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Abstract
We consider the sparse inverse covariance regularization problem orgraphical lassowith regular-
ization parameterλ. Suppose the samplecovariance graphformed by thresholding the entries of
the sample covariance matrix atλ is decomposed into connected components. We show that the
vertex-partitioninduced by the connected components of the thresholded sample covariance graph
(at λ) is exactlyequal to that induced by the connected components of the estimated concentration
graph, obtained by solving the graphical lasso problem for thesameλ. This characterizes a very
interesting property of a path of graphical lasso solutions. Furthermore, this simple rule, when used
as a wrapper around existing algorithms for the graphical lasso, leads to enormous performance
gains. For a range of values ofλ, our proposal splits a large graphical lasso problem into smaller
tractable problems, making it possible to solve an otherwise infeasible large-scale problem. We
illustrate the graceful scalability of our proposal via synthetic and real-life microarray examples.
Keywords: sparse inverse covariance selection, sparsity, graphicallasso, Gaussian graphical mod-
els, graph connected components, concentration graph, large scale covariance estimation

1. Introduction

Consider a data matrixXn×p comprising ofn sample realizations from ap dimensional Gaus-
sian distribution with zero mean and positive definite covariance matrixΣp×p (unknown), that is,

xi
i.i.d∼ MVN(0,Σ), i = 1, . . . ,n. The task is to estimate the unknownΣ based on then samples.ℓ1

regularized Sparse Inverse Covariance Selection also known asgraphical lasso(Friedman et al.,
2007; Banerjee et al., 2008; Yuan and Lin, 2007) estimates the covariance matrixΣ, under the as-
sumption that the inverse covariance matrix, that is,Σ−1 is sparse. This is achieved by minimizing
the regularized negative log-likelihood function:

minimize
Θ�0

− logdet(Θ)+ tr(SΘ)+λ∑
i, j

|Θi j |, (1)

whereS is the sample covariance matrix. Problem (1) is a convex optimization problem in the

variableΘ (Boyd and Vandenberghe, 2004). LetΘ̂
(λ)

denote the solution to (1). We note that (1)
can also be used in a more non-parametric fashion for any positive semi-definite input matrixS, not
necessarily a sample covariance matrix of a MVN sample as described above.
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A related criterion to (1) is one where the diagonals are not penalized—by substitutingS←
S+λIp×p in the “unpenalized” problem we get (1). In this paper we concentrate onproblem (1).

Developing efficient large-scale algorithms for (1) is an active area of research across the fields
of Convex Optimization, Machine Learning and Statistics. Many algorithms havebeen proposed
for this task (Friedman et al., 2007; Banerjee et al., 2008; Lu, 2009, 2010; Scheinberg et al., 2010;
Yuan, 2009, for example). However, it appears that certain special properties of the solution to
(1) have been largely ignored. This paper is about one such (surprising) property—namely estab-
lishing an equivalence between thevertex-partitioninduced by the connected components of the

non-zero pattern of̂Θ
(λ)

and the thresholded sample covariance matrixS. This paper isnot about
a specific algorithm for the problem (1)—it focuses on the aforementionedobservation that leads
to a novel thresholding/screening procedure based onS. This provides interesting insight into the

path of solutions{Θ̂(λ)}λ≥0 obtained by solving (1), over a path ofλ values. The behavior of

the connected-components obtained from the non-zero patterns of{Θ̂(λ)}λ≥0 can be completely
understood by simple screening rules onS. This can be done withouteven attemptingto solve (1)—
arguably a very challenging convex optimization problem. Furthermore, this thresholding rule can
be used as awrapper to enormously boost the performance of existing algorithms, as seen in our
experiments. This strategy becomes extremely effective in solving large problems over a range of
values ofλ—sufficiently restricted to ensure sparsity and the separation into connected components.
Of course, for sufficiently small values ofλ there will be no separation into components, and hence
no computational savings.

At this point we introduce some notation and terminology, which we will use throughout the
paper.

1.1 Notations and Preliminaries

For a matrixZ, its (i, j)th entry is denoted byZi j .

We also introduce some graph theory notations and definitions (Bollobas, 1998) sufficient for
this exposition. A finite undirected graphG on p vertices is given by the ordered tupleG = (V ,E),
whereV is the set of nodes andE the collection of (undirected) edges. The edge-set is equiv-
alently represented via a (symmetric) 0-1 matrix1 (also known as theadjacencymatrix) with p
rows/columns. We use the convention that a node is not connected to itself, so the diagonals of the
adjacency matrix are all zeros. Let|V | and|E | denote the number of nodes and edges respectively.

We say two nodesu,v∈V areconnectedif there is apathbetween them. A maximal connected
subgraph2 is aconnected componentof the graphG . Connectednessis an equivalence relation that
decomposes a graphG into its connected components{(Vℓ,E ℓ)}1≤ℓ≤K—with G = ∪K

ℓ=1(Vℓ,E ℓ),
whereK denotes the number of connected components. This decomposition partitions the vertices
V of G into {Vℓ}1≤ℓ≤K . Note that the labeling of the components is unique upto permutations
on {1, . . . ,K}. Throughout this paper we will often refer to this partition as thevertex-partition
induced by the components of the graphG . If the size of a component is one, that is,|Vℓ| =
1, we say that the node isisolated. Suppose a grapĥG defined on the set of verticesV admits

the following decomposition into connected components:Ĝ = ∪K̂
ℓ=1(V̂ℓ, Ê ℓ). We say the vertex-

1. 0 denotes absence of an edge and 1 denotes its presence.
2. G ′ = (V ′,E ′) is asubgraphof G if V ′ ⊂ V andE ′ ⊂ E .
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EXACT THRESHOLDING FORGRAPHICAL LASSO

partitions induced by the connected components ofG and Ĝ are equal if K̂ = K and there is a

permutationπ on{1, . . . ,K} such thatV̂π(ℓ) = Vℓ for all ℓ ∈ {1, . . . ,K}.
The paper is organized as follows. Section 2 describes the covariance graph thresholding idea

along with theoretical justification and related work, followed by complexity analysis of the algo-
rithmic framework in Section 3. Numerical experiments appear in Section 4, concluding remarks in
Section 5 and the proofs are gathered in the Appendix A.

2. Methodology: Exact Thresholding of the Covariance Graph

The sparsity pattern of the solution̂Θ
(λ)

to (1) gives rise to the symmetric edge matrix/skeleton
∈ {0,1}p×p defined by:

E
(λ)
i j =

{
1 if Θ̂

(λ)
i j 6= 0, i 6= j;

0 otherwise.
(2)

The above defines a symmetric graphG (λ) = (V ,E (λ)), namely theestimated concentration graph
(Cox and Wermuth, 1996; Lauritzen, 1996) defined on the nodesV = {1, . . . , p} with edgesE (λ).

Suppose the graphG (λ) admits a decomposition intoκ(λ) connected components:

G (λ) = ∪κ(λ)
ℓ=1G

(λ)
ℓ , (3)

whereG (λ)
ℓ = (V̂

(λ)
ℓ ,E

(λ)
ℓ ) are the components of the graphG (λ). Note thatκ(λ) ∈ {1, . . . , p}, with

κ(λ) = p (largeλ) implying that all nodes are isolated and for small enough values ofλ, there is
only one component, that is,κ(λ) = 1.

We now describe the simple screening/thresholding rule. Givenλ, we perform a thresholding
on the entries of the sample covariance matrixS and obtain a graph edge skeleton E(λ) ∈ {0,1}p×p

defined by:

E(λ)
i j =

{
1 if |Si j |> λ, i 6= j;
0 otherwise.

(4)

The symmetric matrix E(λ) defines a symmetric graph on the nodesV = {1, . . . , p} given by G(λ) =
(V ,E(λ)). We refer to this as thethresholded sample covariance graph. Similar to the decomposi-
tion in (3), the graph G(λ) also admits a decomposition into connected components:

G(λ) = ∪k(λ)
ℓ=1G(λ)

ℓ , (5)

where G(λ)ℓ = (V
(λ)
ℓ ,E(λ)

ℓ ) are the components of the graph G(λ).

Note that the components ofG (λ) require knowledge of̂Θ
(λ)

—the solution to (1). Construction
of G(λ) and its components require operating onS—an operation that can be performed completely
independent of the optimization problem (1), which is arguably more expensive (See Section 3). The
surprising message we describe in this paper is that thevertex-partitionof the connected components
of (5) isexactlyequal to that of (3).

This observation has the following consequences:

1. We obtain a very interesting property of the path of solutions{Θ̂(λ)}λ≥0—the behavior of the
connected components of the estimated concentration graph can be completelyunderstood by
simple screening rules onS.
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2. The cost of computing the connected components of the thresholded sample covariance graph
(5) is orders of magnitude smaller than the cost of fitting graphical models (1). Furthermore,
the computations pertaining to the covariance graph can be done off-line and are amenable to
parallel computation (See Section 3).

3. The optimization problem (1) completely separates intok(λ) separate optimization
sub-problems of the form (1). The sub-problems have size equal to the number of nodes
in each componentpi := |Vi |, i = 1, . . . ,k(λ). Hence for certain values ofλ, solving prob-
lem (1) becomes feasible although it may be impossible to operate on thep× p dimensional
(global) variableΘ on a single machine.

4. Suppose that forλ0, there arek(λ0) components and the graphical model computations are
distributed.3 Since the vertex-partitions induced via (3) and (5) are nested with increasing λ
(see Theorem 2), it suffices to operate independently on these separate machines to obtain the

path of solutions{Θ̂(λ)}λ for all λ≥ λ0.

5. Consider a distributed computing architecture, where every machine allows operating on a
graphical lasso problem (1) of maximal sizepmax. Then with relatively small effort we can
find the smallest value ofλ = λpmax, such that there are no connected components of size
larger thanpmax. Problem (1) thus ‘splits up’ independently into manageable problems across
the different machines. When this structure is not exploited the global problem (1) remains
intractable.

The following theorem establishes the main technical contribution of this paper—the equivalence
of the vertex-partitions induced by the connected components of the thresholded sample covariance
graph and the estimated concentration graph.

Theorem 1 For anyλ > 0, the components of the estimated concentration graphG (λ), as defined
in (2) and (3) induceexactly the same vertex-partition as that of the thresholded sample covari-
ance graphG(λ), defined in (4) and (5). That isκ(λ) = k(λ) and there exists a permutationπ on
{1, . . . ,k(λ)} such that:

V̂
(λ)
i = V

(λ)
π(i), ∀i = 1, . . . ,k(λ). (6)

Proof The proof of the theorem appears in Appendix A.1.

Since the decomposition of a symmetric graph into its connected components depends upon the
ordering/ labeling of the components, the permutationπ appears in Theorem 1.

Remark 1 Note that the edge-structureswithin each block need not be preserved. Under a match-
ing reordering of the labels of the components ofG (λ) andG(λ):

for every fixedℓ such thatV̂ (λ)
ℓ = V

(λ)
ℓ the edge-setsE (λ)

ℓ andE(λ)
ℓ arenotnecessarily equal.

3. Distributing these operations depend upon the number of processorsavailable, their capacities, communication lag,
the number of components and the maximal size of the blocks across all machines. These of-course depend upon the
computing environment. In the context of the present problem, it is oftendesirable to club smaller components into
a single machine.
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Theorem 1 leads to a special property of the path-of-solutions to (1), that is, the vertex-partition
induced by the connected components ofG (λ) are nested with increasingλ. This is the content of
the following theorem.

Theorem 2 Consider two values of the regularization parameter such thatλ > λ′ > 0, with corre-
sponding concentration graphsG (λ) andG (λ′) as in (2) and connected components (3). Then the
vertex-partition induced by the components ofG (λ) are nestedwithin the partition induced by the

components ofG (λ′). Formally,κ(λ)≥ κ(λ′) and the vertex-partition{V̂ (λ)
ℓ }1≤ℓ≤κ(λ) forms a finer

resolution of{V̂ (λ′)
ℓ }1≤ℓ≤κ(λ′).

Proof The proof of this theorem appears in the Appendix A.2.

Remark 2 It is worth noting that Theorem 2 addresses the nesting of the edgesacrossconnected
components and not within a component. In general, the edge-setE (λ) of the estimated concentra-
tion graph need not be nested as a function ofλ:
for λ > λ′, in general,E (λ) 6⊂ E (λ′).

See Friedman et al. (2007, Figure 3), for numerical examples demonstrating the non-monotonicity
of the edge-set acrossλ, as described in Remark 2.

2.1 Node-Thresholding

A simple consequence of Theorem 1 is that ofnode-thresholding. If λ ≥ maxj 6=i |Si j |, then the
ith node will be isolated from the other nodes, the off-diagonal entries of theith row/column are

all zero, that is, maxj 6=i |Θ̂
(λ)
i j | = 0. Furthermore, theith diagonal entries of the estimated covari-

ance and precision matrices are given by(Sii + λ) and 1
Sii+λ , respectively. Hence, as soon as

λ ≥ maxi=1,...,p{maxj 6=i |Si j |}, the estimated covariance and precision matrices obtained from (1)
are both diagonal.

2.2 Related Work

Witten et al. (2011) independently discovered block screening as described in this paper. At the
time of our writing, an earlier version of their paper was available (Witten and Friedman, 2011); it
proposed a scheme to detect isolated nodes for problem (1) via a simple screening of the entries of
S, but no block screening. Earlier, Banerjee et al. (2008, Theorem 4)made the same observation
about isolated nodes. The revised manuscript (Witten et al., 2011) that includes block screening
became available shortly after our paper was submitted for publication.

Zhou et al. (2011) use a thresholding strategy followed by re-fitting for estimating Gaussian
graphical models. Their approach is based on the node-wise lasso-regression procedure of Mein-
shausen and B̈uhlmann (2006). A hard thresholding is performed on theℓ1-penalized regression
coefficient estimates at every node to obtain the graph structure. A restricted MLE for the concen-
tration matrix is obtained for the graph. The proposal in our paper differssince we are interested in
solving theGLASSOproblem (1).

785



MAZUMDER AND HASTIE

3. Computational Complexity

The overall complexity of our proposal depends upon (a) the graph partition stage and (b) solving
(sub)problems of the form (1). In addition to these, there is an unavoidable complexity associated
with handling and/or formingS.

The cost of computing the connected components of the thresholded covariance graph is fairly
negligible when compared to solving a similar sized graphical lasso problem (1)—see also our sim-
ulation studies in Section 4. In case we observe samplesxi ∈ℜp, i = 1, . . . ,n the cost for creating the
sample covariance matrixS is O(n · p2). Thresholding the sample covariance matrix costsO(p2).
Obtaining the connected components of the thresholded covariance graphcostsO(|E(λ)|+ p) (Tar-
jan, 1972). Since we are interested in a region where the thresholded covariance graph is sparse
enough to be broken into smaller connected components—|E(λ)| ≪ p2. Note that all computations
pertaining to the construction of the connected components and the task of computing S can be
computed off-line. Furthermore the computations are parallelizable. Gazit (1991, for example)
describes parallel algorithms for computing connected components of a graph—they have a time
complexityO(log(p)) and requireO((|E(λ)|+ p)/ log(p)) processors with spaceO(p+ |E(λ)|).

There are a wide variety of algorithms for the task of solving (1). While an exhaustive review
of the computational complexities of the different algorithms is beyond the scope of this paper, we
provide a brief summary for a few algorithms below.

Banerjee et al. (2008) proposed a smooth accelerated gradient basedmethod (Nesterov, 2005)

with complexityO( p4.5

ε ) to obtain anε accurate solution—the per iteration cost beingO(p3). They
also proposed a block coordinate method which has a complexity ofO(p4).

The complexity of theGLASSO algorithm (Friedman et al., 2007) which uses a row-by-row
block coordinate method is roughlyO(p3) for reasonably sparse-problems withp nodes. For denser
problems the cost can be as large asO(p4).

The algorithmSMACS proposed in Lu (2010) has a per iteration complexity ofO(p3) and an

overall complexity ofO( p4
√

ε) to obtain anε > 0 accurate solution.

It appears that most existing algorithms for (1), have a complexity of at least O(p3) to O(p4)
or possibly larger, depending upon the algorithm used and the desired accuracy of the solution—
making computations for (1) almost impractical for values ofp much larger than 2000.

It is quite clear that the role played by covariance thresholding is indeed crucial in this context.
Assume that we use a solver of complexityO(pJ) with J ∈ {3,4}, along with our screening proce-
dure. Suppose for a givenλ, the thresholded sample covariance graph hask(λ) components—the

total cost of solving these smaller problems is then∑k(λ)
i=1 O(|V (λ)

i |J)≪O(pJ), with J∈ {3,4}. This
difference in practice can be enormous—see Section 4 for numerical examples. This is what makes
large scale graphical lasso problems solvable!

4. Numerical Examples

In this section we show via numerical experiments that the screening property helps in obtaining
many fold speed-ups when compared to an algorithm that does not exploit it.Section 4.1 considers
synthetic examples and Section 4.2 discusses real-life microarray data-examples.
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4.1 Synthetic Examples

Experiments are performed with two publicly available algorithm implementations forthe problem
(1):

GLASSO: The algorithm of Friedman et al. (2007). We used the MATLAB wrapper available at
http://www-stat.stanford.edu/ ˜ tibs/glasso/index.html to the Fortran code. The
specific criterion for convergence (lack of progress of the diagonalentries) was set to 10−5

and the maximal number of iterations was set to 1000.

SMACS: denotes the algorithm of Lu (2010). We used the MATLAB implementation
smooth_covsel available athttp://people.math.sfu.ca/ ˜ zhaosong/Codes/SMOOTH_
COVSEL/. The criterion for convergence (based on duality gap) was set to 10−5 and the max-
imal number of iterations was set to 1000.

We will like to note that the convergence criteria of the two algorithmsGLASSOandSMACS are not
the same. For obtaining the connected components of a symmetric adjacency matrix we used the
MATLAB function graphconncomp . All of our computations are done in MATLAB 7.11.0 on a 3.3
GhZ Intel Xeon processor.

The simulation examples are created as follows. We generated a block diagonal matrix given by
S̃ = blkdiag(S̃1, . . . , S̃K), where each block̃Sℓ = 1pℓ×pℓ—a matrix of all ones and∑ℓ pℓ = p. In the
examples we took allpℓs to be equal top1 (say). Noise of the formσ ·UU ′ (U is ap× p matrix with
i.i.d. standard Gaussian entries) is added toS̃ such that 1.25 times the largest (in absolute value) off
block-diagonal (as in the block structure ofS̃) entry ofσ ·UU ′ equals the smallest absolute non-zero
entry inS̃, that is, one. The sample covariance matrix isS = S̃+σ ·UU ′.

We consider a number of examples for varyingK andp1 values, as shown in Table 1. Sizes were
chosen such that it is at-least ‘conceivable’ to solve (1) on the full dimensional problem, without
screening. In all the examples shown in Table 1, we setλI := (λmax+λmin)/2, where for all values
of λ in the interval[λmin,λmax] the thresh-holded version of the sample covariance matrix has exactly
K connected components. We also took a larger value ofλ, that is,λII := λmax, which gave sparser
estimates of the precision matrix but the number of connected components werethe same.

The computations across different connected blocks could be distributedinto as many machines.
This would lead to almost aK fold improvement in timings, however in Table 1 we report the timings
by operating serially across the blocks. The serial ‘loop’ across the different blocks are implemented
in MATLAB.

Table 1 shows the rather remarkable improvements obtained by using our proposed covariance
thresholding strategy as compared to operating on the whole matrix. Timing comparisons between
GLASSO and SMACS are not fair, sinceGLASSO is written in Fortran andSMACS in MATLAB.
However, we note that our experiments are meant to demonstrate how the thresholding helps in
improving the overall computational time over the baseline method of not exploitingscreening.
Clearly our proposed strategy makes solving larger problems (1), not only feasible but with quite
attractive computational time. The time taken by the graph-partitioning step in splittingthe thresh-
olded covariance graph into its connected components is negligible as compared to the timings for
the optimization problem.
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K p1 / p λ Algorithm
Algorithm Timings (sec) Ratio Time (sec)
with without Speedup graph

screen screen factor partition

2 200 / 400 λI
GLASSO 11.1 25.97 2.33

0.04
SMACS 12.31 137.45 11.16

λII
GLASSO 1.687 4.783 2.83

0.066
SMACS 10.01 42.08 4.20

2 500 /1000 λI
GLASSO 305.24 735.39 2.40

0.247
SMACS 175 2138* 12.21

λII
GLASSO 29.8 121.8 4.08

0.35
SMACS 272.6 1247.1 4.57

5 300 /1500 λI
GLASSO 210.86 1439 6.82

0.18
SMACS 63.22 6062* 95.88

λII
GLASSO 10.47 293.63 28.04

0.123
SMACS 219.72 6061.6 27.58

5 500 /2500 λI
GLASSO 1386.9 - -

0.71
SMACS 493 - -

λII
GLASSO 17.79 963.92 54.18

0.018
SMACS 354.81 - -

8 300 /2400 λI
GLASSO 692.25 - -

0.713
SMACS 185.75 - -

λII
GLASSO 9.07 842.7 92.91

0.023
SMACS 153.55 - -

Table 1: Table showing (a) the times in seconds with screening, (b) without screening, that is, on
the whole matrix and (c) the ratio (b)/(a)—‘Speedup factor’ for algorithmsGLASSO and
SMACS. Algorithms with screening are operated serially—the times reflect the total time
summed across all blocks. The column ‘graph partition’ lists the time for computingthe
connected components of the thresholded sample covariance graph. Since λII > λI , the
former gives sparser models. ‘*’ denotes the algorithm did not converge within 1000
iterations. ‘-’ refers to cases where the respective algorithms failed to converge within 2
hours.

4.2 Micro-array Data Examples

The graphical lasso is often used in learning connectivity networks in gene-microarray data (Fried-
man et al., 2007, see for example). Since in most real examples the number ofgenesp is around
tens of thousands, obtaining an inverse covariance matrix by solving (1) iscomputationally imprac-
tical. The covariance thresholding method we propose easily applies to theseproblems—and as we
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see gracefully delivers solutions over a large range of the parameterλ. We study three different
micro-array examples and observe that as one variesλ from large to small values, the thresholded
covariance graph splits into a number of non-trivial connected components of varying sizes. We
continue till a small/moderate value ofλ when the maximal size of a connected component gets
larger than a predefined machine-capacity or the ‘computational budget’ for a single graphical lasso
problem. Note that in relevant micro-array applications, sincep≫ n (n, the number of samples is
at most a few hundred) heavy regularization is required to control the variance of the covariance
estimates—so it does seem reasonable to restrict to solutions of (1) for large values ofλ.

Following are the data-sets we used for our experiments:

(A) This data-set appears in Alon et al. (1999) and has been analyzedby Rothman et al. (2008,
for example). In this experiment, tissue samples were analyzed using an Affymetrix Oligonu-
cleotide array. The data were processed, filtered and reduced to a subset of p = 2000 gene
expression values. The number of Colon Adenocarcinoma tissue samples isn= 62.

(B) This is an early example of an expression array, obtained from the Patrick Brown Laboratory
at Stanford University. There aren= 385 patient samples of tissue from various regions of
the body (some from tumors, some not), with gene-expression measurementsfor p = 4718
genes.

(C) The third example is the by now famous NKI data set that produced the 70-gene prognostic
signature for breast cancer (Van-De-Vijver et al., 2002). Here there aren= 295 samples and
p= 24481 genes.

Among the above, both (B) and (C) have few missing values—which we imputedby the respective
global means of the observed expression values. For each of the threedata-sets, we tookS to be the
corresponding sample correlation matrix. Theexact thresholdingmethodolgy could have also been
applied to the sample covariance matrix. Since it is a common practice to standardize the “genes”,
we operate on the sample correlation matrix.

Figure 1 shows how the component sizes of the thresholded covariance graph change acrossλ.
We describe the strategy we used to arrive at the figure. Note that the connected components change
only at the absolute values of the entries ofS. From the sorted absolute values of the off-diagonal
entries ofS, we obtained the smallest value ofλ, say λ′min, for which the size of the maximal
connected component was 1500. For a grid of values ofλ till λ′min, we computed the connected
components of the thresholded sample-covariance matrix and obtained the size-distribution of the
various connected components. Figure 1 shows how these components change over a range of values
of λ for the three examples (A), (B) and (C). The number of connected components of a particular
size is denoted by a color-scheme, described by the color-bar in the figures. With increasingλ: the
larger connected components gradually disappear as they decompose intosmaller components; the
sizes of the connected components decrease and the frequency of the smaller components increase.
Since these are all correlation matrices, forλ ≥ 1 all the nodes in the graph become isolated. The
range ofλ values for which the maximal size of the components is smaller than 1500 differ across
the three examples. For (C) there is a greater variety in the sizes of the components as compared
to (A) and (B). Note that by Theorem 1, the pattern of the components appearing in Figure 1 are
exactly the same as the components appearing in the solution of (1) for thatλ.
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Figure 1: Figure showing the size distribution (in the log-scale) of connected components arising
from the thresholded sample covariance graph for examples (A)-(C). For every value ofλ
(vertical axis), the horizontal slice denotes the sizes of the different components appearing
in the thresholded covariance graph. The colors represent the numberof components in
the graph having that specific size. For every figure, the range ofλ values is chosen such
that the maximal size of the connected components do not exceed 1500.

For examples (B) and (C) we found that the full problem sizes are beyond the scope ofGLASSO

andSMACS—the screening rule is apparently theonlyway to obtain solutions for a reasonable range
of λ-values as shown in Figure 1.

5. Conclusions

In this paper we present a novel property characterizing the family of solutions to the graphical lasso
problem (1), as a function of the regularization parameterλ. The property is fairly surprising—the
vertex partition induced by the connected components of the non-zero pattern of the estimated
concentration matrix (atλ) and the thresholded sample covariance matrixS (atλ) areexactly equal.
This property seems to have been unobserved in the literature. Our observation not only provides
interesting insights into the properties of the graphical lasso solution-path but also opens the door
to solving large-scale graphical lasso problems, which are otherwise intractable. This simple rule
when used as a wrapper around existing algorithms leads to enormous performance boosts—on
occasions by a factor of thousands!
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Appendix A. Proofs

Here we provide proofs of Theorems 1 and 2.

A.1 Proof of Theorem 1

Proof SupposêΘ (we suppress the superscriptλ for notational convenience) solves problem (1),
then standard KKT conditions of optimality (Boyd and Vandenberghe, 2004) give:

|Si j −Ŵi j | ≤ λ ∀ Θ̂i j = 0; and (7)

Ŵi j = Si j +λ ∀ Θ̂i j > 0; Ŵi j = Si j −λ ∀ Θ̂i j < 0; (8)

whereŴ = (Θ̂)−1. The diagonal entries satisfŷWii = Sii +λ, for i = 1, . . . , p.
Using (4) and (5), there exists an ordering of the vertices{1, . . . , p} of the graph such that E(λ) is

block-diagonal. For notational convenience, we will assume that the matrix isalready in that order.
Under this ordering of the vertices, the edge-matrix of the thresholded covariance graph is of the
form:

E(λ) =




E(λ)
1 0 · · · 0

0 E(λ)
2 0 · · ·

...
...

.. .
...

0 · · · 0 E(λ)
k(λ)




(9)

where the different components represent blocks of indices given by: V (λ)
ℓ , ℓ= 1, . . . ,k(λ).

We will construct a matrix̂W having the same structure as (9) which is a solution to (1). Note
that if Ŵ is block diagonal then so is its inverse. Let̂W and its inversêΘ be given by:

Ŵ =




Ŵ1 0 · · · 0
0 Ŵ2 0 · · ·
...

...
.. .

...
0 · · · 0 Ŵk(λ)



, Θ̂ =




Θ̂1 0 · · · 0
0 Θ̂2 0 · · ·
...

...
. ..

...
0 · · · 0 Θ̂k(λ)




Define the block diagonal matriceŝWℓ or equivalentlyΘ̂ℓ via the following sub-problems

Θ̂ℓ = argmin
Θℓ

{− logdet(Θℓ)+ tr(SℓΘℓ)+λ∑
i j

|(Θℓ)i j |} (10)

for ℓ = 1, . . . ,k(λ), whereSℓ is a sub-block ofS, with row/column indices fromV (λ)
ℓ ×V (λ)

ℓ . The

same notation is used forΘℓ. Denote the inverses of the block-precision matrices by{Θ̂ℓ}−1 = Ŵℓ.
We will show that the abovêΘ satisfies the KKT conditions—(7) and (8).

Note that by construction of the thresholded sample covariance graph,
if i ∈ V (λ)

ℓ and j ∈ V (λ)
ℓ′ with ℓ 6= ℓ′, then|Si j | ≤ λ.

Hence, fori ∈ V
(λ)
ℓ and j ∈ V

(λ)
ℓ′ with ℓ 6= ℓ′; the choiceΘ̂i j = Ŵi j = 0 satisfies the KKT

conditions (7)
|Si j −Ŵi j | ≤ λ

for all the off-diagonal entries in the block-matrix (9).
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By construction (10) it is easy to see that for everyℓ, the matrixΘ̂ℓ satisfies the KKT conditions
(7) and (8) corresponding to theℓth block of the p× p dimensional problem. HencêΘ solves
problem (1).

The above argument shows that the connected components obtained fromthe estimated preci-

sion graphG (λ) leads to a partition of the vertices{V̂ (λ)
ℓ }1≤ℓ≤κ(λ) such that for everyℓ∈{1, . . . ,k(λ)},

there is aℓ′ ∈ {1, . . . ,κ(λ)} such thatV̂ (λ)
ℓ′ ⊂ V

(λ)
ℓ . In particulark(λ)≤ κ(λ).

Conversely, ifΘ̂ admits the decomposition as in the statement of the theorem, then it follows
from (7) that:
for i ∈ V̂ (λ)

ℓ and j ∈ V̂ (λ)
ℓ′ with ℓ 6= ℓ′; |Si j − Ŵi j | ≤ λ. SinceŴi j = 0, we have|Si j | ≤ λ. This

proves that the connected components of G(λ) leads to a partition of the vertices, which is finer than
the vertex-partition induced by the components ofG (λ). In particular this implies thatk(λ)≥ κ(λ).

Combining the above two we concludek(λ) = κ(λ) and also the equality (6). The permutation
π in the theorem appears since the labeling of the connected components is notunique.

A.2 Proof of Theorem 2

Proof This proof is a direct consequence of Theorem 1, which establishes that the vertex-partitions
induced by the the connected components of the estimated precision graph and the thresholded
sample covariance graph are equal.

Observe that, by construction, the connected components of the thresholded sample covariance
graph, that is, G(λ) are nested within the connected components of G(λ′). In particular, the vertex-
partition induced by the components of the thresholded sample covariance graph atλ, is contained
inside the vertex-partition induced by the components of the thresholded sample covariance graph
at λ′. Now, using Theorem 1 we conclude that the vertex-partition induced by the components of

the estimated precision graph atλ, given by{V̂ (λ)
ℓ }1≤ℓ≤κ(λ) is contained inside the vertex-partition

induced by the components of the estimated precision graph atλ′, given by{V̂ (λ′)
ℓ }1≤ℓ≤κ(λ′). The

proof is thus complete.
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