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Abstract

In this paper we propose efficient algorithms for solving constrained online convex optimization

problems. Our motivation stems from the observation that most algorithms proposed for online

convex optimization require a projection onto the convex set K from which the decisions are made.

While the projection is straightforward for simple shapes (e.g., Euclidean ball), for arbitrary com-

plex sets it is the main computational challenge and may be inefficient in practice. In this paper,

we consider an alternative online convex optimization problem. Instead of requiring that decisions

belong to K for all rounds, we only require that the constraints, which define the set K , be satis-

fied in the long run. By turning the problem into an online convex-concave optimization problem,

we propose an efficient algorithm which achieves O(
√

T ) regret bound and O(T 3/4) bound on the

violation of constraints. Then, we modify the algorithm in order to guarantee that the constraints

are satisfied in the long run. This gain is achieved at the price of getting O(T 3/4) regret bound.

Our second algorithm is based on the mirror prox method (Nemirovski, 2005) to solve variational

inequalities which achieves O(T 2/3) bound for both regret and the violation of constraints when the

domain K can be described by a finite number of linear constraints. Finally, we extend the results

to the setting where we only have partial access to the convex set K and propose a multipoint bandit

feedback algorithm with the same bounds in expectation as our first algorithm.

Keywords: online convex optimization, convex-concave optimization, bandit feedback, varia-

tional inequality

1. Introduction

Online convex optimization has recently emerged as a primitive framework for designing efficient

algorithms for a wide variety of machine learning applications (Cesa-Bianchi and Lugosi, 2006).

In general, an online convex optimization problem can be formulated as a repeated game between

a learner and an adversary: at each iteration t, the learner first presents a solution xt ∈ K , where

K ⊆ Rd is a convex domain representing the solution space; it then receives a convex function

ft(x) : K 7→ R+ and suffers the loss ft(xt) for the submitted solution xt . The objective of the learner

is to generate a sequence of solutions xt ∈ K , t = 1,2, · · · ,T that minimizes the regret RT defined

as
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RT =
T

∑
t=1

ft(xt)−min
x∈K

T

∑
t=1

ft(x). (1)

Regret measures the difference between the cumulative loss of the learner’s strategy and the mini-

mum possible loss had the sequence of loss functions been known in advance and the learner could

choose the best fixed action in hindsight. When RT is sub-linear in the number of rounds, that is,

o(T ), we call the solution Hannan consistent (Cesa-Bianchi and Lugosi, 2006), implying that the

learner’s average per-round loss approaches the average per-round loss of the best fixed action in

hindsight. It is noticeable that the performance bound must hold for any sequence of loss functions,

and in particular if the sequence is chosen adversarially.

Many successful algorithms have been developed over the past decade to minimize the regret

in the online convex optimization. The problem was initiated in the remarkable work of Zinkevich

(2003) which presents an algorithm based on gradient descent with projection that guarantees a re-

gret of O(
√

T ) when the set K is convex and the loss functions are Lipschitz continuous within the

domain K . In Hazan et al. (2007) and Shalev-Shwartz and Kakade (2008) algorithms with logarith-

mic regret bound were proposed for strongly convex loss functions. In particular, the algorithm in

Hazan et al. (2007) is based on online Newton step and covers the general class of exp-concave loss

functions. Notably, the simple gradient based algorithm also achieves an O(logT ) regret bound for

strongly convex loss functions with an appropriately chosen step size. Bartlett et al. (2007) general-

izes the results in previous works to the setting where the algorithm can adapt to the curvature of the

loss functions without any prior information. A modern view of these algorithms casts the problem

as the task of following the regularized leader (Rakhlin, 2009). In Abernethy et al. (2009), using

game-theoretic analysis, it has been shown that both O(
√

T ) for Lipschitz continuous and O(logT )
for strongly convex loss functions are tight in the minimax sense.

Examining the existing algorithms, most of the techniques usually require a projection step

at each iteration in order to get back to the feasible region. For the performance of these online

algorithms, the computational cost of the projection step is of crucial importance. To motivate

the setting addressed in this paper, let us first examine a popular online learning algorithm for

minimizing the regret RT based on the online gradient descent (OGD) method (Zinkevich, 2003).

At each iteration t, after receiving the convex function ft(x), the learner computes the gradient

∇ ft(xt) and updates the solution xt by solving the following optimization problem

xt+1 = ΠK (xt −η∇ ft(xt)) = argmin
x∈K

‖x−xt +η∇ ft(xt)‖2 , (2)

where ΠK (·) denotes the projection onto K and η > 0 is a predefined step size. Despite the sim-

plicity of the OGD algorithm, the computational cost per iteration is crucial for its applicability. For

general convex domains, solving the optimization problem in (2) is an offline convex optimization

problem by itself and can be computationally expensive. For example, when one envisions a posi-

tive semidefinitive cone in applications such as distance metric learning and matrix completion, the

full eigen-decomposition of a matrix is required to project the updated solutions back into the cone.

Recently several efficient algorithms have been developed for projection onto specific domains, for

example, ℓ1 ball (Duchi et al., 2008; Liu and Ye, 2009); however, when the domain K is complex,

the projection step is a more involved task or computationally burdensome.
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To tackle the computational challenge arising from the projection step, we consider an alterna-

tive online learning problem. Instead of requiring xt ∈ K , we only require the constraints, which

define the convex domain K , to be satisfied in a long run. Then, the online learning problem be-

comes a task to find a sequence of solutions xt , t ∈ [T ] that minimizes the regret defined in (1), under

the long term constraints, that is, ∑T
t=1 xt/T ∈ K . We refer to this problem as online learning with

long term constraints. In other words, instead of solving the projection problem in (2) on each

round, we allow the learner to make decisions at some iterations which do not belong to the set K ,

but the overall sequence of chosen decisions must obey the constraints at the end by a vanishing

convergence rate.

From a different perspective, the proposed online optimization with long term constraints setup

is reminiscent of regret minimization with side constraints or constrained regret minimization ad-

dressed in Mannor and Tsitsiklis (2006), motivated by applications in wireless communication. In

regret minimization with side constraints, beyond minimizing regret, the learner has some side con-

straints that need to be satisfied on average for all rounds. Unlike our setting, in learning with side

constraints, the set K is controlled by adversary and can vary arbitrarily from trial to trial. It has

been shown that if the convex set is affected by both decisions and loss functions, the minimax

optimal regret is generally unattainable online (Mannor et al., 2009).

One interesting application of the constrained regret minimization is multi-objective online clas-

sification where the learner aims at simultaneously optimizing more than one classification perfor-

mance criteria. In the simple two objective online classification considered in Bernstein et al. (2010),

the goal of the online classifier is to maximize the average true positive classification rate with an

additional performance guarantee in terms of the false positive rate. Following the Neyman-Pearson

risk, the intuitive approach to tackle this problem is to optimize one criterion (i.e., maximizing the

true positive rate) subject to explicit constraint on the other objective (i.e., false positive rate) that

needs to be satisfied on average for the sequence of decisions. The constrained regret matching

(CRM) algorithm, proposed in Bernstein et al. (2010), efficiently solves this problem by relaxing

the objective under mild assumptions on the single-stage constraint. The main idea of the CRM

algorithm is to incorporate the penalty, that should be paid by the learner to satisfy the constraint,

in the objective (i.e., true positive rate) by subtracting a positive constant at each decision step. It

has been shown that the CRM algorithm asymptotically satisfies the average constraint (i.e., false

positive rate) provided that the relaxation constant is above a certain threshold.

Finally, it is worth mentioning that the proposed setting can be used in certain classes of online

learning such as online-to-batch conversion (Cesa-Bianchi et al., 2004), where it is sufficient to

guarantee that constraints are satisfied in the long run. More specifically, under the assumption

that received examples are i.i.d samples, the solution for batch learning is to average the solutions

obtained over all the trials. As a result, if the long term constraint is satisfied, it is guaranteed that

the average solution will belong to the domain K .

In this paper, we describe and analyze a general framework for solving online convex optimiza-

tion with long term constraints. We first show that a direct application of OGD fails to achieve

a sub-linear bound on the violation of constraints and an O(
√

T ) bound on the regret. Then, by

turning the problem into an online convex-concave optimization problem, we propose an efficient

algorithm which is an adaption of OGD for online learning with long term constraints. The proposed

algorithm achieves the same O(
√

T ) regret bound as the general setting and O(T 3/4) bound for the

violation of constraints. We show that by using a simple trick we can turn the proposed method

into an algorithm which exactly satisfies the constraints in the long run by achieving O(T 3/4) re-
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gret bound. When the convex domain K can be described by a finite number of linear constraints,

we propose an alternative algorithm based on the mirror prox method (Nemirovski, 2005), which

achieves O(T 2/3) bound for both regret and the violation of constraints. Our framework also han-

dles the cases when we do not have full access to the domain K except through a limited number of

oracle evaluations. In the full-information version, the decision maker can observe the entire con-

vex domain K , whereas in a partial-information (a.k.a bandit setting) the decision maker may only

observe the cost of the constraints defining the domain K at limited points. We show that we can

generalize the proposed OGD based algorithm to this setting by only accessing the value oracle for

domain K at two points, which achieves the same bounds in expectation as the case that has a full

knowledge about the domain K . In summary, the present work makes the following contributions:

• A general theorem that shows, in online setting, a simple penalty based method attains linear

bound O(T ) for either the regret or the long term violation of the constraints and fails to

achieve sub-linear bound for both regret and the long term violation of the constraints at the

same time.

• A convex-concave formulation of online convex optimization with long term constraints, and

an efficient algorithm based on OGD that attains a regret bound of O(T 1/2), and O(T 3/4)
violation of the constraints.

• A modified OGD based algorithm for online convex optimization with long term constraints

that has no constraint violation but O(T 3/4) regret bound.

• An algorithm for online convex optimization with long term constraints based on the mirror

prox method that achieves O(T 2/3) regret and constraint violation.

• A multipoint bandit version of the basic algorithm with O(T 1/2) regret bound and O(T 3/4)
violation of the constraints in expectation by accessing the value oracle for the convex set K

at two points.

The remainder of the paper is structured as follows: In Section 3, we first examine a simple penalty

based strategy and show that it fails to attain sub-linear bound for both regret and long term violation

of the constraints. Then, we formulate regret minimization as an online convex-concave optimiza-

tion problem and apply the OGD algorithm to solve it. Our first algorithm allows the constraints

to be violated in a controlled way. It is then modified to have the constraints exactly satisfied in

the long run. Section 4 presents our second algorithm which is an adaptation of the mirror prox

method. Section 5 generalizes the online convex optimization with long term constraints problem

to the setting where we only have a partial access to the convex domain K . Section 6 concludes the

work with a list of open questions.

2. Notation and Setting

Before proceeding, we define the notations used throughout the paper and state the assumptions

made for the analysis of algorithms. Vectors are shown by lower case bold letters, such as x ∈ Rd .

Matrices are indicated by upper case letters such as A and their pseudoinverse is represented by

A†. We use [m] as a shorthand for the set of integers {1,2, . . . ,m}. Throughout the paper we

denote by ‖ · ‖ and ‖ · ‖1 the ℓ2 (Euclidean) norm and ℓ1-norm, respectively. We use E and Et to
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denote the expectation and conditional expectation with respect to all randomness in early t − 1

trials, respectively. To facilitate our analysis, we assume that the domain K can be written as an

intersection of a finite number of convex constraints, that is,

K = {x ∈ Rd : gi(x)≤ 0, i ∈ [m]},

where gi(·), i ∈ [m], are Lipschitz continuous functions. Like many other works for online convex

optimization such as Flaxman et al. (2005), we assume that K is a bounded domain, that is, there

exist constants R > 0 and r < 1 such that K ⊆ RB and rB ⊆ K where B denotes the unit ℓ2 ball

centered at the origin. For the ease of notation, we use B = RB.

We focus on the problem of online convex optimization, in which the goal is to achieve a low

regret with respect to a fixed decision on a sequence of loss functions. The difference between the

setting considered here and the general online convex optimization is that, in our setting, instead of

requiring xt ∈ K , or equivalently gi(xt) ≤ 0, i ∈ [m], for all t ∈ [T ], we only require the constraints

to be satisfied in the long run, namely ∑T
t=1 gi(xt) ≤ 0, i ∈ [m]. Then, the problem becomes to find

a sequence of solutions xt , t ∈ [T ] that minimizes the regret defined in (1), under the long term

constraints ∑T
t=1 gi(xt) ≤ 0, i ∈ [m]. Formally, we would like to solve the following optimization

problem online,

min
x1,...,xT∈B

T

∑
t=1

ft(xt)−min
x∈K

T

∑
t=1

ft(x) s.t.
T

∑
t=1

gi(xt)≤ 0 , i ∈ [m]. (3)

For simplicity, we will focus on a finite-horizon setting where the number of rounds T is known

in advance. This condition can be relaxed under certain conditions, using standard techniques (see,

e.g., Cesa-Bianchi and Lugosi, 2006). Note that in (3), (i) the solutions come from the ball B ⊇ K

instead of K and (ii) the constraint functions are fixed and are given in advance.

Like most online learning algorithms, we assume that both loss functions and the constraint

functions are Lipschitz continuous, that is, there exists constants L f and Lg such that | ft(x)−
ft(x

′)| ≤ L f ‖x− x′‖, |gi(x)− gi(x
′)| ≤ Lg‖x− x′‖ for any x ∈ B and x′ ∈ B , i ∈ [m]. For sim-

plicity of analysis, we use G = max{L f ,Lg} and

F = max
t∈[T ]

max
x,x′∈K

ft(x)− ft(x
′)≤ 2L f R,

D = max
i∈[m]

max
x∈B

gi(x)≤ LgR.

Finally, we define the notion of a Bregman divergence. Let φ(·) be a strictly convex function

defined on a convex set K . The Bregman divergence between x and x′ is defined as Bφ(x,x
′) =

φ(x)−φ(x′)− (x−x′)⊤∇φ(x′) which measures how much the function φ(·) deviates at x from it’s

linear approximation at x′.

3. Online Convex Optimization with Long Term Constraints

In this section we present and analyze our gradient descent based algorithms for online convex

optimization problem with long term constraints. We first describe an algorithm which is allowed

to violate the constraints and then, by applying a simple trick, we propose a variant of the first

algorithm which exactly satisfies the constraints in the long run.
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Before we state our formulation and algorithms, let us review a few alternative techniques that

do not need explicit projection. A straightforward approach is to introduce an appropriate self-

concordant barrier function for the given convex set K and add it to the objective function such

that the barrier diverges at the boundary of the set. Then we can interpret the resulting optimization

problem, on the modified objective functions, as an unconstrained minimization problem that can

be solved without projection steps. Following the analysis in Abernethy et al. (2012), with an

appropriately designed procedure for updating solutions, we could guarantee a regret bound of

O(
√

T ) without the violation of constraints. A similar idea is used in Abernethy et al. (2008) for

online bandit learning and in Narayanan and Rakhlin (2010) for a random walk approach for regret

minimization which, in fact, translates the issue of projection into the difficulty of sampling. Even

for linear Lipschitz cost functions, the random walk approach requires sampling from a Gaussian

distribution with covariance given by the Hessian of the self-concordant barrier of the convex set K

that has the same time complexity as inverting a matrix. The main limitation with these approaches

is that they require computing the Hessian matrix of the objective function in order to guarantee that

the updated solution stays within the given domain K . This limitation makes it computationally

unattractive when dealing with high dimensional data. In addition, except for well known cases, it

is often unclear how to efficiently construct a self-concordant barrier function for a general convex

domain.

An alternative approach for online convex optimization with long term constraints is to introduce

a penalty term in the loss function that penalizes the violation of constraints. More specifically, we

can define a new loss function f̂t(·) as

f̂t(x) = ft(x)+δ
m

∑
i=1

[gi(x)]+, (4)

where [z]+ = max(0,1− z) and δ > 0 is a fixed positive constant used to penalize the violation of

constraints. We then run the standard OGD algorithm to minimize the modified loss function f̂t(·).
The following theorem shows that this simple strategy fails to achieve sub-linear bound for both

regret and the long term violation of constraints at the same time.

Theorem 1 Given δ > 0, there always exists a sequence of loss functions { ft(x)}T
t=1 and a con-

straint function g(x) such that either ∑T
t=1 ft(xt)−ming(x)≤0 ∑T

t=1 ft(x) = O(T ) or ∑T
t=1[g(xt)]+ =

O(T ) holds, where {xt}T
t=1 is the sequence of solutions generated by the OGD algorithm that mini-

mizes the modified loss functions given in (4).

We defer the proof to Appendix A along with a simple analysis of the OGD when applied to the

modified functions in (4). The analysis shows that in order to obtain O(
√

T ) regret bound, linear

bound on the long term violation of the constraints is unavoidable. The main reason for the failure

of using modified loss function in (4) is that the weight constant δ is fixed and independent from the

sequence of solutions obtained so far. In the next subsection, we present an online convex-concave

formulation for online convex optimization with long term constraints, which explicitly addresses

the limitation of (4) by automatically adjusting the weight constant based on the violation of the

solutions obtained so far.

As mentioned before, our general strategy is to turn online convex optimization with long term

constraints into a convex-concave optimization problem. Instead of generating a sequence of solu-

tions that satisfies the long term constraints, we first consider an online optimization strategy that
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allows the violation of constraints on some rounds in a controlled way. We then modify the online

optimization strategy to obtain a sequence of solutions that obeys the long term constraints. Al-

though the online convex optimization with long term constraints is clearly easier than the standard

online convex optimization problem, it is straightforward to see that optimal regret bound for on-

line optimization with long term constraints should be on the order of O(
√

T ), no better than the

standard online convex optimization problem.

3.1 An Efficient Algorithm with O(
√

T ) Regret Bound and O(T 3/4) Bound on the Violation

of Constraints

The intuition behind our approach stems from the observation that the constrained optimization

problem minx∈K ∑T
t=1 ft(x) is equivalent to the following convex-concave optimization problem

min
x∈B

max
λ∈Rm

+

T

∑
t=1

ft(x)+
m

∑
i=1

λigi(x), (5)

where λ = (λ1, . . . ,λm)
⊤ is the vector of Lagrangian multipliers associated with the constraints

gi(·), i = 1, . . . ,m and belongs to the nonnegative orthant Rm
+. To solve the online convex-concave

optimization problem, we extend the gradient based approach for variational inequality (Nemirovski,

1994) to (5). To this end, we consider the following regularized convex-concave function as

Lt(x,λ) = ft(x)+
m

∑
i=1

{
λigi(x)−

δη

2
λ2

i

}
, (6)

where δ > 0 is a constant whose value will be decided by the analysis. Note that in (6), we introduce

a regularizer δηλ2
i /2 to prevent λi from being too large. This is because, when λi is large, we may

encounter a large gradient for x because of ∇xLt(x,λ)∝ ∑m
i=1 λi∇gi(x), leading to unstable solutions

and a poor regret bound. Although we can achieve the same goal by restricting λi to a bounded

domain, using the quadratic regularizer makes it convenient for our analysis.

Algorithm 1 shows the detailed steps of the proposed algorithm. Unlike standard online convex

optimization algorithms that only update x, Algorithm 1 updates both x and λ. In addition, unlike the

modified loss function in (4) where the weights for constraints {gi(x)≤ 0}m
i=1 are fixed, Algorithm 1

automatically adjusts the weights {λi}m
i=1 based on {gi(x)}m

i=1, the violation of constraints, as the

game proceeds. It is this property that allows Algorithm 1 to achieve sub-linear bound for both

regret and the violation of constraints.

To analyze Algorithm 1, we first state the following lemma, the key to the main theorem on the

regret bound and the violation of constraints.

Lemma 2 Let Lt(·, ·) be the function defined in (6) which is convex in its first argument and concave

in its second argument. Then for any (x,λ) ∈ B ×Rm
+ we have

Lt(xt ,λ)−Lt(x,λt)≤
1

2η
(‖x−xt‖2 +‖λ−λt‖2 −‖x−xt+1‖2 −‖λ−λt+1‖2)

+
η

2
(‖∇xLt(xt ,λt)‖2 +‖∇λLt(xt ,λt)‖2).

Proof Following the analysis of Zinkevich (2003), convexity of Lt(·,λ) implies that

Lt(xt ,λt)−Lt(x,λt)≤ (xt −x)⊤∇xLt(xt ,λt) (7)
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Algorithm 1 Gradient based Online Convex Optimization with Long Term Constraints

1: Input: constraints gi(x)≤ 0, i ∈ [m], step size η, and constant δ > 0

2: Initialization: x1 = 0 and λ1 = 0

3: for t = 1,2, . . . ,T do

4: Submit solution xt

5: Receive the convex function ft(x) and experience loss ft(xt)
6: Compute ∇xLt(xt ,λt) = ∇ ft(xt)+∑m

i=1 λi
t∇gi(xt) and ∇λi

Lt(xt ,λt) = gi(xt)−ηδλi
t

7: Update xt and λt by

xt+1 = ΠB (xt −η∇xLt(xt ,λt))

λt+1 = Π[0,+∞)m(λt +η∇λLt(xt ,λt))

8: end for

and by concavity of Lt(x, ·) we have

Lt(xt ,λ)−Lt(xt ,λt)≤ (λ−λt)
⊤∇λLt(xt ,λt). (8)

Combining the inequalities (7) and (8) results in

Lt(xt ,λ)−Lt(x,λt)≤ (xt −x)⊤∇xLt(xt ,λt)− (λ−λt)
⊤∇λLt(xt ,λt). (9)

Using the update rule for xt+1 in terms of xt and expanding, we get

‖x−xt+1‖2 ≤ ‖x−xt‖2 −2η(xt −x)⊤∇xLt(xt ,λt)+η2‖∇xLt(xt ,λt)‖2, (10)

where the first inequality follows from the nonexpansive property of the projection operation. Ex-

panding the inequality for ‖λ − λt+1‖2 in terms of λt and plugging back into the (9) with (10)

establishes the desired inequality.

Proposition 3 Let xt and λt , t ∈ [T ] be the sequence of solutions obtained by Algorithm 1. Then for

any x ∈ B and λ ∈ Rm
+, we have

T

∑
t=1

Lt(xt ,λ)−Lt(x,λt) (11)

≤ R2 +‖λ‖2

2η
+

ηT

2

(
(m+1)G2 +2mD2

)
+

η

2

(
(m+1)G2 +2mδ2η2

) T

∑
t=1

‖λt‖2.

Proof We first bound the gradient terms in the right hand side of Lemma 2. Using the inequality

(a1 + a2 + . . . ,an)
2 ≤ n(a2

1 + a2
2 + . . .+ a2

n), we have ‖∇xLt(xt ,λt)‖2 ≤ (m+ 1)G2
(
1+‖λt‖2

)
and

‖∇λLt(xt ,λt)‖2 ≤ 2m(D2 + δ2η2‖λt‖2). In Lemma 2, by adding the inequalities of all iterations,

and using the fact ‖x‖ ≤ R we complete the proof.

The following theorem bounds the regret and the violation of the constraints in the long run for

Algorithm 1.
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Theorem 4 Define a=R
√
(m+1)G2 +2mD2. Set η=R2/[a

√
T ]. Assume T is large enough such

that 2
√

2η(m+1)≤ 1. Choose δ such that δ ≥ (m+1)G2+2mδ2η2. Let xt , t ∈ [T ] be the sequence

of solutions obtained by Algorithm 1. Then for the optimal solution x∗ = minx∈K ∑T
t=1 ft(x) we have

T

∑
t=1

ft(xt)− ft(x∗)≤ a
√

T = O(T 1/2), and

T

∑
t=1

gi(xt)≤
√

2
(

FT +a
√

T
) √

T

(
δR2

a
+

ma

R2

)
= O(T 3/4).

Proof We begin by expanding (11) using (6) and rearranging the terms to get

T

∑
t=1

[ ft(xt)− ft(x)]+
m

∑
i=1

{
λi

T

∑
t=1

gi(xt)−
T

∑
t=1

λi
tgi(x)

}
− δηT

2
‖λ‖2

≤−δη

2

T

∑
t=1

‖λt‖2 +
R2 +‖λ‖2

2η
+

ηT

2

(
(m+1)G2 +2mD2

)

+
η

2

(
(m+1)G2 +2mδ2η2

) T

∑
t=1

‖λt‖2.

Since δ ≥ (m+1)G2+2mδ2η2, we can drop the ‖λt‖2 terms from both sides of the above inequality

and obtain

T

∑
t=1

[ ft(xt)− ft(x)]+
m

∑
i=1

{
λi

T

∑
t=1

gi(xt)−
(

δηT

2
+

m

2η

)
λ2

i

}

≤
m

∑
i=1

T

∑
t=1

λi
tgi(x)+

R2

2η
+

ηT

2

(
(m+1)G2 +2mD2)

)
.

The left hand side of above inequality consists of two terms. The first term basically measures the

difference between the cumulative loss of the Algorithm 1 and the optimal solution and the second

term includes the constraint functions with corresponding Lagrangian multipliers which will be used

to bound the long term violation of the constraints. By taking maximization for λ over the range

(0,+∞), we get

T

∑
t=1

[ ft(xt)− ft(x)]+
m

∑
i=1

{ [
∑T

t=1 gi(xt)
]2
+

2(δηT +m/η)
−

T

∑
t=1

λi
tgi(x)

}

≤ R2

2η
+

ηT

2

(
(m+1)G2 +2mD2)

)
.

Since x∗ ∈ K , we have gi(x∗)≤ 0, i ∈ [m], and the resulting inequality becomes

T

∑
t=1

ft(xt)− ft(x∗)+
m

∑
i=1

[
∑T

t=1 gi(xt)
]2

+

2(δηT +m/η)
≤ R2

2η
+

ηT

2

(
(m+1)G2 +2mD2)

)
.

The statement of the first part of the theorem follows by using the expression for η. The second part

is proved by substituting the regret bound by its lower bound as ∑T
t=1 ft(xt)− ft(x∗)≥−FT .
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Remark 5 We observe that the introduction of quadratic regularizer δη‖λ‖2/2 allows us to turn

the expression λi ∑T
t=1 gi(xt) into

[
∑T

t=1 gi(xt)
]2
+

, leading to the bound for the violation of the con-

straints. In addition, the quadratic regularizer defined in terms of λ allows us to work with un-

bounded λ because it cancels the contribution of the ‖λt‖ terms from the loss function and the

bound on the gradients ‖∇xLt(x,λ)‖. Note that the constraint for δ mentioned in Theorem 4 is

equivalent to

2

1/(m+1)+
√
(m+1)−2 −8G2η2

≤ δ ≤ 1/(m+1)+
√
(m+1)−2 −8G2η2

4η2
, (12)

from which, when T is large enough (i.e., η is small enough), we can simply set δ = 2(m+ 1)G2

that will obey the constraint in (12).

By investigating Lemma 2, it turns out that the boundedness of the gradients is essential to obtain

bounds for Algorithm 1 in Theorem 4. Although, at each iteration, λt is projected onto the Rm
+,

since K is a compact set and functions ft(x) and gi(x), i ∈ [m] are convex, the boundedness of the

functions implies that the gradients are bounded (Bertsekas et al., 2003, Proposition 4.2.3).

3.2 An Efficient Algorithm with O(T 3/4) Regret Bound and without Violation of Constraints

In this subsection we generalize Algorithm 1 such that the constrained are satisfied in a long run. To

create a sequence of solutions {xt , t ∈ [T ]} that satisfies the long term constraints ∑T
t=1 gi(xt)≤ 0, i∈

[m], we make two modifications to Algorithm 1. First, instead of handling all of the m constraints,

we consider a single constraint defined as g(x) = maxi∈[m] gi(x). Apparently, by achieving zero

violation for the constraint g(x) ≤ 0, it is guaranteed that all of the constraints gi(·), i ∈ [m] are

also satisfied in the long term. Furthermore, we change Algorithm 1 by modifying the definition of

Lt(·, ·) as

Lt(x,λ) = ft(x)+λ(g(x)+ γ)− ηδ

2
λ2, (13)

where γ > 0 will be decided later. This modification is equivalent to considering the constraint

g(x) ≤ −γ, a tighter constraint than g(x) ≤ 0. The main idea behind this modification is that by

using a tighter constraint in our algorithm, the resulting sequence of solutions will satisfy the long

term constraint ∑T
t=1 g(xt)≤ 0, even though the tighter constraint is violated in many trials.

Before proceeding, we state a fact about the Lipschitz continuity of the function g(x) in the

following proposition.

Proposition 6 Assume that functions gi(·), i ∈ [m] are Lipschitz continuous with constant G. Then,

function g(x) = maxi∈[m] gi(x) is Lipschitz continuous with constant G, that is,

|g(x)−g(x′)| ≤ G‖x−x′‖ for any x ∈ B and x′ ∈ B.
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Proof First, we rewrite g(x) = maxi∈[m] gi(x) as g(x) = maxα∈∆m ∑m
i=1 αigi(x) where ∆m is the m-

simplex, that is, ∆m = {α ∈ Rm
+;∑m

i=1 αi = 1}. Then, we have

|g(x)−g(x′)| =

∣∣∣∣∣max
α∈∆m

m

∑
i=1

αigi(x)− max
α∈∆m

m

∑
i=1

αigi(x
′)

∣∣∣∣∣

≤ max
α∈∆m

∣∣∣∣∣
m

∑
i=1

αigi(x)−
m

∑
i=1

αigi(x
′)

∣∣∣∣∣

≤ max
α∈∆m

m

∑
i=1

αi

∣∣gi(x)−gi(x
′)
∣∣≤ G‖x−x′‖,

where the last inequality follows from the Lipschitz continuity of gi(x), i ∈ [m].

To obtain a zero bound on the violation of constraints in the long run, we make the following

assumption about the constraint function g(x).

Assumption 1 Let K ′ ⊆ K be the convex set defined as K ′ = {x ∈ Rd : g(x)+ γ ≤ 0} where γ ≥ 0.

We assume that the norm of the gradient of the constraint function g(x) is lower bounded at the

boundary of K ′, that is,

min
g(x)+γ=0

‖∇g(x)‖ ≥ σ.

A direct consequence of Assumption 1 is that by reducing the domain K to K ′, the optimal value

of the constrained optimization problem minx∈K f (x) does not change much, as revealed by the

following theorem.

Theorem 7 Let x∗ and xγ be the optimal solutions to the constrained optimization problems defined

as ming(x)≤0 f (x) and ming(x)≤−γ f (x), respectively, where f (x) = ∑T
t=1 ft(x) and γ ≥ 0. We have

| f (x∗)− f (xγ)| ≤
G

σ
γT.

Proof We note that the optimization problem ming(x)≤−γ f (x) = ming(x)≤−γ ∑T
t=1 ft(x), can also be

written in the minimax form as

f (xγ) = min
x∈B

max
λ∈R+

T

∑
t=1

ft(x)+λ(g(x)+ γ), (14)

where we use the fact that K ′ ⊆ K ⊆ B . We denote by xγ and λγ the optimal solutions to (14). We

have

f (xγ) = min
x∈B

max
λ∈R+

T

∑
t=1

ft(x)+λ(g(x)+ γ)

= min
x∈B

T

∑
t=1

ft(x)+λγ(g(x)+ γ)

≤
T

∑
t=1

ft(x∗)+λγ(g(x∗)+ γ)≤
T

∑
t=1

ft(x∗)+λγγ,
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where the second equality follows the definition of the xγ and the last inequality is due to the opti-

mality of x∗, that is, g(x∗)≤ 0.

To bound | f (xγ)− f (x∗)|, we need to bound λγ. Since xγ is the minimizer of (14), from the optimal-

ity condition we have

−
T

∑
t=1

∇ ft(xγ) = λγ∇g(xγ). (15)

By setting v = −∑T
t=1 ∇ ft(xγ), we can simplify (15) as λγ∇g(xγ) = v. From the KKT optimality

condition (Boyd and Vandenberghe, 2004), if g(xγ)+ γ < 0 then we have λγ = 0; otherwise accord-

ing to Assumption 1 we can bound λγ by

λγ ≤
‖v‖

‖∇g(xγ)‖
≤ GT

σ
.

We complete the proof by applying the fact f (x∗)≤ f (xγ)≤ f (x∗)+λγγ.

As indicated by Theorem 7, when γ is small, we expect the difference between two optimal values

f (x∗) and f (xγ) to be small. Using the result from Theorem 7, in the following theorem, we show

that by running Algorithm 1 on the modified convex-concave functions defined in (13), we are able

to obtain an O(T 3/4) regret bound and zero bound on the violation of constraints in the long run.

Theorem 8 Set a = 2R/
√

2G2 +3(D2 +b2), η = R2/[a
√

T ], and δ = 4G2. Let xt , t ∈ [T ] be the

sequence of solutions obtained by Algorithm 1 with functions defined in (13) with γ = bT−1/4 and

b = 2
√

F(δR2a−1 +aR−2). Let x∗ be the optimal solution to minx∈K ∑T
t=1 ft(x). With sufficiently

large T , that is, FT ≥ a
√

T , and under Assumption 1, we have xt , t ∈ [T ] satisfy the global con-

straint ∑T
t=1 g(xt)≤ 0 and the regret RT is bounded by

RT =
T

∑
t=1

ft(xt)− ft(x∗)≤ a
√

T +
b

σ
GT 3/4 = O(T 3/4).

Proof Let xγ be the optimal solution to ming(x)≤−γ ∑T
t=1 ft(x). Similar to the proof of Theorem 4

when applied to functions in (13) we have

T

∑
t=1

ft(xt)−
T

∑
t=1

ft(x)+λ
T

∑
t=1

(g(xt)+ γ)−
(

T

∑
t=1

λt

)
(g(x)+ γ)− δηT

2
λ2

≤ −δη

2

T

∑
t=1

λ2
t +

R2 +λ2

2η
+

ηT

2

(
2G2 +3(D2 + γ2)

)
+

η

2

(
2G2 +3δ2η2

) T

∑
t=1

λ2
t .

By setting δ ≥ 2G2 + 3δ2η2 which is satisfied by δ = 4G2, we cancel the terms including λt from

the right hand side of above inequality. By maximizing for λ over the range (0,+∞) and noting that

γ ≤ b, for the optimal solution xγ, we have

T

∑
t=1

[
ft(xt)− ft(xγ)

]
+

[
∑T

t=1 g(xt)+ γT
]2

+

2(δηT +1/η)
≤ R2

2η
+

ηT

2

(
2G2 +3(D2 +b2)

)
,
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which, by optimizing for η and applying the lower bound for the regret as ∑T
t=1 ft(xt)− ft(xγ) ≥

−FT , yields the following inequalities

T

∑
t=1

ft(xt)− ft(xγ)≤ a
√

T (16)

and

T

∑
t=1

g(xt)≤
√

2
(

FT +a
√

T
) √

T

(
δR2

a
+

a

R2

)
− γT, (17)

for the regret and the violation of the constraint, respectively. Combining (16) with the result of

Theorem 7 results in ∑T
t=1 ft(xγ) ≤ ∑T

t=1 ft(x∗)+ a
√

T +(G/σ)γT . By choosing γ = bT−1/4 we

attain the desired regret bound as

T

∑
t=1

ft(xt)− ft(x∗)≤ a
√

T +
bG

σ
T 3/4 = O(T 3/4).

To obtain the bound on the violation of constraints, we note that in (17), when T is sufficiently

large, that is, FT ≥ a
√

T , we have ∑T
t=1 g(xt) ≤ 2

√
F(δR2a−1 +aR−2)T 3/4 − bT 3/4. Choos-

ing b = 2
√

F(δR2a−1 +aR−2)T 3/4 guarantees the zero bound on the violation of constraints as

claimed.

4. A Mirror Prox Based Approach

The bound for the violation of constraints for Algorithm 1 is unsatisfactory since it is significantly

worse than O(
√

T ). In this section, we pursue a different approach that is based on the mirror prox

method in Nemirovski (2005) to improve the bound for the violation of constraints. The basic idea is

that solving (5) can be reduced to the problem of approximating a saddle point (x,λ) ∈ B × [0,∞)m

by solving the associated variational inequality.

We first define an auxiliary function F (x,λ) as

F (x,λ) =
m

∑
i=1

{
λigi(x)−

δη

2
λ2

i

}
.

In order to successfully apply the mirror prox method, we follow the fact that any convex domain

can be written as an intersection of linear constraints, and make the following assumption:

Assumption 2 We assume that gi(x), i ∈ [m] are linear, that is, K = {x ∈ Rd : gi(x) = x⊤ai −bi ≤
0, i ∈ [m]} where ai ∈ Rd is a normalized vector with ‖ai‖= 1 and bi ∈ R .

The following proposition shows that under Assumptions 2, the function F (x,λ) has Lipschitz

continuous gradient, a basis for the application of the mirror prox method.

Proposition 9 Under Assumption 2, F (x,λ) has Lipschitz continuous gradient, that is,

∥∥∇xF (x,λ)−∇x′F (x′,λ′)
∥∥2

+
∥∥∇λF (x,λ)−∇λ′F (x′,λ′)

∥∥2 ≤ 2(m+δ2η2)(‖x−x′‖2 +‖λ−λ′‖2).

2515



MAHDAVI, JIN AND YANG

Algorithm 2 Prox Method with Long Term Constraints

1: Input: constraints gi(x)≤ 0, i ∈ [m], step size η, and constant δ

2: Initialization: z1 = 0 and µ1 = 0

3: for t = 1,2, . . . ,T do

4: Compute the solution for xt and λt as

xt = ΠB (zt −η∇xF (zt ,µt))

λt = Π[0,+∞)m(µt +η∇λF (zt ,µt))

5: Submit solution xt

6: Receive the convex function ft(x) and experience loss ft(xt)

7: Compute Lt(x,λ) = ft(x)+F (x,λ) = ft(x)+∑m
i=1

{
λigi(x)− δη

2
λ2

i

}

8: Update zt and µt by

zt+1 = ΠB (zt −η∇xLt(xt ,λt))

µt+1 = Π[0,+∞)m(µt +η∇λLt(xt ,λt))

9: end for

Proof
∥∥∇xF (x,λ)−∇x′F (x′,λ′)

∥∥2
+
∥∥∇λF (x,λ)−∇λ′F (x′,λ′)

∥∥2

=

∥∥∥∥∥
m

∑
i=1

(λi −λ′
i)ai

∥∥∥∥∥

2

+

∥∥∥∥∥
m

∑
i=1

a⊤i (x−x′)+δη
m

∑
i=1

(λ′
i −λi)

∥∥∥∥∥

2

≤ ‖A⊤(λ−λ′)‖2 +2‖A(x−x′)‖2 +2δ2η2‖λ−λ′‖2

≤ 2σ2
max(A)‖x−x′‖2 +(σ2

max(A)+2δ2η2)‖λ−λ′‖2.

Since

σmax(A) =
√

λmax(AA⊤)≤
√

Tr(AA⊤)≤
√

m,

we have σ2
max(A)≤ m, leading to the desired result.

Algorithm 2 shows the detailed steps of the mirror prox based algorithm for online convex optimiza-

tion with long term constraints defined in (5). Compared to Algorithm 1, there are two key features

of Algorithm 2. First, it introduces auxiliary variables zt and µt besides the variables xt and λt . At

each iteration t, it first computes the solutions xt and λt based on the auxiliary variables zt and µt ; it

then updates the auxiliary variables based on the gradients computed from xt and λt . Second, two

different functions are used for updating (xt ,λt) and (zt ,µt): function F (x,λ) is used for computing

the solutions xt and λt , while function Lt(x,λ) is used for updating the auxiliary variables zt and µt .

Our analysis is based on the Lemma 3.1 from Nemirovski (2005) which is restated here for

completeness.

Lemma 10 Let B(x,x′) be a Bregman distance function that has modulus α with respect to a norm

‖ · ‖, that is, B(x,x′)≥ α‖x−x′‖2/2. Given u ∈ B , a, and b, we set

w = argmin
x∈B

a⊤(x−u)+B(x,u), u+ = argmin
x∈B

b⊤(x−u)+B(x,u).
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Then for any x ∈ B and η > 0, we have

ηb⊤(w−x)≤ B(x,u)−B(x,u+)+
η2

2α
‖a−b‖2

∗−
α

2

[
‖w−u‖2 +‖w−u+‖2

]
.

We equip B × [0,+∞)m with the norm ‖ · ‖ defined as

‖(z,µ)‖2 =
‖z‖2 +‖µ‖2

2
,

where ‖ · ‖2 is the Euclidean norm defined separately for each domain. It is immediately seen that

the Bregman distance function defined as

B(zt ,µt ,zt+1,µt+1) =
1

2
‖zt − zt+1‖2 +

1

2
‖µt −µt+1‖2

is α = 1 modules with respect to the norm ‖ · ‖.

To analyze the mirror prox algorithm, we begin with a simple lemma which is the direct appli-

cation of Lemma 10 when applied to the updating rules of Algorithm 3.

Lemma 11 If η(m+δ2η2)≤ 1
4

holds, we have

Lt(xt ,λ)−Lt(x,λt)

≤ ‖x− zt‖2 −‖x− zt+1‖2

2η
+

‖λ−µt‖2 −‖λ−µt+1‖2

2η
+η‖∇ ft(xt)‖2.

Proof To apply Lemma 10, we define u, w, u+, a and b as follows

u = (zt ,µt),u+ = (zt+1,µt+1),w = (xt ,λt),

a = (∇xF (zt ,µt),−∇λF (zt ,µt)),b = (∇xLt(xt ,λt),−∇λLt(xt ,λt)).

Using Lemmas 2 and 10, we have

Lt(xt ,λ)−Lt(x,λt)−
‖x− zt‖2 −‖x− zt+1‖2

2η
− ‖λ−µt‖2 −‖λ−µt+1‖2

2η

≤ η

2

{
‖∇xF (zt ,µt)−∇xLt(xt ,λt)‖2 +‖∇λF (zt ,µt)−∇λLt(xt ,λt)‖2

}

︸                                                                                         ︷︷                                                                                         ︸
I

− 1

2

{
‖zt −xt‖2 +‖µt −λt‖2

}

︸                                ︷︷                                ︸
II

.

By expanding the gradient terms and applying the inequality (a+b)2 ≤ 2(a2+b2), we upper bound

(I) as:

(I) =
η

2
{2‖∇ ft(xt)‖2 +2‖∇xF (zt ,µt)−∇xF (xt ,λt)‖2 +‖∇λF (zt ,µt)−∇λF (xt ,λt)‖2}

≤ η‖∇ ft(xt)‖2 +η
{
‖∇xF (zt ,µt)−∇xF (xt ,λt)‖2 +‖∇λF (xt ,λt)−∇λF (xt ,λt)‖2

}

≤ η‖∇ ft(xt)‖2 +2η(m+δ2η2)
{
‖zt −xt‖2 +‖µt −λt‖2

}
, (18)
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where the last inequality follows from Proposition 9. Combining (II) with (18) results in

Lt(xt ,λ)−Lt(x,λt)−
‖x− zt‖2 −‖x− zt+1‖2

2η
− ‖λ−µt‖2 −‖λ−µt+1‖2

2η

≤ η‖∇ ft(xt)‖2
2 +

(
2η(m+δ2η2)− 1

2

){
‖zt −xt‖2 +‖µt −λt‖2

2

}
.

We complete the proof by rearranging the terms and setting η(m+δ2η2)≤ 1
4
.

Theorem 12 Set η = T−1/3 and δ = T−2/3. Let xt , t ∈ [T ] be the sequence of solutions obtained by

Algorithm 2. Then for T ≥ 164(m+1)3 we have

T

∑
t=1

ft(xt)− ft(x∗)≤ O(T 2/3) and
T

∑
t=1

gi(xt)≤ O(T 2/3).

Proof Similar to the proof of Theorem 4, by summing the bound in Lemma 11 for all rounds

t = 1, · · · ,T , and taking maximization for λ we have the following inequality for any x∗ ∈ K ,

T

∑
t=1

[ ft(xt)− ft(x∗)]+
m

∑
i=1

[
∑T

t=1 gi(xt)
]2
+

2(δηT +m/η)
≤ R2

2η
+

ηT

2
G2.

By setting δ = 1
ηT

and using the fact that ∑T
t=1 ft(xt)− ft(x∗)≥−FT we have:

T

∑
t=1

[ ft(xt)− ft(x)]≤
R2

2η
+

ηT

2
G2

and
T

∑
t=1

gi(xt)≤
√
(1+

m

η
)

(
R2

η
+ηT G2 +FT

)
.

Substituting the stated value for η, we get the desired bounds as mentioned in the theorem. Note

that the condition η(m+δ2η2)≤ 1
4

in Lemma 11 is satisfied for the stated values of η and δ as long

as T ≥ 164(m+1)3.

Using the same trick as Theorem 8, by introducing appropriate γ, we will be able to establish the

solutions that exactly satisfy the constraints in the long run with an O(T 2/3) regret bound as shown

in the following corollary. In the case when all the constraints are linear, that is, gi(x) = a⊤i x ≤
bi, i ∈ [m], Assumption 1 is simplified into the following condition,

min
α∈∆m

∥∥∥∥∥
m

∑
i=1

αiai

∥∥∥∥∥≥ σ, (19)

where ∆m is a m dimensional simplex, that is, ∆m = {α ∈ Rm
+ : ∑m

i=1 αi = 1}. This is because

g(x) = maxα∈∆m ∑m
i=1 αigi(x) and as a result, the (sub)gradient of g(x) can always be written as

∂g(x) = ∑m
i=1 αi∇gi(x) = ∑m

i=1 αiai where α ∈ ∆m. As an illustrative example, consider the case

when the norm vectors ai, i ∈ [m] are linearly independent. In this case the condition mentioned

in (19) obviously holds which indicates that the assumption does not limit the applicability of the

proposed algorithm.
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Corollary 13 Let η = δ = T−1/3. Let xt , t ∈ [T ] be the sequence of solutions obtained by Al-

gorithm 2 with γ = bT−1/3 and b = 2
√

F. With sufficiently large T , that is, FT ≥ R2T 1/3 +
G2T 2/3, under Assumptions 2 and condition in (19), we have xt , t ∈ [T ] satisfy the global constraints

∑T
t=1 gi(xt)≤ 0, i ∈ [m] and the regret RT is bounded by

RT =
T

∑
t=1

ft(xt)− ft(x∗)≤
R2

2
T 1/3 +

(
G2

2
+

2G
√

F

σ

)
T 2/3 = O(T 2/3).

The proof is similar to that of Theorem 8 and we defer it to Appendix B. As indicated by Corollary

13, for any convex domain defined by a finite number of halfspaces, that is, Polyhedral set, one can

easily replace the projection onto the Polyhedral set with the ball containing the Polyhedral at the

price of satisfying the constraints in the long run and achieving O(T 2/3) regret bound.

5. Online Convex Optimization with Long Term Constraints under Bandit Feedback

for Domain

We now turn to extending the gradient based convex-concave optimization algorithm discussed

in Section 3 to the setting where the learner only receives partial feedback for constraints. More

specifically, the exact definition of the domain K is not exposed to the learner, only that the solution

is within a ball B . Instead, after receiving a solution xt , the oracle will present the learner with

the convex loss function ft(x) and the maximum violation of the constraints for xt , that is, g(xt) =
maxi∈[m] gi(xt). We remind that the function g(x) defined in this way is Lipschitz continuous with

constant G as proved in Proposition 6. In this setting, the convex-concave function defined in (6)

becomes as

Lt(x,λ) = ft(x)+λg(x)− (δη/2)λ2.

The mentioned setting is closely tied to the bandit online convex optimization. In the bandit set-

ting, in contrast to the full information setting, only the cost of the chosen decision (i.e., the incurred

loss ft(xt)) is revealed to the algorithm, not the function itself. There is a rich body of literature that

deals with the bandit online convex optimization. In the seminal papers of Flaxman et al. (2005) and

Awerbuch and Kleinberg (2004) it has been shown that one could design algorithms with O(T 3/4)
regret bound even in the bandit setting where only evaluations of the loss functions are revealed at

a single point. If we specialize to the online bandit optimization of linear loss functions, Dani et al.

(2007) proposed an inefficient algorithm with O(
√

T ) regret bound and Abernethy et al. (2008)

obtained O(
√

T logT ) bound by an efficient algorithm if the convex set admits an efficiently com-

putable self-concordant barrier. For general convex loss functions, Agarwal et al. (2010) proposed

optimal algorithms in a new bandit setting, in which multiple points can be queried for the cost val-

ues. By using multiple evaluations, they showed that the modified online gradient descent algorithm

can achieve O(
√

T ) regret bound in expectation.

Algorithm 3 gives a complete description of the proposed algorithm under the bandit setting,

which is a slight modification of Algorithm 1. Algorithm 3 accesses the constraint function g(x) at

two points. To facilitate the analysis, we define

L̂t(x,λ) = ft(x)+λĝ(x)− ηδ

2
λ2,
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Algorithm 3 Multipoint Bandit Online Convex Optimization with Long Term Constraints

1: Input: constraint g(x), step size η, constant δ > 0, exploration parameter ζ > 0, and shrinkage

coefficient ξ

2: Initialization: x1 = 0 and λ1 = 0

3: for t = 1,2, . . . ,T do

4: Submit solution xt

5: Select unit vector ut uniformly at random

6: Query g(x) at points xt +ζut and xt −ζut and incur average of them as violation of constraints

7: Compute g̃x,t = ∇ ft(xt)+λt

[
d
2ζ
(g(xt +ζut)−g(xt −ζut))ut

]

8: Compute g̃λ,t =
1
2
(g(xt +ζut)+g(xt −ζut))−ηδλt

9: Receive the convex function ft(x) and experience loss ft(xt)
10: Update xt and λt by

xt+1 = Π(1−ξ)B (xt −ηg̃x,t)

λt+1 = Π[0,+∞)(λt +ηg̃λ,t)

11: end for

where ĝ(x) is the smoothed version of g(x) defined as ĝ(x) = Ev∈S[d
ζ
g(x+ζv)v] at point xt where S

denotes the unit sphere centered at the origin. Note that ĝ(x) is Lipschitz continuous with the same

constant G, and it is always differentiable even though g(x) is not in our case.

Since we do not have access to the function ĝ(·) to compute ∇xL̂(x,λ), we need a way to

estimate its gradient at point xt . Our gradient estimation closely follows the idea in Agarwal et al.

(2010) by querying g(x) function at two points. The main advantage of using two points to estimate

the gradient with respect to one point gradient estimation used in Flaxman et al. (2005) is that the

former has a bounded norm which is independent of ζ and leads to improved regret bounds.

The gradient estimators for ∇xL̂(xt ,λt) = ∇ f (xt)+λt∇ĝ(xt) and ∇λL̂(xt ,λt) = ĝ(xt)−δηλt in

Algorithm 3 are computed by evaluating the g(x) function at two random points around xt as

g̃x,t = ∇ ft(xt)+λt

[
d

2ζ
(g(xt +ζut)−g(xt −ζut))ut

]

and

g̃λ,t =
1

2
(g(xt +ζut)+g(xt −ζut))−ηδλt ,

where ut is chosen uniformly at random from the surface of the unit sphere. Using Stock’s theorem,

Flaxman et al. (2005) showed that 1
2ζ
(g(xt + ζut)−g(xt − ζut))ut is a conditionally unbiased esti-

mate of the gradient of ĝ(x) at point xt . To make sure that randomized points around xt live inside

the convex domain B , we need to stay away from the boundary of the set such that the ball of radius

ζ around xt is contained in B . In particular, in Flaxman et al. (2005) it has been shown that for any

x ∈ (1−ξ)B and any unit vector u it holds that (x+ζu) ∈ B as soon as ζ ∈ [0,ξr].
In order to facilitate the analysis of the Algorithm 3, we define the convex-concave function

Ht(·, ·) as

Ht(x,λ) = L̂t(x,λ)+
(

g̃x,t −∇xL̂(xt ,λt)
)

x+
(

g̃λ,t −∇λL̂(xt ,λt)
)

λ. (20)
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It is easy to check that ∇xH (xt ,λt) = g̃x,t and ∇λH (xt ,λt) = g̃λ,t . By defining functions Ht(x,λ),
Algorithm 3 reduces to Algorithm 1 by doing gradient descent on functions Ht(x,λ) except the pro-

jection is made onto the set (1−ξ)B instead of B .

We begin our analysis by reproducing Proposition 3 for functions Ht(·, ·).

Lemma 14 If the Algorithm 1 is performed over convex set K with functions Ht defined in (20),

then for any x ∈ K we have

T

∑
t=1

Ht(xt ,λ)−Ht(x,λt)≤
R2 +‖λ‖2

2

2η
+η(D2 +G2)T +η(d2G2 +η2δ2)

T

∑
t=1

λ2
t .

Proof We have ∇xHt(xt ,λt) = g̃x,t and ∇λHt(xt ,λt) = g̃λ,t . It is straightforward to show that
1
2ζ
(g(xt + ζut)− g(xt − ζut))ut has norm bounded by Gd (Agarwal et al., 2010). So, the norm of

gradients are bounded as ‖g̃x,t‖2
2 ≤ 2(G2 + d2G2λ2

t ) and ‖g̃λ,t‖2
2 ≤ 2(D2 +η2δ2λ2

t ). Using Lemma

2, by adding for all rounds we get the desired inequality.

The following theorem gives the regret bound and the expected violation of the constraints in the

long run for Algorithm 3.

Theorem 15 Let c =
√

D2 +G2(
√

2R+
√

2D
δR

)+ (D
r
+1)GD

r
. Set η = R/

√
2(D2 +G2)T . Choose

δ such that δ ≥ 2(d2G2 +η2δ2). Let ζ = δ
T

and ξ = ζ
r
. Let xt , t ∈ [T ] be the sequence of solutions

obtained by Algorithm 3. We then have

T

∑
t=1

ft(xt)− ft(x)≤
GD

r
+ c

√
T = O(T 1/2), and

E

[ T

∑
t=1

g(xt)
]
≤ Gδ+

√(δR2 +2(D2 +G2)

R
√

D2 +G2

)
(
GD

r
+ c

√
T +FT )

√
T = O(T 3/4).

Proof Using Lemma 2 for the functions L̂t(·, ·) and Ht(·, ·) we have

L̂t(xt ,λ)− L̂t(x,λt)≤ (xt −x)⊤∇xL̂t(xt ,λt)− (λ−λt)
⊤∇λL̂t(xt ,λt),

and also

Ht(xt ,λ)−Ht(x,λt)≤ (xt −x)⊤g̃x,t − (λ−λt)
⊤g̃λ,t .

Subtracting the preceding inequalities, taking expectation, and summing for all t from 1 to T we get

E

[
T

∑
t=1

L̂t(xt ,λ)− L̂t(x,λt)

]

= E

[
T

∑
t=1

Ht(xt ,λ)−Ht(x,λt)

]
(21)

+E

[
T

∑
t=1

(xt −x)⊤(∇xL̂t(xt ,λt)−Et [g̃xt ,t ])+(λt −λ)⊤(∇λL̂t(xt ,λt)−Et [g̃λt ,t ])

]
.
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Next we provide an upper bound on the difference between the gradients of two functions. First,

Et [g̃x,t ] = ∇xL̂t(xt ,λt), so g̃x,t is an unbiased estimator of ∇xL̂t(xt ,λt). Considering the update rule

for λt+1 we have |λt+1| ≤ (1−η2δ)|λt |+ηD which implies that |λt | ≤ D
δη for all t. So we obtain

(λt −λ)⊤(∇λL̂t(xt ,λt)−Et [g̃λt ,t ])

≤ |λt −λ|Et

[
‖∇λL̂t(xt ,λt)− g̃λt ,t‖2

]

≤ D

δη

∣∣∣∣
1

2
(g(xt +ζut)+g(xt −ζut))− ĝ(xt)

∣∣∣∣≤
DG

δη
ζ‖ut‖ ≤

DG

δη
ζ, (22)

where the last inequality follows from Lipschitz property of the functions g(x) and ĝ(x) with the

same constant G. Combining the inequalities (21) and (22) and using Lemma 14, we have

E

[ T

∑
t=1

L̂t(xt ,λ)− L̂t(x,λt)
]
≤ R2 +λ2

2η
+η(D2 +G2)T +η(d2G2 +η2δ2)

T

∑
t=1

λ2
t +

DGζ

δη
T.

By expanding the right hand side of above inequality, we obtain

T

∑
t=1

[ ft(xt)− ft((1−ξ)x)]+λE
[ T

∑
t=1

ĝ(xt)
]
−E
[
ĝ((1−ξ)x)

] T

∑
t=1

λt −
ηδT

2
λ2 +

ηδ

2

T

∑
t=1

λ2
t

≤ R2 +λ2

2η
+η(D2 +G2)T +η(d2G2 +η2δ2)

T

∑
t=1

λ2
t +

DGζ

δη
T.

By choosing δ ≥ 2(d2G2 +η2δ2) we cancel λ2
t terms from both sides and have

T

∑
t=1

[ ft(xt)− ft((1−ξ)x)]+λE
[ T

∑
t=1

ĝ(xt)
]
−E
[
ĝ((1−ξ)x)

] T

∑
t=1

λt −
ηδT

2
λ2

≤ R2 +λ2

2η
+η(D2 +G2)T +

DGζ

δη
T. (23)

By convexity and Lipschitz property of ft(x) and g(x) we have

ft((1−ξ)x)≤ (1−ξ) ft(x)+ξ ft(0)≤ ft(x)+DGξ, (24)

g(x)≤ ĝ(x)+Gζ , and ĝ((1−ξ)x)≤ g((1−ξ)x)+Gζ ≤ g(x)+Gζ+DGξ. (25)

Plugging (24) and (25) back into (23), for any optimal solution x∗ ∈ K we get

T

∑
t=1

[ ft(xt)− ft(x)]+λE
[ T

∑
t=1

g(xt)
]
− ηδT

2
λ2 −λGζT

≤ R2 +λ2

2η
+η(D2 +G2)T +

DGζ

δη
T +DGξT +(DGξ+Gζ)

T

∑
t=1

λt . (26)

Considering the fact that λt ≤ D
δη we have ∑T

t=1 λt ≤ DT
δη . Plugging back into the (26) and rearranging

the terms we have

T

∑
t=1

[ ft(xt)− ft(x)]+λE
[ T

∑
t=1

g(xt)
]
− ηδT

2
λ2 −λGζT − λ2

2η

≤ R2

2η
+η(D2 +G2)T +

DGζ

δη
T +DGξT +(DGξ+Gζ)

DT

δη
.
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By setting ξ = ζ
r

and ζ = 1
T

we get

T

∑
t=1

[ ft(xt)− ft(x)]≤
R2

2η
+η(D2 +G2)T +

DGζ

δη
T +

ζDGT

r
+(

D

r
+1)ζ

DGT

δη
,

which gives the mentioned regret bound by optimizing for η. Maximizing for λ over the range

(0,+∞) and using ∑T
t=1 ft(xt)− ft(x∗) ≥ −FT , yields the following inequality for the violation of

constraints

[
E
[
∑T

t=1 g(xt)
]
−GζT

]2

+

4(δηT/2+1/2η)
≤ DG

r
+ c

√
T +FT.

Plugging in the stated values of parameters completes the proof. Note that δ = 4d2G2 obeys the

condition specified in the theorem.

6. Conclusion

In this study we have addressed the problem of online convex optimization with constraints, where

we only need the constraints to be satisfied in the long run. In addition to the regret bound which

is the main tool in analyzing the performance of general online convex optimization algorithms, we

defined the bound on the violation of constraints in the long term which measures the cumulative

violation of the solutions from the constraints for all rounds. Our setting is applied to solving

online convex optimization without projecting the solutions onto the complex convex domain at

each iteration, which may be computationally inefficient for complex domains. Our strategy is to

turn the problem into an online convex-concave optimization problem and apply online gradient

descent algorithm to solve it. We have proposed efficient algorithms in three different settings; the

violation of constraints is allowed, the constraints need to be exactly satisfied, and finally we do

not have access to the target convex domain except it is bounded by a ball. Moreover, for domains

determined by linear constraints, we used the mirror prox method, a simple gradient based algorithm

for variational inequalities, and obtained an O(T 2/3) bound for both regret and the violation of the

constraints.

Our work leaves open a number of interesting directions for future work. In particular it would

be interesting to see if it is possible to improve the bounds obtained in this paper, i.e., getting an

O(
√

T ) bound on the regret and better bound than O(T 3/4) on the violation of constraints for general

convex domains. Proving optimal lower bounds for the proposed setting also remains as an open

question. Also, it would be interesting to consider strongly convex loss or constraint functions.

Finally, relaxing the assumption we made to exactly satisfy the constraints in the long run is an

interesting problem to be investigated.
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Appendix A. Proof of Theorem 1

We first show that when δ < 1, there exists a loss function and a constraint function such that the

violation of constraint is linear in T . To see this, we set ft(x) = w⊤x, t ∈ [T ] and g(x) = 1−w⊤x.

Assume we start with an infeasible solution, that is, g(x1) > 0 or x⊤1 w < 1. Given the solution xt

obtained at tth trial, using the standard gradient descent approach, we have xt+1 = xt −η(1−δ)w.

Hence, if x⊤t w < 1, since we have x⊤t+1w < x⊤t w < 1, if we start with an infeasible solution, all the

solutions obtained over the trails will violate the constraint g(x)≤ 0, leading to a linear number of

violation of constraints. Based on this analysis, we assume δ > 1 in the analysis below.

Given a strongly convex loss function f (x) with modulus γ, we consider a constrained optimiza-

tion problem given by

min
g(x)≤0

f (x),

which is equivalent to the following unconstrained optimization problem

min
x

f (x)+λ[g(x)]+,

where λ ≥ 0 is the Lagrangian multiplier. Since we can always scale f (x) to make λ ≤ 1/2, it is

safe to assume λ ≤ 1/2 < δ. Let x∗ and xa be the optimal solutions to the constrained optimization

problems argming(x)≤0 f (x) and argmin
x

f (x)+ δ[g(x)]+, respectively. We choose f (x) such that

‖∇ f (x∗)‖ > 0, which leads to xa , x∗. This holds because according to the first order optimality

condition, we have

∇ f (x∗) =−λ∇g(x∗), ∇ f (xa) =−δ∇g(x∗),

and therefore ∇ f (x∗) , ∇ f (xa) when λ < δ. Define ∆ = f (xa)− f (x∗). Since ∆ ≥ γ‖xa − x∗‖2/2

due to the strong convexity of f (x), we have ∆ > 0.

Let {xt}T
t=1 be the sequence of solutions generated by the OGD algorithm that minimizes the

modified loss function f (x)+δ[g(x)]+. We have

T

∑
t=1

f (xt)+δ[g(xt)]+ ≥ T min
x

f (x)+δ[g(x)]+

= T ( f (xa)+δ[g(xa)]+)≥ T ( f (xa)+λ[g(xa)]+)

= T ( f (x∗)+λ[g(x∗)]+)+T ( f (xa)+λ[g(xa)]+− f (x∗)−λ[g(x∗)])

≥ T min
g(x)≤0

f (x)+T ∆.

As a result, we have
T

∑
t=1

f (xt)+δ[g(xt)]+− min
g(x)≤0

f (x) = O(T ),

implying that either the regret ∑T
t=1 f (xt)−T f (x∗) or the violation of the constraints ∑T

t=1[g(x)]+ is

linear in T .
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To better understand the performance of penalty based approach, here we analyze the perfor-

mance of the OGD in solving the online optimization problem in (3). The algorithm is analyzed

using the following lemma from Zinkevich (2003).

Lemma 16 Let x1,x2, . . . ,xT be the sequence of solutions obtained by applying OGD on the se-

quence of bounded convex functions f1, f2, . . . , fT . Then, for any solution x∗ ∈ K we have

T

∑
t=1

ft(xt)−
T

∑
t=1

ft(x∗)≤
R2

2η
+

η

2

T

∑
t=1

‖∇ ft(xt)‖2.

We apply OGD to functions f̂t(x), t ∈ [T ] defined in (4), that is, instead of updating the solution

based on the gradient of ft(x), we update the solution by the gradient of f̂t(x). Using Lemma 16, by

expanding the functions f̂t(x) based on (4) and considering the fact that ∑m
i=1 [gi(x∗)]2+ = 0, we get

T

∑
t=1

ft(xt)−
T

∑
t=1

ft(x∗)+
δ

2

T

∑
t=1

m

∑
i=1

[gi(x)]
2
+ ≤ R2

2η
+

η

2

T

∑
t=1

‖∇ f̂t(xt)‖2. (27)

From the definition of f̂t(x), the norm of the gradient ∇ f̂t(xt) is bounded as follows

‖∇ f̂t(x)‖2 = ‖∇ ft(x)+δ
m

∑
i=1

[gi(x)]+∇gi(x)‖2 ≤ 2G2(1+mδ2D2), (28)

where the inequality holds because (a1 + a2)
2 ≤ 2(a2

1 + a2
2). By substituting (28) into the (27) we

have:

T

∑
t=1

ft(xt)−
T

∑
t=1

ft(x∗)+
δ

2

T

∑
t=1

m

∑
i=1

[gi(xt)]
2
+ ≤ R2

2η
+ηG2(1+mδ2D2)T. (29)

Since [·]2+ is a convex function, from Jensen’s inequality and following the fact that ∑T
t=1 ft(xt)−

ft(x∗)≥−FT , we have:

δ

2T

m

∑
i=1

[
T

∑
t=1

gi(xt)

]2

+

≤ δ

2

m

∑
i=1

T

∑
t=1

[gi(xt)]
2
+ ≤ R2

2η
+ηG2(1+mδ2D2)T +FT.

By minimizing the right hand side of (29) with respect to η, we get the regret bound as

T

∑
t=1

ft(xt)−
T

∑
t=1

ft(x∗)≤ RG

√
2(1+mδ2D2)T = O(δ

√
T ) (30)

and the bound for the violation of constraints as

T

∑
t=1

gi(xt)≤
√(

R2

2η
+ηG2(1+mδ2D2)T +FT

)
2T

δ
= O(T 1/4δ1/2 +T δ−1/2). (31)

Examining the bounds obtained in (30) and (31), it turns out that in order to recover O(
√

T ) regret

bound, we need to set δ to be a constant, leading to O(T ) bound for the violation of constraints in

the long run, which is not satisfactory at all.
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Appendix B. Proof of Corollary 13

Let xγ be the optimal solution to ming(x)≤−γ ∑T
t=1 ft(x). Similar to the proof of Theorem 12, we have

T

∑
t=1

[
ft(xt)− ft(xγ)

]
+

[
∑T

t=1 g(xt)+ γT
]2
+

2(δηT +1/η)
≤ R2

2η
+

ηT

2
G2.

Using the stated values for the parameters η = δ = T−1/3, and applying the fact that ∑T
t=1 ft(xt)−

ft(xγ)≥−FT we obtain,

T

∑
t=1

ft(xt)− ft(xγ)≤
R2

2
T 1/3 +

G2

2
T 2/3 (32)

and

[
T

∑
t=1

g(xt)+ γT

]2

+

≤ 2
(
R2T 1/3 +G2T 2/3 +FT

)
T 1/3. (33)

From Theorem 7, we have the bound

T

∑
t=1

ft(xγ)≤
T

∑
t=1

ft(x∗)+
G

σ
γT. (34)

Combining inequalities (32) and (34) with substituting the stated value of γ = bT−1/3 yields the

regret bound as desired. To obtain the bound for the violation of the constraints, from (33) we have

T

∑
t=1

g(xt)≤
√

2
(
R2T 1/3 +G2T 2/3 +FT

)
T 1/3 −bT 2/3.

For sufficiently large values of T , that is, FT ≥R2T 1/3+G2T 2/3 we can simplify above inequality as

∑T
t=1 g(xt)≤ 2

√
FT 2/3−bT 2/3. By setting b = 2

√
F the zero bound on the violation of constraints

is guaranteed.
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