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Abstract

We present a data dependent generalization bound for a largeclass of regularized algorithms which
implement structured sparsity constraints. The bound can be applied to standard squared-norm
regularization, the Lasso, the group Lasso, some versions of the group Lasso with overlapping
groups, multiple kernel learning and other regularizationschemes. In all these cases competitive
results are obtained. A novel feature of our bound is that it can be applied in an infinite dimensional
setting such as the Lasso in a separable Hilbert space or multiple kernel learning with a countable
number of kernels.
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1. Introduction

We study a class of regularization methods used to learn a linear function from a finite set of ex-
amples. The regularizer is expressed as an infimum convolution which involves a setM of linear
transformations (see Equation (1) below). As we shall see, this regularizer generalizes, depending
on the choice of the setM , the regularizers used by several learning algorithms, such as ridge re-
gression, the Lasso, the group Lasso (Yuan and Lin, 2006), multiple kernel learning (Lanckriet et al.,
2004; Bach et al., 2004), the group Lasso with overlap (Obozinski et al., 2009), and the regularizers
in Micchelli et al. (2010).

We give a bound on the Rademacher average of the linear function class associated with this
regularizer. The result matches existing bounds in the above mentioned cases but also admits a
novel, dimension free interpretation. In particular, the bound applies to the Lasso in a separable
Hilbert space or to multiple kernel learning with a countable number of kernels, under certain finite
second-moment conditions.

We now introduce some necessary notation and state our main results. LetH be a real Hilbert
space with inner product〈·, ·〉 and induced norm‖ · ‖. LetM be an at most countable set of sym-
metric bounded linear operators onH such that for everyx∈H, x 6= 0, there is some linear operator
M ∈M with Mx 6= 0 and that supM∈M |||M||| < ∞, where||| · ||| is the operator norm. Define the
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function‖·‖M : H→ R+∪{∞} by

‖β‖M = inf

{

∑
M∈M

‖vM‖ : vM ∈ H, ∑
M∈M

MvM = β

}

. (1)

It is shown in Section 3.2 that the chosen notation is justified, because‖·‖M is indeed a norm on the
subspace ofH where it is finite, and the dual norm is, for everyz∈ H, given by

‖z‖M ∗ = sup
M∈M

‖Mz‖ .

The somewhat complicated definition of‖·‖M is contrasted by the simple form of the dual norm.
As an example, ifH = R

d andM = {P1, . . . ,Pd}, wherePi is the orthogonal projection on the
i-th coordinate, then the function (1) reduces to theℓ1 norm.

Using well known techniques, as described in Koltchinskii and Panchenko (2002) and Bartlett
and Mendelson (2002), our study of generalization reduces to the search for a good bound on the
empirical Rademacher complexity of a set of linear functionals with‖·‖M -bounded weight vectors

RM (x) =
2
n
E sup

β: ‖β‖M≤1

n

∑
i=1

εi 〈β,xi〉 , (2)

wherex=(x1, . . . ,xn)∈Hn is a sample vector representing observations, andε1, . . . ,εn are Rademacher
variables, mutually independent and each uniformly distributed on{−1,1}.1 Given a bound on
RM (x) we obtain uniform bounds on the estimation error, for example using the following stan-
dard result (adapted from Bartlett and Mendelson 2002), where the Lipschitz functionφ is to be
interpreted as a loss function.

Theorem 1 Let X = (X1, . . . ,Xn) be a vector of iid random variables with values in H, let X be iid
to X1, let φ : R→ [0,1] have Lipschitz constant L andδ ∈ (0,1). Then with probability at least1−δ
in the draw ofX it holds, for everyβ ∈ R

d with ‖β‖M ≤ 1, that

Eφ(〈β,X〉)≤ 1
n

n

∑
i=1

φ(〈β,Xi〉)+L RM (X)+

√

9ln2/δ
2n

.

A similar (slightly better) bound is obtained ifRM (X) is replaced by its expectationRM =
ERM (X) (see Bartlett and Mendelson 2002).

The following is the main result of this paper and leads to consistency proofsand finite sample
generalization guarantees for all algorithms which use a regularizer of theform (1). A proof is given
in Section 3.3.

Theorem 2 Let x = (x1, . . . ,xn) ∈ Hn andRM (x) be defined as in (2). Then

RM (x) ≤ 23/2

n

√

sup
M∈M

n

∑
i=1

‖Mxi‖2









2+

√

√

√

√

√

√

ln





 ∑
M∈M

∑i ‖Mxi‖2

sup
N∈M

∑ j

∥

∥Nxj
∥

∥

2















≤ 23/2

n

√

n

∑
i=1

‖xi‖2M ∗

(

2+
√

ln
∣

∣M
∣

∣

)

.

1. Our definition coincides with the one in Bartlett and Mendelson (2002), while other authors omit the factor of 2. This
is relevant when comparing the constants in different bounds.
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The second inequality follows from the first one, the inequality

sup
M∈M

n

∑
i=1

‖Mxi‖2≤
n

∑
i=1

‖xi‖2M ∗ ,

a fact which will be tacitly used in the sequel, and the observation that everysummand in the
logarithm appearing in the first inequality is bounded by 1. Of course the second inequality is
relevant only ifM is finite. In this case we can draw the following conclusion: If we have an a
priori bound on‖X‖M ∗ for some data distribution, say‖X‖M ∗ ≤C, andX = (X1, . . . ,Xn), with Xi

iid to X, then

RM (X)≤ 23/2C√
n

(

2+
√

ln
∣

∣M
∣

∣

)

,

thus passing from a data-dependent to a distribution dependent bound.In Section 2 we show that
this recovers existing results (Cortes et al., 2010; Kakade et al., 2010; Kloft et al., 2011; Meir and
Zhang, 2003; Ying and Campbell, 2009) for many regularization schemes.2

But the first bound in Theorem 2 can be considerably smaller than the second and may be finite
even ifM is infinite. This gives rise to some novel features, even in the well studied case of the
Lasso, when there is a (finite but potentially large)ℓ2-bound on the data.

Corollary 3 Under the conditions of Theorem 2 we have

RM (x)≤ 23/2

n

√

sup
M∈M

∑
i

‖Mxi‖2
(

2+

√

ln
1
n ∑

i
∑

M∈M
‖Mxi‖2

)

+
2√
n
.

A proof is given in Section 3.3. To obtain a distribution dependent bound weretain the condition
‖X‖M ∗ ≤C and replace finiteness ofM by the condition that

R2 := E ∑
M∈M

‖MX‖2 < ∞. (3)

Taking the expectation in Corollary 3 and using Jensen’s inequality then gives a bound on the ex-
pected Rademacher complexity

RM ≤
23/2C√

n

(

2+
√

lnR2
)

+
2√
n
. (4)

The key features of this result are the dimension-independence and the only logarithmic dependence
onR2, which in many applications turns out to be simplyR2 = E‖X‖2.

The rest of the paper is organized as follows. In the next section, we specialize our results to
different regularizers. In Section 3, we present the proof of Theorem 2 as well as the proof of other
results mentioned above. In Section 4, we discuss the extension of these results to theℓq case.
Finally, in Section 5, we draw our conclusions and comment on future work.

2. We note that the numerical implementation and practical application of specific cases of the regularizer described
here have been addressed in detail in a number of papers. We recommend Baldassarre et al. (2012), Obozinski et al.
(2009) and Jenatton et al. (2011) and references therein for detailedinformation on such matters. We also refer to
Baraniuk et al. (2010) and Huang et al. (2009) for related work usinggreedy methods.
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2. Examples

Before giving the examples we mention a great simplification in the definition of thenorm ‖·‖M
which occurs when the members ofM have mutually orthogonal ranges. A simple argument, given
in Proposition 8 below shows that in this case

‖β‖M = ∑
M∈M

∥

∥M+β
∥

∥ ,

whereM+ is the pseudoinverse ofM. If, in addition, every member ofM is an orthogonal projection
P, the norm further simplifies to

‖β‖M = ∑
P∈M
‖Pβ‖ ,

and the quantityR2 occurring in the second moment condition (3) simplifies to

R2 = E ∑
P∈M
‖PX‖2 = E‖X‖2 .

For the remainder of this sectionX = (X1, . . . ,Xn) will be a generic iid random vector of data
points,Xi ∈ H, andX will be a generic data variable, iid toXi . If H = R

d we write(X)k for thek-th
coordinate ofX, not to be confused withXk, which would be thek-th member of the vectorX.

2.1 The Euclidean Regularizer

In this simplest case we setM = {I}, whereI is the identity operator on the Hilbert spaceH. Then
‖β‖M = ‖β‖, ‖z‖M ∗ = ‖z‖, and the bound on the empirical Rademacher complexity becomes

RM (x)≤ 25/2

n

√

∑
i

‖xi‖2,

worse by a constant factor of 23/2 than the corresponding result in Bartlett and Mendelson (2002),
a tribute paid to the generality of our result.

2.2 The Lasso

Let us first assume thatH = R
d is finite dimensional and setM = {P1, . . . ,Pd} wherePk is the

orthogonal projection onto the 1-dimensional subspace generated by thebasis vectorek. All the
above mentioned simplifications apply and we have‖β‖M = ‖β‖1 and‖z‖M ∗ = ‖z‖∞. The bound
onRM (x) now reads

RM (x)≤ 23/2

n

√

∑
i

‖xi‖2∞
(

2+
√

lnd
)

.

If ‖X‖∞ ≤ 1 almost surely we obtain

RM (X)≤ 23/2
√

n

(

2+
√

lnd
)

,

which agrees with the bound in Kakade et al. (2010) on the dominant term (see also Bartlett and
Mendelson 2002 and Meir and Zhang 2003).
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Our last bound is useless ifd ≥ en or if d is infinite. But whenever the norm of the data has
finite second moments we can use Corollary 3 and inequality (4) to obtain

RM (X)≤ 23/2
√

n

(

2+
√

lnE‖X‖22
)

+
2√
n
.

For nontrivial resultsE‖X‖2 only needs to be subexponential inn.
We remark that a similar condition to Equation (3) for the Lasso, replacing the expectation with

the supremum overX, has been considered within the context of elastic net regularization (De Mol
et al., 2009).

2.3 The Weighted Lasso

The Lasso assigns an equal penalty to all regression coefficients, whilethere may be a priori infor-
mation on the respective significance of the different coordinates. For this reason different weight-
ings have been proposed (see, for example, Shimamura et al. 2007). Inour framework an appro-
priate set of operators isM = {α1P1, . . . ,αkPk, . . .}, with αk > 0 whereα−1

k is the penalty weight
associated with thek-th coordinate. Then

‖β‖M = ∑
k

α−1
k |βk|

and
‖z‖M ∗ = sup

k
αk |zk| .

To further illustrate the use of Corollary 3 let us assume that the underlying spaceH is infinite
dimensional (that is,H = ℓ2(N)), and make the compensating assumption thatα∈H, that is∑k α2

k =
R2 < ∞. For simplicity we also assume that supk αk ≤ 1. Then, if‖X‖∞ ≤ 1 almost surely, we have
both‖X‖M ∗ ≤ 1 and∑k α2

k (X)2
k ≤ R2. Again we obtain

RM (X)≤ 23/2
√

n

(

2+
√

lnR2
)

+
2√
n
.

So in this case the second moment bound is enforced by the weighting sequence.

2.4 The Group Lasso

Let H =R
d and let{J1, . . . ,Jr} be a partition of the index set{1, . . . ,d}. We takeM ={PJ1, . . . ,PJr}

wherePJℓ = ∑i∈Jℓ Pi is the projection onto the subspace spanned by the basis vectorei . The ranges
of thePJℓ then provide an orthogonal decomposition ofR

d and the above mentioned simplifications
also apply. We get

‖β‖M =
r

∑
ℓ=1

‖PJℓβ‖

and
‖z‖M ∗ =

r
max
ℓ=1
‖PJℓz‖ .

The algorithm which uses‖β‖M as a regularizer is called the group Lasso (see, for example, Yuan
and Lin 2006). It encourages vectorsβ whose support lies the union of a small number of groupsJℓ
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of coordinate indices. If we know that‖PJℓX‖ ≤ 1 almost surely for allℓ ∈ {1, . . . , r} then we get

RM (X)≤ 23/2
√

n

(

2+
√

ln r
)

, (5)

in complete symmetry with the Lasso and essentially the same as given in Kakade etal. (2010). If
r is prohibitively large or if different penalties are desired for differentgroups, the same remarks
apply as in the previous two sections. Just as in the case of the Lasso the second moment condition
(3) translates to the simple formE‖X‖22 < ∞.

2.5 Overlapping Groups

In the previous examples the members ofM always had mutually orthogonal ranges, which gave
a simple appearance to the norm‖β‖M . If the ranges are not mutually orthogonal, the norm has a
more complicated form. For example, in the group Lasso setting, if the groupsJℓ cover{1, . . . ,d},
but are not disjoint, we obtain the regularizer of Obozinski et al. (2009), given by

Ωoverlap(β) = inf

{

r

∑
ℓ=1

‖vℓ‖ : (vℓ) jk = 0 if k /∈ Jℓ and
r

∑
ℓ=1

vℓ = β

}

.

If ‖PJℓXi‖ ≤ 1 almost surely for allℓ ∈ {1, . . . , r} then the Rademacher complexity of the set of
linear functionals withΩoverlap(β) ≤ 1 is bounded as in (5), in complete equivalence to the bound
for the group Lasso.

The same bound also holds for the class satisfyingΩgroup(β) ≤ 1, where the functionΩgroup is
defined, for everyβ ∈ R

d, as

Ωgroup(β) =
r

∑
ℓ=1

‖PJℓβ‖

which has been proposed by Jenatton et al. (2011) and Zhao et al. (2009). To see this we only
have to show thatΩoverlap≤Ωgroupwhich is accomplished by generating a disjoint partition{J′ℓ}

r
ℓ=1

whereJ′ℓ ⊆ Jℓ, writing β = ∑r
ℓ=1PJ′ℓ

β and realizing that
∥

∥

∥
PJ′ℓ

β
∥

∥

∥
≤ ‖PJℓβ‖. The bound obtained from

this simple comparison may however be quite loose.

2.6 Regularizers Generated from Cones

Our next example considers structured sparsity regularizers as in Micchelli et al. (2010). LetΛ be a
nonempty subset of the open positive orthant inR

d and define a functionΩΛ : Rd→ R by

ΩΛ (β) =
1
2

inf
λ∈Λ

d

∑
j=1

(

β2
j

λ j
+λ j

)

.

If Λ is a convex cone, then it is shown in Micchelli et al. (2011) thatΩΛ is a norm and that the dual
norm is given by

‖z‖Λ∗ = sup







(

d

∑
j=1

µjz
2
j

)1/2

: µj = λ/‖λ‖1 with λ ∈ Λ







.
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The supremum in this formula is evidently attained on the setE (Λ) of extreme points of the closure
of {λ/‖λ‖1 : λ ∈ Λ}. Forµ∈ E (Λ) let Mµ be the diagonal matrix whose diagonal entries are those
of the vectorµj and letMΛ be the collection of matricesMΛ =

{

Mµ : µ∈ E (Λ)
}

. Then

‖z‖Λ∗ = sup
M∈MΛ

‖Mz‖ .

ClearlyMΛ is uniformly bounded in the operator norm, so ifΛ is a cone andE (Λ) is at most
countable, then‖·‖Λ∗ = ‖·‖M ∗ , ΩΛ = ‖·‖M ∗ and our bounds apply. IfE (Λ) is finite andx is a
sample then the Rademacher complexity of the class withΩΛ (β)≤ 1 is bounded by

23/2

n

√

n

∑
i=1

‖xi‖2Λ∗
(

2+
√

ln |E (Λ)|
)

.

2.7 Kernel Learning

This is the most general case to which the simplification applies: Suppose thatH is the direct sum
H = ⊕ j∈JH j of an at most countable number of Hilbert spacesH j . We setM =

{

Pj
}

j∈J , where
Pj : H→ H is the projection onH j . Then

‖β‖M = ∑
j∈J

∥

∥Pjβ
∥

∥

and
‖z‖M ∗ = sup

j∈J

∥

∥Pjz
∥

∥ .

Such a situation arises in multiple kernel learning (Bach et al., 2004; Lanckriet et al., 2004) or the
nonparametric group Lasso (Meier et al., 2009) in the following way: One has an input spaceX and
a collection

{

K j
}

j∈J of positive definite kernelsK j : X ×X → R. Let φ j : X → H j be the feature
map representation associated with kernelK j , so that, for everyx, t ∈ X K j(x, t) = 〈φ j(x),φ j(t)〉 (for
background on kernel methods see, for example, Shawe-Taylor and Cristianini 2004).

Suppose thatx = (x1, . . . ,xn) ∈ X n is a sample. Define the kernel matrixK j = (K j(xi ,xk))
n
i,k=1.

Using this notation the bound in Theorem 2 reads

R ((φ(x1), . . . ,φ(xn)))≤
23/2

n

√

sup
j∈J

trK j

(

2+

√

ln
∑ j∈J trK j

supj∈J trK j

)

.

In particular, ifJ is finite andK j(x,x)≤ 1 for everyx∈ X and j ∈ J , then the the bound reduces to

23/2
√

n

(

2+
√

ln |J |
)

,

essentially in agreement with Cortes et al. (2010), Kakade et al. (2010) and Ying and Campbell

(2009). Our leading constant of 2
√

2 is slightly better than the constant of 2
√

23
22e, given by Cortes

et al. (2010).
For infinite or prohibitively largeJ the second moment condition now becomes

E ∑
j∈J

K j (X,X)< ∞.
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We conclude this section by noting that, for every setM we may choose a set of kernels such
that empirical risk minimization with the norm‖ · ‖M is equivalent to multiple kernel learning with
kernelsKM(x, t) = 〈Mx,Mt〉, M ∈M . To see this, choose, for everyM ∈M , φM(x) = Mx. Note
however, that this may yield an overparameterization of the problem. For example, the regularizers
in Section 2.6 can be reformulated as a multiple kernel learning problem, but thisrequiresd|E(Λ)|
parameters instead ofd.

3. Proofs

We first give some notation and auxiliary results, then we prove the results announced in the intro-
duction.

3.1 Notation and Auxiliary Results

The Hilbert spaceH and the collectionM are fixed throughout the following, as is the sample size
n∈ N.

Recall that‖·‖ and 〈·, ·〉 denote the norm and inner product inH, respectively. For a linear
transformationM : Rn→ H the Hilbert-Schmidt norm is defined as

‖M‖HS=

(

n

∑
i=1

‖Mei‖2
)1/2

where{ei : i ∈ N} is the canonical basis ofRn.
We use bold letters (x, X, ε, . . . ) to denoten-tuples of objects, such as vectors or random

variables.
Let X be any space. Forx = (x1, . . . ,xn) ∈ X n, 1≤ k≤ n andy∈ X we usexk←y to denote the

object obtained fromx by replacing thek-th coordinate ofx with y. That is

xk←y = (x1, . . . ,xk−1,y,xk+1, . . . ,xn) .

The following concentration inequality, known as the bounded differenceinequality (see McDi-
armid 1998), goes back to the work of Hoeffding (1963). We only need itin the weak form stated
below.

Theorem 4 Let F : X n→ R and write

B2 =
n

∑
k=1

sup
y1,y2∈X , x∈X n

(F (xk←y1)−F (xk←y2))
2 .

Let X = (X1, . . . ,Xn) be a vector of independent random variables with values inX , and letX′ be
iid to X. Then for any t> 0

Pr
{

F (X)> EF
(

X′
)

+ t
}

≤ e−2t2/B2
.

Finally we need a simple lemma on the normal approximation:

Lemma 5 Let a,δ > 0. Then
∫ ∞

δ
exp

(−t2

2a2

)

dt ≤ a2

δ
exp

(−δ2

2a2

)

.
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Proof For t ≥ δ/a we have 1≤ at/δ. Thus

∫ ∞

δ
exp

(−t2

2a2

)

dt = a
∫ ∞

δ/a
e−t2/2dt ≤ a2

δ

∫ ∞

δ/a
te−t2/2dt =

a2

δ
exp

(−δ2

2a2

)

.

3.2 Properties of the Regularizer

In this section, we show that the regularizer in Equation (1) is indeed a normand we derive the
associated dual norm. In parallel we treat an entire class of regularizers, which relates to‖·‖M
as theℓq-norm relates to theℓ1-norm. To this end, we fix an exponentq ∈ [1,∞]. The conjugate
exponent is denotedp, with 1/q+1/p= 1.

Recall that||| · ||| denotes the operator norm. We first state the general conditions on the setM

of operators.

Condition 6 M is an at most countable set of symmetric bounded linear operators on a real sepa-
rable Hilbert space H such that

(a) For every x∈ H with x 6= 0, there exists M∈M such that Mx6= 0

(b) supM∈M |||M|||< ∞ if q = 1 and∑M∈M |||M|||p < ∞ if q > 1.

Now we defineℓq(M ) to be the set of those vectorsβ ∈ H for which the quantity

‖β‖Mq
= inf







(

∑
M∈M

‖vM‖q
)1/q

: vM ∈ H and ∑
M∈M

MvM = β







is finite. If q= 1 we drop the subscript in‖ · ‖Mq
to lighten notation. Observe that the caseq= 1

coincides with the definition given in the introduction.

Theorem 7 ℓq(M ) is a Banach space with norm‖·‖Mq
, andℓq(M ) is dense in H. IfM is finite or

H is finite-dimensional, thenℓq(M ) =H. For z∈H the norm of the linear functionalβ∈ ℓq(M ) 7→
〈β,z〉 is

‖z‖Mq∗
=















sup
M∈M

‖Mz‖ , if q = 1,

(

∑
M∈M

‖Mz‖p
)1/p

, if q > 1.

Proof LetVq(M ) = {v : v= (vM)M∈M , vM ∈ H} be the set of thoseH-valued sequences indexed
byM , for which the function

v 7→ ‖v‖Vq(M ) =

(

∑
M∈M

‖vM‖q
)1/q
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is finite. Then‖·‖Vq(M ) defines a complete norm onVq(M ), makingVq(M ) a Banach space. If

w= (wM)M∈M is anH-valued sequence indexed byM , then the linear functional

v∈ Vq(M ) 7→ ∑
M∈M

〈vM,wM〉

has norm

‖w‖Vq(M )
∗ =















sup
M∈M

‖MwM‖ , if q= 1,

(

∑
M∈M

‖vM‖p
)1/p

, if q> 1.

The verification of these claims parallels that of the standard results on Lebesgue spaces.
Now define a map

A : v∈ Vq(M ) 7→ ∑
M∈M

MvM ∈ H.

We have
‖Av‖ ≤ ∑

M∈M
|||M|||‖vM‖ .

By Condition 6(b) and Ḧolder’s inequalityA is a bounded linear transformation whose kernelK

is therefore closed, making the quotient spaceVq(M )/K into a Banach space with quotient norm

‖w+K ‖Q = inf
{

‖v‖Vq(M ) : w−v∈K
}

. The mapA induces an isomorphism

Â : w+K ∈ V q(M )/K 7→Aw∈ H.

The range of̂A is ℓq(M ) and becomes a Banach space with the norm
∥

∥Â−1(β)
∥

∥

Q. But

∥

∥Â−1(β)
∥

∥

Q = inf
{

‖v‖Vq(M ) : Â−1(β)−v∈K
}

= inf
{

‖v‖Vq(M ) : β = Av
}

= ‖β‖Mq
,

so‖.‖Mq
is a norm makingℓq(M ) into a Banach space.

Suppose thatw∈ H is orthogonal toℓq(M ). Let M0 ∈M be arbitrary and definev= (vM) by
vM0 = M0w andvM = 0 for all otherM. Then

0= 〈w,Av〉=
〈

w,M2
0w
〉

= ‖M0w‖2 ,
soM0 = 0. This holds for anyM0 ∈M , so Condition 6(a) implies thatw= 0. By the Hahn Banach
Theoremℓq(M ) is therefore dense inH. If M is finite orH is finite-dimensional, thenℓq(M ) is
also finite-dimensional and closed and thusℓq(M ) = H.

For the last assertion letz∈ H. Then

‖z‖M ∗
q

= sup
{

〈z,β〉 : ‖β‖Mq
≤ 1
}

= sup
{

〈z,Av〉 : ‖v‖Vq(M ) ≤ 1
}

= sup
{

〈A∗z,v〉 : ‖v‖Vq(M ) ≤ 1
}

= ‖A∗z‖Vq(M )
∗

= sup
M∈M

‖Mz‖ if q= 1 or

(

∑
M∈M

‖Mz‖p

)1/p

if q> 1.
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Proposition 8 If the ranges of the members ofM are mutually orthogonal then forβ ∈ ℓ1(M )

‖β‖M = ∑
M∈M

∥

∥M+β
∥

∥ ,

where M+ is the pseudoinverse of M.

Proof The ranges of the members ofM provide an orthogonal decomposition ofH, so

β = ∑
M∈M

M
(

M+β
)

,

where we used the fact thatMM+ is the orthogonal projection onto the range ofM. TakingvM =
M+β this implies that‖β‖M ≤∑M∈M ‖M+β‖. On the other hand, ifβ = ∑N∈M NvN, then, applying
M+ to this identity we see thatM+MvM = M+β for all M, so

∑
M∈M

‖vM‖ ≥ ∑
M∈M

∥

∥M+MvM
∥

∥= ∑
M∈M

∥

∥M+β
∥

∥ ,

which shows the reverse inequality.

3.3 Bounds for the ℓ1(M )-Norm Regularizer

We use the bounded difference inequality to derive a concentration inequality for linearly trans-
formed random vectors.

Lemma 9 Let ε = (ε1, . . . ,εn) be a vector of independent real random variables with−1≤ εi ≤ 1,
andε′ iid to ε. Suppose that M is a linear transformation M: Rn→ H.

(i) Then for t> 0 we have

Pr
{

‖Mε‖ ≥ E
∥

∥Mε′
∥

∥+ t
}

≤ exp

(

−t2

2‖M‖2HS

)

.

(ii) If ε is orthonormal (satisfyingEεiε j = δi j ), then

E‖Mε‖ ≤ ‖M‖HS. (6)

and, for every r> 0,

Pr{‖Mε‖> t} ≤ e1/r exp

(

−t2

(2+ r)‖M‖2HS

)

.

681



MAURER AND PONTIL

Proof (i) DefineF : [−1,1]n→ R by F (x) = ‖Mx‖. By the triangle inequality

n

∑
k=1

sup
y1,y2∈[−1,1], x∈[−1,1]n

(F (xk←y1)−F (xk←y2))
2

≤
n

∑
k=1

sup
y1,y2∈[−1,1], x∈[−1,1]n

‖M (xk←y1−xk←y2)‖2

=
n

∑
k=1

sup
y1,y2∈[−1,1]

(y1−y2)
2‖Mek‖2

≤ 4‖M‖2HS.

The result now follows from the bounded difference inequality (Theorem 4).
(ii) If ε is orthonormal then it follows from Jensen’s inequality that

E‖Mε‖ ≤



E

∥

∥

∥

∥

∥

n

∑
i=1

εiMei

∥

∥

∥

∥

∥

2




1/2

=

(

n

∑
i=1

‖Mei‖2
)1/2

= ‖M‖HS.

For the second assertion of (ii) first note that from calculus we get(t−1)2/2− t2/(2+ r)≥−1/r
for all t ∈ R. This implies that

e−(t−1)2/2≤ e1/re−t2/(2+r). (7)

Since 1/r ≥ 1/(2+ r) the inequality to be proved is trivial fort ≤ ‖M‖HS. If t > ‖M‖HS then, using
E‖Mε‖ ≤ ‖M‖HS, we havet−E‖Mε‖ ≥ t−‖M‖HS> 0, so by part (i) and (7) we obtain

Pr{‖Mε‖ ≥ t} = Pr{‖Mε‖ ≥ E‖Mε‖+(t−E‖Mε‖)}

≤ exp

(

−(t−E‖Mε‖)2

2‖M‖2HS

)

≤ exp

(

−(t−‖M‖HS)
2

2‖M‖2HS

)

= exp

(

−(t/‖M‖HS−1)2

2

)

≤ e1/re−(t/‖M‖HS)
2/(2+r)

= e1/r exp

(

−t2

(2+ r)‖M‖2HS

)

.

We now use integration by parts, a union bound and the above concentration inequality to derive
a bound on the expectation of the supremum of the norms‖Mε‖. This is the essential step in the
proof of Theorem 2. It is by no means a new technique, in fact it appears many times in the book by
Ledoux and Talagrand (1991), but compared to the combinatorial approach by Cortes et al. (2010)
it seems more suited to the study of the problem at hand, and gives insights intothe fine structure of
the logarithmic factor appearing in bounds for Lasso-like methods.
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Lemma 10 Let M be an at most countable set of linear transformations M: Rn→ H and ε =
(ε1, . . . ,εn) a vector of orthonormal random variables (satisfyingEεiε j = δi j ) with values in[−1,1].
Then

E sup
M∈M

‖Mε‖ ≤
√

2 sup
M∈M

‖M‖HS

(

2+

√

ln
∑M∈M ‖M‖2HS

supM∈M ‖M‖2HS

)

.

Proof To lighten notation we abbreviateM∞ := supM∈M ‖M‖HS below. We now use integration by
parts

E sup
M∈M

‖Mε‖ =
∫ ∞

0
Pr

{

sup
M∈M

‖Mε‖> t

}

dt

≤ M∞ +δ+
∫ ∞

M∞+δ
Pr

{

sup
M∈M

‖Mε‖> t

}

dt

≤ M∞ +δ+ ∑
M∈M

∫ ∞

M∞+δ
Pr{‖Mε‖> t}dt,

where we have introduced a parameterδ ≥ 0. The first inequality above follows from the fact that
probabilities never exceed 1, and the second from a union bound. Now for anyM ∈M we can make
a change of variables and use (6), which givesE‖Mε‖ ≤ ‖M‖HS≤M∞, so that

∫ ∞

M∞+δ
Pr{‖Mε‖> t}dt ≤

∫ ∞

δ
Pr{‖Mε‖> E‖Mε‖+ t}dt

≤
∫ ∞

δ
exp

(

−t2

2‖M‖2HS

)

dt

≤ ‖M‖2HS

δ
exp

(

−δ2

2‖M‖2HS

)

,

where the second inequality follows from Lemma 9-(i), and the third from Lemma5. Substitution
in the previous chain of inequalities and using Hoelder’s inequality (in theℓ1/ℓ∞-version) give

E sup
M∈M

‖Mε‖ ≤M∞ +δ+
1
δ

(

∑
M∈M

‖M‖2HS

)

exp

( −δ2

2M 2
∞

)

. (8)

We now set

δ =M∞

√

√

√

√2ln

(

e
∑M∈M ‖M‖2HS

M 2
∞

)

.

Thenδ ≥ 0 as required. The substitution makes the last term in (8) smaller thanM∞/
(

e
√

2
)

, and

since 1+1/
(

e
√

2
)

<
√

2, we obtain

E sup
M∈M

‖Mε‖ ≤
√

2M∞



1+

√

√

√

√ln

(

e∑M∈M ‖M‖2HS

M 2
∞

)



 .
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Finally we use
√

lnes≤ 1+
√

lns for s≥ 1.

Proof of Theorem 2 Let ε = (ε1, . . . ,εn) be a vector of iid Rademacher variables. ForM ∈M we
useMx to denote the linear transformationMx : Rn→H given by(Mx)y = ∑n

i=1(Mxi)yi . We have

RM (x) =
2
n
E sup

β:‖β‖M≤1

〈

β,
n

∑
i=1

εixi

〉

≤ 2
n
E

∥

∥

∥

∥

∥

n

∑
i=1

εixi

∥

∥

∥

∥

∥

M ∗

=
2
n
E sup

M∈M
‖Mxε‖ .

Applying Lemma 10 to the set of transformationsM x =
{

Mx : M ∈M
}

gives

RM (x)≤ 23/2supM∈M ‖Mx‖HS

n

(

2+

√

ln
∑M∈M ‖Mx‖2HS

supM∈M ‖Mx‖2HS

)

.

Substitution of‖Mx‖2HS= ∑n
i=1‖Mxi‖2 gives the first inequality of Theorem 2 and

sup
M∈M

‖Mx‖2HS≤
n

∑
i=1

sup
M∈M

‖Mxi‖2 =
n

∑
i=1

‖xi‖2M ∗

gives the second inequality.

Proof of Corollary 3 From calculus we find thatt ln t ≥−1/e for all t > 0. ForA,B> 0 andn∈ N

this implies that

Aln
B
A
= n[(A/n) ln(B/n)− (A/n) ln(A/n)]≤ Aln(B/n)+n/e. (9)

Now multiply out the first inequality of Theorem 2 and use (9) with

A= sup
M∈M

n

∑
i=1

‖Mxi‖2 andB= ∑
M∈M

n

∑
i=1

‖Mxi‖2 .

Finally use
√

a+b≤√a+
√

b for a,b> 0 and the fact that 23/2/
√

e≤ 2.

4. The ℓq(M ) Case

In this section we give bounds for theℓq(M )-norm regularizers, withq> 1.
We give two results, which can be applied to cases analogous to those in Section 2. The first

result is essentially equivalent to Cortes et al. (2010), Kakade et al. (2010) and Kloft et al. (2011)
and is presented for completeness. The second result is not dimension free, but it approaches the
bound in Theorem 2 for arbitrarily large dimensions. The proofs are analogous to the proof of
Theorem 2.

Theorem 11 Let x be a sample andRMq
(x) the empirical Rademacher complexity of the class of

linear functions parameterized byβ with ‖β‖Mq
≤ 1. Then for1< q≤ 2

RMq
(x)≤ 2

n

(

1+
(π

2

)
1

2p√
p

)

√

n

∑
i=1

‖xi‖2M ∗
q
.
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The proof is based on the following

Lemma 12 Let M be an at most countable set of linear transformations M: Rn→ H and ε =
(ε1, . . . ,εn) a vector of orthonormal random variables (satisfyingEεiε j = δi j ) with values in[−1,1].
Then for p≥ 2

E





(

∑
M∈M

‖Mε‖p

)1/p


≤
(

1+
(π

2

)
1

2p√
p

)

(

∑
M∈M

‖M‖p
HS

)1/p

.

Proof We first note, by Jensen inequality, that

E





(

∑
M∈M

‖Mε‖p

)1/p


≤
(

E

[

∑
M∈M

‖Mε‖p

])1/p

. (10)

We rewrite the expectation appearing in the right hand side using integration by parts and a change
of variable as

E [‖Mε‖p] =
∫ ∞

0
Pr{‖Mε‖p > t}dt = Ap+ p

∫ ∞

0
Pr{‖Mε‖p > sp+Ap}sp−1ds (11)

whereA≥ 0. Next, we use convexity of the functionx 7→ xp, x≥ 0, which gives forλ ∈ (0,1)

(

λ
p−1

p s+(1−λ)
p−1

p A
)p
≤ λ

( s

λ1/p

)p
+(1−λ)

(

A

(1−λ)1/p

)p

= sp+Ap.

This allows us to bound

Pr{‖Mε‖p > sp+Ap} ≤ Pr
{

‖Mε‖p >
(

λ
p−1

p s+(1−λ)
p−1

p A
)p}

= Pr
{

‖Mε‖> λ
p−1

p s+(1−λ)
p−1

p A
}

. (12)

Combining Equations (11) and (12), choosingA = (1−λ)
1−p

p ‖M‖HS and making the change of

variablet = λ
p−1

p s, gives
∫ ∞

0
Pr{‖Mε‖p > t}dt ≤ (1−λ)1−p‖M‖p

HS+ pλ1−p
∫ ∞

0
Pr{‖Mε‖> ‖M‖HS+ t} t p−1dt

≤ (1−λ)1−p‖M‖p
HS+ pλ1−p

∫ ∞

0
t1−pe−t2/2‖M‖2HSdt

≤ (1−λ)1−p‖M‖p
HS+ pλ1−p‖M‖p

HS

√

π
2

pp/2−1

= ‖M‖p
HS

(

(1−λ)1−p+λ1−p

√

π
2

pp/2
)

where the second inequality follows by Lemma 9-(i) and the third inequality follows by a standard
result on the moments of the normal distribution, namely

∫ ∞

0
t p−1exp

(−t2

2

)

dt ≤
√

π
2
(p−2)!! ≤

√

π
2
(1·3· . . . · p−2)≤

√

π
2

pp/2−1.
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Summing both sides of Equation (13) overM we obtain that

E

[

∑
M∈M

‖Mε‖p

]

≤∑
M

‖M‖p
HS

(

(1−λ)1−p+λ1−p

√

π
2

pp/2
)

.

A direct computation gives that the right hand side of the above equation attains its minimum at

λ =
(π

2)
1

2p p
1
2

1+(π
2)

1
2p p

1
2

.

The result now follows by Equation (10).

Proof of Theorem 11 Let α = 1+
(π

2

) 1
2p
√

p. As in the proof of Theorem 2 we proceed using
duality and apply Lemma 12 to the set of transformationsM x =

{

Mx : M ∈M
}

,

RMq
(x) ≤ 2

n
E

∥

∥

∥

∥

∥

n

∑
i=1

εixi

∥

∥

∥

∥

∥

M ∗
q

=
2
n
E





(

∑
M∈M

‖Mxε‖p

)1/p




≤ 2α
n

(

∑
M∈M

‖Mx‖p
HS

)1/p

=
2α
n

√

√

√

√

√



 ∑
M∈M

(

n

∑
i=1

‖Mxi‖2
)p/2





2/p

≤ 2α
n

√

√

√

√

n

∑
i=1

(

∑
M∈M

(

‖Mxi‖2
)p/2

)2/p

=
2α
n

√

n

∑
i=1

‖xi‖2Mq∗
,

where the last inequality is just the triangle inequality inℓp/2.

One can verify that the leading constant in our bound is smaller than the one inCortes et al.
(2010) forp> 12. Note that the bound in Theorem 11 diverges forq going to 1 since in this casep
grows to infinity.

We conclude this section with a result, which shows that the bound in Theorem2 has a stability
property in the following sense: IfM is finite, then we can give a bound on the Rademacher com-
plexity of the unit ball inℓq(M ) which converges to the bound in Theorem 2 asq→ 1, regardless
of the size ofM . Only the rate of convergence is dimension dependent.

Theorem 13 Under the conditions of Theorem 11

RMq
(x)≤ 4

∣

∣M
∣

∣

1/p

n

√

sup
M∈M

∑
i

‖Mxi‖2
(

2+

√

ln∑
M

∑i ‖Mxi‖2

supN∈M ∑i ‖Nxi‖2

)

.

So, asq goes to 1,p→ ∞ and we recover the bound in Theorem 2 up to a small multiplicative
constant. The key step in the proof of Theorem 13 is the following
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Lemma 14 LetM be a finite set of linear transformations M:Rn→H andε= (ε1, . . . ,εn) a vector
of orthonormal random variables with values in[−1,1]. Then

E





(

∑
M

‖Mε‖p

)1/p


≤ 2
∣

∣M
∣

∣

1/p
sup

M∈M
‖M‖HS

(

2+

√

ln
∑M ‖M‖2HS

supN∈M ‖N‖2HS

)

.

Proof If t ≥ 0 and∑M ‖Mε‖p > t p, then there must exist someM ∈M such that‖Mε‖p > t p/
∣

∣M
∣

∣,

which in turn implies that‖Mε‖> t/
∣

∣M
∣

∣

1/p
. It then follows from a union bound that

Pr

{

∑
M

‖Mε‖p > t p

}

≤∑
M

Pr
{

‖Mε‖> t/
∣

∣M
∣

∣

1/p
}

≤ exp

(

−t2

4
∣

∣M
∣

∣

2/p‖M‖2HS

)

,

where we used the subgaussian concentration inequality Lemma 9-(ii) withr = 2. Using integration
by parts we have withδ≥ 0 that

E





(

∑
M

‖Mε‖p

)1/p


 ≤ δ+
∫ ∞

δ
Pr

{

∑
M

‖Mε‖p > t p

}

dt

≤ δ+2∑
M

∫ ∞

δ
exp

(

−t2

4
∣

∣M
∣

∣

2/p‖M‖2HS

)

dt

≤ δ+
4
∣

∣M
∣

∣

2/p

δ ∑
M

‖M‖2HSexp

(

−δ2

4
∣

∣M
∣

∣

2/p‖M‖2HS

)

≤ δ+
4
∣

∣M
∣

∣

2/p

δ

(

∑
M

‖M‖2HS

)

exp

(

−δ2

4
∣

∣M
∣

∣

2/p
supM∈M ‖M‖2HS

)

,

where the third inequality follows from Lemma 5 and the fourth from Hölder’s inequality. We now
substitute

δ = 2
∣

∣M
∣

∣

1/p
sup

M∈M
‖M‖HS

√

ln
e∑M ‖M‖2HS

supN∈M ‖N‖2HS

and use 1+1/e≤ 2 to arrive at the conclusion.

Proof of Theorem 13 Apply Lemma 12 to the set of transformationsM x =
{

Mx : M ∈M
}

. This
gives

E





(

∑
M

‖Mxε‖p

)1/p


≤ 2
∣

∣M
∣

∣

1/p
sup

M∈M
‖Mx‖HS

(

2+

√

ln
∑M ‖Mx‖2HS

supN∈M ‖Nx‖2HS

)

.

We now proceed as in the proof of Theorem 11 to obtain the result.
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5. Conclusion and Future Work

We have presented a bound on the Rademacher average for linear function classes described by
infimum convolution norms which are associated with a class of bounded linear operators on a
Hilbert space. We highlighted the generality of the approach and its dimensionindependent features.

When the bound is applied to specific cases (ℓ2, ℓ1, mixed ℓ1/ℓ2 norms) it recovers existing
bounds (up to small changes in the constants). The bound is however more general and allows for
the possibility to remove the “logd” factor which appears in previous bounds. Specifically, we have
shown that the bound can be applied in infinite dimensional settings, providedthat the moment
condition (3) is satisfied. We have also applied the bound to multiple kernel learning. While in the
standard case the bound is only slightly worse in the constants, the bound is potentially smaller and
applies to the more general case in which there is a countable set of kernels, provided the expectation
of the sum of the kernels is bounded.

An interesting question is whether the bound presented is tight. As noted in Cortes et al. (2010)
the “logd” is unavoidable in the case of the Lasso. This result immediately implies that our bound
is also tight, since we may chooseR2 = d in Equation (3).

A potential future direction of research is the application of our results in thecontext of spar-
sity oracle inequalities. In particular, it would be interesting to modify the analysis in Lounici et
al. (2011), in order to derive dimension independent bounds. Anotherinteresting scenario is the
combination of our analysis with metric entropy.
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