according to the chosen updating scheme.
end for

o gk wn

algorithm does not requingto be very small to guarantee convergence to the solution of problem
(4) (Nocedal and Wright, 1999). However, solving the problem in LinéAlgorithm 1 exactly can

be very challenging in the case of structured sparsity. We instead sesdpaoximate minimizer

of the augmented Lagrangian via the abstract subroutine ApproxAddibdg, y,v). The following
theorem (Rockafellar, 1973) guarantees the convergence of thicinersion of Algorithm 1.

Theorem 1 Leta! := £(X',y',V)) —infycpmyepm L(X,y,V) and F* be the optimal value of problem
(4). Suppose probletf#) satisfies the modified Slater’s condition, and

S Val < to. 6
3 .

Then, the sequem{@/'} converges to*yy which satisfies

inf (Fopj(x,y) — (V)T (Cx—y)) =F*,

XERM ycRM
while the sequencfX,y'} satisfiedim;_,. CX —y = 0 andlim;_,» Fopj(X,y') = F*.

The condition (6) requires the augmented Lagrangian subproblem bedseith increasing ac-
curacy. We formally state this framework in Algorithm 2. We index the iteratidn&lgorithm

Algorithm 2 OGLasso-AuglLag
1: Choosed,y°,\P.
2: for1 =0,1,--- do
3 (X*1y+1) « ApproxAuglLagMinx,y',V'), to compute an approximate minimizer of
L(xy,V)

T B e an
5. Updatep according to the chosen updating scheme.
6: end for

2 by | and call them ‘outer iterations’. In Sections 3, we develop algorithms that mesie
ApproxAugLagMin(x,y, V). The iterations of these subroutine are indexe# ayd are called ‘inner
iterations’.
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3. Methodsfor Approximately Minimizing the Augmented L agrangian

In this section, we use the overlapping Group Lasso pefialky = A 5 o s Ws||Xs|| to illustrate the
optimization algorithms under discussion. The casé; Af.-regularization will be discussed in
Section 4. From now on, we assume without loss of generalitywihat 1 for every grous.

3.1 Alternating Direction Augmented L agrangian (ADAL) Method

The well-known Alternating Direction Augmented Lagrangian (ADAL) methgdKstein and Bert-
sekas, 1992; Gabay and Mercier, 1976; Glowinski and Marrocth;1Boyd et al., 201@)approx-
imately minimizes the augmented Lagrangian by minimizing (5) with respectirtdy alternat-
ingly and then updates the Lagrange multipkeeon each iteration (e.g., see Bertsekas and Tsit-
siklis, 1989, Section 3.4). Specifically, the single-iteration procedurestivaes as the procedure
ApproxAugLagMin(x,y, V) is given below as Algorithm 3.

Algorithm 3 ADAL
1: Givenx,y, andv'.
2: Xt argmin L(x,y,V)
3y« argmin L(X 1y, V)
4: return X+ yHL

The ADAL method, also known as the alternating direction method of multipliersMKD
and the split Bregman method, has recently been applied to problems in signat@ge process-
ing (Combettes and Pesquet, 2011; Afonso et al., 2009; Goldstein ared, @809) and low-rank
matrix recovery (Lin et al., 2010). Its convergence has been estadlishEckstein and Bertsekas
(1992). This method can accommodate a sum of more than two functions x&opke, by ap-
plying variable-splitting (e.g., see Bertsekas and Tsitsiklis, 1989; Boyh, &0.0) to the problem
miny f(x) + K 1 6i(Cix), it can be transformed into

K
min f(x)+_;gi(yi)

X,Y1,0 YK

st. yi=Cx, i=1---,K.

The subproblems correspondingyits can thus be solved simultaneously by the ADAL method.
This so-called simultaneous direction method of multipliers (SDMM) (Setzer &HIQ) is related
to Spingarn’s method of partial inverses (Spingarn, 1983) and hasdtesvn to be a special in-
stance of a more general parallel proximal algorithm with inertia param&essj(iet and Pustelnik,
2010).

Note that the problem solved in Line 3 of Algorithm 3,

4 —argming (¢ 4.y) = argminf o [d 12+ G0 . )

whered' = CX*1 —pV, is group-separable and hence can be solved in parallel. As in Qin et al.
(2010), each subproblem can be solved by applying the block sofhibiging operatof (d, pA) =

2. Recently, Mairal et al. (2011) also applied ADAL with two variants basedariable-splitting to the overlapping
Group Lasso problem.
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HS%H max(0, ||dL|| —AW),s=1,---,J. Solving forx'+1 in Line 2 of Algorithm 3, that is,

X1 = arg rr)1(inL(x,y',v') = arg rr)w(in{;\Ax— bj|2— (V') TCx+ Zluch—y' \2}, (8)
involves solving the linear system
(ATA+ lllD)x =ATb+C"V + icTy', 9)

where the matrix on the left hand side of (9) has dimengionm. Many real-world data sets, such

as gene expression data, are highly under-determined. Hence, themoinfidaturesrf) is much
larger than the number of samples.(In such cases, one can use the Sherman-Morrison-Woodbury
formula,

(ATA+ i D) ! =uD - D AT(I + pAD AT IAD

and solve instead amx n linear system involving the matrix+ pAD1AT. In addition, as long as
U stays the same, one has to factordel + %D or | +AD AT only once and store their factors
for subsequent iterations.

When bothn and m are very large, it might be infeasible to compute or stafe, not to
mention its eigen-decomposition, or the Cholesky decompositiol 6f+ ﬁD. In this case, one
can solve the linear systems using the preconditioned Conjugate Gradi&aj (Rethod (Golub
and Van Loan, 1996). Similar comments apply to the other algorithms propo$tiions 3.2 -
3.4 below.Alternatively, we can apply FISTA to Line 3 in Algorithm 2 (see Seci®).

3.2 ALM-S: partial split (APLM-S)

We now consider applying the Alternating Linearization Method with SkippingMAS) from

Goldfarb et al. (2011) to approximately minimize (5). In particular, we apjplyable splitting
(Section 2) to the variablg to which the group-sparse regularifbis applied, (the original ALM-
S splits both variables andy,) and re-formulate (5) as follows.

' L iAv mI2 Ty 1 2. A
mn SIAbT=vHCx=y) o lICx YT+ Q) (10)
s.t. y=y.

Note that the Lagrange multiplieris fixed here. Defining
1 1
fxy) = EHAX—bHZ—vT(CX—y)+ZIHCX—VIIZ7 (11)
ay) = QW =AY [yl (12)
S

problem (10) is of the form

min  f(x,y)+g(y) (13)
st.  y=y,

to which we now apply partial-linearization.
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3.2.1 RARTIAL LINEARIZATION AND CONVERGENCERATE ANALYSIS

Let us define

Fxy) = fxy)+ay) =LXY;v),
_ _ 1, _
Loy YY) = F6y)+9+Y (Y—y) + fp\\y—yHa (14)
whereyis the Lagrange multiplier in the augmented Lagrangian (14) correspondinghitem (13).

We now present our partial-split alternating linearization algorithm to implement
ApproxAugLagMin’x,y,v) in Algorithm 2.

Algorithm 4 APLM-S

1: Givenx®,y°,v. Choosep, \?, such that-y° € ag(y°). Definef(x,y) as in (11).
2: for k=0,1,--- until stopping criterion is satisfiedo

3 (XL YR« argmingy Lo(X,Y, Y5, V).

4 A F(EHL YD) > Lo (L YL YR V) then

5: YL gk

6: XKL argming f (x, y<1) = argmin Lo (X Y<L, ¥F,¥9)

7. endif

B T py (YR = argmiy (- Y, (o))
o YL O, F (XL ) Y

10: end for
11: return (XK1 yR+H

We note that in Line 6 in Algorithm 4,
Xt = arg minLp(x; Yy V) = arg minf (x Yy =arg minf (X ¥). (15)
Now, we have a variant of Lemma 2.2 in Goldfarb et al. (2011).
Lemmal Forany(x,y), if :=argminLo(X,y,y, Oy f(X,y)), and
F(x.0) < Lp(x.y,6, 0y F(x.y)), (16)
then for any(x,y),
2p(F (%) —F(x.@)) 2 |a—YII* = [ly = YII* +2p((x—x) T Oxf (x,¥)).- 17
Similarly, for anyy, if (p,q) :=argmin.y Lo (X, Y,Y, —Yg(¥)), Yg(¥) is a sub-gradient of g af, and

then for any(x,y),
20(F (%) —F(p, @) > a—yII* — [y- /> (19)
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Proof See Appendix A. |

Algorithm 4 checks condition (18) at Line 4 because the funagi@non-smooth and condition
(18) may not hold no matter what the valuepa. When this condition is violated, a skipping step
occurs in which the value of is set to the value o in the previous iteration (Line 5) and,
re-minimized with respect tg (Line 6) to ensure convergence. Let us defimegular iterationof
Algorithm 4 to be an iteration where no skipping step occurs, that is, Linad b are not executed.
Likewise, we define akipping iterationto be an iteration where a skipping step occurs. Now, we
are ready to state the iteration complexity result for APLM-S.

Theorem 2 Assume thafly f (x,y) is Lipschitz continuous in y with Lipschitz constagt i), that

is, for any x, |0y f(x,y) — Oyf(x,2)|| < Ly(f)|ly—z||, for all y and z. Forp < i, the iterates

Ly(f)
(XK, ¥¥) in Algorithm 4 satisfy

IRy,

PO ~FOCy) < pla i v

(20)

where(x*,y*) is an optimal solution tg10), and k, is the number of regular iterations among the
first k iterations.

Proof See Appendix B. |

Remark 1 For Theorem 2 to hold, we negd ﬁ

to see that [(f) =  regardless of the loss function®). Hence, we sgb = 1, so that condition
(16)in Lemma 1 is satisfied.

. From the definition of fx,y) in (11), itis easy

In Section 3.3, we will discuss the case where the iterations entirely cofisikipping steps.
We will show that this is equivalent to ISTA (Beck and Teboulle, 2009) wéttigl linearization as
well as a variant of ADAL. In this case, the inner Lagrange multipliexredundant.

3.2.2 DLVING THE SUBPROBLEMS

We now show how to solve the subproblems in Algorithm 4. First, observesithegp = |,

. _ . _ 1 _
argminZo(x,y,y, Oyf(xy)) = argn;_m{Dyf<x,y)Ty+ZH\Iy—yHZM(ﬂ}

(1 , _
argrmin{ 2105123 3 15

whered = Cx— pv. Hence,y can be obtained by applying the block soft-thresholding operator
T(ds,pA) as in Section 3.1. Next consider the subproblem

. _ . _ 1 _
min Lp(% Y 70Y) = mm{ F00y) Y (T—y) + ||y—y||2} . (21)
(%) (xy) 2u
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Itis easy to verify that solving the linear system given by the optimality condition(21) by block
Gaussian elimination yields the system

1 1
<ATA+ 211D> X=ry+ éCTry

for computingx, wherery = ATb+CTv andry = —v+4y-+ %. Theny can be computed a(%)(ry+
5CX).

As in Section 3.1, only one Cholesky factorizationdtA + ziD is required for each invocation
of Algorithm 4. Hence, the amount of work involved in each iteration of Alpon 4 is comparable
to that of an ADAL iteration.

It is straightforward to derive an accelerated version of Algorithm 4ckwvive shall refer to as
FAPLM-S, that corresponds to a partial-split version of the FALM algarifiroposed by Goldfarb

et al. (2011) and also requir€Xx/ @) iterations to obtain ae-optimal solution. In Section 3.4,
we present an algorithm FISTA-p, which is a special version of FAREM-which every iteration
is a skipping iteration and which has a much simpler form than FAPLM-S, whilmga&ssentially
the same iteration complexity.

It is also possible to apply ALM-S directly, which splits botlandy, to solve the augmented
Lagrangian subproblem. Similar to (10), we reformulate (5) as

1 1 B

min ZIAX=Db|Z =V (Cx—V) + —[|[CXx—V|IZ+A 2o

(xy). (%) 5l I (Cx—y) 2uH vl ZHYSH (22)
s.t. X=X,

y=Yy.
The functionsf andg are defined as in (11) and (12), except that now we vgigsg(x,y) even
though the variabl& does not appear in the expressiondoit can be shown thatadmits exactly
the same expression as in APLM-S, whergas obtained by a gradient step;— pxf(X,y). To
obtainx, we solve the linear system

(ATA+1D+1I)x:rX+pCTry, (23)
utp  p utp

after whichy is computed by = (HT“pp) (ry+ ﬁCx).

Remark 2 For ALM-S, the Lipschitz constant farf (x,y) Ly = Amax(ATA) + ﬁdma)G where ¢hax=
max D; > 1. For the complexity results in Goldfarb et al. (2011) to hold, we ruee_/dL—lf. Since

Amax(ATA) is usually not known, it is necessary to perform a backtracking lineebeamp to ensure
that F(xX<t1, yk+1) < £, (xk1 yk1 5K 9K \¥). In practice, we adopted the following continuation
scheme instead. We initially st pp = dntlax and decreaseg by a factor off3 after a given number
of iterations untilp reached a user-supplied minimum vapg,. This scheme preverpigrom being
too small, and hence negatively impacting computational performanceevtn both cases the

left-hand-side of the systef@3) has to be re-factorized every tinpds updated.

As we have seen above, the Lipschitz constant resulting from splittingdaottly is potentially
much larger tharﬂ;. Hence, partial-linearization reduces the Lipschitz constant and henceviesp
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the bound on the right-hand-side of (20) and allows Algorithm 4 to takeatge sizes (equal to
1. Compared to ALM-S, solving fox in the skipping step (Line 6) becomes harder. Intuitively,
APLM-S does a better job of ‘load-balancing’ by managing a better tréfideetween the hardness
of the subproblems and the practical convergence rate.

3.3 ISTA: Partial Linearization (I STA-p)

We can also minimize the augmented Lagrangian (5), which we writeCay,v) = f(x,y) +9(y)
with f(x,y) andg(y) defined as in (11) and (12), using a variant of ISTA that only linearfZgsy)
with respect to the variables. As in Section 3.2, we can get L and guarantee the convergence
properties of ISTA-p (see Corollary 1 below). Formally, (ety) be the current iterate aret™,y™)

be the next iterate. We computé by

yjL = arg n;}ian(X7ya)/v Dyf(XaY))

1
= argn;ln{mZ(IM—dy,-|!2+?\||)/j||)}, (24)

wheredy = Cx— pv. Hence the solutiog™ to problem (24) is given blockwise By([dy]j,pA), j =
1,---,J.
Now giveny™, we solve forx™ by

x" = argminf(xX,y")
X/

arg min{1||A>(— b||>?—vT(CX —y") + i||C>( —yﬂz} (25)
X |2 2u

The algorithm that implements subroutine ApproxAugLagMis, v) in Algorithm 2 by ISTA with
partial linearization is stated below as Algorithm 5.

Algorithm 5 ISTA-p (partial linearization)

1: Givenx%,y°,v. Choosep. Definef(x,y) as in (11).

: for k=0,1,--- until stopping criterion is satisfiedio
X+t < argmin f (x; ¥¥)
Yt e argminy Lo (X, ¥,y Oy f (XL Y9))

end for

return (xK+1 yk+1)

@ gk wN

As we remarked in Section 3.2, Algorithm 5 is equivalent to Algorithm 4 (APEMwhere
every iteration is a skipping iteration. Hence, we have from Theorem 2.

Corollary 1 Assumélyf(-,-) is Lipschitz continuous with Lipschitz constagtt). Forp < Ly%f),
the iterates(x*,y*) in Algorithm 5 satisfy

oy < Py
F O~ FOcy) < Pl

vk,
where(x*,y*) is an optimal solution t¢10).
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It is easy to see that (24) is equivalent to (7), and that (25) is the sa(BiasADAL.

Remark 3 We have shown that with a fixed v, the ISTA-p iterations are exactly the asutie
ADAL iterations. The difference between the two algorithms is that ADALtepdhe (outer)
Lagrange multiplier v in each iteration, while in ISTA-p, v stays the same gfimout the inner
iterations. We can thus view ISTA-p as a variant of ADAL with delayedtingdaf the Lagrange
multiplier.

The ‘load-balancing’ behavior discussed in Section 3.2 is more obviouSTéw-p. As we will
see in Section 3.5, if we apply ISTA (with full linearization) to minimize (5), solViogx is simply
a gradient step. Here, we need to minimfZg,y) with respect toc exactly, while being able to take
larger step sizes in the other subproblem, due to the smaller associatedtkzipeolstant.

3.4 FISTA-p

We now present an accelerated version FISTA-p of ISTA-p. FIpT8a special case of FAPLM-S
with a skipping step occurring in every iteration.We state the algorithm formalBgrithm 6.
The iteration complexity of FISTA-p (and FAPLM-S) is given by the followihgorem.

Algorithm 6 FISTA-p (partial linearization)

1: Givenx®,y°,v. Choosep, andZ’ = y°. Definef(x,y) as in (11).
. fork=0,1,--- ,Kdo

XL argmin f(x; 2)

YL argmin, Lo (XL 2y, Oy f (X<, 29))

s 1+4/14482

2
L gkl <%> (FH — %)

end for

return (xK+1 yk+

N o g A wbd

Theorem 3 Assuming thatly f(-) is Lipschitz continuous with Lipschitz constag{t) andp <
ﬁ, the sequencéx®,y*} generated by Algorithm 6 satisfies

2][y° —y*|I?

F(Xk>yk)_F(X*>yk)§ p<k+1)2 )

Although we need to solve a linear system in every iteration of Algorithms 4né&,6a the
left-hand-side of the system stays constant throughout the invocatitre aflgorithms because,
following Remark 1, we can always spt= .. Hence, no line-search is necessary, and this step
essentially requires only one backward- and one forward-substitutiergomplexity of which is
the same as a gradient step.
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3.5 ISTA/FISTA: Full Linearization

+
ISTA solves the following problem in each iteration to produce the next it€<ra$g >

o wl(y )

1 1
prH%—dtzJrzzfp(lM—dyj||2+7\\\>/j\\), (26)

2
FAY lyel
S

whered = ( gx > = < ;(/ ) —pOf(x,y), andf(x,y) is defined in (11). Itis easy to see that we can
y
solve forx™ andy" separately in (26). Specifically,

X+ — dx, (27)
+ de -
yJ - de || max(0>||de”_)\p)7 J _17"'7‘]'
i

Using ISTA to solve the outer augmented Lagrangian (5) subproblem igadejpt to taking only
skipping steps in ALM-S. In our experiments, we used the acceleratsibmenf ISTA, that is,
FISTA (Algorithm 7) to solve (5).

Algorithm 7 FISTA
1: Givenx?,y?,v. Choosep®. Setty = 0,2 = X°, ) = y°. Definef(x,y) as in (11).
2: for k=0,1,--- until stopping criterion is satisfiedo
3: Perform a backtracking line-search pystarting frompg.

- (5 (5) e

5. X<l d,
d. .
6 Y gl man.fiay | -Ap). =13,
2
8: z§+1<_)‘(k+ﬁ()zk+1_)zk)

ter

o A e by
10: end for
11: return (XK1 yR+H

FISTA (resp. ISTA) is, in fact, an inexact version of FISTA-p (re$pTA-p), where we mini-
mize with respect ta a linearized approximation

f(x,Z) 1= £(X6, 2) + O f (XK, 2) (x— %) + 21p|]x—xk]2
of the quadratic objective function(x,Z) in (25). The update ta in Line 3 of Algorithm 6 is
replaced by (27) as a result. Similar to FISTA-p, FISTA is also a specipbislg version of the

full-split FALM-S. Considering that FISTA has an iteration complexitﬁifk%), it is not surprising
that FISTA-p has the same iteration complexity.
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Remark 4 Since FISTA requires only the gradient @k{y), it can easily handle any smooth convex
loss function, such as the logistic loss for binary classificatidm) = SN ; log(1+ exp(—bia x)),
where d is the i-th row of A, and b is the vector of labels. Moreover, when the sddheaata
(min{n,m}) is so large that it is impractical to compute the Cholesky factorization'@,AISTA

is a good choice to serve as the subroutine ApproxAugLagiirv) in OGLasso-AugLag.

4. Overlapping Group |1/l.-Regularization

The subproblems with respect yglor y) involved in all the algorithms presented in the previous
sections take the following form

1 ) =
min 5 le- vl + (). (28)

whereQ(y) = A Y 53 Ws|lYs||w in the case ofy /lo-regularization. In (7), for example,= Cx— pv.
The solution to (28) is the proximal operator @f (Combettes and Wajs, 2006; Combettes and
Pesquet, 2011). Similar to the classical Group Lasso, this problem is bigieable and hence all
blocks can be solved simultaneously.

Again, for notational simplicity, we assume =1 Vs e S and omit it from now on. For each
se S, the subproblem in (28) is of the form

1
min - 2cs— yel|* + PA[Ys]le (29)

As shown by Wright et al. (2009), the optimal solution to the above problem-isP(cs), where

P denotes the orthogonal projector onto the ball of ragiu$n the dual norm of thé.,-norm, that

is, thel;-norm. The Euclidean projection onto the simplex can be computed in (expdicear
time (Duchi et al., 2008; Brucker, 1984). Duchi et al. (2008) show tthe problem of computing
the Euclidean projection onto theball can be reduced to that of finding the Euclidean projection
onto the simplex in the following way. First, we replacgin problem (29) by|cs|, where the
absolute value is taken component-wise. After we obtain the projezsionto the simplex, we
can construct the projection onto theball by settingy; = sign(cs)zs, wheresign(-) is also taken
component-wise.

5. Experiments

We tested the OGLasso-AuglLag framework (Algorithm 2) with four sutines: ADAL, FISTA,
FISTA-p, and APLM-S. We implemented the framework with the first threeautmes in C++ to
compare them with the ProxFlow algorithm proposed by Mairal et al. (204@)used the C inter-
face and BLAS and LAPACK subroutines provided by the AMD Core Matirdry (ACML).2 To
compare with ProxGrad (Chen et al., 2010), we implemented the framewddldour algorithms
in Matlab. We did not include ALM-S in our experiments because it is time-aoirsyto find the
right p for the inner loops as discussed in Remark 2, and our preliminary compatiagiqperience
showed that ALM-S was slower than the other algorithms, even when thistiep-setting scheme
discussed in Remark 2 was used, because a large number of stepkipgirggssteps, which meant

3. ACML canbe found dit t p: / / devel oper. and. conf | i brari es/acm / pages/ def aul t . aspx. Ideally, we should
have used the Intel Math Kernel Library (Intel MKL), which is optimized fntel processors, but Intel MKL is not
freely available.
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Inner iteration
Rel. primal residual| Rel. objective gradient residua

Algorithm | Outer rel. dual residual **

S aR=l]

P T A T
el ] e e
_ e y "=y ")l — —

APLM-S elaYaszal ] [CTy ]

o | L L) G (E) ) (2

(%) %)

Table 1: Specification of the quantities used in the outer and inner stopiexgecr

that the computation involved in solving the linear systems in those steps waslwAditef our
experiments were performed on a laptop PC with an Intel Core 2 Duo 2.0 @degsor and 4 Gb
of memory.

5.1 Algorithm Parametersand Termination Criteria

Each algorithm (framework + subroutiffelequired several parameters to be set and termination
criteria to be specified. We used stopping criteria based on the primal ahdediduals suggested
by Boyd et al. (2010). We specify the criteria for each of the algorithnmewpebut defer their
derivation to Appendix C. The maximum number of outer iterations was seOt@b@ the tolerance

for the outer loop was set a§, = 10~*. The number of inner-iterations was capped at 2000, and
the tolerance at thleth outer iteration for the inner loops wals. Our termination criterion for the
outer iterations was

max{r',s } < eou,
wherer' = % is the outer relative primal residual asdis the relative dual residual,
which is given for each algorithm in Table 1. Recall tKat- 1 is the index of the last inner iteration
of thel-th outer iteration; for example, for APLM-$x 1, y'+1) takes the value of the last inner
iterate (xX*+1,y*+1). We stopped the inner iterations when the maximum of the relative primal
residual and the relative objective gradient for the inner problem veashere!,. (See Table 1 for
the expressions of these two quantities.) We see theres tHatan be obtained directly from the
relative gradient residual computed in the last inner iteration of-theouter iteration.

We setpp = 0.01 in all algorithms except that we g@f = 0.1 in ADAL for the data sets other
than the first synthetic set and the breast cancer data set. We-gein FISTA-p and APLM-S and
pPo = HWin FISTA.

For Theorem 1 to hold, the solution returned by the function ApproxAgdlia(x,y,v) has to
become increasingly more accurate over the outer iterations. Howevaenrpit p@ssible to evaluate
the sub-optimality quantitg' in (6) exactly because the optimal value of the augmented Lagrangian
L(x,y,V') is not known in advance. In our experiments, we used the maximum of thiseglamal

4. For conciseness, we use the subroutine names (e.g., FISTArgpriesent the full algorithms that consist of the
OGLasso-AuglLag framework and the subroutines.
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and dual residual@nax{r', s }) as a surrogate o' for two reasons: First, it has been shown (Boyd
et al., 2010) that' ands are closely related ta'. Second, the quantities ands are readily
available as bi-products of the inner and outer iterations. To ensure ¢éhseguencée! } satisfies
(6), we basically set:

el = Bin€h, (30)

with si% = 0.01 andBi, = 0.5. However, since we terminate the outer iterationsygt> 0, it is
not necessary to solve the subproblems to an accuracy much higheréhametfor the outer loop.
On the other hand, it is also important ﬁc},q to decrease to belogs, sinces is closely related
to the quantities involved in the inner stopping criteria. Hence, we slightly mod@i@dand used
el = max{Binel,, 0.280u}

Recently, we became aware of an alternative ‘relative error’ stoppitgyion (Eckstein and
Silva, 2012) for the inner loops, which guarantees convergence aofiffign 2. In our context, this
criterion essentially requires that the absolute dual residual is less thantiar of the absolute
primal residual. For FISTA-p, for instance, this condition requires treaflth 1)-th iterate satisfies

Vs g+1y2
2”( VV£_§+1 )”§+1+( uz) SO—(FHI)Z

)

wherer and s are the numerators in the expressionsrf@nd s respectively,c = 0.99, w2 is a
constant, and, is an auxiliary variable updated in each outer iteratiompy = wj, — u—lch (yR+1 -

ZX). We experimented with this criterion but did not find any computational adgantaer the
heuristic based on the relative primal and dual residuals.

5.2 Strategiesfor Updating

The penalty parametgrin the outer augmented Lagrangian (5) not only controls the infeasibility in
the constrain€Cx =y, but also serves as the step-length inyreaibproblem (and the-subproblem
in the case of FISTA). We adopted two kinds of strategies for updatifdne first one simply kept
p fixed. In this case, choosing an appropripgewas important for good performance. This was
especially true for ADAL in our computational experiments. Usuallyg & the range of 10 to
103 worked well.

The second strategy is a dynamic scheme based on the vaares' (Boyd et al., 2010). Since
ﬁ penalizes the primal infeasibility, a smaltends to result in a small primal residual. On the other

hand, a larggi tends to yield a small dual residual. Hence, to kdegnds approximately balanced
in each outer iteration, our scheme updgtex$ follows:

max{B, kmin},  if r' > 18
W o min{y /B, tnax, if S > 0!
o, otherwise,

where we sefinax = 10, imin = 1076, T = 10 andp = 0.5, except for the first synthetic data set,
where we sep = 0.1 for ADAL, FISTA-p, and APLM-S.

5.3 Synthetic Examples

To compare our algorithms with the ProxGrad algorithm of Chen et al. (201®Yirst tested a
synthetic data set (ogl) using the procedure reported by Chen et &0)(20d Jacob et al. (2009).
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The sequence of decision variablewere arranged in groups of ten, with adjacent groups having
an overlap of three variables. The supporkaefas set to the first half of the variables. Each entry
in the design matriA and the non-zero entries gfwere sampled from i.i.d. standard Gaussian
distributions, and the outpbtwas set td = Ax+ €, where the noise ~ A((0,l). Two sets of data
were generated as follows: (a) Fix= 5000 and vary the number of groupfrom 100 to 1000 with
increments of 100. (b) Fid = 200 and varyn from 1000 to 10000 with increments of 1000. The
stopping criterion for ProxGrad was the same as the one used for F&I0Aye set its smoothing
parameter to 10°. Figure 1 plots the CPU times taken by the Matlab version of our algorithms
and ProxGrad (also in Matlab) on theses scalability tests dp-regularization. A subset of the
numerical results on which these plots are based is presented in Tablé$4 an

The plots clearly show that the alternating direction methods were much faatePtbxGrad
on these two data sets. Compared to ADAL, FISTA-p performed slightly beitele it showed
obvious computational advantage over its general version APLM-Selpltt on the left of Figure
1, FISTA exhibited the advantage of a gradient-based algorithm whemlawitim are large. In that
case (towards the right end of the plot), the Cholesky factorizationsreegioy ADAL, APLM-S,
and FISTA-p became relatively expensive. When {mim} is small or the linear systems can be
solved cheaply, as the plot on the right shows, FISTA-p and ADAL laavedge over FISTA due to
the smaller numbers of inner iterations required.

We generated a second data set (dct) using the approach of Maita{2QX0) for scalability
tests on both thé; /I, andly/l. group penalties. The design matdxwas formed from over-
complete dictionaries of discrete cosine transforms (DCT). The set opgneere all the contiguous
sequences of length five in one-dimensional spacéad about 10% non-zero entries, selected
randomly. We generated the outputtas Ax-+ €, wheree ~ A((0,0.01||Ax||?). We fixedn = 1000
and varied the number of featurasfrom 5000 to 30000 with increments of 5000. This set of
data leads to considerably harder problems than the previous set &¢baugroups are heavily
overlapping, and the DCT dictionary-based design matrix exhibits loca¢lations. Due to the
excessive running time required on Matlab, we ran the C++ version ddlgarithms for this data
set, leaving out APLM-S and ProxGrad, whose performance comparie: other algorithms is
already fairly clear from Figure 1. For ProxFlow, we set the toleramcthe relative duality gap to
104, the same as,, and kept all the other parameters at their default values.

Figure 2 presents the CPU times required by the algorithms versus the nuihfatuoes. In
the case ofy/Ip-regularization, it is clear that FISTA-p outperformed the other two algmsth
Forl1/le-regularization, ADAL and FISTA-p performed equally well and compafi@/orably to
ProxFlow. In both cases, the growth of the CPU times for FISTA follows #mestrend as that
for FISTA-p, and they required a similar number of outer iterations, aa/stio Tables 6 and 7.
However, FISTA lagged behind in speed due to larger numbers of inmatigies. Unlike in the
case of the ogl data set, Cholesky factorization was not a bottleneckS®AFp and ADAL here
because we needed to compute it only once.

To simulate the situation where computing or cach¢\ and its Cholesky factorization is not
feasible, we switched ADAL and FISTA-p to PCG mode by always using RC$slve the linear
systems in the subproblems. We compared the performance of ADAL, HS8Aad FISTA on
the previous data set for both/I, andl1/l. models. The results for ProxFlow are copied from
from Figure 2 and Table 9 to serve as a reference. We experimented witlixdia-value and
the dynamic updating schemes foon all three algorithms. From Figure 3, it is clear that the
performance of FISTA-p was significantly improved by using the dynanherse. For ADAL,

1450



STRUCTURED SPARSITY VIA ALTERNATING DIRECTION METHODS
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Figure 1: Scalability test results of the algorithms on the synthetic overlappiogp3.asso data
sets from Chen et al. (2010). The scale ofykexis is logarithmic. The dynamic scheme
for pwas used for all algorithms except ProxGrad.

however, the dynamic scheme worked well only in th#, case, whereas the performance turned
worse in general in thé /I, case. We did not include the results for FISTA with the dynamic
scheme because the solutions obtained were considerably more subopdimidlelones obtained
with the fixedu scheme. Tables 8 and 9 report the best results of the algorithms in eachToas
plots and numerical results show that FISTA-p compares favorably tolA@#Al stays competitive
to ProxFlow. In terms of the quality of the solutions, FISTA-p and ADAL algbalbetter job than
FISTA, as evidenced in Table 9. On the other hand, the gap in CPU time beR8€A and the
other three algorithms is less obvious.

5.4 Real-world Examples

To demonstrate the practical usefulness of our algorithms, we tested owittattgs on two real-
world applications.

5.4.1 BREAST CANCER GENE EXPRESSIONS

We used the breast cancer data set (Van De Vijver et al., 2002) witmicah@athways from
MSigDB (Subramanian et al., 2005). The data was collected from 295tlraacer tumor samples
and contains gene expression measurements for 8,141 genes. Theagdal select a small set
of the most relevant genes that yield the best prediction performancestalledi description of
the data set can be found in Chen et al. (2010) and Jacob et al. (2008ur experiment, we
performed a regression task to predict the length of survival of thenisti€he canonical pathways
naturally provide grouping information of the genes. Hence, we used #setine groups for the
group-structured regularization teqy-).
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1/,
10°F 10°F
- & - ADAL - - ADAL
—e— FISTA-p —6— FISTA-p
—8— FISTA —8—FISTA
ProxFlow
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1 15 2 0.5 1 15 2 25 3
Number of features (m) Number of features (m) X 10

Figure 2: Scalability test results on the DCT set Witfi,-regularization (left column) antd /l..-
regularization (right column). The scale of theaxis is logarithmic. All of FISTA-p,

FITSA, and ADAL were run with a fixegh = po.

10

5 12
10
=D~ FISTA-p-dyn =0~ FISTA-p-dyn
—8— FISTA ADAL-fixed
‘= .= ADAL-dyn —&— FISTA
—©— FISTA-p-fixed ProxFlow
ADAL-fixed —O— FISTA-p-fixe .
.= =" ADAL-dyn s

101

CPU (sec)

. .
0.5 1 15 2
Number of features (m) @

10 . . . .
1 15 2 25 3
Number of features (m)

Figure 3: Scalability test results on the DCT set wWitH»>-regularization (left column) and /Io.-
regularization (right column). The scale of thaxis is logarithmic. FISTA-p and ADAL
are in PCG mode. The dotted lines denote the results obtained with the dynamimgpd

scheme fop.
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Data sets N (no. samples) J (no. groups) group size| average frequency
BreastCancerData 295 637 23.7 (avg) 4

Table 2: The Breast Cancer Data Set

coefficients
R 4 e K

K | i i | I i
0 500 1000 1500 2000 2500 3000 3500 4000
genes
IW/IW

by

i | i i ¥ L 1 L L L . L
0 200 400 600 800 1000 0 500 1000 1500 2000 2500 3000 3500 4000
number of active genes genes

RMSE

coefficients
I (] o (=] o

Figure 4: On the left: Plot of root-mean-squared-error against the euoftactive genes for the
Breast Cancer data. The plot is based on the regularization path faffegarmt values for
A. The total CPU time (in Matlab) using FISTA-p was 51 seconds;fdp-regularization
and 115 seconds fdt/l.-regularization. On the right: The recovered sparse gene coef-
ficients for predicting the length of the survival period. The valua aked here was the
one minimizing the RMSE in the plot on the left.

Table 2 summarizes the data attributes. The numerical results foy/lhenorm are collected
in Table 10, which show that FISTA-p and ADAL were the fastest on thia dat. Again, we had
to tune ADAL with different initial valuegp) and updating schemes pffor speed and quality of
the solution, and we eventually keptconstant at 0.01. The dynamic updating schemeufalso
did not work for FISTA, which returned a very suboptimal solution in thisecalMe instead adopted
a simple scheme of decreasipgoy half every 10 outer iterations. Figure 6 graphically depicts
the performance of the different algorithms. In terms of the outer iteratidREM-S behaved
identically to FISTA-p, and FISTA also behaved similarly to ADAL. HoweVEPLM-S and FISTA
were considerably slower due to larger numbers of inner iterations.

We plot the root-mean-squared-error (RMSE) over different vadfiagwhich lead to different
numbers of active genes) in the left half of Figure 4. The training sesistsnof 200 randomly
selected samples, and the RMSE was computed on the remaining 95 sadmfhesegularization
achieved lower RMSE in this case. HowewMer.-regularization yielded better group sparsity as
shown in Figure 5. The sets of active genes selected by the two modelsevgrgimilar as illus-
trated in the right half of Figure 4. In general, the magnitudes of the ceeffcreturned by /I .-
regularization tended to be similar within a group, whereas those returngdlpyegularization
did not follow that pattern. This is becauk€l.-regularization penalizes only the maximum el-
ement, rather than all the coefficients in a group, resulting in many coetBdmaving the same
magnitudes.
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Figure 5: Pathway-level sparsity v.s. Gene-level sparsity.
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Figure 6: Objective values v.s. Outer iters and Objective values v.s. CPptotsefor the Breast
Cancer data. The results for ProxGrad are not plotted due to the diffegective func-
tion that it minimizes. The red (APLM-S) and blue (FISTA-p) lines overlap i et
column.

5.4.2 VIDEO SEQUENCEBACKGROUND SUBTRACTION

We next considered the video sequence background subtractiorrdashiairal et al. (2010) and
Huang et al. (2009). The main objective here is to segment out foredrobjects in an image
(frame), given a sequence of frames from a fixed camera. The data used in this experiment
is available online® (Toyama et al., 1999). The basic setup of the problem is as follows. We
represent each frame afpixels as a column vectok; € R" and form the matrixA € R"™™ as

A= ( Al A - Anm ) The test frame is represented by R". We model the relationship
betweerb andA by b ~ Ax+ e, wherex is assumed to be sparse, anid the 'noise’ term which is

also assumed to be spargeis thus a sparse linear combination of the video frame sequence and

5.Data can be found athttp://research.m crosoft.con en-us/unf people/jckrumm wallflower/
testimges. htm
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accounts for the background present in bathndb. e contains the sparse foreground objectb.in
The basic model witly-regularization (Lasso) is

1
fglenéllAHe*bHZH\(HXHH||e|!1)- (31)

It has been shown in Mairal et al. (2010) that we can significantly imptbeequality of seg-
mentation by applying a group-structured regularizatizn) on e, where the groups are all the
overlappingk x k-square patches in the image. Here, wekset3. The model thus becomes

1
min[|Ax+e— bl|? +A(|[x][2+|ell1 +Q(e)). (32)

Note that (32) still fits into the group-sparse framework if we treat ffregularization terms as the
sum of the group norms, where the each groups consists of only onentleme

We also considered an alternative model, where a Ridge regularizatioplischfo x and an
Elastic-Net penalty (Zou and Hastie, 2005¢tdr his model

1
min 2 [|Ax-+e—b]* + Adl|e]a + Aa([[]* + 1€l *) (33)

does not yield a sparse but sparsity irk is not a crucial factor here. It is, however, well suited for
our partial linearization methods (APLM-S and FISTA-p), since there iseeal for the augmented
Lagrangian framework. Of course, we can also apply FISTA to sol$k (3

We recovered the foreground objects by solving the above optimizatidrepns and applying
the sparsity pattern afas a mask for the original test frame. A hand-segmented evaluation image
from Toyama et al. (1999) served as the ground truth. The regularnizagéiametera, A1, andA;
were selected in such a way that the recovered foreground objectsaddbehground truth to the
maximum extent.

FISTA-p was used to solve all three models. Thenodel (31) was treated as a special case of
the group regularization model (32), with each group containing only omgonent of the feature
vector® For the Ridge/Elastic-Net penalty model, we applied FISTA-p directly withcaiotliter
augmented Lagrangian layer.

The solutions for thé; /12,11 /1., and Lasso models were not strictly sparse in the sense that
those supposedly zero feature coefficients had non-zero (albeitrelir small) magnitudes, since
we enforced the linear constrair@x = y through an augmented Lagrangian approach. To obtain
sparse solutions, we truncated the non-sparse solutions using theesiradéhg from 10° to 102
and selected the threshold that yielded the best accuracy.

Note that because of the additional feature veettre data matrix is effectivel&: ( A ) €

R™ (™) For solving (32), FISTA-p has to solve the linear system

ATA+:Dx AT X\ _ ( rx
A In+ #De e) \re)’

whereD is a diagonal matrix, anBy, De, rx, re are the components & andr corresponding tx
ande respectively. In this example,is much larger tham, for examplen = 57600m = 200. To

6. We did not use the original version of FISTA to solve the model ds-aegularization problem because it took too
long to converge in our experiments due to extremely small step sizes.
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Figure 7: Separation results for the video sequence backgrounuestilm example. Each training
image had 12& 160 RGB pixels. The training set contained 200 images in sequence.
The accuracy indicated for each of the different models is the peraeofagjxels that
matched the ground truth.

avoid solving a system of sizex n, we took the Schur complement lpf+ ﬁDe and solved instead
the positive definiten x m system

<ATA+iDX—AT(I+iDe)‘1A>X = rx—AT(I+tDe)‘1re,

e = diag(1+ iDe)‘l(re—Ax).

Thely/l.. model yielded the best background separation accuracy (marginally thettethe
[1/12 model), but it also was the most computationally expensive. (See Table Bigak 7.)
Although the Ridge/Elastic-Net model yielded as poor separation resulte &asko ;) model, it
was orders of magnitude faster to solve using FISTA-p. We again aixbérat the dynamic scheme
for pworked better for FISTA-p than for ADAL. For a constanbver the entire run, ADAL took at
least twice as long as FISTA-p to produce a solution of the same quality. Aatypic of FISTA-p
on this problem with the best selectetbok less than 10 outer iterations. On the other hand, ADAL
took more than 500 iterations to meet the stopping criteria.

5.5 Commentson Results

The computational results exhibit two general patterns. First, the simpleaithlge (FISTA-p and
ADAL) were significantly faster than the more general algorithms, suchRASVAS. Interestingly,
the majority of the APLM-S inner iterations consisted of a skipping step for #te t&n synthetic
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Model Accuracy (percent) Total CPU time (s)| No. parameter values on reg path
l1/12 97.17 2.48e+003 8
l1/le 98.18 4.07e+003 6
l1 87.63 1.61e+003 11
ridge + elastic nef 87.89 1.82e+002 64

Table 3: Computational results for the video sequence backgroundsitidtrexample. The algo-
rithm used is FISTA-p. We used the Matlab version for the ease of gamgthe images.
The C++ version runs at least four times faster from our experience iprgvious exper-
iments. We report the best accuracy found on the regularization pattbfreodel. The
total CPU time is recorded for computing the entire regularization path, with trfisal
number of different regularization parameter values.

data and the breast cancer data, which means that APLM-S essentiadlyeldelike ISTA-p in
these cases. Indeed, FISTA-p generally required the same numbeteofiterations as APLM-
S but much fewer inner-iterations, as predicted by theory. In additiorgongputational steps
were wasted and no function evaluations were required for FISTAdpAIAL. Second, FISTA-
p converged faster (required less iterations) than its full-linearizationtequart FISTA. We have
suggested possible reasons for this in Section 3. On the other handd RI&Tvery effective
for data both of whose dimensions were large because it required adiegt computations and
soft-thresholding operations, and did not require linear systems to bedsolv

Our experiments showed that the performance of ADAL (as well as thigygaathe solution
that it returned) varied a lot as a function of the parameter settings, arasitrigky to tune them
optimally. In contrast, FISTA-p exhibited fairly stable performance for a &mspt of parameters
that we rarely had to alter and in general performed better than ADAL.

It may seem straight-forward to apply FISTA directly to the Lasso problei without the
augmented Lagrangian framewdrkHowever, as we have seen in our experiments, FISTA took
much longer than AugLag-FISTA-p to solve this problem. We believe that tHiigtiser evidence
of the ‘load-balancing’ property of the latter algorithm that we discusseSeiction 3.2. It also
demonstrates the versatility of our approach to regularized learning prsble

6. Conclusion

We have built a unified framework for solving sparse learning problenwvimg group-structured
regularization, in particular, thi/l»- or |1 /l.-regularization of arbitrarily overlapping groups of
variables. For the key building-block of this framework, we developes efficient algorithms
based on alternating partial-linearization/splitting, with proven convergeaies. In addition, we
have also incorporated ADAL and FISTA into our framework. Computatitests on several sets of
synthetic test data demonstrated the relative strength of the algorithms, aagtthwo real-world
applications we compared the relative merits of these structured sparsitisigchorms. Among
the algorithms studied, FISTA-p and ADAL performed the best on most afdkeesets, and FISTA

7. To avoid confusion with our algorithms that consist of inner-outertitama, we prefix our algorithms with ‘AugLag’
here.
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appeared to be a good alternative choice for large-scale data. Froexperience, FISTA-p is
easier to configure and is more robust to variations in the algorithm paramésgether, they form
a flexible and versatile suite of methods for group-sparse problems efeatiffsizes.
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Appendix A. Proof of Lemma 1

FXY)—F(xaq) = F(XY)—Lo(xy,q 0yf(xy))
= R~ (1000 + Ty )T (@) + 551Gy +o@ ). @9
From the optimality ofy, we also have
10(@-+ Iy T(x)+ 5 (@) =0 (35)
SinceF (x,y) = f(x,y) +9(y), andf andg are convex functions, for anfx,y),

FGY) > 9(@) + (Y= ) Ye(@) + F(xY) + (Y=y) 'Oy f(xy) + (X=X TOxF(xy).  (36)
Therefore, from (34), (35), and (36), it follows that

FXY)-Fxa) > g@+T—a) ve(@+fxy)+F—y) Oy f(xy)
+(x—x)TOxF(x,y)

- (f(x,y> 0100y (@-)+ o |3 yu2+g<d>)
- <y‘—a>T<vg<d>+Dyf<x,y>>—21p||a—y12+<x‘—x>TDxf<x,y>
P N
= (y—-0 < 5
- 21p<uq‘—y7|2—\y—yw2>+<x‘—x>mef<x7y>.

The proof for the second part of the lemma is very similar, but we give itdonpleteness.

G- y)) - 5o YI2+ (KX ()

F(uy) - F(pa) = Fuy)~ (10,0 + 90+ @9+ 5 la-5)  (3)

By the optimality of(p,q), we have
f(pa) = O (38)
S0+ + 509 = O (39)
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SinceF (x,y) = f(x,y) +9(y), it follows from the convexity of botHf andg and (38) that

FO6Y) 2> 9() + (y—Y) " ¥o(¥) + F(p,a) + (y—a) Oy F(p, ). (40)
Now combining (37), (39), and (40), it follows that

Fixy)—F(pg) > (y—q>T<vg<y7+Dyf<p,q>>—21p\q—wz

B (;w‘— q)) - ola-71?

_ i —ull2 v 112
= pUla=ylm=ly=yI")

Appendix B. Proof of Theorem 2

Let | be the set of all regular iteration indices among the frstl iterations, and let; be its
complement. For alh € I, y"*t = y".
Forn e 1, we can apply Lemma 1 since (18) automatically holds, and (16) holds wlgeﬂlf—).

In (19), by letting(x,y) = (x*,y*), andy = y", we get(p,q) = (x**1,y™1), and
20(F (x*,y") = F(xX™ L y™ 1)) > [y —y* |2 = [[y" — y*||°. (41)
In (17), by letting(x,y) = (x*,y*), (x,y) = (xX*1 y™1), we getqg= y"* and

2p(F(xy) —F(™Ly™) = Iy =y 2=yt —y?
—i—(X* _ Xn+1)T O, f (Xn+1’ yn+l)

= Y=y = Iy YA, (42)
sincely f (x*1,y*1) =0, forn € | by (38) and fom ¢ I by (15). Adding (42) to (41), we get
2p(2F (X', y") = F (X" ) — F (X §M ) > ([ — v 2 — 77—y 12 (43)
Forn ¢ I, sincely f (x™1,y™1) = 0, we have that (42) holds. Sing&™ = y", it follows that
2p(F(x*,y") = F (X", ¥ 0) > IV =y |12 = ¥ -y 1% (44)
Summing (43) and (44) over=0,1,... ,k— 1 and observing that|Q + || = k+ k,, we obtain

2p <<k+ kn)F (X*,y") — kfF(x““a?““) -3 F(x“*%y““)) (45)
n=1 ne

k-1

> ;(HY’”*I—WHZ— Iy —y*|I%)

= IV =y IP= 1y -y 17

>~y -y

In Lemma 1, by lettingx,y) = (x"1,y"*1) in (17) instead ofx*,y*), we have from (42) that

Zp(F(Xn+l7yn+1) _ F(Xn+1,)_/n+l)) > HynJrl _yn+1H2 > 0. (46)
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Similarly, forn e I, if we let (x,y) = (X",y") instead of(x*,y*) in (41), we have

20(F (X", ¥") — F (X" y™ 1)) > [y* =y > 0. (47)

Forne lc, y"1 = y"; from (15), since<™! = argmin F (x,y) with y = y" = y"*1,

2p(F (Xn’yn) -F (Xn-i-l,yn-i-l)) > 0. (48)

Hence, from (46) and (47) to (485,(x",y") > F(x",y") > F (x"*1, y™*1) > F(x"1 y+1) Then, we

have

kiF(x"H,y”H) > kF(x¥,y%),and Z F XMLy > kR (K y9). (49)

Combining (45) and (49) yieldspi2k + kn) (F (x*,y*) — F (x¢,¥5)) > —||y? — y*||2.

Appendix C. Derivation of the Stopping Criteria

In this section, we show that the quantities that we use in our stopping critariespond to the
primal and dual residuals (Boyd et al., 2010) for the outer iterations andrtdient residuals for
the inner iterations. We first consider the inner iterations.

FISTA-p The necessary and sufficient optimality conditions for problem (10) 8y &te primal

feasibility
}7 - yk =0, (50)
and vanishing of the gradient of the objective functioipty*), that is,
0 = O«f(X,Y), (51)
0 e Oyf(x",y)+0g(y). (52)

Sincey*tl = Z| the primal residual is thug¢™™ — y<t1 = y&+1 _ Z |t follows from the
optimality of X1 in Line 3 of Algorithm 6 that

AT(AK ) —CTV ¢ ;1JCT (CXHL gty iCT F1_ 29 =0
o T f (EFL ) — s-JCT(Zk _,
Similarly, from the optimality of/*1 in Line 4, we have that
0 € ag(yl)+ O, f (Xt 2) + yk+1

1
— )7k+1 + D f k+1 )7k+1 ()7k+1— )+ B()—,k+1_
— yk+1 +D f k+1 )-,k+1

where the last step follows from= p. Hence, we see thaiCT (z — y***) is the gradient
residual corresponding to (51), while (52) is satisfied in every inneatitar.
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APLM-S The primal residual ig"* — y*+1 from (50). Following the derivation for FISTA-p, it is

not hard to verify that (52) is always satisfied, and the gradient rakgduresponding to (51)
is %ICT (YKL — gty

FISTA Similar to FISTA-p, the necessary and sufficient optimality conditions fdplera (22) are
primal feasibility
Xy = (X,Y),
and vanishing of the objective gradient(at,y"),
0 = Dxf ()?7?)7
0 € O,f(X.¥)+0ag(y).

Clearly, the primal residual igX*"* — Z, y**1 — Z) since (X', y*1) = (% ). From the
optimality of (X*+1,y**+1), it follows that

= Ouf(25,2) + = (X1 -2,
0 < ag@k“)myf(zi,ztw;@”1—25).

Here, we simply us%(ik+1 —Z) and%()‘/k+1 — Z) to approximate the gradient residuals.

Next, we consider the outer iterations. The necessary and sufficigntadiy conditions for
problem (4) are primal feasibility
CxX —y* =0,

and dual feasibility
0 = OL(x)-CTv,
0 € aQ(Y)+V.

Clearly, the primal residual i8 =CX —y'. The dual residual is

I+1\ _ T 1 1
( Dlé(f);(—;lll)iv(l\) C%fr )—,Z: ) recalling that/ ™1 = v/ — 3(CxX 1 — yf+1)_ The above

is simply the gradlent of the augmented Lagrangian (5) evaluateéx! 8t,V'). Now, since the
objective function of an inner iteration is the augmented Lagrangianw:ithV', the dual residual
for an outer iteration is readily available from the gradient residual cordpigtethe last inner
iteration of the outer iteration.

Appendix D. Numerical Results
See Tables 4 to 10.
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Data Sets Algs CPU (s) | lters | Avg Sub-iters F(x)
ADAL | 1.70e+000] 61 | 1.00e+000 | 1.9482e+005
APLM-S | 1.71e+000 8 | 4.88e+000 | 1.9482e+005
0gl-5000-100-10-3) [ 1ora 1 | 9.08e-001| 8 | 4.38e+000 | 1.9482e+005
FISTA | 2.74e+000, 10 | 7.30e+000 | 1.9482e+005
ProxGrad| 7.92e+001| 3858 - -
ADAL | 6.75e+001] 105 | 1.00e+000 | 1.4603e+0086
APLM-S | 1.79e+002] 9 | 1.74e+001 | 1.4603e+006
0gl-5000-600-10-3| [ jara 1 | 4.77e+001 9 | 8.56e+000 | 1.4603e+006
FISTA | 3.28e+001 12 | 1.36e+001 | 1.4603e+00§
ProxGrad| 7.96e+002| 5608 - -
ADAL | 2.83e+002| 151 | 1.00e+000 | 2.6746e+006
APLM-S | 8.06e+002 10 | 2.76e+001 | 2.6746e+006
- - - e
0gl-5000-1000-10-3 [\ ora o | 2.496+002 10 | 1.28e+001 | 2.6746e+006
FISTA | 5.21e+001 13 | 1.55e+001 | 2.6746e+00§
ProxGrad| 1.64e+003| 6471 - -

Table 4: Numerical results for ogl set 1. For ProxGrad, Avg SulslaerdF(x) fields are not
applicable since the algorithm is not based on an outer-inner iteration schech¢he
objective function that it minimizes is different from ours. We tested tenlprob with
J=100---,1000, but only show the results for three of them to save space.

Data Sets Algs CPU (s) | lters | Avg Sub-iters F(X)
ADAL | 4.18e+000| 77 1.00e+000 | 9.6155e+004
APLM-S | 1.64e+001] 9 2.32e+001 | 9.6156e+004
0gl-1000-200-10-3| FISTA-p | 3.85e+000| 9 1.02e+001 | 9.6156e+004
FISTA | 2.92e+000] 11 1.44e+001 | 9.6158e+004

ProxGrad| 1.16e+002| 4137 - -
ADAL | 5.04e+000] 63 1.00e+000 | 4.1573e+005
APLM-S | 8.42e+000; 8 8.38e+000 | 4.1576e+005
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ProxGrad| 3.31e+002| 6186 - -

Table 5: Numerical results for ogl set 2. We ran the test for ten probléthsw= 100Q - - - , 10000,
but only show the results for three of them to save space.
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Data Sets Algs CPU (s) | lters | Avg Sub-iters F(x)
ADAL | 1.14e+001| 194 | 1.00e+000 | 8.4892e+002
ogl-dct-1000-5000-1| FISTA-p | 1.21e+001] 20 1.11e+001 | 8.4892e+002
FISTA | 2.49e+001| 24 2.51e+001 | 8.4893e+002
ADAL | 3.31e+001| 398 | 1.00e+000 | 1.4887e+003
ogl-dct-1000-10000-1 FISTA-p | 2.54e+001) 41 5.61e+000 | 1.4887e+003
FISTA | 6.33e+001| 44 1.74e+001 | 1.4887e+003
ADAL | 6.09e+001| 515 | 1.00e+000 | 2.7506e+003
ogl-dct-1000-15000-1 FISTA-p | 3.95e+001| 52 4.44e+000 | 2.7506e+003
FISTA | 9.73e+001| 54 1.32e+001 | 2.7506e+003
ADAL | 9.52e+001| 626 | 1.00e+000 | 3.3415e+003
ogl-dct-1000-20000-1 FISTA-p | 6.66e+001] 63 6.10e+000 | 3.3415e+003
FISTA | 1.81e+002| 64 1.61e+001 | 3.3415e+003
ADAL | 1.54e+002| 882 | 1.00e+000 | 4.1987e+003
ogl-dct-1000-25000-1 FISTA-p | 7.50e+001| 88 3.20e+000 | 4.1987e+003
FISTA | 1.76e+002| 89 8.64e+000 | 4.1987e+003
ADAL | 1.87e+002| 957 | 1.00e+000 | 4.6111e+003
ogl-dct-1000-30000-1 FISTA-p | 8.79e+001| 96 2.86e+000 | 4.6111e+003
FISTA | 2.24e+002| 94 8.54e+000 | 4.6111e+003

Table 6: Numerical results for dct set 2 (scalability test) WitH,-regularization. All three algo-
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Data Sets Algs CPU (s) | lters | Avg Sub-iters F(x)
ADAL | 1.53e+001] 266 | 1.00e+000 | 7.3218e+002
FISTA-p | 1.61e+001 10 | 3.05e+001 | 7.3219e+002
0gl-dct-1000-5000-1) " /ca” | 3.026+001| 16 | 4.09e+001 | 7.3233e+002
ProxFlow | 1.97e+001| - - 7.3236e+002
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ProxFlow | 3.67e+001| - - 1.2709e+003
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0gl-dct-1000-15000-1 "o\ orn” | g.64e+001 23 | 2.66e+001 | 2.24496+003
ProxFlow | 9.91e+001| - - 2.2467e+003
ADAL | 8.09e+001 463 | 1.00e+000 | 2.6340e+003
FISTA-p | 8.09e+001 16 | 2.88e+001 | 2.6340e+003
0gl-dct-1000-20000-1 " cr\” | 1 4804002 26 | 2.93e+001 | 2.6342e+003
ProxFlow | 2.55e+002| - - 2.6357e+003
ADAL | 7.48e+001] 309 | 1.00e+000 | 3.5566e+003
FISTA-p | 1.15e+002| 30 | 1.83e+001 | 3.5566e+003
0gl-dct-1000-25000-1 - crn™ | 5 09e+002 38 | 2.30e+001 | 3.55686+003
ProxFlow | 1.38e+002| - - 3.5571e+003
ADAL | 9.99e+001 359 | 1.00e+000 | 3.7057e+003
FISTA-p | 1.55e+002 29 | 2.17e+001 | 3.7057e+003
0gl-dct-1000-30000-1 " cr\” | 5 6004002 39 | 2.25e+001 | 3.7060e+003
ProxFlow | 1.07e+002| - - 3.7063e+003

Table 7: Numerical results for dct set 2 (scalability test) WitH.-regularization. The algorithm
configurations are exactly the same as in Table 6.
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Data Sets Algs CPU (s) | lters | Avg Sub-iters F(x)
FISTA-p | 1.83e+001] 12 2.34e+001 | 8.4892e+002
ogl-dct-1000-5000-1| FISTA | 2.49e+001] 24 2.51e+001 | 8.4893e+002
ADAL | 1.35e+001/ 181 | 1.00e+000 | 8.4892e+002
FISTA-p | 3.16e+001 14 1.73e+001 | 1.4887e+003
ogl-dct-1000-10000-1 FISTA | 6.33e+001| 44 1.74e+001 | 1.4887e+003
ADAL | 4.43e+001) 270 | 1.00e+000 | 1.4887e+003
FISTA-p | 4.29e+001 14 1.51e+001 | 2.7506e+003
ogl-dct-1000-15000-1 FISTA | 9.73e+001| 54 1.32e+001 | 2.7506e+003
ADAL | 5.37e+001| 216 | 1.00e+000 | 2.7506e+003
FISTA-p | 7.53e+001] 13 2.06e+001 | 3.3416e+003
ogl-dct-1000-20000-1 FISTA | 1.81e+002| 64 1.61e+001 | 3.3415e+003
ADAL | 1.57e+002| 390 | 1.00e+000 | 3.3415e+003
FISTA-p | 7.41e+001] 15 1.47e+001 | 4.1987e+003
ogl-dct-1000-25000-1 FISTA | 1.76e+002 89 8.64e+000 | 4.1987e+003
ADAL | 8.79e+001| 231 | 1.00e+000 | 4.1987e+003
FISTA-p | 8.95e+001 14 1.58e+001 | 4.6111e+003
ogl-dct-1000-30000-1 FISTA | 2.24e+002| 94 8.54e+000 | 4.6111e+003
ADAL | 1.12e+002| 249 | 1.00e+000 | 4.6111e+003

Table 8: Numerical results for the DCT set wiilil,-regularization. FISTA-p and ADAL were ran
in PCG mode with the dynamic scheme for updating was fixed ayy for FISTA.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficiesjégtions onto the | 1-ball for
learning in high dimensions. IRroceedings of the 25th International Conference on Machine
Learning pages 272-279. ACM, 2008.

J. Eckstein and D.P. Bertsekas. On the Douglas-Rachford splitting metddateproximal point
algorithm for maximal monotone operatofdathematical Programming5(1):293-318, 1992.
ISSN 0025-5610.

J. Eckstein and P.J.S. Silva. A practical relative error criterion for anggddagrangiansMathe-
matical Programmingpages 1-30, 2012.

D. Gabay and B. Mercier. A dual algorithm for the solution of nonlineaiag@nal problems via
finite element approximationComputers & Mathematics with Applicatiqrn®(1):17-40, 1976.
ISSN 0898-1221.

R. Glowinski and A. Marroco. Sur I'approximation, par elements finis dferun, et la resolu-
tion, par penalisation-dualite d’une classe de problemes de dirichlet nandsRev. Francaise
d’Automat. Inf. Recherche Operationel(®):41-76, 1975.

D. Goldfarb, S. Ma, and K. Scheinberg. Fast alternating linearizationadstfor minimizing the
sum of two convex functiondlathematical Programming Series 2011.

1465



QIN AND GOLDFARB

Data Sets Algs CPU (s) | lters | Avg Sub-iters F(x)

FISTA-p | 2.30e+001| 11 2.93e+001 | 7.3219e+002
0gl-dct-1000-5000-1) * A p1 * | 1.89e+001 265 | 1.00e+000 | 7.3218e+002
FISTA 3.02e+001| 16 4.09e+001 | 7.3233e+002
ProxFlow | 1.97e+001| - - 7.3236e+002
FISTA-p | 5.09e+001] 11 3.16e+001 | 1.2708e+003
ADAL 4.77e+001| 323 1.00e+000 | 1.2708e+003
FISTA 7.27e+001| 24 3.25e+001 | 1.2708e+003
ProxFlow | 3.67e+001| - - 1.2709e+003
FISTA-p | 6.33e+001| 12 2.48e+001 | 2.2445e+003
ADAL 9.41e+001| 333 | 1.00e+000 | 2.2444e+003
FISTA | 8.64e+001| 23 2.66e+001 | 2.2449e+003
ProxFlow | 9.91e+001| - - 2.2467e+003
FISTA-p | 8.21e+001| 12 2.42e+001 | 2.6341e+003
ADAL 1.59e+002 415 1.00e+000 | 2.6340e+003
FISTA | 1.48e+002| 26 2.93e+001 | 2.6342e+003
ProxFlow | 2.55e+002| - - 2.6357e+003
FISTA-p | 1.43e+002| 13 2.98e+001 | 3.5567e+003
ADAL 1.20e+002| 310 | 1.00e+000 | 3.5566e+003
FISTA | 2.09e+002| 38 2.30e+001 | 3.5568e+003
ProxFlow | 1.38e+002| - - 3.5571e+003
FISTA-p | 1.75e+002 13 3.18e+001 | 3.7057e+003
ADAL 2.01e+002| 361 1.00e+000 | 3.7057e+003
FISTA | 2.60e+002| 39 2.25e+001 | 3.7060e+003
ProxFlow | 1.07e+002| - - 3.7063e+003

ogl-dct-1000-10000-1

ogl-dct-1000-15000-1

ogl-dct-1000-20000-1

ogl-dct-1000-25000-1

ogl-dct-1000-30000-1

Table 9: Numerical results for the DCT set wiilil..-regularization. FISTA-p and ADAL were ran
in PCG mode. The dynamic updating schemeifaras applied to FISTA-p, whilg was
fixed atpp for ADAL and FISTA.

Data Sets Algs CPU (s) | lters | Avg Sub-iters F(x)
ADAL 6.24e+000| 136 1.00e+000 | 2.9331e+003
APLM-S | 4.02e+001| 12 4.55e+001 | 2.9331e+003
FISTA-p | 6.86e+000, 12 1.48e+001 | 2.9331e+003
FISTA | 5.11e+001] 75 1.29e+001 | 2.9340e+003
ProxGrad| 7.76e+002| 6605| 1.00e+000 -

BreastCancerData

Table 10: Numerical results for Breast Cancer Data ukifiig-regularization. In this experiment,
we keptu constant at 0.01 for ADAL. The CPU time is for a single run on the entire data
set with the value ok selected to minimize the RMSE in Figure 4.
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