
Journal of Machine Learning Research 13 (2012) 67-90 Submitted 2/11; Revised 9/11; Published 1/12

Plug-in Approach to Active Learning

Stanislav Minsker SMINSKER@MATH .GATECH.EDU

686 Cherry Street
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332-0160, USA

Editor: Sanjoy Dasgupta

Abstract
We present a new active learning algorithm based on nonparametric estimators of the regression
function. Our investigation provides probabilistic bounds for the rates of convergence of the gen-
eralization error achievable by proposed method over a broad class of underlying distributions. We
also prove minimax lower bounds which show that the obtainedrates are almost tight.
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1. Introduction

Let (S,B) be a measurable space and let(X,Y) ∈ S×{−1,1} be a random couple with unknown
distribution P. The marginal distribution of the design variableX will be denoted byΠ. Let
η(x) := E(Y|X = x) be the regression function. The goal ofbinary classificationis to predict
label Y based on the observationX. Prediction is based on aclassifier - a measurable func-
tion f : S 7→ {−1,1}. The quality of a classifier is measured in terms of its generalization error,
R( f ) = Pr(Y 6= f (X)). In practice, the distributionP remains unknown but the learning algorithm
has access to thetraining data- the i.i.d. sample(Xi ,Yi), i = 1. . .n from P. It often happens that the
cost of obtaining the training data is associated with labeling the observationsXi while the pool of
observations itself is almost unlimited. This suggests to measure the performance of a learning algo-
rithm in terms of itslabel complexity, the number of labelsYi required to obtain a classifier with the
desired accuracy.Active learningtheory is mainly devoted to design and analysis of the algorithms
that can take advantage of this modified framework. Most of these procedures can be characterized
by the following property: at each stepk, observationXk is sampled from a distribution̂Πk that de-
pends on previously obtained(Xi ,Yi), i ≤ k−1(while passive learners obtain all available training
data at the same time).̂Πk is designed to be supported on a set where classification is difficult and
requires more labeled data to be collected. The situation when active learners outperform passive
algorithms might occur when the so-calledTsybakov’s low noise assumptionis satisfied: there exist
constantsB,γ > 0 such that

∀ t > 0, Π(x : |η(x)| ≤ t)≤ Btγ. (1)

This assumption provides a convenient way to characterize the noise levelof the problem and will
play a crucial role in our investigation.

The topic of active learning is widely present in the literature; see Balcan etal. (2009), Hanneke
(2011), Castro and Nowak (2008) for review. It was discovered that in some cases the generaliza-
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tion error of a resulting classifier can converge to zero exponentially fast with respect to its label
complexity(while the best rate for passive learning is usually polynomial with respect to the cardi-
nality of the training data set). However, available algorithms that adapt to the unknown parameters
of the problem(γ in Tsybakov’s low noise assumption, regularity of the decision boundary)involve
empirical risk minimization with binary loss, along with other computationally hard problems, see
Balcan et al. (2008), Dasgupta et al. (2008), Hanneke (2011) and Koltchinskii (2010). On the other
hand, the algorithms that can be effectively implemented, as in Castro and Nowak (2008), are not
adaptive.

The majority of the previous work in the field was done under standard complexity assumptions
on the set of possible classifiers(such as polynomial growth of the covering numbers). Castro and
Nowak (2008) derived their results under the regularity conditions on thedecision boundary and
the noise assumption which is slightly more restrictive then (1). Essentially, theyproved that if
the decision boundary is a graph of the Hölder smooth functiong∈ Σ(β,K, [0,1]d−1) (see Section
2 for definitions) and the noise assumption is satisfied withγ > 0, then the minimax lower bound

for the expected excess risk of the active classifier is of orderC ·N− β(1+γ)
2β+γ(d−1) and the upper bound is

C(N/ logN)
− β(1+γ)

2β+γ(d−1) , whereN is the label budget. However, the construction of the classifier that
achieves an upper bound assumesβ andγ to be known.

In this paper, we consider the problem of active learning under classical nonparametric as-
sumptions on the regression function - namely, we assume that it belongs to a certain Ḧolder class
Σ(β,K, [0,1]d) and satisfies to the low noise condition (1) with some positiveγ. In this case, the
work of Audibert and Tsybakov (2005) showed that plug-in classifiers can attain optimal rates in
thepassivelearning framework, namely, that the expected excess risk of a classifierĝ = signη̂ is

bounded above byC ·N− β(1+γ)
2β+d (which is the optimal rate), wherêη is the local polynomial estimator

of the regression function andN is the size of the training data set. We were able to partially extend
this claim to the case of active learning: first, we obtain minimax lower bounds for the excess risk
of an active classifier in terms of its label complexity. Second, we propose anew algorithm that
is based on plug-in classifiers, attains almost optimal rates over a broad class of distributions and
possesses adaptivity with respect toβ,γ(within the certain range of these parameters).

The paper is organized as follows: the next section introduces remaining notations and specifies
the main assumptions made throughout the paper. This is followed by a qualitative description of
our learning algorithm. The second part of the work contains the statements and proofs of our main
results - minimax upper and lower bounds for the excess risk.

2. Preliminaries

Ouractive learningframework is governed by the following rules:

1. Observations are sampled sequentially:Xk is sampled from the modified distribution̂Πk that
depends on(X1,Y1), . . . ,(Xk−1,Yk−1).

2. Yk is sampled from the conditional distributionPY|X(·|X = x). Labels are conditionally inde-
pendent given the feature vectorsXi , i ≤ n.

Usually, the distribution̂Πk is supported on a set where classification is difficult.
Given the probability measureQ on S×{−1,1}, we denote the integral with respect to this

measure byQg :=
∫

gdQ. Let F be a class of bounded, measurable functions. The risk and the
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excess risk off ∈ F with respect to the measureQ are defined by

RQ( f ) :=QIy6=sign f (x)

EQ( f ) := RQ( f )− inf
g∈F

RQ(g),

whereIA is the indicator of eventA . We will omit the subindexQ when the underlying measure is
clear from the context. Recall that we denoted the distribution of(X,Y) by P. The minimal possible
risk with respect toP is

R∗ = inf
g:S7→[−1,1]

Pr(Y 6= signg(X)) ,

where the infimum is taken over all measurable functions. It is well known that it is attained for any
g such that signg(x) = signη(x) Π - a.s. Giveng∈ F , A∈ B, δ > 0, define

F∞,A(g;δ) := { f ∈ F : ‖ f −g‖∞,A ≤ δ} ,

where‖ f −g‖∞,A = sup
x∈A

| f (x)−g(x)|. ForA∈ B, define the function class

F |A := { f |A, f ∈ F } ,

wheref |A(x) := f (x)IA(x). From now on, we restrict our attention to the caseS= [0,1]d. LetK > 0.

Definition 1 We say that g: Rd 7→ R belongs toΣ(β,K, [0,1]d), the(β,K, [0,1]d) - Hölder class of
functions, if g is⌊β⌋ times continuously differentiable and for all x,x1 ∈ [0,1]d satisfies

|g(x1)−Tx(x1)| ≤ K‖x−x1‖β
∞,

where Tx is the Taylor polynomial of degree⌊β⌋ of g at the point x.

Definition 2 P (β,γ) is the class of probability distributions on[0,1]d×{−1,+1}with the following
properties:

1. ∀ t > 0, Π(x : |η(x)| ≤ t)≤ Btγ;

2. η(x) ∈ Σ(β,K, [0,1]d).

We do not mention the dependence ofP (β,γ) on the fixed constantsB,K explicitly, but this should
not cause any uncertainty.

Finally, let us defineP ∗
U(β,γ) andPU(β,γ), the subclasses ofP (β,γ), by imposing two additional

assumptions. Along with the formal descriptions of these assumptions, we shall try to provide some
motivation behind them. The first deals with the marginalΠ. For an integerM ≥ 1, let

GM :=

{(
k1

M
, . . . ,

kd

M

)
, ki = 1. . .M, i = 1. . .d

}

be the regular grid on the unit cube[0,1]d with mesh sizeM−1. It naturally defines a partition into
a set ofMd open cubesRi , i = 1. . .Md with edges of lengthM−1 and vertices inGM. Below, we
consider the nested sequence of grids{G2m, m≥ 1} and corresponding dyadic partitions of the unit
cube.
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Definition 3 We will say thatΠ is (u1,u2)-regular with respect to{G2m} if for any m≥ 1, any
element of the partition Ri , i ≤ 2dm such that Ri ∩supp(Π) 6= /0, we have

u1 ·2−dm≤ Π(Ri)≤ u2 ·2−dm,

where0< u1 ≤ u2 < ∞.

Assumption 1 Π is (u1,u2) - regular.

In particular,(u1,u2)-regularity holds for the distribution with a densityp on [0,1]d such that 0<
u1 ≤ p(x)≤ u2 < ∞.

Let us mention that our definition of regularity is of rather technical nature;for most of the paper,
the reader might think ofΠ as being uniform on[0,1]d( however, we need slightly more complicated
marginal to construct the minimax lower bounds for the excess risk). It is known that estimation of
regression function in sup-norm is sensitive to the geometry of design distribution, mainly because
the quality of estimation depends on thelocal amount of data at every point; conditions similar
to our Assumption1 were used in the previous works where this problem appeared, for example,
strong density assumptionin Audibert and Tsybakov (2005) andAssumption Din Gäıffas (2007).

A useful characteristic of(u1,u2) - regular distributionΠ is that this property is stable with re-
spect to restrictions ofΠ to certain subsets of its support. This fact fits the active learning framework
particularly well.

Definition 4 We say thatQ belongs toPU(β,γ) if Q ∈ P (β,γ) and Assumption 1 is satisfied for
some u1,u2.

The second assumption is crucial in derivation of the upper bounds. Thespace of piecewise-constant
functions which is used to construct the estimators ofη(x) is defined via

Fm =

{
2dm

∑
i=1

λi IRi (·) : |λi | ≤ 1, i = 1. . .2dm

}
,

where{Ri}2dm

i=1 forms the dyadic partition of the unit cube. Note thatFm can be viewed as a‖ · ‖∞-
unit ball in the linear span of first 2dm Haar basis functions in[0,1]d. Moreover,{Fm, m≥ 1} is
a nested family, which is a desirable property for the model selection procedures. Byη̄m(x) we
denote theL2(Π) - projection of the regression function ontoFm.

We will say that the setA⊂ [0,1]d approximates the decision boundary{x : η(x) = 0} if there
existst > 0 such that

{x : |η(x)| ≤ t}Π ⊆ AΠ ⊆ {x : |η(x)| ≤ 3t}Π , (2)

where for any setA we defineAΠ := A∩ supp(Π). The most important example we have in mind
is the following: letη̂ be some estimator ofη with ‖η̂−η‖∞,supp(Π) ≤ t, and define the 2t - band
aroundη by

F̂ =
{

f : η̂(x)−2t ≤ f (x)≤ η̂(x)+2t ∀x∈ [0,1]d
}
.

TakeA =
{

x : ∃ f1, f2 ∈ F̂ s.t. signf1(x) 6= sign f2(x)
}

, then it is easy to see thatA satisfies (2).
Modified design distributions used by our algorithm are supported on the sets with similar structure.

Let σ(Fm) be the sigma-algebra generated byFm andA∈ σ(Fm).
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Assumption 2 There exists B2 > 0 such that for all m≥ 1, A∈ σ(Fm) satisfying (2) and such that
AΠ 6= /0 the following holds true:

∫

[0,1]d

(η− η̄m)
2 Π(dx|x∈ AΠ)≥ B2‖η− η̄m‖2

∞,AΠ
.

Appearance ofAssumption 2is motivated by the structure of our learning algorithm - namely, it is
based on adaptive confidence bands for the regression function. Nonparametric confidence bands
is a big topic in statistical literature, and the review of this subject is not our goal. We just men-
tion that it is impossible to construct adaptive confidence bands of optimal size over the whole⋃
β≤1

Σ
(
β,K, [0,1]d

)
. Low (1997); Hoffmann and Nickl (to appear) discuss the subject in details.

However, it is possible to construct adaptiveL2 - confidence balls (see an example following The-
orem 6.1 in Koltchinskii, 2011). For functions satisfyingAssumption 2, this fact allows to obtain
confidence bands of desired size. In particular,

(a) functions that are differentiable, with gradient being bounded awayfrom 0 in the vicinity of
decision boundary;

(b) Lipschitz continuous functions that are convex in the vicinity of decisionboundary

satisfyAssumption2. For precise statements, see Propositions 15, 16 in Appendix A. A different
approach to adaptive confidence bands in case of one-dimensional density estimation is presented
in Giné and Nickl (2010). Finally, we defineP ∗

U(β,γ):

Definition 5 We say thatQ belongs toP ∗
U(β,γ) if Q ∈ PU(β,γ) and Assumption 2 is satisfied for

some B2 > 0.

2.1 Learning Algorithm

Now we give a brief description of the algorithm, since several definitions appear naturally in this
context. First, let us emphasize thatthe marginal distributionΠ is assumed to be known to the
learner.This is not a restriction, since we are not limited in the use of unlabeled data andΠ can be
estimated to any desired accuracy. Our construction is based on so-calledplug-in classifiers of the
form f̂ (·) = signη̂(·), whereη̂ is a piecewise-constant estimator of the regression function. As we
have already mentioned above, it was shown in Audibert and Tsybakov (2005) that in the passive

learning framework plug-in classifiers attain optimal rate for the excess riskof orderN− β(1+γ)
2β+d , with

η̂ being the local polynomial estimator.
Our active learning algorithm iteratively improves the classifier by constructing shrinking con-

fidence bands for the regression function. On every stepk, the piecewise-constant estimatorη̂k is
obtained via the model selection procedure which allows adaptation to the unknown smoothness(for
Hölder exponent≤ 1). The estimator is further used to construct a confidence bandF̂k for η(x). The
active setassociated witĥFk is defined as

Âk = A(F̂k) :=
{

x∈ supp(Π) : ∃ f1, f2 ∈ F̂k,sign f1(x) 6= sign f2(x)
}
.

Clearly, this is the set where the confidence band crosses zero level and where classification is
potentially difficult.Âk serves as a support of the modified distributionΠ̂k+1: on stepk+1, labelY is
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requested only for observationsX ∈ Âk, forcing the labeled data to concentrate in the domain where
higher precision is needed. This allows one to obtain a tighter confidence band for the regression
function restricted to the active set. SinceÂk approaches the decision boundary, its size is controlled
by the low noise assumption. The algorithm does not require a priori knowledge of the noise and
regularity parameters, being adaptive forγ > 0,β ≤ 1. Further details are given in Section 3.2.
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Figure 1: Active Learning Algorithm

2.2 Comparison Inequalities

Before proceeding with the main results, let us recall the well-known connections between the
binary risk and the‖ · ‖∞, ‖ · ‖L2(Π) - norm risks:

Proposition 6 Under the low noise assumption,

RP( f )−R∗ ≤ D1‖( f −η)I {sign f 6= signη}‖1+γ
∞ ; (3)

RP( f )−R∗ ≤ D2‖( f −η)I {sign f 6= signη}‖
2(1+γ)

2+γ
L2(Π); (4)

RP( f )−R∗ ≥ D3Π(sign f 6= signη)
1+γ

γ . (5)

Proof For (3) and (4), see Audibert and Tsybakov (2005), Lemmas 5.1 and 5.2 respectively, and
for (5)—Koltchinskii (2011), Lemma 5.2.

3. Main Results

The question we address below is: what are the best possible rates that can be achieved by active
algorithms in our framework and how these rates can be attained.

3.1 Minimax Lower Bounds For the Excess Risk

The goal of this section is to prove that forP∈ P (β,γ), no active learner can output a classifier with

expected excess risk converging to zero faster thanN− β(1+γ)
2β+d−βγ . Our result builds upon the minimax

bounds of Audibert and Tsybakov (2005), Castro and Nowak (2008).
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Remark The theorem below is proved for a smaller classP ∗
U(β,γ), which implies the result for

P (β,γ).

Theorem 7 Letβ,γ,d be such thatβγ ≤ d. Then there exists C> 0 such that for all n large enough
and for any active classifier̂fn(x) we have

sup
P∈P ∗

U (β,γ)
ERP( f̂n)−R∗ ≥CN− β(1+γ)

2β+d−βγ .

Proof We proceed by constructing the appropriate family of classifiersfσ(x) = signησ(x), in a
way similar to Theorem 3.5 in Audibert and Tsybakov (2005), and then apply Theorem 2.5 from
Tsybakov (2009). We present it below for reader’s convenience.

Theorem 8 Let Σ be a class of models,d : Σ× Σ 7→ R - the pseudometric and
{

Pf , f ∈ Σ
}

- a
collection of probability measures associated withΣ. Assume there exists a subset{ f0, . . . , fM} of Σ
such that

1. d( fi , f j)≥ 2s> 0 for all 0≤ i < j ≤ M;

2. Pf j ≪ Pf0 for every1≤ j ≤ M;

3. 1
M

M
∑
j=1

KL(Pf j ,Pf0)≤ α logM, 0< α < 1
8.

Then

inf
f̂

sup
f∈Σ

Pf
(
d( f̂ , f )≥ s

)
≥

√
M

1+
√

M

(
1−2α−

√
2α

logM

)
,

where the infimum is taken over all possible estimators of f based on a sample from Pf andKL(·, ·)
is the Kullback-Leibler divergence.

Going back to the proof, letq= 2l , l ≥ 1 and

Gq :=

{(
2k1−1

2q
, . . . ,

2kd −1
2q

)
, ki = 1. . .q, i = 1. . .d

}

be the grid on[0,1]d. Forx∈ [0,1]d, let

nq(x) = argmin
{
‖x−xk‖2 : xk ∈ Gq

}
.

If nq(x) is not unique, we choose a representative with the smallest‖ · ‖2 norm. The unit cube is
partitioned with respect toGq as follows:x1,x2 belong to the same subset ifnq(x1) = nq(x2). Let
′ ≻′ be some order on the elements ofGq such thatx ≻ y implies ‖x‖2 ≥ ‖y‖2. Assume that the
elements of the partition are enumerated with respect to the order of their centers induced by′ ≻′:

[0,1]d =
qd⋃

i=1
Ri . Fix 1≤ m≤ qd and let

S:=
m⋃

i=1

Ri
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Note that the partition is ordered in such a way that there always exists 1≤ k≤ q
√

d with

B+

(
0,

k
q

)
⊆ S⊆ B+

(
0,

k+3
√

d
q

)
, (6)

whereB+(0,R) :=
{

x∈ Rd
+ : ‖x‖2 ≤ R

}
. In other words, (6) means that that the difference between

the radii of inscribed and circumscribed spherical sectors ofS is of orderC(d)q−1.
Let v> r1 > r2 be three integers satisfying

2−v < 2−r1 < 2−r1
√

d < 2−r2
√

d < 2−1. (7)

Defineu(x) : R 7→ R+ by

u(x) :=

∫ ∞
x U(t)dt

1/2∫
2−v

U(t)dt

, (8)

where

U(t) :=

{
exp
(
− 1

(1/2−x)(x−2−v)

)
, x∈ (2−v, 1

2)

0 else.

Note thatu(x) is an infinitely differentiable function such thatu(x) = 1, x ∈ [0,2−v] andu(x) =
0, x≥ 1

2. Finally, forx∈ Rd let
Φ(x) :=Cu(‖x‖2),

whereC :=CL,β is chosen such thatΦ ∈ Σ(β,L,Rd).
Let rS := inf {r > 0 : B+(0, r)⊇ S} and

A0 :=

{⋃
i

Ri : Ri ∩B+

(
0, rS+q−

βγ
d

)
= /0

}
.

Note that

rS≤ c
m1/d

q
, (9)

since Vol(S) = mq−d.
DefineHm = {Pσ : σ ∈ {−1,1}m} to be the hypercube of probability distributions on[0,1]d ×

{−1,+1}. The marginal distributionΠ of X is independent ofσ: define its densityp by

p(x) =





2d(r1−1)

2d(r1−r2)−1
, x∈ B∞

(
z, 2−r2

q

)
\B∞

(
z, 2−r1

q

)
, z∈ Gq∩S,

c0, x∈ A0,
0 else.

whereB∞(z, r) := {x : ‖x−z‖∞ ≤ r}, c0 := 1−mq−d

Vol(A0)
(note thatΠ(Ri) = q−d ∀i ≤ m) andr1, r2 are

defined in (7). In particular,Π satisfiesAssumption1 since it is supported on the union of dyadic
cubes and has bounded above and below on supp(Π) density. Let

Ψ(x) := u
(

1/2−q
βγ
d dist2(x,B+(0, rS))

)
,
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Figure 2: Geometry of the support

whereu(·) is defined in (8) and dist2(x,A) := inf {‖x−y‖2, y∈ A}.
Finally, the regression functionησ(x) = EPσ(Y|X = x) is defined via

ησ(x) :=

{
σiq−βΦ(q[x−nq(x)]), x∈ Ri , 1≤ i ≤ m

1
CL,β

√
d

dist2(x,B+(0, rS))
d
γ ·Ψ(x), x∈ [0,1]d \S.

The graph ofησ is a surface consisting of small ”bumps” spread aroundSand tending away from
0 monotonically with respect to dist2(·,B+(0, rS)) on [0,1]d \S. Clearly,ησ(x) satisfies smoothness
requirement,1 since forx∈ [0,1]d

dist2(x,B+(0, rS)) = (‖x‖2− rS)∨0.

Let’s check that it also satisfies the low noise condition. Since|ησ| ≥Cq−β on the support ofΠ, it
is enough to considert =Czq−β for z> 1:

Π(|ησ(x)| ≤Czq−β)≤ mq−d +Π
(

dist2(x,B+(0, rS))≤Czγ/dq−
βγ
d

)
≤

≤ mq−d +C2

(
rS+Czγ/dq−

βγ
d

)d
≤

≤ mq−d +C3mq−d +C4zγq−βγ ≤
≤ Ĉtγ,

if mq−d = O(q−βγ). Here, the first inequality follows from consideringησ on SandA0 separately,
and second inequality follows from (9) and direct computation of the sphere volume.

Finally, ησ satisfiesAssumption2 with someB2 := B2(q) since on supp(Π)

0< c1(q)≤ ‖∇ησ(x)‖2 ≤ c2(q)< ∞.

The next step in the proof is to choose the subset ofH which is “well-separated”: this can be done
due to the following fact (see Tsybakov, 2009, Lemma 2.9):

1. Ψ(x) is introduced to provide extra smoothness at the boundary ofB+(0, rS).
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Proposition 9 (Gilbert-Varshamov) For m≥ 8, there exists

{σ0, . . . ,σM} ⊂ {−1,1}m

such thatσ0 = {1,1, . . . ,1}, ρ(σi ,σ j) ≥ m
8 ∀ 0≤ i < k ≤ M and M≥ 2m/8 whereρ stands for the

Hamming distance.

Let H ′ := {Pσ0, . . . ,PσM} be chosen such that{σ0, . . . ,σM} satisfies the proposition above. Next,
following the proof of Theorems 1 and 3 in Castro and Nowak (2008), we note that∀σ∈H ′, σ 6= σ0

KL(Pσ,N‖Pσ0,N)≤ 8N max
x∈[0,1]

(ησ(x)−ησ0(x))
2 ≤ 32C2

L,βNq−2β, (10)

wherePσ,N is the joint distribution of(Xi ,Yi)
N
i=1 under hypothesis that the distribution of couple

(X,Y) is Pσ. Let us briefly sketch the derivation of (10); see also the proof of Theorem 1 in Castro
and Nowak (2008). Denote

X̄k := (X1, . . . ,Xk),

Ȳk := (Y1, . . . ,Yk).

ThendPσ,N admits the following factorization:

dPσ,N(X̄N,ȲN) =
N

∏
i=1

Pσ(Yi |Xi)dP(Xi |X̄i−1,Ȳi−1),

wheredP(Xi |X̄i−1,Ȳi−1) does not depend onσ but only on the active learning algorithm. As a
consequence,

KL(Pσ,N‖Pσ0,N) = EPσ,N log
dPσ,N(X̄N,ȲN)

dPσ0,N(X̄n,ȲN)
= EPσ,N log

∏N
i=1Pσ(Yi |Xi)

∏N
i=1Pσ0(Yi |Xi)

=

=
N

∑
i=1

EPσ,N

[
EPσ

(
log

Pσ(Yi |Xi)

Pσ0(Yi |Xi)
|Xi

)]
≤

≤ N max
x∈[0,1]d

EPσ

(
log

Pσ(Y1|X1)

Pσ0(Y1|X1)
|X1 = x

)
≤

≤ 8N max
x∈[0,1]d

(ησ(x)−ησ0(x))
2,

where the last inequality follows from Lemma 1 (Castro and Nowak, 2008). Also, note that we have
maxx∈[0,1]d in our bounds rather than the average overx that would appear in the passive learning
framework.

It remains to chooseq,m in appropriate way: setq = ⌊C1N
1

2β+d−βγ ⌋ andm= ⌊C2qd−βγ⌋ where
C1, C2 are such thatqd ≥ m≥ 1 and 32C2

L,βNq−2β < m
64 which is possible forN big enough. In

particular,mq−d = O(q−βγ). Together with the bound (10), this gives

1
M ∑

σ∈H ′
KL(Pσ‖Pσ0)≤ 32C2

uNq−2β <
m
82 =

1
8

log|H ′|,

76
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so that conditions of Theorem 8 are satisfied. Setting

fσ(x) := signησ(x),

we finally have∀σ1 6= σ2 ∈H ′

d( fσ1, fσ2) := Π(signησ1(x) 6= signησ2(x))≥
m

8qd ≥C4N− βγ
2β+d−βγ ,

where the lower bound just follows by construction of our hypotheses. Since under the low noise

assumptionRP( f̂n)−R∗ ≥ cΠ( f̂n 6= signη)
1+γ

γ (see (5)), we conclude by Theorem 8 that

inf
f̂N

sup
P∈P ∗

U (β,γ)
Pr

(
RP( f̂n)−R∗ ≥C4N− β(1+γ)

2β+d−βγ

)
≥

≥ inf
f̂N

sup
P∈P ∗

U (β,γ)
Pr

(
Π( f̂n(x) 6= signηP(x))≥

C4

2
N− βγ

2β+d−βγ

)
≥ τ > 0.

3.2 Upper Bounds For the Excess Risk

Below, we present a new active learning algorithm which is computationally tractable, adaptive
with respect toβ,γ( in a certain range of these parameters) and can be applied in the nonparametric
setting. We show that the classifier constructed by the algorithm attains the rates of Theorem 7, up
to polylogarithmic factor, if 0< β≤ 1 andβγ≤ d (the last condition covers the most interesting case
when the regression function hits or crosses the decision boundary in theinterior of the support ofΠ;
for detailed statement about the connection between the behavior of the regression function near the
decision boundary with parametersβ, γ, see Proposition 3.4 in Audibert and Tsybakov, 2005). The
problem of adaptation to higher order of smoothness (β > 1) is still awaiting its complete solution;
we address these questions below in our final remarks.

For the purpose of this section, the regularity assumption reads as follows:there exists 0< β≤ 1
such that∀x1,x2 ∈ [0,1]d

|η(x1)−η(x2)| ≤ B1‖x1−x2‖β
∞. (11)

Since we want to be able to construct non-asymptotic confidence bands, some estimates on the size
of constants in (11) andAssumption 2are needed. Below, we will additionally assume that

B1 ≤ logN,

B2 ≥ log−1N,

whereN is the label budget. This can be replaced by any known bounds onB1,B2.
Let A∈ σ(Fm) with AΠ := A∩supp(Π) 6= /0. Define

Π̂A(dx) := Π(dx|x∈ AΠ)
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anddm := dimFm|AΠ . Next, we introduce a simple estimator of the regression function on the set
AΠ. Given the resolution levelm and an iid sample(Xi ,Yi), i ≤ N with Xi ∼ Π̂A, let

η̂m,A(x) := ∑
i:Ri∩AΠ 6= /0

∑N
j=1YjIRi (Xj)

N · Π̂A(Ri)
IRi (x). (12)

Since we assumed that the marginalΠ is known, the estimator is well-defined. The following
proposition provides the information about concentration ofη̂m around its mean:

Proposition 10 For all t > 0,

Pr

(
max
x∈AΠ

|η̂m,A(x)−η̄m(x)| ≥ t

√
2dmΠ(A)

u1N

)
≤

≤ 2dmexp

(
−t2

2(1+ t
3

√
2dmΠ(A)/u1N)

)
,

Proof This is a straightforward application of the Bernstein’s inequality to the random variables

Si
N :=

N

∑
j=1

YjIRi (Xj), i ∈ {i : Ri ∩AΠ 6= /0} ,

and the union bound: indeed, note thatE(YIRi (Xj))
2 = Π̂A(Ri), so that

Pr

(∣∣∣∣S
i
N −N

∫
Ri

ηdΠ̂A

∣∣∣∣≥ tNΠ̂A(Ri)

)
≤ 2exp

(
−NΠ̂A(Ri)t2

2+2t/3

)
,

and the rest follows by simple algebra using thatΠ̂A(Ri) ≥ u1
2dmΠ(A) by the(u1,u2)-regularity ofΠ.

Given a sequence of hypotheses classesGm, m≥ 1, define the index set

J (N) :=

{
m∈ N : 1≤ dimGm ≤ N

log2N

}
(13)

- the set of possible “resolution levels” of an estimator based onN classified observations(an upper
bound corresponds to the fact that we want the estimator to be consistent).When talking about
model selection procedures below, we will implicitly assume that the model index is chosen from
the corresponding setJ . The role ofGm will be played byFm|A for appropriately chosen setA. We
are now ready to present the active learning algorithm followed by its detailed analysis(see Table
1).

Remark Note that on every iteration,Algorithm 1a uses the whole sample to select the resolu-
tion levelm̂k and to build the estimator̂ηk. While being suitable for practical implementation, this
is not convenient for theoretical analysis. We will prove the upper bounds for a slighly modified
version: namely, on every iterationk labeled data is divided into two subsamplesSk,1 andSk,2 of
approximately equal size,|Sk,1| ≃ |Sk,2| ≃

⌊
1
2Nk ·Π(Âk)

⌋
. ThenS1,k is used to select the resolution

level m̂k andSk,2 - to construct̂ηk. We will call this modified versionAlgorithm 1b .
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Algorithm 1a
input label budgetN; confidenceα;
m̂0 = 0, F̂0 := Fm̂0, η̂0 ≡ 0;
LB := N; // label budget

N0 := 2⌊log2

√
N⌋;

s(k)(m,N,α) := s(m,N,α) := m(logN+ log 1
α);

k := 0;
while LB≥ 0 do
k := k+1;
Nk := 2Nk−1;

Âk :=
{

x∈ [0,1]d : ∃ f1, f2 ∈ F̂k−1,sign( f1(x)) 6= sign( f2(x))
}

;

if Âk∩supp(Π) = /0 or LB< ⌊Nk ·Π(Âk)⌋ then
break; output ĝ := signη̂k−1

else
for i = 1. . .⌊Nk ·Π(Âk)⌋
sample i.i.d

(
X(k)

i ,Y(k)
i

)
with X(k)

i ∼ Π̂k := Π(dx|x∈ Âk);

end for;
LB := LB−⌊Nk ·Π(Âk)⌋;
P̂k := 1

⌊Nk·Π(Âk)⌋ ∑
i

δ
X(k)

i ,Y(k)
i

// ”active” empirical measure

m̂k := argminm≥m̂k−1

[
inf f∈Fm P̂k(Y− f (X))2+K1

2dmΠ(Âk)+s(m−m̂k−1,N,α)
⌊Nk·Π(Âk)⌋

]

η̂k := η̂m̂k,Âk
// see (12)

δk := D̃ · log2 N
α

√
2dm̂k

Nk
;

F̂k :=
{

f ∈ Fm̂k : f |Âk
∈ F∞,Âk

(η̂k;δk), f |[0,1]d\Âk
≡ η̂k−1|[0,1]d\Âk

}
;

end;

Table 1: Active Learning Algorithm

As a first step towards the analysis ofAlgorithm 1b , let us prove the useful fact about the general
model selection scheme. Given an iid sample(Xi ,Yi), i ≤ N, setsm = m(s+ log log2N), m≥ 1 and

m̂ := m̂(s) = argminm∈J (N)

[
inf

f∈Fm

PN(Y− f (X))2+K1
2dm+sm

N

]
,

m̄ := min

{
m≥ 1 : inf

f∈Fm

E( f (X)−η(X))2 ≤ K2
2dm

N

}
.

Theorem 11 There exist an absolute constant K1 big enough such that, with probability≥ 1−e−s,

m̂≤ m̄.

Proof See Appendix B.

Straightforward application of this result immediately yields the following:
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Corollary 12 Supposeη(x) ∈ Σ(β,L, [0,1]d). Then, with probability≥ 1−e−s,

2m̂ ≤C1 ·N
1

2β+d

Proof By definition ofm̄, we have

m̄≤ 1+max

{
m : inf

f∈Fm

E( f (X)−η(X))2 > K2
2dm

N

}
≤

≤ 1+max

{
m : L22−2βm > K2

2dm

N

}
,

and the claim follows.

With this bound in hand, we are ready to formulate and prove the main result ofthis section:

Theorem 13 Suppose that P∈ P ∗
U(β,γ) with B1 ≤ logN, B2 ≥ log−1N andβγ ≤ d. Then, with

probability≥ 1−3α, the classifier̂g returned byAlgorithm 1b with label budget N satisfies

RP(ĝ)−R∗ ≤ Const·N− β(1+γ)
2β+d−βγ logp N

α
,

where p≤ 2βγ(1+γ)
2β+d−βγ and B1, B2 are the constants from (11) and Assumption 2.

Remarks

1. Note that whenβγ > d
3 , N− β(1+γ)

2β+d−βγ is a fast rate, that is, faster thanN− 1
2 ; at the same time,

the passive learning rateN− β(1+γ)
2β+d is guaranteed to be fast only whenβγ > d

2 , see Audibert and
Tsybakov (2005).

2. Forα̂ ≃ N− β(1+γ)
2β+d−βγ Algorithm 1b returns a classifier ˆgα̂ that satisfies

ERP(ĝα̂)−R∗ ≤ Const·N− β(1+γ)
2β+d−βγ logpN.

This is a direct corollary of Theorem 13 and the inequality

E|Z| ≤ t +‖Z‖∞ Pr(|Z| ≥ t).

Proof Our main goal is to construct high probability bounds for the size of the active sets defined
by Algorithm 1b . In turn, these bounds depend on the size of the confidence bands forη(x), and
the previous result(Theorem 11) is used to obtain the required estimates. SupposeL is the number
of steps performed by the algorithm before termination; clearly,L ≤ N.

Let Nact
k := ⌊Nk ·Π(Âk)⌋ be the number of labels requested onk-th step of the algorithm: this

choice guarantees that the ”density” of labeled examples doubles on every step.
Claim: the following bound for the size of the active set holds uniformly for all2≤ k≤ L with

probability at least 1−2α:

Π(Âk)≤ CN
− βγ

2β+d

k

(
log

N
α

)2γ
. (14)

80
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It is not hard to finish the proof assuming (14) is true: indeed, it implies that the number of labels
requested on stepk satisfies

Nact
k = ⌊NkΠ(Âk)⌋ ≤C ·N

2β+d−βγ
2β+d

k

(
log

N
α

)2γ

with probability≥ 1−2α. Since∑
k

Nact
k ≤ N, one easily deduces that on the last iterationL we have

NL ≥ c

(
N

log2γ(N/α)

) 2β+d
2β+d−βγ

(15)

To obtain the risk bound of the theorem from here, we apply2 inequality (3) from Proposition 6:

RP(ĝ)−R∗ ≤ D1‖(η̂L −η) · I {signη̂L 6= signη}‖1+γ
∞ . (16)

It remains to estimate‖η̂L −η‖∞,ÂL
: we will show below while proving (14) that

‖η̂L −η‖∞,ÂL
≤C ·N− β

2β+d

L log2 N
α
.

Together with (15) and (16), it implies the final result.
To finish the proof, it remains to establish (14). Recall thatη̄k stands for theL2(Π) - projection

of η ontoFm̂k. An important role in the argument is played by the bound on theL2(Π̂k) - norm of
the “bias” (η̄k−η): together withAssumption2, it allows to estimate‖η̄k−η‖∞,Âk

. The required
bound follows from the following oracle inequality: there exists an eventB of probability≥ 1−α
such that on this event for every 1≤ k≤ L

‖η̄k−η‖2
L2(Π̂k)

≤ inf
m≥m̂k−1

[
inf

f∈Fm

‖ f −η‖2
L2(Π̂k)

+ (17)

+K1
2dmΠ(Âk)+(m− m̂k−1) log(N/α)

NkΠ(Âk)

]
.

It general form, this inequality is given by Theorem 6.1 in Koltchinskii (2011) and provides the
estimate for‖η̂k −η‖L2(Π̂k)

, so it automatically implies the weaker bound for the bias term only.
To deduce (17), we use the mentioned general inequalityL times(once for every iteration) and the
union bound. The quantity 2dmΠ(Âk) in (17) plays the role of the dimension, which is justified
below. Letk≥ 1 be fixed. Form≥ m̂k−1, consider hypothesis classes

Fm|Âk
:=
{

f IÂk
, f ∈ Fm

}
.

An obvious but important fact is that forP∈ PU(β,γ), the dimension ofFm|Âk
is bounded byu−1

1 ·
2mΠ(Âk): indeed,

Π(Âk) = ∑
j:Rj∩Âk 6= /0

Π(Rj)≥ u12−dm·#
{

j : Rj ∩ Âk 6= /0
}
,

2. alternatively, inequality (4) can be used but results in a slightly inferior logarithmic factor.
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hence
dimFm|Âk

= #
{

j : Rj ∩ Âk 6= /0
}
≤ u−1

1 ·2mΠ(Âk). (18)

Theorem 11 applies conditionally on
{

X( j)
i

}Nj

i=1
, j ≤ k− 1 with sample of sizeNact

k and s =

log(N/α): to apply the theorem, note that, by definition ofÂk, it is independent ofX(k)
i , i = 1. . .Nact

k .
Arguing as in Corollary 12 and using (18), we conclude that the following inequality holds with
probability≥ 1− α

N for every fixedk:

2m̂k ≤C ·N
1

2β+d

k . (19)

LetE1 be an event of probability≥ 1−α such that on this event bound (19) holds for every stepk,
k≤ L and letE2 be an event of probability≥ 1−α on which inequalities (17) are satisfied. Suppose
that eventE1 ∩E2 occurs and letk0 be a fixed arbitrary integer 2≤ k0 ≤ L+ 1. It is enough to
assume that̂Ak0−1 is nonempty(otherwise, the bound trivially holds), so that it contains at least one
cube with sidelength 2−m̂k0−2 and

Π(Âk0−1)≥ u12−dm̂k0−1 ≥ cN
− d

2β+d

k0
. (20)

Consider inequality (17) withk= k0−1 and 2m ≃ N
1

2β+d

k0−1. By (20), we have

‖η̄k0−1−η‖2
L2(Π̂k0−1)

≤CN
− 2β

2β+d

k0−1 log2 N
α
. (21)

For convenience and brevity, denoteΩ := supp(Π). Now Assumption 2comes into play: it implies,
together with (21) that

CN
− β

2β+d

k0−1 log
N
α

≥ ‖η̄k0−1−η‖L2(Π̂k0−1)
≥ B2‖η̄k0−1−η‖∞,Ω∩Âk0−1

. (22)

To bound
‖η̂k0−1(x)− η̄k0−1(x)‖∞,Ω∩Âk0−1

we apply Proposition 10. Recall that ˆmk0−1 depends only on the subsampleSk0−1,1 but not onSk0−1,2.
Let

Tk :=

{{
X( j)

i ,Y( j)
i

}Nact
j

i=1
, j ≤ k−1

}
∪Sk,1

be the random vector that definesÂk and resolution level ˆmk. Note that for anyx,

E(η̂k0−1(x)|Tk0−1)
a.s.
= η̄m̂k0−1(x).

Proposition 10 thus implies

Pr

(
max

x∈Ω∩Âk0−1

|η̂k0−1(x)− η̄m̂k0−1(x)| ≥ Kt

√
2dm̂k0−1

Nk0−1

∣∣∣∣∣Tk0−1

)
≤

≤ Nexp

( −t2

2(1+ t
3C3)

)
.
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Choosingt = clog(N/α) and taking expectation, the inequality(now unconditional) becomes

Pr


 max

x∈Ω∩Âk0−1

|η̂m̂k0−1(x)− η̄m̂k0−1(x)| ≤ K

√
2dm̂k0−1 log2(N/α)

Nk0−1


≥ 1−α. (23)

LetE3 be the event on which (23) holds true. Combined, the estimates (19),(22) and (23) imply that
onE1∩E2∩E3

‖η− η̂k0−1‖∞,Ω∩Âk0−1
≤ ‖η− η̄k0−1‖∞,Ω∩Âk0−1

+‖η̄k0−1− η̂k0−1‖∞,Ω∩Âk0−1

≤ C
B2

N
− β

2β+d

k0−1 log
N
α
+K

√
2dm̂k0−1 log2(N/α)

Nk0−1
≤ (24)

≤ (K+C) ·N− β
2β+d

k0−1 log2 N
α
,

where we used the assumptionB2 ≥ log−1N. Now the width of the confidence band is defined via

δk := 2(K+C) ·N− β
2β+d

k0−1 log2 N
α

(25)

(in particular,D̃ from Algorithm 1a is equal to 2(K +C)). With the bound (24) available, it is
straightforward to finish the proof of the claim. Indeed, by (25) and the definition of the active set,
the necessary condition forx∈ Ω∩ Âk0 is

|η(x)| ≤ 3(K+C) ·N− β
2β+d

k0−1 log2 N
α
,

so that

Π(Âk0) = Π(Ω∩ Âk0)≤ Π
(
|η(x)| ≤ 3(K+C) ·N− β

2β+d

k0−1 log2 N
α

)
≤

≤ B̃N
− βγ

2β+d

k0−1 log2γ N
α
.

by the low noise assumption. This completes the proof of the claim since Pr(E1∩E2∩E3) ≥
1−3α.

We conclude this section by discussing running time of the active learning algorithm. Assume that
the algorithm has access to the sampling subroutine that, givenA⊂ [0,1]d with Π(A)> 0, generates
i.i.d. (Xi ,Yi) with Xi ∼ Π(dx|x∈ A).

Proposition 14 The running time ofAlgorithm 1a(1b) with label budget N is

O(dNlog2N).

Remark In view of Theorem 13, the running time required to output a classifier ˆg such thatRP(ĝ)−
R∗ ≤ ε with probability≥ 1−α is

O



(

1
ε

) 2β+d−βγ
β(1+γ)

poly

(
log

1
εα

)
 .
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Proof We will use the notations of Theorem 13. LetNact
k be the number of labels requested by

the algorithm on stepk. The resolution level ˆmk is always chosen such thatÂk is partitioned into
at mostNact

k dyadic cubes, see (13). This means that the estimatorη̂k takes at mostNact
k distinct

values. The key observation is that for anyk, the active set̂Ak+1 is always represented as the union
of a finite number(at mostNact

k ) of dyadic cubes: to determine if a cubeRj ⊂ Âk+1, it is enough to
take a pointx∈ Rj and compare sign(η̂k(x)−δk) with sign(η̂k(x)+δk): Rj ∈ Âk+1 only if the signs
are different(so that the confidence band crosses zero level). This can be done inO(Nact

k ) steps.
Next, resolution level ˆmk can be found inO(Nact

k log2N) steps: there are at most log2Nact
k models

to consider; for eachm, inf f∈Fm P̂k(Y− f (X))2 is found explicitly and is achieved for the piecewise-

constantf̂ (x) =
∑i Y

(k)
i IRj (X

(k)
i )

∑i IRj (X
(k)
i )

, x ∈ Rj . Sorting of the data required for this computation is done in

O(dNact
k logN) steps for eachm, so the wholek-th iteration running time isO(dNact

k log2N). Since
∑
k

Nact
k ≤ N, the result follows.

4. Conclusion and Open Problems

We have shown that active learning can significantly improve the quality of a classifier over the
passive algorithm for a large class of underlying distributions. Presented method achieves fast rates
of convergence for the excess risk, moreover, it is adaptive(in the certain range of smoothness and
noise parameters) and involves minimization only with respect to quadratic loss(rather than the 0−1
loss).

The natural question related to our results is:

• Can we implement adaptive smooth estimators in the learning algorithm to extend our results
beyond the caseβ ≤ 1?

The answer to this second question is so far an open problem. Our conjecture is that the correct

rate of convergence for the excess risk is, up to logarithmic factors,N− β(1+γ)
2β+d−γ(β∧1) , which coincides

with presented results forβ ≤ 1. This rate can be derived from an argument similar to the proof of
Theorem 13 under the assumption that on every stepk one could construct an estimatorη̂k with

‖η− η̂k‖∞,Âk
. N

− β
2β+d

k .

At the same time, the active set associated toη̂k should maintain some structure which is suitable
for the iterative nature of the algorithm. Transforming these ideas into a rigorous proof is a goal of
our future work.

Acknowledgments

I want to express my sincere gratitude to my Ph.D. advisor, Dr. Vladimir Koltchinskii, for his
support and numerous helpful discussions.

I am grateful to the anonymous reviewers for carefully reading the manuscript. Their insightful
and wise suggestions helped to improve the quality of presentation and results.

This project was supported by NSF Grant DMS-0906880 and by the Algorithms and Random-
ness Center, Georgia Institute of Technology, through the ARC Fellowship.

84



PLUG-IN APPROACH TOACTIVE LEARNING

Appendix A. Functions Satisfying Assumption 2

In the propositions below, we will assume for simplicity that the marginal distribution Π is abso-
lutely continuous with respect to Lebesgue measure with densityp(x) such that

0< p1 ≤ p(x)≤ p2 < ∞ for all x∈ [0,1]d.

Givent ∈ (0,1], defineAt := {x : |η(x)| ≤ t}.

Proposition 15 Supposeη is Lipschitz continuous with Lipschitz constant S. Assume also that for
some t∗ > 0 we have

(a) Π
(
At∗/3

)
> 0;

(b) η is twice differentiable for all x∈ At∗ ;

(c) infx∈At∗ ‖∇η(x)‖1 ≥ s> 0;

(d) supx∈At∗
‖D2η(x)‖ ≤C< ∞ where‖ · ‖ is the operator norm.

Thenη satisfies Assumption 2.

Proof By intermediate value theorem, for any cubeRi , 1≤ i ≤ 2dm there existsx0 ∈ Ri such that
η̄m(x) = η(x0), x∈ Ri . This implies

|η(x)− η̄m(x)|= |η(x)−η(x0)|= |∇η(ξ) · (x−x0)| ≤
≤ ‖∇η(ξ)‖1‖x−x0‖∞ ≤ S·2−m.

On the other hand, ifRi ⊂ At∗ then

|η(x)− η̄m(x)|= |η(x)−η(x0)|=

= |∇η(x0) · (x−x0)+
1
2
[D2η(ξ)](x−x0) · (x−x0)| ≥

≥ |∇η(x0) · (x−x0)|−
1
2

sup
ξ
‖D2η(ξ)‖max

x∈Ri

‖x−x0‖2
2 ≥ (26)

≥ |∇η(x0) · (x−x0)|−C12−2m.

Note that a strictly positive continuous function

h(y,u) =
∫

[0,1]d

(u· (x−y))2dx

achieves its minimal valueh∗> 0 on a compact set[0,1]d×
{

u∈ Rd : ‖u‖1 = 1
}

. This implies(using

(26) and the inequality(a−b)2 ≥ a2

2 −b2)

Π−1(Ri)
∫

Ri

(η(x)− η̄m(x))
2p(x)dx≥

≥ 1
2
(p22dm)−1

∫

Ri

(∇η(x0) · (x−x0))
2p1dx−C2

12−4m ≥

≥ 1
2

p1

p2
‖∇η(x0)‖2

12−2m ·h∗−C2
12−4m ≥ c22−2m for m≥ m0.
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Now take a setA∈ σ(Fm), m≥ m0 from Assumption2. There are 2 possibilities: eitherA⊂ At∗ or
A⊃ At∗/3. In the first case the computation above implies∫

[0,1]d

(η− η̄m)
2 Π(dx|x∈ A)≥ c22−2m =

c2

S2S22−2m ≥

≥ c2

S2‖η− η̄m‖2
∞,A.

If the second case occurs, note that, since
{

x : 0< |η(x)|< t∗
3

}
has nonempty interior, it must con-

tain a dyadic cubeR∗ with edge length 2−m∗ . Then for anym≥ max(m0,m∗)∫

[0,1]d

(η− η̄m)
2 Π(dx|x∈ A)≥

≥ Π−1(A)
∫

R∗

(η− η̄m)
2 Π(dx)≥ c2

4
2−2mΠ(R∗)≥

≥ c2

S2 Π(R∗)‖η− η̄m‖2
∞,A

and the claim follows.

The next proposition describes conditions which allow functions to have vanishing gradient on
decision boundary but requires convexity and regular behaviour of the gradient.

Everywhere below,∇η denotes the subgradient of a convex functionη.

For 0< t1 < t2, defineG(t1, t2) :=
sup

x∈At2\At1

‖∇η(x)‖1

inf
x∈At2\At1

‖∇η(x)‖1
. In case when∇η(x) is not unique, we choose

a representative that makesG(t1, t2) as small as possible.

Proposition 16 Supposeη(x) is Lipschitz continuous with Lipschitz constant S. Moreover, assume
that there exists t∗ > 0 and q: (0,∞) 7→ (0,∞) such that At∗ ⊂ (0,1)d and

(a) b1tγ ≤ Π(At)≤ b2tγ ∀t < t∗;

(b) For all 0< t1 < t2 ≤ t∗, G(t1, t2)≤ q
(

t2
t1

)
;

(c) Restriction ofη to any convex subset of At∗ is convex.

Thenη satisfies Assumption 2.
Remark The statement remains valid if we replaceη by |η| in (c).

Proof Assume that for somet ≤ t∗ andk> 0

R⊂ At \At/k

is a dyadic cube with edge length 2−m and letx0 be such that̄ηm(x) = η(x0), x ∈ R. Note thatη
is convex onR due to (c). Using the subgradient inequalityη(x)−η(x0) ≥ ∇η(x0) · (x− x0), we
obtain ∫

R

(η(x)−η(x0))
2dΠ(x)≥

∫

R

(η(x)−η(x0))
2I {∇η(x0) · (x−x0)≥ 0}dΠ(x)

≥
∫

R

(∇η(x0) · (x−x0))
2I {∇η(x0) · (x−x0)≥ 0}dΠ(x). (27)

86



PLUG-IN APPROACH TOACTIVE LEARNING

The next step is to show that under our assumptionsx0 can be chosen such that

dist∞(x0,∂R)≥ ν2−m, (28)

whereν = ν(k) is independent ofm. In this case any part ofR cut by a hyperplane throughx0

contains half of a ballB(x0, r0) of radiusr0 = ν(k)2−m and the last integral in (27) can be further
bounded below to get

∫

R

(η(x)−η(x0))
2dΠ(x)≥ 1

2

∫

B(x0,r0)

(∇η(x0) · (x−x0))
2 p1dx≥

≥ c(k)‖∇η(x0)‖2
12−2m2−dm. (29)

It remains to show (28). Assume that for ally such thatη(y) = η(x0) we have

dist∞(y,∂R)≤ δ2−m

for someδ > 0. This implies that the boundary of the convex set

{x∈ R : η(x)≤ η(x0)}

is contained in Rδ := {x∈ R : dist∞(x,∂R)≤ δ2−m}. There are two possibilities: either
{x∈ R : η(x)≤ η(x0)} ⊇ R\Rδ or {x∈ R : η(x)≤ η(x0)} ⊂ Rδ.
We consider the first case only(the proof in the second case is similar). First, note that by (b) for all
x∈ Rδ ‖∇η(x)‖1 ≤ q(k)‖∇η(x0)‖1 and

η(x)≤ η(x0)+‖∇η(x)‖1δ2−m ≤
≤ η(x0)+q(k)‖∇η(x0)‖1δ2−m. (30)

Let xc be the center of the cubeRandu - the unit vector in direction∇η(xc). Observe that

η(xc+(1−3δ)2−mu)−η(xc)≥ ∇η(xc) · (1−3δ)2−mu=

= (1−3δ)2−m‖∇η(xc)‖2.

On the other hand,xc+(1−3δ)2−mu∈ R\Rδ and

η(xc+(1−3δ)2−mu)≤ η(x0),

henceη(xc)≤ η(x0)−c(1−3δ)2−m‖∇η(xc)‖1. Consequently, for all

x∈ B(xc,δ) :=

{
x : ‖x−xc‖∞ ≤ 1

2
c2−m(1−3δ)

}

we have

η(x)≤ η(xc)+‖∇η(xc)‖1‖x−xc‖∞ ≤

≤ η(x0)−
1
2

c2−m(1−3δ)‖∇η(xc)‖1. (31)
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Finally, recall thatη(x0) is the average value ofη onR. Together with (30) and (31) this gives

Π(R)η(x0) =
∫

R

η(x)dΠ =
∫

Rδ

η(x)dΠ+
∫

R\Rδ

η(x)dΠ ≤

≤ (η(x0)+q(k)‖∇η(x0)‖1δ2−m)Π(Rδ)+

+(η(x0)−c22−m(1−3δ)‖∇η(x0)‖1)Π(B(xc,δ))+
+η(x0)Π(R\ (Rδ ∪B(xc,δ))) =
= Π(R)η(x0)+q(k)‖∇η(x0)‖1δ2−mΠ(Rδ)−
−c22−m(1−3δ)‖∇η(x0)‖1Π(B(xc,δ)) .

SinceΠ(Rδ)≤ p22−dm andΠ(B(xc,δ))≥ c32−dm(1−3δ)d, the inequality above implies

c4q(k)δ ≥ (1−3δ)d+1

which is impossible for smallδ (e.g., forδ < c
q(k)(3d+4) ).

Let A be a set from condition 2. IfA⊇ At∗/3, then there exists a dyadic cubeR∗ with edge length
2−m∗ such thatR∗ ⊂ At∗/3 \At∗/k for somek > 0, and the claim follows from (29) as in Proposition
15.

Assume now thatAt ⊂ A⊂ A3t and 3t ≤ t∗. Condition (a) of the proposition implies that for any
ε > 0 we can choosek(ε)> 0 large enough so that

Π(A\At/k)≥ Π(A)−b2(t/k)γ ≥ Π(A)− b2

b1
k−γΠ(At)≥ (1− ε)Π(A). (32)

This means that for any partition ofA into dyadic cubesRi with edge length 2−m at least half of
them satisfy

Π(Ri \At/k)≥ (1−cε)Π(Ri). (33)

Let I be the index set of cardinality|I | ≥ cΠ(A)2dm−1 such that (33) is true fori ∈ I . SinceRi ∩At/k

is convex, there exists3 z= z(ε) ∈ N such that for any such cubeRi there exists a dyadic sub-cube
with edge length 2−(m+z) entirely contained inRi \At/k:

Ti ⊂ Ri \At/k ⊂ A3t \At/k.

It follows thatΠ
(⋃

i
Ti
)
≥ c̃(ε)Π(A). Recall that condition (b) implies

sup
x∈∪iTi

‖∇η(x)‖1

inf
x∈∪iTi

‖∇η(x)‖1
≤ q(3k).

Finally, sup
x∈A3t

‖∇η(x)‖2 is attained at the boundary point, that is for somex∗ : |η(x∗)| = 3t, and by

(b)
sup
x∈A3t

‖∇η(x)‖1 ≤
√

d‖∇η(x∗)‖1 ≤ q(3k)
√

d inf
x∈A3t\At/k

‖∇η(x)‖1.

3. If, on the contrary, every sub-cube with edge length 2−(m+z) contains a point fromAt/k, thenAt/k must contain the
convex hull of these points which would contradict (32) for largez.
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Application of (29) to every cubeTi gives

∑
i∈I

∫

Ti

(η(x)− η̄m+z(x))
2dΠ(x)≥ c1(k)Π(A)|I | inf

x∈A3t\At/k

‖∇η(x)‖2
12−2m2−dm≥

≥ c2(k)Π(A) sup
x∈A3t

‖∇η(x)‖2
12−2m ≥ c3(k)Π(A)‖η− η̄(m)‖2

∞,A

concluding the proof.

Appendix B. Proof of Theorem 11

The main ideas of this proof, which significantly simplifies and clarifies initial author’s version, are
due to V. Koltchinskii. For convenience and brevity, let us introduce additional notations. Recall
that

sm = m(s+ log log2N).

Let

τN(m,s) := K1
2dm+sm

N
,

πN(m,s) := K2
2dm+s+ log log2N

N
.

By EP(F , f ) (orEPN(F , f )) we denote the excess risk off ∈ F with respect to the true (or empiri-
cal) measure:

EP(F , f ) := P(y− f (x))2− inf
g∈F

P(y−g(x))2,

EPN(F , f ) := PN(y− f (x))2− inf
g∈F

PN(y−g(x))2.

It follows from Theorem 4.2 in Koltchinskii (2011) and the union bound that there exists an eventB
of probability≥ 1−e−s such that on this event the following holds for allmsuch thatdm≤ logN:

EP(Fm, f̂m̂)≤ πN(m,s),

∀ f ∈ Fm, EP(Fm, f )≤ 2(EPN(Fm, f )∨πN(m,s)), (34)

∀ f ∈ Fm, EPN(Fm, f )≤ 3
2
(EP(Fm, f )∨πN(m,s)).

We will show that onB, {m̂≤ m̄} holds. Indeed, assume that, on the contrary, ˆm> m̄; by definition
of m̂, we have

PN(Y− f̂m̂)
2+ τN(m̂,s)≤ PN(Y− f̂m̄)

2+ τN(m̄,s),

which implies
EPN(Fm̂, f̂m̄)≥ τN(m̂,s)− τN(m̄,s)> 3πN(m̂,s)

for K1 big enough. By (34),

EPN(Fm̂, f̂m̄) = inf
f∈Fm̄

EPN(Fm̂, f )≤ 3
2

(
inf

f∈Fm̄

EP(Fm̂, f )∨πN(m̂,s)

)
,
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and combination the two inequalities above yields

inf
f∈Fm̄

EP(Fm̂, f )> πN(m̂,s). (35)

Since for anymEP(Fm, f )≤ E( f (X)−η(X))2, the definition ofm̄ and (35) imply that

πN(m̄,s)≥ inf
f∈Fm̄

E( f (X)−η(X))2 > πN(m̂,s),

contradicting our assumption, hence proving the claim.
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