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Abstract

In recent years there has been a lot of interest in designimgipled classification algorithms
over multiple cues, based on the intuitive notion that usimye features should lead to better
performance. In the domain of kernel methods, a principleg W use multiple features is the
Multi Kernel Learning (MKL) approach.

Here we present a MKL optimization algorithm based on ststb@radient descent that has
a guaranteed convergence rate. We directly solve the MKhlpno in the primal formulation. By
having a p-norm formulation of MKL, we introduce a paraméhat controls the level of sparsity
of the solution, while leading to an easier optimizationigpeon. We prove theoretically and exper-
imentally that 1) our algorithm has a faster convergenae=aatthe number of kernels grows; 2) the
training complexity is linear in the number of training exales; 3) very few iterations are sufficient
to reach good solutions. Experiments on standard benchadagakases support our claims.
Keywords: multiple kernel learning, learning kernels, online optiation, stochastic subgradient
descent, convergence bounds, large scale

1. Introduction

In recent years there has been a lot of interest in designing princifdediftcation algorithms
over multiple cues, based on the intuitive notion that using more featuresdsleaud to better
performance. Moreover, besides the purpose of decreasing tleeatjeation error, practitioners
are often interested in more flexible algorithms which can perform featlgetms while training.
This is for instance the case when a lot of features are available but attm@mgnoisy ones are
hidden. Selecting the features also improves the interpretability of the deftisiction.

This has been translated into various algorithms, that dates back to theA@Qze(t, 1992),
based on a two-layers structure. There a classifier is trained for e@chnz then their outputs
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are combined by another classifier. This approach has been re-idveatey times, with different
flavors (Nilsback and Caputo, 2004; Sanderson and Paliwal, 2004t die, 2010a; Gehler and
Nowozin, 2009b; Jin et al., 2010). In general, the two layers appesagbe Cross-Validation (CV)
methods to create the training set for the second layer (Wolpert, 199&rG@ld Nowozin, 2009b).
If the second layer is a linear classifier, these methods are equivalehihgaacombination of the
single classifiers.

Focusing on the domain of the Support Vector Machines (SVM) (CristiamdiShawe-Taylor,
2000), the use of multiple cues corresponds to the use of multiple kernelseHastead of com-
bining kernel classifiers, the focus of research has moved on howltbasuoptimal new kernel as
a weighted combination of kernels.

A recent approach in this field is to use a two-stage procedure, in whicfirshstage finds
the optimal weights to combine the kernels, using an improved definition of timelka&lignment
(Cristianini et al., 2002) as a proxy of the generalization error, andradatd SVM as second
stage (Cortes et al., 2010). This approach builds on the previous wortkee maximization of the
kernel alignment to combine kernels (Lanckriet et al., 2004). Howevéhnighapproach, even if
theoretically principled, the global optimality is not guaranteed, becauseptimipation process
split in two phases.

A different approach with a joint optimization process is Multi Kernel Léagr{MKL) (Lanck-
riet et al., 2004; Bach et al., 2004; Sonnenburg et al., 2006; Zien ad ZD07; Rakotomamonjy
et al., 2008; Varma and Babu, 2009; Kloft et al., 2009). In MKL one s®l& joint optimization
problem while also learning the optimal weights for combining the kernels. MKthous are
theoretically founded, because they are based on the minimization of anhgpe of the gen-
eralization error (Kakade et al., 2009; Cortes et al., 2010), like in stdrigdM. In most of these
approaches the objective function is designed to impose sparsity on thietsvefgghe combina-
tion using an1-norm constraint (Bach et al., 2004; Sonnenburg et al., 2006; ZidrQany, 2007,
Rakotomamonjy et al., 2008; Varma and Babu, 2009). However solving @risnbre complex
than training a single SVM classifier. In fact, thenorm is not smooth, so it slows down the opti-
mization process. The original MKL problem by Lanckriet et al. (20045 wast as a semidefinite
programming (SDP). SDP are known to have poor scalability, hence mucle sutisequent re-
search focused on devising more efficient optimization proceduresfir§hstep towards practical
MKL algorithms was to restrict the weights coefficients to be non-negatinethis way, it was
possible to recast the problem as a much more efficient semi-infinite linearaproung (SILP)
(Sonnenburg et al., 2005; Rubinstein, 2005). This has allowed to sa@Wdkt. problem with al-
ternating optimization approaches (Sonnenburg et al., 2006; Rakotomaet@hjy2008; Xu et al.,
2008; Nath et al., 2009), first optimizing over the kernel combination weighith the current
SVM solution fixed, then finding the SVM solution, given the current weiglise advantage of
the alternating optimization approach is that it is possible to use existing eff@\é¥it solvers,
such as Joachims (1999) and Chang and Lin (2001), for the SVM optimizstiép. On the other
hand, for these algorithms, it is usually not possible to prove a bound anakeEnum number of
iterations needed, even if they are known to converge. In fact, to th@besr knowledge, none of
the existing MKL algorithms provides theoretical guarantees on the coeweegate. For the same
reason it is not possible to know the asymptotic computational complexity of thgsdéthms, and
often these dependencies are estimated numerically for the specific implemeatat@nd. For
example, multiclass MKL SILP algorithm (Sonnenburg et al., 2006; Zien amgl, @Q007) seems
to depend polynomially on the number of training examples and number of glagtean expo-
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nent of ~ 2.4 and~ 1.7 respectively. For the other algorithms these dependencies are not clea
Another disadvantage is that they need to solve the inner SVM problem till ditimia fact, to
guarantee convergence, the solution needs to be of a high enougliqmrso that the kernel weight
gradient computation is accurate. On the other hand the learning processlly stopped early,
before reaching the optimal solution, based on the common assumption thabduigheto have

an approximate solution of the optimization function. Considering the fact teatutrent MKL
algorithms are solved based on their dual representation, this might meansheped far from

the optimal solution (Hush et al., 2006), with unknown effects on the cgavee.

An important point is that, very often, these approaches fail to improve rauehthe naive
baseline of just summing all the kernels (Kloft et al., 2009). Recentlyarekers start to realize
that when the optimal Bayes classifier is not sparse, brutally imposingitgpaii hurt the gen-
eralization performance. Motivated by this, thienorm constraint has been proposed (Kloft et al.,
2009; Orabona et al., 2010; Vishwanathan et al., 2010), instegdnafrm constrain, to be able to
tune the level of sparsity of the solution and to obtain an easier problem moparticular Vish-
wanathan et al. (2010) derived the dual of a variation ofl KL problem for p > 1, suited to
be optimized with the popular Sequential Minimal Optimization algorithm (Platt, 1998)vever
even for their algorithm it is not clear how the convergence rate degengdsand how to generalize
the algorithm to generic loss functions, such as the structured lossesh@rgaridis et al., 2004).
This limitation on the use of particular loss functions is common to all the recent MKimization
algorithms. An alternative way to be able to tune the sparsity of the MKL solutispired by the
elastic-net regularization, has been proposed by Tomioka and S@01K);

The main contribution of this paper is a new optimization algorithm to solve efficiémel,-
MKL problem, with a guaranteed convergence rate to the optimal solution. Weniméit with a
two-stage algorithm. The first one is an online initialization procedure thatrdietes quickly the
region of the space where the optimal solution lives. The second stagesrdfie solution found
by the first stage, using a stochastic gradient descent algorithm. Bounith® convergence rate
are proved for the overall process. Notably different from the atfethods, our algorithm solves
the optimization problem directly in the primal formulation, in both stages. This allei® use
anyconvex loss function, as the multiclass loss proposed by Crammer and &08&) or general
structured losses (Tsochantaridis et al., 2004), without any change twmtk of the algorithm.
Using recent approaches in optimization theory, the algorithm takes adeanitéthe abundance of
information to reduce the training time (Shalev-Shwartz and Srebro, 2008ct, we show that
the presence of a large number of kernels helps the optimization procesadires hindering it,
obtaining, theoretically and practically, a faster convergence rate with neonels. Our algorithm
has a training time that depends linearly on the number of training examples, edttvargence
rate sub-linear in the number of features/kernels used, when a spdusersis favored. At the
same time, it achieves state-of-the-art performance on standard bakatatebases. We call this
algorithm OBSCURE, Online-Batch Strongly Convex muUlti keRnel IEarning.

The rest of the paper presents the theory and the experimental reqptatsug our claims.
Section 2 revises the basic definitions of Multi Kernel Learning and @dimes it to thel ,-norm
formulation. Section 3 presents the OBSCURE algorithm and Section 4 showhepretical
guarantees, while Section 5 reports experiments on categorization tagksontlude the paper
with discussions and future works.
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2. p-norm Multi Kernel Learning

In this section we first introduce formally the MKL framework and its notatioentits p-norm
generalization.

2.1 Definitions

In the following we define some notations and we also introduce some coméeptsvex analysis.
For a more thorough introduction see, for example, Boyd and Vandgimb¢2004).

2.1.1 NOTATION

We indicate matrices and vectors with bold letters. We also introduce two notétiainaill help
us to synthesize the following formulas. We indicate [b§]] := [w!,w?,--- .wF], and with a
bar, for examplew, the vector formed by the concatenation of fhevectorsw!, hencew =
wWhw?, - wh] = [wilf.

We consider closed convex functiofis S— R, where in the followingS will always denote
a proper subset &£, an Euclidean vector spaéewWe will indicate the inner product between two
vectors ofX, wandw/, asw-w. Given a convex functior : S— R, its Fenchel conjugaté* : X —
R is defined ad *(u) = sup,.g(v-u— f(v)). A generic norm of a vectar € X is indicated by||w||,
and its dual| - || is the norm defined dg/||. = sup{x-y: ||x|| < 1}. A vectorxis a subgradient of a
functionf atv, if vue S f(u) — f(v) > (u—v)-x. The differential set of atv, indicated witho f (v),
is the set of all the subgradients batv. If f is convex and differentiable athendf (v) consists of
a single vector which is the gradient bftv and is denoted byl f (v). A function f : S— R is said
to beA-strongly convex with respect to a convex and differentiable fundtidhfor any u,v e S
and any subgradiemtf (u), f(v) > f(u)+9df(u)- (v—u)+A(h(v) —h(u) — (v—u)-Oh(v)), where
the terms in parenthesis form the Bregman divergence betwaedu of h.

2.1.2 BNARY AND MULTI-CLASS CLASSIFIERS

Let {x;,yi}N ;, with N € N, x, € X andy; € Y, be the training set. Consider a functipfx) : X — H
that maps the samples into a high, possibly infinite, dimensional space. In @y beseY =
{—1,1}, and we use the standard setting to learn with kerhilsyhich the prediction on a sample
xis a function of the scalar product between an hyperplaaed the transformed samppex). With
multiple kernels, we will hav& corresponding functiong! (-), i = 1,--- ,F, andF corresponding
kernelski(x,x) defined asp/ (x) - @/ (X).

For multiclass and structured classificatiin= {1,...,M}, and we follow the common ap-
proach to use joint feature mapéx,y) : X x Y — H (Tsochantaridis et al., 2004). Again, we will
haveF functions@!(-,-),i = 1,---,F, andF kernelsKI((x,y),(X,y)) as@ (x,y) - @ (X,y). This
definition includes the case of trainimg different hyperplanes, one for each class. Indgks,y)
can be defined as

(pj(X,y) = [Oa ,O,([{j(X),O,-'- 70]7
R

1. We allow the functions to assume infinite values, as a way to restrict thegide to proper subsets Bf However
in the following the convex functions of interest will always be evaluatedaartors that belong to their domains.
2. For simplicity we will not use the bias here, but it can be easily addedfyiglthe kernel definition.

230



MULTI KERNEL LEARNING WITH ONLINE-BATCH OPTIMIZATION

where@!(-) is a transformation that depends only on the data. Similanlyill be composed by

M blocks, [wt,--- ,wM]. Hence, by constructiony- @l (x,r) = w" - ¢/(x). According to the defined
notation,@(x,y) = [@*(x,y),---, @ (x,y)]. These definitions allow us to have a general notation for
the binary and multiclass setting.

2.1.3 LossFuNcTION

In the following we consider convex Lipschitz loss functions. The most contynesed loss in
binary classification is the hinge loss (Cristianini and Shawe-Taylor, 2000)

EHL (W)X7y) = ‘1_yvv (‘E(X)|+7

where|t|. is defined as m&x,0). We also consider the following multi-class loss function (Cram-
mer and Singer, 2002; Tsochantaridis et al., 2004), that will be useatiedige our results.

EMC (Wa X, y) = maX|l—Vv- ((B(X7y) - (p(X,y,))|+ . (1)
Y#Y

This loss function is convex and it upper bounds the multi-class misclassifidasis.

2.1.4 NorRMS AND DUAL NORMS

Forw € RY andp > 1, we denote byw|, the p-norm ofw, that is,||w||p = (S, |wi|P)*/P.
The dual norm of| - ||y is || - ||q, wherep andq satisfy 1/p+1/q = 1. In the followingp andq

will always satisfy this relation.
2.1.5 RouPNORM

It is possible to define &2, p) group norm||vV||§7p onw as

W]

2p = || [ ]2, [WPl2, - [ 2]

p?
that is thep-norm of the vector oF elements, formed by 2-norms of the vecta#s The dual norm

of ||-||2,pis| - ||l2.q (Kakade et al., 2009). These kind of norms have been udaidelsregularization
in the LASSO literature (Yuan and Lin, 2006).

2.2 Multi Kernel Learning

The MKL optimization problem was first proposed by Bach et al. (200d)exttended to multiclass
by Zien and Ong (2007). It can be written as

2
N (& 1o
o (5n) 43

StW- (O%,Yi) — 0%, Y)) > 1—&,¥i,y #yi . 2)
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An equivalent formulation can be derived from the first one throughrational argument (Bach
et al., 2004)

A& i) 1
WmlngE ,Zl aj +Ni;EI
St W (9%, ¥i) — 0%, Y)) > 1—&, Vi,y#Yi
a2 <1. (3)

This formulation has been used by Bach et al. (2004) and Sonnenbaig (2006), while
the formulation proposed by Rakotomamonjy et al. (2008) is slightly diffeadtitough it can be
proved to be equivalent. The reason to introduce this variational formuligtio use an alternating
optimization strategy to efficiently solve the constrained minimization problem. Hawewhe
following we will show that it is possible to efficiently minimize directly the formulation(2), or
at least one variation of it.

We first rewrite (2) with group norms. Using the notation defined abovéhave

A 1 -
mv_\llrl E"M’%,1+Ni;EMC(vai’yi)7 (4)

wherew = [wy, Wy, --- ,Wg]. The (2,1) group norm is used to induce sparsity in the domain of
the kernels. This means that the solution of the optimization problem will seladisesof the
F kernels. However, even if sparsity can be desirable for specific apiplis, it could lead to a
decrease in performance. Moreover the problem in (4) is not stronglex (Kakade et al., 2009),
S0 its optimization algorithm is rather complex and its rate of convergence iiyusloav (Bach
et al., 2004; Sonnenburg et al., 2006).

We generalize the optimization problem (4), using a generic group norra gederic convex
loss function

N, 1N
mv_\|’n E“M‘z’p_‘_ﬂi;g(W’XHyl)’ (5)

where 1< p < 2. We also defind (W) := 5| W3 , + & SIL1 £ (W, X, ¥;) andw* equals to the optimal
solution of (5), that isv* = argming f (w). The additional parametgrallow us to decide the level
of sparsity of the solution. Moreover this formulation has the advantagesiofyid /g-strongly
convex (Kakade et al., 2009), whexds the regularization parameter in (5). Strong convexity is a
key property to design fast batch and online algorithms: the more a probnomngly convex the
easier itis to optimize it (Shalev-Shwartz and Singer, 2007; Kakade ed@P) 2Many optimization
problems are strongly convex, as the SVM objective function. Whtands to 1, the solution gets
close to the sparse solution obtained by solving (2), but the strong donvexishes. Setting
equal to 2 corresponds to using the unweighted sum of the kernels. follihveing we will show
how to take advantage of the strong convexity to design a fast algorithrivin(8, and how to have
a good convergence rate even when the strong convexity is close td\Nmgothat this formulation
is similar to the one proposed by Kloft et al. (2009). Indeed, as forrd)(8), using Lemma 26
in Micchelli and Pontil (2005) it is possible to prove that they are equitalmough a variational
argument.

We have chosen to weight the regularization term\gnd divide the loss term by, instead
of the more common formulation with only the loss term weighted by a parai@etéhis choice
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simplifies the math of our algorithm. However the two formulations are equivalaeh setting
A= CiN hence a big value @@ corresponds to a small value »f

3. The OBSCURE Algorithm

Our basic optimization tool is the framework developed in Shalev-ShwartzSamger (2007);
Shalev-Shwartz et al. (2007). It is a general framework to designaamatl/ze stochastic sub-
gradient descent algorithms for any strongly convex function. At edep the algorithm takes
a random sample of the training set and calculates a sub-gradient of jdativabfunction eval-
uated on the sample. Then it performs a sub-gradient descent step widasiag learning rate,
followed by a projection inside the space where the solution lives. TheithigpPegasos, based
on this framework, is among the state-of-art solvers for linear SVM (Salavartz et al., 2007;
Shalev-Shwartz and Srebro, 2008).

Given that the(2, p) group norm is strongly convex, we could use this framework to design
an efficient MKL algorithm. It would inherit all the properties of Pegas®kglev-Shwartz et al.,
2007; Shalev-Shwartz and Srebro, 2008). In particular a Pediiscalgorithm used to minimize
(5) would have a convergence rate, and hence a training time, progdrtm§. Although in
general this convergence rate can be quite good, it becomes slowwtemall and/op is close
to 1. Moreover it is common knowledge that in many real-world problems (eisualvlearning
tasks) the best setting faris very small, or equivalentlf is very big (the order of 10— 10°).
Notice that this is a general problem. The same problem also exists in the Mkleo@imization
algorithms such as SMO and similar approaches, as their training time alsaldapetie value of
the paramete€ (Hush et al., 2006).

Do et al. (2009) proposed a variation of the Pegasos algorithm calledthmabprojected sub-
gradient descent. This formulation has a better convergence rate ftbvataas ofA, while retain-
ing the fast convergence rate for big values\ofA drawback is that the algorithm needs to know
in advance an upper bound on the norm of the optimal solution. Do et &9)20lve this problem
with an algorithm that estimates this bound while training, but it gives a spgeniy when the
norm of the optimal solutionv* is small. This is not the case in most of the MKL problems for
categorization tasks.

Our OBSCURE algorithm takes the best of the two solutions. We first extenfiaimework
of Do et al. (2009) to the generic non-Euclidean norms, to use it witf2hg) group norm. Then
we solve the problem of the upper bound of the norm of the optimal solutimig @snew online
algorithm. This is designed to take advantage of the characteristics of thetd#Kland to quickly
converge to a solution close to the optimal one. Hence OBSCURE is compbbteal steps: the
first step is a fast online algorithm (Algorithm 1), used to quickly estimate thiemeof the space
where the optimal solution lives. The second step (Algorithm 2) starts frermgproximate solution
found by the first stage, and exploiting the information on the estimated regimses a stochastic
proximal projected sub-gradient descent algorithm. We also found theat jieve cannot guarantee
this theoretically, empirically in many cases the solution found by the first stageéremely close
to the optimal one. We will show this in the experiments of Section 5.6.

3.1 Efficient Implementation

The training time of OBSCURE is proportional to the number of steps requiredrteerge to the
optimal solution, that will be bounded in Theorem 3, multiplied by the complexitachetep. This
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Algorithm 1 OBSCURE stage 1 (online)
1: Input: q,n_

2: Initialize: 6, =0,w; =0

3 fort=212...,Tdo

4:  Sample(x,y:) at random

5 z=00(W,X W)

6: 6G1=6-nz

7 WJ _ <||9t+12>q el Vi=1,---,F
17 a \ [l8all2q t+1 r

8: end for _

9: return Br1.1,Wr 1
10: retun R= /W13, + i S0 € (W1, %, v1)

Algorithm 2 OBSCURE stage 2 (stochastic optimization)
1: Input: g, 61, Wy, R A
2: Initialize: s5=0
3: fort=12,...,T do
4:  Sample(x,y:) at random
5.z =00(W, %, W)
6: h=At+s_1

Mg, z 2
7 s:s_1+o.5<\/q2+q<q9‘”2"‘;;““) —ok)

_q_
YR
=01

CD|J

- L{;,h)e_t —Ntz

9:
10: Bui=min[1, =R )@ ,
' HGHIHZq t+3

j -
. i1 18l j R B
He W= (etm,q Oua VI=1 F

12: end for

NH—'

in turn is dominated by the calculation of the gradient of the loss (line 5 in Algorithrmisd 2).
This complexity, for example, for the multiclass hinge 16%§ is O(NFM), given that the number
of support vectors is proportional . Note that this complexity is common to any other similar
algorithm, and it can be reduced using methods like kernel caching (Gmehbin, 2001).

Following (Shalev-Shwartz et al., 2007, Section 4), it is possible to useavi&ernels without
introducing explicitly the dual formulation of the optimization problem. In both atgors, 6,1
can be written as a weighted linear summationppf,-). For example, when using the multi-
class loss functioM®, we have thaf; 1 = — SNtz = Y Ne(@%, ) — @(%, %)). Therefore, the
algorithm can easily stomy, yt, Vi, andx instead of storin@;. Observing line 7 in Algorithm 1
and line 11 in the Algorithm 2, we have that at each roum[ijJ1 is proportional tof/_ ;, that is

wt‘Jrl = 0 Gt’+1 Hencew., can also be represented usiad);, Vi, % andx. In prediction the
dot product betweem; and @(x,-) can be expressed as a sum of temésqir X,-), that can be

calculated using the definition of the kernel.
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Algorithm 3 Proximal projected sub-gradient descent
1: Input: R o,w €S
2: Initialize: 55=0
3 fort=212...,Tdo

4:  Receiveg

5 7 =0g(W)

6 S =§_14t (‘101+$71)2;%}*001*5(71
7oNe= ﬁ%r

8 W1 = Uh"(Oh(w) —nez)

9: end for

Another important speed-up can be obtained considering the naturewgfdages of the second
stage. If the optimal solution has a loss equal to zero or close to it, when thrittatg is close to
convergence most of the updates will consist just of a scaling. Hencpasible to cumulate the
scalings in a variable, to perform the scaling of the coefficients just befioradditive update must
be performed, and to take it into account for each prediction. Moreot@n using the multiclass
loss (1), each update touches only two classes at a time, so to minimize the rafrabalings we
can keep a vector of scaling coefficients, one for each class, insteasirgle number. For more
details on the implementation, we refer the reader to the MATLAB implementation &CGLERE
in DOGMA (Orabona, 2009).

4. Analysis

We now show the theorems that give a theoretical guarantee on the gengerrate of OBSCURE
to the optimal solution of (5). The following lemma contains useful propertiesdeepthe perfor-
mance guarantees of Algorithm 1 and 2.

Lemma 1l Let Be RY, define S= {w: [|w]]2, < B}. Let w) : S— R defined a§||vV||§’p, define
alsoProj(w, B) = min (1, ﬁ) w, then

F

j p—2 . _
1. Oh(w) =q [(lvvwv||22p) WJ] X Ywe S

F
o (1] (18022
2. 0h*(8) = Pr01<q {(Ielz,q) ® L ’B>

3. [W2p = LI|ONW) 29, VW€ S

Proof All the proofs of these relations use the equalifypX1/q = 1. The first one can be ob-
tained differentiatingh. The second relation is obtained using Lemma 2 in Shalev-Shwartz and
Singer (2007), through lengthy but straightforward calculations. Téieolae is obtained from the
first one. |

We now introduce Algorithm 3, that forms the basis for Algorithm 2, and a lemiagbibunds
its performance, that is a generalization of Theorem 1 in Do et al. (200$§3rieral norms, using
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the framework in Shalev-Shwartz and Singer (2007). Hence it candmeasea particular case of the
mirror descent algorithm (Beck and Teboulle, 2003), with an adaptivaduwof the learning rate.

Lemma 2 Let h(-) = $|| - ||* be a 1-strongly convex function w.rt. a notf|| over S. Assume
that for all t, g(-) is a o-strongly convex function w.r.t. (H, and ||z]|. < L;. Let Re R" such
that |[w—w|| < 2R for any ww' € S. Then for any & S, and for any sequence of non-negative
&1,...,&1, Algorithm 3 achieves the following bound for allX1 1,

T

> (@) ~6(W) < Z [4atR2+ oHLtz' &] .

Proof Defineg;(w) = gi(w) + %|w—w||2, wherew,w; € S, and the value of will be specified
later. Using the assumptions of this Lemma, we havedhst (o + %)-strongly convex w.r.t. tdn.
Moreover we have thaig; (W) = 0g: (W ), because the gradient of the proximal regularization term
is zero when evaluated @ (Do et al., 2009). Hence we can apply Theorem 1 from Shalev-Shwartz
and Singer (2007) to have

S W S )+ 2 fu— w2 S
3 al o—t;(gt( )+ lu—we?) =3 dw)- Y g zZmz. <

Using the hypothesis of this Lemma we obtain

—

al?

Sotn- Y a3y (sh-wi g i) <3 (R i)

Using the definition of in the algorithm and Lemma 3.1 in Bartlett et al. (2008), we have

T L2
Sotm-3aws mn 5 (65 i)

Hence these settings gfgive us a bound that is only 2 times worse than the optimal one. Wl

With this Lemma we can now design stochastic sub-gradient algorithms. Inytartisetting
I [|2,p as the normh(w) = 3(|W]|3 ,, andg: (W) = Ah(vT/) + £(W, %, ¥t), we obtain Algorithm 2 that
solves thep-norm MKL problem in (5). The updates are done on the dual varisle® lines
9-10, and transformed int® in line 11, through a simple scaling. We can now prove the following
bound on the convergence rate for Algorithm 2.

Theorem 3 Suppose thafol (w,x, \) ||2,q < L and ||w*||2,, < R, wherew" is the optimal solution
of (5), that isw* = argminf (w). Letl < p < 2, and c=AR+L, then in expectation over the choices

W
of the random samples we have that, after T iterations of the 2nd stage oB®EWRE algorithm,
the difference betweeniir) and f(w*), is less than

v1+logT
q/ﬁdlﬂongin(W,j?) .
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Proof Let h(w):S— R defined a%||vV||§p, whereS= {w: |W||2p < R}. Define alsog:(w) =
2||vV||2 p T (W, %, t) = Ah(vV) + (W, %, ¥t). Using Lemma 1 in Shalev-Shwartz and Singer (2007),

we can see that these two functions satisfy the hypothesis of Lemma l¢with, o = % It is

easy to verify thatv 1 is equal todh*(Oh(w ) — ntz). In fact, taking into account Properties 1-3
in Lemma 1 with withB = R, lines 9-11 in Algorithm 2 are equivalent to

Wi i1 = OO (8t —nez)
Bt+1 = Oh(Wey1) -

We also have that
A _ _ _ _
109t (W) |24 < aHDh(Wt)IIz,qu [Zl2.q = AlWtll2,p+ l|Z]l2g < C,

where the equality is due to Property 3 in Lemma 1. So we have

qc? }
A+ 50 &

T T

3 (%) -5 (W) < mn 5 [4ztR2+

Reasoning as in Shalev-Shwartz et al. (2007), we divid& biake the expectation on both sides.
So we obtain that

E[f(Wr) — f(W)] < min %i [4EtR2+

qc’ ]
&1, &7

A+ &

Setting¢; =&, i=1,...,T, the last term in the last equation can be upper bounded by

]
4ER2+T thﬂe

This term is smaller than any specific setting&efin particular if we se€ to 0, we have that
Ar < M On the other hand setting optimally the expression §waard over-approximating

we have thaAr < % W_ Taking the minimum of these two quantities we obtain the stated

bound. -

At = m|n

The most important thing to note is that the converge rate is independentiieormrumber of
samples, as in Pegasos (Shalev-Shwartz et al., 2007), and the refieaatities on which it depends
are\ andg. Given that for most of the losses, each iteration has a linear complexity muthber
of samples, as stated in Section 3.1, the training time will be linearly proportiotta taumber of
samples.

The parameteR is basically an upper bound on the norm of the optimal solution. In the next
Section we show how to have a good estimatR of an efficient way. The theorem first shows that
a good estimate d® can speed-up the convergence of the algorithm. In particular if the finstise
dominant, the convergence rateﬂ(sq'ogT) If the second term is predominant, the convergence rate

is O(Lq\/';g’), so it becomes independent fram The algorithm will always optimally interpolate
between these two different rates of convergence. NoteRltan also be set to the trivial upper

237



ORABONA, JE AND CAPUTO

bound ofe. This would result in a standard Pegasos-like optimization. In fagtpuld be equal

to 0 in Algorithm 2, so the learning rate would Qpand the convergence rate would beq'f—TgT).

We will see in Section 5.3 that a tight estimateRoéan improve dramatically the convergence rate.
Another important point is that Algorithm 2 can start from any vector, while iginot possible in
the Pegasos algorithm, where at the very first iteration the starting vectottipliad by 0 (Shalev-
Shwartz et al., 2007).

As said before, the rate of convergence dependg, dnroughg. A p close to 1 will result in a
sparse solution, with a rate of at mc@(tL%)gT). However in the experiment section we show that
the best performance is not always given by the most sparse solution.

This theorem and the pseudocode in Algorithm 2 allows us to design fastfaciént MKL
algorithms for a wide range of convex losses. If we consider the multiclas€6 with normalized

kernels, thatis) @ (%, ¥)|l2 < 1,Vj=1,---,F, t=1,--- |N, we have that < V2F 1. Instead, if we
1

use the hinge los&'" for binary classification, we have thiat< Fa. Hence, in both cases, jif< 2,

the convergence rate has a sublinear dependency on the numbenegKer and if the problem

is linearly separable it can have a faster convergence rate using nraetskéNe will explain this
formally in the next section.

4.1 Initialization Through an Online Algorithm

In Theorem 3 we saw that if we have a good estimafe, dfie convergence rate of the algorithm can
be much faster. Moreover starting frongaodsolution could speed-up the algorithm even more.

We propose to initialize Algorithm 2 with Algorithm 1. It is the online version oflgemm (5)
and it is derived using a recent result in Orabona and Crammer (2@19%imilar to the Z-norm
matrix Perceptron of Cavallanti et al. (2008), but it overcomes the disddge of being used with
the same kernel on each feature.

We can run it just for few iterations and then evaluate its norm and its logdgborithm 1Ris
then defined as

_ 2 3 _ _ 2 & _ _
R:= W41 2 + 3 14 W1, X, Yi > w* 2 + = ¢ W*vx'vy' > W 2,p»
\/H Byt g 2 s = (I 5 5 £O7 ) = I L2

where we remind that* is solution that minimizes (5), as defined in Section 2.2. So at any moment
we can stop the algorithm and obtain an upper boungiii, ,. However if the problem is linearly
separable we can prove that Algorithm 1 will converge in a finite numbepdétes. In fact, as in
Cavallanti et al. (2008), for Algorithm 1 it is possible to prove a relative rastaound. See also Jie

et al. (2010b) and Jin et al. (2010) for similar algorithms for online MKL, vattifferent update
rules and different mistake bounds.

Theorem 4 Let (xq,Y1),...,(XT,yr) be a sequence of examples whare X, y € Y. Suppose that
the loss functiod has the following properties

i HaE(VV,x,y) ||2,C] S L) VVVE Xv X € Xa Wt € Y;
e /(Uxy)>14+u-0(w,xYy), VueX, weX:4(wxy) >0 xeX yeY,

e W-0/(w,xy) > -1 VweX, xeX, yeY.
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Denote byt the set of rounds in which there is an update, and by U its cardinality. Toemany
u, the number of updates U of Algorithm 1 satisfies

U Sa2/n+ LI+ 3 (G + 2oy 20 +12), 5 dxw)

teu

In particular, if the problem (5) is linearly separable by a hyperplanehen the Algorithm 1 will
converge to a solution in a finite number of steps less th@im+ LZ)H\7[|§7P. In this case the

returned value of R will be less th&@+ nL?)||V]|2,p.

Proof The bound on the number of updates can be easily derived using & reselt in Orabona
and Crammer (2010), that we report in Appendix for completenessh(két: X — R defined as
%ng,p- Notice that, differently from the proof of Theorem 3, here the domain@fihctionh is
the entire Euclidean spade Using Property 2 in Lemma 1 witB = «, we have that line 7 in the
algorithm’s pseudo-code implies that = Dh*(et) Using Lemma 5 in the Appendix, we have that

U< 3 @x0+valdles | 3 (178e- 22

teu teu n

< 3 AUy +Vallullzpy /U <"2+§> '

teu

Solving forU and overapproximating we obtain the stated bound.
For the second part of the Theorem, using (Kakade et al., 2009, Ggra®d, we know that
h*(w) is 1-smooth w.r.t]| - ||2,4. Hence, we obtain

- _ o . 2WZ
8713 < 187134 — 200 - 2 + an?|Zr g <n%a ¥ (\ra\\%,q— )

teu n
2 2 2
<n“qu <n+L> .

167 1]l2.4 < Ny/AU(2/n +L2),

and using the bound &f and the hypothesis of linear separability, we have

So we can write

187 +1ll2q <ny/eRIGZ p(2/0 +L2)2 = 2 (241L2) -

Using the relation|w||2,p = éue_tuz,q, that holds for Property 2 in Lemma 1 wih= o, we have
the stated bound oR. [

From the theorem it is clear the role of a bigger value will speed up the convergence, but it will
decrease the quality of the estimatdRofSon governs the trade-off between speed and precision of
the first stage.

The multiclass losgMC and the hinge losé™" satisfy the conditions of the Theorem, and, as
noted for Theorem 1 whepis close to 1, the dependency on the number of kernels in this theorem
is strongly sublinear.
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Note also that the separability assumption is far from being unrealistic in tiimgsdn fact the
opposite is true: in the greater majority of the cases the problem will be linegwhrable. This is
due to the fact that in MKL to have separability it is sufficient that only onghefkernel induces
a feature space where the problem is separable. So, for example, dgLigheto have no repeated
samples with different labels and at least one kernel that always @eedernel matrices with full
rank, for example, the Gaussian kernel.

Moreover, under the separability assumption, if we increase the numkenadls, we have that
HJH%.p cannot increase, and in most of the cases it will decrease. In this esssepect Algorithm 1
to converge to a solution which has null loss on each training sample, in a fimitber of steps
that is almost independent énand in some cases evdecreasingvhile increasing=. The same
consideration holds for the value Rfreturned by the algorithm, that can decrease when we increase
the number of kernels. A smaller valueRfvill mean a faster convergence of the second stage. We
will confirm this statement experimentally in Section 5.

5. Experiments

In this section, we study the behavior of OBSCURE in terms of classificatioaracy, compu-
tational efficiency and scalability. We implemented our algorithm in MATLAB, in B@GMA
library (Orabona, 2009). We focus on the multiclass I$s, being it much harder to be optimized
than the binary hinge log8'", especially in the MKL setting. Although our MATLAB implemen-
tation is not optimized for speed, it is already possible to observe the adeamitthe low runtime
complexity. This is particularly evident when training on data sets containigg tarmbers of cat-
egories and lots of training samples. Except in the synthetic experimeng wieesetp = 1.0001, in
all the other experiments the paramegiés chosen from the s¢.01,1.05,1.10,1.25,1.50,1.75,2}.
The regularization parametgiis set through CV, aé, whereC € {0.1,1,10,100,1000}.

We compare our algorithm with the binary SILP algorithm (Sonnenburg e2@06), the
multi class MKL (MC-MKL) algorithm (Zien and Ong, 2007) and the p-nornKMalgorithm
(Kloft et al., 2009), all of them implemented in the SHOGUN-0.9.2 toolbd%or p-norm MKL,
it is possible to convert from oup setting to the equivalent setting in Kloft et al. (2009) using
Pp-norm = Posscure/ (2 — Posscure)- 1N Our experiments, we will compare between OBSCURE and
p-norm MKL using the equivalenp parameter. We also compare with the SimpleMKL algo-
rithm* (Rakotomamonjy et al., 2008). To train with the unweighted sum of the kerridisan
SVM, we use LIBSVM (Chang and Lin, 2001). The cost parameter ictsdefrom the range
Ce{0.1,1,10,100,1000} for all the baseline methods. For all the binary classification algorithms,
we use the 1-vs-All strategy for their multiple class extensions.

In the following we start by briefly introducing the data sets used in ourrexpats. Then we
present a toy problem on a synthetic data which shows that it is more ajgedp use a multiclass
loss instead of dividing the multiclass classification problem into severalybsudproblems. We

3. Available athttp://www.shogun-toolbox.org , implemented in C++.

4. Available at http:/asi.insa-rouen.fr/enseignants/ ~ arakotom/code/mklindex.html , implemented in
MATLAB. SimpleMKL is more efficient than SILP when uses the same S\(War (Rakotomamonjy et al., 2008).
However, in practice, no efficient SimpleMKL implementation is availabl&P3Lins much faster compared to Sim-
pleMKL, especially when the size of the problem grows. Moreover, tfopaance of SimpleMKL and SILP are
the same because both algorithm solve an equivalent optimization praRekatbmamonijy et al., 2008). Therefore,
we only use SILP algorithm as oliy-norm MKL baseline in experiments whose size of training samples are larg
than 1000.
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then study the convergence rate of OBSCURE and compare it with the défRggasos algorithm
(Shalev-Shwartz et al., 2007; Shalev-Shwartz and Srebro, 2008|bas the p-norm MKL (Kloft
et al., 2009) (Section 5.3). Following that, we study the behaviors of OBEEW.r.t different
value of p and different number of input kernels (Sections 5.5 and 5.6). Finally hvegvghat
OBSCURE achieves state-of-art performance on a challenging imaggficktson task with 102
different classes, and we show its scalability.

5.1 Data Sets

We first briefly introduce the data sets used in this section, and we dekoriktheir kernel matrices
are generated.

5.1.1 THE OXFORD FLOWER DATA SET (NILSBACK AND ZISSERMAN, 2006)

contains 17 different categories of flowers. Each class has 80 imadtiethvee predefined splits
(train, validation and test). The authors also provide 7 precomputed distaatrices. These
distance matrices are transformed into kernel using-eyp'd), wherey is the average pairwise
distance andl is the distance between two examples. It results in 7 different kernels.

5.1.2 THE PENDIGITS DATA SET (GONEN AND ALPAYDIN, 2010)

is on pen-based digit recognition (multiclass classification with 10 classe®)atains four differ-

ent feature representatiohsThe data set is split into independent training and test sets with 7494
samples for training and 3498 samples for testing. We have generateded iketrices, one matrix

for each feature, using an RBF kernel, éxy2||x — x;||?). For each featurey is equal to the
average of the squared pairwise distances between the examples.

5.1.3 THEKTH-IDOL2 DATA SET (PRONOBIS ET AL, 2010)

contains 24 image sequences acquired using a perspective cameradrmmunie mobile robot
platforms. These sequences were captured with the two robots moving im@or ilaboratory
environment consisting of five different rooms under various weathérllumination conditions
(sunny, cloudy, and night) and across a time span of six months. Faiieems, we used the same
setup described in Pronobis et al. (2010); Jie et al. (2010a). Waeved the 12 sequences acquired
by robot Dumbo, and divided them into training and test sets, where esiningy sequence has a
corresponding one in the test sets captured under roughly similar cosditiototal, we considered
twelve different permutations of training and test sets. The images wesglzksbusing three visual
descriptors and a geometric feature from the Laser Scan sensorjastiald (2010a), which forms
4 kernels in total.

5.1.4 THE CALTECH-101 DATA SET (FEI-FEI ET AL., 2004)

is a standard benchmark data set for object categorization. In ourireems, we used the pre-
computed features and kernels of Gehler and Nowozin (2009b) whicautihers made available
on their websit€, with the same training and test split. This allows us to compare against them

5. Available atwww.robots.ox.ac.uk/ ~vgglresearch/flowers/
6. Available athttp://mkl.ucsd.edu/dataset/pendigits .
7. Available atwww.vision.ee.ethz.ch/ ~ pgehler/projects/iccv09/
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directly. Following that, we report results using all 102 classes of the @alt®t data set using
five splits. There are five different image descriptors, namely, PHOGeSbapcriptors (PHOG)
(Bosch et al., 2007), Appearance Descriptors (App) (Lowe, 20Rdyion Covariance (RECQOV)
(Tuzel et al., 2007), Local Binary Patterns (LBP) (Ojala et al., 200&)\&LS+ (Pinto et al., 2008).
All of them but the V1S+ features were computed in a spatial pyramid aopedpby Lazebnik
et al. (2006), using several different setup of parameters. Thisrgas several kernels (PHOG, 8
kernels; App, 16 kernels; RECOQV, 3 kernels; LBP 3 kernels; V1S erhels). We also compute a
subwindow kernel, as proposed by Gehler and Nowozin (2009a{ditian to the 32 kernels, the
products of the pyramid levels for each feature results in other 7 kefoebs total of 39 different
kernels For brevity, we omit the details of the features and kernels agictoeGehler and Nowozin
(2009a,b).

5.1.5 THE MNIST DATA SET (LECUN ET AL., 1998)

is a handwritten digits data set. It has a training set of 60,000 gray-sce28 28xel digit images
for training and 10,000 images for testing. We cut the original digit image intodquare blocks
(14 x 14) and obtained an input vector from each block. We used threelk@neach block: a
linear kernel, a polynomial kernel and a RBF kernel, resulting in 12 kerne

5.2 Multiclass Synthetic Data

Multiclass problems are often decomposed into several binary sub-prshlsing methods like
1-vs-All, however solving the multiclass learning problem jointly using a multidiess can yield
much sparser solutions. Intuitively, whetyenorm is used to impose sparsity in the domain of ker-
nels, different subsets of kernels can be selected for the diffeireamyclassification sub-problems.
Therefore, the combined multiclass classifier might not obtain the desir@anties of sparsity.
Moreover, the confidence outputs of the binary classifiers may not lie isetine range, so it is not
clear if the winner-takes-all hypothesis is the correct approach foboay them.

To prove our points, we have generated a 3-classes classificatiolemprabnsisting of 300
samples, with 100 samples for each class. There are in total 4 diffeetntds, the kernel matrices
corresponding to them are shown in Figure 1 (top). These featurgeneeated in a way that Ker-
nels 1-3 are useful only for distinguishing one class (class 3, class dlass 2, respectively) from
the other two, while Kernel 4 can separate all the 3 classes. The congisg kernel combination
weights obtained by the SILP algorithm using the 1-vs-All extension andhaliiclass OBSCURE
are shown in Figure 1 (bottom). It can be observed that each of theylshtialP classifiers pick two
kernels. OBSCURE selects only the 4th kernel, achieving a much spahstos.

5.3 Comparison withtl Learning Rate

We have compared OBSCURE with a simple one-stage version that l%!siearaning rate. This can
be obtained setting = 0, Vt, in Algorithm 2. It can be considered as a straightforward extension
of the original Pegasos algorithm (Shalev-Shwartz et al., 2007; Si&dlewartz and Srebro, 2008)
to the MKL problem of (5), so we denote it Pegasos-MKL.

We first compare the running time performance between OBSCURE andd3elKL on the
Oxford flowers data set. Their generalization performance on the testtagfigure 2(op, left)) as
well as the value of the objective function (Figurady, righ)) are shown in Figure 2. In the same
Figure, we also present the results obtained using SILP, SimpleMKLymp-MKL and MC-MKL.

242



MULTI KERNEL LEARNING WITH ONLINE-BATCH OPTIMIZATION
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Figure 1: (top) Kernel matrices of the 3-classes synthetic experimensspond to 4 different
features. Sample 1-100, 101-200 and 201-300 are from class @, 2 respectively.
(bottom) Corresponding kernel combination weights, normalized to haveequal to 1,
obtained by SILP (binary) and by OBSCURE (last figure).

We see that OBSCURE converges much faster compared to PegasosIMisLproves that, as
stated in Theorem 3, OBSCURE has a better convergence rate than$&&tjals, as well as faster
running time than SILP and SimpleMKL. Note that all the feature combination methoklieve
similar results on this data set.

Similar results are shown in Figureg{tom, lef) and Gottom, righ) on the Pendigits data sets.

5.4 Comparison with p-norm MKL and Other Baselines

We compare OBSCURE with p-norm MKL (Kloft et al., 2009). Figure 3 mpathe results ob-
tained by both algorithms for varying valuespbn the Pendigits data set. We can see that all the
algorithms (OBSCURE, SILP and p-norm MKL) are order of magnitudegefathan MC-MKL.
OBSCURE and p-norm MKL achieve similar performance, but OBSCURtese optimal perfor-
mance in a training time much faster {18nd 16). The performance of SILP and p-norm MKL
are quite close, and their classification rate seems to be more stable on thistdateedifference
between OBSCURE and p-norm MKL may be due to the different types of wlaks extension
they use.

5.5 Experiments with Different Values ofp

This experiment aims at showing the behavior of OBSCURE for varyingevaiyp. We consider
p € (1,2], and train OBSCURE on the KTH-IDOL2 and Caltech-101. The resultthiotwo data
sets are shown in Figure 4 (top).

For the IDOL2 data set (Figure 4 (top, left)), the best performancehieeed wherp is large,
which corresponds to give all the kernels similar weights in the decision. ©codthtrary, a sparse
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Figure 2: Comparison of running time performance (Left) and objectimetion value (Right) on
the Oxford flowers data set (Top) and Pendigits data set (Bottom).

solution achieves lower accuracy. It indicates that all the kernels dacyiminative information,
and excluding some of them can decrease the performance.

For the Caltech-101 data set (Figure 4 (top, right)), following GehlemNowlozin (2009b), we
consider four PHOG (Bosch et al., 2007) kernels computed at ditfeggatial pyramid level. It
can be observed that by adjustipgt is possible to improve the performance—sparser solutions
(i.e., whenp tends to 1) achieve higher accuracy compared to non-sparse solutioas [§ tends
to 2). However, the optimab here is 1.10. In other words the optimal performance is achieved for
a setting ofp different from 1 or 2, fully justifying the presence of this parameter.

Furthermore, Figure 4 (bottom) shows the running time of OBSCURE usingatine $our
kernels, with varying values gi. The dashed lines in the figure correspond to the results obtained
by the first online stage of the OBSCURE algorithm. It can be observeditbainline stage of
OBSCURE converges faster whepiis large, and this is consistent with Theorem 4. The online step
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Figure 3: (Best viewed in color.) Comparison of OBSCURE and p-norniLMith varying value
of p on Pendigits.

of OBSCURE converges in a training time orders of magnitudes fastért¢100°) compared to
the full training stage, and in certain cases{ 1.10) it can also achieve a performance close to the
optimal solution.

5.6 Experiments on Different Number of Kernels

Figure 5 (left) reports the behavior of OBSCURE for different numlodéiisput kernels. It shows
that the algorithm achieves a given accuracy in less iterations when morelkare given. The
dashed line in the figure again corresponds to the results obtained bysthenfine stage of the
OBSCURE algorithm. Figure 5 (right) shows the number of iterations to cgewdrthe online step,
proving that the convergence rate improves when there are more kexrsstated in Theorem 4.

5.7 Multiclass Image Classification

In this experiment, we use the Caltech-101 data set with all the 39 kernelgharresults are
shown in Figure 6. The best results for OBSCURE were obtained \ghemt the smallest value
(1.01). This is probably because among these 39 kernels many weneleedr not discriminative
enough. For example, the worst single kernel achieves only an agcafal35%+ 0.6 when
trained using 30 images per category, while the best single kernel ast6&dé6+ 0.4. Thus,
sparser solutions are to be favored. The results support our claintiiois8.2 that multiclass loss
function is more suitable for this type of problem, as all the methods that use tiielass loss
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IDOL2 (4 kernels, 12 training sequences) Caltech-101 (4 kernels, 30 training examples)
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Figure 4: Behaviors of the OBSCURE algorithm w.pt.(top, left) the effect of different values of
ponthe IDOL2 data set and (top, right) on the Caltech-101 data set usiH®&GRBosch
et al., 2007) kernels; (bottom) running time for different valuep oh Caltech-101 data
set.

outperform SILP and p-norm MKL (p=1.02) using 1-vs-All strategyCNKL is computationally
infeasible for 30 sample per category. Its significant gap from OBSCE&HMS to indicate that
it stops before converging to the optimal solution. Figure 6 (left) reportdrtiring time for
different algorithms. Again, OBSCURE reaches optimal solution much fésaerthe other three
baseline algorithms which are implemented in C++. Figure 6 (right) reports shtgebtained
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Figure 6: Performance comparison on Caltech-101 using different Mkthods.

using different combination methods for varying size of training sampless atso interesting
to note the performance of the solution generated by the online step of OBECd&noted by
“OBSCURE Online”, that is very close to the performance of the full trairstage, as already
noted above.

5.8 Scalability

In this section, we report the experiments on the MNIST data set usingngasizes of training
samples. Figure 7 shows the generalization performance on the teshsstedcbhy OBSCURE
over time, for various training size. We see that OBSCURE quickly pradsckitions with good
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Figure 7: The generalization performance of MNIST data set overrdiftesize of training samples.

performance. The performance of the SVM trained using the unweightad$the kernels and
the best kernel are also plotted. Notice that in the figure we only show shéisef up to 20,000
training samples for the sake of comparison, otherwise we could not edicthee 12 kernels in
memory. However, by computing the kerna@‘the fly we are able to solve the MKL problem
using the full 60,000 examples: OBSCURE obtains 1.95% error rate aftepdéhs, which is
0.45% lower compared to the results obtained by OBSCURE with 20,000 traiainglss after
500 epochs.

6. Conclusions and Discussion

This paper presents OBSCURE, a novel and efficient algorithm fomgpfvnorm MKL. It uses
a hybrid two-stages online-batch approach, optimizing the objective fundtiectly in the primal
with a stochastic sub-gradient descent method. Our minimization method alléavprase conver-
gence rate bounds, proving that the number of iterations required tergmis independent of the
number of training samples, and, when a sparse solution is induced, imeabin the number of
kernels. Moreover we show that OBSCURE has a faster convergatecas the number of kernels
grows.

Our approach is general, so it can be used with any kind of convexsidssm binary losses to
structure output prediction (Tsochantaridis et al., 2004), and evegtesson losses.

Experiments show that OBSCURE achieves state-of-art performanteedmard problem of
multiclass MKL, with smaller running times than other MKL algorithms. Furthermoeestiution
found by the online stage is often very close to the optimal one, while beingutechpeveral orders
of magnitude faster.
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Appendix A.

The following algorithm and Lemma can in found in Orabona and Crammer [28tHed for the
binary case. Here we state them for generic convex losses and tiegrorhere for completeness.

Algorithm 4 Prediction algorithm
. Input: A series of strongly convex functiofhs, ..., hy.

[EEY

2: Initialize: 8 =0

3 fort=212...,Tdo
4 Receivex

5: Setw; = Dht*(et)
6 Z = O&(Wt)

7 B1=6—nz

8: end for

Lemma5 Leth,t=1,..., T bef-strongly convex functions with respect to the nofim,, ..., || -

[n; Over a set S and lgf- ||+ be the respective dual norms. Lef(@) = 0, and x,...,xr be an
arbitrary sequence of vectors 9. Assume that algorithm in Algorithm 4 is run on this sequence
with the functions fa If ht (Au) < A%hr (u), and/ satisfies

0(U, %, ¥t) > 14+u'0b (W), Yue Sw : (W) >0,

then for any ue S, and any\ > 0 we have

Nt <L-+Ahr(u)+ = [ D+ <t||zt 2*—nthzt> :
2 APAC I

where L= S cqruuNtle(U), and D= S (h(6:) —h;_1(8)). In particular, choosing the optimal
A, we obtain

T T /n2
Zlﬂt <L+ \/2hT(u)\/2D+ Zl (nt||zt||ﬁ[* - 2r]tthzt> :
= t= Bt
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