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Abstract
We consider a class of sparse learning problems in high dimensional feature space regularized by
a structured sparsity-inducing norm that incorporates prior knowledge of the group structure of
the features. Such problems often pose a considerable challenge to optimization algorithms due
to the non-smoothness and non-separability of the regularization term. In this paper, we focus
on two commonly adopted sparsity-inducing regularizationterms, the overlapping Group Lasso
penaltyl1/l2-norm and thel1/l∞-norm. We propose a unified framework based on the augmented
Lagrangian method, under which problems with both types of regularization and their variants
can be efficiently solved. As one of the core building-blocksof this framework, we develop new
algorithms using a partial-linearization/splitting technique and prove that the accelerated versions
of these algorithms requireO( 1√

ε ) iterations to obtain anε-optimal solution. We compare the
performance of these algorithms against that of the alternating direction augmented Lagrangian
and FISTA methods on a collection of data sets and apply them to two real-world problems to
compare the relative merits of the two norms.

Keywords: structured sparsity, overlapping Group Lasso, alternating direction methods, variable
splitting, augmented Lagrangian

1. Introduction

For feature learning problems in a high-dimensional space, sparsity in the feature vector is usually a
desirable property. Many statistical models have been proposed in the literature to enforce sparsity,
dating back to the classical Lasso model (l1-regularization) (Tibshirani, 1996; Chen et al., 1999).
The Lasso model is particularly appealing because it can be solved by very efficient proximal gradi-
ent methods; for example, see Combettes and Pesquet (2011). However, the Lasso does not take into
account the structure of the features (Zou and Hastie, 2005). In many real applications, the features
in a learning problem are often highly correlated, exhibiting a group structure. Structured sparsity
has been shown to be effective in those cases. The Group Lasso model(Yuan and Lin, 2006; Bach,
2008; Roth and Fischer, 2008) assumes disjoint groups and enforcessparsity on the pre-defined
groups of features. This model has been extended to allow for groups that are hierarchical as well
as overlapping (Jenatton et al., 2011; Kim and Xing, 2010; Bach, 2010)with a wide array of appli-
cations from gene selection (Kim and Xing, 2010) to computer vision (Huanget al., 2009; Jenatton
et al., 2010). For image denoising problems, extensions with non-integer block sizes and adaptive
partitions have been proposed by Peyre and Fadili (2011) and Peyre et al. (2011). In this paper, we
consider the following basic model of minimizing the squared-error loss with a regularization term
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to induce group sparsity:
min
x∈Rm

L(x)+Ω(x), (1)

where

L(x) =
1
2
‖Ax−b‖2, A∈ R

n×m,

Ω(x) =

{

Ωl1/l2(x)≡ λ∑s∈S ws‖xs‖, or
Ωl1/l∞(x)≡ λ∑s∈S ws‖xs‖∞ ,

(2)

S = {s1, · · · ,s|S |} is the set of group indices with|S |= J, and the elements (features) in the groups
possibly overlap (Chen et al., 2010; Mairal et al., 2010; Jenatton et al., 2011; Bach, 2010). In this
model,λ,ws,S are all pre-defined.‖ · ‖ without a subscript denotes thel2-norm. We note that the
penalty termΩl1/l2(x) in (2) is different from the one proposed by Jacob et al. (2009),1 although
both are called overlapping Group Lasso penalties. In particular, (1)-(2) cannot be cast into a non-
overlapping group lasso problem as done by Jacob et al. (2009).

1.1 Related Work

Two proximal gradient methods have been proposed to solve a close variant of (1) with anl1/l2
penalty,

min
x∈Rm

L(x)+Ωl1/l2(x)+λ‖x‖1, (3)

which has an additionall1-regularization term onx. Chen et al. (2010) replaceΩl1/l2(x) with a
smooth approximationΩη(x) by using Nesterov’s smoothing technique (Nesterov, 2005) and solve
the resulting problem by the Fast Iterative Shrinkage Thresholding algorithm (FISTA) (Beck and
Teboulle, 2009). The parameterη is a smoothing parameter, upon which the practical and theoretical
convergence speed of the algorithm critically depends. Liu and Ye (2010) also apply FISTA to solve
(3), but in each iteration, they transform the computation of the proximal operator associated with
the combined penalty term into an equivalent constrained smooth problem andsolve it by Nesterov’s
accelerated gradient descent method (Nesterov, 2005). Mairal et al.(2010) apply the accelerated
proximal gradient method to (1) withl1/l∞ penalty and propose a network flow algorithm to solve
the proximal problem associated withΩl1/l∞(x). The method proposed by Mosci et al. (2010) for
solving the Group Lasso problem in Jacob et al. (2009) is in the same spirit as the method of Liu
and Ye (2010), but their approach uses a projected Newton method.

1.2 Our Contributions

We take a unified approach to tackle problem (1) with bothl1/l2- and l1/l∞-regularizations. Our
strategy is to develop efficient algorithms based on the Alternating Linearization Method with Skip-
ping (ALM-S) (Goldfarb et al., 2011) and FISTA for solving an equivalent constrained version
of problem (1) (to be introduced in Section 2) in an augmented Lagrangian method framework.
Specifically, we make the following contributions in this paper:

• We build a general framework based on the augmented Lagrangian method,under which
learning problems with bothl1/l2 andl1/l∞ regularizations (and their variants) can be solved.
This framework allows for experimentation with its key building blocks.

1. This norm has been further investigated and renamed as latent GroupLasso (Obozinski et al., 2011).
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• We propose new algorithms: ALM-S with partial splitting (APLM-S) and FISTAwith partial
linearization (FISTA-p), to serve as the key building block for this framework. We prove that
APLM-S and FISTA-p have convergence rates ofO(1

k) andO( 1
k2 ) respectively, wherek is the

number of iterations. Our algorithms are easy to implement and tune, and they donot require
line-search, eliminating the need to evaluate the objective function at every iteration.

• We evaluate the quality and speed of the proposed algorithms and frameworkagainst state-of-
the-art approaches on a rich set of synthetic test data and compare thel1/l2 andl1/l∞ models
on breast cancer gene expression data (Van De Vijver et al., 2002) and a video sequence
background subtraction task (Mairal et al., 2010).

2. A Variable-Splitting Augmented Lagrangian Framework

In this section, we present a unified framework, based on variable splittingand the augmented La-
grangian method for solving (1) with bothl1/l2- and l1/l∞-regularizations. This framework refor-
mulates problem (1) as an equivalent linearly-constrained problem, by using the following variable-
splitting procedure.

Let y ∈ R∑s∈S |s| be the vector obtained from the vectorx ∈ R
m by repeating components ofx

so that no component ofy belongs to more than one group. LetM = ∑s∈S |s|. The relationship
betweenx andy is specified by the linear constraintCx= y, where the(i, j)-th element of the matrix
C∈ R

M×m is

Ci, j =

{

1, if yi is a replicate ofx j ,
0, otherwise.

For examples ofC, refer to Chen et al. (2010). Consequently, (1) is equivalent to

min Fob j(x,y)≡
1
2
‖Ax−b‖2+ Ω̃(y) (4)

s.t. Cx= y,

whereΩ̃(y) is the non-overlapping group-structured penalty term corresponding toΩ(y) defined in
(2).

Note thatC is a highly sparse matrix, andD = CTC is a diagonal matrix with the diagonal
entries equal to the number of times that each entry ofx is included in some group. Problem (4)
now includes two sets of variablesx andy, wherex appears only in the loss termL(x) andy appears
only in the penalty term̃Ω(y).

All the non-overlapping versions ofΩ(·), including the Lasso and Group Lasso, are special
cases ofΩ(·), with C = I , that is,x= y. Hence, (4) in this case is equivalent to applying variable-
splitting onx. Problems with a composite penalty term, such as the Elastic Net,λ1‖x‖1+λ2‖x‖2,
can also be reformulated in a similar way by merging the smooth part of the penaltyterm (λ2‖x‖2
in the case of the Elastic Net) with the loss functionL(x).

To solve (4), we apply the augmented Lagrangian method (Hestenes, 1969; Powell, 1972; No-
cedal and Wright, 1999; Bertsekas, 1999) to it. This method, Algorithm 1, minimizes the augmented
Lagrangian

L(x,y,v) =
1
2
‖Ax−b‖2−vT(Cx−y)+

1
2µ
‖Cx−y‖2+ Ω̃(y) (5)
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exactly for a given Lagrange multiplierv in every iteration followed by an update tov. The parame-
terµ in (5) controls the amount of weight that is placed on violations of the constraint Cx= y. Algo-
rithm 1 can also be viewed as a dual ascent algorithm applied toP(v) = minx,yL(x,y,v) (Bertsekas,
1976), wherev is the dual variable,1µ is the step-length, andCx− y is the gradient∇vP(v). This

Algorithm 1 AugLag

1: Choosex0,y0,v0.
2: for l = 0,1, · · · do
3: (xl+1,yl+1)← argminx,yL(x,y,vl )
4: vl+1← vl − 1

µ(Cxl+1−yl+1)
5: Updateµ according to the chosen updating scheme.
6: end for

algorithm does not requireµ to be very small to guarantee convergence to the solution of problem
(4) (Nocedal and Wright, 1999). However, solving the problem in Line 3of Algorithm 1 exactly can
be very challenging in the case of structured sparsity. We instead seek anapproximate minimizer
of the augmented Lagrangian via the abstract subroutine ApproxAugLagMin(x,y,v). The following
theorem (Rockafellar, 1973) guarantees the convergence of this inexact version of Algorithm 1.

Theorem 1 Let αl := L(xl ,yl ,vl )− infx∈Rm,y∈RM L(x,y,vl ) and F∗ be the optimal value of problem
(4). Suppose problem(4) satisfies the modified Slater’s condition, and

∞

∑
l=1

√
αl <+∞. (6)

Then, the sequence{vl} converges to v∗, which satisfies

inf
x∈Rm,y∈RM

(

Fob j(x,y)− (v∗)T(Cx−y)
)

= F∗,

while the sequence{xl ,yl} satisfieslim l→∞Cxl −yl = 0 and lim l→∞ Fob j(xl ,yl ) = F∗.

The condition (6) requires the augmented Lagrangian subproblem be solved with increasing ac-
curacy. We formally state this framework in Algorithm 2. We index the iterations of Algorithm

Algorithm 2 OGLasso-AugLag

1: Choosex0,y0,v0.
2: for l = 0,1, · · · do
3: (xl+1,yl+1) ← ApproxAugLagMin(xl ,yl ,vl ), to compute an approximate minimizer of

L(x,y,vl )
4: vl+1← vl − 1

µ(Cxl+1−yl+1)
5: Updateµ according to the chosen updating scheme.
6: end for

2 by l and call them ‘outer iterations’. In Sections 3, we develop algorithms that implement
ApproxAugLagMin(x,y,v). The iterations of these subroutine are indexed byk and are called ‘inner
iterations’.
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3. Methods for Approximately Minimizing the Augmented Lagrangian

In this section, we use the overlapping Group Lasso penaltyΩ(x) = λ∑s∈S ws‖xs‖ to illustrate the
optimization algorithms under discussion. The case ofl1/l∞-regularization will be discussed in
Section 4. From now on, we assume without loss of generality thatws = 1 for every groups.

3.1 Alternating Direction Augmented Lagrangian (ADAL) Method

The well-known Alternating Direction Augmented Lagrangian (ADAL) method (Eckstein and Bert-
sekas, 1992; Gabay and Mercier, 1976; Glowinski and Marroco, 1975; Boyd et al., 2010)2 approx-
imately minimizes the augmented Lagrangian by minimizing (5) with respect tox andy alternat-
ingly and then updates the Lagrange multiplierv on each iteration (e.g., see Bertsekas and Tsit-
siklis, 1989, Section 3.4). Specifically, the single-iteration procedure thatserves as the procedure
ApproxAugLagMin(x,y,v) is given below as Algorithm 3.

Algorithm 3 ADAL

1: Givenxl , yl , andvl .
2: xl+1← argminxL(x,yl ,vl )
3: yl+1← argminyL(xl+1,y,vl )
4: return xl+1,yl+1.

The ADAL method, also known as the alternating direction method of multipliers (ADMM)
and the split Bregman method, has recently been applied to problems in signal and image process-
ing (Combettes and Pesquet, 2011; Afonso et al., 2009; Goldstein and Osher, 2009) and low-rank
matrix recovery (Lin et al., 2010). Its convergence has been established by Eckstein and Bertsekas
(1992). This method can accommodate a sum of more than two functions. For example, by ap-
plying variable-splitting (e.g., see Bertsekas and Tsitsiklis, 1989; Boyd et al., 2010) to the problem
minx f (x)+∑K

i=1gi(Cix), it can be transformed into

min
x,y1,··· ,yK

f (x)+
K

∑
i=1

gi(yi)

s.t. yi =Cix, i = 1, · · · ,K.

The subproblems corresponding toyi ’s can thus be solved simultaneously by the ADAL method.
This so-called simultaneous direction method of multipliers (SDMM) (Setzer et al.,2010) is related
to Spingarn’s method of partial inverses (Spingarn, 1983) and has been shown to be a special in-
stance of a more general parallel proximal algorithm with inertia parameters (Pesquet and Pustelnik,
2010).

Note that the problem solved in Line 3 of Algorithm 3,

yl+1 = argmin
y
L(xl+1,y,vl )≡ argmin

y

{

1
2µ
‖dl −y‖2+ Ω̃(y)

}

, (7)

wheredl = Cxl+1−µvl , is group-separable and hence can be solved in parallel. As in Qin et al.
(2010), each subproblem can be solved by applying the block soft-thresholding operator,T(dl

s,µλ)≡
2. Recently, Mairal et al. (2011) also applied ADAL with two variants basedon variable-splitting to the overlapping

Group Lasso problem.
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dl
s

‖dl
s‖

max(0,‖dl
s‖−λµ),s= 1, · · · ,J. Solving forxl+1 in Line 2 of Algorithm 3, that is,

xl+1 = argmin
x
L(x,yl ,vl )≡ argmin

x

{

1
2
‖Ax−b‖2− (vl )TCx+

1
2µ
‖Cx−yl‖2

}

, (8)

involves solving the linear system

(ATA+
1
µ

D)x= ATb+CTvl +
1
µ

CTyl , (9)

where the matrix on the left hand side of (9) has dimensionm×m. Many real-world data sets, such
as gene expression data, are highly under-determined. Hence, the number of features (m) is much
larger than the number of samples (n). In such cases, one can use the Sherman-Morrison-Woodbury
formula,

(ATA+
1
µ

D)−1 = µD−1−µ2D−1AT(I +µAD−1AT)−1AD−1,

and solve instead ann×n linear system involving the matrixI +µAD−1AT . In addition, as long as
µ stays the same, one has to factorizeATA+ 1

µD or I +µAD−1AT only once and store their factors
for subsequent iterations.

When bothn and m are very large, it might be infeasible to compute or storeATA, not to
mention its eigen-decomposition, or the Cholesky decomposition ofATA+ 1

µD. In this case, one
can solve the linear systems using the preconditioned Conjugate Gradient (PCG) method (Golub
and Van Loan, 1996). Similar comments apply to the other algorithms proposed inSections 3.2 -
3.4 below.Alternatively, we can apply FISTA to Line 3 in Algorithm 2 (see Section 3.5).

3.2 ALM-S: partial split (APLM-S)

We now consider applying the Alternating Linearization Method with Skipping (ALM-S) from
Goldfarb et al. (2011) to approximately minimize (5). In particular, we apply variable splitting
(Section 2) to the variabley, to which the group-sparse regularizerΩ̃ is applied, (the original ALM-
S splits both variablesx andy,) and re-formulate (5) as follows.

min
x,y,ȳ

1
2
‖Ax−b‖2−vT(Cx−y)+

1
2µ
‖Cx−y‖2+ Ω̃(ȳ) (10)

s.t. y= ȳ.

Note that the Lagrange multiplierv is fixed here. Defining

f (x,y) :=
1
2
‖Ax−b‖2−vT(Cx−y)+

1
2µ
‖Cx−y‖2, (11)

g(y) = Ω̃(y) = λ∑
s
‖ys‖, (12)

problem (10) is of the form

min f (x,y)+g(ȳ) (13)

s.t. y= ȳ,

to which we now apply partial-linearization.
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3.2.1 PARTIAL L INEARIZATION AND CONVERGENCERATE ANALYSIS

Let us define

F(x,y) := f (x,y)+g(y) = L(x,y;v),

Lρ(x,y, ȳ,γ) := f (x,y)+g(ȳ)+ γT(ȳ−y)+
1
2ρ
‖ȳ−y‖2, (14)

whereγ is the Lagrange multiplier in the augmented Lagrangian (14) corresponding toproblem (13).
We now present our partial-split alternating linearization algorithm to implement
ApproxAugLagMin(x,y,v) in Algorithm 2.

Algorithm 4 APLM-S

1: Givenx0, ȳ0,v. Chooseρ,γ0, such that−γ0 ∈ ∂g(ȳ0). Define f (x,y) as in (11).
2: for k= 0,1, · · · until stopping criterion is satisfieddo
3: (xk+1,yk+1)← argminx,yLρ(x,y, ȳk,γk).
4: if F(xk+1,yk+1)> Lρ(xk+1,yk+1, ȳk,γk) then
5: yk+1← ȳk

6: xk+1← argminx f (x,yk+1)≡ argminxLρ(x;yk+1, ȳk,γk)
7: end if
8: ȳk+1← pf (xk+1,yk+1)≡ argmin̄yLρ(xk+1,yk+1, ȳ,∇y f (xk+1,yk+1))

9: γk+1← ∇y f (xk+1,yk+1)− yk+1−ȳk+1

ρ
10: end for
11: return (xK+1, ȳK+1)

We note that in Line 6 in Algorithm 4,

xk+1 = argmin
x
Lρ(x;yk+1, ȳk,γk)≡ argmin

x
f (x;yk+1)≡ argmin

x
f (x; ȳk). (15)

Now, we have a variant of Lemma 2.2 in Goldfarb et al. (2011).

Lemma 1 For any(x,y), if q̄ := argmin̄yLρ(x,y, ȳ,∇y f (x,y)), and

F(x, q̄)≤ Lρ(x,y, q̄,∇y f (x,y)), (16)

then for any(x̄, ȳ),

2ρ(F(x̄, ȳ)−F(x, q̄))≥ ‖q̄− ȳ‖2−‖y− ȳ‖2+2ρ((x̄−x)T∇x f (x,y)). (17)

Similarly, for anyȳ, if (p,q) := argminx,yLρ(x,y, ȳ,−γg(ȳ)), γg(ȳ) is a sub-gradient of g at̄y, and

F(p,q)≤ Lρ((p,q), ȳ,−γg(ȳ)), (18)

then for any(x,y),

2ρ(F(x,y)−F(p,q))≥ ‖q−y‖2−‖ȳ−y‖2. (19)
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Proof See Appendix A.

Algorithm 4 checks condition (18) at Line 4 because the functiong is non-smooth and condition
(18) may not hold no matter what the value ofρ is. When this condition is violated, a skipping step
occurs in which the value ofy is set to the value of ¯y in the previous iteration (Line 5) andLρ
re-minimized with respect tox (Line 6) to ensure convergence. Let us define aregular iterationof
Algorithm 4 to be an iteration where no skipping step occurs, that is, Lines 5 and 6 are not executed.
Likewise, we define askipping iterationto be an iteration where a skipping step occurs. Now, we
are ready to state the iteration complexity result for APLM-S.

Theorem 2 Assume that∇y f (x,y) is Lipschitz continuous in y with Lipschitz constant Ly( f ), that
is, for any x,‖∇y f (x,y)−∇y f (x,z)‖ ≤ Ly( f )‖y− z‖, for all y and z. Forρ ≤ 1

Ly( f ) , the iterates

(xk, ȳk) in Algorithm 4 satisfy

F(xk, ȳk)−F(x∗,y∗)≤ ‖ȳ
0−y∗‖2

2ρ(k+kn)
, ∀k, (20)

where(x∗,y∗) is an optimal solution to(10), and kn is the number of regular iterations among the
first k iterations.

Proof See Appendix B.

Remark 1 For Theorem 2 to hold, we needρ≤ 1
Ly( f ) . From the definition of f(x,y) in (11), it is easy

to see that Ly( f ) = 1
µ regardless of the loss function L(x). Hence, we setρ = µ, so that condition

(16) in Lemma 1 is satisfied.

In Section 3.3, we will discuss the case where the iterations entirely consist of skipping steps.
We will show that this is equivalent to ISTA (Beck and Teboulle, 2009) with partial linearization as
well as a variant of ADAL. In this case, the inner Lagrange multiplierγ is redundant.

3.2.2 SOLVING THE SUBPROBLEMS

We now show how to solve the subproblems in Algorithm 4. First, observe thatsinceρ = µ,

argmin
ȳ
Lρ(x,y, ȳ,∇y f (x,y)) ≡ argmin

ȳ

{

∇y f (x,y)T ȳ+
1
2µ
‖ȳ−y‖2+g(ȳ)

}

≡ argmin
ȳ

{

1
2µ
‖d− ȳ‖2+λ∑

s
‖ȳs‖

}

,

whered = Cx− µv. Hence, ¯y can be obtained by applying the block soft-thresholding operator
T(ds,µλ) as in Section 3.1. Next consider the subproblem

min
(x,y)

Lρ(x,y, ȳ,γ)≡min
(x,y)

{

f (x,y)+ γT(ȳ−y)+
1
2µ
‖ȳ−y‖2

}

. (21)
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It is easy to verify that solving the linear system given by the optimality conditions for (21) by block
Gaussian elimination yields the system

(

ATA+
1
2µ

D

)

x= rx+
1
2

CTry

for computingx, whererx = ATb+CTv andry =−v+ γ+ ȳ
ρ . Theny can be computed as(µ

2)(ry+
1
µCx).

As in Section 3.1, only one Cholesky factorization ofATA+ 1
2µD is required for each invocation

of Algorithm 4. Hence, the amount of work involved in each iteration of Algorithm 4 is comparable
to that of an ADAL iteration.

It is straightforward to derive an accelerated version of Algorithm 4, which we shall refer to as
FAPLM-S, that corresponds to a partial-split version of the FALM algorithm proposed by Goldfarb

et al. (2011) and also requiresO(
√

L( f )
ε ) iterations to obtain anε-optimal solution. In Section 3.4,

we present an algorithm FISTA-p, which is a special version of FAPLM-S in which every iteration
is a skipping iteration and which has a much simpler form than FAPLM-S, while having essentially
the same iteration complexity.

It is also possible to apply ALM-S directly, which splits bothx andy, to solve the augmented
Lagrangian subproblem. Similar to (10), we reformulate (5) as

min
(x,y),(x̄,ȳ)

1
2
‖Ax−b‖2−vT(Cx−y)+

1
2µ
‖Cx−y‖2+λ∑

s
‖ȳs‖ (22)

s.t. x= x̄,

y= ȳ.

The functionsf andg are defined as in (11) and (12), except that now we writeg asg(x̄, ȳ) even
though the variable ¯x does not appear in the expression forg. It can be shown that ¯y admits exactly
the same expression as in APLM-S, whereas ¯x is obtained by a gradient step,x− ρ∇x f (x,y). To
obtainx, we solve the linear system

(

ATA+
1

µ+ρ
D+

1
ρ

I

)

x= rx+
ρ

µ+ρ
CTry, (23)

after whichy is computed byy=
(

µρ
µ+ρ

)(

ry+
1
µCx
)

.

Remark 2 For ALM-S, the Lipschitz constant for∇ f (x,y) L f = λmax(ATA)+ 1
µdmax, where dmax=

maxi Dii ≥ 1. For the complexity results in Goldfarb et al. (2011) to hold, we needρ ≤ 1
L f

. Since

λmax(ATA) is usually not known, it is necessary to perform a backtracking line-search onρ to ensure
that F(xk+1,yk+1) ≤ Lρ(xk+1,yk+1, x̄k, ȳk,γk). In practice, we adopted the following continuation
scheme instead. We initially setρ = ρ0 =

µ
dmax

and decreasedρ by a factor ofβ after a given number
of iterations untilρ reached a user-supplied minimum valueρmin. This scheme preventsρ from being
too small, and hence negatively impacting computational performance. However, in both cases the
left-hand-side of the system(23)has to be re-factorized every timeρ is updated.

As we have seen above, the Lipschitz constant resulting from splitting bothx andy is potentially
much larger than1µ. Hence, partial-linearization reduces the Lipschitz constant and hence improves
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the bound on the right-hand-side of (20) and allows Algorithm 4 to take larger step sizes (equal to
µ). Compared to ALM-S, solving forx in the skipping step (Line 6) becomes harder. Intuitively,
APLM-S does a better job of ‘load-balancing’ by managing a better trade-off between the hardness
of the subproblems and the practical convergence rate.

3.3 ISTA: Partial Linearization (ISTA-p)

We can also minimize the augmented Lagrangian (5), which we write asL(x,y,v) = f (x,y)+g(y)
with f (x,y) andg(y) defined as in (11) and (12), using a variant of ISTA that only linearizesf (x,y)
with respect to they variables. As in Section 3.2, we can setρ = µ and guarantee the convergence
properties of ISTA-p (see Corollary 1 below). Formally, let(x,y) be the current iterate and(x+,y+)
be the next iterate. We computey+ by

y+ = argmin
y′

Lρ(x,y,y
′,∇y f (x,y))

= argmin
y′

{

1
2µ∑

j

(‖y′j −dy j‖2+λ‖y′j‖)
}

, (24)

wheredy =Cx−µv. Hence the solutiony+ to problem (24) is given blockwise byT([dy] j ,µλ), j =
1, · · · ,J.

Now giveny+, we solve forx+ by

x+ = argmin
x′

f (x′,y+)

= argmin
x′

{

1
2
‖Ax′−b‖2−vT(Cx′−y+)+

1
2µ
‖Cx′−y+‖2

}

(25)

The algorithm that implements subroutine ApproxAugLagMin(x,y,v) in Algorithm 2 by ISTA with
partial linearization is stated below as Algorithm 5.

Algorithm 5 ISTA-p (partial linearization)

1: Givenx0, ȳ0,v. Chooseρ. Define f (x,y) as in (11).
2: for k= 0,1, · · · until stopping criterion is satisfieddo
3: xk+1← argminx f (x; ȳk)
4: ȳk+1← argminyLρ(xk+1, ȳk,y,∇y f (xk+1, ȳk))
5: end for
6: return (xK+1, ȳK+1)

As we remarked in Section 3.2, Algorithm 5 is equivalent to Algorithm 4 (APLM-S) where
every iteration is a skipping iteration. Hence, we have from Theorem 2.

Corollary 1 Assume∇y f (·, ·) is Lipschitz continuous with Lipschitz constant Ly( f ). For ρ≤ 1
Ly( f ) ,

the iterates(xk, ȳk) in Algorithm 5 satisfy

F(xk, ȳk)−F(x∗,y∗)≤ ‖ȳ
0−y∗‖2
2ρk

, ∀k,

where(x∗,y∗) is an optimal solution to(10).
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It is easy to see that (24) is equivalent to (7), and that (25) is the same as(8) in ADAL.

Remark 3 We have shown that with a fixed v, the ISTA-p iterations are exactly the sameas the
ADAL iterations. The difference between the two algorithms is that ADAL updates the (outer)
Lagrange multiplier v in each iteration, while in ISTA-p, v stays the same throughout the inner
iterations. We can thus view ISTA-p as a variant of ADAL with delayed updating of the Lagrange
multiplier.

The ‘load-balancing’ behavior discussed in Section 3.2 is more obvious forISTA-p. As we will
see in Section 3.5, if we apply ISTA (with full linearization) to minimize (5), solvingfor x is simply
a gradient step. Here, we need to minimizef (x,y) with respect tox exactly, while being able to take
larger step sizes in the other subproblem, due to the smaller associated Lipschitz constant.

3.4 FISTA-p

We now present an accelerated version FISTA-p of ISTA-p. FISTA-p is a special case of FAPLM-S
with a skipping step occurring in every iteration.We state the algorithm formally asAlgorithm 6.
The iteration complexity of FISTA-p (and FAPLM-S) is given by the followingtheorem.

Algorithm 6 FISTA-p (partial linearization)

1: Givenx0, ȳ0,v. Chooseρ, andz0 = ȳ0. Define f (x,y) as in (11).
2: for k= 0,1, · · · ,K do
3: xk+1← argminx f (x;zk)
4: ȳk+1← argminyLρ(xk+1,zk,y,∇y f (xk+1,zk))

5: tk+1← 1+
√

1+4t2
k

2

6: zk+1← ȳk+1+
(

tk−1
tk+1

)

(ȳk+1− ȳk)

7: end for
8: return (xK+1, ȳK+1)

Theorem 3 Assuming that∇y f (·) is Lipschitz continuous with Lipschitz constant Ly( f ) and ρ ≤
1

Ly( f ) , the sequence{xk, ȳk} generated by Algorithm 6 satisfies

F(xk, ȳk)−F(x∗,y∗)≤ 2‖ȳ0−y∗‖2
ρ(k+1)2 ,

Although we need to solve a linear system in every iteration of Algorithms 4, 5, and 6, the
left-hand-side of the system stays constant throughout the invocation ofthe algorithms because,
following Remark 1, we can always setρ = µ. Hence, no line-search is necessary, and this step
essentially requires only one backward- and one forward-substitution,the complexity of which is
the same as a gradient step.
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3.5 ISTA/FISTA: Full Linearization

ISTA solves the following problem in each iteration to produce the next iterate

(

x+

y+

)

.

min
x′,y′

1
2ρ

∥

∥

∥

∥

(

x′

y′

)

−d

∥

∥

∥

∥

2

+λ∑
s
‖ys‖

≡ 1
2ρ
‖x′−dx‖2+∑

j

1
2ρ
(

‖y′j −dy j‖2+λ‖y′j‖
)

, (26)

whered =

(

dx

dy

)

=

(

x
y

)

−ρ∇ f (x,y), and f (x,y) is defined in (11). It is easy to see that we can

solve forx+ andy+ separately in (26). Specifically,

x+ = dx, (27)

y+j =
dy j

‖dy j‖
max(0,‖dy j‖−λρ), j = 1, . . . ,J.

Using ISTA to solve the outer augmented Lagrangian (5) subproblem is equivalent to taking only
skipping steps in ALM-S. In our experiments, we used the accelerated version of ISTA, that is,
FISTA (Algorithm 7) to solve (5).

Algorithm 7 FISTA

1: Given x̄0, ȳ0,v. Chooseρ0. Sett0 = 0,z0
x = x̄0,z0

y = ȳ0. Define f (x,y) as in (11).
2: for k= 0,1, · · · until stopping criterion is satisfieddo
3: Perform a backtracking line-search onρ, starting fromρ0.

4:

(

dx

dy

)

=

(

zk
x

zk
y

)

−ρ∇ f (zk
x,z

k
y)

5: x̄k+1← dx

6: ȳk+1
j ← dyj

‖dyj ‖
max(0,‖dy j‖−λρ), j = 1, . . . ,J.

7: tk+1← 1+
√

1+4t2
k

2
8: zk+1

x ← x̄k+ tk−1
tk+1

(x̄k+1− x̄k)

9: zk+1
y ← ȳk+ tk−1

tk+1
(ȳk+1− ȳk)

10: end for
11: return (x̄K+1, ȳK+1)

FISTA (resp. ISTA) is, in fact, an inexact version of FISTA-p (resp. ISTA-p), where we mini-
mize with respect tox a linearized approximation

f̃ (x,zk) := f (xk,zk)+∇x f (xk,zk)(x−xk)+
1
2ρ
‖x−xk‖2

of the quadratic objective functionf (x,zk) in (25). The update tox in Line 3 of Algorithm 6 is
replaced by (27) as a result. Similar to FISTA-p, FISTA is also a special skipping version of the
full-split FALM-S. Considering that FISTA has an iteration complexity ofO( 1

k2 ), it is not surprising
that FISTA-p has the same iteration complexity.
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Remark 4 Since FISTA requires only the gradient of f(x,y), it can easily handle any smooth convex
loss function, such as the logistic loss for binary classification, L(x) = ∑N

i=1 log(1+exp(−biaT
i x)),

where aTi is the i-th row of A, and b is the vector of labels. Moreover, when the scale of the data
(min{n,m}) is so large that it is impractical to compute the Cholesky factorization of ATA, FISTA
is a good choice to serve as the subroutine ApproxAugLagMin(x,y,v) in OGLasso-AugLag.

4. Overlapping Group l1/l∞-Regularization

The subproblems with respect toy (or ȳ) involved in all the algorithms presented in the previous
sections take the following form

min
y

1
2ρ
‖c−y‖2+ Ω̃(y), (28)

whereΩ̃(y) = λ∑s∈S̃ ws‖ys‖∞ in the case ofl1/l∞-regularization. In (7), for example,c=Cx−µv.
The solution to (28) is the proximal operator ofΩ̃ (Combettes and Wajs, 2006; Combettes and
Pesquet, 2011). Similar to the classical Group Lasso, this problem is block-separable and hence all
blocks can be solved simultaneously.

Again, for notational simplicity, we assumews = 1 ∀s∈ S̃ and omit it from now on. For each
s∈ S̃ , the subproblem in (28) is of the form

min
ys

1
2
‖cs−ys‖2+ρλ‖ys‖∞. (29)

As shown by Wright et al. (2009), the optimal solution to the above problem iscs−P(cs), where
P denotes the orthogonal projector onto the ball of radiusρλ in the dual norm of thel∞-norm, that
is, the l1-norm. The Euclidean projection onto the simplex can be computed in (expected) linear
time (Duchi et al., 2008; Brucker, 1984). Duchi et al. (2008) show that the problem of computing
the Euclidean projection onto thel1-ball can be reduced to that of finding the Euclidean projection
onto the simplex in the following way. First, we replacecs in problem (29) by|cs|, where the
absolute value is taken component-wise. After we obtain the projectionzs onto the simplex, we
can construct the projection onto thel1-ball by settingy∗s = sign(cs)zs, wheresign(·) is also taken
component-wise.

5. Experiments

We tested the OGLasso-AugLag framework (Algorithm 2) with four subroutines: ADAL, FISTA,
FISTA-p, and APLM-S. We implemented the framework with the first three subroutines in C++ to
compare them with the ProxFlow algorithm proposed by Mairal et al. (2010). We used the C inter-
face and BLAS and LAPACK subroutines provided by the AMD Core Math Library (ACML).3 To
compare with ProxGrad (Chen et al., 2010), we implemented the framework and all four algorithms
in Matlab. We did not include ALM-S in our experiments because it is time-consuming to find the
right ρ for the inner loops as discussed in Remark 2, and our preliminary computational experience
showed that ALM-S was slower than the other algorithms, even when the heuristic ρ-setting scheme
discussed in Remark 2 was used, because a large number of steps were skipping steps, which meant

3. ACML can be found athttp://developer.amd.com/libraries/acml/pages/default.aspx. Ideally, we should
have used the Intel Math Kernel Library (Intel MKL), which is optimized for Intel processors, but Intel MKL is not
freely available.
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Algorithm Outer rel. dual residualsl+1 Inner iteration
Rel. primal residual Rel. objective gradient residual

ADAL ‖CT(yl+1−yl )‖
‖CTyl‖ - -

FISTA-p ‖CT(ȳK+1−zK)‖
‖CTzK‖

‖ȳk+1−zk‖
‖zk‖

‖CT(ȳk+1−zk)‖
‖CTzk‖

APLM-S ‖CT(ȳK+1−yK+1)‖
‖CTyK+1‖

‖ȳk+1−yk+1‖
‖yk+1‖

‖CT(ȳk+1−yk+1‖)
‖CTyk+1‖

FISTA
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∥

∥

∥

∥





x̄K+1
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∥

Table 1: Specification of the quantities used in the outer and inner stopping criteria.

that the computation involved in solving the linear systems in those steps was wasted. All of our
experiments were performed on a laptop PC with an Intel Core 2 Duo 2.0 GHz processor and 4 Gb
of memory.

5.1 Algorithm Parameters and Termination Criteria

Each algorithm (framework + subroutine)4 required several parameters to be set and termination
criteria to be specified. We used stopping criteria based on the primal and dual residuals suggested
by Boyd et al. (2010). We specify the criteria for each of the algorithms below, but defer their
derivation to Appendix C. The maximum number of outer iterations was set to 500, and the tolerance
for the outer loop was set atεout = 10−4. The number of inner-iterations was capped at 2000, and
the tolerance at thel -th outer iteration for the inner loops wasεl

in. Our termination criterion for the
outer iterations was

max{r l ,sl} ≤ εout,

wherer l = ‖Cxl−yl‖
max{‖Cxl‖,‖yl‖} is the outer relative primal residual andsl is the relative dual residual,

which is given for each algorithm in Table 1. Recall thatK+1 is the index of the last inner iteration
of the l -th outer iteration; for example, for APLM-S,(xl+1,yl+1) takes the value of the last inner
iterate(xK+1, ȳK+1). We stopped the inner iterations when the maximum of the relative primal
residual and the relative objective gradient for the inner problem was less thanεl

in. (See Table 1 for
the expressions of these two quantities.) We see there thatsl+1 can be obtained directly from the
relative gradient residual computed in the last inner iteration of thel -th outer iteration.

We setµ0 = 0.01 in all algorithms except that we setµ0 = 0.1 in ADAL for the data sets other
than the first synthetic set and the breast cancer data set. We setρ = µ in FISTA-p and APLM-S and
ρ0 = µ in FISTA.

For Theorem 1 to hold, the solution returned by the function ApproxAugLagMin(x,y,v) has to
become increasingly more accurate over the outer iterations. However, it isnot possible to evaluate
the sub-optimality quantityαl in (6) exactly because the optimal value of the augmented Lagrangian
L(x,y,vl ) is not known in advance. In our experiments, we used the maximum of the relative primal

4. For conciseness, we use the subroutine names (e.g., FISTA-p) torepresent the full algorithms that consist of the
OGLasso-AugLag framework and the subroutines.
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and dual residuals(max{r l ,sl}) as a surrogate toαl for two reasons: First, it has been shown (Boyd
et al., 2010) thatr l andsl are closely related toαl . Second, the quantitiesr l andsl are readily
available as bi-products of the inner and outer iterations. To ensure that the sequence{εl

in} satisfies
(6), we basically set:

εl+1
in = βinεl

in, (30)

with ε0
in = 0.01 andβin = 0.5. However, since we terminate the outer iterations atεout > 0, it is

not necessary to solve the subproblems to an accuracy much higher than the one for the outer loop.
On the other hand, it is also important forεl

in to decrease to belowεout, sincesl is closely related
to the quantities involved in the inner stopping criteria. Hence, we slightly modified(30) and used
εl+1

in = max{βinεl
in,0.2εout}.

Recently, we became aware of an alternative ‘relative error’ stopping criterion (Eckstein and
Silva, 2012) for the inner loops, which guarantees convergence of Algorithm 2. In our context, this
criterion essentially requires that the absolute dual residual is less than a fraction of the absolute
primal residual. For FISTA-p, for instance, this condition requires that the (l +1)-th iterate satisfies

2

∥

∥

∥

∥

(

w0
x−xl+1

wl
y−yl+1

)∥

∥

∥

∥

s̄l+1+
(s̄l+1)2

µ2 ≤ σ(r̄ l+1)2,

where ¯r and s̄ are the numerators in the expressions forr and s respectively,σ = 0.99, w0
x is a

constant, andwy is an auxiliary variable updated in each outer iteration bywl+1
y =wl

y− 1
µ2CT(ȳK+1−

zK). We experimented with this criterion but did not find any computational advantage over the
heuristic based on the relative primal and dual residuals.

5.2 Strategies for Updating µ

The penalty parameterµ in the outer augmented Lagrangian (5) not only controls the infeasibility in
the constraintCx= y, but also serves as the step-length in they-subproblem (and thex-subproblem
in the case of FISTA). We adopted two kinds of strategies for updatingµ. The first one simply kept
µ fixed. In this case, choosing an appropriateµ0 was important for good performance. This was
especially true for ADAL in our computational experiments. Usually, aµ0 in the range of 10−1 to
10−3 worked well.

The second strategy is a dynamic scheme based on the valuesr l andsl (Boyd et al., 2010). Since
1
µ penalizes the primal infeasibility, a smallµ tends to result in a small primal residual. On the other

hand, a largeµ tends to yield a small dual residual. Hence, to keepr l andsl approximately balanced
in each outer iteration, our scheme updatedµ as follows:

µl+1←







max{βµl ,µmin}, if r l > τsl

min{µl/β,µmax}, if sl > τr l

µl , otherwise,

where we setµmax= 10, µmin = 10−6, τ = 10 andβ = 0.5, except for the first synthetic data set,
where we setβ = 0.1 for ADAL, FISTA-p, and APLM-S.

5.3 Synthetic Examples

To compare our algorithms with the ProxGrad algorithm of Chen et al. (2010), we first tested a
synthetic data set (ogl) using the procedure reported by Chen et al. (2010) and Jacob et al. (2009).
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The sequence of decision variablesx were arranged in groups of ten, with adjacent groups having
an overlap of three variables. The support ofx was set to the first half of the variables. Each entry
in the design matrixA and the non-zero entries ofx were sampled from i.i.d. standard Gaussian
distributions, and the outputb was set tob= Ax+ ε, where the noiseε∼N (0, I). Two sets of data
were generated as follows: (a) Fixn= 5000 and vary the number of groupsJ from 100 to 1000 with
increments of 100. (b) FixJ = 200 and varyn from 1000 to 10000 with increments of 1000. The
stopping criterion for ProxGrad was the same as the one used for FISTA,and we set its smoothing
parameter to 10−3. Figure 1 plots the CPU times taken by the Matlab version of our algorithms
and ProxGrad (also in Matlab) on theses scalability tests onl1/l2-regularization. A subset of the
numerical results on which these plots are based is presented in Tables 4 and 5.

The plots clearly show that the alternating direction methods were much faster than ProxGrad
on these two data sets. Compared to ADAL, FISTA-p performed slightly better, while it showed
obvious computational advantage over its general version APLM-S. In the plot on the left of Figure
1, FISTA exhibited the advantage of a gradient-based algorithm when bothn andmare large. In that
case (towards the right end of the plot), the Cholesky factorizations required by ADAL, APLM-S,
and FISTA-p became relatively expensive. When min{n,m} is small or the linear systems can be
solved cheaply, as the plot on the right shows, FISTA-p and ADAL havean edge over FISTA due to
the smaller numbers of inner iterations required.

We generated a second data set (dct) using the approach of Mairal et al. (2010) for scalability
tests on both thel1/l2 and l1/l∞ group penalties. The design matrixA was formed from over-
complete dictionaries of discrete cosine transforms (DCT). The set of groups were all the contiguous
sequences of length five in one-dimensional space.x had about 10% non-zero entries, selected
randomly. We generated the output asb= Ax+ ε, whereε∼N (0,0.01‖Ax‖2). We fixedn= 1000
and varied the number of featuresm from 5000 to 30000 with increments of 5000. This set of
data leads to considerably harder problems than the previous set because the groups are heavily
overlapping, and the DCT dictionary-based design matrix exhibits local correlations. Due to the
excessive running time required on Matlab, we ran the C++ version of ouralgorithms for this data
set, leaving out APLM-S and ProxGrad, whose performance comparedto the other algorithms is
already fairly clear from Figure 1. For ProxFlow, we set the tolerance on the relative duality gap to
10−4, the same asεout, and kept all the other parameters at their default values.

Figure 2 presents the CPU times required by the algorithms versus the number of features. In
the case ofl1/l2-regularization, it is clear that FISTA-p outperformed the other two algorithms.
For l1/l∞-regularization, ADAL and FISTA-p performed equally well and compared favorably to
ProxFlow. In both cases, the growth of the CPU times for FISTA follows the same trend as that
for FISTA-p, and they required a similar number of outer iterations, as shown in Tables 6 and 7.
However, FISTA lagged behind in speed due to larger numbers of inner iterations. Unlike in the
case of the ogl data set, Cholesky factorization was not a bottleneck for FISTA-p and ADAL here
because we needed to compute it only once.

To simulate the situation where computing or cachingATA and its Cholesky factorization is not
feasible, we switched ADAL and FISTA-p to PCG mode by always using PCGto solve the linear
systems in the subproblems. We compared the performance of ADAL, FISTA-p, and FISTA on
the previous data set for bothl1/l2 and l1/l∞ models. The results for ProxFlow are copied from
from Figure 2 and Table 9 to serve as a reference. We experimented with the fixed-value and
the dynamic updating schemes forµ on all three algorithms. From Figure 3, it is clear that the
performance of FISTA-p was significantly improved by using the dynamic scheme. For ADAL,
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Figure 1: Scalability test results of the algorithms on the synthetic overlapping Group Lasso data
sets from Chen et al. (2010). The scale of they-axis is logarithmic. The dynamic scheme
for µ was used for all algorithms except ProxGrad.

however, the dynamic scheme worked well only in thel1/l2 case, whereas the performance turned
worse in general in thel1/l∞ case. We did not include the results for FISTA with the dynamic
scheme because the solutions obtained were considerably more suboptimal than the ones obtained
with the fixed-µ scheme. Tables 8 and 9 report the best results of the algorithms in each case. The
plots and numerical results show that FISTA-p compares favorably to ADAL and stays competitive
to ProxFlow. In terms of the quality of the solutions, FISTA-p and ADAL also did a better job than
FISTA, as evidenced in Table 9. On the other hand, the gap in CPU time between FISTA and the
other three algorithms is less obvious.

5.4 Real-world Examples

To demonstrate the practical usefulness of our algorithms, we tested our algorithms on two real-
world applications.

5.4.1 BREAST CANCER GENE EXPRESSIONS

We used the breast cancer data set (Van De Vijver et al., 2002) with canonical pathways from
MSigDB (Subramanian et al., 2005). The data was collected from 295 breast cancer tumor samples
and contains gene expression measurements for 8,141 genes. The goalwas to select a small set
of the most relevant genes that yield the best prediction performance. A detailed description of
the data set can be found in Chen et al. (2010) and Jacob et al. (2009). In our experiment, we
performed a regression task to predict the length of survival of the patients. The canonical pathways
naturally provide grouping information of the genes. Hence, we used themas the groups for the
group-structured regularization termΩ(·).
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Figure 2: Scalability test results on the DCT set withl1/l2-regularization (left column) andl1/l∞-
regularization (right column). The scale of they-axis is logarithmic. All of FISTA-p,
FITSA, and ADAL were run with a fixedµ= µ0.
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Figure 3: Scalability test results on the DCT set withl1/l2-regularization (left column) andl1/l∞-
regularization (right column). The scale of they-axis is logarithmic. FISTA-p and ADAL
are in PCG mode. The dotted lines denote the results obtained with the dynamic updating
scheme forµ.
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Data sets N (no. samples) J (no. groups) group size average frequency
BreastCancerData 295 637 23.7 (avg) 4

Table 2: The Breast Cancer Data Set

Figure 4: On the left: Plot of root-mean-squared-error against the number of active genes for the
Breast Cancer data. The plot is based on the regularization path for ten different values for
λ. The total CPU time (in Matlab) using FISTA-p was 51 seconds forl1/l2-regularization
and 115 seconds forl1/l∞-regularization. On the right: The recovered sparse gene coef-
ficients for predicting the length of the survival period. The value ofλ used here was the
one minimizing the RMSE in the plot on the left.

Table 2 summarizes the data attributes. The numerical results for thel1/l2-norm are collected
in Table 10, which show that FISTA-p and ADAL were the fastest on this data set. Again, we had
to tune ADAL with different initial values(µ0) and updating schemes ofµ for speed and quality of
the solution, and we eventually keptµ constant at 0.01. The dynamic updating scheme forµ also
did not work for FISTA, which returned a very suboptimal solution in this case. We instead adopted
a simple scheme of decreasingµ by half every 10 outer iterations. Figure 6 graphically depicts
the performance of the different algorithms. In terms of the outer iterations,APLM-S behaved
identically to FISTA-p, and FISTA also behaved similarly to ADAL. However,APLM-S and FISTA
were considerably slower due to larger numbers of inner iterations.

We plot the root-mean-squared-error (RMSE) over different valuesof λ (which lead to different
numbers of active genes) in the left half of Figure 4. The training set consists of 200 randomly
selected samples, and the RMSE was computed on the remaining 95 samples.l1/l2-regularization
achieved lower RMSE in this case. However,l1/l∞-regularization yielded better group sparsity as
shown in Figure 5. The sets of active genes selected by the two models werevery similar as illus-
trated in the right half of Figure 4. In general, the magnitudes of the coefficients returned byl1/l∞-
regularization tended to be similar within a group, whereas those returned byl1/l2-regularization
did not follow that pattern. This is becausel1/l∞-regularization penalizes only the maximum el-
ement, rather than all the coefficients in a group, resulting in many coefficients having the same
magnitudes.
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Figure 5: Pathway-level sparsity v.s. Gene-level sparsity.
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Figure 6: Objective values v.s. Outer iters and Objective values v.s. CPU timeplots for the Breast
Cancer data. The results for ProxGrad are not plotted due to the different objective func-
tion that it minimizes. The red (APLM-S) and blue (FISTA-p) lines overlap in the left
column.

5.4.2 VIDEO SEQUENCEBACKGROUND SUBTRACTION

We next considered the video sequence background subtraction task from Mairal et al. (2010) and
Huang et al. (2009). The main objective here is to segment out foreground objects in an image
(frame), given a sequence ofm frames from a fixed camera. The data used in this experiment
is available online5 (Toyama et al., 1999). The basic setup of the problem is as follows. We
represent each frame ofn pixels as a column vectorA j ∈ R

n and form the matrixA ∈ R
n×m as

A≡
(

A1 A2 · · · Am
)

. The test frame is represented byb ∈ R
n. We model the relationship

betweenb andA by b≈ Ax+e, wherex is assumed to be sparse, ande is the ’noise’ term which is
also assumed to be sparse.Ax is thus a sparse linear combination of the video frame sequence and

5. Data can be found at http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/
testimages.htm.
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accounts for the background present in bothA andb. e contains the sparse foreground objects inb.
The basic model withl1-regularization (Lasso) is

min
x,e

1
2
‖Ax+e−b‖2+λ(‖x‖1+‖e‖1). (31)

It has been shown in Mairal et al. (2010) that we can significantly improvethe quality of seg-
mentation by applying a group-structured regularizationΩ(·) on e, where the groups are all the
overlappingk×k-square patches in the image. Here, we setk= 3. The model thus becomes

min
x,e

1
2
‖Ax+e−b‖2+λ(‖x‖1+‖e‖1+Ω(e)). (32)

Note that (32) still fits into the group-sparse framework if we treat thel1-regularization terms as the
sum of the group norms, where the each groups consists of only one element.

We also considered an alternative model, where a Ridge regularization is applied to x and an
Elastic-Net penalty (Zou and Hastie, 2005) toe. This model

min
x,e

1
2
‖Ax+e−b‖2+λ1‖e‖1+λ2(‖x‖2+‖e‖2) (33)

does not yield a sparsex, but sparsity inx is not a crucial factor here. It is, however, well suited for
our partial linearization methods (APLM-S and FISTA-p), since there is noneed for the augmented
Lagrangian framework. Of course, we can also apply FISTA to solve (33).

We recovered the foreground objects by solving the above optimization problems and applying
the sparsity pattern ofe as a mask for the original test frame. A hand-segmented evaluation image
from Toyama et al. (1999) served as the ground truth. The regularization parametersλ,λ1, andλ2

were selected in such a way that the recovered foreground objects matched the ground truth to the
maximum extent.

FISTA-p was used to solve all three models. Thel1 model (31) was treated as a special case of
the group regularization model (32), with each group containing only one component of the feature
vector.6 For the Ridge/Elastic-Net penalty model, we applied FISTA-p directly without the outer
augmented Lagrangian layer.

The solutions for thel1/l2, l1/l∞, and Lasso models were not strictly sparse in the sense that
those supposedly zero feature coefficients had non-zero (albeit extremely small) magnitudes, since
we enforced the linear constraintsCx= y through an augmented Lagrangian approach. To obtain
sparse solutions, we truncated the non-sparse solutions using thresholds ranging from 10−9 to 10−3

and selected the threshold that yielded the best accuracy.
Note that because of the additional feature vectore, the data matrix is effectivelỹA=

(

A In
)

∈
R

n×(m+n). For solving (32), FISTA-p has to solve the linear system
(

ATA+ 1
µDx AT

A In+ 1
µDe

)

(

x
e

)

=

(

rx

re

)

,

whereD is a diagonal matrix, andDx,De, rx, re are the components ofD andr corresponding tox
ande respectively. In this example,n is much larger thanm, for example,n= 57600,m= 200. To

6. We did not use the original version of FISTA to solve the model as anl1-regularization problem because it took too
long to converge in our experiments due to extremely small step sizes.
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Figure 7: Separation results for the video sequence background substraction example. Each training
image had 120×160 RGB pixels. The training set contained 200 images in sequence.
The accuracy indicated for each of the different models is the percentage of pixels that
matched the ground truth.

avoid solving a system of sizen×n, we took the Schur complement ofIn+ 1
µDe and solved instead

the positive definitem×msystem
(

ATA+
1
µ

Dx−AT(I +
1
µ

De)
−1A

)

x = rx−AT(I +
1
µ

De)
−1re,

e = diag(1+
1
µ

De)
−1(re−Ax).

The l1/l∞ model yielded the best background separation accuracy (marginally better than the
l1/l2 model), but it also was the most computationally expensive. (See Table 3 andFigure 7.)
Although the Ridge/Elastic-Net model yielded as poor separation results as the Lasso (l1) model, it
was orders of magnitude faster to solve using FISTA-p. We again observed that the dynamic scheme
for µ worked better for FISTA-p than for ADAL. For a constantµ over the entire run, ADAL took at
least twice as long as FISTA-p to produce a solution of the same quality. A typical run of FISTA-p
on this problem with the best selectedλ took less than 10 outer iterations. On the other hand, ADAL
took more than 500 iterations to meet the stopping criteria.

5.5 Comments on Results

The computational results exhibit two general patterns. First, the simpler algorithms (FISTA-p and
ADAL) were significantly faster than the more general algorithms, such as APLM-S. Interestingly,
the majority of the APLM-S inner iterations consisted of a skipping step for the tests on synthetic
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Model Accuracy (percent) Total CPU time (s) No. parameter values on reg path
l1/l2 97.17 2.48e+003 8
l1/l∞ 98.18 4.07e+003 6

l1 87.63 1.61e+003 11
ridge + elastic net 87.89 1.82e+002 64

Table 3: Computational results for the video sequence background subtraction example. The algo-
rithm used is FISTA-p. We used the Matlab version for the ease of generating the images.
The C++ version runs at least four times faster from our experience in the previous exper-
iments. We report the best accuracy found on the regularization path of each model. The
total CPU time is recorded for computing the entire regularization path, with the specified
number of different regularization parameter values.

data and the breast cancer data, which means that APLM-S essentially behaved like ISTA-p in
these cases. Indeed, FISTA-p generally required the same number of outer-iterations as APLM-
S but much fewer inner-iterations, as predicted by theory. In addition, nocomputational steps
were wasted and no function evaluations were required for FISTA-p and ADAL. Second, FISTA-
p converged faster (required less iterations) than its full-linearization counterpart FISTA. We have
suggested possible reasons for this in Section 3. On the other hand, FISTA was very effective
for data both of whose dimensions were large because it required only gradient computations and
soft-thresholding operations, and did not require linear systems to be solved.

Our experiments showed that the performance of ADAL (as well as the quality of the solution
that it returned) varied a lot as a function of the parameter settings, and it was tricky to tune them
optimally. In contrast, FISTA-p exhibited fairly stable performance for a simple set of parameters
that we rarely had to alter and in general performed better than ADAL.

It may seem straight-forward to apply FISTA directly to the Lasso problem (31) without the
augmented Lagrangian framework.7 However, as we have seen in our experiments, FISTA took
much longer than AugLag-FISTA-p to solve this problem. We believe that this isfurther evidence
of the ‘load-balancing’ property of the latter algorithm that we discussed inSection 3.2. It also
demonstrates the versatility of our approach to regularized learning problems.

6. Conclusion

We have built a unified framework for solving sparse learning problems involving group-structured
regularization, in particular, thel1/l2- or l1/l∞-regularization of arbitrarily overlapping groups of
variables. For the key building-block of this framework, we developed new efficient algorithms
based on alternating partial-linearization/splitting, with proven convergencerates. In addition, we
have also incorporated ADAL and FISTA into our framework. Computationaltests on several sets of
synthetic test data demonstrated the relative strength of the algorithms, and through two real-world
applications we compared the relative merits of these structured sparsity-inducing norms. Among
the algorithms studied, FISTA-p and ADAL performed the best on most of thedata sets, and FISTA

7. To avoid confusion with our algorithms that consist of inner-outer iterations, we prefix our algorithms with ‘AugLag’
here.
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appeared to be a good alternative choice for large-scale data. From our experience, FISTA-p is
easier to configure and is more robust to variations in the algorithm parameters. Together, they form
a flexible and versatile suite of methods for group-sparse problems of different sizes.
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Appendix A. Proof of Lemma 1

F(x̄, ȳ)−F(x, q̄) ≥ F(x̄, ȳ)−Lρ(x,y, q̄,∇y f (x,y))

= F(x̄, ȳ)−
(

f (x,y)+∇y f (x,y)T(q̄−y)+
1
2ρ
‖q̄−y‖2+g(q̄)

)

. (34)

From the optimality of ¯q, we also have

γg(q̄)+∇y f (x,y)+
1
ρ
(q̄−y) = 0. (35)

SinceF(x,y) = f (x,y)+g(y), and f andg are convex functions, for any(x̄, ȳ),

F(x̄, ȳ)≥ g(q̄)+(ȳ− q̄)Tγg(q̄)+ f (x,y)+(ȳ−y)T∇y f (x,y)+(x̄−x)T∇x f (x,y). (36)

Therefore, from (34), (35), and (36), it follows that

F(x̄, ȳ)−F(x, q̄) ≥ g(q̄)+(ȳ− q̄)Tγg(q̄)+ f (x,y)+(ȳ−y)T∇y f (x,y)

+(x̄−x)T∇x f (x,y)

−
(

f (x,y)+∇y f (x,y)T(q̄−y)+
1
2ρ
‖q̄−y‖2+g(q̄)

)

= (ȳ− q̄)T(γg(q̄)+∇y f (x,y))− 1
2ρ
‖q̄−y‖2+(x̄−x)T∇x f (x,y)

= (ȳ− q̄)T
(

−1
ρ
(q̄−y)

)

− 1
2ρ
‖q̄−y‖2+(x̄−x)T∇x f (x,y)

=
1
2ρ

(‖q̄− ȳ‖2−‖y− ȳ‖2)+(x̄−x)T∇x f (x,y).

The proof for the second part of the lemma is very similar, but we give it forcompleteness.

F(x,y)−F(p,q)≥ F(x,y)−
(

f (p,q)+g(ȳ)+ γg(ȳ)
T(q− ȳ)+

1
2ρ
‖q− ȳ‖2

)

(37)

By the optimality of(p,q), we have

∇x f (p,q) = 0, (38)

∇y f (p,q)+ γg(ȳ)+
1
ρ
(q− ȳ) = 0. (39)
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SinceF(x,y) = f (x,y)+g(y), it follows from the convexity of bothf andg and (38) that

F(x,y)≥ g(ȳ)+(y− ȳ)Tγg(ȳ)+ f (p,q)+(y−q)T∇y f (p,q). (40)

Now combining (37), (39), and (40), it follows that

F(x,y)−F(p,q) ≥ (y−q)T(γg(ȳ)+∇y f (p,q))− 1
2ρ
‖q− ȳ‖2

= (y−q)T
(

1
ρ
(ȳ−q)

)

− 1
2ρ
‖q− ȳ‖2

=
1
2ρ

(‖q−y‖2−‖y− ȳ‖2).

Appendix B. Proof of Theorem 2

Let I be the set of all regular iteration indices among the firstk− 1 iterations, and letIc be its
complement. For alln∈ Ic,yn+1 = ȳn.

Forn∈ I , we can apply Lemma 1 since (18) automatically holds, and (16) holds whenρ≤ 1
L( f ) .

In (19), by letting(x,y) = (x∗,y∗), andȳ= ȳn, we get(p,q) = (xn+1,yn+1), and

2ρ(F(x∗,y∗)−F(xn+1,yn+1))≥ ‖yn+1−y∗‖2−‖ȳn−y∗‖2. (41)

In (17), by letting(x̄, ȳ) = (x∗,y∗),(x,y) = (xn+1,yn+1), we getq̄= ȳn+1 and

2ρ(F(x∗,y∗)−F(xn+1, ȳn+1)) ≥ ‖ȳn+1−y∗‖2−‖yn+1−y∗‖2

+(x∗−xn+1)T∇x f (xn+1,yn+1)

= ‖ȳn+1−y∗‖2−‖yn+1−y∗‖2., (42)

since∇x f (xn+1,yn+1) = 0, for n∈ I by (38) and forn∈ Ic by (15). Adding (42) to (41), we get

2ρ(2F(x∗,y∗)−F(xn+1,yn+1)−F(xn+1, ȳn+1))≥ ‖ȳn+1−y∗‖2−‖ȳn−y∗‖2. (43)

Forn∈ Ic, since∇x f (xn+1,yn+1) = 0, we have that (42) holds. Sinceyn+1 = ȳn, it follows that

2ρ(F(x∗,y∗)−F(xn+1, ȳn+1))≥ ‖ȳn+1−y∗‖2−‖ȳn−y∗‖2. (44)

Summing (43) and (44) overn= 0,1, . . . ,k−1 and observing that 2|I |+ |Ic|= k+kn, we obtain

2ρ

(

(k+kn)F(x∗,y∗)−
k−1

∑
n=1

F(xn+1, ȳn+1)−∑
n∈I

F(xn+1,yn+1)

)

(45)

≥
k−1

∑
n=0

(‖ȳn+1−y∗‖2−‖ȳn−y∗‖2)

= ‖ȳk−y∗‖2−‖ȳ0−y∗‖2

≥ −‖ȳ0−y∗‖2.

In Lemma 1, by letting(x̄, ȳ) = (xn+1,yn+1) in (17) instead of(x∗,y∗), we have from (42) that

2ρ(F(xn+1,yn+1)−F(xn+1, ȳn+1))≥ ‖ȳn+1−yn+1‖2≥ 0. (46)
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Similarly, for n∈ I , if we let (x,y) = (xn, ȳn) instead of(x∗,y∗) in (41), we have

2ρ(F(xn, ȳn)−F(xn+1,yn+1))≥ ‖yn+1− ȳn‖2≥ 0. (47)

Forn∈ Ic, yn+1 = ȳn; from (15), sincexn+1 = argminxF(x,y) with y= ȳn = yn+1,

2ρ(F(xn, ȳn)−F(xn+1,yn+1))≥ 0. (48)

Hence, from (46) and (47) to (48),F(xn,yn)≥ F(xn, ȳn)≥ F(xn+1,yn+1)≥ F(xn+1, ȳn+1). Then, we
have

k−1

∑
n=0

F(xn+1, ȳn+1)≥ kF(xk, ȳk),and ∑
n∈I

F(xn+1,yn+1)≥ knF(xk,yk). (49)

Combining (45) and (49) yields 2ρ(k+kn)(F(x∗,y∗)−F(xk, ȳk))≥−‖ȳ0−y∗‖2.

Appendix C. Derivation of the Stopping Criteria

In this section, we show that the quantities that we use in our stopping criteria correspond to the
primal and dual residuals (Boyd et al., 2010) for the outer iterations and the gradient residuals for
the inner iterations. We first consider the inner iterations.

FISTA-p The necessary and sufficient optimality conditions for problem (10) or (13) are primal
feasibility

ȳ∗−y∗ = 0, (50)

and vanishing of the gradient of the objective function at(x∗, ȳ∗), that is,

0 = ∇x f (x∗, ȳ∗), (51)

0 ∈ ∇y f (x∗, ȳ∗)+∂g(ȳ∗). (52)

Sinceyk+1 = zk, the primal residual is thus ¯yk+1− yk+1 = ȳk+1− zk. It follows from the
optimality ofxk+1 in Line 3 of Algorithm 6 that

AT(Axk+1−b)−CTvl +
1
µ

CT(Cxk+1− ȳk+1)+
1
µ

CT(ȳk+1−zk) = 0

⇒ ∇x f (xk+1, ȳk+1) =
1
µ

CT(zk− ȳk+1).

Similarly, from the optimality of ¯yk+1 in Line 4, we have that

0 ∈ ∂g(ȳk+1)+∇y f (xk+1,zk)+
1
ρ
(ȳk+1−zk)

= ∂g(ȳk+1)+∇y f (xk+1, ȳk+1)− 1
µ
(ȳk+1−zk)+

1
ρ
(ȳk+1−zk)

= ∂g(ȳk+1)+∇y f (xk+1, ȳk+1),

where the last step follows fromµ= ρ. Hence, we see that1µCT(zk− ȳk+1) is the gradient
residual corresponding to (51), while (52) is satisfied in every inner iteration.
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APLM-S The primal residual is ¯yk+1−yk+1 from (50). Following the derivation for FISTA-p, it is
not hard to verify that (52) is always satisfied, and the gradient residual corresponding to (51)
is 1

µCT(yk+1− ȳk+1).

FISTA Similar to FISTA-p, the necessary and sufficient optimality conditions for problem (22) are
primal feasibility

(x∗,y∗) = (x̄∗, ȳ∗),

and vanishing of the objective gradient at(x̄∗, ȳ∗),

0 = ∇x f (x̄∗, ȳ∗),

0 ∈ ∇y f (x̄∗, ȳ∗)+∂g(ȳ∗).

Clearly, the primal residual is(x̄k+1− zk
x, ȳ

k+1− zk
y) since(xk+1,yk+1) ≡ (zk

x,z
k
y). From the

optimality of (x̄k+1, ȳk+1), it follows that

0 = ∇x f (zk
x,z

k
y)+

1
ρ
(x̄k+1−zk

x),

0 ∈ ∂g(ȳk+1)+∇y f (zk
x,z

k
y)+

1
ρ
(ȳk+1−zk

y).

Here, we simply use1ρ(x̄
k+1−zk

x) and 1
ρ(ȳ

k+1−zk
y) to approximate the gradient residuals.

Next, we consider the outer iterations. The necessary and sufficient optimality conditions for
problem (4) are primal feasibility

Cx∗−y∗ = 0,

and dual feasibility

0 = ∇L(x∗)−CTv∗,

0 ∈ ∂Ω̃(y∗)+v∗.

Clearly, the primal residual isr l =Cxl −yl . The dual residual is
(

∇L(xl+1)−CT(vl − 1
µ(Cxl+1− ȳl+1))

∂Ω̃(yl+1)+vl − 1
µ(Cxl+1− ȳl+1)

)

, recalling thatvl+1 = vl − 1
µ(Cxl+1− ȳl+1). The above

is simply the gradient of the augmented Lagrangian (5) evaluated at(xl ,yl ,vl ). Now, since the
objective function of an inner iteration is the augmented Lagrangian withv= vl , the dual residual
for an outer iteration is readily available from the gradient residual computed for the last inner
iteration of the outer iteration.

Appendix D. Numerical Results

See Tables 4 to 10.
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Data Sets Algs CPU (s) Iters Avg Sub-iters F(x)

ogl-5000-100-10-3

ADAL 1.70e+000 61 1.00e+000 1.9482e+005
APLM-S 1.71e+000 8 4.88e+000 1.9482e+005
FISTA-p 9.08e-001 8 4.38e+000 1.9482e+005
FISTA 2.74e+000 10 7.30e+000 1.9482e+005

ProxGrad 7.92e+001 3858 - -

ogl-5000-600-10-3

ADAL 6.75e+001 105 1.00e+000 1.4603e+006
APLM-S 1.79e+002 9 1.74e+001 1.4603e+006
FISTA-p 4.77e+001 9 8.56e+000 1.4603e+006
FISTA 3.28e+001 12 1.36e+001 1.4603e+006

ProxGrad 7.96e+002 5608 - -

ogl-5000-1000-10-3

ADAL 2.83e+002 151 1.00e+000 2.6746e+006
APLM-S 8.06e+002 10 2.76e+001 2.6746e+006
FISTA-p 2.49e+002 10 1.28e+001 2.6746e+006
FISTA 5.21e+001 13 1.55e+001 2.6746e+006

ProxGrad 1.64e+003 6471 - -

Table 4: Numerical results for ogl set 1. For ProxGrad, Avg Sub-Iters andF(x) fields are not
applicable since the algorithm is not based on an outer-inner iteration scheme, and the
objective function that it minimizes is different from ours. We tested ten problems with
J = 100, · · · ,1000, but only show the results for three of them to save space.

Data Sets Algs CPU (s) Iters Avg Sub-iters F(x)

ogl-1000-200-10-3

ADAL 4.18e+000 77 1.00e+000 9.6155e+004
APLM-S 1.64e+001 9 2.32e+001 9.6156e+004
FISTA-p 3.85e+000 9 1.02e+001 9.6156e+004
FISTA 2.92e+000 11 1.44e+001 9.6158e+004

ProxGrad 1.16e+002 4137 - -

ogl-5000-200-10-3

ADAL 5.04e+000 63 1.00e+000 4.1573e+005
APLM-S 8.42e+000 8 8.38e+000 4.1576e+005
FISTA-p 3.96e+000 9 6.56e+000 4.1572e+005
FISTA 6.54e+000 10 9.70e+000 4.1573e+005

ProxGrad 1.68e+002 4345 - -

ogl-10000-200-10-3

ADAL 6.41e+000 44 1.00e+000 1.0026e+006
APLM-S 1.46e+001 10 7.60e+000 1.0026e+006
FISTA-p 5.60e+000 10 5.50e+000 1.0026e+006
FISTA 1.09e+001 10 8.50e+000 1.0027e+006

ProxGrad 3.31e+002 6186 - -

Table 5: Numerical results for ogl set 2. We ran the test for ten problems with n= 1000, · · · ,10000,
but only show the results for three of them to save space.
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Data Sets Algs CPU (s) Iters Avg Sub-iters F(x)

ogl-dct-1000-5000-1
ADAL 1.14e+001 194 1.00e+000 8.4892e+002

FISTA-p 1.21e+001 20 1.11e+001 8.4892e+002
FISTA 2.49e+001 24 2.51e+001 8.4893e+002

ogl-dct-1000-10000-1
ADAL 3.31e+001 398 1.00e+000 1.4887e+003

FISTA-p 2.54e+001 41 5.61e+000 1.4887e+003
FISTA 6.33e+001 44 1.74e+001 1.4887e+003

ogl-dct-1000-15000-1
ADAL 6.09e+001 515 1.00e+000 2.7506e+003

FISTA-p 3.95e+001 52 4.44e+000 2.7506e+003
FISTA 9.73e+001 54 1.32e+001 2.7506e+003

ogl-dct-1000-20000-1
ADAL 9.52e+001 626 1.00e+000 3.3415e+003

FISTA-p 6.66e+001 63 6.10e+000 3.3415e+003
FISTA 1.81e+002 64 1.61e+001 3.3415e+003

ogl-dct-1000-25000-1
ADAL 1.54e+002 882 1.00e+000 4.1987e+003

FISTA-p 7.50e+001 88 3.20e+000 4.1987e+003
FISTA 1.76e+002 89 8.64e+000 4.1987e+003

ogl-dct-1000-30000-1
ADAL 1.87e+002 957 1.00e+000 4.6111e+003

FISTA-p 8.79e+001 96 2.86e+000 4.6111e+003
FISTA 2.24e+002 94 8.54e+000 4.6111e+003

Table 6: Numerical results for dct set 2 (scalability test) withl1/l2-regularization. All three algo-
rithms were ran in factorization mode with a fixedµ= µ0.
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Data Sets Algs CPU (s) Iters Avg Sub-iters F(x)

ogl-dct-1000-5000-1

ADAL 1.53e+001 266 1.00e+000 7.3218e+002
FISTA-p 1.61e+001 10 3.05e+001 7.3219e+002
FISTA 3.02e+001 16 4.09e+001 7.3233e+002

ProxFlow 1.97e+001 - - 7.3236e+002

ogl-dct-1000-10000-1

ADAL 3.30e+001 330 1.00e+000 1.2707e+003
FISTA-p 3.16e+001 10 3.10e+001 1.2708e+003
FISTA 7.27e+001 24 3.25e+001 1.2708e+003

ProxFlow 3.67e+001 - - 1.2709e+003

ogl-dct-1000-15000-1

ADAL 4.83e+001 328 1.00e+000 2.2444e+003
FISTA-p 5.40e+001 15 2.52e+001 2.2444e+003
FISTA 8.64e+001 23 2.66e+001 2.2449e+003

ProxFlow 9.91e+001 - - 2.2467e+003

ogl-dct-1000-20000-1

ADAL 8.09e+001 463 1.00e+000 2.6340e+003
FISTA-p 8.09e+001 16 2.88e+001 2.6340e+003
FISTA 1.48e+002 26 2.93e+001 2.6342e+003

ProxFlow 2.55e+002 - - 2.6357e+003

ogl-dct-1000-25000-1

ADAL 7.48e+001 309 1.00e+000 3.5566e+003
FISTA-p 1.15e+002 30 1.83e+001 3.5566e+003
FISTA 2.09e+002 38 2.30e+001 3.5568e+003

ProxFlow 1.38e+002 - - 3.5571e+003

ogl-dct-1000-30000-1

ADAL 9.99e+001 359 1.00e+000 3.7057e+003
FISTA-p 1.55e+002 29 2.17e+001 3.7057e+003
FISTA 2.60e+002 39 2.25e+001 3.7060e+003

ProxFlow 1.07e+002 - - 3.7063e+003

Table 7: Numerical results for dct set 2 (scalability test) withl1/l∞-regularization. The algorithm
configurations are exactly the same as in Table 6.
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Data Sets Algs CPU (s) Iters Avg Sub-iters F(x)

ogl-dct-1000-5000-1
FISTA-p 1.83e+001 12 2.34e+001 8.4892e+002
FISTA 2.49e+001 24 2.51e+001 8.4893e+002
ADAL 1.35e+001 181 1.00e+000 8.4892e+002

ogl-dct-1000-10000-1
FISTA-p 3.16e+001 14 1.73e+001 1.4887e+003
FISTA 6.33e+001 44 1.74e+001 1.4887e+003
ADAL 4.43e+001 270 1.00e+000 1.4887e+003

ogl-dct-1000-15000-1
FISTA-p 4.29e+001 14 1.51e+001 2.7506e+003
FISTA 9.73e+001 54 1.32e+001 2.7506e+003
ADAL 5.37e+001 216 1.00e+000 2.7506e+003

ogl-dct-1000-20000-1
FISTA-p 7.53e+001 13 2.06e+001 3.3416e+003
FISTA 1.81e+002 64 1.61e+001 3.3415e+003
ADAL 1.57e+002 390 1.00e+000 3.3415e+003

ogl-dct-1000-25000-1
FISTA-p 7.41e+001 15 1.47e+001 4.1987e+003
FISTA 1.76e+002 89 8.64e+000 4.1987e+003
ADAL 8.79e+001 231 1.00e+000 4.1987e+003

ogl-dct-1000-30000-1
FISTA-p 8.95e+001 14 1.58e+001 4.6111e+003
FISTA 2.24e+002 94 8.54e+000 4.6111e+003
ADAL 1.12e+002 249 1.00e+000 4.6111e+003

Table 8: Numerical results for the DCT set withl1/l2-regularization. FISTA-p and ADAL were ran
in PCG mode with the dynamic scheme for updatingµ. µ was fixed atµ0 for FISTA.
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Data Sets Algs CPU (s) Iters Avg Sub-iters F(x)

ogl-dct-1000-5000-1
FISTA-p 2.30e+001 11 2.93e+001 7.3219e+002
ADAL 1.89e+001 265 1.00e+000 7.3218e+002
FISTA 3.02e+001 16 4.09e+001 7.3233e+002

ProxFlow 1.97e+001 - - 7.3236e+002

ogl-dct-1000-10000-1
FISTA-p 5.09e+001 11 3.16e+001 1.2708e+003
ADAL 4.77e+001 323 1.00e+000 1.2708e+003
FISTA 7.27e+001 24 3.25e+001 1.2708e+003

ProxFlow 3.67e+001 - - 1.2709e+003

ogl-dct-1000-15000-1
FISTA-p 6.33e+001 12 2.48e+001 2.2445e+003
ADAL 9.41e+001 333 1.00e+000 2.2444e+003
FISTA 8.64e+001 23 2.66e+001 2.2449e+003

ProxFlow 9.91e+001 - - 2.2467e+003

ogl-dct-1000-20000-1
FISTA-p 8.21e+001 12 2.42e+001 2.6341e+003
ADAL 1.59e+002 415 1.00e+000 2.6340e+003
FISTA 1.48e+002 26 2.93e+001 2.6342e+003

ProxFlow 2.55e+002 - - 2.6357e+003

ogl-dct-1000-25000-1
FISTA-p 1.43e+002 13 2.98e+001 3.5567e+003
ADAL 1.20e+002 310 1.00e+000 3.5566e+003
FISTA 2.09e+002 38 2.30e+001 3.5568e+003

ProxFlow 1.38e+002 - - 3.5571e+003

ogl-dct-1000-30000-1
FISTA-p 1.75e+002 13 3.18e+001 3.7057e+003
ADAL 2.01e+002 361 1.00e+000 3.7057e+003
FISTA 2.60e+002 39 2.25e+001 3.7060e+003

ProxFlow 1.07e+002 - - 3.7063e+003

Table 9: Numerical results for the DCT set withl1/l∞-regularization. FISTA-p and ADAL were ran
in PCG mode. The dynamic updating scheme forµ was applied to FISTA-p, whileµ was
fixed atµ0 for ADAL and FISTA.

Data Sets Algs CPU (s) Iters Avg Sub-iters F(x)

BreastCancerData

ADAL 6.24e+000 136 1.00e+000 2.9331e+003
APLM-S 4.02e+001 12 4.55e+001 2.9331e+003
FISTA-p 6.86e+000 12 1.48e+001 2.9331e+003
FISTA 5.11e+001 75 1.29e+001 2.9340e+003

ProxGrad 7.76e+002 6605 1.00e+000 -

Table 10: Numerical results for Breast Cancer Data usingl1/l2-regularization. In this experiment,
we keptµ constant at 0.01 for ADAL. The CPU time is for a single run on the entire data
set with the value ofλ selected to minimize the RMSE in Figure 4.
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