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Abstract

We consider the matrix completion problem under a form of/coumn weighted entrywise sam-
pling, including the case of uniform entrywise sampling apecial case. We analyze the associated
random observation operator, and prove that with high gritibg it satisfies a form of restricted
strong convexity with respect to weighted Frobenius norsingthis property, we obtain as corol-
laries a number of error bounds on matrix completion in thigtted Frobenius norm under noisy
sampling and for both exact and near low-rank matrices. ©sults are based on measures of
the “spikiness” and “low-rankness” of matrices that ares lesstrictive than the incoherence con-
ditions imposed in previous work. Our technique involvesMuestimator that includes controls
on both the rank and spikiness of the solution, and we establbn-asymptotic error bounds in
weighted Frobenius norm for recovering matrices lying wigttballs” of bounded spikiness. Us-
ing information-theoretic methods, we show that no algonittan achieve better estimates (up to
a logarithmic factor) over these same sets, showing that@uditions on matrices and associated
rates are essentially optimal.

Keywords: matrix completion, collaborative filtering, convex optiation

1. Introduction

Matrix completion problems correspond to reconstructing matrices, eithettygaapproximately,
based on observing a subset of their entries (Laurent, 2001; Delzaaament, 1997). In the sim-
plest formulation of matrix completion, the observations are assumed to berwpteal, whereas a
more general formulation (as considered in this paper) allows for nogsingbese observations.
Matrix recovery based on only partial information is an ill-posed problerd,aturate estimates
are possible only if the matrix satisfies additional structural constraints, wamgles including
bandedness, positive semidefiniteness, Euclidean distance measuyéioeplisz, and low-rank
structure (see the survey paper by Laurent (2001) and referémeein for more background).
The focus of this paper is low-rank matrix completion based on noisy cdseng. This prob-
lem is motivated by a variety of applications where an underlying matrix is likehate fow-rank,
or near low-rank structure. The archetypal example is the Netflix chal|emgersion of the col-
laborative filtering problem, in which the unknown matrix is indexed by indigldwand movies,
and each observed entry of the matrix corresponds to the rating assagtieslassociated movie
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by the given individual. Since the typical person only watches a tiny nuafiomovies (compared

to the total Netflix database), it is only a sparse subset of matrix entriesréhabserved. In this
context, one goal of collaborative filtering is to use the observed entrimske recommendations
to a person regarding movies that they haeot yet seen. We refer the reader to Srebro (2004)
(and references therein) for further discussion and motivation ftalmwrative filtering and related
problems.

In this paper, we analyze a method for approximate low-rank matrix regaw@ng anM-
estimator that is a combination of a data term, and a weighted nuclear norm@sdairer. The
nuclear norm is the sum of the singular values of a matrix (Horn and Johi8&5), and has
been studied in a body of past work, both on matrix completion and more ajgmeblems of
low-rank matrix estimation (e.g., Fazel, 2002; Srebro, 2004; Srebro @085, 2004; Recht et al.,
2010; Bach, 2008; Candes and Tao, 2010; Recht, 2011; Keslet\an 2010a,b; Negahban and
Wainwright, 2011; Rohde and Tsybakov, 2011). A parallel line of wwak studied computation-
ally efficient algorithms for solving problems with nuclear norm constraintg (dazumber et al.,
2010; Nesterov, 2007; Lin et al., 2009). Here we limit our detailed disoagte those papers that
study various aspects of the matrix completion problem. Motivated by varimidegms in col-
laborative filtering, Srebro (2004) and Srebro et al. (2005) studietbws aspects nuclear norm
regularization, and established generalization error bounds undamceonditions. Cangs and
Recht (2009) studied the exact reconstruction of a low-rank matrixngregfect (noiseless) obser-
vations of a subset of entries, and provided sufficient conditionscamteecovery via nuclear norm
relaxation, with later refinements provided by various authors (CandkE$aam 2010; Recht, 2011,
Gross, 2011). In particular, Gross (2011) recognized the utility of thiswede-Winter matrix con-
centration bounds, and the simplest argument to date is provided by Ré&h)(In a parallel line
of work, Keshavan et al. (2010a,b) have studied a method based shdaldimg and singular value
decomposition, and established various results on its behavior, bothiseless and noisy matrix
completion. Among other results, Rohde and Tsybakov (2011) estabéidicppon error bounds for
matrix completion, a different metric than the matrix recovery problem of intéw=®. In recent
work, Salakhutdinov and Srebro (2010) provided various motivationshie use of weighted nu-
clear norms, in particular showing that the standard nuclear norm relaxatiobehave very poorly
when the sampling is non-uniform. The analysis of this paper applies to bdtrrarand non-
uniform sampling, as well as a form of reweighted nuclear norm as stegjby these authors, one
which includes the ordinary nuclear norm as a special case. We praviee detailed comparison
between our results and some aspects of past work in Section 3.4.

As has been noted before (Casdand Plan, 2010), a significant theoretical challenge is that
conditions that have proven very useful for sparse linear regressamong them the restricted
isometry property—araot satisfied for the matrix completion problem. For this reason, it is natu-
ral to seek an alternative and less restrictive property that might beeaiisthe matrix completion
setting. In recent work, Negahban et al. (2009) have isolated a waallemore general condition
known asrestricted strong convexit§RSC), and proven that certain statistical models satisfy RSC
with high probability when the associated regularizer satisfiégscamposabilitgondition. When
anM-estimator satisfies the RSC condition, it is relatively straightforward to el@n-asymptotic
error bounds on parameter estimates (Negahban et al., 2009). Thefadasemposable regulariz-
ers includes the nuclear norm as particular case, and the RSC/decditifyospproach has been
exploited to derive bounds for various matrix estimation problems, among thétirtasik learning,
autoregressive system identification, and compressed sensing (degaind Wainwright, 2011).
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To date, however, an open question is whether or not an approprratecfoRSC holds for
the matrix completion problem. If it did hold, then it would be possible to derive amymptotic
error bounds (in Frobenius norm) for matrix completion based on noisgredisons. Within this
context, the main contribution of this paper is to prove that with high probabilifgra of the
RSC condition holds for the matrix completion problem, in particular over an stiageset of
matricesc, as defined in Equation (4) to follow, that have both low nuclear/Froberus ratio
and low “spikiness”. Exploiting this RSC condition then allows us to deriveasymptotic error
bounds on matrix recovery in weighted Frobenius norms, both for exandyapproximately low-
rank matrices. The theoretical core of this paper consists of three mailtsre®©ur first result
(Theorem 1) proves that the matrix completion loss function satisfies redtgtieng convexity
with high probability over the saf. Our second result (Theorem 2) exploits this fact to derive a
non-asymptotic error bound for matrix recovery in the weighted Frobemuas, one applicable
to general matrices. We then specialize this result to the problem of estimatintlyebow-rank
matrices (with a small number of non-zero singular values), as well aslowaiank matrices
characterized by relatively swift decay of their singular values. To #s bf our knowledge, our
results on near low-rank matrices are the first for approximate matrix @egavthe noisy setting,
and as we discuss at more length in Section 3.4, our results on the exactigrkwase are sharper
than past work on the problem. Indeed, our final result (Theorens&3 information-theoretic
techniques to establish that up to logarithmic factors, no algorithm can obsaér fates than our
method over thég-balls of matrices with bounded spikiness treated in this paper.

The remainder of this paper is organized as follows. We begin in Section Zoaitkground
and a precise formulation of the problem. Section 3 is devoted to a statemant B results,
and discussion of some of their consequences. In Sections 4 and Sgctienprove our main
results, with more technical aspects of the arguments deferred to apgendie conclude with a
discussion in Section 6.

2. Background and Problem Formulation

In this section, we introduce background on low-rank matrix completionl@noband also provide
a precise statement of the problem studied in this paper.

2.1 Uniform and Weighted Sampling M odels

Let ©* € R%*% pe an unknown matrix, and consider an observation model in which we make
i.i.d. observations of the form

V ~

¥i = Oy + méi, 1)

Here the quantities\/ﬁ&i correspond to additive observation noises with variance appropriately
scaled according to the matrix dimensions. In defining the observation modetaoreither allow

the Frobenius norm d®* to grow with the dimension, as in done in other work (Casmdnd Plan,
2010; Keshavan et al., 2010b), or rescale the noise as we have @@neThis choice is consistent
with our assumption tha®* has constant Frobenius norm regardless of its rank or dimensions.
With this scaling, each observation in the model (1) has a constant signalge-atio regardless

of matrix dimensions.
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In the simplest model, the roy(i) and columnk(i) indices are chosen uniformly at random
from the sets{1,2,...,d;} and{1,2,...,d:} respectively. In this paper, we consider a somewhat
more general weighted sampling model. In particularRetR%*% andC € R%*% pe diagonal
matrices, with rescaled diagondR;/d;, j =1,2,...,d,} and{Cy/d;,k=1,2,...,d:} representing
probability distributions over the rows and columns oftarx d; matrix. We consider the weighted
sampling model in which we make a noisy observation of efjtrlg) with probability R;Cy /(dd.),
meaning that the row indeji) (respectively column indek(i)) is chosen according to the proba-
bility distribution R/d; (respectivelyC/dc). Note that in the special case that 15 andC = 14,
the observation model (1) reduces to the usual model of uniform sampling.

We assume that each row and column is sampled with positive probability, inysarttbat
there is some constantd L < « such thatR, > 1/L andC, > 1/L for all rows and columns.
However, apart from the constrainzéj{:l Rsa = dr and zﬂ;lcbb: dc, we do not require that the
row and column weights remain boundeddagndd, tend to infinity.

2.2 The Observation Operator and Restricted Strong Convexity

We now describe an alternative formulation of the observation model (,)wtmle statistically
equivalent to the original, turns out to be more natural for analysis. &arie= 1,2,...,n, define
the matrix

X0 = VO dc € egl(i)el—(i)v
whereg; € {—1,+1} is a random sign, and consider the observation model
yi = (XU, 0") 4+ V§E, fori=1,...,n, 2)

where((A, B)) := 3 kAikBjk is the trace inner product, argdis an additive noise from the same
distribution as the original model. The model (2) is can be obtained from thmalrmodel (1) by
rescaling all terms by the factqrd,d., and introducing the random sigas The rescaling has no
statistical effect, ang nor do the random signs, since the noise is symmetit@(§ = €;&; has the
same distribution a&;). Thus, the observation model (2) is statistically equivalent to the original
one (1).

In order to specify a vector form of the observation model, let us defitieear operator
Xn: RI*% 5 R via

[Xn(©)])i := (XD, @), fori=1,2,...n.

We refer toX,, as theobservation operatgrsince it maps any matri® € R%*% to ann-vector of
samples. With this notation, we can write the observations (2) in a vectorized &3
y = Xn(0")+VE.

The reformulation (2) is convenient for various reasons. For any matexR% <%, we have
E[(XD, @)] =0 and

dc

. dr
E[(X", @) = ,Zlk;Rje'Zka = |IVReVC|z,

IOl
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where we have defined theeighted Frobenius norj - [[| ) in terms of the ronR and columrC
weights. As a consequence, the signal-to-noise ratio in the observatiogl (@pds given by the

(]| 2
ratio SNR= %.

As shown by Negahban et al. (2009), a key ingredient in establishioglsyunds for the obser-
vation model (2) is obtaining lower bounds on the restricted curvature cimgling operator—in
particular, to establish the existence of a constan®, which may be arbitrarily small as long as it
is positive, such that

1Xn(©)]l2
Jn

For sample sizes of interest for matrix completiong d;d;) , one cannot expect such a bound to
hold uniformly over all matrice® € R%*%_even when rank constraints are imposed. Indeed, as
noted by Canés and Plan (2010), the condition (3) is violated with high probability by thie oae
matrix ©* such thaBj; = 1 with all other entries zero. Indeed, for a sample size d;d., we have

a vanishing probability of observing the ent®y,, so thatX,(©*) = 0 with high probability.

> ¢[|©)r)- ®3)

2.3 Controlling the Spikiness and Rank

Intuitively, one must exclude matrices that are overly “spiky” in order wicithe phenomenon just
described. Past work has relied on fairly restrictive matrix incohereanditions (see Section 3.4
for more discussion), based on specific conditions on singular vedtting anknown matrix@*.

In this paper, we formalize the notion of “spikiness” in a natural and lestsicéve way—namely
by comparing a weighted form d@f,-norm to the weighted Frobenius norm. In particular, for any
non-zero matrix®, let us define (for any non-zero matrix) theighted spikiness ratio

100l
asi(©) = v/dhde [,

where|[|O]|¢yw) := |v/ROVC||« is the weighted elementwigi,-norm. Note that this ratio is in-
variant to the scaling a®, and satisfies the inequalities<lasy(©) < v/drd.. We havensy(©) =1
for any non-zero matrix whose entries are all equal, whereas theigppesemens,(©) = /d;d;
is achieved by the “maximally spiky” matrix that is zero everywhere excea &ngle position.

In order to provide a tractable measure of how cl@sis to a low-rank matrix, we define (for
any non-zero matrix) the ratio

_ 19l
ISTluie)

which satisfies the inequalities<1B5(©) < \/min{d,,d.}. By definition of the (weighted) nuclear
and Frobenius norms, note tti4(©) is simply the ratio of thé; to ¢, norms of the singular values
of the weighted matrix/R@/C. This measure can also be upper bounded by the ra@k mideed,
sinceR andC are full-rank, we always have

Bra(©) :

B2,(®) < rankvROVC) = rank©),

with equality holding if all the non-zero singular values\dRO+/C are identical.
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3. Main Resultsand Their Consequences

We now turn to the statement of our main results, and discussion of theirquersmes. Section 3.1
is devoted to a result showing that a suitable form of restricted strongegitynholds for the ran-
dom sampling operatd¥,, as long as we restrict it to matricésfor which Bra(A) andasp(A) are
not “overly large”. In Section 3.2, we develop the consequences dR8@ condition for noisy
matrix completion, and in Section 3.3, we prove that our error bounds are nxigptanal up to
logarithmic factors. In Section 3.4, we provide a detailed comparison oesults with past work.

3.1 Restricted Strong Convexity for Matrix Sampling

Introducing the convenient shorthade= 1 (d; +dc), let us define the constraint set

. . dr xdc i / n
C(n!CO) _{A € R 7A7é O ’ GSD(A) Bra(A) S CoL C”Ogd }’ (4)

wherecy is a universal constant. Note that as the samplersizereases, this set allows for matrices
with larger values of the spikiness and/or rank measurg$)\) andBa(A) respectively.

Theorem 1 There are universal constanfsy, 1, C2, C3) such that as long as i czdlogd, we have

1 %n(8)]l2 _ 128asp(A)L
vn vh

with probability greater tharl — ¢; exp(—czdlogd).

1
> *”‘A’Hw(F) {1 } for all A € €(n;cp) (5)

Roughly speaking, this bound guarantees that the observation opeagtores a substantial
component of any matri& € €(n; cy) that is not overly spiky. More precisely, as Iong1 “;"(A) <

=
1, the bound (5) implies that

[EON P 2 .

0 =2 756|||A|Hw<F) for anyA € €(n; co). (6)

This bound can be interpreted in termsrestricted strong convexitfNegahban et al., 2009). In
particular, given a vector € R" of noisy observations, consider the quadratic loss function

1
L(©y) = 5y = Xa(®)]2.

Since the Hessian matrix of this function is given B)y*Xn/n, the bound (6) implies that the
guadratic loss is strongly convex in a restricted set of directtons

As discussed previously, the worst-case value of the “spikiness” me#susp(A) = +/d;d,
achieved for a matrix that is zero everywhere except a single positiothismost degenerate of
cases, the combination of the constra&f&% < 1 and the membership conditidre €(n; cp) imply
that even for a rank one matrix (so thag(A) = 1), we need sample sizes> d? for Theorem 1 to
provide a non-trivial result, as is to be expected.
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3.2 Consequencesfor Noisy Matrix Completion

We now turn to some consequences of Theorem 1 for matrix completion in thy seiting. In
particular, assume that we are giveni.d. samples from the model (2), and @te some estimate

of the unknown matriX®*. Our strategy is to exploit the lower bound (5) in application to the error
matrix © — ©*, and accordingly, we need to ensure that it has relatively low-rankspikihess.
Based on this intuition, it is natural to consider the estimator

*

~ . 1
©carg min {7lly—36n(®)||%+7\n\|!@|!|m<1)}, ()
\H@H\w(w)ﬁﬁ n

wherea* > 1 is a measure of spikiness, and the regularization paramgter0 serves to control
the nuclear norm of the solution. In the special case when B&hdC are identity matrices (of
the appropriate dimensions), this estimator is closely related to the standacdrmidered in past
work on the problem, with the only difference between the additiégaiorm constraint. In the
more general weighted case, Mirestimator of the form (7) using the weighted nuclear norm (but
without the elementwise constraint) was recently suggested by SalakhuttidoS8rebro (2010),
who provided empirical results to show superiority of the weighted nuclean mver the standard
choice for the Netflix problem.

Past work on matrix completion has focused on the case of exactly lowsratrices. Here we
consider the more general setting of approximately low-rank matrices, ingltide exact setting
as a particular case. We begin by stating a general upper bound thiasap@any matrix@*, and
involves a natural decomposition into estimation and approximation error tefmesorly relevant
quantity is the signal-to-noise ratio, as measured by the ratio of the Frobesmusof ©* to the
noise variance, so that we allow the noise variance to be free, while agsthatfjA|| ) remains
bounded.

Theorem 2 Suppose that & Ldlogd, and consider any solutio® to the weighted SDF7) using
regularization parameter

12 i
M2 VIS &REXOCTE o ®
i=

and define\;; = max{A,, L d'°gd}. Then with probability greater thaf — c,exp(—czlogd), for

n
eachr=1,....d, the errorA = © — O satisfies

d %] \2
. . s ~ r " ci(a*L
813 < s Ny [VilBllar) + 5 oy(VRENVE)| + LS

j=r+1

(9)

Apart from the trailingO(n~1) the term, the bound (9) shows a natural splitting into two terms.
The first can be interpreted as thstimation errorassociated with a rank matrix, whereas the
second term corresponds approximation erroy measuring how fax/RO*+/C is from a rankr
matrix. Of course, the bound holds for any choice,aind in the corollaries to follow, we choose
optimally so as to balance the estimation and approximation error terms.

In order to provide concrete rates using Theorem 2, it remains to adtwesissues. First,
we need to specify an explicit choice &f by bounding the operator norm of the noise matrix
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151 . &VRXD/C, and secondly, we need to understand how to choose the paransess

to achieve the tightest possible bound. Wi&@hnis exactly low-rank, then it is obvious that we

should choose = rank(®*), so that the approximation error vanishes—more specifically, so that
>, .10j(vRe"/C); = 0. Doing so yields the following result:

Corollary 1 (Exactly low-rank matrices) Suppose that the noise sequefi&e isi.i.d., zero-mean
and sub-exponential, an@* has rank at most r, Frobenius norm at mdstand spikiness at most

0sp(©*) < a*. If we solve the SDR7) with Ap = 4v/ d'ogd then there is a numerical constari c
such that

, rdlogd N cr(a*L)?

18- 0" I2g) < ¢ (v2VLE) (@)? T )

(10)

with probability greater tharl — coexp(—czlogd).

Note that this rate has a natural interpretation: since a ramiatrix of dimensiond; x d. has
roughlyr(d, + d;) free parameters, we require a sample size of this order (up to logarithmic fac
tors) so as to obtain a controlled error bound. An interesting feature difatied (10) is the term
v2v 1 =max{v?, 1}, which implies that we do not obtain exact recoveryas 0. As we discuss at
more length in Section 3.4, under the mild spikiness condition that we have impbisedehavior

is unavoidable due to lack of identifiability within a certain radius, as specifi¢hdrsete. For
instance, consider the matr®&* and the perturbed versidd = O* + \/dlrfdcele} With high prob-

ability, we haveX,(©*) = X,(©), so that the observations—even if they were noiseless—fail to
distinguish between these two models. These types of examples, leadingittentfiability, can-

not be overcome without imposing fairly restrictive matrix incoherence itiond, as we discuss at
more length in Section 3.4.

As with past work (Cangls and Plan, 2010; Keshavan et al., 2010b), Corollary 1 applies to the
case of matrices that have exactly rankn practical settings, it is more realistic to assume that the
unknown matrix is not exactly low-rank, but rather can be well approxichayea matrix with low
rank. One way in which to formalize this notion is via thg“ball” of matrices

min{d,dc}
Ba(pa) i={ O RS |3  0(VROVO)T < paf. 1D

=

For g = 0, this set corresponds to the set of matrices with rank at megbg, whereas for values
g€ (0,1], it consists of matrices whose (weighted) singular values decay at aegldtist rate. By
applying Theorem 2 to this matrix family, we obtain the following corollary:

Corollary 2 (Estimation of near low-rank matrices) Suppose that the noisg;} is zero-mean
and sub-exponential, Consider a mat@ < By(pq) with spikiness at mosis,(©*) < a*, and
Frobenius norm at most one. With the same choick,ais Corollary 1, there is a universal con-
stant ¢ such that

2dIogd)lg N cy(a*L)?

A _ o2 < 2 Y
16013, < crpq (V2 VL) (@)= .

(12)
with probability greater tharl — c,exp(—czlogd).
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Note that this result is a strict generalization of Corollary 1, to which it reduc the casg = 0.
(Whenqg = 0, we havepg = r so that the bound has the same form.) Note that the price that we pay
for approximately low rank is a smaller exponent—namelyql 2 as opposed to 1 in the cage: 0.

The proof of Corollary 2 is based on a more subtle application of Theoremewhich chooses

the effective rank in the bound (9) so as to trade off between the estimation and approximation
errors. In particular, the choigex pq (d|ggd)q/2 turns out to yield the optimal trade-off, and hence
the given error bound (12).

Although we have stated our results in terms of bounds on the weighteddduabenius norm
||\G)|||2w(F) = ||[vV/ROV/C||2, our assumed lower bound on the entfesndC implies that|\|@||\ﬁ)(F) >
‘”?—ﬂ‘%. Consequently, as long as each row and column is sampled a consttiohfcd¢he time, our
results also yield bounds on the Frobenius norm. In some applicationgnaesas and columns
might be heavily sampled, meaning that some entridgarid/orC could be relatively large. Since
we requireonly a lower bounan the row/column sampling frequencies, our Frobenius norm bounds
would not degrade if some rows and/or columns were heavily sampled. ninas a RIP-type
analysis would not be valid in this setting, since heavy sampling means thatahentis norm
could not be uniformly bounded from above.

In order to illustrate the sharpness of our theory, let us compare théctwed of our two
corollaries to the empirical behavior of the-estimator. In particular, we applied the nuclear norm
SDP to simulated data, using Gaussian observation noise with vakiare6.25 and the uniform
sampling model. In all cases, we solved the nuclear norm SDP using ammutts optimization
procedure due to Nesterov (2007), via our own implementation in MATLAB.a=given problem
sized, we ranT = 25 trials and computed the squared Frobenius norm #f@or O*||2 averaged
over the trials.

Figure 1 shows the results in the case of exactly low-rank matrgtes(), with the matrix
rank given byr = [Iogz(dﬂ. Panel (a) shows plots of the mean-squared Frobenius error versus
the raw sample size, for three different problem sizes with the number oixneééments sizes
d? € {40?,607,807,100?}. These plots show that thd-estimator is consistent, since each of the
curves decreases to zero as the samplersinereases. Note that the curves shift to the right as
the matrix dimensiom increases, reflecting the natural intuition that larger matrices require more
samples. Based on the scaling predicted by Corollary 1, we expect thaetresquared Frobenius
error should exhibit the scalinfl® — ©*[|2 =< "'%9¢  Equivalently, if we plot the MSE versus the
rescaled sample size N ﬁ then all the curves should be relatively well aligned, and decay at
the rate YN. Panel (b) of Figure 1 shows the same simulation results re-plotted versussitéded
sample size. Consistent with the prediction of Corollary 1, all four plots ave nelatively well-
aligned. Figure 2 shows the same plots for the case of approximately Idwwrainices ¢ = 0.5).
Again, consistent with the prediction of Corollary 2, we see qualitatively sinbédravior in the
plots of the MSE versus sample size (panel (a)), and the rescaled sareq(eanel (b)).

3.3 Information-theoretic L ower Bounds

The results of the previous section are achievable results, based oticalpapolynomial-time
estimator. It is natural to ask how these bounds compare to the fundamentabfithiesproblem,
meaning the best performance achievable by any algorithm. As varioumsihtive noted (Caid

and Plan, 2010; Keshavan et al., 2010b), a parameter counting argindmates that roughly
n~r (dr +d;) samples are required to estimatedarx d. matrix with rankr. This calculation can

1673



NEGAHBAN AND WAINWRIGHT

MSE versus raw sample size (q = 0) MSE versus rescaled sample size (q = 0)
0.7r . : 0.7 L
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——m? = 80° ' e 2= go?
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Figure 1: Plots of the mean-squared error in Frobenius norm f00. Each curve corresponds to
a different problem sizd? ¢ {40?,607,807,100?}. (a) MSE versus the raw sample size
n. As expected, the curves shift to the rightthimcreases, since more samples should be
required to achieve a given MSE for larger problems. (b) The same Nt#teg versus
the rescaled sample sirg(rd logd). Consistent with Corollary 1, all the plots are now
fairly well-aligned.

be made more formal by metric entropy calculations for the Grassman manifpldSearek, 1983);
see also Rohde and Tsybakov (2011) for results on approximation msifobéhe more generd-
balls of matrices. Such calculations, while accounting for the low-rankitond, donot address
the additional “spikiness” constraints that are essential to the setting of ncampletion. It is
conceivable that these additional constraints could lead to a substartialeszoeduction in the
allowable class of matrices, so that the scalings suggested by paramet@ngau metric entropy
calculation for Grassman manifolds would be overly conservative.

Accordingly, in this section, we provide a direct and constructive argiteslower bound the
minimax rates of Frobenius norm over classes of matrices that are neaamévwand not overly
spiky. This argument establishes that the bounds established in Coraollanek2 are sharp up to
logarithmic factors, meaning that no estimator performs substantially better #nanétconsidered
here. More precisely, consider the matrix classes

_ d
Bilpu) ~{ 0 € B4 | 5 5,(0)7 < py. a5(0) < v/32I00d |.
=1

corresponding to squarkx d matrices that are near low-rank (belonging to thdalls previously
defined (11)), and have a logarithmic spikiness ratio. The following regylies to theminimax
risk in Frobenius norm, namely the quantity

Mn(B(pg)) :=inf sup E[[|©—0"|E],
© o°cB(pq)

where the infimum is taken over all estimat@shat are measurable functionsrosamples.
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Figure 2: Plots of the mean-squared error in Frobenius norep$00.5. Each curve corresponds to
a different problem sizd? ¢ {40?,607,807,100?}. (a) MSE versus the raw sample size
n. As expected, the curves shift to the rightthimcreases, since more samples should be
required to achieve a given I\/lISE for larger problems. (b) The same MN&teg versus

the rescaled sample singé(pﬁ dlogd). Consistent with Corollary 2, all the plots are
now fairly well-aligned.

Theorem 3 There is a universal numerical constamte 0 such that

~ . v2d\ 2 y2g2
Mn(B(pg)) > Cs mm{pq <n> ) n}~

-9
The term of primary interest in this bound is the first one—nanmf,"f]d)l 2. Itis the dominant
term in the bound whenever tlig-radius satisfies the bound

q
vad) 2
Pg =< <n> d. (13)

In the special casg = 0, corresponding the exactly low-rank case, the bound (13) alwalgs,h
since it reduces to requiring that the rank= pg is less than or equal td. In these regimes,
Theorem 3 establishes that the upper bounds obtained in Corollaries2laaadninimax-optimal
up to factors logarithmic in matrix dimensiah

3.4 Comparison to Other Work

We now turn to a detailed comparison of our bounds to those obtained in pasbwnoisy matrix
completion, in particular the papers by Casdand Plan (2010) (hereafter CP) and Keshavan et al.
(2010b) (hereafter KMO). Both papers considered only the caseaatlg low-rank matrices, cor-
responding to the special casegp O in our notation. Since neither paper provided results for the
general case of near-low rank matrices, nor the general result (stithation and approximation
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errors) stated in Theorem 2, our discussion is mainly limited to comparing Qgrdlio their re-
sults. So as to simplify discussion, we restate all results under the scaledyutis papér(i.e.,
with [|©* [ = 1).

3.4.1 OMPARISON OFRATES

Under the strong incoherence conditions required for exact matrixeegcgsee below for discus-
sion), Theorem 7 in CP give an bound (i® — ©*||¢ that depends on the Frobenius norm of the
potentially adversarial error matrix € R%*% as defined by the noise variablgs; i) ki) = & in

our case. In the special case of stochastic noise, under the obsemaitiel (1) and the scalings of
our paper, as long as> d, whered = d; + d»—a condition certainly required for Frobenius norm
consistency—we havé=||r = ©(v,/n/d) with high probability. Given this scaling, the CP upper
bound takes the form

16-olle sv{va+ .

Note that if the noise standard deviatieends to zero while the sample siaematrix sizep and
rank r all remain fixed, then this bound guarantees that the Frobenius errar termro. This
behavior agy — 0 is intuitively reasonable, given that their proof technique is an extrapolibm
the case of exact recovery for noiseless observatwas(). However, note that for any fixed noise
deviationv > 0, the first term increases to infinity as the matrix dimensldncreases, whereas
the second term actually grows as the samplesinereases. Consequently, the CP results do not
guarantee statistical consistency, unlike the bounds proved here.

Turning to a setting with adversarial noise, suppose that the error VegsoFrobenius norm
at mostd. A modification of our analysis yields error bounds of the fdjiid — ©*||¢ < {\‘}—Zﬁ&r

\/%}. In the setting of square matrices widh> ”?jgd, our result yields an upper bound

tighter by a factor of ordet/d better than those presented in CP. Last, as pointed out by a reviewer,
the CP analysis does yield bounds for approximately low-rank matrices riicypar by writing

©* =T,(0*) 4+ A, wherell, is the Frobenius norm projection onto the space of nanikatrices,
andA = ©* —IM,(©*) is the approximation error. With this notation, their analysis guarantees error
bounds of the form/d||A[|r with high probability, which is a weaker guarantee than our bound

whenevel||Af|s > c\‘ / % andn = Q(dlogd).
Keshavan et al. (2010b) analyzed alternative methods based on trimndiagplying the SVD.
For Gaussian noise, their methods guarantee bounds (with high probadfility form

~ . d rd
10— 0| gvmln{m/d—i,Kz(e*)} \/?2, (14)

whered,/d; is the aspect ratio d®*, andk(©*) = g:?:((gg is the condition number o®*. This

result is more directly comparable to our Corollary 1; apart from the additifactor involving
either the aspect ratio or the condition number, it is sharper since it dbes/alve the factor logl
present in our bound. For a fixed noise standard deviatjahe bound (14) guarantees statistical

1. The paper CP and KMO use two different sets of scaling, onelj@tt|r = ©(d) and the other withj|©*||r = /T,
so that some care is required in converting between results.
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consistency as long e(% tends to zero. The most significant differences are the presence of the
aspect ratial,/d; or the condition numbek(©*) in the upper bound (14). The aspect ratio is a
quantity that can be as small as one, or as largd,aso that the pre-factor in the bound (14)
can scale in a dimension-dependent way. Similarly, for any matrix with ragkiddahan one, the
condition number can be made arbitrarily large. For instance, in the rankasey define a matrix
With Omax(©*) = v/1— 82 andomin(©*) = 8, and consider the behavior &s- 0. In contrast, our
bounds are invariant to both the aspect ratio and the condition num&t of

3.4.2 MOMPARISON OFMATRIX CONDITIONS

We now turn to a comparison of the variausitrix incoherence assumptiomsoked in the analysis

of CP and KMO, and comparison to our spikiness condition. As beforeldaty, we specialize our
discussion to the square cade£ d; = d), since the rectangular case is not essentially different. The
matrix incoherence conditions are stated in terms of the singular value desiiop®* = U>VT

of the target matrix. Herd € R4 andV € RY*" are matrices of the left and right singular vectors
respectively, satisfying TU =VTV = I, whereas € R"*" is a diagonal matrix of the singular
values. The purpose of matrix incoherence is to enforce that the leftigimdsingular vectors
should not be aligned with the standard basis. Among other assumptions? ueadysis imposes
the incoherence conditions

r r r r r
U= Do <1 VT Do <0 and JUVTe <Y @)
d d d d d
for some constant > 0. Parts of the KMO analysis impose the related incoherence condition
r r
max |[UUT|i; < wo=, and max|VV'|ii < po-. 16
jzl.,...d‘ ‘JJ = uodv j:l,...,d’ ’JJ = |J0d ( )

Both of these conditions ensure that the singular vectors are sufficiespitged-out”, so as not to
be aligned with the standard basis.

A remarkable property of conditions (15) and (16) is that they exiibidependencen the
singular values 0©*. If one is interested only in exact recovery in the noiseless setting, then this
lack of dependence is reasonable. However, if approximate recisvdrg goal—as is necessarily
the case in the more realistic setting of noisy observations—then it is clear thiairaal set of
sufficient conditions should also involve the singular values, as is thdaaser spikiness measure
0sp(©*). The following example gives a concrete demonstration of an instancesweliercondi-
tions are satisfied, so that approximate recovery is possible, wheraasaherence conditions are
violated.

Example. Let I € R9*9 be a positive semidefinite symmetric matrix with rank 1, Frobenius
norm||||r = 1 and||l"|» < co/d. For a scalar parameter- 0, consider the matrix

O =T +teg]

wheree; € RY is the canonical basis vector with one in its first entry, and zero elsewtgye
construction, the matri®* has rank at most Moreover, as long as= 0(1/d), we are guaranteed
that our spikiness measure satisfies the bawp*) = O(1). Indeed, we hav©*||r > ||I'||F —

t =1-t, and hence

o dlO e _ d(ITle+t) _ co+dt
= < < = 0(1).
(@)=Y =T 1t = 1o - W
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Consequently, for any choice bfas specified above, Corollary 1 implies that the SDP will recover
the matrix®* up to a toleranc®(/%9%)_ This captures the natural intuition that “poisoning” the

matrix I with the termte] e; should have essentially no effect, as lond &snot too large.

On the other hand, suppose that we choose the miatgich that ity — 1 eigenvectors are
orthogonal toe;. In this case, we hav®@*e; =tey, so thate; is also an eigenvector @*. Letting
U € RY" be the matrix of eigenvectors, we hasdJUTe; = 1. Consequently, for any fixed(or
Ho) and rankr < d, conditions (15) and (16) are violated.

&

4. Proofsfor Noisy Matrix Completion

We now turn to the proofs of our results. This section is devoted to the rekattapply directly
to noisy matrix completion, in particular the achievable result given in The@eits associated
Corollaries 1 and 2, and the information-theoretic lower bound given irofEme 3. The proof of
Theorem 1 is provided in Section 5 to follow.

4.1 A Useful Transformation

We begin by describing a transformation that is useful both in these praxdsthe later proof of
Theorem 1. In particular, we consider the mapp@®g- I := v/RO\/C, as well as the modified
observation operatd,’ : R9<¢ — R" with elements

(% (N)]i = (XU, 1Y), fori=1,2,...,n,
whereX () := R-%/2X()C~1/2, Note thatx,' (") = Xn(©) by construction, and moreover
ITlle = ll®lllwe), Tz = l®llw@, and [[Flle = [Olfaww),

which implies that

I il: d )]

Q) = , and agy(@) = i
Pra(®) = 11 Ie (®) = ¢
ra(l) agy()

Based on this change of variables, let us define a modified version aftis&aint set (4) as follows

o) {02 T R | aly(r) Bl < oy [qions a7)
In this new notation, the lower bound (5) from Theorem 1 can be re-séated
%' (D)ll2 128.a5,()
Vi Vi
4.2 Proof of Theorem 2
We now turn to the proof of Theorem 2. Defining the estinfate: vVROv/C, we have

> }||\F\||F{1— } forallT € ¢'(n;co). (18)

- : 1
carg min {%HY—%n’(r)llgﬂ\nlllrll\l}’ (19)

o
[
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and our goal is to upper bound the ordinary Frobenius dﬁj?m |e.

We now state a useful technical result. Parts (a) and (b) of the followimmbewere proven by
Recht et al. (2010), and Negahban and Wainwright (2011), réeplc We recall that we adopt the
shorthand =T —T* throughout the analysis.

Lemmal Let (U V) represent a pair of r-dimensional subspaces of left and right singigators
of I'*. Then there exists a matrix decompositoe: &' + A" of the errorA such that

(@ The matrix\’ satisfies the constraimank(A’) < 2r,and
(b) Given the choicéB), the nuclear norm o” is bounded as

A"l < 3141 + 4 Z oj (). (20)
j=r+1

Note that the bound (20), combined with triangle inequality, implies that

dr
I8l < 1Al +[187]12 < 41 +4 Y oj(T
j=r+1

< 81|14l +4 z aj(T (21)
j=r+1

where the second inequality uses the fact that (&K< 2r. R
We now split into two cases, depending on whether or not the Arbetongs to the set'(n; cp).

4.2.1 xsel
First suppose thak ¢ ¢'(n;co). In this case, by the definition (17), we have

~ ~ ~ dlogd
3112 < col (/o CellAl1) 1112 /=
~ dlogd
< 2coLa’| Bl S,

sincel|B|e < [[M*]lw + [|T ]| < jL Now applying the bound (21), we obtain

~ . [dlogd -~ i i}
llAlE < 2coLa T{SWH\AHIF +4° % oj(M)}. (22)
j=r+1
4.2.2 CASE2
Otherv!ise, we must havk € ¢’(n;cp). Recall the reformulated lower bound (18). On one hand, if
%&(A) > 1/2, then we have

2561 /d; dg|| Ao _ 5l2Lar

Alle <
AllF < 7 NG

(23)
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On the other hand, i}m‘%p(m < 1/2, then from the bound (18), we have

1%0 D)1z 1Al
Jn 16

with high probability. Note thak is optimal and™* is feasible for the convex program (19), so that
we have the basic inequality

(24)

1 =~ =~ 1 . .

%Hy—%n’<F>H%+AnH\FH\1S Splly =% (1 ME+ Al
Some algebra then yields the inequality

i||36 ‘D)5 <v(d Ly EXN) 4+ AallT [l = AallT* + A

n n 2> 3 ni; i n 1 n s

Substituting the lower bound (24) into this inequality yields

>)

a1

I A 1o ] —
< = . —
1o SVIA, niZlEIX )+ ATl = AT+ A

From this point onwards, the proof is identical (apart from constant$hemrem 1 in Negahban
and Wainwright (2011), and we obtain that there is a numerical constanth that

dr
IBIE < csahod VB + 5 oy} (25)
j=r+1

4.2.3 RUTTING TOGETHER THEPIECES

Summarizing our results, we have shown that with high probability, one of tke ttounds (22),
(23) or (25) must hold. Since* > 1, these claims can be summarized in the form

~ dr
[VElAlle + 5 ai(F)].

M%sqmw%m
j=r+1

dlogd
n

for a universal positive constant. Translating this result back to the original co-ordinate system
(M = +/RO*/C) yields the claim (9).

4.3 Proof of Corollary 1

When®* (and henca/Re*v/C) has rank < d;, then we havg ", 0j(v/R®*1/C) = 0. Conse-

guently, the bound (9) reducesm&mw(p) < cpa*Aj/r. To complete the proof, it suffices to show
that

n .
P“”i_ZlEiR_l/ZX(I)C_l/ZWZ >C1v dI?]gd] < cpexp(—codlogd).
i=

1680



RESTRICTEDSTRONG CONVEXITY AND WEIGHTED MATRIX COMPLETION

We do so via the Ahlswede-Winter matrix bound, as stated in Appendix F. iDgfthe ran-
dom matrixY(® := &R-1/2X( C-1/2, we first note thaf; is sub-exponential with parameter 1,
and|R™ Yzx()c- 1/2| has a single entry with magnitude at mbastd,d., which implies that

Y|y, <LV+/dide < 2vLd.

(Here||- ||y, denotes the Orlicz norm (Ledoux and Talagrand, 1991) of a randdable, as defined
by the function1(x) = exp(x) — 1; see Appendix F). Moreover, we have

dde o
&iel e
Rty Gy 070

Qe
Rit) Ci) %)

2
=V“drlg, xd,-

E[(Y)TYO] = VZE[

:VZE[

so that||E[(YW)TYW]||2 < 2vd, recalling that & = d; + dc > di. The same bound applies to
IELY D (Y )T]||2, so that applying Lemma 7 with= nd, we conclude that

nd

12 i
P[mﬁi;aiR*1/2x<'>C*1/2||\2 > 8] < (dr x dc) max{ exp(—nd®/(16v2d), ex —m)}.

Since/dd; < d; + dc = 2d, if we setd? = 02\)2‘“°gd for a sufficiently large constamt, the re-

sult follows. (Here we also use the assumption that Q(Ldlogd), so that the term /49 js
dominant.)

4.4 Proof of Corollary 2

For this corollary, we need to determine an appropriate choicesofas to optimize the bound (9).
To ease notation, let us make use of the shorthand nothtiea v/RO*v/C. With the singular
values ofl™* ordered in non-increasing order, fix some threshold 0 to be determined, and set
r=max{j | oj("'*) > t}. This choice ensures that

dr

) =T Zr ST_Z (Gj(Tr))q<Tl_qpq-
j=r+1 j=r+1

Moreover, we havetd < zﬁzl{cj(r*)}q < pg, Which implies that,/r < mT*Q/Z. Substituting
these relations into the upper bound (9) leads to

180158 < cra” Ay [VPaT V1A ]lur) + T g}

In order to obtain the sharpest possible upper bound, we-set*A;,. Following some algebra, we
find that there is a universal constaatsuch that

dr

j:r+1

q
2

N * * 1-
18]I, < c1pq ((a)2(A)?) 7 2.

As in the proof of Corollary 1, it suffices to choasg= Q(v4/ 4°9%), so that\; = 0/ (v2 4 L) 9%99),
from which the claim follows.
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4.5 Proof of Theorem 3

Our proof of this lower bound exploits a combination of information-theoretichous
(Yu, 1997; Yang and Barron, 1999), which allow us to reduce to a multhyapthesis test, and an
application of the probabilistic method so as to construct a suitably large ges&inBy Markov’s
inequality, it suffices to prove that

2
s PllB-O'lE> 5| > 5
O°€B(pq)

In order to do so, we proceed in a standard way—namely, by reducingsthimation problem to
a testing problem over a suitably constructed packing set contained \ﬁ(b’[{). In particular,
consider a se{@?,...,6M©®} of matrices, contained withif(py), such that||@ — ©/||r > &
for all £ # k. To ease notation, we udé as shorthand foM(d) through much of the argument.
Suppose that we choose an indéx {1,2,...,M} uniformly at random (u.a.r.), and we are given
observationy € R" from the observation model (2) wit®* = @V. Then triangle inequality yields
the lower bound

~ Pe) —~
sup P&~ 'lle > 3| PV V)
O*cB(pq)

If we condition onX,,, a variant of Fano’s inequality yields

((3) ' 5eD(© | ©) +log2

~ o
PV £V | X5 >1 oM

(26)

whereD(6X || @) denotes the Kullback-Leibler divergence between the distributio( f, ©)
and(y|Xn, @"). In particular, for additive Gaussian noise with varianégwe have

D(OK[| ©) = 55 [ %n(©") — £n(©) 3,

1
Py
and moreover,

1
Ex,[D(" 0] = 5 ;116" — .
Combined with the bound (26), we obtain the bound

PN #V] =Ex, {PV £V | X4]}

()71 ik 5% [|O% — ©F|2 + log 2

>1-—
logM

: (27)

The remainder of the proof hinges on the following technical lemma, whichreweedn Ap-
pendix A.

Lemma?2 Let d> 10be a positive integer, and I&> 0. Then foreach =1,2, ... d, there exists
a set of d-dimensional matricd®©?,...,©M} with cardinality M= L%exp({—gS)J such that each
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matrix has rank r, and moreover
I/)lr =8 forall¢=1,2,....M,
|0 =Kl >d  forall £ #£k,
asp(@) < /32logd  forall ¢ =1,2,...,M, and

45
10l < 7 forall £ =1,2,....M.

We now show how to use this packing set in our Fano bound. To avoiditatlsomplications,
we assume throughout that > 1024log2. Note that packing set from Lemma 2 satisfi€% —
Of||r < 25 for all k # ¢, and hence from Fano bound (27), we obtain

~ 21—522+I0g2

PNV £V]>1
19— log4
2% | jog2
Z 1- v d
256
52
_,_ 512 +256l0g2
= rd '

2 v2
If we now choos&* = 2008 * then

rd
7 +256log2
4 +256log Zl

PV £V]>1— p

)

N

where the final inequality again uses the bouhd 1024109 2.
In the special casg= 0, the proof is complete, since the elemedtsall have rank = Ry, and
satisfy the boundisp(©°) < /32Togd. Forg € (0, 1], consider the matrix clag®(pg), and let us set

r =min{d, (pq(%)_%ﬂ in Lemma 2. With this choice, since each mat@has rank’, we have

iOi(ef)Q§ r<\;>q _ r(20148\/§)q o

so that we are guaranteed ti@fte ﬁ(pq). Finally, we note that

q

9 minfpq(8) . L)
n = pq n ) n )
so that we conclude that the minimax error is lower bounded by

1. v\ 12 292
4096mm{pq<n> ’ n}

for dr sufficiently large. (At the expense of a worse pre-factor, the sameddooids for alld > 10.)
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5. Proof of Theorem 1

We now turn to the proof that the sampling operator in weighted matrix completi@fiss re-
stricted strong convexity over the st as stated in Theorem 1. In order to lighten notation, we
prove the theorem in the cade= d.. In terms of rates, this is a worst-case assumption, effectively
amounting to replacing botty andd; by the worst-case mdx,,d.}. However, since our rates are
driven byd = 3(d; +d.) and we have the inequalities

%max{dr,dc} <1 (dr+dc) < max{ch, dc},

this change has only an effect on the constant factors. The prodieaxtended to the general
settingd; # d. by appropriate modifications if these constant factors are of interest.

5.1 Reduction to Simpler Events

In order to prove Theorem 1, it is equivalent to show that, with high fdritibha we have

1% (D2 _ 1 48.d ||| ,
—t > el | b | L ).
Nl T lle 7 forall T € ¢(m;co) (28)
The remainder of the proof is devoted to studying the “bad” event
X 7 48L.d || ||«
E(xn/)- {3 rEQ:I nCo ’M H|r|HF >8|HrHF+\/|F’]H}

Suppose that(X,") doesnothold: then we have
‘H%n’(r)\z 48Ld [l
n vn
which implies that the bound (28) holds. Consequently, in terms of the “baafitethe claim of
Theorem 1 is implied by the tail bourR]E(X,)] < 16 exg—c'dlogd).

We now show that in order to establish a tail bound®(X,’), it suffices to bound the proba-
bility of some simpler event€ (X,,'; D), defined below. Since the definition of the €&fn; cy) and
eventZ(Xy') is invariant to rescaling df, we may assume without loss of generality tha. = 5.
The remaining degrees of freedom in the &€n;cy) can be parameterized in terms of the quan-
tities D = ||[||r andp = ||T'||l1. For anyl" € €'(n;co) with ||| = 2 and ||I'[|r < D, we have
IIF|lz < p(D), where

,
~IFlle| < glIr e+ for all T € €'(n;co),

p(D) == Gl Dzdlogd
For each radiu® > 0, consider the set
B(D) :={l € &(n;co) | [Tl = a ITlle <D, [IFlz < p(D)}, (29)
and the associated event
E(Xy;D) = {3 res(D \w T le \> D 45'5‘}.

The following lemma shows that it suffices to upper bound the probability oéteetZ(X,’;D)
for each fixedD > 0.
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Lemma 3 Suppose that are universal constafts, ¢;) such that
P[E(X,/;D)] < c1exp(—conD?) (30)
for each fixed D> 0. Then there is a universal constanjtsuch that

exp(—c,dlogd
P[E(Xy)] < Gy ep)((p(_zdzd Ig:)g)d)'

The proof of this claim, provided in Appendix B, follows by a peeling argumen

5.2 Bounding the Probability of £(X,; D)

Based on Lemma 3, it suffices to prove the tail bound (30) on the e€lit’; D) for each fixed
D > 0. Let us define

X (r
Z,(D) = sup ””\%)”Z—urmp',
reB(D)
where
. , 1
B(D) = {F € €(mco) | 7w < 5. lIFll <D, [T} < p(D)}. (31)

(The only difference from3 (D) is that we have relaxed to the inequalify|| < 3.) In the remain-
der of this section, we prove that there are universal constents) such that

2
P[Zn(D) > §D+ %] < clexp(—cznl_%) for each fixedD > 0. (32)
This tail bound means that the condition of Lemma 3 is satisfied, and so completpeotif of
Theorem 1.
In order to prove (32), we begin with a discretization argumenttet. ., 'N(® be ad-covering
of 8(D) in the Frobenius norm. By definition, given an arbitreirg 2 (D), there exists some index
ke {1,...,N(8)} and a matrixA € R%*? with [|A[|r < & such thal = '+ A. Therefore, we have

1%n"(T)112 X (T4 D)l
LhadURSIPA L] o = =0 e Irk+A
n lIrlle Wi I+ Allle
[X0 (T2 1% @)ll2 |
< —|Ir A
S I+ lialle
1% (T2 e | 1% @)z
< [ ir 4 s
< Vi I+ =5 +3

where we have used the triangle inequality. Following the same steps estabiiahihis inequality
holds for the absolute value of the difference.

Moreover, sincé = 'K —T with both % andI" belonging ta5 (D), we have||A||; < 2p(D) and
IA]o0 < % where we have used the definition (29). Putting together the pieces nekide that

|X0'(8)]12

H%n/(rk)”Z k |
Zy(D < & + max |————- el +  sup
n ) H‘ ‘” c (67R)‘ \/ﬁ

k=1.N@©) | /N |, (33)
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where
« 2
D@.R) = {ac RY [ [a]lr <3, [|alL < 2p(D), 4] < 5}.

Note that the bound (33) holds for any choiceda$ 0. We establish the tail bound (32) with
the choiced = D/8, and using the following two lemmas. The first lemma provides control of the
maximum over the covering set:

Lemma4 As long d> 10, we have

7+7

]”%” Oz _ | < 2442
k:l ..... \[

with probability greater tharl — cexp( — %).

See Appendix C for the proof of this claim.
Our second lemma, proved in Appendix D, provides control over the tamal in the upper
bound (33).

Lemmab

X0 (D)2
sup |——=—| =
AeD(BR) vn } 2

with probability at leastl — 2exp( — #Diz).

Combining these two lemmas with the upper bound (33) withD /8, we obtain

D D 48 D
Zy(D) < — +—+

~8's8 Jn'2
.3 48
< T

with probability at least - 4 exp( — 8192) thereby establishing the tail bound (32) and completing
the proof of Theorem 1.

6. Discussion

In this paper, we have established error bounds for the problem ohteeighatrix completion based
on partial and noisy observations. We proved both a general reselyloich applies to any matrix,
and showed how it yields corollaries for both the cases of exactly lowaadlapproximately low-
rank matrices. A key technical result is establishing that the matrix samplingtopeatisfies a
suitable form of restricted strong convexity (Negahban et al., 2009)aoset of matrices with con-
trolled rank and spikiness. Since more restrictive properties such adoR1&t hold for matrix com-
pletion, this RSC ingredient is essential to our analysis. Our proof of tl& ¢&dition relied on
a number of techniques from empirical process and random matrix thecdiyding concentration
of measure, contraction inequalities and the Ahlswede-Winter bound. Wsorghation-theoretic
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methods, we also proved that up to logarithmic factors, our error bowamwtbe improved upon
by any algorithm, showing that our method is essentially minimax-optimal.

There are various open questions that remain to be studied. Althoughmalysia applies
to both uniform and non-uniform sampling models, it is limited to the case whete resv (or
column) is sampled with a certain probability. It would be interesting to consixtensions to
settings in which the sampling probability differed from entry to entry, as tigated empirically
by Salakhutdinov and Srebro (2010). Although we have focused @t-$g@ares losses in this
paper, the notion of restricted strong convexity applies to more genesafuostions. Indeed, it
should be possible to combine the results of this paper with Proposition 2 irhbiagat al. (2009)
so as to obtain bounds for matrix completion with general losses. Lastly, glittbis paper has
focused on statistical consequences, the RSC property also has imp#datitire fast convergence
of gradient-type algorithms for solving matrix completion problems (Agarwal.e2011).
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Appendix A. Proof of Lemma 2

We proceed via the probabilistic method, in particular by showing that a nrapdocedure succeeds
in generating such a set with probability at leas2 1l etM’ = exp(%), andforeach =1,...,M’,

we draw a random matri®’ € R9*9 according to the following procedure:

(a) Forrowd =1,...,r and for each columnp=1,...,d, choose eacé)ﬁ € {—1,+1} uniformly
at random, independently acrgssj).

(b) Forrowsi=r+1,...,d, set®; =0.

We then letQ € R9*9 be a random unitary matrix, and defi@é = \/% Qo forall ¢=1,...,M.

The remainder of the proof analyzes the random{& ...,©'}, and shows that it contains a
subset of size at leabt = M’/4 that has properties (a) through (d) with probability at leg@t 1

By construction, each matri@’ has rank at most, and Frobenius norij@’||r = /rd. Since
Q s unitary, the rescaled matric& have Frobenius norfi@‘||r = 8. We now prove that

o' —eK|lr >5  forall £ £k

with probability at least 78. Again, sinceQ is unitary, it suffices to show thgte’ — OK||s > /rd
for any pair? £ k. We have

Lje-oz= 13 3 (8 -k)’
rd F rdizljzl e

This is a sum ofrd i.i.d. variables, each bounded by 4. The mean of the sum is 2, so that the
Hoeffding bound implies that

P[%mék—éﬂllﬁ <2-t] <2exp(—rdt?/32).

1687



NEGAHBAN AND WAINWRIGHT

Since there are less théll’)? pairs of matrices in total, settirig= 1 yields

(18 - K2 rd
m _— > > _
¥ [e,kzl,l.rlM/ rd 1] > 1-2exp( 32 +2logM’) >

where we have used the facts M= {—‘2’8 andd > 10. Recalling the definition ad’, we conclude
that

P[, min |0~z > ] =

~
z—
!—‘
ol

We now establish bounds any,(©) and|||©°||2. We first prove that for any fixed indeke
{1,2,...,M’}, our construction satisfies

P[asp(ef) < \/32Iogd} > g. (34)
Indeed, for any pair of indices, j), we havd@ | = [{ai, V)], WhereqI € RYis drawn from the uni-

form distribution over thel-dimensional sphere, ang;||> = U2 Nl ”'%‘F. By Levy’s theorem

for concentration on the sphere (Ledoux, 2001), we have

2

P[|(q, vi)| >t] <2exp(— ———5t?).
ILRUES ( 8| )

Settingt = s/d and taking the union bound over aft indices, we obtain

P[d||©"]e > 3] §2exp< 52+2Iogd>

8|||@‘ I
This probability is less than/2 for s = ||©|||r +/32Togd andd > 2, which establishes the interme-
diate claim (34).

Finally, we turn to property (d). For each fixédby definition of©’ and the unitary nature @,
we have||0/||2 = 5 ||U][l2, whereU € {—1,41}"*9 is a random matrix with i.i.d. Rademacher

vial
(and hence sub-Gaussian) entries. Known results on sub-Gaussiarem@/ershynin, 2012) yield

1 3
P{llUlle < 2 (Vi VA)] > 1-2exp(~ (v VA > |
for d > 10. Sincer < d, we conclude that
45 3
4
pllefllo< 2] = 3 (35)
By combining the bounds (34) and (35), we find that for each fixedL, ..., M’, we have
45 asp(©f ) 1
O < P \/32Iogd} > 2. (36)
Plifies 7 o 2

Consider the everi that there exists a subset: {1,...,M’} of cardinalityM = %M’ such that

¢
102 < 4£, and 9s2(®) </32logd forall/eS
Vi I©]llr
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By the bound (36), we have

| > Z < ) 1/2).
Since we have chosévt < M’/2, we are guaranteed thatE] > 1/2, thereby completing the proof.

Appendix B. Proof of Lemma 3

We first observe that for arfy € €' (n; co) with ||| = 2, we have

dlogd
> collF [l 1/ =228,

IIFIIE = collFlx -

dlogd
n

dlogd
n

whence||l' || > ¢o . Accordingly, recalling the definition (29), it suffices to restrict our

attention to set$(D) with D > p:= o/ 2999, For¢ = 1,2,... anda = 7, define the sets

1
Sei={rednmeo) [ IMlw =3, a" < Fle <a'w and|IFlli < pa‘W}.  (37)

From the definition (29), note that by construction, we Héwe B (a‘p).
Now if the eventZ(X,) holds for some matrix, then this matrid” must belong to some set
Sy. Whenl € Sy, then we are guaranteed the existence of a mEtex5 (a’y) such that

| 120" (D)2
NG

48L
r —|IIF
—Irlle| > HI e + N
7 ql-1 48L
g WA

_ 3 2

4 l’l \/ﬁ Y

where the final equality follows sin@e= 7/6. Thus, we have shown that when the violating matrix

[ €Sy, then eventE(X,;a’y) must hold. Since any violating matrix must fall into someSethe
union bound implies that

>

8

P[Z(%n/)] <Y PE (X450 P-)]

IN

2 2)

c1y exp(—cnap

<c exp( 2c;log(a) £niP)

exp( cHNLP)
=Gz exp(—c,nP)

Sinceni? = Q(dlogd), the claim follows.
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Appendix C. Proof of Lemma 4

For a fixed matrixX", define the functioff (X,) = %Hxn’(r)nz. We prove the lemma in two parts:
first, we establish that for any fixdd the functionF satisfies the tail bound

62

48L n
PIFr ()~ I lle| > 8+ 2] < 4exp( - 55). (38)
We then show that there exist®acovering of’ﬁ(D) such that
logN(3) < 36(p(D)/3)” d. (39)

Combining the tail bound (38) with the union bound, we obtain

?

16L
Pl max |Fr(xd)—IT¥lel = 8+ 2

=1,...,N(3) ﬁ] < 4exp( _

+logN(3))

2
< 4exp{ - 2% +36(p(D)/3)? d}

where the final inequality uses the bound (39). Since Lemma 4 is based ondiced = D/8, it
suffices to show that

2

=150 > 36(p(D)/(D/8))"d

8D n 2
B 36(Col_ \ dlogd> ‘

230402 n
~ cgL2 logd’

Noting that the terms invoIvin@z, L2, andn both cancel out, we see that for any fixef] this
inequality holds once log is sufficiently large. By choosingy sufficiently large, we can ensure
that it holds for alld > 2.

It remains to establish the two intermediate claims (38) and (39).

C.1 Upper Bounding the Covering Number (39)

We start by proving the upper bound (39) on the covering number. g’rmbketﬂ(é) denote the
3-covering number (in Frobenius norm) of the nuclear normbalp(D)) = {A € R | Al <
p(D)}, and letN(3) be the covering number of the $B{D). We first claim thatN(3) < N(3). Let
{r1,...,rN®1 pe ad-cover ofBy(p(D)), From Equation (31), note that the $8{D) is contained
within B1(p(D)); in particular, it is obtained by intersecting the latter set with the set

1
S={0 R | ||Allo < g 12l < B}
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Letting M denote the projection operator under Frobenius norm onto this set, we tatm
{Ns(rl),j=1,...,N(3)} is ad-cover of B(D). Indeed, sinces is non-empty, closed and con-
vex, the projection operator is non-expansive (Bertsekas, 1988)thais for any” € B(D) C S,
we have

INs(F) =Flle = [INs(F) = Ns(D)fle < IF? =T le,

which establishes the claim.
We now upper boundll(d). Let G € R%*9 be a random matrix with i.i.dN(0, 1) entries. By
Sudakov minoration (cf. Theorem 5.6 in Pisier, 1989), we have

logN(3) <

ol W

E[ sup (G, A))]
I18l11<p(D)

< PO ki),

where the second inequality follows from the duality between the nucleas@ardtor norms. From
known results on the operator norms of Gaussian random matrices (Davadsl Szarek, 2001),
we have the upper bourftf||G||2] < 2v/d, so that

0gR(3) < P2 v,

thereby establishing the bound (39).

C.2 Egtablishing the Tail Bound (38)

Recalling the definition of the operatak’, we have
Fr(Xn) f{ Zl
f ol 1.Zu'
f ol lZLUY

where we have defined the random variables= (X, I')). Note that eacly; is zero-mean, and
bounded by R since

1/2

i = [(XW, 7))
< (Z}|)~((i)|ab) Mo < 2L.

where we have used the facts that|. < 2/d, andy »|X"|ap < L d, by definition of the matrices
X0,

Therefore, applying Corollary 4.8 from Ledoux (2001), we conclilmde
62

B[R () ~ BIF ()] > 5+ o] < dexp(— o).

VN
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The same corollary implies that

16L
|/ E[F2(%n)] — E[Fr (%0)]| < T
SinceE[F2(Xn")] = |||, the tail bound (38) follows.
Appendix D. Proof of Lemma5
From the proof of Lemma 4, recall the definitiép(X,’) = 7||3€n (I)|]2 whereX," is the random

sampling operator defined by tmematrlces(x( )X )). Using this notation, our goal is to
bound the function

G(Xy):= sup Ra(xy),
AeD(6,R)

where we recall thad (8,R) := {A € R%*% [ [|Alle < &, [|All1 < 2p(D), [|All < %}. Ultimately,
we will setd = 8, but we use‘S until the end of the proof for compactness in notation.

Our approach is a standard one: first show concentrati@Gasbund its expectatioB[G(Xy’')],
and then upper bound the expectation. We show concentration via a lobdifféeence inequality;
sinceG is a symmetric function of its arguments, it suffices to establish the boundededitfe

property with respect to the first co-ordinate. In order to do so, censidsecond operatd}:’
defined by the matrice®,X? ... X(M), differing from X, only in the first matrix. Given the

pair (X, Xy), we have

G(%n’)—G(g’): sup Fa(Xy)— sup F@(B/EI’)
AeD(5R) D3R

< sup [FA(aen')—FA(Se?)}
AeD(O,R)

< sup H%n
AeD(3,R) \f

= sup

AeD(O,R) \f‘ ’AM.

(8) — X (8) 2

For any fixedA € ©(3,R), we have
[(XW —zD_ Ap| < 2Ld]|A]l < 4L,

where we have used the fact that the maxi®¥) — Z(1) is non-zero in at most two entries with

values upper bounded by.& Combining the pieces yield3(X,') — G(Xy') < :‘; Since the same

argument can be applied with the rolesXyf and%’ interchanged, we conclude thi@(X,') —
G(Xy)| < %. Therefore, by the bounded differences variant of the Azumafdiogf inequality
(Ledoux, 2001), we have

t2

P[IG(%n") — E[G(Xn)]| > t] < 2exp(— W)

(40)
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Next we bound the expectation. First applying Jensen’s inequality, e ha

(E[G(Xn)])? < E[GZ(%n’)]

sup le (XU, an?]
AECDéRn

- [AQZ“ER{ > (K0, 82~ BI(KO, 82 + I} }

<z| sup {ii[<<>?<‘>,A>>2—E[<<>?<‘>,A>>21]}]+62,

AcD(3R)

:H—\

where we have used the fact tHaf((X(), A)? = ||A]|2 < 8. Now a standard symmetrization
argument (Ledoux and Talagrand, 1991) yields

1nh
Ey/[G*(X0)] <2Ex [ sup sti(<X('),A>>2]+62,
" aedR NE

where {&}_, is an i.i.d. Rademacher sequence. Sin¢¥("), A)| < 2L for all i, the Ledoux-
Talagrand contraction inequality (p. 112, Ledoux and Talagrand,)liﬁﬁ)lies that

n
E[G?(Xy)] <16LE[ sup Zl } + &
Ae@ (O,R)

By the duality between operator and nuclear norms, we have

5 2,0 )] <117 5 e X

and hence, sincgA||1 < p(D) for all A € ©(8,R), we have
1
E[G*(x)] < 16Lp(D) E[lI7 5 &XVlle] +5 (41)
i=

It remains to bound the operator noEﬂH M eX |\|2] The following lemma, proved in
Appendix E, provides a suitable upper bound:

Lemma 6 We have the upper bound

dlogd Ldlogd

12 <4
E[|\|H.Zleix(')m2} < 10 max{ — }.
=

Thus, as long as = Q(Ldlogd), combined with the earlier bound (41), we conclude that

E[G(Xy)] < /E[G(X,')] < [160Lp(D) \/@ L&V,

where we have used the fact that 1. By definition ofp(D), we have

dlogd @DZ 5D, 2

160L2p(D) T o (16)
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where the final inequality can be guaranteed by choogjragfficiently large.
Consequently, recalling our choi®= D/8 and using the inequality’a? + b? < |a| + |b|, we
obtain
5 D 7

!/
< — —=—D.
E[G(Xx)] < 15D+ 5 = 16P

Finally, settingt = 1—'36 in the concentration bound (40) yields

. _ D 7 D
< —4+—D=—=
G(3€n)_16+16D >

with probability at least - 2exp( — ¢ ”L—[f) as claimed.

Appendix E. Proof of Lemma 6

We prove this lemma by applying a form of Ahlswede-Winter matrix bound (R0&2 stated in
Appendix F, to the matrix 1) := £ XV, We first compute the quantities involved in Lemma 7. Note
thatY ) is a zero-mean random matrix, and satisfies the bound

YOl =d i ;i) & lll2 < Ld.

1
VAN TURVASD
Let us now compute the quantitiesin Lemma 7. We have

. d2
vy ) :IE[ - Tl = dlgy
) ] Rj(i)ck(i)Q<<l)ek(l) dxd

and similarly,E[Y® (Y()T] = dlg,q, so that
o max{um[w‘) YOl \HE[(Y“)>TY“>]|HZ} _d.

Thus, applying Lemma 7 yields the tail bound
2

n o t t
() _ _
pU”i;g,x 2> t] < 2d max{ exp( ang)” & 2Ld)}'

Settingt = nd, we obtain

10 » n62 nd
PG 3 &X"llo >8] < 2d max{ expl— g, expl— )}
1=

Recall that for any non-negative random variableve haveE[T] = [;°P[T > s|ds. Applying

this fact toT := |7 57, &X ") and integrating the tail bound, we obtain
1n . | Ld|
E[II5 36XV llz] <10 max dlogd Ldlogd ,
n.& . -
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Appendix F. Ahlswede-Winter Matrix Bound

Here we state a Bernstein version of the Ahlswede-Winter (2002) tailbfmrrthe operator norm
of a sum of random matrices. The version here is a slight weakeninguffigient for our purposes)
of a result due to Recht (2011); we also refer the reader to the chaptershynin (2012), and the
strengthened results provided by Tropp (2010).

Let Y() be independerd, x d. zero-mean random matrices such tfj¥t" ||, < M, and define
0? := max{ [[E[(YO) YOz, [IEYD(YO)T)||2} as well aw? == 37, 07,

Lemma7 We have
n
; t
P[] ZY“HHZ > t] < (dr x dc) max{ exp(—t?/(40?), exp(—m)}.
i=

As noted by Vershynin (2009), the same bound also holds under thenptiso that eacly() is
sub-exponential with parametkt = ||Y(")||,,. Here we are using the Orlicz norm

12|y :=inf{t > 0 [E[(|Z]/t)] < oo},

defined by the functioy1(X) = exp(x) — 1, as is appropriate for sub-exponential variables (e.g., see
Ledoux and Talagrand, 1991).
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