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Abstract

We present a data dependent generalization bound for adeggeof regularized algorithms which
implement structured sparsity constraints. The bound @aagdplied to standard squared-norm
regularization, the Lasso, the group Lasso, some versibtiseogroup Lasso with overlapping
groups, multiple kernel learning and other regularizasohemes. In all these cases competitive
results are obtained. A novel feature of our bound is thatrtlme applied in an infinite dimensional
setting such as the Lasso in a separable Hilbert space dptawdernel learning with a countable
number of kernels.
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1. Introduction

We study a class of regularization methods used to learn a linear functionaffinite set of ex-
amples. The regularizer is expressed as an infimum convolution which @svalgetV of linear
transformations (see Equation (1) below). As we shall see, this reqiggéneralizes, depending
on the choice of the set/, the regularizers used by several learning algorithms, such as ridge re
gression, the Lasso, the group Lasso (Yuan and Lin, 2006), multipheKearning (Lanckriet et al.,
2004; Bach et al., 2004), the group Lasso with overlap (Obozinski,&G09), and the regularizers

in Micchelli et al. (2010).

We give a bound on the Rademacher average of the linear function skssiated with this
regularizer. The result matches existing bounds in the above mentiones! lmatsalso admits a
novel, dimension free interpretation. In particular, the bound applies todksdLin a separable
Hilbert space or to multiple kernel learning with a countable number of kermetier certain finite
second-moment conditions.

We now introduce some necessary notation and state our main results.deet real Hilbert
space with inner product,-) and induced nornfj - ||. Let 4 be an at most countable set of sym-
metric bounded linear operators Hnsuch that for every € H, x = 0, there is some linear operator
M € M with Mx # 0 and that sugcq, |||M||| < o, where||| - ||| is the operator norm. Define the
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function||-||4, : H = Ry U {e} by

1Bllar = mf{ S Iwl:iweH, ¥ Mszs}. ()
MeM MeM
It is shown in Section 3.2 that the chosen notation is justified, bedpligeis indeed a norm on the
subspace ofl where it is finite, and the dual norm is, for every H, given by
12l a7 = sup[[MZ]].
MeM

The somewhat complicated definition|pf|,, is contrasted by the simple form of the dual norm.

As an example, iH = R% andM = {Py,...,Py}, whereP is the orthogonal projection on the
i-th coordinate, then the function (1) reduces todhaorm.

Using well known techniques, as described in Koltchinskii and Panché902) and Bartlett
and Mendelson (2002), our study of generalization reduces to thehstara good bound on the
empirical Rademacher complexity of a set of linear functionals With,-bounded weight vectors

(x) = HE sup Zsl (B, %) (2)
B lIBllac<1i

wherex = (xg,...,%n) € H" is a sample vector representing observationsgand. , €, are Rademacher

variables, mutually independent and each uniformly distributed-oh, 1}.> Given a bound on

Rar (X) we obtain uniform bounds on the estimation error, for example using the foljostan-

dard result (adapted from Bartlett and Mendelson 2002), where theehiiz functiong is to be

interpreted as a loss function.

Theorem 1 LetX = (Xy,...,X,) be a vector of iid random variables with values in H, let X be iid
to X, let@: R — [0, 1] have Lipschitz constant L ardde (0,1). Then with probability at least —
in the draw ofX it holds, for everyB € RY with ||B||,, < 1, that

B(B.X) < ¢ 3 0(B.X) +L Rar (X) +/ 250

A similar (slightly better) bound is obtained ®,, (X) is replaced by its expectatioR,, =
ERys (X) (see Bartlett and Mendelson 2002).

The following is the main result of this paper and leads to consistency paodffinite sample
generalization guarantees for all algorithms which use a regularizer fufrtng1). A proof is given
in Section 3.3.

Theorem 2 Letx = (Xq,...,%)) € H" and Ry, (x) be defined as in (2). Then

23/2 n IMxi |12
Rar (X) < —/ sup IMx 2] 2+ |[In 2 IMx3]

o MeM (= MGMW
NeM

< 203 ki (2+ o] ).

1. Our definition coincides with the one in Bartlett and Mendelson (2002Z)ewther authors omit the factor of 2. This
is relevant when comparing the constants in different bounds.

672



STRUCTURED SPARSITY AND GENERALIZATION

The second inequality follows from the first one, the inequality

n n
2 2
sup § |IMx||© < ZlHXiHM*a
MeM = i=

a fact which will be tacitly used in the sequel, and the observation that examynand in the
logarithm appearing in the first inequality is bounded by 1. Of course tbenseinequality is
relevant only if M is finite. In this case we can draw the following conclusion: If we have an a
priori bound on||X||,,. for some data distribution, saj¥||,, <C, andX = (Xg,...,Xy), with X;

iid to X, then
23/2C [

thus passing from a data-dependent to a distribution dependent biougSdction 2 we show that
this recovers existing results (Cortes et al., 2010; Kakade et al., 20afd;dt al., 2011; Meir and
Zhang, 2003; Ying and Campbell, 2009) for many regularization schémes.

But the first bound in Theorem 2 can be considerably smaller than thecdaod may be finite
even if M is infinite. This gives rise to some novel features, even in the well studsel afthe
Lasso, when there is a (finite but potentially larggbound on the data.

Corollary 3 Under the conditions of Theorem 2 we have

R )< 2 supZ||Mxi||2<2+\/mlz 2 |Mm|2>+2.
n MeM n4a MeM VN

A proofis given in Section 3.3. To obtain a distribution dependent bounetae the condition
| X]| 4+ < C and replace finiteness 6# by the condition that

Ri=E 3 [[MX[*< e (3)

MeM

Taking the expectation in Corollary 3 and using Jensen’s inequality thes givoound on the ex-
pected Rademacher complexity

3/2
nggz\mC (2+m)+\%. (4)

The key features of this result are the dimension-independence anadyHegarithmic dependence
on R2, which in many applications turns out to be simpf/=E ||X||2.

The rest of the paper is organized as follows. In the next section, a@adize our results to
different regularizers. In Section 3, we present the proof of Térad2 as well as the proof of other
results mentioned above. In Section 4, we discuss the extension of tisedts te thelq case.
Finally, in Section 5, we draw our conclusions and comment on future work.

2. We note that the numerical implementation and practical application offispeases of the regularizer described
here have been addressed in detail in a number of papers. We recahidaldassarre et al. (2012), Obozinski et al.
(2009) and Jenatton et al. (2011) and references therein for deitsfitethation on such matters. We also refer to
Baraniuk et al. (2010) and Huang et al. (2009) for related work ugingdy methods.
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2. Examples

Before giving the examples we mention a great simplification in the definition ofidhe ||-||,,
which occurs when the members@f have mutually orthogonal ranges. A simple argument, given
in Proposition 8 below shows that in this case

IBllac=Y [[M™B]].

MeM

whereM is the pseudoinverse M. If, in addition, every member of\f is an orthogonal projection
P, the norm further simplifies to
IBllac = [IPBI,

PeM
and the quantity?? occurring in the second moment condition (3) simplifies to

2 2
R=E Y [PX|*=E|X|*.
PeM

For the remainder of this sectiofi= (Xy,...,X,) will be a generic iid random vector of data
points, X € H, andX will be a generic data variable, iid ¥§. If H = RY we write (X), for thek-th
coordinate ofX, not to be confused witiy, which would be thé&-th member of the vectoX.

2.1 The Euclidean Regularizer

In this simplest case we s@f = {l}, wherel is the identity operator on the Hilbert spade Then
IBllar = IIB]s [|1Z]| 4~ = ||Zl|, and the bound on the empirical Rademacher complexity becomes

5/2
Rog ()< == I3 IP

worse by a constant factor of/Z than the corresponding result in Bartlett and Mendelson (2002),
a tribute paid to the generality of our result.

2.2 ThelLasso

Let us first assume thad = RY is finite dimensional and se¥ = {Py,...,P;} whereF is the
orthogonal projection onto the 1-dimensional subspace generated basievector,. All the
above mentioned simplifications apply and we hag,, = ||B|/; and||z|| - = ||Z||.,- The bound

on Ry (X) Now reads
23/2 5
RM(X)ﬁT IZHXin (2+\/ﬁ).

If [|X]|, <1 almost surely we obtain

3/2

Km(x)gz\m(2+\/m)7

which agrees with the bound in Kakade et al. (2010) on the dominant tema{so Bartlett and
Mendelson 2002 and Meir and Zhang 2003).
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Our last bound is uselessdf> €" or if d is infinite. But whenever the norm of the data has
finite second moments we can use Corollary 3 and inequality (4) to obtain

3/2
Rar (X) < Zﬁ (2+\/InEHX\§> +\%.

For nontrivial resultE || X || only needs to be subexponentiakin

We remark that a similar condition to Equation (3) for the Lasso, replacingjieceation with
the supremum oveX, has been considered within the context of elastic net regularization (e M
et al., 2009).

2.3 TheWeighted Lasso

The Lasso assigns an equal penalty to all regression coefficients,tiwrieemay be a priori infor-
mation on the respective significance of the different coordinates. Foreiison different weight-
ings have been proposed (see, for example, Shimamura et al. 2000)r framework an appro-
priate set of operators B8 = {a1Py,...,0kF,...}, with ax >0 Whereoq;1 is the penalty weight
associated with thk-th coordinate. Then

I1Bllar = ;a;ﬂm

and
12l] g+ =sgmk\zk|-

To further illustrate the use of Corollary 3 let us assume that the underlpiages$i is infinite
dimensional (thatigil = ¢, (N)), and make the compensating assumptiondhat, thatisy , a2 =
R? < o0. For simplicity we also assume that o < 1. Then, if||X||,, < 1 almost surely, we have
both||X||,- < 1 andy a2 (X)2 < R2. Again we obtain

23/2

2
Rar (X) < (2+ \/InRZ) + 0

So in this case the second moment bound is enforced by the weighting sequen

2.4 The Group Lasso

LetH =RYand let{J,...,J} be a partition of the index sét, ..., d}. We takeM ={P;,,...,P;}
whereP;, = ¥, P is the projection onto the subspace spanned by the basis eecldre ranges
of theP;, then provide an orthogonal decompositioRdfand the above mentioned simplifications
also apply. We get

1Bl a¢ ZZ;HPJgBII

and )
|2l = max| Py

The algorithm which use$||,, as a regularizer is called the group Lasso (see, for example, Yuan
and Lin 2006). It encourages vect@svhose support lies the union of a small number of gralups
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of coordinate indices. If we know th#P;, X|| < 1 almost surely for alt € {1,...,r} then we get

/
xMaygf:@+¢mQ, (5)

in complete symmetry with the Lasso and essentially the same as given in Kakadget0). If

r is prohibitively large or if different penalties are desired for differgrdups, the same remarks
apply as in the previous two sections. Just as in the case of the Lassadhe seoment condition
(3) translates to the simple for||X||5 < c.

2.5 Overlapping Groups

In the previous examples the membergifalways had mutually orthogonal ranges, which gave
a simple appearance to the nofii| ,,. If the ranges are not mutually orthogonal, the norm has a
more complicated form. For example, in the group Lasso setting, if the gdowoser{1,...,d},

but are not disjoint, we obtain the regularizer of Obozinski et al. (20§19¢n by

Qoverlap(B) = inf {;luwn “(v)jk=0if k¢ J and ;le = [3} .

If |Py,Xi|| <1 almost surely for alf € {1,...,r} then the Rademacher complexity of the set of
linear functionals withQgyeriap(B) < 1 is bounded as in (5), in complete equivalence to the bound
for the group Lasso.

The same bound also holds for the class satisfflggup(B) < 1, where the functio2goyp iS
defined, for ever ¢ RY, as

Qgroup(B) = /Zl H PJ/BH

which has been proposed by Jenatton et al. (2011) and Zhao et @)(2Uo see this we only

have to show tha®oyeriap < Qgroup Which is accomplished by generating a disjoint partit{c]p}z:l
whereJ; C Jy, writing B = 3}_, Py B and realizing thaH Py,B ‘ < ||P3,Bl|- The bound obtained from

this simple comparison may however be quite loose.

2.6 Regularizers Generated from Cones

Our next example considers structured sparsity regularizers as in éflicetral. (2010). Let\ be a
nonempty subset of the open positive ortharikthand define a functio®, : RY — R by

If A\'is a convex cone, then it is shown in Micchelli et al. (2011) fatis a norm and that the dual
norm is given by

d 1/2
ZNSW{<Zmé> W =M/ Al with A €A .
j=1
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The supremum in this formula is evidently attained on theZsgh) of extreme points of the closure
of {A/[|A]|; : A € A}. Forpe E(A) let My, be the diagonal matrix whose diagonal entries are those
of the vectory; and let, be the collection of matrice®fy = {M,: e Z(A)}. Then

1z

A+ = Sup |[Mz]].
MGM/\

Clearly My is uniformly bounded in the operator norm, saNfis a cone andE (A) is at most
countable, then-[|5. = ||||a+» Qa = ||-||5~ @and our bounds apply. H (A) is finite andx is a
sample then the Rademacher complexity of the class@itf3) < 1 is bounded by

o (2+\/In\£7>

232

- ZHX.

2.7 Kerndl Learning

This is the most general case to which the simplification applies: Suppogd thahe direct sum
H = @jeyH; of an at most countable number of Hilbert spatigs We set = {P, }jej, where
P; : H — H is the projection or;. Then

1Bllag =Y IPiBl
I
and
2]l 5 = sup||Piz]] -
jes

Such a situation arises in multiple kernel learning (Bach et al., 2004; Lhekral., 2004) or the
nonparametric group Lasso (Meier et al., 2009) in the following way: Gsean input spack and
a collection{K; }jey of positive definite kernel&; : X x X — R. Let@; : X — H; be the feature
map representation associated with keiglso that, for every,t € X Kj(x,t) = (@;(x), @;(t)) (for
background on kernel methods see, for example, Shawe-Taylorrést@dini 2004).

Suppose that = (xq,..., %) € X" is a sample. Define the kernel matiy = (K; (X, %)) _1-
Using this notation the bound in Theorem 2 reads

R ((@(X1),---,@(%n))) < T /JsgjptrK, <2+ |”W :

In particular, if 7 is finite andKj(x,x) < 1 for everyx € X andj € 7, then the the bound reduces to

2 v,

essentially in agreement with Cortes et al. (2010), Kakade et al. (20itDY@g and Campbell

(2009). Our leading constant of/2 is slightly better than the constant o{/%e, given by Cortes
et al. (2010).
For infinite or prohibitively large/ the second moment condition now becomes

232

E S Kj(X,X) <e
1€J
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We conclude this section by noting that, for every 3étwe may choose a set of kernels such
that empirical risk minimization with the norp || 4, is equivalent to multiple kernel learning with
kernelsKy (x,t) = (Mx,Mt), M € M. To see this, choose, for evely € M, @v(x) = Mx. Note
however, that this may yield an overparameterization of the problem. For@eathe regularizers
in Section 2.6 can be reformulated as a multiple kernel learning problem, buéthisesd| E(A)|
parameters instead df

3. Proofs

We first give some notation and auxiliary results, then we prove the resuitgiaced in the intro-
duction.

3.1 Notation and Auxiliary Results

The Hilbert spacéi and the collectiom are fixed throughout the following, as is the sample size
neN.

Recall that||-|| and (-,-) denote the norm and inner producthh respectively. For a linear
transformatiorM : R" — H the Hilbert-Schmidt norm is defined as

N 1/2
IMlys= IMe[|?
HS i;

where{eg :i € N} is the canonical basis &".

We use bold lettersx( X, €, ...) to denoten-tuples of objects, such as vectors or random
variables.

Let X be any space. For= (Xy,...,%)) € X", 1 <k < nandy € X we usexy.y to denote the
object obtained fronx by replacing theék-th coordinate ok with y. That is

Xy = (X15- -+ Xk 1, Y5 Xk Ly - - » Xn) -

The following concentration inequality, known as the bounded differémegquality (see McDi-
armid 1998), goes back to the work of Hoeffding (1963). We only neadthe weak form stated
below.

Theorem 4 Let F: X" — R and write
n
BZ = sup (F (Xth) -F (Xk<—y2))2-
K=1Y1,y2€X, XeX"

LetX = (Xa,...,%y) be a vector of independent random variables with value¥ imnd letX’ be
iidto X. Thenforany t- 0

Pr{F (X) > EF (X') +t} <& 2/%
Finally we need a simple lemma on the normal approximation:

Lemmab5 Leta d> 0. Then
) —t2 a2 _62
— < — — .
/a exp<2a2) dt < 5 exp( 2a2)
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Proof Fort > &/awe have 1< at/d. Thus

00 _t2 00 —t2/2 a2 (=) —t2/2 a2 _62
/6 eXp(2a2) dt a/é/ae dt < 5 /es/ate dt 5 exp el

3.2 Properties of the Regularizer

In this section, we show that the regularizer in Equation (1) is indeed a aaodnwe derive the
associated dual norm. In parallel we treat an entire class of reguriwich relates td|-||,,
as the/q-norm relates to thé;-norm. To this end, we fix an exponeqi [1,]. The conjugate
exponent is denotep, with 1/q+1/p=1.

Recall that|| - ||| denotes the operator norm. We first state the general conditions on tié set
of operators.

Condition 6 9 is an at most countable set of symmetric bounded linear operators eal aepa-
rable Hilbert space H such that

(a) For every xe H with x 0, there exists Me M such that Mx£ 0
(b) SURscay [[IM[]] < o0 if g =1 and Fyear [[[M[[|P < o0if g > 1.
Now we define/q (M) to be the set of those vectdbs= H for which the quantity
1/q
1Bl g, = inf ( > HVMHq> ‘weHand ' Mvy =
MeM MeM

is finite. If g= 1 we drop the subscript iff- HMq to lighten notation. Observe that the cape 1
coincides with the definition given in the introduction.

Theorem 7 (q(9M) is a Banach space with northHMq, and/q (M) is dense in H. I1#M is finite or
H is finite-dimensional, thefy (M) = H. For ze€ H the norm of the linear functionfl € /4 (M) —
(B.2)is

sup [MZ], ifg=1,
MeM
12l ag, = vp
( Y ||v|z\p> , ifg>1
MeMm

Proof Let 14 (M) ={v:Vv=(Ym)mear, Wm € H} be the set of thosH-valued sequences indexed
by a1, for which the function

1/q
Vi HVH'Vq(M) = ( Z ||VM||q)

MeM
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is finite. Then||-||, 4/ defines a complete norm o, (94), making 14 (9/) a Banach space. If
W = (Wm)umeqs IS @anH-valued sequence indexed By, then the linear functional

ve Uy(M) — Z (VMm,Wwm)

MeM
has norm
sup [Mwwm ||, if g=1,
MeM
Wl gy a0y = e
(5 wl?) " itasa
MeM

The verification of these claims parallels that of the standard results osdgebspaces.
Now define a map
AVE V(M) — 5 MwyeH.
MeM
We have

AV < S [IIM[]{|viml] -
MeM

By Condition 6(b) and Klder's inequalityA is a bounded linear transformation whose kerfiel
is therefore closed, making the quotient spagé?/) / X into a Banach space with quotient norm

W+ K|q= inf{||v||%(M) VRS 17(} The mapA induces an isomorphism
Aw+ K € Vy(M) /K —AWEH.
The range ofAis (4 (M) and becomes a Banach space with the nfyém* (B) | . But

HAil(B)HQ - inf{|’VH'Vq(M):A71(B)_V€ K}
= inf {[Vllay0a0) : B=AV} = 1Bllag,

S0 H.||Mq is a norm makindq () into a Banach space.

Suppose that € H is orthogonal to/q (M). Let Mg € M be arbitrary and define= (vv) by
VM, = Mow andvy = O for all otherM. Then

0= (W, AV) = (w,MZw) = |[Mow|?,

so0Mp = 0. This holds for anylp € M, so Condition 6(a) implies that = 0. By the Hahn Banach
Theoremlq (M) is therefore dense iH. If M is finite orH is finite-dimensional, thed, (M) is
also finite-dimensional and closed and tiy&M ) = H.

For the last assertion letc H. Then

1Zlag = sup{(@B): IBllag <1}
= sup{ (ZAV) [Vl gy ar) < 1}
= sup{(A'Zv): Ml yyap) <1}

= [|A"Z] a0y

1/p
= sup|MZ|ifg=1or(  [MZP if g> 1.
MeM MeM
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Proposition 8 If the ranges of the members @#f are mutually orthogonal then fds € ¢1 (M)

Bllac= 3 [M*B

MeM

)

where M is the pseudoinverse of M.

Proof The ranges of the members @f provide an orthogonal decompositiontéf so

B=3 M(M'p).

MeM

where we used the fact thetM ™ is the orthogonal projection onto the rangeMf Takingvy =
M*B this implies that|B|| 4; < Smear [IMTB]|. On the other hand, B = ¥ ycar NW, then, applying
M to this identity we see thal *Mvy = M*3 for all M, so

> lwall= 5 [IM* M| = 5 [[MB]|,

MeM MeM MeM

which shows the reverse inequality. [ |

3.3 Boundsfor the ¢1(M )-Norm Regularizer

We use the bounded difference inequality to derive a concentrationatiggfor linearly trans-
formed random vectors.

Lemma9 Lete = (g1,...,€n) be a vector of independent real random variables with< g; <1,
and¢’ iid to €. Suppose that M is a linear transformation:N&" — H.

(i) Then fort> O0we have

—t2
Pr{||Mg|| > E|M¢|| +t gexp( >
{ IMeler 2|MIiEs

(i) If € is orthonormal (satisfyindeiej = &;;), then
E|[Me]| < [M|ys. (6)

and, for every r> 0,

—t2
Pr{|Meg| >t} <e'/" exp() .
(2+1)IM[[Es
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Proof (i) DefineF :[-1,1]" — R by F (x) = |[Mx||. By the triangle inequality

n

sup (F (Xk<—)’1) -F (Xk<—y2))2
K=1y1,y2€[-1,1], xe[-1,1]"
n
< sup IM (Xiemys — Xiemy ) ||2
K=1y1,y2€[-1,1], xe[-1,1]"
n
= 3 sup (yi—y2)?[Med?
k=1Y1,y2€[—1,1]
< 4M|Es.

The result now follows from the bounded difference inequality (Theofg.
(i) If €is orthonormal then it follows from Jensen’s inequality that
n

2\ 12 . 1/2
eiMe = IMe?] = [M]lys.
sl ) - (3, .

For the second assertion of (i) first note that from calculus wetgetl)? /2 —t2/(2+r) > —1/r
for allt € R. This implies that

E[Me]| < (x&

e (t—1)%/2 <e /I’e—t /(2+r) (7)

Since ¥r > 1/(2+r) the inequality to be proved is trivial for< ||M||ys. If t > [[M||sthen, using
E|Mg|| < M|y We have — E |[Mg|| >t — |[M]|;s> 0, so by part (i) and (7) we obtain

Pr{|[Me[| >t} = PV{HMS||>E||M5H+(t E[IMe|))}
< exp( (L—E [Me)” ( t—||M|Hs>>
2| MIIfs 2|[M|l3s
2
. exp( (/”M”HS 1)> -/ Mlls?/(2)

= el/rexp( )
2+4r) HMHHS

We now use integration by parts, a union bound and the above concamiratipality to derive
a bound on the expectation of the supremum of the ndiig||. This is the essential step in the
proof of Theorem 2. Itis by no means a new technique, in fact it agpeany times in the book by
Ledoux and Talagrand (1991), but compared to the combinatorial agiptay Cortes et al. (2010)
it seems more suited to the study of the problem at hand, and gives insightsaritoe structure of
the logarithmic factor appearing in bounds for Lasso-like methods.
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Lemma 10 Let M be an at most countable set of linear transformations RI' — H ande =
(€1,...,€&n) avector of orthonormal random variables (satisfyilige; = &;j) with values if—1,1].
Then

M 2
E sup |[Me| < V2 sup|[M|ys <2+ \/m ZMeM”|HS> '
MeM

2
MeM SUWGMHMHHS

Proof To lighten notation we abbreviai®,, := suf,cqs |M||5 below. We now use integration by
parts

E sup|[Mg|| = / Pr{ sup||Mg|| >t ;dt
MeM 0 MeM
< .’M;0+6+/ Pr{ sup ||Mg|| >t}dt
Me+0 MeM
<

Moo+ 5+ /m Pr{|Me|| > t}dt,
MEZM Meo+0

where we have introduced a parameier 0. The first inequality above follows from the fact that
probabilities never exceed 1, and the second from a union bound. d@myM € M we can make
a change of variables and use (6), which giiédle|| < [|[M||ys < Mo, so that

<
/%+6Pr{\\Me]]>t}dt < /6Pr{HMeH>EHMeH+t}dt
00 _t2
< /exp(z)dt
8 2[[M|l5s

M||2 — &
< émsexp( 5 )
2[Mlls

where the second inequality follows from Lemma 9-(i), and the third from Lefnfubstitution
in the previous chain of inequalities and using Hoelder’s inequality (if{f\&.-version) give

1 2 —&
E sup [|[Meg|| < Mo +0+ < IM]] exp<> ) (8)
MeM 5 MGZM ns 2M3

2
5= M,OJ 2In (eZME%M’HS> .

Thend > 0 as required. The substitution makes the last term in (8) smallerﬂtﬁ@‘r(eﬂ), and
since 1+ 1/ (e\/§> < /2, we obtain

2
E sup ||Me|| < V29, (1+J In (W)) |
MeM 2
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Finally we usevInes< 1+ +/Insfors> 1. |

Proof of Theorem 2 Lete = (¢g1,...,€n) be a vector of iid Rademacher variables. Fbe M we
useMx to denote the linear transformatitx : R" — H given by(Mx)y = 3 ; (Mx)yi. We have

2
(x)=—E sup <B .>q>< SE(Y &x
N B2 zi 21
Applying Lemma 10 to the set of transformatiaitx = {Mx ‘M e M} gives

Ry ) < 272 SUBuear Ml <2+ V‘“ Swear [MX[Es ) |

2
n SUmear [IMX[[is

Substitution of|Mx||4s= Y1, [Mxi||? gives the first inequality of Theorem 2 and

2
= —E sup |[Mxg]|.
e N Meam

n
2 2
sup [|Mx||fg < Z sup [[Mx[|“ = ZiHXillw
MeM MeM i=

gives the second inequality. |

Proof of Corollary 3 From calculus we find thaint > —1/efor allt > 0. ForA/;B> 0 andne N
this implies that

AIn% =n[(A/n)In(B/n)—(A/n)In(A/n)] <AIn(B/n)+n/e. 9)

Now multiply out the first inequality of Theorem 2 and use (9) with
n n
A= supy [[Mx[? andB= ¥ Z||Mxi||2.
MeM i= MeM i=

Finally usev/a+b < /a+ vbfor a,b > 0 and the fact that322/\/é < 2. [ |

4. Thelq(M) Case

In this section we give bounds for tkig( M )-norm regularizers, witly > 1.

We give two results, which can be applied to cases analogous to thosetionSzcThe first
result is essentially equivalent to Cortes et al. (2010), Kakade etGil0f2and Kloft et al. (2011)
and is presented for completeness. The second result is not dimeresoidi it approaches the
bound in Theorem 2 for arbitrarily large dimensions. The proofs aréogoas to the proof of
Theorem 2.

Theorem 11 Letx be a sample and(% (x) the empirical Rademacher complexity of the class of
linear functions parameterized I3with \|[3||Mq <1 Thenforl<qg<2

R 0 < 2 (14 (5)* vB) | 3 Il
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The proof is based on the following

Lemma 12 Let M be an at most countable set of linear transformations RI' — H ands =
(€1,...,&n) avector of orthonormal random variables (satisfyiiige; = &;) with values inf—1,1].

Then for p> 2
E{(MEZMMe*’)l/p] (:+(3)* )(MezMuMHHs)l/p.

Proof We first note, by Jensen inequality, that

E {(MEZMMS"> 1/1 < (E >1/p. (10)

We rewrite the expectation appearing in the right hand side using integratioarts and a change
of variable as

> lIMel|”

MeM

E[HMsHp]:/O Pr{HMs||p>t}dt:Ap+p/o Pr{|Me|P > P+ API P 1ds  (11)

whereA > 0. Next, we use convexity of the function— xP, x > 0, which gives fo € (0,1)

p

p-1 p-1 S A

P A P _ - —gP p
()\ps+(1 A5 ) <)\(}\1/p) +(1 A)((l_)\>l/p> P+ AP,

This allows us to bound
p-1 p-1
Pr{|Me|P> P +AP} < Pr{HMs|]p>(7\ps+( SR
= Pr{| Mg >A" Bst(1-N)"F A} (12)

Combining Equat|ons (11) and (12), choosiAg= (1— )\) HMHHS and making the change of
variablet :)\ p S, gives

|| PrilMelP > thdt < (=N P [MIEst pA [ Pr{IMe] > Mg+ 1}t

IA

(L=N)P MR-+ PP [ pet/2M Iy

_ _ T _
(1 NP Ml NP MGy T2

— _ Tt
= i (@-nt P eaey [Toe)

where the second inequality follows by Lemma 9-(i) and the third inequality felloyva standard
result on the moments of the normal distribution, namely

/ tP- 1exp< >dt<\/§(p—2)!!g\/j(l-S-...-p—Z)g\/jpp/Z‘l.
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Summing both sides of Equation (13) owdrwe obtain that

— _ Tt
<3 Mg (-n s 1)

A direct computation gives that the right hand side of the above equationsat&minimum at

S IMe]?

MeM

A=

NI

—

NIE|

N—

N3 e
S e)

Nl

1+(5)

The result now follows by Equation (10). |

p

1

Proof of Theorem 11 Leta =1+ (3)% ,/p. As in the proof of Theorem 2 we proceed using
duality and apply Lemma 12 to the set of transformatiffis = {Mx ‘M e M}

1/p
2 n 2
< -E iXi =—FE Mxel[P
Req () < (E||3 e o [<MZM st) ]
LI . p/2\ %/P
< (Z ||Mx||H5> = (Z <.Zl”'\")“’2> )
MeM MeM \I=

< ﬂ 5 (MzM (1M ) p/z) s SO

where the last inequality is just the triangle inequality jp. |

One can verify that the leading constant in our bound is smaller than the d@eries et al.
(2010) forp > 12. Note that the bound in Theorem 11 divergesfgoing to 1 since in this cage
grows to infinity.

We conclude this section with a result, which shows that the bound in Thebharm a stability
property in the following sense: ¥/ is finite, then we can give a bound on the Rademacher com-
plexity of the unit ball infq (%) which converges to the bound in Theorem Zjas 1, regardless
of the size ofM. Only the rate of convergence is dimension dependent.

Theorem 13 Under the conditions of Theorem 11

31 [IMx|[?
Su M 24+4/In .
g3 Il ( \/ & U3 NP

‘ ‘1/p

M
Rogy () <~ L

So, asq goes to 1,p — o and we recover the bound in Theorem 2 up to a small multiplicative
constant. The key step in the proof of Theorem 13 is the following
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Lemma 14 LetM be afinite set of linear transformations N\R" — H ande = (g3, ..., €y) a vector
of orthonormal random variables with values|inl,1]. Then

1/p 5
M
E (%HMd]") < 2|a]YP supHM\|HS<2+\/anMH”\I|\IH”s2>_
MeM SURNear HS

Proof If t > 0andyy |[Me||P > tP, then there must exist sore € M such that|Me||® > tP/ ||,
which in turn implies thaf/Me|| >t/ \M\l/p. It then follows from a union bound that

—t2
Pr |y|v|s||P>tp}g Pr{ [Me|| > t/|ac|"P gexp< )
{% % { } alaf P M2

where we used the subgaussian concentration inequality Lemma 9-(i) with Using integration
by parts we have with > 0 that

1/p o
E{(%Ms'“) ] 6+/ Pr{%||MsHp>tp}dt
d
00 —t2
0+2 /exp dt
%o (4\M}2/p||Muas>

| |7* 2 -
54— — ”MHHseXp< )
3 4| M) 7P M| 2

4 [?'P &
6_{_‘6‘ <% ”MHaS) eXp( 2/p 2 > y
4| M| suyear IMIlis

where the third inequality follows from Lemma 5 and the fourth frogidér’s inequality. We now
substitute

IN

IN

IN

IN

2
eswmMllis
2

SURvear INllis

and use ¥ 1/e < 2 to arrive at the conclusion. [ |

1
5=2|M|"" sup ||M\|HS\/In
MeM

Proof of Theorem 13 Apply Lemma 12 to the set of transformatiofttx = {Mx M e M} This

gives
1/p 2
E (g ‘st‘p> < Z‘M‘l/p sup HMXHHS <2+\/In 2M HMXHHS2 ) .
Mend SURNear [INX[ls

We now proceed as in the proof of Theorem 11 to obtain the result. |
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5. Conclusion and Future Wor k

We have presented a bound on the Rademacher average for linedoriuriasses described by
infimum convolution norms which are associated with a class of bounded lipesators on a
Hilbert space. We highlighted the generality of the approach and its dimensgigpendent features.

When the bound is applied to specific casés (1, mixed ¢1/¢, norms) it recovers existing
bounds (up to small changes in the constants). The bound is however emaeband allows for
the possibility to remove the “ladj’ factor which appears in previous bounds. Specifically, we have
shown that the bound can be applied in infinite dimensional settings, prothdédhe moment
condition (3) is satisfied. We have also applied the bound to multiple kerneitgatVhile in the
standard case the bound is only slightly worse in the constants, the bourtdrigiglly smaller and
applies to the more general case in which there is a countable set of kproglded the expectation
of the sum of the kernels is bounded.

An interesting question is whether the bound presented is tight. As notedtes@tal. (2010)
the “logd” is unavoidable in the case of the Lasso. This result immediately implies thaiboudb
is also tight, since we may chooR8 = d in Equation (3).

A potential future direction of research is the application of our results ircdinéext of spar-
sity oracle inequalities. In particular, it would be interesting to modify the aisalgs_ounici et
al. (2011), in order to derive dimension independent bounds. Andathenesting scenario is the
combination of our analysis with metric entropy.
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