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Abstract

The problem of minimizing the rank of a matrix subject to affine constraints has applications in

several areas including machine learning, and is known to be NP-hard. A tractable relaxation

for this problem is nuclear norm (or trace norm) minimization, which is guaranteed to find the

minimum rank matrix under suitable assumptions. In this paper, we propose a family of Iterative

Reweighted Least Squares algorithms IRLS-p (with 0 ≤ p ≤ 1), as a computationally efficient way

to improve over the performance of nuclear norm minimization. The algorithms can be viewed as

(locally) minimizing certain smooth approximations to the rank function. When p = 1, we give

theoretical guarantees similar to those for nuclear norm minimization, that is, recovery of low-rank

matrices under certain assumptions on the operator defining the constraints. For p < 1, IRLS-

p shows better empirical performance in terms of recovering low-rank matrices than nuclear norm

minimization. We provide an efficient implementation for IRLS-p, and also present a related family

of algorithms, sIRLS-p. These algorithms exhibit competitive run times and improved recovery

when compared to existing algorithms for random instances of the matrix completion problem, as

well as on the MovieLens movie recommendation data set.

Keywords: matrix rank minimization, matrix completion, iterative algorithms, null-space property

1. Introduction

The Affine Rank Minimization Problem (ARMP), or the problem of finding the minimum rank

matrix in an affine set, arises in many engineering applications such as collaborative filtering (e.g.,

Candes and Recht, 2009; Srebro et al., 2005), low-dimensional Euclidean embedding (e.g., Fazel

et al., 2003), low-order model fitting and system identification (e.g., Liu and Vandenberghe, 2008),

and quantum tomography (e.g., Gross et al., 2010). The problem is as follows,

minimize rank(X)

subject to A(X) = b,
(1)

where X ∈ R
m×n is the optimization variable, A : Rm×n → R

q is a linear map, and b ∈ R
q denotes

the measurements. When X is restricted to be a diagonal matrix, ARMP reduces to the cardinality
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minimization or sparse vector recovery problem,

minimize card(x)

subject to Ax = b,

where x ∈ R
n, A ∈ R

m×n and card(x) denotes the number of non-zeros entries of x. A commonly

used convex heuristic for this problem is ℓ1 minimization. The field of compressed sensing has

shown that under certain conditions on the matrix A, this heuristic solves the original cardinality

minimization problem (Candes and Tao, 2004). There are also geometric arguments in favor of ℓ1

norm as a good convex relaxation (see, e.g., Chandrasekaran et al., 2010b, for a unifying analysis

for general linear inverse problems). It has also been observed empirically (e.g., Candes et al., 2008;

Lobo et al., 2006) that by appropriately weighting the ℓ1 norm and iteratively updating the weights,

the recovery performance of the algorithm is enhanced. It is shown theoretically that for sparse

recovery from noisy measurements, this algorithm has a better recovery error than ℓ1 minimization

under suitable assumptions on the matrix A (Needell, 2009; Zhang, 2010). The Reweighted ℓ1

algorithm has also been generalized to the recovery of low-rank matrices (Fazel et al., 2003; Mohan

and Fazel, 2010a).

Another simple and computationally efficient reweighted algorithm for sparse recovery that has

been proposed in the literature (Daubechies et al., 2010), is the Iterative Reweighted Least Squares

algorithm (IRLS-p, for any 0 < p ≤ 1). Its kth iteration is given by

xk+1 = argmin
x

{
∑

i

wk
i x2

i : Ax = b,

}
,

where wk ∈R
n is a weight vector with wk

i = (|xk
i |2+ γ)p/2−1 (γ > 0 being a regularization parameter

added to ensure that wk is well defined). For p = 1, a theoretical guarantee for sparse recovery has

been given for IRLS-p (Daubechies et al., 2010), similar to the guarantees for ℓ1 minimization. The

starting point of the algorithm, x0 is set to zero. So the first iteration gives the least norm solution

to Ax = b. It was empirically observed (Chartrand and Staneva, 2008; Chartrand and Yin, 2008)

that IRLS-p shows a better recovery performance than ℓ1 minimization for p < 1 and has a similar

performance as the reweighted ℓ1 algorithm when p is set to zero. The computational benefits of

IRLS-1, as well as the above mentioned theoretical and empirical improvements of IRLS-p, p < 1,

over ℓ1 minimization, motivate us to ask: Would an iterative reweighted algorithm bring similar

benefits for recovery of low rank matrices, and would an improved performance be at the price of

additional computational cost relative to the standard nuclear norm minimization?

1.1 Iterative Reweighted Least Squares for ARMP

Towards answering this question, we propose the iterative reweighted least squares algorithm for

rank minimization, outlined below.
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Data: A , b

Set k = 1. Initialize W 0
p = I,γ1 > 0 ;

while not converged do

Xk = argmin
X

{Tr(W k−1
p XT X) : A(X) = b} ;

W k
p = (XkT

Xk + γkI)
p
2
−1 ;

Choose 0 < γk+1 ≤ γk ;

k = k+1 ;

end

Algorithm 1: IRLS-p Algorithm for Matrix Rank Minimization with 0 ≤ p ≤ 1

Each iteration of Algorithm 1 minimizes a weighted Frobenius norm of the matrix X , since

Tr(W k−1
p XT X) = ‖(W k−1

p )1/2X‖2
F . While minimizing the Frobenius norm subject to affine con-

straints doesn’t lead to low-rank solutions in general, through a careful reweighting of this norm

we show that Algorithm 1 does indeed produce low-rank solutions under suitable assumptions.

Usually a reweighted algorithm trades off computational time for improved recovery performance

when compared to the unweighted convex heuristic. As an example, the reweighted ℓ1 algorithm

for sparse recovery (Candes et al., 2008) and the reweighted nuclear norm algorithm (Mohan and

Fazel, 2010a) for matrix rank minimization solve the corresponding standard convex relaxations (ℓ1

and nuclear norm minimization respectively) in their first iteration. Thus these algorithms take at

least as much time as the corresponding convex algorithms. However, the iterates of the IRLS-p

family of algorithms simply minimize a weighted Frobenius norm, and have run-times comparable

with the nuclear norm heuristic, while (for p < 1) also enjoy improved recovery performance. In

the p = 1 case, we show that the algorithm minimizes a certain smooth approximation to the nuclear

norm, allowing for efficient implementations while having theoretical guarantees similar to nuclear

norm minimization.

1.2 Contributions

Contributions of this paper are as follows.

• We give a convergence analysis for IRLS-p for all 0 ≤ p ≤ 1. We also propose a related

algorithm, sIRLS-p (or short IRLS), which can be seen as a first-order method for locally

minimizing a smooth approximation to the rank function, and give convergence results for

this algorithm as well. The results exploit the fact that these algorithms can be derived from

the KKT conditions for minimization problems whose objectives are suitable smooth approx-

imations to the rank function.

• We prove that the IRLS-1 algorithm is guaranteed to recover a low-rank matrix if the linear

map A satisfies the following Null space property (NSP). We show this property is both

necessary and sufficient for low-rank recovery. The specific NSP that we use first appeared

in the literateure recently (Oymak and Hassibi, 2010; Oymak et al., 2011), and is expressed

only in terms of the singular values of the matrices in the null space of A .
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Definition 1 Given τ > 0, the linear map A : Rm×n → R
p satisfies the τ-Null space Property

(τ-NSP) of order r if for every Z ∈ N (A)\{0}, we have

r

∑
i=1

σi(Z) < τ
n

∑
i=r+1

σi(Z) (2)

where N (A) denotes the null space of A and σi(Z) denotes the ith largest singular value of

Z.

It has been shown in the literature (Oymak and Hassibi, 2010) that certain random Gaussian

maps A satisfy this property with high probability.

• We give a gradient projection algorithm to implement IRLS-p. We extensively compare these

algorithms with other state of the art algorithms on both ‘easy’ and ‘hard’ randomly picked

instances of the matrix completion problem (these notions are made precise in the numerical

section). We also present comparisons on the MovieLens movie recommendation data set.

Numerical experiments demonstrate that IRLS-0 and sIRLS-0 applied to the matrix comple-

tion problem have a better recovery performance than the Singular Value Thresholding algo-

rithm, an implementation of Nuclear Norm Minimization (Cai et al., 2008), on both easy and

hard instances. Importantly, in the case where there is no apriori information on the rank of

the low rank solution (which is common in practice), our algorithm has a significantly better

recovery performance on hard problem instances as compared to other state of the art algo-

rithms for matrix completion including IHT, FPCA (Goldfarb and Ma, 2011), and Optspace

(Keshavan and Oh, 2009).

1.3 Related Work

We review related algorithms for recovering sparse vectors and low rank matrices. Many approaches

have been proposed for recovery of sparse vectors from linear measurements including ℓ1 minimiza-

tion and greedy algorithms (see, e.g., Needell and Tropp, 2008; Goldfarb and Ma, 2011; Garg and

Khandekar, 2009, for CoSaMP, IHT, and GraDes respectively). As mentioned earlier, reweighted

algorithms including Iterative reweighted ℓ1 (Candes et al., 2008) and Iterative Reweighted Least

Squares (Rao and Kreutz-Delgado, 1999; Wipf and Nagarajan, 2010; Daubechies et al., 2010) with

0 < p ≤ 1 have been proposed to improve on the recovery performance of ℓ1 minimization.

For the ARMP, analogous algorithms have been proposed including nuclear norm minimization

(Fazel et al., 2001), reweighted nuclear norm minimization (Mohan and Fazel, 2010a; Fazel et al.,

2003), as well as greedy algorithms such as AdMiRA (Lee and Bresler, 2010) which generalizes

CoSaMP, SVP (Meka et al., 2010), a hard-thresholding algorithm that we also refer to as IHT, and

Optspace (Keshavan and Oh, 2009). Developing efficient implementations for nuclear norm min-

imization is an important research area since standard semidefinite programming solvers cannot

handle large problem sizes. Towards this end, algorithms including SVT (Cai et al., 2008), NNLS

(Toh and Yun, 2010), FPCA (Goldfarb and Ma, 2011) have been proposed. A spectral regulariza-

tion algorithm (Mazumder et al., 2010) has also been proposed for the specific problem of matrix

completion.
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In a preliminary conference version of this paper (Mohan and Fazel, 2010b), we proposed the

IRLS-p family of algorithms for ARMP, analogous to IRLS for sparse vector recovery (Daubechies

et al., 2010). The present paper gives a new and improved theoretical analysis for IRLS-1 via a

simpler NSP condition, obtains complete convergence results for all 0 ≤ p ≤ 1, and gives more

extensive numerical experiments.

Independent of us and at around the same time as the publication of our conference paper, For-

nasier et al. (2010) proposed the IRLSM algorithm, which is similar to our IRLS-1 algorithm but

with a different weight update (a thresholding operation is used to ensure the weight matrix is invert-

ible). The authors employ the Woodbury matrix inversion lemma to speed up the implementation

of IRLSM and compare it to two other algorithms, Optspace and FPCA, showing that IRLSM has

a lower relative error and comparable computational times. However, their analysis of low-rank re-

covery uses a Strong Null Space Property (SRNSP) (which is equivalent to the condition in, Mohan

and Fazel, 2010b) and is less general than the condition we consider in this paper, as discussed in

Section 3.

Also, the authors have only considered recovery of matrices of size 500× 500 in their exper-

iments. We present extensive comparisons of our algorithms with algorithms including Optspace,

FPCA, and IHT for recovery of matrices of different sizes. We observe that our IRLS and sIRLS

implementations run faster than IRLSM in practice. IRLSM solves a quadratic program in each

iteration using a sequence of inversions, which can be expensive for large problems, even after ex-

ploiting the matrix inversion lemma. Finally the authors of the IRLSM paper only consider the

p = 1 case.

The rest of the paper is organized as follows. We introduce the IRLS-p algorithm for ARMP in

Section 2 and give convergence and performance guarantees in Section 3. In Section 4, we discuss

an implementation for IRLS-p, tailored for the matrix completion problem, and in Section 5 we

present the related algorithm sIRLS-p. Numerical experiments for IRLS-0 and sIRLS-0 for the

matrix completion problem, as well as comparisons with SVT, IHT, IRLSM, Optspace and FPCA

are given in Section 6. The last section summarizes the paper along with future research directions.

1.3.1 NOTATION

Let N (A) denote the null space of the operator A and Ran(A∗) denote the range space of the adjoint

of A . Let σ(X) denote the vector of decreasingly ordered singular values of X so that σi(X) denotes

the ith largest singular value of X . Also let ‖X‖,‖X‖F denote the spectral norm and Frobenius norm

of X respectively. The nuclear norm is defined as ‖X‖⋆ = ∑i σi(X). Ik denotes the identity matrix

of size k× k.

2. Iterative Reweighted Least Squares (IRLS-p)

In this section, we describe the IRLS-p family of algorithms (Algorithm 1). Recall that replacing

the rank function in (1) by ‖X‖⋆ yields the nuclear norm heuristic,

minimize ‖X‖⋆
subject to A(X) = b.
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We now consider other (convex and non-convex) smooth approximations to the rank function. De-

fine the smooth Schatten-p function as

fp(X) = Tr(XT X + γI)p/2

= ∑n
i=1(σ

2
i (X)+ γ)

p
2 .

Note that fp(X) is differentiable for p > 0 and convex for p ≥ 1. With γ = 0, f1(X) = ‖X‖⋆, which

is also known as the Schatten-1 norm. With γ = 0 and p → 0, fp(X)→ rank(X). For p = 1, one can

also derive the smooth Schatten-1 function as follows.

f1(X) = max
Z:‖Z‖2≤1

〈Z,X〉−√
γd(Z)+n

√
γ,

where d(Z) is a smoothing term given by d(Z) = ∑n
i=1(1−

√
1−σ2

i (Z)) = n− Tr(I − ZT Z)1/2.

Plugging in d(Z) = 0 in (3) gives ‖X‖⋆+ n
√

γ. Hence f1(X) is a smooth approximation of ‖X‖⋆
obtained by smoothing the conjugate of ‖X‖⋆. By virtue of the smoothing, it is easy to see that

‖X‖⋆ ≤ f1(X)≤ ‖X‖⋆+n
√

γ.

As γ approaches 0, f1(X) becomes tightly bounded around ‖X‖⋆. Also let X∗ be the optimal solution

to minimizing ‖X‖⋆ subject to A(X) = b and let X s be the optimal solution to minimizing f1(X)

subject to the same constraints. Then it holds that

(‖X‖⋆−‖X∗‖⋆)≤ ( f1(X)− f1(X
s))+n

√
γ ∀X : A(X) = b.

Thus, to minimize ‖X‖⋆ to a precision of ε, we need to minimize the smooth approximation f1(X)

to a precision of ε−n
√

γ.

It is therefore of interest to consider the problem

minimize fp(X)

subject to A(X) = b,
(3)

the optimality conditions of which motivate the IRLS-p algorithms for 0 ≤ p ≤ 1. We show that

IRLS-1 solves the smooth Schatten-1 norm or nuclear norm minimization problem, that is, finds a

globally optimal solution to (3) with p = 1. For p < 1, we show that IRLS-p finds a stationary point

of (3).

We now give an intuitive way to derive the IRLS-p algorithm from the KKT conditions of (3).

The Lagrangian corresponding to (3) is

L(X ,λ) = fp(X)+ 〈̂λ, A(X)−b〉,

and the KKT conditions are ∇X L(X , λ̂) = 0, A(X) = b. Note that ∇ fp(X) = pX(XT X + γI)p/2−1

(see, e.g., Lewis, 1996). Letting λ = λ̂
p
, we have that the KKT conditions for (3) are given by

2X(XT X + γI)p/2−1 +A∗(λ) = 0

A(X) = b.
(4)
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Let W k
p = (XkT

Xk + γI)p/2−1. The first condition in (4) can be written as

X =−1

2
A∗(λ)(XT X + γI)1−p/2.

This is a fixed point equation, and a solution can be obtained by iteratively solving for X as Xk+1 =
1
2
A∗(λ)(W k

p )
−1

, along with the condition A(Xk+1) = b. Note that Xk+1 and the dual variable λ

satisfy the KKT conditions for the convex optimization problem,

minimize TrW k
p XT X

subject to A(X) = b.

This idea leads to the IRLS-p algorithm described in Algorithm 1. Note that we also let p = 0 in

Algorithm 1; to derive IRLS-0, we define another non-convex surrogate function by taking limits

over fp(X). For any positive scalar x, it holds that limp→0
1
p
(xp −1) = logx. Therefore,

lim
p→0

fp(X)−n

p
= 1

2
logdet(XT X + γI)

= ∑i
1
2

log(σ2
i (X)+ γ).

Thus IRLS-0 can be seen as iteratively solving (as outlined previously) the KKT conditions for the

non-convex problem,

minimize logdet(XT X + γI)

subject to A(X) = b.
(5)

Another way to derive the IRLS-p algorithm uses an alternative characterization of the Smooth

Schatten-p function; see appendix A.

3. IRLS-p: Theoretical Results

In this section, convergence properties for the IRLS-p family of algorithms are studied. We also

give a matrix recovery guarantee for IRLS-1, under suitable assumptions on the null space of the

linear operator A .

3.1 Convergence of IRLS-p

We show that the difference between successive iterates of the IRLS-p (0 ≤ p ≤ 1) algorithm con-

verges to zero and that every cluster point of the iterates is a stationary point of (3). These results

generalize the convergence results given for IRLS-1 in previous literature (Mohan and Fazel, 2010b;

Fornasier et al., 2010) to IRLS-p with 0 < p ≤ 1. In this section, we drop the subscript on W k
p for

ease of notation. Our convergence analysis relies on useful auxiliary functions defined as

J p(X ,W,γ) :=

{
p
2
(Tr(W (XT X + γI))+ 2−p

p
Tr((W )

p
p−2 )) if 0 < p ≤ 1

Tr(W (XT X + γI))− logdetW −n if p = 0.
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These functions can be obtained from the alternative characterization of Smooth Schatten-p function

with details in Appendix A. We can express the iterates of IRLS-p as

Xk+1 = argmin
X :A(X)=b

J p(X ,W k,γk)

W k+1 = argmin
W≻0

J p(Xk+1,W,γk+1),

and it follows that

J p(Xk+1,W k+1,γk+1) ≤ J p(Xk+1,W k,γk+1)

≤ J p(Xk+1,W k,γk)

≤ J p(Xk,W k,γk).

(6)

The following theorem shows that the difference between successive iterates converges to zero. The

proof is given in Appendix B.

Theorem 2 Given any b ∈ R
q, the iterates {Xk} of IRLS-p (0 < p ≤ 1) satisfy

∞

∑
k=1

‖Xk+1 −Xk‖2
F ≤ 2D

2
p ,

where D := J p(X1,W 0,γ0). In particular, we have that lim
k→∞

(
Xk −Xk+1

)
= 0.

Theorem 3 Let γmin := lim
k→∞

γk > 0. Then the sequence of iterates {Xk} of IRLS-p (0 ≤ p ≤ 1) is

bounded, and every cluster point of the sequence is a stationary point of (3) (when 0 < p ≤ 1), or a

stationary point of (5) (when p = 0).

Proof Let

g(X ,γ) =

{
Tr(XT X + γI)

p
2 if 0 < p ≤ 1

logdet(XT X + γI) if p = 0

Then g(Xk,γk) = J p(Xk,W k,γk) and it follows from (6) that g(Xk+1,γk+1) ≤ g(Xk,γk) for all k ≥
1. Hence the sequence {g(Xk,γk)} converges. This fact together with γmin > 0 implies that the

sequence {Xk} is bounded.

We now show that every cluster point of {Xk} is a stationary point of (3). Suppose to the

contrary and let X̃ be a cluster point of {Xk} that is not a stationary point. By the definition of

cluster point, there exists a subsequence {Xni} of {Xk} converging to X̃ . By passing to a further

subsequence if necessary, we can assume that {Xni+1} is also convergent and we denote its limit by

X̂ . By definition, Xni+1 is the minimizer of

minimize TrW niXT X

subject to A(X) = b.
(7)

Thus, Xni+1 satisfies the KKT conditions of (7), that is,

Xni+1W ni ∈ Ran(A∗) and A(Xni+1) = b,
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where Ran(A∗) denotes the range space of A∗. Passing to limits, we see that

X̂W̃ ∈ Ran(A∗) and A(X̂) = b, (8)

where W̃ = (X̃T X̃ + γminI)−1. From (8), we conclude that X̂ is a minimizer of the following convex

optimization problem,

minimize TrW̃XT X

subject to A(X) = b.
(9)

Next, by assumption, X̃ is not a stationary point of (3) (for 0 < p ≤ 1) nor (5) (for p = 0). This

implies that X̃ is not a minimizer of (9) and thus TrW̃ X̂T X̂ < TrW̃ X̃T X̃ . This is equivalent to

J p(X̂ ,W̃ ,γmin)< J p(X̃ ,W̃ ,γmin). From this last relation and (6) it follows that,

J p(X̂ ,Ŵ ,γmin) < J p(X̃ ,W̃ ,γmin),

g(X̂ ,γmin) < g(X̃ ,γmin).
(10)

On the other hand, since the sequence {g(Xk,γk)} converges, we have that

limg(X i,γi) = limg(Xni ,γni) = g(X̃ ,γmin) = limg(Xni+1 ,γni+1) = g(X̂ ,γmin)

which contradicts (10). Hence, every cluster point of {Xk} is a stationary point of (3) (when

0 < p ≤ 1) and a stationary point of (5) (when p = 0).

3.2 Performance Guarantee for IRLS-1

In this section, we discuss necessary and sufficient conditions for low-rank recovery using IRLS-

1. We show that any low-rank matrix satisfying A(X) = b can be recovered via IRLS-1, if the

null space of A satisfies a certain property. If the desired matrix is not low-rank, we show IRLS-1

recovers it to within an error that is a constant times the best rank-r approximation error, for any r.

We first give a few definitions and lemmas.

Definition 4 Given x ∈R
n, let x[i] denote the ith largest element of x so that x[1] ≥ x[2] ≥ . . .x[n−1] ≥

x[n]. A vector x ∈ R
n is said to be majorized by y ∈ R

n (denoted as x ≺ y) if ∑k
i=1 x[i] ≤ ∑k

i=1 y[i] for

k = 1,2, . . . ,n− 1 and ∑n
i=1 x[i] = ∑n

i=1 y[i]. A vector x ∈ R
n is said to be weakly sub-majorized by

y ∈ R
n (denoted as x ≺w y ) if ∑k

i=1 x[i] ≤ ∑k
i=1 y[i] for k = 1,2, . . . ,n.

Lemma 5 (Horn and Johnson, 1990) For any two matrices, A,B ∈ R
m×n it holds that |σ(A)−

σ(B)| ≺w σ(A−B).

Lemma 6 (Horn and Johnson, 1991; Marshall and Olkin, 1979) Let g : D → R be a convex and

increasing function where D ⊂R. Let x,y∈ Dn. Then if x ≺w y, we have (g(x1),g(x2), . . . ,g(xn))≺w

(g(y1),g(y2), . . . ,g(yn)).
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Since g(x) = (x2 + γ)
1
2 is a convex and increasing function on R+, applying Lemma 6 to the

majorizaiton inequality in Lemma 5 we have

n

∑
i=1

(|σi(A)−σi(B)|2 + γ)
1
2 ≤

n

∑
i=1

(σ2
i (A−B)+ γ)

1
2 . (11)

Let X0 be a matrix (that is not necessarily low-rank) and let the measurements be given by

b = A(X0). In this section, we give necessary and sufficient conditions for recovering X0 using

IRLS-1. Let X
γ
0 := (XT

0 X0 + γI)
1
2 be the γ-approximation of X0, and let X0,r, X

γ
0,r be the best rank-r

approximations of X0, X
γ
0 respectively.

Recall the Null space Property τ-NSP defined earlier in (2). This condition requires that every

nonzero matrix in the null space of A has a rank larger than 2r.

Theorem 7 Assume that A satisfies τ-NSP of order r for some 0 < τ < 1. For every X0 satisfying

A(X0) = b it holds that

f1(X0 +Z)> f1(X0), for all Z ∈ N (A)\{0} satisfying ‖Z‖⋆ ≥C‖X
γ
0 −X

γ
0,r‖⋆. (12)

Furthermore, we have the following bounds,

‖X̄ −X0‖⋆ ≤ C‖X
γ
0 −X

γ
0,r‖⋆

‖X̄r −X0‖⋆ ≤ (2C+1)‖X
γ
0 −X

γ
0,r‖⋆,

where C = 2
(1+τ)
1−τ , and X̄ is the output of IRLS-1. Conversely, if (12) holds, then A satisfies δ-NSP

of order r, where δ > τ.

Proof

Let Z ∈ N (A)\{0} and ‖Z‖⋆ ≥C‖X
γ
0 −X

γ
0,r‖⋆. We see that

f1(X0 +Z) = Tr((X0 +Z)T (X0 +Z)+ γI)
1
2 =

n

∑
i=1

(σ2
i (X0 +Z)+ γ)

1
2

≥
r

∑
i=1

((σi(X0)−σi(Z))
2 + γ)

1
2 +

n

∑
i=r+1

((σi(Z)−σi(X0))
2 + γ)

1
2

=
r

∑
i=1

((σ2
i (X0)+ γ)+σ2

i (Z)−2σi(X0)σi(Z))
1
2

+
n

∑
i=r+1

((σ2
i (Z)+ γ)+σ2

i (X0)−2σi(Z)σi(X0))
1
2

≥
r

∑
i=1

|(σ2
i (X0)+ γ)

1
2 −σi(Z)|+

n

∑
i=r+1

|(σ2
i (Z)+ γ)

1
2 −σi(X0)|

≥
r

∑
i=1

(σ2
i (X0)+ γ)

1
2 −

r

∑
i=1

σi(Z)+
n

∑
i=r+1

(σ2
i (Z)+ γ)

1
2 −

n

∑
i=r+1

σi(X0)

≥ f1(X0)−
n

∑
i=r+1

(σ2
i (X0)+ γ)

1
2 −

r

∑
i=1

σi(Z)

+
n

∑
i=r+1

σi(Z)−
n

∑
i=r+1

σi(X0),

(13)
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where the first inequality follows from (11). Since τ-NSP holds, we have

r

∑
i=1

σi(Z)< τ
n

∑
i=r+1

σi(Z) =
n

∑
i=r+1

σi(Z)− (1− τ)
n

∑
i=r+1

σi(Z)

≤
n

∑
i=r+1

σi(Z)−C
1− τ

1+ τ
‖X

γ
0 −X

γ
0,r‖⋆

=
n

∑
i=r+1

σi(Z)−2‖X
γ
0 −X

γ
0,r‖⋆, (14)

where the second inequality uses ‖Z‖⋆ ≥ C‖X
γ
0 −X

γ
0,r‖⋆ and τ-NSP. Combining (13) and (14), we

obtain

f1(X0 +Z) = f1(X0)+∑n
i=r+1 σi(Z)−∑r

i=1 σi(Z)−∑n
i=r+1(σ

2
i (X0)+ γ)

1
2

−
n

∑
i=r+1

σi(X0)

≥ f1(X0)+∑n
i=r+1 σi(Z)−∑r

i=1 σi(Z)−∑n
i=r+1(σ

2
i (X0)+ γ)

1
2

−∑n
i=r+1(σ

2
i (X0)+ γ)

1
2

= f1(X0)+∑n
i=r+1 σi(Z)−∑r

i=1 σi(Z)−2‖X
γ
0 −X

γ
0,r‖⋆

> f1(X0).

(15)

This proves (12).

Next, if X̂ is an optimal solution of (3) with p = 1, then Z = X̂ −X0 ∈ N (A) and it follows

immediately from (15) that

‖X̂ −X0‖⋆ = ‖Z‖⋆ ≤C‖X
γ
0 −X

γ
0,r‖⋆.

Note that problem (3) is convex when p = 1, and every stationary point of (3) is a global minimum.

Hence, by Theorem 3, IRLS-1 converges to a global minimum of the problem (3). It follows that

X̄ = X̂ and

‖X̄ −X0‖⋆ ≤C‖X
γ
0 −X

γ
0,r‖⋆. (16)

Finally, since |σ(X̄)−σ(X0)| ≺w σ(X̄ −X0),

n

∑
i=r+1

σi(X̄)−
n

∑
i=r+1

σi(X0)≤
n

∑
i=1

|σi(X̄)−σi(X0)| ≤ ‖X̄ −X0‖⋆. (17)

Thus,

‖X̄r −X0‖⋆ ≤ ‖X̄ − X̄r‖⋆+‖X̄ −X0‖⋆
≤ ‖X0 −X0r‖⋆+‖X̄ −X0‖⋆+‖X̄ −X0‖⋆
≤ (2C+1)‖X

γ
0 −X

γ
0,r‖⋆,

where the second inequality follows from (17) and the third inequality from (16).
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Conversely, suppose that (12) holds, that is, f1(X0 +Z)> f1(X0) for all ‖Z‖⋆ ≥C‖X
γ
0 −X

γ
0,r‖⋆,

Z ∈ N (A)\{0}. We would like to show that A satisfies δ-NSP of order r. Assume to the contrary

that there exists Z ∈ N (A) such that

r

∑
i=1

σi(Z)≥ δ
n

∑
i=r+1

σi(Z). (18)

Let α = 1−τδ
2(1+τ) and set X0 =−Zr −α(Z−Zr), where Zr denotes the best rank-r approximation to Z.

Note that α < (1+δ)/C. Assume that Z satisfies

(
1+δ

C
−α

)
n

∑
i=r+1

σi(Z)≥ (n− r)
√

γ. (19)

If not, Z can be multiplied by a large enough positive constant so that it satisfies both (19) and (18).

Note that (18) can be rewritten as,

‖Z‖⋆ ≥ (1+δ)
n

∑
i=r+1

σi(Z). (20)

Combining (19) and (20), we obtain that

‖X
γ
0 −X

γ
0,r‖⋆ =

n

∑
i=r+1

(α2σ2
i (Z)+ γ)

1
2 ≤ (n− r)

√
γ+α

n

∑
i=r+1

σi(Z)

≤ ‖Z‖⋆
C

(21)

Moreover, it follows from (18) and the choice of X0 that

f1(X0) = ∑n
i=1(σ

2
i (X0)+ γ)

1
2

≥ ∑r
i=1 σi(X0)+∑n

i=r+1 σi(X0)

= ∑r
i=1 σi(Z)+α∑n

i=r+1 σi(Z)

≥ (α+δ)∑n
i=r+1 σi(Z).

(22)

On the other hand, notice by the definition of α that α > 1−δ
2

. Also assume Z satisfies

(2α+δ−1)
n

∑
i=r+1

σi(Z)≥ n
√

r. (23)

If not, Z can be multiplied by a large enough positive constant to satisfy (23) and also (18). Com-

bining (23) and (22), we obtain further that

f1(X0 +Z) =
n

∑
i=1

(σ2
i (X0 +Z)+ γ)

1
2 = r

√
γ+

n

∑
i=r+1

((1−α)2σ2
i (Z)+ γ)

1
2

≤ n
√

γ+(1−α)
n

∑
i=r+1

σi(Z)≤ f1(X0). (24)

Now it is easy to see that (21) and (24) together contradicts (12), which completes the proof.
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Thus when the sufficient condition (τ-NSP of order r) holds, we have shown that the best rank-r

approximation of the IRLS-1 solution is not far away from X̃ , the solution we wish to recover, and

the distance between the two is bounded by a (γ-approximate) rank-r approximation error of X0.

It has been shown (Oymak and Hassibi, 2010) that 1-NSP of order r holds for a random Gaussian

map A with high probability when the number of measurements is large enough. The necessity

statement can be rephrased as follows. δ-NSP with δ > τ is a necessary condition for the following

to hold: whenever there is an X such that f1(X)≤ f1(X0), we have that ‖X −X0‖⋆ ≤C‖X
γ
0 −X

γ
0,r‖⋆.

Note that the necessary and sufficient conditions for recovery of approximately low-rank matrices

using IRLS-1 mirror the conditions for recovery of approximately low-rank matrices using nuclear

norm minimization which is that A satisfy 1-NSP. We never let the weight regularization parameter

γ go to 0, thus theoretically the solution of IRLS-1 may never exactly equal the solution of Nuclear

norm minimization. However, we note that γ can be made very small, for example in the numerical

experiments we let γ go to 10−10.

Also note that the null space property SRNSP of order r, considered in Fornasier et al. (2010)

and shown to be sufficient for low-rank recovery using IRLSM, is equivalent to 1-NSP of order

2r. In this paper, we show that τ-NSP of order r (as contrasted with the order 2r NSP) is both

necessary and sufficient for recovery of approximately low-rank matrices using IRLS-1. Thus,

our condition for the recovery of approximately low-rank matrices using IRLS-1 generalizes those

stated in previous literature (Mohan and Fazel, 2010b; Fornasier et al., 2010), since it places a

weaker requirement on the linear map A .

4. A Gradient Projection Based Implementation of IRLS

In this section, we describe IRLS-GP, a gradient projection based implementation of IRLS-p for the

Matrix Completion Problem.

4.1 The Matrix Completion Problem

The matrix completion problem is a special case of the affine rank minimization problem with

constraints that restrict some of the entries of the matrix variable X to equal given values. The

problem can be written as

minimize rank(X)

subject to Xi j = (X0)i j, (i, j) ∈ Ω,

where X0 is the matrix we would like to recover and Ω denotes the set of entries which are revealed.

We define the operator PΩ : Rn×n → R
n×n as

(PΩ(X))i j =

{
Xi j if (i, j) ∈ Ω

0 otherwise.
(25)

Also, Ωc denotes the complement of Ω, that is, all index pairs (i, j) except those in Ω.
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4.2 IRLS-GP

To apply Algorithm 1 to the matrix completion problem (25), we replace the constraint A(X) = b

by PΩ(X) = PΩ(X0). Each iteration of IRLS solves a quadratic program (QP). A gradient projection

algorithm could be used to solve the quadratic program (QP) in each iteration of IRLS. We call this

implementation IRLS-GP (Algorithm 2).

Data: Ω, PΩ(X0)

Result: X̂ : PΩ(X̂) = b

Set k = 0. Initialize X0 = 0,γ0 > 0, s0 = (γ0)(1−
p
2
) ;

while IRLS iterates not converged do

W k = (XkT
Xk + γkI)

p
2
−1. Set Xtemp = Xk ;

while Gradient projection iterates not converged do

Xtemp = PΩc(Xtemp− skXtempW k)+PΩ(X0);

end

Set Xk+1 = Xtemp ;

Choose 0 < γk+1 ≤ γk, sk+1 = (γk+1)(1−
p
2
) ;

k = k+1;

end

Algorithm 2: IRLS-GP for Matrix Completion

The step size used in the gradient descent step is sk = 1/Lk, where Lk = 2‖W k‖ is the Lipschitz

constant of the gradient of the quadratic objective Tr(W kXT X) at the kth iteration. We also warm-

start the gradient projection algorithm to solve for the (k+ 1)th iterate of IRLS with the solution

of the kth iterate and find that this speeds up the convergence of the gradient projection algorithm

in subsequent iterations. At each iteration of IRLS, computing the weighting matrix involves an

inversion operation which can be expensive for large n. To work around this, we observe that

the singular values of subsequent iterates of IRLS cluster into two distinct groups, so a low rank

approximation of the iterates (obtained by setting the smaller set of singular values to zero) can

be used to compute the weighting matrix efficiently. Computing the singular value decomposition

(SVD) can be expensive. Randomized algorithms (e.g., Halko et al., 2011) can be used to compute

the top r singular vectors and singular values of a matrix X efficiently, with small approximation

errors, if σr+1(X) is small. We describe our computations of the weighting matrix below.

Computing the weighting matrix efficiently. Let UΣV T be the truncated SVD of Xk (keeping top r

terms in the SVD with r being determined at each iteration), so that U ∈R
m×r,Σ ∈R

r×r,V ∈R
n×r.

Then for p= 0, W k−1
= 1

γk (UΣV T )T (UΣV T )+γkIn. It is easy to check that W k =V (γk(Σ2+γkI)−1−
Ir)V

T + In. Thus the cost of computing the weighting matrix given the truncated SVD is O(nr2),

saving significant computational costs. At each iteration, we choose r to be min{rmax, r̂} where r̂

is the largest integer such that σr̂(X
k) > 10−2 ×σ1(X

k). Also, since the singular values of Xk tend

to separate into two clusters, we observe that this choice eliminates the cluster with smaller singular
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values and gives a good estimate of the rank r to which Xk can be well approximated. We find that

combining warm-starts for the gradient projection algorithm along with the use of randomized al-

gorithms for SVD computations speeds up the overall computational time of the gradient projection

implementation considerably.

5. sIRLS-p: A First-order Algorithm for Minimizing the Smooth Schatten-p

Function

In this section, we present the sIRLS-p family of algorithms that are related to the IRLS-GP imple-

mentation discussed in the previous section. We first describe the algorithm before discussing its

connection to IRLS-p.

Data: PΩ, b

Result: X̂ : PΩ(X̂) = b

Set k = 0. Initialize X0 = PΩ(X0),γ
0 > 0, s0 = (γ0)(1−

p
2
) ;

while not converged do

W k
p = (XkT

Xk + γkI)
p
2
−1

;

Xk+1 = PΩc(Xk − skXkW k
p )+PΩ(X0) ;

Choose 0 < γk+1 ≤ γk, sk+1 = (γk+1)(1−
p
2
) ;

k = k+1
end

Algorithm 3: sIRLS-p for Matrix Completion Problem

We note that sIRLS-p (Algorithm 3) is a gradient projection algorithm applied to

minimize fp(X) = Tr(XT X + γI)
p
2

subject to PΩ(X) = PΩ(X0),
(26)

while sIRLS-0 is a gradient projection algorithm applied to

minimize logdet(XT X + γI)

subject to PΩ(X) = PΩ(X0).
(27)

Indeed ∇ fp(X
k) = XkW k

p and the gradient projection iterates,

Xk+1 = P{X :PΩ(X)=PΩ(X0)}(X
k − sk∇ fp(X

k))

= PΩc(Xk − sk∇ fp(X
k))+PΩ(X0)

are exactly the same as the sIRLS-p (Algorithm 3) iterates when γk is a constant. In other words,

for large enough k (i.e., k such that γk = γmin), the iterates of sIRLS-p and sIRLS-0 are nothing

but gradient projection applied to (26) and (27) respectively, with γ = γmin. We have the following

convergence results for sIRLS.

Theorem 8 Every cluster point of sIRLS-p (0 < p ≤ 1) is a stationary point of (26) with γ = γmin.
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Theorem 9 Every cluster point of sIRLS-0 is a stationary point of (27) with γ = γmin.

The proof of Theorem 8 can be found in appendix C, and Theorem 9 can be proved in a similar

way. With p = 1, Theorem 8 implies that sIRLS-1 has the same performance guarantee as IRLS-1

given in Theorem 7. Note that despite sIRLS-p with p < 1 being a gradient projection algorithm

applied to non-convex problems (26) and (27), a simple step-size suffices for convergence, and we

do not consider a potentially expensive line search at each iteration of the algorithm.

We now relate the sIRLS-p family to the IRLS-p family of algorithms. Each iteration of the

IRLS-p algorithm is a quadratic program, and IRLS-GP uses iterative gradient projection to solve

this quadratic program. We note that sIRLS-p is nothing but IRLS-GP, with each quadratic program

solved approximately by terminating at the first iteration in the gradient projection inner loop. Bar-

ring this connection, the IRLS-p and sIRLS-p algorithms can be seen as two different approaches to

solving the smooth Schatten-p minimization problem (26). We examine the trade off between these

two algorithms along with comparisons to other state of the art algorithms for matrix completion in

the next section.

6. Numerical Results

In this section, we give numerical comparisons of sIRLS-0,1 and IRLS-0,1 with other algorithms.

We begin by examining the behavior of IRLS-0 (through the IRLS-GP implementation) and its

sensitivity to γk (regularization parameter in the weighting matrix, W k).

6.1 Choice of Regularization γ

We find that IRLS-0 converges faster when the regularization parameter in the weighting matrix,

γk, is chosen appropriately. We consider an exponentially decreasing model γk = γ0/(η)k, where

γ0 is the initial value and η is a scaling parameter. We run sensitivity experiments to determine

good choices of γ0 and η for the matrix completion problem. For this and subsequent experiments,

the indices corresponding to the known entries Ω are generated using i.i.d Bernoulli {0,1} random

variables with a mean support size |Ω| = q, where q/n2 is the probability for an index (i, j) to

belong to the support set. The completed and unknown matrix X0 of rank r is generated as YY T ,

where Y ∈ R
n×r is generated using i.i.d gaussian entries. All experiments are conducted in Matlab

7.12.0 (R2011 a) on a Intel 3 Ghz core 2 duo processor with 4 GB RAM.

As will be seen from the results, the regularization parameter γk plays an important role in the

recovery. We let γ0 = γc‖X0‖2 where γc is a proportional parameter that needs to be estimated. For

the sensitivity analysis of IRLS-0 (with respect to γ0 and η), we consider matrices of size 500×500.

6.1.1 CHOICE OF γc

As can be seen from Figures 1 a) and b), choosing γc appropriately leads to a better convergence rate

for IRLS-0. Small values of γc (< 10−3) don’t give good recovery results (premature convergence

to a larger relative error). However larger values of γc (> 1) might lead to a delayed convergence.

As a heuristic, we observe that γc = 10−2 works well. We also note that this choice of γc works well
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even if the spectral norm of X0 varies from 1 to 1000. Thus for future experiments, we normalize

X0 to have a spectral norm of 1.

6.1.2 CHOICE OF η

Figures 2 a),b),c), and d) look at the sensitivity of the IRLS-0 algorithm to the scaling parameter,

η. We observe that for a good choice of γ0 (described earlier), η depends on the rank of X0 to be

recovered. More specifically, η seems to have an inverse relationship with the rank of X0. From

Figures 2 a) and d), it is clear that η = 1.3 works well if rank of X0 equals 2 and η = 1.05 works

well when rank of X0 equals 15. More generally, the choice of η seems to depend on the hardness

of the problem instance being considered. We formalize this notion in the next section.
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Figure 1: n = 500, r = 5, η = 1.15. γ0 = γc‖X0‖2. From left to right: Recovery error using IRLS-0

for ‖X0‖= 1,‖X0‖= 1000.

6.2 Numerical Experiments

We classify our numerical experiments into two categories based on the degrees of freedom ratio,

given by FR = r(2n− r)/q. Note that for a n× n matrix of rank r, r(2n− r) is the number of

degrees of freedom in the matrix. Thus if FR is large (close to 1), recovering X0 becomes harder

(as the number of measurements is close to the degrees of freedom) and conversely if FR is close to

zero, recovering X0 becomes easier.

We conduct subsequent numerical experiments over what we refer to in this paper as Easy

problems (FR < 0.4) and Hard problems(FR > 0.4). We define the recovery to be successful when

the relative error, ‖X −X0‖F/‖X0‖F ≤ 10−3 (with X being the output of the algorithm considered)

and unsuccessful recovery otherwise. For each problem (easy or hard), the results are reported over

10 random generations of the support set, Ω and X0. We use NS to denote the number of successful

recoveries for a given problem. Also, computation times are reported in seconds. For sIRLS and

IRLS-GP (implementation of IRLS), we fix η = 1.1 if FR < 0.4 and η = 1.03 if FR > 0.4 based
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Figure 2: n = 500, γc = 10−2. Clockwise from top left: Recovery error using IRLS-0 for ranks

2,5,10,15 respectively.

on our earlier observations. In the next few sections, we compare the IRLS implementations with

other state of the art algorithms on both exact and noisy matrix completion problems.

6.3 Comparison of (s)IRLS and Nuclear Norm Minimization

In this section, we compare the gradient projection implementation IRLS-GP (of IRLS-0,1) and the

algorithm sIRLS-0,1 with the Singular Value Thresholding (SVT) algorithm (an implementation for

nuclear norm minimization Cai et al., 2008) on both easy and hard problem sets. Note that SVT is

not the only implementation of nuclear norm minimization. Other implementations include NNLS

(Toh and Yun, 2010) and Spectral Regularization (Mazumder et al., 2010).

When we refer to IRLS-0,1 in the tables and in subsequent paragraphs, we mean their gradient

projection implementation, IRLS-GP. We compare (s)IRLS-0,1 and SVT in Tables 1 and 3. A few

aspects of these comparisons are highlighted below.
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Problem IRLS-1 sIRLS-1 IRLS-0

n r
q

n2 FR # iter Time # iter Time # iter Time

100 10 0.57 0.34 133 4.49 132 1.63 54 0.79

200 10 0.39 0.25 140 4.49 140 2.41 60 1.34

500 10 0.2 0.2 160 24.46 163 8 77 9.63

500 10 0.12 0.33 271 37.47 336 13.86 220 22.74

1000 10 0.12 0.17 180 113.72 195 32.21 109 55.42

1000 50 0.39 0.25 140 134.30 140 102.64 51 59.74

1000 20 0.12 0.33 241 156.09 284 57.85 188 96.20

2000 20 0.12 0.17 180 485.24 190 166.28 100 235.94

2000 40 0.12 0.33 236 810.13 270 322.96 170 432.34

Table 1: Comparison of IRLS-0,1 and sIRLS-1. Performance on Easy Problems FR < 0.4.

Problem sIRLS-1 sIRLS-0 SVT

n r
q

n2 FR # iter Time # iter Time # iter Time

100 10 0.57 0.34 132 1.63 59 0.84 170 5.69

200 10 0.39 0.25 140 2.41 63 1.31 109 3.74

500 10 0.2 0.2 163 8 98 4.97 95 5.9

500 10 0.12 0.33 336 13.86 280 11.03 - -

1000 10 0.12 0.17 195 32.21 140 20.80 85 10.71

1000 50 0.39 0.25 140 102.64 60 61.32 81 49.17

1000 20 0.12 0.33 284 57.85 241 43.11 - -

2000 20 0.12 0.17 190 166.28 130 98.55 73 42.31

2000 40 0.12 0.33 270 322.96 220 227.07 - -

Table 2: Comparison of sIRLS-0,1 with SVT. Performance on Easy Problems FR < 0.4.

Problem sIRLS-1 IRLS-0 sIRLS-0

n r
q

n2 FR # iter NS Time # iter NS Time # iter NS Time

40 9 0.5 0.8 4705 4 163.2 1385 10 17.36 2364 9 30.22

100 14 0.3 0.87 10000 0 545.91 4811 10 89.51 5039 7 114.54

500 20 0.1 0.78 10000 0 723.58 4646 8 389.66 5140 10 315.57

1000 20 0.1 0.4 645 10 142.84 340 10 182.78 406 10 97.15

1000 20 0.06 0.66 10000 0 1830.98 2679 10 921.15 2925 10 484.84

1000 30 0.1 0.59 1152 10 295.56 781 10 401.98 915 10 244.23

1000 50 0.2 0.49 550 10 342 191 10 239.77 270 10 234.25

Table 3: Comparison of sIRLS-1, IRLS-0 and sIRLS-0. Performance on Hard Problems FR ≥ 0.4
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6.3.1 IRLS-0 VS IRLS-1

Between IRLS-0 and IRLS-1, IRLS-0 takes fewer iterations to converge successfully and has a

lower computational time (Table 1). The same holds true between sIRLS-0 and sIRLS-1. sIRLS-

0 is also successful on more hard problem instances than sIRLS-1 (Table 3). This indicates that

(s)IRLS-p with p = 0 has a better recovery performance and computational time as compared to

p = 1.

6.3.2 IRLS VS SIRLS

Between sIRLS and IRLS, sIRLS-1 takes more iterations to converge as compared to IRLS-1. How-

ever because it has a lower per iteration cost, sIRLS-1 takes significantly lower computational time

than IRLS-1 (Table 1). The same holds true for sIRLS-0. Thus sIRLS-0,1 are not only simpler

algorithms, they also have a lower overall run time as compared to IRLS-0,1.

6.3.3 COMPARISON ON EASY PROBLEMS

Table 2 shows that sIRLS-0 and sIRLS-1 have competitive computational times as compared to

SVT (implementation available at, Candes and Becker, 2010). There are also certain instances

where SVT fails to have successful recovery while sIRLS-1 succeeds. Thus sIRLS-1 is competitive

and in some instances better than SVT.

6.3.4 COMPARISON ON HARD PROBLEMS

For hard problems, Table 3 shows that sIRLS-0 and IRLS-0 are successful in almost all problems

considered, while sIRLS-1 is not successful in 4 problems. We also found that SVT was not suc-

cessful in recovery for any of the hard problems. (s)IRLS-0 also compares favorably with FPCA

(Goldfarb and Ma, 2011) and Optspace (Keshavan and Oh, 2009) in terms of recovery and compu-

tational time on the easy and hard problem sets. These results are given subsequently.

In summary, (s)IRLS-1,(s)IRLS-0 have a better recovery performance than a nuclear norm min-

imization implementation (SVT) as evidenced by successful recovery in both easy and hard problem

sets. We note that (s)IRLS-1 converges to the Nuclear Norm Minimizer (when the regularization,

γ → 0) and empirically has a better recovery performance than SVT. We also note that among the

family of (s)IRLS-p algorithms tested, sIRLS-0 and IRLS-0 are better in both recovery performance

and computational times.

6.4 Comparison of Algorithms for Exact Matrix Completion

As observed in the previous section, sIRLS has a lower total run time compared to IRLS-GP. Thus

in subsequent experiments we compare other algorithms only with sIRLS.

6.4.1 DESIGN OF EXPERIMENTS

In this section, we report results from two sets of experiments. In the first set, we compare sIRLS-

0 (henceforth referred to as sIRLS), Iterative Hard Thresholding algorithm (IHT) (Goldfarb and
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Problem sIRLS IRLSM IHT Optspace

n r
q

n2 FR # iter Time #iter Time #iter Time #iter Time

100 10 0.57 0.34 56 0.8 68 0.58 44 0.51 27 0.6

200 10 0.39 0.25 61 0.96 78 1.53 53 0.95 19 1.28

500 10 0.2 0.2 99 4.5 106 15 105 3.63 18 8.08

500 10 0.12 0.33 285 13.24 240 160.62 344 12.50 29 12.45

1000 10 0.12 0.17 143 21.17 152 106.18 192 19.30 16 28.93

1000 50 0.39 0.25 60 27.39 60 429.25 46 19.58 17 1755.44

1000 20 0.12 0.33 244 45.33 264 396.49 289 40.39 38 241.94

2000 20 0.12 0.17 130 82.47 140 916.48 179 80.76 14 428.37

2000 40 0.12 0.33 230 229.53 220 4213.4 270 225.46 28 4513

Table 4: Comparison of sIRLS-0, IRLSM, IHT and Optspace on Easy Problems with rank of the

matrix to be recovered known apriori.

Ma, 2011; Meka et al., 2010), Optspace and IRLSM (Fornasier et al., 2010) over easy and hard

problems with the assumption that the rank of the matrix to be recovered (X0) is known. We use

the implementations of IRLSM, Optspace available on the authors webpage (Fornasier et al , 2012;

Keshavan et al., 2009a). When the rank of X0 (denoted as r) is known, the weighting matrix W k

for sIRLS is computed using a rank r approximation of Xk (also see Section 3.1). The second set

of experiments correspond to the case where the rank of X0 is unknown, which is a more practical

assumption.

6.4.2 RANK OF X0 KNOWN APRIORI

All the algorithms are fully successful (NS = 10) on the easy problem sets. As seen in Table 4,

Optspace takes fewer iterations to converge as compared to sIRLS, IRLSM and IHT. On the other

hand, sIRLS and IHT are significantly faster than Optspace and much faster than IRLSM (Fornasier

et al., 2010). Although IRLSM uses a sub-routine implemented in C to speed up inverse matrix

computations inside a Matlab code, it is still about 10 times slower than sIRLS on easy problems

and even slower on hard problems. We note that for the hard problems in Table 5, the rank of

the true solution is given by (9,14,20,20,20,30,50) respectively. IRLSM is also not successful on

any of the instances for two of the hard problems. Also while sIRLS, Optspace and IHT are fully

successful on most of the hard problems (see Table 5), Optspace takes considerably higher time as

compared to IHT and sIRLS. Thus, when the rank of X0 is known, sIRLS is competitive with IHT

in performance and computational time and much faster than Optspace and IRLSM.

6.4.3 RANK OF X0 UNKNOWN

A possible disadvantage of IHT and Optspace could be their sensitivity to the knowledge of the rank

of X0. Thus, our second set of experiments compare sIRLS, IHT, Optspace and FPCA (Goldfarb

and Ma, 2011) over easy and hard problems when the rank of X0 is unknown. We use a heuristic for
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Problem sIRLS-0 IRLSM IHT Optspace

n
q

n2 # iter NS Time # iter NS Time # iter NS Time # iter NS Time

40 0.5 1718 10 12.67 - 0 - 1635 10 12.16 1543 7 6.82

100 0.3 4298 8 60.18 - 0 - 4868 10 68.56 4011 5 131.62

1000 0.1 417 10 78.26 428 10 642.53 466 10 65.84 69 10 409.66

1000 0.08 814 10 151.86 1120 10 1674.2 947 10 134.30 103 10 580.09

1000 0.07 1368 10 251.46 2180 8 3399.2 1564 10 225.13 147 10 806.32

1000 0.1 949 10 226.12 1536 10 4451.1 1006 10 189.33 134 10 1904.47

1000 0.2 270 10 123.84 244 10 1736 254 10 105.88 46 10 2968

Table 5: Comparison of sIRLS-0, IHT and Optspace on Hard Problems with rank of the matrix to

be recovered known apriori.

Problem sIRLS IHT FPCA Optspace

n r
q

n2 FR # iter Time # iter Time Time # iter Time

100 10 0.57 0.34 59 1.61 38 1.15 0.13 25 0.62

200 10 0.39 0.25 62 2.55 44 1.96 0.37 17 1.4

500 10 0.2 0.2 98 9.39 71 8.65 2.52 17 8.46

500 10 0.12 0.33 283 16.07 225 23.23 71.26 30 11.63

1000 10 0.12 0.17 140 38.44 104 31.47 11.24 14 26.31

1000 50 0.39 0.25 60 217.79 35 132.36 15.10 17 1774.08

1000 20 0.12 0.33 241 77.52 177 70.13 18.51 30 199.98

2000 20 0.12 0.17 130 236.19 98 152.36 42.06 12 374.15

2000 40 0.12 0.33 220 234.44 167 323.67 76.26 26 3466

Table 6: Comparison of sIRLS-0, IHT, FPCA and Optspace on Easy Problems when no prior in-

formation is available on the rank of the matrix to be recovered.

determining the approximate rank of Xk at each iteration for sIRLS, IHT. Heuristics for determining

approximate rank are also used in the respective implementations for FPCA and Optspace. We note

that computing the approximate rank is important for speeding up the SVD computations in all of

these algorithms.

Choice of rank. We choose r (the rank at which the SVD of Xk is truncated) to be min{rmax, r̂}
where r̂ is the largest integer such that σr̂(X

k) > α×σ1(X
k). For IHT we find that α = 5× 10−2

works well while for sIRLS and FPCA, α = 10−2 works well. The SVD computations in IHT,

sIRLS are based on a randomized algorithm (Halko et al., 2011). We note that Linear-Time SVD

(Drineas et al., 2006) is used to compute the SVD in the FPCA implementation (Goldfarb and Ma,

2009), and although faster than the randomized SVD algorithm we use for sIRLS, it can be signifi-

cantly less accurate.
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Problem sIRLS IHT FPCA Optspace

n FR # iter NS Time # iter NS Time NS Time # iter NS Time

40 0.8 1498 10 12.91 - 0 - 5 1.69 - 0 -

100 0.87 4934 5 72.36 - 0 - 0 - - 0 -

500 0.78 4859 9 326.06 - 0 - 0 - - 0 -

1000 0.40 406 10 115.73 280 10 72.67 10 26.54 40 10 256.92

1000 0.57 1368 10 237.22 1059 10 244.49 0 - 133 5 769.29

1000 0.66 2961 10 554.25 - 0 - 0 - - 0 -

1000 0.59 897 10 276.08 660 10 213.95 10 62.43 89 5 1420.81

1000 0.49 270 10 263.45 203 10 186.15 10 25.21 45 10 2924.68

Table 7: Comparison of sIRLS-0, IHT, FPCA and Optspace on Hard Problems when no prior in-

formation is available on the rank of the matrix to be recovered.

Comparison of algorithms. All the algorithms compared are successful on the easy problems. How-

ever, Optspace takes much more time to converge on recovering matrices with high rank as can be

seen from from Table 6. sIRLS, FPCA and IHT have competitive run times on all the problems. For

hard problems, however, sIRLS has a clear advantage over IHT, Optspace and FPCA in successful

recovery (Table 7). sIRLS is fully successful on all problems except the second and third on which

it has a success rate of 5 and 9 respectively. On the other hand IHT, Optspace and FPCA have

partial or unsuccessful recovery in many problems. sIRLS is competitive with IHT and FPCA on

computational times while Optspace is much slower than all the other algorithms. Thus, when the

rank of X0 is not known apriori, sIRLS has a distinct advantage over IHT, Optspace and FPCA in

successfully recovering X0 for hard problems.

6.5 Comparison of Algorithms for Noisy Matrix Completion

In this subsection, we compare IHT, FPCA and sIRLS on randomly generated noisy matrix com-

pletion problems. We consider the following noisy matrix completion problem,

minimize rank(X)

subject to PΩ(X) = PΩ(B),

where PΩ(B)=PΩ(X0)+PΩ(Z), X0 is a low rank matrix of rank r that we wish to recover and PΩ(Z)

is the measurement noise. Note that this noise model has been used before for matrix completion

(see Cai et al., 2008). Let Zi j be i.i.d Gaussian random variables with distribution N (0,σ2). We

would like the noise to be such that ‖PΩ(Z)‖F ≤ ε‖PΩ(X0)‖F for a noise parameter ε. This would

be true if σ ∼ ε
√

r (Cai et al., 2008).

We adapt sIRLS for noisy matrix completion by replacing PΩ(X0) by PΩ(B) in Algorithm 3. For

all the algorithms tested in Table 8, we declare the recovery to be successful if ‖X −X0‖F/‖X0‖F ≤
ε= 10−3, where X is the output of the algorithms. Table 8 shows that sIRLS has successful recovery

for easy noisy matrix completion problems with apriori knowledge of rank. The same holds true for

3463



MOHAN AND FAZEL

Problem sIRLS IHT Optspace

n r
q

n2 FR # iter NS Time #iter NS Time #iter NS Time

100 10 0.57 0.34 51 10 0.55 41 10 0.44 28 10 0.29

200 10 0.39 0.25 56 10 0.78 48 10 0.60 19 10 0.56

500 10 0.2 0.2 96 10 4.11 88 10 2.76 18 10 6.82

500 10 0.12 0.33 298 10 12.60 298 10 9.56 29 10 12.45

1000 10 0.12 0.17 141 10 19.66 132 10 12.28 15 10 37.17

1000 10 0.39 0.25 50 10 20.94 40 10 15.53 18 10 1197.48

1000 20 0.12 0.33 254 10 44.35 247 10 32.03 25 10 220.60

2000 20 0.12 0.17 130 10 77.30 121 10 84.23 12 10 469.67

2000 40 0.12 0.33 236 10 221.31 227 10 170.88 28 10 4515.06

Table 8: Comparison of sIRLS, IHT and Optspace on the Noisy Matrix Completion problem.

hard problems with the true rank known apriori. Thus sIRLS has a competitive performance even

for noisy recovery.

6.6 Application to Movie Lens Data Set

In this section, we consider the movie lens data sets (Dahlen et al, 1998) with 100,000 ratings. In

particular, we consider four different splits of the 100k ratings into (training set, test set):

(u1.base,u1.test), (u2.base,u2.test), (u3.base,u3.test), (u4.base,u4.test) for our nu-

merical experiments. Any given set of ratings (e.g., from a data split) can be represented as a matrix.

This matrix has rows representing the users and columns representing the movies and an entry (i, j)

of the matrix is non-zero if we know the rating of user i for movie j. Thus estimating the remaining

ratings in the matrix corresponds to a matrix completion problem. For each data split, we train

sIRLS, IHT, and Optspace on the training set and compare their performance on the correspond-

ing test set. The performance metric here is Normalized Mean Absolute Error or NMAE given as

follows. Let M be the matrix representation corresponding to the actual test ratings and X be the

ratings matrix output by an algorithm when input the training set. Then

NMAE =

(
∑

i, j∈supp(M)

|Mi j −Xi j|
|supp(M)|

)
/(rtmax − rtmin),

where rtmin and rtmax are the minimum and maximum movie ratings possible. The choice of γ0,η

for sIRLS is the same as for the random experiments (described in previous sections). sIRLS is

terminated if the maximum number of iterations exceeds 700 or if the relative error between the

successive iterates is less than 10−3. We set the rank of the unknown ratings matrix to be equal to 5

while running all the three algorithms. Table 9 shows that the NMAE for sIRLS, IHT, and Optspace

are almost the same across different splits of the data. Keshavan et al. (2009b) reported the NMAE

results for different algorithms when tested on data split 1. These were reported to be 0.186,0.19

and 0.242 for Optspace (Keshavan and Oh, 2009), FPCA (Goldfarb and Ma, 2011), and AdMiRA
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sIRLS IHT Optspace

split 1 0.1919 0.1925 0.1887

split 2 0.1878 0.1883 0.1878

split 3 0.1870 0.1872 0.1881

split 4 0.1899 0.1896 0.1882

Table 9: NMAE for sIRLS-0 for different splits of the 100k movie-lens data set.

(Lee and Bresler, 2010) respectively. Thus sIRLS has a NMAE that is as good as Optspace, FPCA,

IHT and has a better NMAE than AdMiRA.

7. Conclusions and Future Directions

We proposed a family of Iterative Reweighted Least Squares algorithms (IRLS-p) for the affine rank

minimization problem. We showed that IRLS-1 converges to the global minimum of the smoothed

nuclear norm, and that IRLS-p with p < 1 converges to a stationary point of the corresponding

non-convex yet smooth approximation to the rank function. We gave a matrix recovery guarantee

for IRLS-1, showing that it approximately recovers the true low-rank solution (within a small error

depending on the algorithm parameter γ), if the null space of the affine measurement map satisfies

certain properties. This null space condition is both necessary and sufficient for low-rank recovery,

thus improving on and simplifying the previous analysis for IRLS-1 (Mohan and Fazel, 2010b).

We then focused on the matrix completion problem, a special case of affine rank minimization

arising in collaborative filtering among other applications, and presented efficient implementations

specialized to this problem. We gave an implementation for IRLP-p for this problem using gradient

projections. We also presented a related first-order algorithm, sIRLS-p, for minimizing the smooth

Schatten-p function, which serves as a smooth approximation of the rank. Our first set of numerical

experiments show that (s)IRLS-0 has a better recovery performance than nuclear norm minimization

via SVT. We show that sIRLS-0 has a good recovery performance even when noise is present. Our

second set of experiments demonstrate that sIRLS-0 compares favorably in terms of performance

and run time with IHT, Optspace, and IRLSM when the rank of the low rank matrix to be recovered

is known. When the rank information is absent, sIRLS-0 shows a distinct advantage in performance

over IHT, Optspace and FPCA.

7.1 Future Directions

Low-rank recovery problems have recently been pursued in machine learning motivated by appli-

cations including collaborative filtering. Iterative reweighted algorithms for low-rank matrix recov-

ery have empirically exhibited improved performance compared to unweighted convex relaxations.

However, there has been a relative lack of theoretical results, as well as efficient implementations

for these algorithms. This paper takes a step in addressing both of these issues, and opens up several

directions for future research.
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Low-rank plus sparse decomposition. The problem of decomposing a matrix into a low-rank com-

ponent and a sparse component has received much attention (Chandrasekaran et al., 2011; Tan et al.,

2011), and arises in graphical model identification (Chandrasekaran et al., 2010a) as well as a ver-

sion of robust PCA (Candes et al., 2011), where problem sizes of practical interest are often very

large. The convex relaxation proposed for this problem minimizes a combination of nuclear norm

and ℓ1 norm. An interesting direction for future work is to extend the IRLS algorithms family to this

problem, by combining the vector and the matrix weighted updates. A potential feature of such an

algorithm can be that the value of p for the vector part and the matrix part (and hence the weights)

can be chosen separately, allowing control over how aggressively to promote the sparsity and the

low-rank features.

Distributed IRLS. In the IRLS family, the least squares problem that is solved in every iteration is

in fact separable in the columns of the matrix X (as also pointed out in Fornasier et al., 2010), so it

can be solved completely in parallel. This opens the door not just to a fast parallel implementation,

but also to the possibility of a partially distributed algorithm. Noting that the weight update step

does not appear easy to decompose, an interesting question is whether we can use approximate but

decomposable weights, so that the updates would require only local information.

Other applications for the NSP. The simple Null space Property used here, being based on only the

singular values of elements in the null space, makes the connection between associated vector and

matrix recovery proofs clear and transparent, and may be of independent interest (see Oymak et al.,

2011).
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Appendix A. IRLS-p from Characterization of Smooth Schatten-p Function

We can also derive the IRLS-p algorithm for 0 < p ≤ 1 by defining the following function,

F p(X ,W,γ) = TrW
p−2

p (XT X + γI)

The following lemma (Argyriou et al., 2007; Argyriou, 2010) proves useful for our analysis.

Lemma 10 Let γ > 0 and

W ∗ =
(XT X + γI)

p
2

Tr(XT X + γI)
p
2

.

Then

W ∗ = argmin
W

{F p(X ,W,γ) : W ≻ 0,Tr(W )≤ 1} .
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Note that F p(X ,W ∗,γ) = ( fp(X))
2
p . Hence the problem of minimizing the Smooth Schatten-p

function fp(X) (3) is equivalent to the following

minimize F p(X ,W,γ)

subject to A(X) = b,W ≻ 0,TrW ≤ 1,
(28)

where the variables are X and W . As a relaxation to minimizing (28) jointly in X ,W , one can

consider minimizing (28) alternately with respect to X and W as in Algorithm 4.

Data: A , b

Result: X̂ : A(X̂) = b

Set k = 0. Initialize W 0
p = I,γ1 > 0 ;

while not converged do

Xk+1 = argmin
X

F p(X ,W k)

s.t. A(X) = b
;

W k+1 = argmin
W

F p(Xk+1,W )

s.t. W ≻ 0,Tr(W )≤ 1
;

Choose 0 < γk+2 ≤ γk+1 ;

k = k+1 ;

end

Algorithm 4: Alternative representation of the IRLS-p algorithm.

We note (and shall prove) that Algorithm 4 gives us the same X updates as the IRLS-p algorithm.

This gives an interpretation to the IRLS-p algorithm as alternately minimizing an equivalent Smooth

Schatten-p problem (28). Consider minimization with respect to W of F p(X ,W,γ) with X fixed.

This problem can be re-formulated as

minimize TrŴ (XT X + γI)

subject to TrŴ
p

p−2 ≤ 1

Ŵ ≻ 0,

(29)

where Ŵ =W
p−2

p . The following lemma relates F p(X ,W,γ) with J p(X ,W,γ) (defined in (6)).

Lemma 11 Let

Ŵ ∗ =
(XT X + γI)

p
2
−1

(Tr(XT X + γI)
p
2 )

p−2
p

.

Then Ŵ ∗ is the optimal solution to (29) as well as the following problem:

minimize TrŴ (XT X + γI)+λ(TrŴ
p

p−2 −1),

subject to Ŵ ≻ 0,

where λ = 2−p
p
(Tr(XT X + γI)

p
2 )

2
p . Furthermore, let

W̃ = argmin
W≻0

J p(X ,W,γ).
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Then J p(X ,W̃ ,γ) = fp(X) and

argmin
X

{
F p(X ,(Ŵ ∗)

p
p−2 ,γ) : A(X) = b

}
= argmin

Z

{
J p(Z,W̃ ,γ) : A(Z) = b

}
.

Thus Lemma (11) shows that alternately minimizing F p(X ,W,γ) with respect to W followed by X

(with constraints on W as in (29) and affine constraints on X) is equivalent to alternately minimizing

J p(X ,W,γ) with respect to W followed by X (with affine constraints on X and {W : W ≻ 0}).

Proof The Lagrangian for (29) is given by

L(Ŵ ,λ) = TrŴ (XT X + γI)+λ(TrŴ
p

p−2 −1)

Note that λ∗ = 2−p
p
(Tr(XT X + γI)

p
2 )

2
p ,Ŵ ∗ = (XT X+γI)

p
2
−1

(Tr(XT X+γI)
p
2 )

p−2
p

satisfy the KKT conditions to (29).

This is because Tr(Ŵ ∗)
p

p−2
= 1, Ŵ ∗ ≻ 0 and λ∗ > 0. The complementary slackness is also true

since the primal inequality constraint is tight. Since (29) is a convex problem and Ŵ ∗ satisfies the

KKT conditions, it is the optimal solution to (29). It is also easy to see that W̃ = argmin
W≻0

J p(X ,W,γ)

where W̃ = (XT X + γI)
p
2
−1. Also note that J p(X ,W̃ ,γ) = fp(X). Now,

argmin
Z:A(Z)=b

J p(Z,W̃ ,γ) = argmin
Z:A(Z)=b

TrW̃ (ZT Z + γI)

= argmin
Z:A(Z)=b

Tr(XT X + γI)
p
2
−1(ZT Z + γI)

= argmin
Z:A(Z)=b

TrŴ ∗(ZT Z + γI)

= argmin
Z:A(Z)=b

F p(Z,(Ŵ ∗)
p

p−2 ,γ).

Appendix B. Proof of Theorem 2

We first present two useful lemmas.

Lemma 12 For each k ≥ 1, we have

Tr(XkT
Xk)

p
2 ≤ J p(X1,W 0,γ0) := D (30)

where W 0 = I, γ0 = 1. Also, λ j(W
k)≥ D

(1− 2
p
), j = 1,2, . . . ,min{m,n}

Proof First, notice that

Tr(XkT
Xk)

p
2 ≤ Tr(XkT

Xk + γI)p/2 = J p(Xk,W k,γk)

≤ J p(X1,W 1,γ1)≤ J p(X1,W 0,γ0) = D,
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where the second and third inequalities follow from (6). This proves (30). Furthermore, from the

above chain of inequalities,

(‖XkT
Xk‖+ γ)

p
2 = ‖(XkT

Xk + γI)
p
2 ‖ ≤ D.

Using this and the definition of W k, we obtain

‖(W k)−1‖= ‖(XkT
Xk + γI)1− p

2 ‖= (‖XkT
Xk‖+ γ)1− p

2 ≤ D
( 2

p
−1).

This last relation shows that λ j(W
k) = σ j(W

k)≥ 1/‖(W k)
−1‖ ≥ D

(1− 2
p
)

for all j.

Lemma 13 A matrix X∗ is a minimizer of

minimize TrWXT X

subject to A(X) = b

if and only if Tr(WX∗T Z) = 0 for all Z ∈ N (A).

Proof [of Theorem (2)] For each k ≥ 1, we have that

2[J p(Xk,W k,γk)− J p(Xk+1,W k+1,γk+1)] ≥ 2[J 1(Xk,W k,γk)− J 1(Xk+1,W k,γk)]

= 〈Xk,Xk〉W k −〈Xk+1,Xk+1〉W k

= 〈Xk +Xk+1,Xk −Xk+1〉W k

= 〈Xk −Xk+1,Xk −Xk+1〉W k

= TrW k(Xk −Xk+1)
T
(Xk −Xk+1)

≥ D
(1− 2

p
)‖Xk −Xk+1‖2

F

where the above expressions use Lemma 13 and Lemma 12. Summing the above inequalities over

all k ≥ 1, we have that lim
n→∞

(
Xn −Xn+1

)
= 0.

Appendix C. Proof of Theorem 8

For any two matrices X ,Y we denote 〈X ,Y 〉W = TrWXTY . We first note that the iterates of sIRLS-p

satisfy

J p(Xk+1,W k+1,γk+1) ≤ J p(Xk+1,W k,γk+1)

≤ J p(Xk+1,W k,γk)

≤ J p(Xk,W k,γk).

The last inequality follows from the Lipschitz continuity (with Lk = 2(γk)
p
2
−1

) of the gradient of

Tr(W kXT X), that is,

TrW kXT X ≤ TrW kXkT
Xk + 〈2XkW k,X −Xk〉+ Lk

2
‖X −Xk‖2

F ∀X ,Xk
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and the fact that

Xk+1 = argmin
X

‖X − (Xk −XkW k)‖2
F

s.t. PΩ(X) = PΩ(X0).

The convergence of {J p(Xk,W k,γk)} follows from Monotone convergence theorem. This also im-

plies that the sequence {Xk} is bounded. Hence there exists a convergent subsequence, {Xni}→ X∗.

Also let {Xni+1} → X̂ . If X∗ is a stationary point, we are done. Conversely, if X∗ is not a station-

ary point to (26) then it follows that, X̂ 6= X∗. But X̂ 6= X∗ implies (using strict convexity) that

Tr(W ∗X̂T X̂)< Tr(W ∗X∗T X∗) which also implies that J p(X̂ ,Ŵ ,γmin)< J p(X∗,W ∗,γmin). However

since

limJ p(X i,W i,γi) = limJ p(Xni ,W ni ,γni)

= limJ p(Xni+1 ,W ni+1 ,γni+1),

we have a contradiction. Therefore, X∗ is a stationary point to (26) and the theorem follows.
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