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Abstract

We consider the sparse inverse covariance regularizataivigm orgraphical lassowith regular-
ization parametek. Suppose the sampt®mvariance graptormed by thresholding the entries of
the sample covariance matrix &tis decomposed into connected components. We show that the
vertex-partitioninduced by the connected components of the thresholdedsawariance graph
(atA) is exactlyequal to that induced by the connected components of theatstil concentration
graph, obtained by solving the graphical lasso problemHeisameA. This characterizes a very
interesting property of a path of graphical lasso solutiéhsthermore, this simple rule, when used
as a wrapper around existing algorithms for the graphicadaleads to enormous performance
gains. For a range of values ®f our proposal splits a large graphical lasso problem intallem
tractable problems, making it possible to solve an othenwigeasible large-scale problem. We
illustrate the graceful scalability of our proposal via 8yatic and real-life microarray examples.
Keywords: sparse inverse covariance selection, sparsity, graghigsd, Gaussian graphical mod-
els, graph connected components, concentration grajgie, $aale covariance estimation

1. Introduction

Consider a data matriXn., comprising ofn sample realizations from g dimensional Gaus-
sian distribution with zero mean and positive definite covariance magiy (unknown), that is,
Xi A MVYN (0,Z), i=1,...,n. The task is to estimate the unkno&rbased on th@ samples./;
regularized Sparse Inverse Covariance Selection also knowraghical lasso(Friedman et al.,
2007; Banerjee et al., 2008; Yuan and Lin, 2007) estimates the covanmaatixZ, under the as-
sumption that the inverse covariance matrix, thakis, is sparse. This is achieved by minimizing

the regularized negative log-likelihood function:

minimize —logde(®) + '[I’(S@)—F)\g|@ij|, (1)

whereS is the sample covariance matrix. Problem (1) is a convex optimization problengin th

, ~(\ _
variable® (Boyd and Vandenberghe, 2004). L@% ) denote the solution to (1). We note that (1)
can also be used in a more non-parametric fashion for any positive séimtedmput matrixS, not
necessarily a sample covariance matrix of a MVN sample as described above
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A related criterion to (1) is one where the diagonals are not penalized-uHBtigutingS <+
S+ Alpxp in the “unpenalized” problem we get (1). In this paper we concentrafgaislem (1).

Developing efficient large-scale algorithms for (1) is an active areas#farch across the fields
of Convex Optimization, Machine Learning and Statistics. Many algorithms bega proposed
for this task (Friedman et al., 2007; Banerjee et al., 2008; Lu, 2009; Zdheinberg et al., 2010;
Yuan, 2009, for example). However, it appears that certain speakepies of the solution to
(1) have been largely ignored. This paper is about one such (sog)rigroperty—namely estab-
lishing an equivalence between thertex-partitioninduced by the connected components of the

~(A . N .

non-zero pattern 0®( ) and the thresholded sample covariance m&riX his paper is1ot about

a specific algorithm for the problem (1)—it focuses on the aforementiobedrvation that leads
to a novel thresholding/screening procedure base8. ofhis provides interesting insight into the

path of solutions{ém};\zo obtained by solving (1), over a path afvalues. The behavior of

the connected-components obtained from the non-zero patter{@@f}m can be completely
understood by simple screening rules®This can be done withoetven attemptingp solve (1)—
arguably a very challenging convex optimization problem. Furthermore, ttd@sktblding rule can

be used as wrapperto enormously boost the performance of existing algorithms, as seen in our
experiments. This strategy becomes extremely effective in solving lardpepre over a range of
values ofA—sulfficiently restricted to ensure sparsity and the separation into codrastegonents.

Of course, for sufficiently small values afthere will be no separation into components, and hence
no computational savings.

At this point we introduce some notation and terminology, which we will use titrout the
paper.

1.1 Notationsand Preliminaries

For a matrixZ, its (i, j )" entry is denoted b¥ij.
We also introduce some graph theory notations and definitions (Bollob@8) #@fficient for
this exposition. A finite undirected graghon p vertices is given by the ordered tugle= (v, E),
where ¥ is the set of nodes andl the collection of (undirected) edges. The edge-set is equiv-
alently represented via a (symmetric) 0-1 mdtrfalso known as thadjacencymatrix) with p
rows/columns. We use the convention that a node is not connected to ibsitlé diagonals of the
adjacency matrix are all zeros. Ua?| and|Z| denote the number of nodes and edges respectively.
We say two nodes, v € 1 areconnectedf there is apathbetween them. A maximal connected
subgrapR is aconnected componeaf the graphg. Connectedness an equivalence relation that
decomposes a graph into its connected componenf§?, ) }1<,<k—with G = UK (1), E)),
whereK denotes the number of connected components. This decomposition partigorestibes
V of G into {%,}1<<k. Note that the labeling of the components is unique upto permutations
on {1,...,K}. Throughout this paper we will often refer to this partition as wbaex-partition

1, we say that the node isolated Suppose a grap@ defined on the set of vertlceB’ admlts
the following decomposition into connected componenﬁs_ UZ l(%,f@) We say the vertex-

l 0 denotes absence of an edge and 1 denotes its presence.
2.G'= (v, E') is asubgraphof G if " C ¥ andZ’' C E.
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EXACT THRESHOLDING FORGRAPHICAL LASSO

partitions induced by the connected components;and é areequalif K = K and there is a

permutatiorrton {1,...,K} such thatly ) = ¥, forall £ € {1,... K},

The paper is organized as follows. Section 2 describes the covarieaqe tipresholding idea
along with theoretical justification and related work, followed by complexityhaig of the algo-
rithmic framework in Section 3. Numerical experiments appear in Section 4luding remarks in
Section 5 and the proofs are gathered in the Appendix A.

2. Methodology: Exact Thresholding of the Covariance Graph

The sparsity pattern of the soluticﬁm

€ {0,1}P*P defined by:

to (1) gives rise to the symmetric edge matrix/skeleton

NN L
eM_) 1 |fei(j)7é0,|7éj; (2)
i .

0 otherwise

The above defines a symmetric gra@ﬁ‘) = (Y, ZW), namely theestimated concentration graph
(Cox and Wermuth, 1996; Lauritzen, 1996) defined on the nddes{1, ..., p} with edgest®.
Suppose the grap@(x) admits a decomposition intqA) connected components:

g™ =u g, 3)

whereglf)‘) = (’VE(A), E?)) are the components of the gragh"). Note thatc(\) € {1,..., p}, with
K(A) = p (large ) implying that all nodes are isolated and for small enough values tfere is
only one component, that ig(A) = 1.

We now describe the simple screening/thresholding rule. Giveme perform a thresholding
on the entries of the sample covariance ma®and obtain a graph edge skeletd & {0,1}PxP
defined by:

(4)

e _ [ LIS >AT#]
171 0 otherwise

The symmetric matrix B) defines a symmetric graph on the nodés- {1,...,p} given by GN =
(V, E(A)). We refer to this as th#resholded sample covariance gragBimilar to the decomposi-
tion in (3), the graph @) also admits a decomposition into connected components:

N = UG, (5)

where ¢V = (M EWV) are the components of the grapfG

Note that the components 6f® require knowledge 0®"'—the solution to (1). Construction
of GM and its components require operating®raan operation that can be performed completely
independent of the optimization problem (1), which is arguably more exmef&ee Section 3). The
surprising message we describe in this paper is thatdttex-partitionof the connected components
of (5) is exactlyequal to that of (3).

This observation has the following consequences:

1. We obtain a very interesting property of the path of soluti{fﬁg)}xzo—the behavior of the
connected components of the estimated concentration graph can be compidtaistood by
simple screening rules df
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2. The cost of computing the connected components of the thresholdeb:savigriance graph
(5) is orders of magnitude smaller than the cost of fitting graphical models{t)hermore,
the computations pertaining to the covariance graph can be done off-tirr@amenable to
parallel computation (See Section 3).

3. The optimization problem (1) completely separates iktd) separate optimization
sub-problems of the form (1). The sub-problems have size equal toutnéer of nodes
in each componenp; := |4],i = 1,...,k(A\). Hence for certain values af, solving prob-
lem (1) becomes feasible although it may be impossible to operate gnxtheedimensional
(global) variabled on a single machine.

4. Suppose that fokg, there arek(Ag) components and the graphical model computations are
distributed® Since the vertex-partitions induced via (3) and (5) are nested with inogeas
(see Theorem 2), it suffices to operate independently on these tepaehines to obtain the

path of solutions{ém})\ forall A > Ao.

5. Consider a distributed computing architecture, where every machinesabipgrating on a
graphical lasso problem (1) of maximal sipgax. Then with relatively small effort we can
find the smallest value of = A, such that there are no connected components of size
larger thanpmax. Problem (1) thus ‘splits up’ independently into manageable problemssacros
the different machines. When this structure is not exploited the globalgmofl) remains
intractable.

The following theorem establishes the main technical contribution of this paperequivalence
of the vertex-partitions induced by the connected components of the ddeslsample covariance
graph and the estimated concentration graph.

Theorem 1 For anyA > 0, the components of the estimated concentration grgph, as defined

in (2) and (3) induceexactlythe same vertex-partition as that of the thresholded sample covari-
ance graphG™), defined in (4) and (5). That is(A\) = k() and there exists a permutatianon
{1,...,k(A)} such that:

~

M _ gy

i (i)’

Vi=1,....k(\). (6)

Proof The proof of the theorem appears in Appendix A.1. |

Since the decomposition of a symmetric graph into its connected componenteddepmsn the
ordering/ labeling of the components, the permutati@ppears in Theorem 1.

Remark 1 Note that the edge-structuresthin each block need not be preserved. Under a match-
ing reordering of the labels of the componentst andG™):

for every fixed’ such that@m = ‘V[(A) the edge-set%:é” and E?) are notnecessarily equal.

3. Distributing these operations depend upon the number of processolable, their capacities, communication lag,
the number of components and the maximal size of the blocks acrosaclimes. These of-course depend upon the
computing environment. In the context of the present problem, it is afésirable to club smaller components into
a single machine.

784



EXACT THRESHOLDING FORGRAPHICAL LASSO

Theorem 1 leads to a special property of the path-of-solutions to (1)sttihe vertex-partition
induced by the connected component@é’f> are nested with increasirlg This is the content of
the following theorem.

Theorem 2 Consider two values of the regularization parameter such xhat\’ > 0, with corre-
sponding concentration graphg®™ and G*) as in (2) and connected components (3). Then the
vertex-partition induced by the componentsgdf) are nestedwithin the partition induced by the

components off*). Formally,k(A) > k(\') and the vertex-partitiorf ’IA/KO‘)}KKK(A) forms a finer
resolution of{ 'V;N)}lggm.
Proof The proof of this theorem appears in the Appendix A.2. |

Remark 2 It is worth noting that Theorem 2 addresses the nesting of the edgexss connected
components and not within a component. In general, the edgg!8kof the estimated concentra-
tion graph need not be nested as a functionof

for A > X, in general,£® ¢ £*).

See Friedman et al. (2007, Figure 3), for numerical examples demongtiiaéimon-monotonicity
of the edge-set acrods as described in Remark 2.

2.1 Node-Thresholding

A simple consequence of Theorem 1 is thatofie-thresholding If A > max; |S;j|, then the
i node will be isolated from the other nodes, the off-diagonal entries oif'threw/column are
. ~(A h o . . ,
all zero, that is, may; \@i(j )] = 0. Furthermore, th&" diagonal entries of the estimated covari-
ance and precision matrices are given (8( +A) and ﬁ respectively. Hence, as soon as
A > max_1, . p{max4|Sj|}, the estimated covariance and precision matrices obtained from (1)

are both diagonal.

2.2 Related Work

Witten et al. (2011) independently discovered block screening asibeddn this paper. At the
time of our writing, an earlier version of their paper was available (Witten aretifan, 2011); it
proposed a scheme to detect isolated nodes for problem (1) via a simgeaisgy of the entries of
S, but no block screening. Earlier, Banerjee et al. (2008, Theoremadle the same observation
about isolated nodes. The revised manuscript (Witten et al., 2011) thatiéscblock screening
became available shortly after our paper was submitted for publication.

Zhou et al. (2011) use a thresholding strategy followed by re-fitting $timating Gaussian
graphical models. Their approach is based on the node-wise lasessieg procedure of Mein-
shausen and himann (2006). A hard thresholding is performed on éh@enalized regression
coefficient estimates at every node to obtain the graph structure. A tedthitE for the concen-
tration matrix is obtained for the graph. The proposal in our paper difece we are interested in
solving theGLAssOproblem (1).
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3. Computational Complexity

The overall complexity of our proposal depends upon (a) the graphiga stage and (b) solving
(sub)problems of the form (1). In addition to these, there is an unaeidanplexity associated
with handling and/or forming.

The cost of computing the connected components of the thresholdedarmeagraph is fairly
negligible when compared to solving a similar sized graphical lasso problerséke also our sim-
ulation studies in Section 4. In case we observe samplesiP,i = 1,...,nthe cost for creating the
sample covariance matr&is O(n- p?). Thresholding the sample covariance matrix ca3tp?).
Obtaining the connected components of the thresholded covariance(gmp@ﬂE(")\ + p) (Tar-
jan, 1972). Since we are interested in a region where the thresholdedaswe graph is sparse
enough to be broken into smaller connected componekﬁé‘\ld—<< p?. Note that all computations
pertaining to the construction of the connected components and the tasknpfitiog S can be
computed off-line. Furthermore the computations are parallelizable. G&#i (¥or example)
describes parallel algorithms for computing connected components opb-gthey have a time
complexityO(log(p)) and requireéd((|EM | + p)/log(p)) processors with spac@(p+ [E?)|).

There are a wide variety of algorithms for the task of solving (1). While draestive review
of the computational complexities of the different algorithms is beyond theesabihis paper, we
provide a brief summary for a few algorithms below.

Banerjee et al. (2008) proposed a smooth accelerated gradientrhatieatl (Nesterov, 2005)
with complexity O( %) to obtain are accurate solution—the per iteration cost be(@?). They

also proposed a block coordinate method which has a complex@y o).

The complexity of thecLASSO algorithm (Friedman et al., 2007) which uses a row-by-row
block coordinate method is roughty( p®) for reasonably sparse-problems witinodes. For denser
problems the cost can be as largedp?).

The algorithmsmAcs proposed in Lu (2010) has a per iteration complexityogp®) and an

. 4 . .
overall complexity 010(%) to obtain are > 0 accurate solution.

It appears that most existing algorithms for (1), have a complexity of at @gs) to O(p*)
or possibly larger, depending upon the algorithm used and the desicechag of the solution—
making computations for (1) almost impractical for valuepahuch larger than 2000.

It is quite clear that the role played by covariance thresholding is indemibtin this context.
Assume that we use a solver of complex@yp’) with J € {3,4}, along with our screening proce-
dure. Suppose for a given the thresholded sample covariance graphKkia$ components—the
total cost of solving these smaller problems is t@éﬁf O(| ‘Vim 1Y) < O(pY), with J € {3,4}. This
difference in practice can be enormous—see Section 4 for numerigapées This is what makes
large scale graphical lasso problems solvable!

4. Numerical Examples

In this section we show via numerical experiments that the screening prdyps in obtaining
many fold speed-ups when compared to an algorithm that does not exp&ection 4.1 considers
synthetic examples and Section 4.2 discusses real-life microarray datglesa
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4.1 Synthetic Examples

Experiments are performed with two publicly available algorithm implementatiortbégoroblem

(1):

GLASsa The algorithm of Friedman et al. (2007). We used the MATLAB wrappeilalile at
http://www-stat.stanford.edu/ ~ tibs/glasso/index.html to the Fortran code. The
specific criterion for convergence (lack of progress of the diagenales) was set to 10
and the maximal number of iterations was set to 1000.

SMACS. denotes the algorithm of Lu (2010). We used the MATLAB implementation
smooth_covsel available athttp://people.math.sfu.ca/ ~ zhaosong/Codes/SMOOTH _
COVSEL/. The criterion for convergence (based on duality gap) was settodfd the max-
imal number of iterations was set to 1000.

We will like to note that the convergence criteria of the two algoritt@hassoandsmMAcsare not
the same. For obtaining the connected components of a symmetric adjacengyweatsed the
MATLAB function graphconncomp . All of our computations are done in MATLAB 7.11.0ona 3.3
GhZ Intel Xeon processor.

The simulation examples are created as follows. We generated a blockaliagainx given by
S=blkdiagS;,. .., S«), where each block; = 1, . ,,—a matrix of all ones ang§, p; = p. In the
examples we took alb;s to be equal t@; (say). Noise of the forng-UU’ (U is ap x p matrix with
i.i.d. standard Gaussian entries) is adde8 suich that 1.25 times the largest (in absolute value) off
block-diagonal (as in the block structure®)fentry ofa-UU’ equals the smallest absolute non-zero
entry inS, that is, one. The sample covariance matri$is S+0-UU’.

We consider a number of examples for varyihgndp; values, as shown in Table 1. Sizes were
chosen such that it is at-least ‘conceivable’ to solve (1) on the full déoeal problem, without
screening. In all the examples shown in Table 1, we\set (Amax+ Amin)/2, Where for all values
of A in the intervalAmin, Amay the thresh-holded version of the sample covariance matrix has exactly
K connected components. We also took a larger value tifat is,\; := Amax, Which gave sparser
estimates of the precision matrix but the number of connected componenttheasgme.

The computations across different connected blocks could be distriiptdess many machines.
This would lead to almostld fold improvement in timings, however in Table 1 we report the timings
by operating serially across the blocks. The serial ‘loop’ across tfexelift blocks are implemented
in MATLAB.

Table 1 shows the rather remarkable improvements obtained by using @asprbcovariance
thresholding strategy as compared to operating on the whole matrix. Timing dsonsbetween
GLASSsOand SMACS are not fair, since&sLASSO s written in Fortran andsmACs in MATLAB.
However, we note that our experiments are meant to demonstrate how thlealdieg helps in
improving the overall computational time over the baseline method of not explatreening.
Clearly our proposed strategy makes solving larger problems (1), hpfeasible but with quite
attractive computational time. The time taken by the graph-partitioning step in spthentresh-
olded covariance graph into its connected components is negligible as @aripahe timings for
the optimization problem.
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Algorithm Timings(sec) Ratio Time(sec)

K p1/p A Algorithm  with without Speedup graph
screen screen factor partition
2 200/400 A GLASSO 11.1 25.97 2.33 0.04
! SMACS 12.31 137.45 11.16 ’
GLASSO 1.687 4.783 2.83
A SMACS  10.01 42.08 4.20 0.066
2 500/1000 A GLASSO 305.24 735.39 2.40 0247
! SMACS 175 2138* 12.21 '
GLASSO 29.8 121.8 4.08
Al 0.35
SMACS 272.6 1247.1 4.57
5 300/1500 A GLASSO 210.86 1439 6.82 018
! SMACS 63.22 6062* 95.88 ’
GLASSO 10.47 293.63 28.04
AN svacs 21972 6061.6 2758 0123
5 500 /2500 A GLASSO 1386.9 - - 071

SMACS 493 - -

GLASSO 17.79 963.92 54.18
M gywacs  354.81 - - 0.018

8 300/2400 GLASSO 692.25 - -
A SMACS  185.75 - - 0.713

GLASSO 9.07 842.7 92.91
A SMACS  153.55 - - 0.023

Table 1: Table showing (a) the times in seconds with screening, (b) withcegrsag, that is, on
the whole matrix and (c) the ratio (b)/(a)—'Speedup factor’ for algorittenasso and
SMACS. Algorithms with screening are operated serially—the times reflect the total time
summed across all blocks. The column ‘graph partition’ lists the time for comptitang
connected components of the thresholded sample covariance grapkB.AgincA,, the
former gives sparser models. “*' denotes the algorithm did not coevernghin 1000
iterations. ‘-’ refers to cases where the respective algorithms failedneeoge within 2
hours.

4.2 Micro-array Data Examples

The graphical lasso is often used in learning connectivity networks ie-ggoroarray data (Fried-
man et al., 2007, see for example). Since in most real examples the nunteresp is around

tens of thousands, obtaining an inverse covariance matrix by solvingddiriputationally imprac-
tical. The covariance thresholding method we propose easily applies topitddems—and as we
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see gracefully delivers solutions over a large range of the paraetéfe study three different
micro-array examples and observe that as one varfesm large to small values, the thresholded
covariance graph splits into a number of non-trivial connected comp®mévarying sizes. We
continue till a small/moderate value afwhen the maximal size of a connected component gets
larger than a predefined machine-capacity or the ‘computational budgetsingle graphical lasso
problem. Note that in relevant micro-array applications, sipce n (n, the number of samples is
at most a few hundred) heavy regularization is required to control tfian of the covariance
estimates—so it does seem reasonable to restrict to solutions of (1) fenktges of.

Following are the data-sets we used for our experiments:

(A) This data-set appears in Alon et al. (1999) and has been andbyzBdthman et al. (2008,
for example). In this experiment, tissue samples were analyzed usingyaneétfix Oligonu-
cleotide array. The data were processed, filtered and reduced tset &fip = 2000 gene
expression values. The number of Colon Adenocarcinoma tissue sampleGia.

(B) Thisis an early example of an expression array, obtained from tinelPBrown Laboratory
at Stanford University. There are= 385 patient samples of tissue from various regions of
the body (some from tumors, some not), with gene-expression measurdorepts 4718
genes.

(C) The third example is the by now famous NKI data set that produced tge7® prognostic
signature for breast cancer (Van-De-Vijver et al., 2002). Heresthemn = 295 samples and
p = 24481 genes.

Among the above, both (B) and (C) have few missing values—which we imjmytéte respective
global means of the observed expression values. For each of thelt#ieesets, we too&to be the
corresponding sample correlation matrix. Teh@ct thresholdingnethodolgy could have also been
applied to the sample covariance matrix. Since it is a common practice to staedaeligenes”,
we operate on the sample correlation matrix.

Figure 1 shows how the component sizes of the thresholded covarieapte ghange across
We describe the strategy we used to arrive at the figure. Note that thected components change
only at the absolute values of the entriesfFrom the sorted absolute values of the off-diagonal
entries ofS, we obtained the smallest value ®f say A/, for which the size of the maximal
connected component was 1500. For a grid of values tiif A, we computed the connected
components of the thresholded sample-covariance matrix and obtainededissibution of the
various connected components. Figure 1 shows how these comporemgg dver a range of values
of A for the three examples (A), (B) and (C). The number of connected coemi® of a particular
size is denoted by a color-scheme, described by the color-bar in thedigifith increasing: the
larger connected components gradually disappear as they decompos@atier components; the
sizes of the connected components decrease and the frequencymofiler somponents increase.
Since these are all correlation matrices, Xar 1 all the nodes in the graph become isolated. The
range ofA values for which the maximal size of the components is smaller than 1500 difiessa
the three examples. For (C) there is a greater variety in the sizes of the sentp@s compared
to (A) and (B). Note that by Theorem 1, the pattern of the componentsadpgen Figure 1 are
exactly the same as the components appearing in the solution of (1) far. that
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Figure 1: Figure showing the size distribution (in the log-scale) of condemimponents arising
from the thresholded sample covariance graph for examples (A)-¢Cevery value oh
(vertical axis), the horizontal slice denotes the sizes of the differenpooents appearing
in the thresholded covariance graph. The colors represent the nafint@mponents in
the graph having that specific size. For every figure, the rangevalues is chosen such
that the maximal size of the connected components do not exceed 1500.

For examples (B) and (C) we found that the full problem sizes are likymnscope 0lGLASSO
andsMAcs—the screening rule is apparently thiely way to obtain solutions for a reasonable range
of A-values as shown in Figure 1.

5. Conclusions

In this paper we present a novel property characterizing the familylati@os to the graphical lasso
problem (1), as a function of the regularization paramgterhe property is fairly surprising—the
vertex partition induced by the connected components of the non-zeronpaft¢he estimated
concentration matrix (a&t) and the thresholded sample covariance m&i{atA) areexactly equal
This property seems to have been unobserved in the literature. Ouvatisemot only provides
interesting insights into the properties of the graphical lasso solution-pagiddmuopens the door
to solving large-scale graphical lasso problems, which are otherwisetattia. This simple rule
when used as a wrapper around existing algorithms leads to enormouosnparte boosts—on
occasions by a factor of thousands!
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Appendix A. Proofs

Here we provide proofs of Theorems 1 and 2.

A.1 Proof of Theorem 1

Proof Suppose’?) (we suppress the superscripfor notational convenience) solves problem (1),
then standard KKT conditions of optimality (Boyd and Vandenberghe, 20i04:

|Sj_wij|§)\ Véijzo; and (7)
Wij =Sj+A ¥&;>0; Wij=S;-AV8;<0; (8)

whereW = ((5)*1. The diagonal entries SatisWii =Sij+Afori=1....p

Using (4) and (5), there exists an ordering of the vertices. ., p} of the graph such that'¥® is
block-diagonal. For notational convenience, we will assume that the magise&dy in that order.
Under this ordering of the vertices, the edge-matrix of the thresholdeatiaoce graph is of the
form:

EM 0 0
o EY o ..
ev_| 0 B0 ©
Ry
0 0 B
where the different components represent blocks of indices givem/ﬁy =1,....k(N).

We will construct a matris/ having the same structure as (9) which is a solutlon to (1). Note
that if W is block diagonal then so is its inverse. Wtand its invers® be given by:

W, 0 .. 0 o, 0 --- 0
— 0O W, O ~ 0 6 O
W=1| | . . , ©=1] . .

0o --- 0 \//\/\k()\) 0O --- 0 ék(A)

Define the block diagonal matric@g or equivalently@g via the following sub-problems

O = argemin {~logde(®y) +tr(S;0,) +A S [ (©);; [} (10)
0 1]

for/=1,...,k(\), whereS, is a sub-block ofS, with row/column indices fromV X ‘V . The

same notation is used f@;. Denote the inverses of the block-precision matrice$®y} - 1 =W,.
We will show that the abov® satisfies the KKT conditions—(7) and (8).
Note that by construction of the thresholded sample covariance graph,
ifi ¢ ™ andj e VM with £ £ ¢/, then|S;j| < A.
Hence, fori € ‘Vém andj € ’VV(/A) with £ # ¢'; the choice®;; = Wj; = 0 satisfies the KKT
conditions (7) -
|Sij —Wij| <A

for all the off-diagonal entries in the block-matrix (9).
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By construction (10) it is easy to see that for evérthe matrix®, satisfies the KKT conditions
(7) and (8) corresponding to th& block of the p x p dimensional problem. Hend® solves
problem (1).

The above argument shows that the conneActed components obtainethérestimated preci-
sion graphg™ leads to a partition of the vertiCQ%(A)}lgggK(A) suchthatforeverge {1,...,k(\)},
thereis &’ € {1,...,k(N\)} such thatt/ ¢ ‘V[Q). In particulark(A) < k(A).

Conversely, if© admits the decomposition as in the statement of the theorem, then it follows
from (7) that: R
forie ‘ng andj € ‘V(EA) with ¢ # ¢'; |S;; —Wij] <A. SinceWij =0, we havelS;j| < A. This
proves that the connected components 8f @ads to a partition of the vertices, which is finer than
the vertex-partition induced by the componentg;6P. In particular this implies that(A) > k().

Combining the above two we conclullé\) = k(A) and also the equality (6). The permutation
1tin the theorem appears since the labeling of the connected componentsiisoua. |

A.2 Proof of Theorem 2

Proof This proofis a direct consequence of Theorem 1, which establisheh#heertex-partitions
induced by the the connected components of the estimated precision grapheatinresholded
sample covariance graph are equal.

Observe that, by construction, the connected components of the thredisalchple covariance
graph, that is, @) are nested within the connected components &f Gin particular, the vertex-
partition induced by the components of the thresholded sample covariaapte &, is contained
inside the vertex-partition induced by the components of the thresholdedesaavariance graph
atA’. Now, using Theorem 1 we concludeAthat the vertex-partition induceddogdmponents of
the estimated precision graphXatgiven by{ 'Vé(’\)}lgg,(m is contained inside the vertex-partition

induced by the components of the estimated precision graph given by{‘IA/K(N)}lg,;SK(N). The
proof is thus complete. |
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