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Abstract

Classifiers are often used to detect miscreant activities.sivdy how an adversary can system-
atically query a classifier to elicit information that allsvthe attacker to evade detection while
incurring a near-minimal cost of modifying their intendedlfeasance. We generalize the theory
of Lowd and Meek (2005) to the family of convex-inducing alidfiers that partition their feature
space into two sets, one of which is convex. We present qugoyitoms for this family that con-
struct undetected instances of approximately minimal aestg only polynomially-many queries
in the dimension of the space and in the level of approximat@ur results demonstrate that near-
optimal evasion can be accomplished for this family withmsterse engineering the classifier’s
decision boundary. We also consider genépatosts and show that near-optimal evasion on the
family of convex-inducing classifiers is generally effidiéor both positive and negative convexity
for all levels of approximation ip = 1.

Keywords: query algorithms, evasion, reverse engineering, advat$aarning

1. Introduction

A number of systems and security engineers have proposed the uselohengarning to detect
miscreant activities in a variety of applications; for example, spam, intrusiars, and fraud de-
tection. However, all known detection techniques have blind spots: slafsaiscreant activity
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that fail to be detected. While learning allows the detection algorithm to adeptiow, real-world
constraints on the learner typically allow an adversary to programmaticallydinérabilities. We
consider how an adversary can systematically discover blind spots byimme fixed or learning-
based detector to find a low cost (for some cost function) instance thdetbetor does not filter.
As a motivating example, consider a spammer who wishes to minimally modify a spasagees
itis not classified as a spam (here, cost is a measure of how much therapsne modified). As a
second example, consider the design of an exploit that must avoid intaetiection systems (here,
cost may be a measure of the exploit's severity). There are a varietyridespecific mechanisms
an adversary can use to observe the classifier's response to a querpther words, to query a
membership oracle of the filter; for example, the spam filter of a public ema#rsysan be ob-
served by creating a dummy account on that system and sending thesquoetti@t account. By
observing the responses of the detector, the adversary can seaechmbdification while using as
few queries as possible.

The idealized theoretical problem of near-optimal evasion was firsdpmgéowd and Meek
(2005). We continue their investigation by generalizing their results to geimekicing classifiers—
classifiers that partition feature space into two sets, one of which is comhexfamily of convex-
inducing classifiers is a particularly natural set to examine, as it includesathiyfof linear
classifiers studied by Lowd and Meek as well as anomaly detection classierg bounded
PCA (Lakhina et al., 2004), anomaly detection algorithms that use hyperepoundaries (Bishop,
2006), one-class classifiers that predict anomalies by thresholding gHéddhood of a log-
concave (or uni-modal) density function, and quadratic classifiers wittceidn function of the
form x"Ax +b"x+c > 0 if A is semidefinite (see Boyd and Vandenberghe, 2004, Chapter 3), to
name a few. Furthermore, the family of convex-inducing classifiers aldades more complicated
bodies such as the countable intersection of halfspaces, cones, or balls

We also show that near-optimal evasion does not require reverseeerigin the classifier’s
decision boundary, which is the approach taken by Lowd and Meelb§260evading linear classi-
fiers in a continuous domain. Our algorithms for evading convex-indudassifiers do not require
fully estimating the classifier's boundary. Instead, we directly search foinimal-cost evading
instance. Since our algorithms require only polynomially-many queries, whikrse engineering
the general convex case is hard (see Rademacher and Goyal, @d08lgorithms witness a sep-
aration between the complexities of reverse engineering and evasiore $pekial case of linear
classifiers, our algorithms achieve better query complexity than the préwipuislished reverse-
engineering technique. Finally, we also extend near-optimal evasion evajép costs. For these
costs, we show that our algorithms can also be used for near-optimarevast are generally not
efficient. However, in the cases when our algorithms are not efficienshwes that there is no
efficient query-based algorithm.

A preliminary version of this paper was previously published as the r@detson et al., 2010b)
extending our earlier work (Nelson et al., 2010a). This paper is orgdrig follows. We overview
past work related to near-optimal evasion in the remainder of this secti@gchion 2, we formalize
the near-optimal evasion problem, and review Lowd and Meek’s definiindsesults. We present
algorithms for evasion that are near-optimal under weightembsts in Section 3, and we consider
minimizing general, costs in Section 4. We conclude the paper by discussing future direations f
near-optimal evasion in Section 5.
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1.1 Related Work

Lowd and Meek (2005) first explored near-optimal evasion and dpegdl@ method that reverse
engineered linear classifiers in a continuous domain. Our approachatieee that result and im-
proves upon it in three significant ways.

* We consider a more general family of classifiers: the family of convexdimg) classifiers
that partition the space of instances into two sets, one of which is conveés farhily sub-
sumes the family of linear classifiers considered by Lowd and Meek.

» Our approach does not fully estimate the classifier’s decision boundduigh( is generally
hard; see Rademacher and Goyal 2009) or reverse-engineer $sdiets state. Instead,
we directly search for an instance that the classifier labels as negativis atose to the
desired attack instance (an evading instance of near-minimal cost). Luiviflaek previ-
ously demonstrated a direct search technique for linear classifiers led3ospaces, but that
technique is not applicable to the classifiers we consider.

» Even though our algorithms find solutions for a more general family of ifikaiss our algo-
rithms still use only polynomially-many queries in the dimension of the featureesaiad
the accuracy of the desired approximation. Moreover, KtsTEP MULTILINESEARCH
(Algorithm 3) solves the linear case with asymptotically fewer queries thanrtheopisly-
published reverse-engineering technique.

Dalvi et al. (2004) use a game-theoretic approach to preemptively patobt-@ensitive naive
Bayes classifier’s blind spots. They construct a modified classifier msitp detect optimally
modified instances. Bickner and Scheffer (2009) and Kantarcioglu et al. (2009) haendrd this
setting to larger families of classifiers and developed techniques to sokquibrium strategies to
their game. This prior research is complementary to query-based evii®arear-optimal evasion
problem studies how an adversary can use queries to find blind spotdasisifier that is unknown
but queryable whereas their game-theoretic approaches assume ¢hsagglknows the classifier
and can optimize their evasion accordingly at each step of an iterated game.

A number of authors have studied evading sequence-based intrutgotodsystems (IDSs) (Tan
et al., 2002; Wagner and Soto, 2002). In explonmignicry attacksthese authors demonstrated that
real IDSs can be fooled by modifying exploits to mimic normal behaviors. &laeghors used
offline analysis of the IDSs to construct their modifications; by contrastymdlifications are opti-
mized by querying the classifier.

The field of active learning also studies a form of query-based optimizé&icmohn and Cohn,
2000). As summarized by Settles (2009), the three primary approachets/laarning are mem-
bership query synthesis, stream-based selective sampling and pedldmsapling. Our work is
most closely related to the membership query synthesis subfield introducAddbyin (1988)
in which the learner can request the label for any instance in featuoe spther than for unla-
beled instances drawn from a distribution. However, while active leaaridghear-optimal evasion
are similar in their exploration of query strategies, the objectives for thesesditings are quite
different—evasion approaches search for low-cost negative tesamnithin a factor 4 € of an
optimal cost whereas active learning algorithms seek to obtain hypothébkdswgeneralization
error often in a PAC-setting (see Section 2.3 for a discussion on regaggeeering approaches to
evasion and active learning). It is interesting to note, nonethelessethdty in active learning set-
tings (e.g., Dasgupta et al., 2009; Feldman, 2009) have also achievedpody query complexities
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in specific cases. However, we focus solely on the evasion objectideya leave the exploration
of relationships between our results and those in active learning to futuke w

Another class of related techniques that use query-based optimizatiooragradient global
optimization methods often referred to as direct search. Simple examplesseftdahniques in-
clude bisection and golden-section search methods, for finding rootexrema of univariate
functions, and derivative approximation approaches such as thetsee#hod and interpolation
methods (e.g., Burden and Faires, 2000). Combinations of these appsdaclude Dekker’s and
Brent’s algorithms (e.g., Brent, 1973), which exhibit superlinear cayaraze under certain condi-
tions on the query function; that is, the number of queries is inverselyrgtiach the desired error
tolerance. However, while these approaches can be adapted to multiplesingrtheir query
complexity grows exponentially with the dimension. Other approaches incledsriplex method
of Nelder and Mead (1965) and tlmerReECT search algorithm introduced by Jones et al. (1993)
(refer to Jones, 2001 and Kolda et al., 2003 for surveys of direstbemethods), however, we
are unaware of query bounds for these methods. While any direchsemmthods can be adapted
for near-optimal evasion, these methods were designed to optimize adarregiction in a regular
domain with few dimensions whereas the near-optimal evasion problem isvatinizing regular
known functions (the cost function) over an unknown, possibly ifeegand high-dimensional do-
main (the points labeled as negative by the classifier). The methods watpspseifically exploit
the regular structure of, costs and of the convex-inducing classifiers to achieve near-optimality
with only polynomially-many queries.

2. Problem Setup

We begin by introducing our notation and assumptions. First, we assume stextdas are rep-
resented irD-dimensional Euclideafeature spaceX = 0P such as for some intrusion detection
systems (e.g., Wang and Stolfo, 2004). Each component of an instanceis afeaturewhich
we denote agy. We usedy to denote each coordinate vector of the fqin...,1,...,0) witha 1
only at thed™ feature. We assume the feature space representation is known by éreaaghand
there are no restrictions on the adversary’s queries; that is, anypoirfeature space& can be
gueried by the adversary to learn the classifier's prediction at that pbivese assumptions may
not be true in every real-world setting (for instance, spam detectoftaire defined with discrete
features and designers often attempt to hide or randomize their featufer sxtample, see Wang
et al., 2006), but they allow us to investigate strategies taken by a woestdasrsary. We revisit
these assumptions in Section 5.

We further assume the target classifidbelongs to a family of classifier$. Any classifier
f € F is a mappindg : X — 9 from feature space to its response spac®. We assume the
adversary’s attack will be against a fixédso the learning method and the training data used to
selectf are irrelevant. We assume the adversary does not krimw knows its family# . We also
restrict our attention to binary classifiers wiph= {"'—',"+'}.

We assumé € ¥ is deterministic and so it partitions into two sets—the positive clas§” =
{xe X | f(x)="+"} and the negative clas§ = {x € X | f (x) ="'-"}. We take the negative set
to benormalinstances. We assume that the adversary is aware of at least oneeristaach class,

1. Lowd and Meek also consider integer and Boolean-valued featames@mnd derive results for several classes of
learners in these discrete-valued spaces.
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X~ € X;” andx” € X;", and can obsenvig(x) for anyx by issuing anembership querfsee Section 5
for a more detailed discussion).

2.1 Adversarial Cost

We assume the adversary has a notion of utility over the feature spach,wdguantify with a cost
functionA: X — 0% (the non-negative reals); for example, for a spammer, this could be g strin
edit distance on email messages. The adversary wishes to opfioizer the negative class; ;

for example, the spammer wants to send spam that will be classified as nonaial'e ") rather
than as spam-{"). We assume this cost function is a distance to some target inst‘éuamaff+ that

is most desirable to the adversary. We focus on the general class dftaafg (0 < p < ) cost
functions relative to the targef* given by

D 1/p
Aé°>(x—x’*)—(dzcd\xd—x9\"> : (1)
=1

where 0< ¢q < o is the relative cost the adversary associates with alteringthieature. When
the relative costs are unifornsg = 1 for all d, we use the simplified notatiof, to refer to the
cost function. Similarly, when referring to a generic weighted cost funatith weightsc, we use
the notationA®©. We also consider the cases when some featuresdyaved (adversary doesn't
care about thel™ feature) orcy = « (adversary requires thé" feature to match<§). We use
BC(Ay) = {x € X | A(x—y) <C} to denote the cost ball (or sublevel set) centergdwith cost
no more than the thresho@ For instance¢ (Al;xA) is the set of instances that do not exceed
an /¢, cost ofC from the target®. For convenience, we also ug (A) = B° (A;x*) to denote
theC-cost-ball ofA re-centered at the adversary’s targét, since we focus on costs relative to this
instance. Unless stated otherwise, we tal¢ecbst” to mean a weighte€ cost in the sequel.
Unfortunately,/, costs do not include many interesting costs such as string edit distances for
spam and other real-world settings, such as the intrusion detection exaomlabbove where there
may be no natural notion of distance between points. Nevertheless, tlativabjef this paper is
not to provide practical evasion algorithms but rather to understand tbeetfeecapabilities of an
adversary on the analytically tractable, albeit practically restrictive, fanfilfy @osts. Weighted
¢1 costs are particularly appropriate for adversarial problems in whichdbersary is interested
in some features more than others and his cost is assessed based arékeaaavhich a feature
is altered. Moreover, thé;-norm is a natural measure for a word-level edit distance for email
spam, where larger weights model tokens that are more costly to removea(paylpad URL). In
Section 3, we focus on the weightédcosts studied by Lowd and Meek before exploring general
¢p costs in Section 4. In the latter case, our discussion focuses on uniferghta for ease of
exposition, but the results also extend to the cost-sensitive case astpdfes weighted; costs.
Lowd and Meek (2005) definminimal adversarial cost (MAQG)f a classifierf to be

MAC(f,A) £ ir}; [A(x—x"] ;

that is, the greatest lower bound on the cost obtained by any negatisadas They further define
a data point to be agrapproximatenstance of minimal adversarial cos-(MAC) if it is a negative
instance with a cost no more than a faqtbs-€) of the MAC,; that is, everye-IMAC is a member of
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the set
s—IMAC(f,A)é{XEX(‘ A(x—x") g(1+s)-|v|AC(f,A)} . @)

The adversary’s goal is to find aAMAC efficiently, while issuing as few queries as possible.

2.2 Search Terminology

The notion of near optimality introduced in Equation (2) is thatrafltiplicative optimality that

is, ane-IMAC must have a cost within a factor ¢f + €) of the MAC. However, the results of this
paper can also be immediately adapteddaditive optimalityin which we seek instances with cost
no more tham > 0 greaterthan theMAC. To differentiate between these notions of optimality,
we will use the notatiors-IMAC™ to refer to the set in Equation (2) and define an analogous set
n-IMAC() for additive optimality as

n-IMACH (1, A) 2 {x & X~ ) A(x—x") <n+MAC (f,A)} . ?)

We use the terms-IMAC™) andn-IMAC(*) to refer both to the sets defined in Equation (2) and (3)
as well as the members of these sets—the usage will be clear from the context.

Either notion of optimality allows us to efficiently use bounds onNt&C to find ane-IMAC™*)
or ann-IMACH). Suppose there is a negative instance, with costC—, and there is £ > 0
such that all instances with cost no more tianare positive; that iSC™ < MAC(f,A) <C~. Then
the negative instance is e-multiplicatively optimal ifC~ /C* < (1+¢€) whereas it ig)-additively
optimal if C- —C*™ < n. In the sequel, we will consider algorithms that can achieve either additive
or multiplicative optimality via binary search. Namely, if the adversary can ohéter whether an
intermediate cost establishes a new upper or lower bound dviAla then binary search strategies
can iteratively reduce thé#" gap between any boun@s andC;" with the fewest steps. We now
provide common terminology for the binary search and in Section 3 we usexipnto establish a
new bound at each iteration.

Lemma 1 If an algorithm can provide bounds< C* < MAC(f,A) < C, then this algorithm has
achievedC~ —C™)-additive optimality anc(% — 1)-multiplicative optimality.

In thet™ iteration of an additive binary search, theditive gapbetween thé!" boundsC;~ and
G, is given byGt(H =C; — G with Géﬂ defined accordingly by the initial boun@y =C~ and
Cg =C*. The search uses a proposal stegof= (C; +C;")/2, a stopping criterion oGt(H <n
and achieveg-additive optimality in

(+)
[ 4]

steps. In fact, binary search has the best worst-case query comgtaxighievingn-additive
optimality.

Binary search can also be used for multiplicative optimality by searching ionexyial space.
Assuming thaC~ > C* > 0, we can rewrite our upper and lower bound€as= 22 andC* = 2°,
and thus the multiplicative optimality condition beconges b < log,(1+ ¢€); that is, an additive
optimality condition. Thus, binary search on the exponent achievesltiplicative optimality and
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does so with the best worst-case query complexity. iudtiplicative gapof thet! iteration is
Gt(*) = C; /C with G(()*) defined accordingly by the initial bound¥ andCj. Thet™ query
isC = /G -G, the stopping criterion iGt(*) < 1+ ¢ and the search achieveanultiplicative

optimality in
log, (Gé”)

(*) _
= 119% | og, (1 e)

(4)

steps. Although both additive and multiplicative criteria are related, therenvaréifferences be-
tween these notions of optimality.

First, multiplicative optimality only makes sense whgh is strictly positive whereas additive
optimality can still be achieved @ = 0. TakingCg > 0 is equivalent to assuming theft is in the
interior of X;" (a requirement for our algorithms to achieve multiplicative optimality). Otherwise,
whenx” is on the boundary of;*, there is nce-IMAC™) for anye > 0 unless there is some point
X* € X; with O cost. Practically though, the need for a lower bound is a minor hindraias we
demonstrate in Section 3.1.3, there is an algorithm that can efficiently estaliisleraboundCy
for any /¢, cost if such a lower bound exists.

Second, the additive optimality criterion is rextale invariant(i.e., any instanca that satis-
fies the optimality criterion for cosh also satisfies it foA’ (x) = s- A(x) for anys > 0) whereas
multiplicative optimality is scale invariant. Additive optimality is, howe\ahift invariant(i.e., any
instancex' that satisfies the optimality criterion for cosialso satisfies it fo (x) = s+ A(x) for
anys > 0) whereas multiplicative optimality is not. Scale invariance is more salient in mpnal
evasion because if the cost function is also scale invariant (all prapersrare) then the optimality
condition is invariant to a rescaling of the underlying feature spacextmple, a change in units
for all features. Thus, multiplicative optimality is a unitless notion of optimality waerdditive
optimality is not.

The following result states that additive optimality’s lack of scale invarianisva for the
feature space to be arbitrarily rescaled until any fixed level of addip#ienality can no longer be
achieved; that is, the units of the cost determine whether a particular feadtitive accuracy can
be achieved. By contrast multiplicative costs are unitless.

Proposition 2 Consider any hypothesis spage target instance<® and cost function A. If there
exists some > 0 such that no efficient query-based algorithm can finddaMAC™ for any0 <

e < g, then there is no efficient query-based algorithm that can fing-#dAC(+) for any0 < n <
e-MAC(f,A). In particular consider a sequence of classifigradmitting unbounded MACs, and a
sequence, > 0 such thatl/e, = o(MAC(fy,A)). Then if no general algorithm can efficiently find
anep-IMAC™) on each § then no general algorithm can efficiently find g IMAC) for n,, — oo.

Proof Consider any classifidr € # such thatMAC(f,A) > 0. Suppose there exists somes
n-IMAC*) for somen > 0. Lete = n/MAC(f,A) then by definition

A(x—x") <n+MAC(f,A) = (1+€)MAC(f,A) |

implying thatx € e-IMAC™). Then by the contrapositive, if i@IMAC™*) can be efficiently found
for any 0< € < €, then non-IMAC(*) can be efficiently found for any @ n < - MAC(f,A). The
last result is an immediate corollary. |
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The last statement is, in fact, applicable to many common settings. For instanaayfof the
weighted/, costs (with 0< p < o and 0< ¢g < o for all d) the family of linear classifiers and the
family of hypersphere classifiers are both sufficiently diverse to yietth susequence of classifiers
that admit unboundeMIACs as required by the last statement. Thus, the family of convex-inducing
classifiers can also yield such a sequence. Moreover, as we showtiarSg there are indeef)
costs for which there exists> 0 such that no efficient query-based algorithm can fingt iiAC*)
for any 0< € < €. The consequence of this is that there is no general algorithm capaitthiefing
additive optimality for any fixed) with respect to the convex-inducing classifiers for thgseosts.

For the remainder of this paper, we will addressiultiplicative optimality for are-IMAC (ex-
cept where explicitly noted) and defihe= Lé*) andG; = Gt(*). Nonetheless, our algorithms can be
immediately adapted to additive optimality by simply changing the proposal stepijrsgogondi-
tion, and the definitions dﬂ:*) andG;; the binary searches for additive and multiplicative optimality
differ in their proposal steps and stopping criteria only. Finally, while weress query complexity
in the sequel in terms of multiplicativie;, note thaﬂ_é*) = @(Iog%) and so in this way our query
complexities can be rewritten to directly dependson

2.3 Near-Optimal Evasion

Lowd and Meek (2005) introduce the conceptdiersarial classifier reverse engineering (ACRE)
learnability to quantify the difficulty of finding ar-IMAC instance for a particular family of clas-
sifiers, F, and a family of adversarial costg,. Using our notation, their definition ZACRE¢-
learnable is

A set of classifiergr is ACREe-learnable under a set of cost functioa# an algorithm
exists such that for afl € 7 andA € 4, it can find anx € e-IMAC(f,A) using only
polynomially-many membership queries in terms of the dimenBiaihe encoded size
of f, and the encoded size »f andx.

In this definition, Lowd and Meek use encoded size to refer to the lengtheastting of digits
used to encodg x*, andx~. In generalizing their result, we slightly alter their definition of query
complexity. First, to quantify query complexity we use only the dimendiyrand the number of
steps,Le, required by a univariate binary search to narrow the gap to within thieedesccuracy.
By including L¢ in our definition of query complexity, we do not require the encoded size" of
andx~ sinceL implicitly captures the size of the distance between these points as discussed ab
Second, we assume the adversary only has two initial pgints X;~ andx” € X;* (the original

setting used a third™ € X;"): we restrict our setting to the casexdf = xA, yielding simpler search

procedures. Finally, our algorithms do not reverse engineer the decision boundapGRE”
would be a misnomer here. Instead we refer to the overall probledeasOptimal Evasioand
replaceACREze-learnable with the following definition a&-IMAC searchable.

A family of classifiers¥ is e-IMAC searchableunder a family of cost functionst
if for all f € # andA € 4, there is an algorithm that finds somec e-IMAC (f,A)

2. As is apparent in our algorithms, usirg = x* makes the attacker less covert since it is significantly easier to infer
the attacker’s intentions based on their queries. Covertness is notlaiteqal in e-IMAC search, but it would be
a requirement of many real-world attackers. However, since ourigioat to design real attacks but rather analyze
the best possible attack so as to understand our classifier's vulnerahifitiestness can be ignored.
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using polynomially-many membership queriesDrandL,. We will refer to such an
algorithm aefficient

Our definition does not include the encoded size of the clasdifid@rgcause our approach to
near-optimal evasion does not reverse engineer the classifienag@rs. Unlike Lowd and Meek’s
approach for continuous spaces, our algorithms construct queriesviabpy find are-IMAC with-
out reverse engineering the classifier’'s decision boundary; thatisyating the decision surface of
f or estimating the parameters that specify it. Efficient query-based eegargneering fof € F
is sufficient for minimizingA over the estimated negative space. However, generally reverse engi-
neering is an expensive approach for near-optimal evasion, regjguiery complexity that is expo-
nential in the feature space dimension for general convex classesrtlRaller and Goyal, 2009),
while finding ane-IMAC need not be as we demonstrate in this papkr.fact, the requirements
for finding ane-IMAC differ significantly from the objectives of reverse-engineering apghes
such as active learning. Both approaches use queries to reducedlod gersion spacé CcF;
that is, the set of classifiers consistent with the adversary’s memberstijgs, However reverse-
engineering approaches minimize the expected number of disagreemergsmetembers of .
To find ans-IMAC, by contrast, we need only provide a single instanées e-IMAC (f,A), for all
f € , while leaving the classifier largely unspecified; that is, we need to shdw tha

() eIMAC(f,A) £0 .
feF

This objective allows the classifier to be unspecified in muck ofWe present algorithms far-
IMAC search on a family of classifiers that generally cannot be efficientlysevengineered—the
gueries we construct necessarily elicitatMAC only; the classifier itself will be underspecified
in large regions off so our techniques do not reverse engineer the classifier. Similarly, &arlin
classifiers in Boolean spaces, Lowd and Meek demonstrated an effitgenthm for near-optimal
evasion that does not reverse engineer the classifier—it too seaiobetty for ane-IMAC and it
shows that this family is ZMAC searchable fof; costs with uniform feature weights,

3. Evasion of Convex Classes fof; Costs

We generalize-IMAC searchability to the family o€onvex-inducing classifierg °©°"V¢*that par-
tition the feature spac# into a positive and negative class, one of which is convex. The convex-
inducing classifiers include the linear classifiers studied by Lowd and K2&¢€15), anomaly detec-
tors using bounded PCA (Lakhina et al., 2004) and using hyper-sfimemdaries (Bishop, 2006),
one-class classifiers that predict anomalies by thresholding the log-likdlibb a log-concave
(or uni-modal) density function, and quadratic classifiers with a decisiaotion of the form
x"Ax +b"x+c>0if A is semidefinite (see Boyd and Vandenberghe, 2004, Chapter 3). The
convex-inducing classifiers also include bodies such as any interseofi@ancountable number of
halfspaces, cones, or balls.

Restricting ¥ to be the family of convex-inducing classifiers simplifie$MAC search. In
our approach to this problem, we divige®®"™v®X the family of convex-inducing classifiers, into

3. Lowd and Meek (2005) also previously showed that the revergmeegring technique of finding a feature’s sign
witness is NP-complete for linear classifiers with Boolean features buthasthis family was nonetheless2tAC
searchable.
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() (b)

Figure 1: Geometry of convex sets afidballs. () If the positive set;" is convex, finding arf
ball contained within)g*establishes a lower bound on the cost, otherwise at least one of
the ¢, ball's corners witnesses an upper bound. (b) If the negativ&;sds convex, we
can establish upper and lower bounds on the cost by determining whethet an/;
ball intersects with¥;, but this intersection need not include any corner of the ball.

Feonvex— and g eonvext corresponding to the classifiers that induce a convexisebr X;', re-
spectively (of course, linear classifiers belong to both). When thetimegdassX; ™ is convex (i.e.,

f € Feonvex=) the problem reduces to minimizing a (convex) functioonstrained to a convex
set—if X;~ were known to the adversary, then this would correspond to solving\eggmogram.
When the positive clas.xf+ is convex (i.e.f € FNVexH+) however, our task is to minimize the
convex functiorA outside of a convex set; this is generally a hard problem (cf. Section 4tedew
we show that minimizing aii, cost can require exponential query complexity). Nonetheless for
certain cost function4, it is easy to determine whether a particular cost B&l(A) is completely
contained within a convex set. This leads to efficient approximation algorithms.

We construct efficient algorithms fguery-baseaptimization of the (weighted); costA(lc) of
Equation (1) for the family of convex-inducing classifiers. There is gmasetry to this problem
depending on whether the positive or negative class is convex as illastnafégure 1. When the
positive set is convex, determining whether theball CBC(A(f)) is a subset oft;" only requires
querying the vertices of the ball as depicted in Figure 1(a). When thdivegat is convex, deter-
mining whetherBC(A(f)) NX; = 0is non-trivial since the intersection need not occur at a vertex as
depicted in Figure 1(b). We present an efficient algorithm for optimizingidftted)/; costs when
X" is convex and a polynomial randomized algorithm for optimizing any convekwbenX; is
convex. In both cases, we consider only convex sets with non-emptionstelhe algorithms we
present achieve multiplicative optimality via the binary search strategies destus the previous
section. In the sequel, we use Equation (4) to ddfinandC, = A(lc) (x~ —x*) as an initial upper
bound on theMAC. We also assume there is so@g > 0 that lower bounds th®IAC.
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3.1 &-IMAC Search for a ConvexXx;"

Solving thee-IMAC Search problem wheine # "X+ is hard in the general case of a convex cost
A. Here we introduce algorithms for tlig cost that solve the problem as a binary search. Namely,
given initial cost<Cy andC; that bound théAC, our algorithm can efficiently determine whether
B% (A1) C X;t for any intermediate cos” < C; < C; . If the ¢; ball is contained inX;", thenC
becomes the new lower bour, ;. OtherwiseC; becomes the new upper bou@d ;. Since our
objective given in Equation (2) is to obtain multiplicative optimality, our steps wiletdie form
C = /G -C . We now explain how we exploit the properties of thdall and convexity of(;" to
efficiently determine whethes® (A;) is a subset of;" for anyC. We also discuss practical aspects
of our algorithm and extensions to othfgrcost functions.

The existence of an efficient query algorithm relies on three factscA(é)xf*; (2) every/; cost
C-ball centered at* intersects withX;~ only if at least one of its vertices is ik ; and (3)C-balls
of ¢ costs only have 2D vertices. The vertices of thg ball BC (A;) are axis-aligned instances
differing from xA in exactly one feature (e.qg., tild' feature) and can be expressed as

C

A

Xt —-9y , 5
d (5)

which belongs to th€-ball of our/; cost (the coefficien{i normalizes for the weighty on thed™
feature). We now formalize the second fact as follows.

Lemma 3 For all C > 0, if there exists somec X, that achieves a cost of € A” (x —xA), then

there is some feature d such that a vertex of the form of Equéipis in X;~ (and also achieves
cost C by Equation 1).

Proof Suppose not; then there is some X;~ such thaA(f) (x—x*) =C andx hasM > 2 features
that differ fromx” (if x only differs in one feature it would be of the form of Equation 5). Let
{d1,...,du} be the differing features and I, = sign(xdi —x&) be the sign of the difference be-

tweenx andx” along thed;-th feature. For eacti, let & = XA 4 % -bg - 8¢ be a vertex of the form
of Equation (5) which has a co6t(from Equation 1). Thév ver'ticesedi form anM-dimensional
equi-cost simplex of cost on whichx lies; that is,x = zi"ilai - gy for some 0< a; < 1. If all
ey € X;", then the convexity af;* implies that all points in their simplex are " and sax € X;*
which violates our premise. Thus, if any instancejn achieves cost, there is always at least one
vertex of the form Equation (5) ir;~ that also achieves coSt |

As a consequence, if all such vertices of &riyall B (A;) are positive, then all with A(lc) (x) <
C are positive thus establishif@@as a lower bound on tHdAC. Conversely, if any of the vertices
of B (A;) are negative, the@ is an upper bound oNAC. Thus, by simultaneously querying all
2.D equi-cost vertices aB® (A1), we either establis@ as a new lower or upper bound on AC.
By performing a binary search @hwe iteratively halve the multiplicative gap between our bounds
until it is within a factor of 1+ €. This yields are-IMAC of the form of Equation (5).

A general form of this multiline search procedure is presented as Algofitanmd depicted in
Figure 2. MULTILINESEARCH simultaneously searches along the directions in a8aif search
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(@) (b) ()

Figure 2: The geometry of search. (a) Weightedalls are centered around the targ®and have
2-D vertices; (b) Search directions in multi-line search radiate fx6rto probe specific
costs; (¢) In general, we leverage convexity of the cost function wharching to evade.
By probing all search directions at a specific cost, the convex hull ghdiséive queries
bounds the/; cost ball contained within it.

directions that radiate from their origin &t and that are vectors of unit cost; that Aw) = 1

for everyw € M. (We transform a given set of non-normalized search vedtoysnto unit search
vectors by simply applying a normalization constamﬁoii/)‘1 to each vector.) At each step of
MULTILINESEARCH, at most|7/| queries are issued in order to construct a bounding shell (i.e.,
the convex hull of these queries will either form an upper or lower baumitheMAC) to determine
whether B¢ (A) C X;". Once a negative instance is found at d@stve cease further queries at
costC since a single negative instance is sufficient to establish a lower boundaN\ais policy
lazy querying—a practice that will lead to better bounds for a worst-case classifiethdruwhen

an upper bound is established for a cGsta negative vertex is found), our algorithm prunes all
directions that were positive at cd3t This pruning is sound; by convexity, these pruned directions
are positive for all costs less than the new upper bdbmh theMAC. Finally, by performing a
binary search on the cost,MTILINESEARCH finds ane-IMAC with no more than?/| - Le queries

but at least 7|+ L¢ queries. Thus, this algorithm (| %] - Lg).

It is worth noting that, in its present form, BATILINESEARCH has two implicit assumptions.
First, we assume all search directions radiate from a common ox@jrandA(0) = 0. Without
this assumption, the ray-constrained cost funcfda- w) is still convex ins > 0 but not necessar-
ily monotonic as required for binary search. Second, we assume th&octbn A is a positive
homogeneous functicaong any ray fronx?; that is, A(s-w) = |s| - A(w). This assumption al-
lows MULTILINESEARCH to scale its unit search vectors to achieve the same scaling of their cost.
Although the algorithm could be adapted to eliminate these assumptions, theraiglris in Equa-
tion (1) satisfy both assumptions since they are norms centerséd at

Algorithm 2 uses MILTILINESEARCH for /1 costs by takingl/ to be the vertices of the unit-
cost/; ball centered at®. In this case, the search issues at mof ueries to determine whether
BC (A1) is a subset of(;" and so Algorithm 2 isO(L¢ - D). However, MULTILINESEARCH does
not rely on its directions being vertices of theball although those vertices are sufficient to span
the/; ball. Generally, MULTILINESEARCH is agnostic to the configuration of its search directions

1304



QUERY STRATEGIES FOREVADING CONVEX-INDUCING CLASSIFIERS

Algorithm 1 MULTI-LINE SEARCH
MLS(W,x* x~,C{,Cy ,€)

X* X~
t<0 . n
while G /G > 1+¢ do Algorithm 2~ CONVEX X;" SET SEARCH
G« VG -G ConvexSearcfx”,x~,c,g,C")
foralle € W do D « dim(x*)
Query: fl+f (xA+C;-e) C™ A (x~ —xA)
if f{="'—"then W 0
X xA+G-e fori=1toD do
Prunei from W if ff ="+ d 1.5
break for-loop W WL {+d)
enfd i end for
end for return: MLS(7/,x”,x~,C*,C",¢)

1 ¢ G andC, G
if vee W f{ ="+ then C{;l — G
elseC, <+ G
t—t+1
end while
return: x *

Figure 3: Algorithms for multi-line search. Algorithm 1 is a generic procedorgerforming si-
multaneous binary searches along multiple search directions emanatingfreach di-
rection,e € 7/, must be a unit-cost direction. Algorithm 2 uses this i LINESEARCH
procedure to minimize weighted costs when the positive class of a classifier is convex.
For this procedure, every weightt, must be on the rang®, «) although extensions are
discussed in Section 3.1.3.

and can be adapted for any set of directions that can provide a suifficiight bound on the cost
using the convexity of(;" (see Section 4.1.1 for the bounding requirements the search directions
must satisfy). However, as we show in Section 4.1, the number of seasstiahs required to
adequately bound afy cost ball forp > 1 can be exponential iD.

3.1.1 K-STEPMULTI-LINE SEARCH

Here we present a variant of the multi-line search algorithm that betteritxptaning to reduce
the query complexity of Algorithm 1—we call this variakt-STEP MULTILINESEARCH. The
MULTILINESEARCH algorithm consists of 2|%/| simultaneous binary searches (a breadth-first
strategy). This strategy prunes directions most effectively when theegdiody is asymmetrically
elongated relative ta® but fails to prune for symmetrically rounded bodies. We could instead
search each direction sequentially (a depth-first strategy) and still abtaorst case 0O (Lg - D)
qgueries. This strategy uses fewer queries to shrink the cost gap on syoatherounded bodies
but is unable to do so for asymmetrically elongated bodies. We therefqregg@n algorithm that
mixes these strategies.
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At each phase, thi€-STEPM ULTILINESEARCH (Algorithm 3) chooses a single directierand
queries it fork steps to generate candidate bouBdsandB™ on theMAC. The algorithm makes
substantial progress towards reducgwithout querying other directions (a depth-first strategy).
It then iteratively queries all remaining directions at the candidate lowemdBt (a breadth-first
strategy). Again we use lazy querying and stop as soon as a negataecimss found sinc8™
is then no longer a viable lower bound. In this case, although the candidate lis invalidated,
we can still prune all directions that were positiveBat Thus, in every iteration, either the gap is
substantially decreased or at least one search direction is prunedthowetst fork = [/L¢], the
algorithm achieves a delicate balance between the usual breadth-firdepih-first approaches to
attain a better worst-case complexity than either.

Theorem 4 Algorithm 3 will find ane-IMAC with at mostO (Le +/L¢|W|) queries when K=
[VLel.

The proof of this theorem appears in Appendix A. As a consequentheatrem 4, finding an
e-IMAC with Algorithm 3 for an/; cost require®© (L8 + \/LT;D) queries. Further, Algorithm 2 can
incorporateK-sTEP MULTILINESEARCH directly by replacing its function calls to ML.TILINE-
SEARCH with K-STEPMULTILINESEARCH and usingK = [1/L¢].

3.1.2 LowERBOUND

Here we find a lower bound on the number of queries required by anyithigato find ane-IMAC
whenX;" is convex for any convex cost function (e.g., Equation 1dor 1). Below we present a
theorem that provides a lower bound for multiplicative optimality (for additiptroality, there is
an analogous lower bound for anyn < C; —Cg). Notably, since as-IMAC uses multiplicative
optimality, we incorporate a bour@}, > 0 on theMAC into our statement.

Theorem 5 For any D> 0, any positive convex function:AI® — O, any initial bound® < C§ <

C, onthe MAC, and < € < g'—; — 1, all algorithms must submit at leastax{D, Lé*)} membership
0

queries in the worst case to lsemultiplicatively optimal o convex -+,

The proof of this resultis in Appendix B. In this theorem, we restrictthe intervaI(O, g—i — 1)
0

since, outside of this interval, the strategy is trivial. Eer 0 no approximation algorithm terminates

and fore > g'—; —1,x" is ane-IMAC, so no queries are required.
0

Theorem 5 shows thatmultiplicative optimality require:Q(Lg*) + D) queries. Thus, we see
that ourK-sSTEPMULTILINESEARCH algorithm (Algorithm 3) has close to the optimal query com-
plexity for ¢1-costs with itsO(Lg + +/LeD) queries. This lower bound also applies to @gycost
with p > 1, but in Section 4 we show lower bounds for- 1 that substantially improve this result.

3.1.3 SPECIAL CASES

Here we present a number of special cases that require minor modifgcagidgorithms 1 and 3
primarily as preprocessing steps.

Reuvisiting Linear Classifiers.owd and Meek originally developed a method for reverse engi-
neering linear classifiers for @ cost. First their method isolates a sequence of points koo x*
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Algorithm 3~ K-STEP MULTI-LINE SEARCH

KMLS(%W, x4, x~,C{,Cy , €,K)
X* X~
t«0
while G /C" > 1+edo
Choose a directioac W
Bt «+ G
B~ «+C
for K stepsdo
B+ VBT B~
Query: fe«f (x+B-¢)
if fo='+'thenBT <~ B
elseB~ + Band x* + x"+B-e
end for
foralli € W\ {e} do
Query: ft «f (xA+(B¥) i)
if f="—"then
X* XA+ (BT)-i
Prunek from W if fl ="+
break for-loop
end if
end for
C¢ B
if Vie W ff ='+'thenC,; + B"
elseC , < B"
t+t+1
end while
return: x *

Figure 4: Algorithm for multi-line search. It performs simultaneous binagyc®es along multiple
unit search directions emanating frorh. Algorithm 3 is asympototically more efficient
than Algorithm 1 wherK = [/L¢| and can be used as a substitute for it in Algorithm 2.

that cross the classifier's boundary and then the method estimates thplagp&rparameters using
D binary line searches. However, as a consequence of the ability to riffyaieinimize our objec-
tive whenX;" is convex, we immediately have an alternative method for linear classifiecauBe
linear classifiers are a special case of convex-inducing classifiggsrithm 2 can be applied, and
our K-STEPMULTILINESEARCH algorithm improves on complexity of Lowd and Meek’s reverse-
engineering technique® (L, - D) queries and applies to a broader family of classifiers.

While Algorithm 2 has superior complexity, it uses2 search directions rather than tbe
directions used in the approach of Lowd and Meek, which may requireeohnique to issue more
gueries in some practical settings. However, for some restrictive cladaiindies, it is also pos-
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sible to eliminate search directions proved to be infeasible based on thataetef queries. For
instance, given a sel/ of search directionst,queries{xi}::1 and their corresponding responses
{yi }Ll, a search directioacan be eliminated fromi/ if for all C;" < a < C; there does not exist
any classifief € ¥ consistent with all previous queries (i.e(x~) ="'-', f (xA) ="+"and for all
i€ {1,...,t},f (X') =) that also satisfies(a - ) ="'~ andf (a-i) = '+ for everyi € W\ {e}.
That is,e is feasible if and only if it is the only search direction among the set of remaseagch
directions, 7/, that would be classified as a negative for a cobly some consistent classifier. Fur-
ther, since subsequent queries only restrict the feasible spacaafthe set of consistent classifiers
ﬁ, pruning these infeasible directions is sound for the remainder of thehsear

For restrictive families of convex-inducing classifiers, these feasibiliditmns can be effi-
ciently verified and may be used to prune search directions without issuithgfgueries. In fact,
for the family of linear classifiers written d$x) = sign(w "x + b) for a normal vectow and dis-
placemenb, the above conditions become a set of linear inequalities along with quadeitair
ities corresponding to the constraint involving search directions. Thideamast as the following
optimization program with respect tq w andb:

min  o-w'e+b

a,w,b
aelCGhG)
wix +b <0
st. wxA+b >0

yw'x +b) >0 Vie{l,...t}
a-wli+b >0 Vie W\{e}.

If the resulting minimum is less than zero, directiens feasible, otherwisee can be pruned.
Such programs can be efficiently solved and may allow the adversaryidbyrafiminate infeasible
search directions without issuing additional queries. However, refifiege pruning procedures
further is beyond the scope of this paper.

ExtendingM uLTI LINESEARCH Algorithms to Weightsgc= o or ¢g = 0. In Algorithm 2, we
reweighted thel™ axis-aligned directions by a factééf to make unit cost vectors by implicitly as-
sumingcy € (0,). The case of immutable features whege= « is dealt with by simply removing
those features from the set of search directiéisused in the MUILTILINESEARCH. In the case
of useless or unconstrained features whggr- 0, MULTILINESEARCH-like algorithms no longer
ensure near-optimality because they implicitly assume that cost balls aredubseis. Ifcy = 0,
thenBO (A) is no longer bounded and 0 cost can be achievag ibnywhere intersects the subspace
spanned by the 0-cost features—this makes near-optimality unachievdess a negative 0-cost
instance can be found. In the worst case, such an instance coullitsardy far in any direction
within the 0-cost subspace making search for such an instance intradidiletheless, one pos-
sible search strategy is to assign all 0-cost features a non-zero \iledgltdecays quickly toward
0 (e.g.,cq = 27! in thet™ iteration) as we repeatedly rerunUMriLINESEARCH on the altered
objective forT iterations. We will either find a negative instance that only alters O-coturfsa
(and hence is a IMAC), or it terminates with a non-zero cost instance, which is-#MAC if no
0-cost negative instances exist. This algorithm does not ensur@pterality but may be suitable
for practical settings using some fix@druns.

Lack of an Initial Lower Cost Boundthus far, to find arg-IMAC our algorithms have searched
between initial bound€] andCy, but, in generalCj may not be known to a real-world adversary.
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We now present the BRALSEARCH algorithm (Algorithm 4) that efficiently establishes a lower
bound on theMAC if one exists. This algorithm performs a halving search on the exponemj alo
a single direction to find a positive example, then queries the remaining direetiohis candidate
bound. Either the lower bound is verified or directions that were posiavebe pruned for the
remainder of the search.

Algorithm 4~ SPIRAL SEARCH

SpiralSearc{ W, xA,Cy)
t< O0and? « 0
repeat
Choose a directior € W
Removee from W and?’ < Y U{e}
Query: fe« f <XA+C5 272 -e)
if fe="—"then
W+ wWuU{e} and? « 0
tt+1
end if
until W =0
Cy«Cy-22
ift>0thenCy +C, -272"
return: (V,C5.Cy)

Figure 5: Algorithm for establishing an initial lower bound on the cost.

At thet!™ iteration of S IRALSEARCH, a direction is selected and queried at the candidate lower
bound of(Cg)Z‘Z‘. If the query is positive, that direction is added to the $&bf directions
consistent with the lower bound. Otherwise, all positive direction®’iare pruned, a new upper
bound is established, and the candidate lower bound is reduced with anestially decreasing

exponent. By definition of th&MAC, this algorithm will terminate after = |log,log, W%_A)]

iterations. Further, in this algorithm, multiple directions are probed only durimgtites with
positive queries and it makes at most one positive query for each diredtius, given that some
lower boundC{ > 0 does exist, BIRALSEARCH will establish a lower bound withD (L; + D)
queries, wheréd.; is given by Equation (4) defined usii@ = MAC(f,A); the largest possible
lower bound.

This algorithm can be used as a precursor to any of the previous esértipon completion,
the upper and lower bounds it establishes have a multiplicative ga"it)fbf(?rt > 0or2fort=0.
From the definition ot provided above in terms of thelAC, MULTILINESEARCH can hence
proceed usinde = L;. Further, the search directions pruned IA\LSEARCH are also invalid
for the subsequent MLTILINESEARCH so the setl returned by 8IRALSEARCH will be used as
the initial set? for the subsequent search. Thus, the query complexity of the sudrsesparch is
the same as if it had started with the best possible lower bound.

4. If no lower bound on the cost exists, no algorithm can finc4MAC. As presented, this algorithm would not
terminate, but in practice the search would be terminated after sufficieatly iterations.
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Lack of a Negative ExampleDur algorithms can also naturally be adapted to the case when
the adversary has no negative examypte This is accomplished by queryirig balls of doubly
exponentially increasing cost until a negative instance is found. Duritf'titeration, we probe
along every search direction at a c¢&f )22t; either all probes are positive (and we have a new
lower bound) or at least one is negative and we can terminate the s€arcé.a negative example
is located (having probed fdr iterations), we must ha\,(@O*)ZZFl <MAC(f,A) < (CO+)22T; thus,

MAC(f,A) oT-1

T= {Iogzlog2 o l We can subsequently performuMTiLINESEARCHWith CT =22~ and

G = 22" that is, log Go = 27 ~L. This precursor step requires at mpg{| - T queries to initialize
the MULTILINESEARCH algorithm with a gap such that = {(T —1)+log, m1 according
to Equation (4).

If there is neither an initial upper bound or lower bound, we proceedrblgipg each search

direction at unit cost using an additiorj@’| queries. We will subsequently have either an upper or
lower bound and can proceed accordingly.

3.2 &-IMAC Learning for a Convex X;~

Here, we minimize a convex cost functiédnwith bounded cost balls (we focus on weightéd
costs in Equation 1) when the feasible s&t is convex. Any convex function can be efficiently
minimized within a known convex set (e.g., using an ellipsoid or interior point ndeee Boyd and
Vandenberghe 2004). However, in our problem, the convex set isamalyssible via membership
gueries. We use a randomized polynomial algorithm of Bertsimas and Ven288l4)(to minimize
the cost functiorA given an initial pointx~ € X;". For any fixed costC', we use their algorithm

to determine (with high probability) whethef ™ intersects withs® (A); that is, whetheC! is a
new lower or upper bound on thdAC. With high probability, this approach can find atMAC

in no more thark repetitions using binary search. The following theorem is the main resulisof th
section.

Theorem 6 Let cost function A be convex and have bounded balls; that is, bousutdevel sets.
Let the feasible set;” be convex and assume there is somerandy € X; such thatX; contains
the cost ballB" (A;y). Then given access to an oracle returning separating hyperplanesdok th
cost balls, Algorithm 7 will find as-IMAC usingO* (D®) queries with high probability.

The proof of this result is outlined in the remainder of this section, and ishas&ertsimas
and Vempala (2004, Theorem 14). We first introduce their randomizedga@illiglgorithm, then we
elaborate on their procedure for efficient sampling from a convex, oy finally we present our
application to optimization. In this section, we focus only on weightedosts (Equation 1) and
return to more general cases in Section 4.2.

3.2.1 INTERSECTION OFCONVEX SETS

Bertsimas and Vempala present a query-based procedure for deteymimither two convex sets
(e.g.,.X;” and theAq-ball of radiusC') intersect. Their NTERSECTSEARCH procedure, which we

5. 0*(-) denotes the standard complexity notatiof) without logarithmic terms. The dependencesis in these
logarithmic terms, see Bertsimas and Vempala (2004) for details.
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Algorithm5  INTERSECTSEARCH

IntersectSearcfrP?, Q = {xI € P°} ,xA,C)
fors=1toT do
(1) Generate ® samples{x!}
Choosex from Q,

Algorithm 6 ~ HIT-AND-RUN
HitRun(2, {y!} ,x°)

2N fori=1toK do

=1 (1) Choose a random direction:

xJ +— HitRun(?s1, Q,x) vj ~N(O, 1)1
(2) If any xI, A(x) —x*) < C terminate the for- Ve2viy _
loop (2) Sample uniformly along using

(3) Put samples into 2 sets of sike rejection sam[i)!?g: .
R(_{Xj};\l:l and5<_{xj}j22N+l :;h(;(;?a»s.t.x +w-veP

(2 § Saiex X o Unit (0,6)

(5) Computes using Equation (7) X x14w-v

(6) PS < P51 Hys

W+ W
(7) Keep samples itP® until x' € P
Q+— {xeSAxe P} end for
end for Return: xK

Return: the found[x;, ?®, QJ; or No Intersect

Figure 6: Algorithms used for the randomized ellipsoid algorithm of Bertsimds/ampala. N-
TERSECTSEARCH is used to find the intersection between a pair of convex seiss
gueryable andB provides has a separating hyperplane from Equation (7). Note that the
ROUNDING algorithm discussed in Section 3.2.2 can be used as a preprocessing step s
that 0 is near-isotropic and to obtain the samplesor The HIT-AND-RUN algorithm
is used to efficiently obtain uniform samples from a bounded near-isotcopivex set,

P, based on a set of uniform samples from{'y,j} , and a starting point°.

present as Algorithm 5, is a randomized ellipsoid method for determining whibter is an in-
tersection between two bounded convex s€tss only accessible through membership queries and
B provides a separating hyperplane for any point outside it (for ouslpno these sets correspond
to X; and ind (A1) respectively). They use efficient query-based approaches toromyf sample
from © to obtain sufficiently many samples such that cuttihdprough the centroid of these samples
with a separating hyperplane frofh significantly reduces the volume @f with high probability.
Their technique thus constructs a sequence of progressively smalsléesetsPs ¢ P51 until
either the algorithm finds a point i8N B or it is highly likely that the intersection is empty.

Our problem reduces to finding the intersection betw&gnand B (A1). ThoughXx;™ may
be unbounded, we are minimizing a cost with bounded cost balls, so we st@adnuse the set
PO =X, NB*R(Ay;x") (whereR=A(x~ —x") > C'), which is a convex bounded subsetXf.
Since, by the triangle inequality, the bR (A;;x~) centered ak~ envelops all of8% (Aq;x*)
centered ax”, the setP® contains the entirety of the desired intersectitin,N B (A1), if it exists.
We also assume that there is some 0 such that there is anball contained in the convex s&f ;
that is, there existg € X;~ such that the-ball centered ay, B' (A1;y), is a subset of;". This
assumption both ensures thgt has a non-empty interior (a requirement for tig-AND-RUN
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Algorithm 7~ CONVEX X;~ SET SEARCH

SetSearch?, Q = {x! € P} ,x*,x~,C{,Cq ,€)
X* <X andt«0
while G /C" > 1+edo
G+~ VC -G
[x*, 7', Q] + IntersectSearcft?, Q,x*,&)
if intersection foundhen
Cig = A(x" —x*) andG, G
P+ P andQ + Q'
else
Ci1 <G andG,; + G
end if
t—t+1
end while
Return: x*

Figure 7: Algorithm that efficiently implements the randomized ellipsoid algorithiBestsimas
and Vempala. BTSEARCH performs a binary search for adMAC using the randomized
INTERSECTSEARCH procedure to determine, with high probability, whether or Aot
contains any points less than a specified cOst,Note that the RUNDING algorithm
discussed in Section 3.2.2 can be used as a preprocessing stepBdsthatr-isotropic
and to obtain the samples fQ.

algorithm discussed below) and it provides a stopping condition for theatbatersection search
algorithm.

The foundation of Bertsimas and Vempala’s search algorithm is the capabikgntple uni-
formly from an unknown but bounded convex body by means ofHtlteaAND-RUN random walk
technique (Algorithm 6) introduced by Smith (1996). Given an instasice P51, HIT-AND-RUN
selects a random directionthroughx! (we return to the selection of in Section 3.2.2). Since
251 is a bounded convex set, the §bt= {w> 0| xI +wv € P51} is a bounded interval index-
ing all feasible points along directionthroughx!. Samplingw uniformly from Q (using rejection
sampling) yields the next step of the random walk- wv. As noted above, this random walk
will not make progress if the interior aPS~! is empty (which we preclude by assuming thét
contains arr-ball), and efficient sampling also requires ti2t ! is sufficiently round. However,
under the conditions discussed in Section 3.2.2HilteAND-RUN random walk generates a sample
uniformly from the convex body aftep* (D3) steps (Loasz and Vempala, 2004). We now detall
the overall NTERSECTSEARCH procedure (Algorithm 5) and then discuss the mechanism used to
maintain efficient sampling after each successive cut. It is worth notingMbatithm 5 requires
20 to be in near-isotropic position and thatis a set of samples from it; these requirements are met
by using the RUNDING algorithm of Lovasz and Vempala discussed at the end of Section 3.2.2.

Randomized Ellipsoid MethodVe useHIT-AND-RUN to obtain 2N sample,{xj} fromPs~1 ¢
X; for a single phase of the randomized ellipsoid method. If any sariatisfiesh; (xj — xA) <
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C!, thenx! is in the intersection of;~ and 3% (A1) and the procedure is complete. Otherwise, we

want to significantly reduce the size #F1 without excluding any of3% (A1) so that sampling
concentrates toward the intersection (if it exists)—for this we need a atapahyperplane for
B (Aq). For any pointy ¢ BS (A;), the (sub)gradient of thg cost is given by

h = casign(ya —X4) . (6)

and is a separating hyperplane joand B (A1).

To achieve efficiency, we choose a pome PS5t so that cuttingPS! throughz with the
hyperplanen? eliminates a significant fraction @1, To do soz must be centrally located within
PS~1, We use the empirical centrom= N~1 > xex X of the half of our samples iR ; the other half
will be used in Section 3.2.2. We c#f~* with the hyperplan&? throughz; that is,PS = P51 N #,
where#4, is the halfspace

7, = {x ( x h? < zThZ} . @)

As shown by Bertsimas and Vempala, this cut achieet&Ps) < %vol (5?5‘1) with high probability
if N = 0* (D) and?S~! is near-isotropic (see Section 3.2.2). Since the ratio of volumes between the
initial circumscribing and inscribing balls of the feasible se(ﬂ¢r)D, the algorithm can terminate
after T = O(Dlog(R/r)) unsuccessful iterations with a high probability that the intersection is
empty.

Because every iteration in Algorithm 5 requitds= O* (D) samples, each of which ne&d=
0* (D*) random walk steps, and there are= O* (D) iterations, the total number of membership
queries required by Algorithm 5 i6* (D).

3.2.2 S\MPLING FROM A QUERYABLE CONVEX BODY

In the randomized ellipsoid method, random samples are used for two parpgstimating the con-
vex body’s centroid and maintaining the conditions required foHiiTeAND-RUN sampler to effi-
ciently generate points uniformly from a sequence of shrinking convdieboUntil this point, we
assumed thelT-AND-RUN random walk efficiently produces uniformly random samples from any
bounded convex bod¥ accessible through membership queries. However, if the body is severely
elongated, randomly selected directions will rarely align with the long axis obtity and our
random walk will take small steps (relative to the long axis) and mix slowly. Fosémpler to mix
effectively, we need the convex bodyto be sufficiently round, or more formallyear-isotropic
for any unit vectow, Ey.» [(vT (X —Exwp [x]))z] is bounded between/2 and 32 of vol (?P).

If the body is not near-isotropic, we must rescalevith an appropriate affine transformation
T so the resulting transformed body is near-isotropic. With sufficiently many samples fram
we can estimat& as their empirical covariance matrix. Instead, we resgaleplicitly using a
technique described by Bertsimas and Vempala (2004). We maintainaaesufficiently many
uniform samples from the bod¥®, and in theHIT-AND-RUN algorithm (Algorithm 6), we sample
the directionv based on this set. Intuitively, because the sample3 are distributed uniformly in
PS, the directions we sample based on the pointg implicitly reflect the covariance structure of
PS. This is equivalent to sampling the directigrfrom a normal distribution with zero mean and
covariance ofP.

We must ensurd) is a set of sufficiently many samples froft after each cut takingps «+
P51 Hys. To do so, we initially resampleN points from#?S~1 using HIT-AND-RUN—half of

1313



NELSON, RUBINSTEIN, HUANG, JOSEPH LEE, RAO AND TYGAR

these R, are used to estimate the centraidor the cut and the other half, are used to repopulate
Q after the cut. Becausé contains independent uniform samples fratfr!, those in®s after
the cut constitute independent uniform samples fiBi(i.e., rejection sampling). By choosing
N sufficiently large, our cut will be sufficiently deep and we will have sidfitly many points to
resamplePs after the cut.

Finally, for this sampling approach to succeed, we need the initia# i be transformed into
near-isotropic position and we also need an initial@eif uniform samples from the transformed
Y as input to Algorithm 5. However in our problem, we only have a single poirt X;~ and our
set, %, need not be near-isotropic. Fortunately, there is an iterative proedidat uses theiT-
AND-RUN algorithm to simultaneously transform the initial convex s, into a near-isotropic
position and construct our initial set of samplék, This algorithm, the RUNDING algorithm as
described by Lo&isz and Vempala (2003), us@é(D“) membership queries to find a transformation
that placegP? into a near-isotropic position and produces an initial set of samples fromeitusa/
this as a preprocessing step for Algorithms 5 and 7; that is, giyermndx~ € X;~, we construct
P =X, N‘BR(A;x~) and then can use thed®NDING algorithm to transforn®® and produce an

initial uniform sample from it; that isQ = {xj € zPO}. These sets are then the inputs to our search
algorithms.

3.2.3 OPTIMIZATION OVER ¢1 BALLS

We now revisit the outermost optimization loop (for searching the minimum feasi®® of the
algorithm and suggest improvements. These improvements are reflectedimabprocedure 8T1-
SEARCH in Algorithm 7—the total number of queries required is at[E‘o(DE’). Again, Algorithm 7
requires? to be near-isotropic and th& is a set of samples from it, which is accomplished by the
ROUNDING algorithm discussed at the end of Section 3.2.2. First, noticetemtdx— are the same
for every iteration of the optimization procedure. Further, in each iterafiétigorithm 7, the new
set,P, remains near-isotropic and the n&is a set of samples from it since the sets returned by
Algorithm 5 retain these properties. Thus, the g&tand the set of sampleg, = {xj S T}, main-
tained by Algorithm 7 are sufficient to initialize\irERSECTSEARCH at each stage of its overall
binary search ove€!, and we only need to execute th@RNDING procedure once as a prepro-
cessing step rather than re-invoking it before every invocationoERSECTSEARCH. Second, the
separating hyperplar® given by Equation (6) does not depend on the target@dstit only onx”,

the common center of all thi balls used in this search. In fact, the separating hyperplane at point
y is valid for all #1-balls of costC < A(y —x*). Further, ifC < C!, we haveBC (A1) C B (Ay).
Thus, the final state from a successful calltaERSECTSEARCH for theC!-ball can be used as the
starting state for any subsequent calltaERSECTSEARCH for all C < C!. Hence, in Algorithm 7,

we update? andQ only when Algorithm 5 succeeds.

4. Evasion for General/, Costs

Here we further extene-IMAC searchability over the family of convex-inducing classifiers to the
full family of ¢, costs for any < p < ». As we demonstrate in this section, mafycosts are not
generallye-IMAC searchable for ak > 0 over the family of convex-inducing classifiers (i.e., we
show that finding als-IMAC for this family can require exponentially many queries in D &pd In
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fact, only the weighted; costs have known (randomized) polynomial query strategies when either
the positive or negative set is convex.

4.1 Convex Positive Set

Here we explore the ability of the MLTILINESEARCH and K-STEP MULTILINESEARCH algo-
rithms presented in Section 3.1 to find solutions to the near-optimal evasiolemrdétr /, cost
functions withp # 1. Particularly forp > 1 we will be exploring the consequences of using the
MULTILINESEARCH algorithms using more search directions than just thB 2xis-aligned di-
rections. Figure 8 demonstrates how queries can be used to constpectana lower bounds on
generallp costs. The following lemma also summarizes well-known bounds on gefjecaists
using an¢y cost.

Lemma 7 The largest, (p > 1) ball enclosed within a C-cog ball has a cost of eD’# and for
p = o the costisGD 2.

4.1.1 BOUNDING ¢p BALLS

In general, suppose we probe along some séfl afnit directions and at some point we have at
least one negative point supporting an upper bour@oandM positive points supporting a lower
bound ofCj . The lower bound provided by thos& positive points is the cost of the largégtcost
ball that fits entirely within their convex hull; let's say this costd§ < C§. In order to achieve

e-multiplicative optimality, we nee(% < 1+ ¢, which we can rewrite as

S\ (o
(&)(&)=re.

This allows us to break the problem into two parts. The first 1@§igCJ is controlled solely by the
accurac) achieved by running the multiline search algorithmlfgisteps whereas the second ratio
CJ/CT depends only on how well thg, ball is approximated by the convex hull of the search
directions. These two ratios separate our task into choddimgdL; so that their product is less
than 1+ €. First we can choose parametarg 0 andp > 0 so that1+a)(1+ ) < 1+¢. Then we

.

chooseM so that%"T =1+ B and usd 4 steps so that multiline search withdirections will achieve

g& = 1+a. In doing so, we create a generalized multiline search that can achaudtiplicative
0 . .

optimality.

In the case op = 1, we previously saw that choosiiy= 2- D allows us to exactly reconstruct
the/; ball so thaiCJ/CJr =1 (i.e., =0). Thus by takingx = €, we recover our original multiline
search result.

We now address costs wheBe> 0. For a MULTILINESEARCH algorithm to be efficient, it is
necessary tha%% = 1+ 3 can be achieved with polynomially-many search directions (in DLaihd
for somep < ¢; otherwise,(1+ a)(1+B) > 1+ € and the MULTILINESEARCH approach cannot
succeed for ang > 0. Thus, we quantify how many search directions (or queries) aréregjo
achieve% < 1+¢&. Note that this ratio is independent of the relative size of these costs, smuvith
loss of generality we will only consider bounds for unit-cost balls. Thuescompute the largest
value ofC' that can be achieved for the unit-cdgtball (i.e., we make&] = 1) within the convex
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Figure 8: Convex hull for a set of queries and the resulting boundifig fua several/, costs.
Each row represents a unique set of positive (¥égoints) and negative (black' points)
gueries and each column shows the implied upper bound (the green dadihadd lower
bound (the solid blue ball) for a differefi§ cost. In the first row, the body is defined by a
random set of seven queries, in the second, the queries are aloraptdeate axes, and
in the third, the queries are around a circle.

hull of M queries. In particular, we quantify how many queries are required ie\axh

CT>i

“1l+e

We would like to show that only polynomially-many are required for at leastesvalues of as
this is sufficient for a MULTI LINESEARCH approach to be efficient.

Lemma 8 If there exists a configuration of M unit search directions with a convéixthat yields
a bound C for the cost function A, theMULTILINESEARCH algorithms can use those search
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directions to achieve-multiplicative optimality with a query complexity that is polynomial in M
and L\ for any

1
5>E_1'

Moreover, if the M search directions yielde 1 for the cost function A, thel ULTIL INESEARCH
algorithms can achieve-multiplicative optimality with a query complexity that is polynomial in M
and L\ for anye > 0.

Notice that this lemma also reaffirms that foe 1 using theMl = 2- D axis-aligned directions
allows MULTILINESEARCH algorithms to achieve-multiplicative optimality for anye > 0 with a
query complexity that is polynomial ikl andLg*).

4.1.2 MULTILINE SEARCHFORO< p<1

A simple result holds here. Namely, since the épiball bounds any unit, balls with 0< p< 1, we
can achievétg/CJr =1 using only the 2D axis-aligned search directions. Thus, forany @ < 1,

we can efficiently search for any value ©f> 0. Whether or not any,, (0 < p < 1) cost function
can be efficiently optimized with fewer search directions is an open question.

4.1.3 MULTILINE SEARCH FORp>1

For this case, we can trivially use thebound or¥,, balls as summarized by the following corollary.

-1

Corollary9 Forl< p<wande e (DpT -1 oo) any multi-line search algorithm can achieve

e-multiplicative optimality on f using M= 2- D search directions. Similarly fog € (D —1,0)

any multi-line search algorithm can achiegenultiplicative optimality on & also using M= 2-D

directions.

Proof From Lemma 7, the largest co-centergdoall contained within the unit; ball has radius
1—

DTp cost (orD for p = ). The bounds o then follow from Lemma 8. [ |

Unfortunately, this result only applies for a rangeedhat grows withD, which is insufficient
for e-IMAC searchability. In fact, for some fixed valuesgfthere is no query-based strategy that
can bound’;, costs using polynomially-many queriesinas the following result shows.

Theorem 10 For p> 1, D > 0, any initial bound< < CO+ <C, onthe MAC, and ¢ (0, 2%1 — 1)

(or € € (0,1) for p = »), all algorithms must submit at Ieael'g’8 membership queries (for some
constantipe > 1) in the worst case to bemultiplicatively optimal orngF €°"eX+" for ¢, costs.

The proof of this theorem and the definitionaf are provided in Appendix C. A consequence
of this result is that there is no query-based algorithm that can efficientyafie-IMAC of any ¢,

cost (p > 1) for anyfixede within the range G< € < Zp;pl —1 (or 0< € < 1 for p= ) on the family
Feonvexit  However, from Theorem 9 and Lemma 8, multiline-search type algorithntseeifiy

find thee-IMAC of any/,, cost (p > 1) for anye € (Dp%v-l -1, oo) (orD—1<e<oofor p=o). It
is generally unclear if efficient algorithms exist for any valueg between these intervals, but in
the following section we derive a stronger bound for the qase2.
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4.1.4 MULTILINE SEARCH FORp=2

Theorem 11 For any D> 1, any initial bound$) < C;,r < Cy onthe MAC, and < € < g—‘?: -1, all
0
D_2
algorithms must submit at leagt > membership queries (wheeg =

case to be-multiplicatively optimal onF €©©™VeX+' for ¢, costs.

(1+e)®
(1+€)2-1

> 1) in the worst

The proof of this result is in Appendix D.
This result says that there is no algorithm that can generally achipudtiplicative optimality

for /5 costs for anyfixede > 0 using only polynomially-many queries i since the ratlcg could

be arbitrarily large. It may appear that Theorem 11 contradicts CordlaHowever, Corollary 9
only applies for an interval of that depends oB; that is,e > v/D — 1. Interestingly, substituting
this lower bound ore into the bound given by Theorem 11, we get that the number of required
queries fore > /D — 1 need only be

2 N\ 2 b2
2
wos (JArr )T (DT
— \(1+¢)2-1 D-1
which is a monotonically increasing functionlinthat asymptotes afe~ 1.64. Thus, Theorem 11

and Corollary 9 are in agreement since for /D — 1, the former only requires that we need at
least 2 queries.

4.2 Convex Negative Set

Algorithm 7 generalizes immediately to all weightég costs p > 1) centered ak” since they
are convex. For these costs, an equivalent separating hyperglagecdn be used in place of
Equation (6). They are given by the equivalent (sub)-gradient&,foost balls:

W, = ca-sign(ys—x})- ya—xb \7
g A (y —xA)

W = cd-sign(yd—di)‘H{lyd—XQl:A&S)(y—XA)}-

By only changing the cost functiohand the separating hyperplaméused for the halfspace cutin
Algorithms 5 and 7, the randomized ellipsoid method can also be applied for éigited/,, cost
AS with p> 1.

For more general convex cosis we still have that everZ-cost ball is a convex set (i.e., the
sublevel set of a convex function is a convex set; see Boyd and Wardghe 2004, Chapter 3) and
thus has a separating hyperplane. Further, since folDamyC, B¢ (A) c BP (A), the separating
hyperplane of thé®-cost ball is also a separating hyperplane of@heost ball and can be re-used
in our Algorithm 7. Thus, this procedure is applicable for any convex wwgtion, A, so long as
we can compute the separating hyperplanes of any cost ballafany pointy not in the cost ball.

For non-convex cost& such as weighted, costs with 0< p < 1, minimization over a convex
setX; is generally hard. However, there may be special cases when minimizingsost can be
accomplished efficiently.
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5. Conclusions and Future Work

In this paper, we studsrIMAC searchability of convex-inducing classifiers. We present membership
guery algorithms that efficiently accomplisHMAC search on this family. When the positive class
is convex, we demonstrate efficient techniques that outperform thépsekeverse-engineering
approaches for linear classifiers in a continuous space. When théveegass is convex, we
apply the randomized ellipsoid method introduced by Bertsimas and Vempalaitvaeffficient
€-IMAC search. If the adversary is unaware of which set is convex, theyrivgally run both
searches to discover aAdMAC with a combined polynomial query complexity. We also show our
algorithms can be efficiently extended for a number of special circumstakhtmst importantly, we
demonstrate that these algorithms can succeed without reverse engjriberaiassifier. Instead,
these approaches systematically eliminate inconsistent hypotheses anesgikaly concentrate
their efforts in an ever-shrinking neighborhood oM&C instance. By doing so, these algorithms
only require polynomially-many queries in spite of the size of the family of alvegfinducing
classifiers.

We also consider the family d@f, costs and show that “°"*is only generallye-IMAC search-
able for alle > 0 whenp = 1. For 0< p < 1, the MULTILINESEARCH algorithms of Section 3.1
achieve identical results when the positive set is convex, but the norexity of these/, costs
precludes the use of the randomized ellipsoid method when the negativeseiéx. The ellipsoid
method does provide an efficient solution for convex negative sets wheh (since these costs are
convex). However, for convex positive sets, our results show ¢t £ 1 there is no algorithm that
can efficiently find are-IMAC for all € > 0. Moreover, forp = 2 we prove that there is no efficient
algorithm for finding are-IMAC for any fixed value o€.

By studyinge-IMAC searchability, we provide a broader picture of how machine learning tech-
niques are vulnerable to query-based evasion attacks. Exploringppeeual evasion is important
for understanding how an adversary may circumvent learners inigesansitive settings. In such
an environment, system developers are hesitant to trust proceduresathareate vulnerabilities.
The algorithms we present are invaluable tools not for an adversarywé&ogebetter attacks but
rather for analysts to better understand the vulnerabilities of their filtersframework provides
the query complexity in the worst-case setting when an adversary catlydijaery the classifier.
However, our analysis and algorithms do not completely answer the eyasiblem and also gen-
erally can not be easily used by an adversary since there are seaalorld obstacles that are not
incorporated into our framework. Queries may only be partially obsenabieisy, and the feature
set may only be partially known. Most importantly, an adversary may nobleg@aquery alk € X;
instead their queries must be legitimate objects (such as email) that are mappédAnteal-world
adversary must invert the feature-mapping—a generally difficult tals&sd limitations necessitate
further research on the impact of partial observability and approximateyiqg one-IMAC search,
and to design more secure filters. Broader open problems inclugdM#AC search possible on
other classes of learners such as SVMs (linear in a large possibly intaiteré space)? Can an
adversary efficiently performrIMAC search when his cost is defined in an alternate feature space to
the classifier's? 1s-IMAC search feasible against an online learner that adapts as it is queried? Ca
learners be made resilient to these threats and how does this impact learforgipnce? These
and other open problems for near-optimal evasion are discussed imMtlab (2011).
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Appendix A. Query Complexity for K-STEP MULTI LINE SEARCH Algorithm

We consider the evasion problem as a game betwlessifier(playing first) andadversary(playing
second) who wishes to evade detection by the classifier. To analyze tsiecase query complexity
of K-sTEP MULTILINESEARCH (Algorithm 3), we consider avorst-case classifiethat seeks to
maximize the number of queries submitted by the adversary. The worstlaasiier is completely
aware of the state of the adversary; that is, the dimension of the §pabe adversary’s godl,
the cost functiord, the bounds on the cost functi@ andC;, and so forth.

Proof of Theorem 4 At each iteration of Algorithm 3, the adversary chooses some direaion,
not yet eliminated fromi4/. Every direction in?/ is feasible (i.e., could yield ag-IMAC) and
the worst-case classifier, by definition, will make this choice as costly ashpes During theK
steps of binary search along this direction, regardless of which direeti®iselected or how the
worst-case classifier responds, the candidate multiplicative gap (seenSz2) alonge will shrink

by an exponent of X; that is,
B- c\?"
s - (&)

0g(Gl,1) = log(Gy)-27K.

The primary decision for the worst-case classifier occurs when thesadyeéegins querying other
directions beside. At iterationt, the worst-case classifier has two options:

Case 11 € (1): Respond with+' for all remaining directions. Here the bound can-
didatesB™ andB~ are verified and thus the new gap is reduced by an exponent of
2-K; however, no directions are eliminated from the search.

Case 21 € (»): Choose at least one direction to respond with 'Here since only
the value ofC~ changes, the worst-case classifier can choose to respond to the first
K queries so that the gap decreases by a negligible amount (by alwpgsdasy
with '+' during the firsK queries along, the gap only decreases by an exponent of
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(1—27X)). However, the worst-case classifier must choose some nuaber
of directions that will be eliminated.

We conservatively assume that the gap only decreases for case i degbmuples the analysis of the
queries forC; and (%, and allows us to upper bound the total number of queries. By this assumption,
if t € (1 we haveG; = Gtzj'i whereas it € (> thenG; = G;_1. By analyzing the gap before and
after the final iteratiofT, it can be shown that

|C1l = [Le/K] (8)

since, for the algorithm to terminate, there must be a total of at ledsinary search steps made
during case one iterations and every case one iteration takes eXattyps.

At every iteration in case one, the adversary makes ex&ctly| 1{| — 1 queries wheréi} is
the set of feasible directions remaining at tldteration. While#} is controlled by the worst-case
classifier, we can apply the bouf@}| < |7/|. Using this and the relation from Equation (8), we
can bound the number of queri€y,, used in case 1 by

Q < K+ W -1
1 t;( |W[-1)

_ F‘KS-‘-(KH‘W]—l)

(LKE+1>-K+ Fﬂ (|| —-1)

- L€+K+{ﬂ.(ywy—1) .

IN

For each case two iteration, we make exa#tly- E; queries, and each eliminatés > 1 di-
rections; hence|Mi;1| = |M| — E. A worst-case classifier will always malg = 1 since that
maximally limits how much the adversary gains. Nevertheless, since caseiizgthe elimination
of at least 1 direction, we haj&:| < |7/| — 1 and moreover, regardless of the choiceEpfve
havey ., E: < |7|—1 since each direction can be eliminated no more than once and at least one
direction must remain. Thus,

Q = Z(K+Et)
i€
< |G- K+ || -1
< (W -1)(K+1) .

The total number of queries used by Algorithm 3 is then

Q=Qi+Q < Le+Ket| ] (W= D+ (W -D(K+D

K K
Le
o (5] eis)
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Finally, choosingK = [/L¢] minimizes this expression. By substituting thisnto Q's bound
and using the bounid: /[/L¢ | < v/L¢, we have

Q<Le+ (2IVEe+1) W]

establishing the result. |

Appendix B. Proof of Lower Bound

Here we prove the lower bound from Section 3.1.2. Recall Ehat the dimension of the space,
A: 0P — O7 is any positive convex function, and0C§ < Cy are initial upper and lower bounds
on theMAC. We also have thaff covex+ — gconvex+ js the set of classifiers consistent with
the constraints on thRIAC: that is, forf € Fonvex+ e havex;tis convex, 8% (A) C X;*, and

B% (A) ¢ X;". As above, we consider a worst-case classifier.

Proof of Theorem 5 Suppose a query-based algorithm submits: D + 1 membership queries
x%,...,xN e OP to the classifier. For the algorithm to beptimal, these queries must constrain all
consistent classifier ©©"e¥+ to have a common point among theitMAC sets. Suppose that the
responses to the queries are consistent with the cladsdigfined as:

f () = +1, ifA(x—.xA)<CO_
—1, otherwise

For this classifierX;" is convex since\ is a convex functionB% (A) C X" sinceCj <Cy, and
B% (A) ¢ X" since X;" is the operC, -ball whereasB® (A) is the closedC, -ball. Moreover,
sinceX;" is the operCy -ball, #x € X; s.t. A(x—x*) < Cy thereforeMAC(f,A) = C;, and any
g-optimal points<’ € e-IMAC™) (f, A) must satisfiCy < A(x' —xA) < (1+¢€)C; .

Consider an alternative classifigthat responds identically fofor x*, ..., xN but has a different
convex positive seky". Without loss of generality, suppose the fi¥st< N queries are positive and
the remainder are negative. Lgt= conv(x!,...,xM); that is, the convex hull of th™ positive
queries. Now letx;" be the convex hull of; and theCy -ball of A: X = conv(guﬂ%q (A)).
Sinceg contains all positive queries al < Cy, the convex sety" is consistent with the observed
responsesp™ (A) C Xy by definition, ands% (A) ¢ Xy since the positive queries are all inside
the operC, -sublevel set. Further, sinéé <N < D+ 1, G is contained in a proper linear subspace
of 0P and hence the interior of is empty; that isint(G) = 0. Hence, there is always some
point from B% (A) that is on the boundary ofy"; that is, 8% (A) ¢ int(G) becausént (G) = 0
and 8% (A) # 0. Hence, there must be at least one point fréf (A) on the boundary of the
convex hull of8% (A) andg. HenceMAC(g, A) =inf,. . [A(x—x*)] =C{.. Since the accuracy

€< g—i —1, anyx € e-IMAC™) (g, A) must have
0

o
A(x—x*) < (1+e)Cq < C—°+CO+:C5 :
0
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whereas anyy € &-IMAC™ (f,A) must have A(y—x") > C;.  Thus, e-IMAC™ (f,A)N
e-IMAC™) (g,A) = 0 and we have constructed two convex-inducing classifiexad g both con-
sistent with the query responses with no comradMAC™).

Suppose instead that a query-based algorithm suthﬂsLé*) membership queries. Recall our
definitions:C; is the initial upper bound on th&AC, C;,r is the initial lower bound on th#AC,

anth(*) = C; /G is the gap between the upper bound and lower bound at iteratibiere, the
worst-case classifigrresponds with

f(Xt) _ {+1’ ifA(Xt_XA) < \/CI_—l'Cttl )

—1, otherwise

When the classifier responds with', C;" increases to no more thagctjl-cttl and soG; >

/Gi_1. Similarly when this classifier responds witk', C;” decreases to no less thgﬁ;{,l'qﬁl
and so agai; > +/G;_1. These responses ensure the invari@nt /G;_; and since the algorithm
can not terminate untiby < 1+ ¢, we haveN > Lé*) from Equation (4). Otherwise, there are still
two convex-inducing classifiers with consistent query responsesitiuha commore-IMAC. The
first classifier's positive set is the smallest cost-ball enclosing all pegitixeries, while the second
classifier’s positive set is the largest cost-ball enclosing all positiezigs but no negatives. The

MAC values for these classifiers differ by more than a factdioef ) if N < Lf;*), so they have no
commone-IMAC. |

Appendix C. Proof of Theorem 10

First we introduce the following lemma for ti2-dimensionahypercube graphs-a collection of
2P nodes of the form(+1,+1,...,4+1) where each node has an edge to every other node that is
Hamming distance 1 from it.

Lemma 12 For any0 < d < 1/2 and D> 1, to cover a D-dimensional hypercube graph so that
every vertex has a Hamming distance of at méBt| to some vertex in the covering, the number of
vertices in the covering must be

Q(D,h) > 200-H®)

where H(d) = —dlog,8— (1—d)log,(1— ) is theentropyof &.

Proof There are 2 vertices in theD-dimensional hypercube graph. Each vertex in the covering
is within a Hamming distance of at mdstor exactlySt_, (E) vertices. Thus, one needs at least

2b/ (Zﬂzo (E)) to cover the hypercube graph. Now we apply the following bound (sem Bhd

Grohe, 2006, Page 427)
120 <D> H(5)D
<2
2, \k

to the denominatdtwhich is valid for any 0< & < 1/2. [ |

6. Gottlieb et al. (2011) present a better entropy bound on this sum afniaheoefficients, but it is unnecessary for
our result.
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Lemma 13 The minimum of thé, cost function 4 from the targetx* to the halfspacet, p =
{x| x"w>b"w} can be expressed in terms of the equivalent hyperptame> d parameterized

by a normal vectow and displacement e- (b — xA)T w as

. 71 i
min AIO(x—xA):{d HWHrfpl’ fd>0 9)

XE Huy 0, otherwise

forall 1 < p< e and for p=itis

min A, (x —x*) =
xe%v_,d

. _l i
{d Iw|;, ifd>0 (10)

0, otherwise -

Proof For 1< p < o, minimizingA,, on the halfspacé4, , is equivalent to finding a minimizer for
1 D
min—Z]xi]p st. x'w<d .
X P&

Clearly, ifd < 0 then the vecto® (corresponding ta” in the transformed space) trivially satisfies
the constraint and minimizes the cost function with cost 0 which yields the dezase of Equa-
tion (9). For the casd > 0, we construct the Lagrangian

L(X,\) & ;-iwp_}\ (XTW—d> .
=

Differentiating this with respect t& and setting that partial derivative equal to zero yietfis=
sign(wi) (A|w; ])ﬁ. Plugging this back into the Lagrangian yields

1-p

L(X*\) = 5

_p D P
AP S A
i=

which we now differentiate with respect foand set the derivative equal to zero to yi@dld=

p—1
( d > . Plugging this solution into the formula fax* yields the solutionx® =

<D PoT
Yz lwi| Pt
, _ d
SIgn(WI) <2iD1|WI’TI
d- ||w|];p11, which is the first case of Equation (9).

Forpp = o0, ONnce again ifl < 0 then the vectod trivially satisfies the constraint and minimizes
the cost function with cost 0 which yields the second case of Equation FEd)the casa > 0,
we use the geometry of hypercubes (the equi-cost balls/gfast function) to derive the second
case of Equation (10). Any optimal solution must occur at a point wherbytperplane given by
x'w = b'w is tangent to a hypercube abodt—this can either occur along a side (face) of the
hypercube or at a corner. However, if the plane is tangent along dfa it is also tangent at a
corner of the hypercube. Hence, there is always an optimal solutianret sorner of the optimal
cost hypercube.

|wi|ﬁ. The ¢, cost of this optimal solution is given b, (x* —xA) =
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At a corner of the hypercube, we have the following property:
X1l =Pl =...=|xp|

that is, the magnitude of all coordinates of this optimal solution is the same valt&eF, the sign
of the optimal solution’s™" coordinate must agree with the sign of the hyperplaif¢soordinate,
w;. These constraints, along with the hyperplane constraint, lead to the falidaimula for an
optimal solution:x = d - signw;)||w||;* for all i. The£., cost of this solution is simplg - ||w]|; .
|

Finally, for the proof of Theorem 10, we use the orthants (centeretijatanorthantis theD-
dimensional generalization of a quadrant in 2-dimensions. Theréaygtfants in d-dimensional
space. We represent each orthant bg#sonical representatiowhich is a vector oD positive or
negative ones; that is, the orthant representealsy+1,+1,...,41) contains the point* 4-aand
is the set of all pointg satisfying:

[0,40], ifag=+1
X € _ :
[—,0], ifag=-1

Proof of Theorem 10 Suppose a query-based algorithm subiNitaembership querieg, ..., xN €

0P to the classifier. Again, for the algorithm to lseoptimal, these queries must constrain all
consistent classifier ©°™ex+' to have a common point among theitMAC sets. The responses
described above are consistent with the clasdiféafined as

f(x) = {+1, if Ap (x—xA) < Cy

—1, otherwise

For this classifier,X;" is convex sinced, is a convex function fop > 1, % (A,) C X;* since
C4 <Cy,andB% (Ap) ¢ X" sinceX;" is the operC, -ball wherea®s (Ay) is the closed; -ball.
Moreover, sinceX;" is the operCy -ball, A x € X;~ s.t. Ay (x—x*) < Cy thereforeMAC(f,Ap) =
Co » and anye-optimal points<’ € e-IMAC™) (f, Ap) must satisfyCy < Ap (X' —xA) < (1+¢€)Cy.
Now consider an alternative classifigthat responds identically tbfor x*,...,xN but has a
different convex positive seX(j. Without loss of generality suppose the fikdt< N queries are

positive and the remaining are negative. Here we consider a set whichasvax hull of the
orthants of alM positive queries; that is,

G= conv(orth (xY) Nt orth (x?) Nx",...orth (xM) N xﬁ)

whereorth(x) is some orthant that lies within relative to the centex” (a data point may lie
within more than one orthant but, to cover it, we need only have one orthantdhtains it). By
intersecting each data point’s orthant with the &gtand taking the convex hull of these regions,
G is convex , containg” and is a subset of;" consistent with all the query responsed pfhat

is, each of theM positive queries are i|7(g+ and all the negative queries areAfj. Moreover,G
contains the convex hull of thiel positive queries. Thus, by finding the largest enclo&gtall
within the G, we upper boun®1AC(g,Ap).
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We now represent each orthant as a vertex in a D-dimensional hyjgegcaph—the Hamming
distance between any pair of orthants is the number of different cotediimatheir canonical rep-
resentations and two orthants are adjacent in the graph if and only if teyHsmming distance
of one. Using this notion of Hamming distance, we will segk-aovering of the hypercube. We
refer to the orthants used i to cover theM positive queries asovering orthantsind their corre-
sponding vertices form a covering of the hypercube. Suppodd tt@vering orthants are sufficient
for aK covering but not & — 1 covering; then there must be at least one vertex not in the covering
that has at leastld Hamming distance to every vertex in the covering. This vertex corresfgonds
an empty orthant that differs from all covered orthants in at I&asbordinates of their canonical
vertices. Without loss of generality, suppose this uncovered ortharthkacanonical vertex of all
positive ones which we scale @ (+1,+1,...,+1). Consider the hyperplane with normal vector
w = (+1,+1,...,+41) and displacement

g Cy(D-K)'P ifl<p<ow
Cy (D—K) if p=oo

that specifies the functios(x) = x'w —d = Y2;x —d. For this hyperplane, the vertex
Co (+1,+1,...,+1) yieldss(Cy (+1,+1,...,41)) =C; D —d > 0. Also for any orthant with
Hamming distance at leakt from this uncovered orthant, we have that for any orth(a) N X",
by definition of the orthant and;*, the functionsyields

s(x) = X + X —d .
{ila=+1} 2y fila=1 27
Since all the terms in the second summation are non-positive, the second aumdst 0. Thus,
by maximizing the first summation, we upper bows{a). The summatiory (i | 513 % (with the

constraint that|x||, < C;) has at mosD — K terms and is maximized by = C0 (D K)~Y/P (or

X; = C, for p= ) for which the first summation is upper boundeddyy(D — K) " orCy (D—K)

for p= oo; that is, it is upper bounded hy. Thus, we have that(x) < 0, and this hyperplane
separates the scaled ver@x(+1,+1,...,+1) from each sebrth(a) N X;" wherea s the canonical
representation of any orthant with a Hamming distance of at kea$his hyperplane also separates
the scaled vertex frong; by the properties of the convex hull. Since the displacerdemefined
above is greater than 0, by applying Lemma 13, this separating hyperglpaehounds the cost of
the largest, ball enclosed ing as

p-1
_(D—-K\ ¢
MAC(@.Ap) < Gy (D) -l =Gy (25 )

for1< p< e and
K

D

for p= . Since we have an upper bound on MAC of g and theMAC of f isCy, in order to have
a commore-IMAC between these classifiers, we must have

_ D-
MAC(g,Ap) < Cy (D—K)-[[1]1*=Cy —=—

pt .
a+a>{%%)pjﬁl<p<w.
- D

DK > ifp:oo
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Solving for the value oK required to achieve a desired accuracy aefelwe have

P
K<{MHD, ifl<p<oo

(1+g)P1 )

=D, if p=o

which bounds the size of the covering required to achieve the desirathagc
For the case X p < o, by Lemma 12, there must be

M > exp{'”(2>'D <l_H (W))}

vertices of the hypercube in the covering to achieve any accuracy & 2%1 — 1, for which

_pb_
5= AP -1 1 as required by the lemma. Moreover, sifté3) < 1 for & < 3,

(1+g)p-1
Ope = exp{ln(Z) (1—H (W)) } >1
(1+g)pt

and we havév > O‘B.e'

Similarly for p = o0, Lemma 12 can be applied yielding > 2°(1-H(:%)) to achieve any de-
sired accuracy & € < 1 (for whiche/(1+¢€) < 1/2 as required by the Lemma). Again, by the

€

properties of entropy, the constant ¢ = 2(1-H(:%)) > 1 for 0< € < 1 and we havév > 0(0'?,78. |

Appendix D. Proof of Theorem 11

For this proof, we build on previous results for covering hypersghefde proof is based on the
following covering number result by Wyner and Shannon, which bounesrtimimum number
of spherical caps required to cover a hyperspher®-dimensionakpherical caps the outward
region formed by the intersection of a hypersphere and a halfspacepated! in Figure 9. We
parameterize the caps by the hypersphere’s rafiasd the half-anglep about a central radius
(through the caps’s peak) as in the right-most diagram of Figure 9.

We now derive a bound on the number of spherical caps of half-agnggquired to cover the
sphere, mirroring the result of Wyner (1965).

Lemma 14 (Result based on Wyner 1965) Covering the surface of D-dimensional hypersphere of
radius R requires at least
1 \D2
(50)

Proof In Capabilities of Bounded Discrepancy Decodildyner showed that the minimal number,
M, of spherical caps of half-angte required to coveD-dimensional hypersphere of radiBsis

given by )
Dy (B41) ® 5 B
> (D—l)r(ler%) [/0 sinP 2(t)dt] .

spherical caps of half-anglg € (0, 7).
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(a) (b)

Figure 9: This figure depicts the geometry of spherical caps. (a) Arisplheap of heighh, which
is created by a plane passing through the sphere. The green regiesems the area
of the cap. (b) The geometry of the spherical cap; the intersecting hatfsfprms a
right triangle with the centroid of the hypersphere. The length of the sitl@friangle
adjacent to the centroid R— h, its hypotenuse has lengR) and the side opposite the

centroid has length/h(2R—h). The half anglep, given by sirig) = h(éth), of the
right circular cone is used to parameterize the cap.

whererl (x) is the usual gamma function. This result follows directly from computing thiasar
area of the hypersphere and that of each spherical cap.

We continue by lower bounding the above integral for a looser but morgpetable bound.
Integrals of the formfgpsinD(t)dt also arise in computing the volume of a spherical cap. This
volume (and thus the integral) can be bounded by enclosing the cap withjreesbyere; compare
with Ball (1997). This yields the following bound:

o o VAT(H)
/Ost(t)dtgr(l—_l_z%)-st(p.

Using this bound on the integral, our bound on the size of the coveringreco

OVIT (%) [VAT(%5) (o]
o-vrasy |t 2“’] |

D+1 D
Now using properties of the gamma function, it can be shown I ))rr((DZ_)l) = DT‘l so that after
2 2
canceling terms we arrive at our result:

D-2
M > (i) .
sing
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Proof of Theorem 11 Suppose a query-based algorithm subiditaembership querieg, ..., xN €

0P to the classifier. For the algorithm to beoptimal, these queries must constrain all consistent
classifiers, FcOVeX+' to have a common point among theiMAC sets. Suppose that all the
responses are consistent with the classifiéefined as

F(x) = +1, |fA2(x. x*) < Cq
—1, otherwise

For this classifierX;" is convex sincé, is a convex function% (A;) C X sinceCj < Cy, and
B% (A2) ¢ X sinceX;" is the operCy -ball whereags (A) is the closed; -ball. Moreover,
sinceX;" is the operCy -ball, # x € X;~ such thai, (x —x”) < Cy . ThereforeMAC(f,Az) =Cy,
and anye-optimal points<’ € e-IMAC™) (f, Az) must satisfiCy < Az (X' —xA) < (1+€)Cy.

Now consider an alternative classifigthat responds identically tbfor x*,... ,xN but has a
different convex positive set’g+. Without loss of generality, suppose the fikdt< N queries are
positive and the remaining are negative. ket conv(xl, . ..,xM) be the convex hull of thedd
positive queries. We will assumé ¢ G, since otherwise, we construct the 3’@*[ as in the proof
for Theorem 5 above and achieMAC(f,Ay) = Cg thereby achieving our desired result. Now
consider the projection of each of the positive queries onto the surfaite é, ball B (A),
given by the pointg' = CO‘WLXA). Since each positive query lies along the line betwetand
its projectionz, by convexity and the fact that* € G, we haveg C conv(z},2%,...,2M)—we
will call this enlarged hullG. TheseM projected points{z'} must form a covering of the, -
hypersphere as the locii of caps of half-angle= arccos((1+ s)‘l). If not, then there exists some
point on the surface of this hypersphere that is at least an ghélem all z' points and the resulting
@:-cap centered at this uncovered point is nogirgsince a cap is defined as the intersection of the
hypersphere and a halfspace). Moreover, by definition oftheap, it achieves a minimép cost of
C, cosg:. Thus, if we fail to achieve gt -covering of theC, -hypersphere, the alternative classifier
g hasMAC(g,A2) < Cy cosg = Cy /(1+€) and anyx € e-IMAC™) (g, Ay) must have

-
Az (x—xP) < (1+€)MAC < (1“)?05 =Cy ,

whereas anyy € &-IMAC™ (f,A) must have cost (y—x%) > Cy. Thus, we would have
e-IMAC™) (f, A)ne-IMAC™ (g, A) = 0 and would fail to achieve-multiplicative optimality. Hence,
we have shown that agi-covering is necessary fermultiplicative optimality. Moreover, from our
definition of g, for anye € (0,), ¢ < (0,3) and thus, Lemma 14 is applicable for all From
Lemma 14, to have ag-covering we must have

D-2
w2 (o)
— \ sing;

1329




NELSON, RUBINSTEIN, HUANG, JOSEPH LEE, RAO AND TYGAR

queries. Using the trigonometric identity $arcco$x)) = v/1—x2, we can substitute fog; and

find )
(sm(arccloil >>>

S 1+e
- l+s

<
\%

References
Dana Angluin. Queries and concept learniipchine Learning2:319-342, 1988.

Keith Ball. An elementary introduction to modern convex geometry.Flavors of Geometry
volume 31 ofMSRI Publicationspages 1-58. Cambridge University Press, 1997.

Dimitris Bertsimas and Santosh Vempala. Solving convex programs by randtks. wournal of
the ACM 51(4):540-556, 2004.

Christopher M. BishopPattern Recognition and Machine Learningpringer, 2006.
Stephen Boyd and Lieven Vandenberg@envex OptimizationCambridge University Press, 2004.
Richard P. BrentAlgorithms for Minimization without Derivative$rentice-Hall, 1973.

Michael Biiickner and Tobias Scheffer. Nash equilibria of static prediction gamesdJances in
Neural Information Processing Systems (NIR®Jume 22, pages 171-179. 2009.

Richard L. Burden and J. Douglas Faird&imerical AnalysisBrooks Cole, ¥ edition, 2000.

Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verctheergarial classifi-
cation. InProceedings of theé0" International Conference on Knowledge Discovery and Data
Mining, pages 99-108, 2004.

Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. Analysisoépton-based active
learning.Journal of Machine Learning ResearctD:281-299, 2009.

Vitaly Feldman. On the power of membership queries in agnostic learnlogtnal of Machine
Learning Researchl0:163-182, 2009.

Jorg Flum and Martin GroheParameterized Complexity Theoryfexts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag, Secaucus, NJ, US¥s,. 2

Lee-Ad Gottlieb, Aryeh Kontorovich, and Elchanan Mossel. VC bounmmdthe cardinality of nearly
orthogonal function classes. Technical Report arXiv:1007.49ima2h.CO], arXiv, 2011.

Donald R. Jones. A taxonomy of global optimization methods based on EsparfacesJournal
of Global Optimization21(4):345-383, 2001.

1330



QUERY STRATEGIES FOREVADING CONVEX-INDUCING CLASSIFIERS

Donald R. Jones, Cary D. Perttunen, and Bruce E. Stuckman. Lipschitztanization without the
Lipschitz constantJournal Optimization Theory and Applicatipf9(1):157-181, 1993.

Murat Kantarcioglu, Bowei Xi, and Chris Clifton. Classifier evaluation atidlate selection
against active adversaries. Technical Report 09-01, Purdueidity, 2009.

Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. Optimizatipdirect search: New
perspectives on some classical and modern mett®idd Review45(3):385-482, 2003.

Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing nekweide traffic anomalies.
In Proceedings of the Conference on Applications, Technologies, Archi#gecand Protocols for
Computer Communications (SIGCOMNpages 219-230, 2004.

Laszb Lovasz and Santosh Vempala. Simulated annealing in convex bodies &idrétih volume
algorithm. InProceedings of thd4" Annual IEEE Symposium on Foundations of Computer
Science (FOCS '03pages 650-659, 2003.

Laszb Lovasz and Santosh Vempala. Hit-and-run from a cornelPréeedings of th@6" Annual
ACM Symposium on Theory of Computing (STQ@pes 310-314, 2004.

Daniel Lowd and Christopher Meek. Adversarial learningPtoceedings of th&1™ International
Conference on Knowledge Discovery in Data Minipgges 641-647, 2005.

John A. Nelder and Roger Mead. A simplex method for function minimizatibhe Computer
Journal, 7(4):308-313, 1965.

Blaine Nelson, Benjamin I. P. Rubinstein, Ling Huang, Anthony D. Jos8pmg hon Lau, Steven
Lee, Satish Rao, Anthony Tran, and J. D. Tygar. Near-optimal evagiconvex-inducing classi-
fiers. InProceedings of th@3" International Conference on Artificial Intelligence and Statistics
(AISTATS)pages 549-556, 2010a.

Blaine Nelson, Benjamin I. P. Rubinstein, Ling Huang, Anthony D. Jos&péven Lee, Satish
Rao, and J. D. Tygar. Query strategies for evading convex-indutasgifiers. Technical Report
arXiv:1007.0484v1 [cs.LG], arXiv, 2010b.

Blaine Nelson, Benjamin I. P. Rubinstein, Ling Huang, Anthony D. Josapth,J. D. Tygar. Clas-
sifier evasion: Models and open problems.Plfivacy and Security Issues in Data Mining and
Machine Learningvolume 6549 of_ecture Notes in Computer Scienpages 92—-98. 2011.

Luis Rademacher and Navin Goyal. Learning convex bodies is har@roceedings of th@2"
Annual Conference on Learning Theory (COLfages 303-308, 2009.

Greg Schohn and David Cohn. Less is more: Active learning with sumeetbr machines. In
Proceedings of th& 7" International Conference on Machine Learning (ICMphges 839-846,
2000.

Burr Settles. Active learning literature survey. Computer Sciences ieaiReport 1648, Univer-
sity of Wisconsin—Madison, 2009.

1331



NELSON, RUBINSTEIN, HUANG, JOSEPH LEE, RAO AND TYGAR

Robert L. Smith. The hit-and-run sampler: A globally reaching Markovircsampler for gen-
erating arbitrary multivariate distributions. Rroceedings of th@8" Conference on Winter
Simulation (WSC '96)ages 260-264, 1996.

Kymie M. C. Tan, Kevin S. Killourhy, and Roy A. Maxion. Undermining an araly-based intru-
sion detection system using common exploitsPtaceedings of the" International Conference
on Recent Advances in Intrusion Detection (RAN®Iume 2516 ol ecture Notes in Computer
Sciencepages 54-73, 2002.

David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion detegtitems. In
Proceedings of the™" ACM Conference on Computer and Communications Secpetyes 255—
264, 2002.

Ke Wang and Salvatore J. Stolfo. Anomalous payload-based networkiorirdetection. IrPro-
ceedings of th&" International Conference on Recent Advances in Intrusion DetectiatD(R
volume 3224 ot ecture Notes in Computer Scienpages 203-222, 2004.

Ke Wang, Janak J. Parekh, and Salvatore J. Stolfo. Anagram: A ¢@memaly detector resistant
to mimicry attack. InProceedings of th@" International Conference on Recent Advances in
Intrusion Detection (RAIQ)volume 4219 ofLecture Notes in Computer Sciengeges 226—
248, 2006.

Aaron D. Wyner. Capabilities of bounded discrepancy decodihg.Bell System Technical Journal
44:1061-1122, 1965.

1332



