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Abstract

We present a new active learning algorithm based on nonmrignestimators of the regression

function. Our investigation provides probabilistic bosrfdr the rates of convergence of the gen-
eralization error achievable by proposed method over adxtzesss of underlying distributions. We

also prove minimax lower bounds which show that the obtaméss are almost tight.
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1. Introduction

Let (S, B) be a measurable space and(¥tY) € Sx {—1,1} be a random couple with unknown
distribution P. The marginal distribution of the design variabfewill be denoted byi1. Let

n(x) := E(Y|X = x) be the regression function. The goal lwhary classificationis to predict
label Y based on the observatiok. Prediction is based on @assifier- a measurable func-
tion f : S— {—1,1}. The quality of a classifier is measured in terms of its generalization error,
R(f) = Pr(Y # f(X)). In practice, the distributio remains unknown but the learning algorithm
has access to theaining data- the i.i.d. sampléX;,Y;), i = 1...nfrom P. It often happens that the
cost of obtaining the training data is associated with labeling the observagiovisle the pool of
observations itself is almost unlimited. This suggests to measure the perferofaniearning algo-
rithm in terms of itdabel complexitythe number of label¥ required to obtain a classifier with the
desired accuracyictive learningtheory is mainly devoted to design and analysis of the algorithms
that can take advantage of this modified framework. Most of these proegdan be characterized
by the following property: at each stépobservatiorX is sampled from a distributiofiy that de-
pends on previously obtaindd,Y;), i < k— 1(while passive learners obtain all available training
data at the same timefjl, is designed to be supported on a set where classification is difficult and
requires more labeled data to be collected. The situation when active kartperform passive
algorithms might occur when the so-calléslybakov’s low noise assumptiisrsatisfied: there exist
constant®,y > 0 such that

Vt>0, N(x:|n(x)| <t) <Bt. 1)

This assumption provides a convenient way to characterize the noisefdiel problem and will
play a crucial role in our investigation.

The topic of active learning is widely present in the literature; see Balcaln @009), Hanneke
(2011), Castro and Nowak (2008) for review. It was discoveretlithsome cases the generaliza-
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tion error of a resulting classifier can converge to zero exponentiallywitis respect to its label
complexity(while the best rate for passive learning is usually polynomial w#pect to the cardi-
nality of the training data set). However, available algorithms that adapt toWrewn parameters
of the problemy in Tsybakov’s low noise assumption, regularity of the decision boundavgjve
empirical risk minimization with binary loss, along with other computationally hartlpros, see
Balcan et al. (2008), Dasgupta et al. (2008), Hanneke (2011) afldrinskii (2010). On the other
hand, the algorithms that can be effectively implemented, as in Castro andkiNg@08), are not
adaptive.

The majority of the previous work in the field was done under standard caitypdessumptions
on the set of possible classifiers(such as polynomial growth of theingweumbers). Castro and
Nowak (2008) derived their results under the regularity conditions omléesion boundary and
the noise assumption which is slightly more restrictive then (1). Essentially,pituesed that if
the decision boundary is a graph of thélder smooth functiory € =(B, K, [0,1]9-1) (see Section
2 for definitions) and the noise assumption is satisfied withO, then the minimax lower bound

. . . _ By _
for the expected excess risk of the active classifier is of dzdé& #+vd-1 and the upper bound is

C(N/IogN)fﬁ, whereN is the label budget. However, the construction of the classifier that
achieves an upper bound assurfiesdy to be known.

In this paper, we consider the problem of active learning under cldssicgarametric as-
sumptions on the regression function - namely, we assume that it belongett@aia ¢blder class
Z(B,K,[0,1]%) and satisfies to the low noise condition (1) with some posifivén this case, the
work of Audibert and Tsybakov (2005) showed that plug-in classiféan attain optimal rates in

the passiveearning framework, namely, that the expected excess risk of a clagsifieignn is
B(L+Y) .. . :
bounded above bg-N Zed (which is the optimal rate), whergis the local polynomial estimator

of the regression function ardlis the size of the training data set. We were able to partially extend
this claim to the case of active learning: first, we obtain minimax lower boundtéoexcess risk

of an active classifier in terms of its label complexity. Second, we propesvaalgorithm that

is based on plug-in classifiers, attains almost optimal rates over a broad€ldistributions and
possesses adaptivity with respecftg(within the certain range of these parameters).

The paper is organized as follows: the next section introduces remaioiatioms and specifies
the main assumptions made throughout the paper. This is followed by a qualdaseription of
our learning algorithm. The second part of the work contains the statermehps@ofs of our main
results - minimax upper and lower bounds for the excess risk.

2. Preliminaries
Our active learningframework is governed by the following rules:

1. Observations are sampled sequentiaflyis sampled from the modified distributid, that
depends oriXy, Y1), ..., (Xk—1, Yk—1)-

2. Yy is sampled from the conditional distributi®x (-|X = x). Labels are conditionally inde-
pendent given the feature vectofs i < n.

Usually, the distributiorily is supported on a set where classification is difficult.
Given the probability measur® on Sx {—1,1}, we denote the integral with respect to this
measure byQg := [gdQ. Let # be a class of bounded, measurable functions. The risk and the

68



PLUG-IN APPROACH TOACTIVE LEARNING

excess risk of € F with respect to the measu€gare defined by

Ro(f) := Qlysign f(x)
Eo(f) == Ro(f) — inf Ry(g),

geF

where 4 is the indicator of evend. We will omit the subindexX) when the underlying measure is
clear from the context. Recall that we denoted the distributiqiXoY') by P. The minimal possible
risk with respect td® is
R'= inf  Pr(Y #si X
LI r(Y # signg(X)) ,
where the infimum is taken over all measurable functions. It is well knowtrittizaattained for any
g such that sigy(x) = signn(x) M - a.s. Giverge F, A< B, 6 > 0, define
Fon(@:0) ={f €7 : |[f—glloa <0},

where|| f —g|l.a = sup|f(x) —g(x)|. ForA € B, define the function class
X€A

Fla={fla, feF},
wheref |a(x) := f(x) Ia(x). From now on, we restrict our attention to the c&se[0,1]¢. LetK > 0.

Definition 1 We say that gRY — R belongs ta (B, K, [0,1]9), the (8,K, [0,1]9) - Holder class of
functions, if g is| B times continuously differentiable and for alix € [0,1]¢ satisfies

l9(x) = Tu(xa)| < KIx—xq[&,
where T is the Taylor polynomial of degregd| of g at the point x.

Definition 2 P (B,y) is the class of probability distributions d6, 1]¢ x { -1, +1} with the following
properties:

1. vt>0, N(x:n(x)| <t) <BtY;
2. n(x) € Z(B,K,[0,1]%).

We do not mention the dependenceR{f3,y) on the fixed constan®, K explicitly, but this should
not cause any uncertainty.

Finally, let us define®; (B,y) and A&, (B,Y), the subclasses @f(3,y), by imposing two additional
assumptions. Along with the formal descriptions of these assumptions, We&ghaprovide some
motivation behind them. The first deals with the margiiaFor an integeM > 1, let

_J(k k) .

be the regular grid on the unit culi@ 1] with mesh sizeM~1. It naturally defines a partition into
a set ofMY open cube®, i = 1...M9 with edges of lengttM—1 and vertices inGm. Below, we
consider the nested sequence of gfigsm, m> 1} and corresponding dyadic partitions of the unit
cube.
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Definition 3 We will say thatll is (uz,up)-regular with respect to{ Gon} if for any m> 1, any
element of the partitionRi < 29™ such that R supg() # 0, we have

Uq - 2—dm < (R|) <Up- 2—dm’
where0 < u; < Uy < oo,
Assumption 1 M is (uy, uz) - regular.

In particular, (uy, uz)-regularity holds for the distribution with a densipyon [0,1] such that 0<
up < p(X) < up < oo,

Let us mention that our definition of regularity is of rather technical nafarenost of the paper,
the reader might think dfl as being uniform of0, 1)9( however, we need slightly more complicated
marginal to construct the minimax lower bounds for the excess risk). ItawRrhat estimation of
regression function in sup-norm is sensitive to the geometry of desigibdisn, mainly because
the quality of estimation depends on tloeal amount of data at every point; conditions similar
to our Assumptioril were used in the previous works where this problem appeared, donp,
strong density assumption Audibert and Tsybakov (2005) adssumption Dn Gaffas (2007).

A useful characteristic ofus,u) - regular distributior1 is that this property is stable with re-
spect to restrictions dfl to certain subsets of its support. This fact fits the active learning frankewor
particularly well.

Definition 4 We say thatQ belongs to®, (B,y) if Q € P(B,y) and Assumption 1 is satisfied for
some y, Us.

The second assumption is crucial in derivation of the upper boundsspelee of piecewise-constant
functions which is used to construct the estimatorg (@) is defined via

2dm
Fn = Nlr(): Nl<1i=1...29m%
m {Zi rR() (A }

where{R;}izini forms the dyadic partition of the unit cube. Note tifat can be viewed as @- ||-
unit ball in the linear span of first®?' Haar basis functions if0, 1]9. Moreover,{ Fm, m> 1} is
a nested family, which is a desirable property for the model selection proesd Bynm,(x) we
denote the_»(IM) - projection of the regression function onf@.

We will say that the seA C [0,1]9 approximates the decision boundafy: n(x) = 0} if there
existst > 0 such that

{x:nX®| <thy CAn C {x:[n(¥)] < 3t}n, (@)

where for any sef we defineAn := AN sup@l). The most important example we have in mind
is the following: letf) be some estimator of with || — N ||« supgny < t, and define the 2- band
aroundn by

F={f: A -20< () <A +2 vxe 0,2

Take A = {x: 3f1, f, € F s.t. signfy(x) # sign f2(x)}, then it is easy to see that satisfies (2).
Modified design distributions used by our algorithm are supported on thevigh similar structure.
Let o( #m) be the sigma-algebra generatedByandA € o( Fnm).
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Assumption 2 There exists B> 0 such that for all m> 1, A € o(¥nm) satisfying (2) and such that
An # 0 the following holds true:

[ (0=Aw?Ndxxe An) = Balln — nl2 o,
[0.1)

Appearance oAssumption 2s motivated by the structure of our learning algorithm - namely, it is
based on adaptive confidence bands for the regression functiarpalkiometric confidence bands
is a big topic in statistical literature, and the review of this subject is not our §vea just men-
tion that it is impossible to construct adaptive confidence bands of optinalosier the whole

U Z(B,K,[0,1]9). Low (1997); Hoffmann and Nickl (to appear) discuss the subject tailde
B<1

However, it is possible to construct adapthse- confidence balls (see an example following The-
orem 6.1 in Koltchinskii, 2011). For functions satisfyidgsumption 2this fact allows to obtain

confidence bands of desired size. In particular,

(a) functions that are differentiable, with gradient being bounded dveawy O in the vicinity of
decision boundary;

(b) Lipschitz continuous functions that are convex in the vicinity of decibiomndary

satisfy Assumptior2. For precise statements, see Propositions 15, 16 in Appendix A. Adtiffer
approach to adaptive confidence bands in case of one-dimensiarstlydestimation is presented
in Giné and Nickl (2010). Finally, we defing; (B,y):

Definition 5 We say thatQ belongs tof;(B,y) if Q € Ry (B,y) and Assumption 2 is satisfied for
some B > 0.

2.1 Learning Algorithm

Now we give a brief description of the algorithm, since several definitippear naturally in this
context. First, let us emphasize thithe marginal distribution is assumed to be known to the
learner. This is not a restriction, since we are not limited in the use of unlabeled datd aad be
estimated to any desired accuracy. Our construction is based on soplatieieh classifiers of the
form f(.) = signf(-), wherefj is a piecewise-constant estimator of the regression function. As we

have already mentioned above, it was shown in Audibert and Tsyb&k®5] that in the passive
BL+y)
learning framework plug-in classifiers attain optimal rate for the excesofigkderN 2+d | with

N being the local polynomial estimator.

Our active learning algorithm iteratively improves the classifier by contstigishrinking con-
fidence bands for the regression function. On every ktépe piecewise-constant estimafxis
obtained via the model selection procedure which allows adaptation to thewinlemoothness(for
Holder exponenk 1). The estimator is further used to construct a confidence Bafat n(x). The
active sefssociated withAFk is defined as

A= A(F) = {x e supgM) : 3y, f2 € F,sign f1(x) # sign fz(x)} .

Clearly, this is the set where the confidence band crosses zero levelteere classification is
potentially difficult. A, serves as a support of the modified distribufibn 1: on stegk+1, labelY is

71



MINSKER

requested only for observatioXse A, forcing the labeled data to concentrate in the domain where
higher precision is needed. This allows one to obtain a tighter confidemcefbathe regression
function restricted to the active set. Singeapproaches the decision boundary, its size is controlled
by the low noise assumption. The algorithm does not require a priori kdgwlef the noise and
regularity parameters, being adaptive yor 0,3 < 1. Further details are given in Section 3.2.

B confidence n(x)- regression confidence
band 'S function /it band
AN

estimator
of n(x)

Figure 1: Active Learning Algorithm

2.2 Comparison Inequalities

Before proceeding with the main results, let us recall the well-known atioms between the
binary risk and the| - ||«, || - [|L,() - norm risks:

Proposition 6 Under the low noise assumption,

Re(f) —R* < Dy||(f —n)I{signf #signn} ||5; 3)
2(1+y)

Re(f) — R" < Dyl (f —) I {sign # signn} [ 2, ; (4)

Re(f)—R* > Dal(sign f #signn) 7" (5)

Proof For (3) and (4), see Audibert and Tsybakov (2005), Lemmas 5.1 @&hckSpectively, and
for (5)—Kaoltchinskii (2011), Lemma 5.2. |

3. Main Results

The question we address below is: what are the best possible ratearha echieved by active
algorithms in our framework and how these rates can be attained.

3.1 Minimax Lower Bounds For the Excess Risk

The goal of this section is to prove that 8 P (3,y), no active learner can output a classifier with

B(1-+y) . ..
expected excess risk converging to zero faster iarka-®. Our result builds upon the minimax
bounds of Audibert and Tsybakov (2005), Castro and Nowak (2008
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Remark The theorem below is proved for a smaller cla&g3,y), which implies the result for

P(B.Y).
Theorem 7 Letf,y,d be sugh thaBy < d. Then there exists & 0 such that for all n large enough
and for any active classifief,(x) we have
A _ B+
sup ERp(f,) —R">CN 2+d-p,
PeR; (BY)

Proof We proceed by constructing the appropriate family of classifie(g) = signns(x), in a
way similar to Theorem 3.5 in Audibert and Tsybakov (2005), and thetyapgpeorem 2.5 from
Tsybakov (2009). We present it below for reader’s convenience.

Theorem 8 Let = be a class of models] : £ x £ — R - the pseudometric andlP;, f € =} - a
collection of probability measures associated withAssume there exists a sub$é, ..., fu} of <
such that

1. d(fi,fj) >2s>0 forall 0<i< j<M;
2. P, < Py, foreveryl < j<M;

1
S.Mj

KL (P;,Ps,) <alogM, 0<a< 3.

| X VM 20
n}f?élgpf (d(f,f)>s) > 1+ VM (1_20(_\/@)’

where the infimum is taken over all possible estimators of f based on deshomp B andKL (,-)
is the Kullback-Leibler divergence.

IM=Z
iR

Then

Going back to the proof, lgg=2', | > 1 and

(21 2kg—1 o o
Gq._{< 20 T2 >,k._1...q,|_1...d}

be the grid or{0, 1]9. Forx € [0,1]¢, let

Ng(x) = argmin {[[x— /|2 : X € Gg} .

If ng(x) is not unique, we choose a representative with the smallgst norm. The unit cube is
partitioned with respect tGq as follows: x1,x; belong to the same subseti(x1) = ng(x2). Let
' >' be some order on the elements@f such thaix - y implies ||x||2 > |ly||. Assume that the
elements of the partition are enumerated with respect to the order of theirccemteced by >’
qd
[0,119= UR. Fix1<m<q%and let
i=1
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Note that the partition is ordered in such a way that there always exists 4 gv/d with

whereB, (0,R) := {x ¢ RY : ||x[]2 < R}. In other words, (6) means that that the difference between
the radii of inscribed and circumscribed spherical sectoisff orderC(d)q?.
Letv > r; > rp be three integers satisfying

R AR G ACRE )
Defineu(x) : R — R by
L fxooU(t)dt
R (8)
[ U()dt
2V
where
L -v 1
U(t) = exF’(‘m), xe (27V,1)
0 else.

Note thatu(x) is an infinitely differentiable function such thatx) = 1, x € [0,27"] andu(x) =
0, x> 3. Finally, forx € R9 let
®(x) == Cu([[x[|2),

whereC := C_ g is chosen such tha € =(B,L,RY).
Letrs:=inf{r >0: BL(0,r) 2 S} and

A= {UR. . RNB, (O,rs+q’%y> :o)}.

Note that d
rs< CT’ 9)

since Vol(S) = mq{.
Define Hy = {Py: 0 € {—1,1}™} to be the hypercube of probability distributions [@1]¢ x
{-1,41}. The marginal distributiofil of X is independent of: define its density by
%, X € B (z, quz) \ Bs, (z,%) ,2€GqNS,
p(x) = co, X € Ao,
0 else

whereBe(z,r) := {X: [[X—Z||o <T}, Co:= %(note thatll(R) =q9 Vi <m)andry,r, are

defined in (7). In particulad]l satisfiesAssumptiorl since it is supported on the union of dyadic
cubes and has bounded above and below on(§upgensity. Let

W(x) = u (1/2f q9 dist(x, B+(0,r5))> :
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m - belongs to S

Figure 2: Geometry of the support

whereu(-) is defined in (8) and distx, A) :=inf{||x—yl|2, y € A}.
Finally, the regression functions(x) = Ep, (Y|X = X) is defined via

. aiq PP(gx—nq(x)]), XER,1<i<m
o= { Cpv disk(x,B, (0.r5)V - W(x), x€[0,19\S

The graph ol is a surface consisting of small "bumps” spread aro8rehd tending away from
0 monotonically with respect to digt, B, (0,rs)) on[0,1]9\ S. Clearly,ns(x) satisfies smoothness
requirement} since forx € [0, 1]¢

dist(x,B4(0,rs)) = (||x||2—rs) VO.

Let's check that it also satisfies the low noise condition. Singé> Cq ? on the support ofl, it
is enough to consider= Czq? for z> 1:

N(Ino(X)| < Czq®) < ma®+ 1 (diste(x,B. (0,r9)) < CA%7 ) <

d
<mq9+G, (rs+czf/dq—%y) <
<mq 4+Camq @ +Cazqg P¥ <
<Ct,

if mq ¥ = O(q?). Here, the first inequality follows from considering on SandA, separately,
and second inequality follows from (9) and direct computation of the spl@ume.
Finally, ns satisfiesAssumptior2 with someB; := B;(q) since on supfd1)

0 <cy(a) < [|Ong(X)|[2 < c2(q) < .

The next step in the proof is to choose the subse afhich is “well-separated”: this can be done
due to the following fact (see Tsybakov, 2009, Lemma 2.9):

1. W(x) is introduced to provide extra smoothness at the boundaBy (9, rs).
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Proposition 9 (Gilbert-Varshamov) For m > 8, there exists
{0o,...,0m} C {-1,1}"

such thatop = {1,1,...,1}, p(gj,0j) > §V0<i<k<Mand M> 2M/8 wherep stands for the
Hamming distance.

Let H' := {Pq,,...,Ps, } be chosen such thdby,...,onm} satisfies the proposition above. Next,
following the proof of Theorems 1 and 3 in Castro and Nowak (2008),ate thatvo € #’, 0 # 0p

KL (Pon[Poon) < 8N max(no(x) oy (X)) < 3252 gNG (10)

wherePs \ is the joint distribution of()(i,Yi)i'\':1 under hypothesis that the distribution of couple
(X,Y) is Ps. Let us briefly sketch the derivation of (10); see also the proof obfidma 1 in Castro
and Nowak (2008). Denote

gk (X17 7Xk>a
Yi = (Y1,---, Y).

ThendPR; n admits the following factorization:
_ _ N _  _
dRs (XN, W) = rlPo(Yi\Xi)dP(XﬂXi—l,Yi—l),
i=

wheredP(Xi\K_l,Vi_l) does not depend oa but only on the active learning algorithm. As a
consequence,

B chN(XN ) [ Po(Yi[X) =
KL(PG,NHPUo,N) - IEF’cy.N lo gm EPUN o gm a
Ps(Yi

N ZEF’““ [EP" ("’g Poc,(Y'm)) ’“)] :

Po(Y1|X1) >
<N max E log————% X1 =x | <
xe[0,1]¢ Fo < d Poo (Y1|X1) X -

< 8N max (n (x )_HOO(X))27
x€[0,1)d

where the last inequality follows from Lemma 1 (Castro and Nowak, 2008, Alste that we have
max.cpo.1¢ IN our bounds rather than the average ovémat would appear in the passive learning
framework. .

It remains to choosg, min appropriate way: sef = |C;N%7-# | andm = |C,q®~PY| where
Ci1, C, are such thag® > m> 1 and SZZEVBNq‘ZB < & which is possible folN big enough. In

particularmg® = O(q~#). Together with the bound (10), this gives

1 20 2B /
MGEZ}[/KL(PCHPOO)S3Z:UNC] <§ flog\}[]
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so that conditions of Theorem 8 are satisfied. Setting
fo(X) := signnq (%),

we finally havevo, # o, € H’
. . m By
d(folv fUz) = H(SIgnanl(X) 7é Slgnncz(x)> > 87qd > &GN Dby,

where the lower bound just follows by construction of our hypotheseaxeSunder the low noise
1+y

assumptiorRp( ﬁ,) —R > cI'I(fAn # signn) v (see (5)), we conclude by Theorem 8 that

- B(L+y)
inf sup Pl’(Rp(fn) —-R"> C4Nz;3+d+yrsv> >
fn P (B)

>inf sup Pr(l‘l(fn(x) # signne(x)) > Q‘N_2B+%VBV> >1>0.
f Pe; (By) 2

3.2 Upper Bounds For the Excess Risk

Below, we present a new active learning algorithm which is computationaltyatrbe, adaptive
with respect t@, y( in a certain range of these parameters) and can be applied in the noepéca
setting. We show that the classifier constructed by the algorithm attains teefatheorem 7, up
to polylogarithmic factor, if 0< < 1 andBy < d (the last condition covers the most interesting case
when the regression function hits or crosses the decision boundanyiimeher of the support offl;
for detailed statement about the connection between the behavior of thegien function near the
decision boundary with parametgdsy, see Proposition 3.4 in Audibert and Tsybakov, 2005). The
problem of adaptation to higher order of smoothnéss (1) is still awaiting its complete solution;
we address these questions below in our final remarks.

For the purpose of this section, the regularity assumption reads as fotlmve:exists & 3 < 1
such that/xg, x, € [0,1]¢

IN(x2) —N(%2)| < Bul|x1 —Xo|5. (11)

Since we want to be able to construct non-asymptotic confidence bamas estimates on the size
of constants in (11) andssumption 2re needed. Below, we will additionally assume that

B; <logN,

BZ > lOgil N7

whereN is the label budget. This can be replaced by any known bounés,@>.
Let A € o(Fm) with An := AnsupN) # 0. Define

Ma(dx) :=MN(dxx € An)
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anddny := dim 7m|a,. Next, we introduce a simple estimator of the regression function on the set
An. Given the resolution leveh and an iid sampléX;,Y;), i <N with X; ~ x, let

5 . L1 YRR (X))
Nma(X) = e
iRm0 N-TA(R)
Since we assumed that the margifalis known, the estimator is well-defined. The following

proposition provides the information about concentration@around its mean:

R (X). (12)

Proposition 10 For allt > 0,

A _ 2dmr1 (A)
— > — | <
Pr(;ggjnm,A(X) Nm(X)| >t N >_

—t2
< 2dmex ,
= SmEXP 2(1+ L/29M1(A)/uN)

Proof This is a straightforward application of the Bernstein’s inequality to the nandwriables
i N - -
Svi= 3 Yilr(X)), i€ {i:RNAn # 0},
=1
and the union bound: indeed, note th4Y Ir, (X;))? = Ma(R), so that
N,
Pr( NMaA(R)t ) 7

2+2t/3
and the rest follows by simple algebra using tha(R) > Wlw by the (uz,up)-regularity ofll.
|

Given a sequence of hypotheses clagaggsm > 1, define the index set

Su—N/ ndria
R

ZtNﬁA(Ri)> < 2exp(—

J(N):= {meN: 1<dimgm < (13)

N
b&N}
- the set of possible “resolution levels” of an estimator basel cfassified observations(an upper
bound corresponds to the fact that we want the estimator to be consisféhén talking about
model selection procedures below, we will implicitly assume that the model indésogen from
the corresponding set The role of G, will be played by7m|a for appropriately chosen sét We
are now ready to present the active learning algorithm followed by its detaialysis(see Table
1).

Remark Note that on every iteratiodlgorithm 1a uses the whole sample to select the resolu-
tion levelmy and to build the estimatayx. While being suitable for practical implementation, this
is not convenient for theoretical analysis. We will prove the upper bedoda slighly modified
version: namely, on every iteratidnlabeled data is divided into two subsampf&g andS, of
approximately equal sizéS 1| ~ |Sc2| ~ L%Nk- H(AK)J. ThenS;  is used to select the resolution
level fy andS 2 - to construct)x. We will call this modified versiomligorithm 1b.
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Algorithm l1a
input Iatgel budgeilN; confidencen;
Mo =0, Fo:= Fitp, No=0
LB:=N; I/l label budget
Ng = 2“092\mj;
s®(mN,a) :=s(m,N,a) := m(logN +log2);
k:=0;
while LB>0do
ki=k+1;
N := 2Nk_1;
A= {xe (0,9 3fy, f2 € Fi_1,sign(f1(X)) # sign(fz(x))};
if Acnsupp(M) =0 or LB < |N¢-M(Ay)] then
break; output §:= signfk_1
else
fori=1...|Ng-M(A)]
sample i.i.d ( A )) with X ~ .= N(dxjx € Ay);
end for;
LB:= LB [Ng- (A
Po=—21 N r| 26 v I/ "active” empirical measure

zdmn(Ak)+S(mfﬁ']<,1,N.G):|

My = argmmmzrm1 |:|nff€_:}“m A(Y — F(X))2+ Ky TR

Ak = Ny A, I see (12)

driy
& :=D-log? 2k"

Fii= {f S f|Ak € Fo i ( Nk; Ok), ”[o,l]d\Ak = ﬁk—l|[o,1]d\Ak};
end;

Table 1: Active Learning Algorithm

As afirst step towards the analysisfdgorithm 1b, let us prove the useful fact about the general
model selection scheme. Given an iid sameY;), i <N, setsy, = m(s+loglog, N), m> 1 and

a

M= M(s) = argminy, (n [lnf Pu(Y — F(X))?2+ Ky

20m 4 s,
N )

m:= min{m> 1: fien;_mIE(f(X) —n(X))?< KZZI‘\‘I’“}
Theorem 11 There exist an absolute constant lig enough such that, with probability 1 —e 3,
m<m
Proof See Appendix B. |

Straightforward application of this result immediately yields the following:
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Corollary 12 Suppose|(x) € Z(B,L,[0,1]%). Then, with probability> 1 — &5,
oM < ¢, . N+

Proof By definition ofm, we have

dm
m< 1+max{m: inf E(f(X)—n(X))? > KZZ} <
fE€Fm N

2dm
<1+ max{m: L222Bm KZN} ,

and the claim follows. [ |

With this bound in hand, we are ready to formulate and prove the main reshlsafection:

Theorem 13 Suppose that B £ (B,y) with By < logN, By > log™*N andBy < d. Then, with
probability > 1 — 3a, the classifie§ returned byAlgorithm 1b with label budget N satisfies

B(1+y)
Re(g) — R* < Const N 2o IOQPE’

where p< SEﬁfé)y and B, B, are the constants from (11) and Assumption 2.

Remarks

_ By _ _
1. Note that wherly > % N~ 2+d-Bv js afast rate that is, faster thalm—%; at the same time,
. . _Bdty) .
the passive learning ral¢ 2+d is guaranteed to be fast only whppn> % see Audibert and

Tsybakov (2005).
N _ _B+y) ) o o
2. Fora ~ N 2+d-Bv Algorithm 1b returns a classifiegs"that satisfies
~ _ _B+y)
ERp(fg) —R* < Const N~ 25:3-6 logP N.

This is a direct corollary of Theorem 13 and the inequality

E|Z] <t+|Z|loPr(|Z| > 1).

Proof Our main goal is to construct high probability bounds for the size of theeastts defined
by Algorithm 1b. In turn, these bounds depend on the size of the confidence bamg&jfoand
the previous result(Theorem 11) is used to obtain the required estimajgsosel is the number
of steps performed by the algorithm before termination; cleariy,N.

Let N2%t:= [ Ng- M(Ay) | be the number of labels requestedleth step of the algorithm: this
choice guarantees that the "density” of labeled examples doubles gnstepr

Claim: the following bound for the size of the active set holds uniformly foRafl k < L with
probability at least 1 2a:

y 2
M(AJ < ON, 7 (Iogs) | (14)
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It is not hard to finish the proof assuming (14) is true: indeed, it implies tleahtimber of labels
requested on stdpsatisfies

. 2p+-d-Py N 2Y
NE'= [NT(AQ| < C-N *° <'°9a>

with probability > 1 — 2a. Sincey N@Ctg N, one easily deduces that on the last iteratiome have
3

N 2id
+d-By
(15)

)

NL>c| ———

- <I092V(N/ a

To obtain the risk bound of the theorem from here, we apphequality (3) from Proposition 6:
Rp(§) — R < D1[(AL—n)- I {signA. # signn}||5". (16)

It remains to estimatgfj. —n [ 4, We will show below while proving (14) that

B N
A=z, <C-NC* 7 log? =
Together with (15) and (16), it implies the final result.

To finish the proof, it remains to establish (14). Recall thastands for theé., (1) - projection
of n onto #s,. An important role in the argument is played by the bound oﬂ_ﬂnjélk) - norm of
the “bias” (nk —n): together withAssumptior®, it allows to estimatéing —n ||W,Ak. The required
bound follows from the following oracle inequality: there exists an e#npf probability> 1— a
such that on this event for every<lk < L

- 2 ; ; 2
k=Nl qy < nf i = nllq, + (17)

1K !
! NI (Ay)

It general form, this inequality is given by Theorem 6.1 in Koltchinskii (0&nd provides the
estimate for||fx — NllL,(A,)» SO it automatically implies the weaker bound for the bias term only.
To deduce (17), we use the mentioned general inequalityjes(once for every iteration) and the
union bound. The quantity®?m (Ak) in (17) plays the role of the dimension, which is justified
below. Letk > 1 be fixed. Fom > fy_1, consider hypothesis classes

29M1(A) + (M= fiy_y) Iog(N/a)] |

Tm‘/&k ::{fIAk7 fETm}.

An obvious but important fact is that fé& € 4, (B,y), the dimension off|3, is bounded by, * -

2"M(Ax): indeed,

NA)= 5 NR)zu2 ™ #{j:RiNA#0},
J:RjNAF0

2. alternatively, inequality (4) can be used but results in a slightly infergarithmic factor.
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hence
dim Fm

A =#{i RiNAGE 0} <ug-2MN(AY). (18)

oy Ni
Theorem 11 applies conditionally 0{1Xi“)}_ ’l, j < k—1 with sample of sizeNg*t and s =
=

log(N/a): to apply the theorem, note that, by definitiongf it is independent o)f(i(k), i=1...Ngt
Arguing as in Corollary 12 and using (18), we conclude that the followimgjurality holds with
probability > 1 — & for every fixedk:

N _1
oM < C. NPT, (19)

Let E; be an event of probability 1 — a such that on this event bound (19) holds for every &tep

k <L and let%, be an event of probability 1 — a on which inequalities (17) are satisfied. Suppose
that eventZ; N, occurs and leky be a fixed arbitrary integer 2 ko < L+ 1. It is enough to
assume tha&ko,l is nonempty(otherwise, the bound trivially holds), so that it contains at ¢ees
cube with sidelength ?™-2 and

. R .
M(Ag_1) > u2 Mo-1 > N, *. (20)
1
Consider inequality (17) with = ko — 1 and 2"~ N,>"3. By (20), we have

_ 2 N
H”"O*l_n”fz(ﬁko_l) <CN %" |0926, (21)

For convenience and brevity, den@e= supf1). Now Assumption Zomes into play: it implies,
together with (21) that

_B N _ _
CNy %1 109 > [INke-1 =Ny, 1) = BolMo-1- Nl anay, (22)
To bound
1M1 = Nio-1(X) o Ay, s
we apply Proposition 10. Recall thai,”; depends only on the subsamfig 1 1 but not onS_1 5.
Let

N act

S ) N
Tk'_{{x‘ i }izl’JSk l}USk’l

be the random vector that defindgand resolution leveh. Note that for any,

Proposition 10 thus implies

. _ 20Mg-1
Pr max _1(X) — Ngp X)| > Kt
X ko100 = img (001 2 Kty 0=
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Choosing = clog(N/a) and taking expectation, the inequality(now unconditional) becomes

s 29Mo-110g?(N/a) B
Pr (XGQKZ l|f1m<O (%) =Ny, (X)] < K\/ >1-a. (23)

N1

Let 3 be the event on which (23) holds true. Combined, the estimates (19), @2 3nmply that
onEiNENE;

IN—Ako-1lle0.ana s < M= Nko-1ll.ara, ; + Mo-1 = ko-1llw A

C N 29Mo-1log?(N/a)
< —N ZB*“ log— +K <
B, ko— g + \/ Nip—1

(24)

< (K+4C)- Nko2B+GI Iog —
where we used the assumptiBp> log~*N. Now the width of the confidence band is defined via
O :=2(K+C)- Nko 7o Iog (25)

(in particular,D from Algorithm 1a is equal to 2K 4+ C)). With the bound (24) available, it is
straightforward to finish the proof of the claim. Indeed, by (25) and tlimitien of the active set,
the necessary condition fare Q N A, is

In(x)| < 3(K+C)- NkoZB+d Iog —

so that

by the low noise assumption. This completes the proof of the claim sinC&; PrE; N E3) >
1-30. |

We conclude this section by discussing running time of the active learningtalgo Assume that
the algorithm has access to the sampling subroutine that, givef0, 19 with M(A) > 0, generates
ii.d. (X,Yi) with X; ~ M (dx|x € A).

Proposition 14 The running time oAlgorithm 1a(1b) with label budget N is
O(dNlog®N).

Remark In view of Theorem 13, the running time required to output a clasgjfseich thaRp(§) —
R* < ¢ with probability> 1—a is

2B+d—By
(0] } P oly( lo i
c poly| 109 ca .
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Proof We will use the notations of Theorem 13. Le§ be the number of labels requested by
the algorithm on step. The resolution levelry is always chosen such that, is partitioned into
at mostN2 dyadic cubes, see (13). This means that the estinfattakes at mosN2! distinct
values. The key observation is that for dgythe active seﬁkH is always represented as the union
of a finite number(at most2®) of dyadic cubes: to determine if a cuRg C Ac,1, itis enough to
take a poink € R; and compare sigifik(x) — &) with sign(fk(x) + &): R; € Ac;1 only if the signs
are different(so that the confidence band crosses zero level). diisecdone irO(NZ) steps.

Next, resolution leveiy can be found ir0(NZ!log®N) steps: there are at most l0g2° models
to consider; for eachn, inftc & P(Y — f(X))?is found explicitly and is achieved for the piecewise-
5 I, (X%

Si IR, ")

O(dN2“llogN) steps for eacim, so the wholek-th iteration running time i©(dNllog?N). Since
S N2t < N, the result follows. n
K

constantf(x) = , X € R;. Sorting of the data required for this computation is done in

4. Conclusion and Open Problems

We have shown that active learning can significantly improve the quality ¢dssifier over the
passive algorithm for a large class of underlying distributions. Predemé¢hod achieves fast rates
of convergence for the excess risk, moreover, it is adaptive(in thiaiceange of smoothness and
noise parameters) and involves minimization only with respect to quadraticadtis=(than the 6 1
loss).

The natural question related to our results is:

» Can we implement adaptive smooth estimators in the learning algorithm to exteresalis
beyond the casp < 17?

The answer to this second question is so far an open problem. Our coejecthat the correct

_ Bty . ..
rate of convergence for the excess risk is, up to logarithmic fadwrg+i—®#D | which coincides
with presented results f@ < 1. This rate can be derived from an argument similar to the proof of
Theorem 13 under the assumption that on everylstape could construct an estimatpy with

_. B
In—Fille & S N 2
At the same time, the active set associatefiehould maintain some structure which is suitable

for the iterative nature of the algorithm. Transforming these ideas into aotiggroof is a goal of
our future work.
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Appendix A. Functions Satisfying Assumption 2

In the propositions below, we will assume for simplicity that the marginal distribdfias abso-
lutely continuous with respect to Lebesgue measure with depgilysuch that

0< p1 < p(X) < p2 < o forall x e [0,1)9.
Givent € (0,1], defineA; := {x: [n(x)| <t}.

Proposition 15 Suppose is Lipschitz continuous with Lipschitz constant S. Assume also that for
somet > 0 we have

(&) M(A,/3) >0;

(b) n is twice differentiable for all xc A, ;

(©) infyea,, [|EN(X)[1 > 5> 0;

(d) supea, ID?n(x)|| < C < o where|| - || is the operator norm.
Thenn satisfies Assumption 2.

Proof By intermediate value theorem, for any cuRe 1 < i < 29™there exists € R; such that
Nm(X) = N(x), X € R.. This implies

IN(X) —Nm(X)| = [n(X) =N (%0)| = |ON(&) - (x—x0)| <
< 1En@)l1]lx—Xolle < S-27M.

On the other hand, R C A;, then
IN(X) —Nm(X)| = In(X) —Nn(x)| =

= |En(k0) - (x—0) + 5D (E))(x—30) - (X~ )| >

1
2 |En(xo) - (x—Xo)| = ésngDzn(E)H max||x o[ > (26)

> |0 (%) - (X—%0)| —C122™
Note that a strictly positive continuous function
hiyw = [ (u:(x-y)dx
[0.1)

achieves its minimal value, > 0 on a compact s¢d, 19 x {u€ R : ||ul|y = 1}. This implies(using
(26) and the inequalitya— b)2 > & — b?)

N(R) [ (100 m())2p(90x >

R
1
> 522" [ (On () (x—x0) 2padix—CF2 ">
R
> 32 o (e)|f2 2-h. G2 > 2 2" forms m,
2

85



MINSKER

Now take a sef € o(Fm), m> my from Assumptior?. There are 2 possibilities: eith&rC A, or
AD A /3. In the first case the computation above implies

/ (n— rTm)zl'l(dx\x €A > Cp2 oM = %SZZ*Z”‘ >
o1
C _
> Sl —allZ

If the second case occurs, note that, sifixe0 < [n(x)| < %} has nonempty interior, it must con-
tain a dyadic cub®, with edge length 2™. Then for anym > max(mp, m,)

| (n-AmPnidxxe ) >

(0,1
>n4A) [ (- N(d0 > Z272MR) >
R,
C _
> SN(R)IIN —Aml 4
and the claim follows. -

The next proposition describes conditions which allow functions to hameshimg gradient on
decision boundary but requires convexity and regular behaviouedjrddient.

Everywhere below,In denotes the subgradient of a convex function

sup  {|On(X)|l2
XEAIz\Atl

inf lOn(x)]l1
XE. 2 1

a representative that maké&st;,to) as small as possible.

For 0< t1 < tp, defineG(ty, t2) 1= . In case wheiln(x) is not unique, we choose

Proposition 16 Suppose)(x) is Lipschitz continuous with Lipschitz constant S. Moreover, assume
that there exists,t> 0 and g: (0, ) — (0, ) such that A ¢ (0,1)¢ and

(@) bptY <TI(A) < botY Vit <t,;
(b) Forall0<ty; <t <t, G(ty,tz) <q (g)

(c) Restriction of) to any convex subset of As convex.

Thenn satisfies Assumption 2.
Remark The statement remains valid if we replag®y |n| in (c).

Proof Assume that for some<t, andk > 0

RC AN A«

is a dyadic cube with edge length2 and letxg be such thafjm(X) = n(x), X € R. Note thatn
is convex onR due to (c). Using the subgradient inequalitix) — n(Xo) > 0On(Xo) - (X — Xp), we
obtain

[0 -n00))%d109 > [(1%) = 120))1{TN(50) - (x—X0) = O} dN(¥
R R

> [ (On00) - (x=30)° I{TN (%) - (x—=0) = O} a1, @7
R
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The next step is to show that under our assumptigresin be chosen such that
dist,(Xo,0R) >v2™ ™, (28)

wherev = v(K) is independent ofn. In this case any part dR cut by a hyperplane througky
contains half of a balB(xg,ro) of radiusro = v(k)2-™ and the last integral in (27) can be further
bounded below to get

NI =

[0 =100 =5 [ (On(x0)- (x—30)? pacx >
R B(xo,ro)
> o(K) |on(0) 32272 (29)

It remains to show (28). Assume that for yuch that(y) = n(xp) we have
diste(y,0R) < 52~ ™
for somed > 0. This implies that the boundary of the convex set

{xeR:in(x) <n(x)}

is contained inRy := {Xe€ R:dist(x,0R) <82 ™}. There are two possibilities: either

{xeR:N(X) <n(x)} 2 R\Rs or {xe R:n(x) <n(%)} CRs.
We consider the first case only(the proof in the second case is similas), ote that by (b) for all

x € R [[0n(X) 11 < (k)| I (o)1 and

N(x) < n(xo)+ [[ON(x)[182 ™™ <
n

<
< N (%) +a(k) [ 0N (%) [1262™. (30)
Let x. be the center of the culieandu - the unit vector in directiofin(x;). Observe that

N(x+ (1—38)27™) —N(x) > On(x) - (1-38)2 Mu=
= (1-38)2 0N (x) .

On the other handk + (1—38)2 Mu € R\ Rs and
(% +(1-38)2"™) < (%),

hencen(x.) < n(x) —c(1—30)2 "||0n(xc)|l1. Consequently, for all

c2 M(1- 36)}

NI

X € B(Xc,0) := {x: [1X—Xe|loo <
we have
N) <N (%) + [N e) [[1[x = Xelloo <

<1() ~ 562 (1~ 38) [ () . (31)
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Finally, recall that (xo) is the average value of on R. Together with (30) and (31) this gives

/n X)dr = /n dI‘I+/r] X)dr <

R\Rs
< (n(xo) + ()I!Drl( )[11627™)N(Rs)+
+(n(%) — 22 (1 - 33) ]| 0N (%) [|1)1 (B(xc, 8)) +
+N(x0)M(R\ (RsUB(x,9))) =
M(RIN(x0) +a(k) 10N (%) [182 "M (Rs) -
— €227 "(1-33)[|0n(x0)[|2M (B(x:,9))
0)

Sincel(Rs) < p22-9MandM(B(xc,8)) > c32-9M(1 — 35)Y, the inequality above implies

caq(K)d > (1—35)4+1

which is impossible for smab (e.g., ford < GG ).
Let Abe a set from condition 2. A2 A /3, t%en there exists a dyadic cuBewith edge length
2-™ such thaR, C A, 3\ A, )k for somek > 0, and the claim follows from (29) as in Proposition
15.
Assume now tha#; C A C Az and 3 <t,. Condition (a) of the proposition implies that for any
€ > 0 we can choosk(e) > 0 large enough so that

b
b1

This means that for any partition éfinto dyadic cube®} with edge length 2™ at least half of
them satisfy

M(A\A ) = TI(A) —ba(t/K)Y = M(A) — =k T(A) > (1-€)N(A). (32)

MR\ Ayk) = (1-ce)N(R). (33)

Let I be the index set of cardinality| > c(A)29™1 such that (33) is true fdre 1. SinceR; NA K
is convex, there existe = z(€) € N such that for any such culi® there exists a dyadic sub-cube
with edge length 2(™2 entirely contained iR \ Ay i:

Ti CR\ Ak CAst \ Ak
It follows thatM(UT;) > &()M(A). Recall that condition (b) implies

SUIOHDH( )1

xeU;i T

inf_{|On(x)[l2 —

xeUi T

<q(3Kk).

Finally, sup|/On(x)| is attained at the boundary point, that is for soxpe |n(x.)| = 3t, and by

XEAz
(b)
sup || On(¥)||2 < Vd|[On(x.) |1 < q@k)vd inf [|On(x)]1.
xeAa XEA\A;

3. If, on the contrary, every sub-cube with edge lengti™?? contains a point frondy i, thenA ) must contain the
convex hull of these points which would contradict (32) for lazge
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Application of (29) to every cub@& gives

iEZI T/ (N(X) = Nm2(x))dM(x) > co(K)M(A)[ 1| . AiQfAt/k 100 (x)[[22-2m2-dm >

> c2(K)M(A) sup|[On(x)[|F27" > cs(kN(A)In —n(m)[|3 A

XEAz

concluding the proof. |

Appendix B. Proof of Theorem 11

The main ideas of this proof, which significantly simplifies and clarifies initial atgtversion, are
due to V. Koltchinskii. For convenience and brevity, let us introduce aduitiootations. Recall
that

Sm = m(s+loglog, N).

Let
2dm
In(m,s) :=Kj N+Sm,
2dm 1 s+ loglog, N
Ty(m,s) := Ky N 9%

By Er(F,f) (or En,(F, f)) we denote the excess risk bk 7 with respect to the true (or empiri-
cal) measure:

Tp(F, ) i=Ply—f(x)* - Jnf Py—9(x)?,
Eay(F, ) =Py — f(x)? ~ Jnf P(y - 9(x)).

It follows from Theorem 4.2 in Koltchinskii (2011) and the union bound thare exists an evert
of probability > 1 — e~3 such that on this event the following holds for mdlsuch thadm < logN:

‘Z:P(.‘}-ma f\l”f]) S T[N(ma S)a

VieFm Ep(Fmf)<2(En(Fm f)VTn(ms)), (34)
VfieFm En(Fmf)< g(fp(fm, f)vin(m,s)).

We will show that onB, {fh < m} holds. Indeed, assume that, on the contnary, i, by definition
of M, we have A A
Pu(Y — fa)2+Tn(ys) < Pa(Y — fm) 2 +Tn(m,9),
which implies A
pr(ffm, fm) > TN(m, S) —TN(rﬁ, S) > 3T[N(m, S)
for K1 big enough. By (34),

w

Ty (% ) = Inf T (% ) < 5 <fien}rﬁfp(fm, ) v (i, s)) ,
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and combination the two inequalities above yields

inf Ep(Fm, f) > Tiv(M, ). (35)
feFm

Since for anym Ep( Fm, f) < E(f(X) —n(X))?, the definition ofmand (35) imply that

T(ms) > inf E(f(X) - n(X))% > my(ms),

contradicting our assumption, hence proving the claim.
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