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Abstract

We consider the following sparse signal recovery (or feagelection) problem: given a design
matrix X € R™™ (m>> n) and a noisy observation vectgre R" satisfyingy = Xf3* + € where

¢ is the noise vector following a Gaussian distributid(0,0?l), how to recover the signal (or
parameter vectof}* when the signal is sparse?

The Dantzig selector has been proposed for sparse sigmaimgowith strong theoretical guar-
antees. In this paper, we propose a multi-stage Dantzigtselmethod, which iteratively refines
the target signaB*. We show that ifX obeys a certain condition, then with a large probability
the difference between the solutifrestimated by the proposed method and the true sol(gion
measured in terms of thig norm (p > 1) is bounded as

IB=B"llp < (Cls—N)¥P\/logm+2) o,

whereC is a constants is the number of nonzero entriesfi, the risk of the oracle estimatdris
independent afnand is much smaller than the first term, i@ the number of entries @ larger
than a certain value in the order 6fo./logm). The proposed method improves the estimation
bound of the standard Dantzig selector approximately &sP,/Togmo to C(s— N)l/p«/logmo
where the valueN depends on the number of large entriegiin WhenN = s, the proposed
algorithm achieves the oracle solution with a high probigbilwhere the oracle solution is the
projection of the observation vectgronto true features. In addition, with a large probabilibg t
proposed method can select the same number of correctdeatnder a milder condition than the
Dantzig selector. Finally, we extend this multi-stage pore to the LASSO case.

Keywords: multi-stage, Dantzig selector, LASSO, sparse signal regov

1. Introduction

The sparse signal recovery problem has been studied in many ar&atiriganachine learning
(Zhang, 2009b; Zhao and Yu, 2006), signal processing (Donbélo, 2006; Romberg, 2008; Walin-
wright, 2009), and mathematics/statistics (Bunea et al., 2007;&3agud Plan, 2009; Caésl and

Tao, 2007; Koltchinskii and Yuan, 2008; Lounici, 2008; Meinshawetal., 2006; Ravikumar et al.,
2008; Zhang, 2009a). In the sparse signal recovery problem, onaiigy interested in the signal
recovery accuracy, that is, the distance between the estinfatiod the original signal or the true
solutionf3*. If the design matriX is considered as a feature matrix, that is, each column is a feature
vector, and the observatignas a target object vector, then the sparse signal recovery problem is
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equivalent to feature selection (or model selection). In feature selecti@nconcerns the feature
selection accuracy. Typically, a group of features correspondinget@akfficient values if8
larger than a threshold form the supporting feature set. The diffefsgteesen this set and the true
supporting set (i.e., the set of features corresponding to nonzefficargs in the original signal)
measures the feature selection accuracy.

Two well-known algorithms for learning sparse signals include LASSO [ilibsi, 1996) and
Dantzig selector (Cares and Tao, 2007):

1
LASSO mén:iuxﬁ—yH%H\’HBHl,

Dantzig Selector mBin: 11B]1

st [ XT(XB—Y)[lo <A.

Strong theoretical results concerning LASSO and Dantzig selector e dstablished in the
literature (Cai et al., 2009; Caad and Plan, 2009; Caesland Tao, 2007; Wainwright, 2009; Zhang,
2009a; Zhao and Yu, 2006).

1.1 Contributions

In this paper, we propose a multi-stage procedure based on the Dan&itpsevhich estimates
the supporting feature sy and the signaP iteratively. The intuition behind the proposed multi-
stage method is that feature selection and signal recovery are tightlyatedrand they can benefit
from each other: a more accurate estimation of the supporting featurédsachto a better signal
recovery and a more accurate signal recovery can help identify a bettef supporting features.

In the proposed method, the supportingkges$tarts from an empty set and its size increases by one
after each iteration. At each iteration, we employ the basic framework ozigeselector and the
information about the current supporting featureFaeb estimate the new signg@l In addition, we
select the supporting feature candidatefgramong all features in the data at each iteration, thus
allowing to remove incorrect features from the previous supporting featet.

The main contributions of this paper lie in the theoretical analysis of the pedpathod.
Specifically, we show: 1) the proposed method can improve the estimationl lobtine standard
Dantzig selector approximately fro8s'P,/logmo to C(s— N)¥/P,/logmo where the valudl de-
pends on the number of large entriefin 2) whenN = s, the proposed algorithm can achieve the
oracle solutior3 with a high probability, where the oracle solution is the projection of the observ
tion vectory onto true features (see Equation (1) for the explicit descriptiof)p8) with a high
probability, the proposed method can select the same number of coratatefe under a milder
condition than the standard Dantzig selector method; 4) this multi-stage preceaiu be easily
extended to the LASSO case. The numerical experiments validate thesstit@aesults.

1.2 Related Work

Sparse signal recovery without observation noise was studied bye€amdl Tao (2005), which
showed under the restricted isometry property (RIP) sparse signatsecperfectly recovered by
solving anf; norm minimization problem. LASSO and Dantzig selector can be considered as its
noisy versions. Zhao and Yu (2006) proved the feature selectioristensy of LASSO under

the irrepresentable condition. It was also shown by @arahd Plan (2009) that if the true signal
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is strong enough together with some additional assumptions on its suppoitiagdssigns, the
mutual incoherence property (MIP) (or incoherence condition) camamtee the feature selection
consistency and the sign consistency with a high probability. A comprefeegsalysis for LASSO,
including the recovery accuracy in an arbitrdgynorm (p > 1) and the feature selection consistency,
was presented in Zhang (2009a). Casdnd Tao (2007) proposed the Dantzig selector (which is a
linear programming problem) for sparse signal recovery and presaibtaahd of recovery accuracy
with the same order as LASSO under the uniform uncertainty principle (URPapproximate
equivalence between the LASSO estimator and the Dantzig selector waslgivBickel et al.
(2009). Lounici (2008) studied th&, convergence rate for LASSO and Dantzig estimators in
a high-dimensional linear regression model under MIP. James et aR)(pé@vided conditions on
the design matriX under which the LASSO and Dantzig selector coefficient estimates are igentic
for certain tuning parameters. Please refer to recent papers (Z20fg; Fan and Lv, 2010) for a
more comprehensive overview of LASSO and Dantzig selector.

Since convex regularization methods like LASSO and Dantzig selector gigedestimation
due to convex regularization, many heuristic methods have been profmsedect the bias of
convex relaxation recently, including orthogonal matching pursuit (OMR)pp, 2004; Donoho
et al., 2006; Zhang, 2009b, 2011a; Cai and Wang, 2011), two stAa§&0 (Zhang, 2009a), multi-
ple thresholding LASSO (Zhou, 2009), adaptive LASSO (Zou, 208é3ptive forward-backward
greedy method (FoBa) (Zhang, 2011b), and nonconvex regulanzabhods (Zhang, 2010b; Fan
and Lv, 2011; Lv and Fan, 2009; Zhang, 2011b). They have beanrsto outperform the standard
convex methods in many practical applications. It was shown that undet secovery condition
(ERC) (similar to MIP) the solution of OMP guarantees the feature selectinsistency in the
noiseless case (Tropp, 2004). The results of Tropp (2004) wesadd to the noisy case by Zhang
(2009b). Very recently, Zhang (2011a) showed that under RIRKerethan MIP and ERC), OMP
can stably recover a sparse signal in 2-norm under measurementAaoissdtiple thresholding pro-
cedure was proposed to refine the solution of LASSO or Dantzig seledtou( 2009). The FoBa
algorithm was proposed by Zhang (2011b), and it was shown thar iRi@ethe feature selection
consistency is achieved if the minimal nonzero entry in the true solution is lérgeo(o/logm).
The adaptive LASSO was proposed to adaptively tune the weight vatubdd; norm penalty,
and it was shown to enjoy the oracle properties (Zou, 2006). ZhartP@roposed a general
multi-stage convex regularization method (MSCR) to solve a honconvegespegularization prob-
lem. It was also shown that a specific case “least square loss + n@xcsparse regularization”
can eliminate the bias in signal recovery (Zhang, 2010b) and achievecdhard selection con-
sistency (Zhang, 2011c) under the sparse eigenvalue condition (SEf€)true signal is strong
enough. More related work about nonconvex regularization methedsectound in a recent paper
by Zhang and Zhang (2012).

Conditions mentioned above can be classified into two classes: 7) tanditions including
RIP, UUP, and SEC; 2) thé, conditions including ERC and MIP. Overall, tlig conditions are
considered to be weaker than the conditions, since thé. conditions require aboud(s’logm)
random projections while th& conditions only need(slogm) random projections.

1.3 Definitions, Notations, and Basic Assumptions

We useX € R™™M to denote the design matrix and focus on the aasg n, that is, the signal
dimension is much larger than the observation dimension. The correlation rAdfigefined as
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A = XTX with respect to the design matrix. The noise veadollows the multivariate normal
distributione ~ N(0,02l). The observation vectyrc R" satisfiesy = X* + €, wheref3* denotes

the original signal (or true solutionf is used to denote the solution of the proposed algorithm. The
a-supporting setq > 0) for a vecto is defined as

supp(B) ={j: IBj| >a}.

The “supporting” set of a vector refers to the O-supporting Bedlenotes the supporting set of the
original signalp*. For any index se§, |S denotes the size of the set aBdenotes the complement
of Sin {1,2,3,...,m}. In this papers is used to denote the size of the supportingFsethat is,
s= |F|. We usef3s to denote the subvector Bfconsisting of the entries @in the index sef. The

¢ norm of a vectow is computed by|v||, = (3; vi|P)YP wherev; denotes théth entry ofv. The
oracle solutior is defined as

Br — 04X ) XTy andBe 0. )

We employ the following notation to measure some properties of a PSD mvateiR< <KX (zhang,
2009a):

WP = inf My ullp o® = sup [IM1ullp
M M
’ uerklj=k [[ul[p MET weripij—k  IIullp
M|.JU
el(\/FI).)kJ = sup [M2ulp Hp, ym = max|Mij|,
v ueR! |I|=k,[3|=I 1Nd=2 [ullp i#]

wherep € [1,], | andJ are disjoint subsets df1,2,...,K}, andM, j € RI'"*Pl is a submatrix of
M with rows from the index sett and columns from the index s@t One can easily verify that
u&’fﬁ >1-ya(k—1), p(A°°) <1+vyak—1), andefL{’f’lgl < lya, if all columns ofX are normalized to
have a unit length. -

Additionally, we use the following notation to denote two probabilities:

N1 =nNa(mog((m—s)/n1)) Y%, nz=na(mog(s/n2)) "2,

whereny andn), are two factors between 0 and 1. In this paper, if we say “large”, “lage‘the
largest”, it means that the absolute value is large, larger or the largessinkoler notation in the
computation of sets, we sometimes usg+ S” to indicate the union of two set§; andS,, and
use ‘S — S to indicate the removal of the intersection 8f andS, from the first se5;. In this
paper, the following assumption is always admitted.

Assumption 1 We assume that=s [supp(B*)| < n, the variable number is much larger than the
feature dimension (i.e., B n), each column vector is normalized QEX{ = 1 where Xindicates
the ith column (or feature) of X, and the noise veadollows the Gaussian distribution (8, a?1).

In the literature, it is often assumed thatX; = n, which is essentially identical to our assumption.
However, this may lead to a slight difference of a fagtarin some conclusions. We have automat-
ically transformed conclusions from related work according to our assamywhen citing them in
our paper.
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1.4 Organization

The rest of the paper is organized as follows. We present our multi-atggethm in Section 2.
The main theoretical results are summarized in Section 3 with detailed proefs ighAppendix
A (for Dantzig selector) and Appendix B (for LASSO). The numerical datian is reported in
Section 4. Finally, we conclude the paper in Section 5.

2. The Multi-Stage Dantzig Selector Algorithm

In this section, we introduce the multi-stage Dantzig selector algorithm. In thpged method,
we update the support si§ and the estimatiof iteratively; the supporting sé% starts from an
empty set and its size increases by one after each iteration. At each iteveti@mploy the basic
framework of Dantzig selector and the information about the currentcstipp setf, to estimate
the new signap by solving the following linear program:

min g
st. [ XE(XB-Y) = <A @
X (XB—Y) | = 0.

Since the features iRy are considered as the supporting candidates, it is natural to enforoeédhe
be orthogonal to the residual vectép —y, that is, one should make use of them for reconstructing
the overestimatiory. This is the rationale behind the constraiﬂXEO(XB—y)Hm = 0. The other
advantage is when all correct features (i.e., the true featuFe see chosen, the proposed algorithm
can be shown to converge to the oracle solution. In other words, thie @alation satisfies this
constraint withF. The detailed procedure is formally described\igorithm 1 below. Apparently,

WhenFO(O) = @ andN = 0, the proposed method is identical to the standard Dantzig selector.

Algorithm 1 Multi-Stage Dantzig Selector

Require: FO(O), AN Xy
Ensure: BV, FéN)
1: while i=0; i<N; i++ do _
2. ObtainB() by solving the problem (2) witho = F.";
3 FormF™ as the index set of thiet- 1 largest elements @1;
4: end while

3. Main Results
This section introduces the main results of this paper and discusses sorai whitications. The
proofs are provided in the Appendix.

3.1 Motivation

To motivate the proposed multi-stage algorithm, we first consider a simple ¢ese some knowl-
edge about the supporting features is known in advance. In standatdi selector, we assume
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Fo = @. If we assume that the features belonging to @&gsetre known as supporting features, that
is, Fo C F, we have the following result:

Theorem 1 Assume that Assumption 1 holds. TakecH= andA = g, /2Iog(mn—*ls) in the opti-
mization probleng2). If there exists some | such that

1-1/p
(p) (p) [Fo—F|
Hasii —Oasti) ( | >0

holds, then with a probability larger thah—n?, the/, norm (L < p < ) of the difference between
B the solution of the problerf2), and the oracle solutloB is bounded as

[1+(F° F') ] (IFo—F|+12p)L/P
IB—Bllp < = —\1-1/p

U(AFZH _e,(A?gH,I (f) :

and with a probability larger tharl —n’ —n5, the £, norm (1 < p < ) of the difference between
B3, the solution of the problerf2) and the true solutiof3* is bounded as

()" ]UMQ—Q+M%W

3)

IB—BIlp < o A+
_ -1/p
U,(A?;I _e,(AF,Z-&-I.,I (‘FO| F') (4)
sl/p
(p)ic\/ZIog(s/r]z).
IJ(X;' )1/2

It is clear that both bounds (for any<l p < ) are monotonically increasing with respect to the
value of [Fo — F|. In other words, the largeffy is, the lower these bounds are. This coincides
with our motivation that more knowledge about the supporting features edrtdea better signal
estimation. Most related literatures directly estimate the bourj@ef3*||,. Sinceff* may not be
a feasible solution of problem (2), it is not easy to directly estimate the distm’tweerﬁ andp*.

The bound given in the inequality (4) consists of two terms. Simcg> h > s, we have
v/2log((m—s)/n1) > /2log(s/n2) if N1 ~ n2. Whenp = 2, the following holds:

= =\ 1-1/2
W2 g2 (IF—F] 2 _ @
A S+ Astl | | = “(xng)l/Z,s

due to the following relationships:

(2) 2 -2 2

Ma s+l < UASS p'xi':l'x sS IJ-XFT J2g

From the analysis in the next section, we can see that the first term is taehgapd of the distance
from the optimizer to the oracle solution, that |iﬁ B||p and the second term is the upper bound
of the distance from the oracle solution to the true solution, thdfis; B*||p.> Thus, the first term
may be much larger than the second term under the assunmptism > s.

1. The presented bound fcﬁB |?>||p can be sharper for a particular value mffor example, ||B B*|l2 < O(o+/S),
IB—B* [l < O(cy/Togs) (Zhang, 2009b). For simplicity, a general bouffsl— B*|lp < O(0sY/P,/logs) is used in
this paper.
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3.2 Comparison with Dantzig Selector

We first compare our estimation bound with the one derived by &aadd Tao (2007) fop = 2.
For convenience of comparison, we rewrite their theorem (Esiadd Tao, 2007) equivalently as:

Theorem 2 Suppos@ € R™is any s-sparse vector of parameters obeydpg+ 9@23 < 1. Setting
Ap = 0y/2log(m/n) (0 < n < 1), with a probability at least. — n(mlogm)~%/2, the solution of the
standard Dantzig select@p obeys

IBo—Bllo< 520 /2logm/n). ©)

1825 — 8L 56

wheredys = ma)(p;f)z_g -11- u,(Az,)Zs)'

In order to compare Theorem 1 with the result above, takiﬁq;F_o — F_| <s p=2,n1= "0,
andnz = 2n in Theorem 1, we obtain that

Astl T Oasil Hxaxeyizs

IB—B"ll2< ( = \/lTe](Z) + (2)\/§ )m/ZIog(m/n) (6)

holds with probability larger than- n(tlogm) /2. It is easy to verify that

2 2 2 2 2 2 2 2
L 82— 8o <kt — B0 < M S = (M) S Hoxees < 1

Whenky = @, the bound in (6) is comparable to the one in (5). Simff;gl — Gf)wyl in Equation (6)
is a decreasing function in termsloif F is nonempty, particularly iF is close toF (i.e.,| is close

to 0), the conditioru@+I — e}fgu > 0 required in Equation (6) is much easier to satisfy than the

condition 1— &5 — 95@25 > 0 required in Equation (5).

3.3 Feature Selection

The estimation bounds in Theorem 1 assume that &gsistgiven. In this section, we show how
the supporting set can be estimated. Similar to previous work @aadd Plan, 2009; Zhang,
2009b),|B;| for j € F is required to be larger than a threshold value. As is clear from the proof
in Appendix A, the threshold valueig is actually proportional to the value qjﬁ— Bl We
essentially employ the result with= « in Theorem 1 to estimate the threshold value. It shows that
the value of|| — B*||~ is bounded byO(A), which is consistent with the result of Lounici (2008).

In the following, we first consider the simple case wiNes- 0. We have shown in the last section
that the estimation bound in this case is similar to the one for Dantzig selector.

Theorem 3 Under the Assumption 1, if there exist a nonempty set
w w S
Q={l] H(A,s?ﬂ _e(A,s)+|,| <T) > 0}
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and an index set J such thgdj| > ao for any je J, where

o =[1B” = Bl + IR — Bl

max(1, 2
<4min (Lf) AT o 2log(s/n2),
T ORNENRNC
Astl —Oasii (7 HixTxe )12

then taking g =2, N=0, A = 0, /2Iog<%5) into the problem(2) (equivalent to Dantzig selec-
tor), the largestJ| elements ofistd (or ﬁ(o)) belong to F with probability larger thad —nj —n5.

The theorem above indicates that under the given condition, ifanigj| > O(o/logm) (as-
suming that there exists> s such thamggl - GXC’;,J () > 0), then with high probability the
selectedJ| features by Dantzig selector belong to the true supporting set. In partiduldir= s,
then the consistency of feature selection is achieved. In order to builtinipta the previous work,
we letl =s. Note tham(:z)s— 9&’:’2)3_5 > 1—ya(3s—1). If the MIP holds likeyas < 1/6 (see Corol-
lary 8.1 in Zhang, 2009a), then the condition required in Theorem 3 is edtizé well. It means
that the condition we require is not stronger than MIP. However, it stilldggdo the’., condition
like MIP. The result above is comparable to the ones for other featuretisel@algorithms, includ-
ing LASSO/two stage LASSO (Caad and Plan, 2009; Zhao and Yu, 2006), OMP (Tropp, 2004;
Donoho et al., 2006; Zhang, 2009b), and two stage LASSO (Zhaf§a30In all these algorithms,
the conditions mifr [B}| > Co/logmand arv., condition are required. As pointed out by Zhang
and Zhang (2012) and Zhang (2011a), these conditions required\; Dantzig selector, and
LASSO in feature selection cannot be improved. If one wants to usétbenditions in feature
selection, the minimal nonzero entry of the true solution must be in the ordef®{/slogm),
which can be obtained by simply usifi§© — B*||w + [|B© — Bllo < [B? — B*||2+ ||B? — B]|2.

A similar requirement under th& condition for LASSO (or two stage LASSO) is also implied by
Zhang (2009a, Theorem 8.1).

Next, we show that the conditidj| > ao in Theorem 3 can be relaxed by the proposed multi-

stage procedure witN > 0, as summarized in the following theorem:

Theorem 4 Under the Assumption 1, if there exist a nonempty set
Q= {1 | W 80, (7) >0}
and a set J such thasupp, (B3)| > i holds for all i€ {0,1,...,|J| — 1}, where
o =[1BY — B[l + 1B — Bl

max(1, -
s4min— (<w’) I )s—i At (m)l oy/2log(s/n2),
€ Hasi — eA,sa-l,l (T) P-(xng)l/z’s

then taking ém =g, A =0, /2Iog<mn—f) and N= |J| — 1 into Algorithm 1, the solution after

N iterations satisfies(,@) C F (i.e., |J| correct features are selected) with probability larger than
1-ny1—n3
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Assume that one aims to seld¢tcorrect features by the standard Dantzig selector and the multi-
stage method. These two theorems show that the standard Dantzig selggiesréhat at least

of [Bj['s with j € F are larger than the threshold valag, while the proposed multi-stage method
requires that at leastof the \B]-‘\’s are larger than the threshold valag 1, fori =1,--- ,N. Since

the upper bounds dfu; }'s strictly decrease and the difference of two neighbors is greater than

46,(As?+l |

"N\ 2
| (H(Aofs)ﬂ B (%))

for somel € Q, the proposed multi-stage method requires a strictly weaker condition fantlagle

N correct features than the standard Dantzig selector. If we considér ¢beditions, usmg\B

B*[les + [|BD = Bleo < [|BD — B*[|2+ ||BV — B]| to boundaj, we obtain that; < O(1/(s —l)logm+
A)o whereA is a small number relying os. Wheni is close tos, the order ofa; approaches

O(o+/logm). Recall that the FoBa algorithm (Zhang, 2011b), MSCR (Zhang, 20Hht MC+

(Zhang, 2010a) require ap condition and the threshold value is in the ordeog&/logm) for the

feature selection consistency while the standard LASSO or Dantzig seteqgtares the threshold

value in the order 0©(o+/slogm). Therefore, our condition lies between them.

3.4 Signal Recovery

In this section, we derive the estimation bound of the proposed multi-stage drigghtombining
results from Theorems 1, 3, and 4.

Theorem 5 Under the Assumption 1, if there exist | such that

ngﬂ esst)+||<|>>0 and l-ix _6A235>0

and a set J such thasupp, (B3)| > i holds for all i € {0,1,...,|J] — 1}, where then;’s are defined
in Theorem 4, then

(1) taking b = @, N=0andA = o, /2Iog<mn—‘ls) into Algorithm 1, with probability larger than
1—n} — N}, the solution of the Dantzig selectBs (i.e., ) obeys:

2p+1 4 2)1/pgl/p sl/p
o Bllo < B 2SN S0 /2logsna):
W25 — O 2ss Hixxe )1z,

(2) taking b = @, N= |J] andA = 0, /2Iog<mn—*15> into Algorithm 1, with probability larger than
1—n} — N}, the solution of the multi-stage meth@gl (i.e., V) obeys:

N 2p+1+2 1/p(s— N)V/P sl/p
[|Brmut — B*{p < ( O ) (é) ) A5 o+/2log(s/n2).
A 25 N~ eA,Zst,st u(x":er)l/Z’s

Similar to the analysis in Theorem 1, the first term (i.e., the distance ﬁﬁrtmnhe oracle solutiof})
dominates in the estimated bounds. Thus, the performance of the multi-stagel myepinoximately
improves the standard Dantzig selector frést/P./logmo to C(s— N)¥/P,/logmo. Whenp = 2,
our estimation has the same order as FoBa (Zhang, 2011b) and MCSRy(Z@10b), but the
conditions involved in our estimation belong to theclass while they use th& condition.
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3.5 The Oracle Solution

The oracle solutiorﬁ defined in Equation (1) is the minimum-variance unbiased estimator of the
true solution given the noisy observation. We show in the following theorenttte proposed
method can obtain the oracle solution with high probability under certain congtition

Theorem 6 Under the assumption 1, if there exists | such thfg‘%},l— eﬁfj’gm (5') >0, and the

supporting set F op* satisfiegsupp, (Bg)| >iforalli € {0,1,...,s—1}, where thep;’s are defined
in Theorem 4, then takingg= @, N = s and\ = g, /2Iog<mn—‘ls) into Algorithm 1, the oracle

solution can be achieved, that iso('ﬁ =F andﬁ“\') = E with probability larger thanl —n’ —ns.

The theorem above shows that when the nonzero elements of the trfieientf vectof3* are large
enough, the oracle solution can be achieved with high probability.

3.6 The Multi-Stage LASSO Algorithm

Next we extend the multi-stage procedure to the LASSO case; we expeti¢vasimilarimprove-
ments over the standard LASSO. The multi-stage LASSO algorithm can beabtajirsubstituting
the basic optimization problem, that is, Equation (2hlgorithm 1, by the following problem:

. 1
mBm: Q”XB—)’H%'H\/HBFBM

st.: XL (XB—y)[e=0.

Note that the constraint in Equation (7) is satisfied automatically at the optimé&bsoy observing
the subdifferential of its objective function. Thus, the constraint careb®ved from Equation (7)
in practice.

We apply the same framework in Dantzig selector to analyze the multi-stage LAS&ain
a bound estimation for any € [1, »] and show that similar improvements can be achieved over the
standard LASSO. For completeness, we include all proofs and resultsuiti-stage LASSO in
Appendix B.

It is worth mentioning that Zhang (2010b, 2011b) recently developed a siméthod called
MSCR. The main difference is that it uses a threshold value to update tdieia&nset:é'”) ateach
iteration and may need to solve LASSO more teéimes to converge, while our algorithm needs to
solve LASSO less thastimes. An advantage of MSCR is that it requires a weaker condition, that
is, miner |B*| > O(o4/logm) and an¢, condition, to achieve the consistency on feature selection
and signal recovery.

(7)

4. Simulation Study

We have performed simulation studies to verify our theoretical analysisc@uparison includes
two aspects: signal recovery accuracy and feature selection agclife signal recovery accuracy
is measured by the relative signal errSBRA= —201log;o(||B—B*||2/]/B*||2), wheref is the solution
of a specific algorithm. The feature selection accuracy is measured byetbenpage of correct
features selected® SA= |[F NF|/|F|, whereF is the estimated feature candidate set.

We generate am x m random matrixX. Each element oK follows an independent stan-
dard Gaussian distributioN(0,1). We then normalize the length of the columnsXto be 1.
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The s—sparse original signgb* is generated withs nonzero elements independently uniformly
distributed from[—10,10]. The locations ofs nonzero elements are uniformly distributed in
{1,2,---,m}. We form the observation by = X3* + €, where the noise vectar is generated

by the Gaussian distributioN(0,?l). All experiments are repeated 100 times and we use their
average performance for comparison.

First we compare the standard Dantzig selector and the multi-stage vereroa fdtr compar-
ison, we choose the same= g,/2logmin both algorithms. We run the proposed algorithm with
FO(O) = @ with different values olN and let the estimatioﬁ be the outpuf3<N> in Algorithm 1.
The feature candidate sétis predicted by the index set of tiséargest elements iﬁ. Note thatF
identified byf3 = B(N) is different from the outquo(N) by Algorithm 1. The size ofF is always
s while the size OFO(N) is N. Note that the solution of the standard Dantzig selector algorithm is
equivalent th3('\‘) with N = 0. We report th&sRAcurve ofB(N) with respect taN in the left column
of Figure 1. The right column of Figure 1 shows th8Acurve with respect tdl. We allowN > s
in our simulation although this case is beyond our theoretical analysis, sipcadtice the sparsity
numbers is usually unknown in advance. We can observe from Figure 1 that Inthe-stage
method obtains a solution with a smaller distance to the original signal than theustddantzig
selector method; 2) the multi-stage method selects a larger percentageeat ¢@atures than the
standard Dantzig selector method; 3) the multi-stage method can achievecdleesotation with a
large probability; and 4) even wheéh> s, the multi-stage algorithm still outperforms the standard
Dantzig selector and achieves high accuracy in signal recovery atatdeselection. Overall, the
recovery accuracy curve increases with an increasing valNebefore reaching the sparsity lewel
and decreases slowly after that, and the feature selection accuraeyincneases whildl < sand
becomes flat afteX goes beyona.

Next we apply the multi-stage procedure to the LASSO case and compare ttiestage
LASSO to the standard LASSO and the two-stage LASSO (Zhang, 2008a)}wo-stage LASSO
algorithm first estimates a support $6t= supp (p’) from the solutior’ of the standard LASSO
wherea > 0 is the threshold parameter; the second stage estimates the signal by s@\iitpitr
ing problem

. 1
min: 5IXB =I5+ N [1B& 1. (8)

which is indeed identical to Equation (7). In order to make it comparable torttpoped multi-
stage LASSO algorithm with the paramelgrwe properly choose such thatF| = N and use the
outputB’ from Equation (8) and the feature candidate sefbfor comparison. Similarly, we use

the same\’ = 2\ in the three algorithms. The comparison reported in Figure 2 also indicates the
advantage of the proposed multi-stage procedure.

5. Conclusion

In this paper, we propose a multi-stage procedure to improve the perfoeroiie Dantzig selector
and the LASSO by iteratively selecting the supporting features and néggube original signal.
The proposed method makes use of the information of supporting featuessinmate the signal
and simultaneously makes use of the information of the estimated signal to seletipiorting
features. Our theoretical analysis shows that the proposed method @spupen the standard
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Figure 1: Numerical simulation. We compare the solutions of the standardifaetector method

(N = 0), the proposed method for different valueshot= 0,1,---,s,---,s+ 5, and the oracle so-
lution. TheSRAandFSAcomparisons are reported on the left column and the right column, re-
spectively. The red line indicates tB&RA(or FSA value of the standard Dantzig selector method;
the blue line indicates the value of the oracle solution; the green curve witk lnbxes records the
results by the proposed method for different valuedipthe vertical cyan line distinguishes two
caseN <=sandN > s.
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Figure 2: Numerical simulation.
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We compare the solutions of the standard iDasslector
method N = 0), the two-stage LASSO algorithm, the proposed method for different vaitie
N=0,1,---,s,---,5+5, and the oracle solution. T BRAandFSAcomparisons are reported on
the left column and the right column, respectively. The red line indicateS&#(or FSA value
of the standard Dantzig selector method; the blue line indicates the value agfittie solution; the
green curve with black boxes records the results of the proposed nfethdifferent values ofN;
the magenta curve with yellow diamonds indicates the results of the two-stage@QAgorithm;
the vertical cyan line distinguishes two cadés= sandN > s.
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Dantzig selector and the LASSO in both signal recovery and supportgréeselection. The final
numerical simulation confirms our theoretical analysis.
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Appendix A.

Theorem 1 is fundamental for the rest of the theorems. We first highlighiedarchitecture for its
proof. Theorem 1 estlmat(ﬁﬁ B*||p, which is bounded by the sum of two parﬂsﬁi Brllp < ||[3—
Bllp+ HB B*||p. We use the upper bounds of these two parts to estimate the boqﬁd—cﬁ Il p-
The analysis in Section 3.2 shows that the first tﬂﬁmﬁﬂp may be much larger than the second
term|| — B*||p. In Lemma 7, we estimate the bound|— 3*||, and its holding probability. The
remaining part of the proof focuses on the estimation of the bourﬂcﬂs ofB||p. For convenience,
we useh to denote|3 B. hcan be divided intd;, 1, andhg, ,1,, whereFo C Fy C F. Lemma 9
studies the relationship betwebg_1, andhg, .1, if B is feasible (Lemma 8 computes its holding
probability). Then, Lemma 11 shows tHt||, can be bounded in terms @fg, T, ||p. In Theorem
12, we estimate the bound i, ., || p. Finally, lettingF, = F, we prove Theorem 1.

Lemma 7 With probability larger tharil — n(ttlog(s/n)) /2, the following holds:

— /P
B-plp < S0y 2lodE/) ©

H(xng )1/2,5

Proof According to the definition 0|E, we have

Be = (X Xe) 3Ty = (T Xe ) IXT (XB* +-€) = (X7 X&) "X (Xe Bt +€)
=B+ (¢ Xe) Xde.
It follows that
Br — Bt = (X Xe) 1T e ~ N(O, (X X ) ~20?).
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Since||§— Bl = HEF — Bg||p, we only need to consider the bound ﬂqip —BEllp. LetZ =
(XgXe)Y2(Bt —Be)/0 ~ N(O,1). We have

P(|Zllp>1t) = (211)*5/2/ o 221247
1Zl[p=t
< (2Tt)*s/2/ e 2224z (due to||Z]|p < SYP|Z]l«)
SYP(Z]w>t
=1- (21‘[)‘5/2/ e2'2/247

1Z]lw<s Pt

S
_1- {(211)1/2 / elz/zdz]
|Zi‘§§1/pt

=1- [1 2(2n)—1/2/j° e—ziz/zdzi}

1/pt

5{2(211)1/2/ eziz/zdzi]
s 1/pt
- 281+1/p [ —t2 }

_t(Zn)l/zeX 22/p |

Thus the following bound holds with probability larger than 1//2 exp[ 5 }:

P(|Z]|p <t) = P(|| (X Xe)Y2(Bt — Br) | p < to)
< P(WRry, e olIBE = Bellp < 10) = P(IBE —Bellp <t0/H Pk s 0):

Takingt = /2log(s/n)sYP, we prove the claim. Note that the presented bound holds fopany.
[ |

Lemma 8 With probability larger tharll — n(rtlog mT‘S)*l/z, the following bound holds:
IXE(XB=Y)[lo <A,
whereA = g,/2log(m—s)/n.

Proof Let us first consider the probability WFI(XE— y)|lw <. Foranyj e F, definev; as

=X/ (XB-y)

= X[ (Xe (X Xe) "X (XeBe +€) — Xe B —€)
= X[ (X (O Xe) IXE —1)e

~ N(O,XT (I = Xe (X Xe) 2T ) Xj0?).

Since (I — Xe (X X=)~XT) is a projection matrix, we havi (I — X (X X)) 1 XI )Xj0? < 02,
Thus,

= 2(m—s)o
P(IXE(XB=Y)|eo > ) = (jSEUFp’VJ‘>)\) WeXp{ A2/20%).
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TakingA = 04/2log(m—s)/n in the inequality above, we prove the claim. [ |

It follows from the definition ofp that ||X.FT(X[§—y)||oo = 0 always holds. In the following
discussion, we assume that the following assumption holds:

Assumption 2 Eis a feasible solution of the problefR), if Fop C F.

Under the assumption above, bditi! (XB —y)|| < A and||XZ (XB—Y)|[« = 0 hold.

Note that this assumption is just used to simplify the description for followingfpr@dur proof
for the final theorems will substitute this assumption by the probability it holds.

In the following, we introduce an additional g&tsatisfyingFy C F; (Zhang, 2009a).

Lemma9 Let iy C F. Assume that Assumption 2 holds. Given any index;sai¢h that § C Fy,
we have the following conclusions:

M- ll2+2lIBg [[1 = [lh [|2
[Xg, X oo =0
IXEX e <22

IXE _eXhljew <M.

Proof Sinceﬁis a feasible solution, the following holds

IBrll<IBgls
IB% -~ lla + BRI =< IBr &l + IBe 1
1Be 12 < lIh &l + 1Be 1
Ihe, + B ll1 < lIhe—p [l +1Be 11
Mg ll2 < [1hes -l + 21Bg [l
Thus, the first inequality holds. Since
Xg,Xh=XEX(B—B) = XL, (XB—y) = XL, (XB—Y),
the second inequality can be obtained as follows:
XX Nleo < 1% (XB=Y) o + [ X5 (XB=Y) |0 = O.
The third inequality holds since
IXEX e < [XEXB=Y) o+ [XE(XB—Y) [l < 2.

Similarly, the fourth inequality can be obtained as follows:

IXE_eXhle < X c(XB=Y)[lo+ X5 £(XB—Y)[lw <.
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Lemma 10 Given any v= R™, its index set T is divided into a group of subsefs {j = 1,2, ...)
without intersection such th&; Tj = T. If max |Tj| <l and maxer,., [vr,, [i]| < [|vr;[]2/! hold for
all j’s, then we have

v, [ < IVl /P,

Proof Since|vr,,[i]| < |[[vy[l1/1, we have
pI1-
Ve llp = 2£ ‘Vﬂ+1 ‘—-HVTH1| P,
i€Tj1

= |[vrllp <[lva [l YPL

Thus,

1 1_ 1 1
IVl < 3 IVallo < 3 o 197 = a5
=

which proves the claim. |
Note that similar techniques as those in Lemma 10 have been used in the liteCatndes(and
Tao, 2007; Zhang, 2009a).

Lemma 11 Assume thatdc F and Fy C F;. We divide the index s&j into a group of subsets;’s
(j =1,2,...) such that they satisfy all conditions in Lemma 10 with k. Then the following holds:

I llp <P~ (IR — Rl "PlIng, 5 lp+211Be; 1)

= =\ p-11YP
Fo—F\P =
Il < 2 (P20 el 22 3

Proof Using Lemma 10 withl = F4, the first inequality can be obtained using the first inequality
in lemma 9 as follows:

Ine mllo <P Mgl < 1P (IIhg, g 1+ 2B 1)
<IVP (|~ Rl Pllhg, 2B 1)
Foranyx>0,y> 0, p> 1, anda > 0, it can be easily verified that
(XP + (ax+y)P) VP < (14-aP)YPx+y. (10)
It follows that
Il = [IPesm B+ e, 7, 18]
< | IMesmllp+

— o1 p
FO_Fl 1-1/p P
() i sl + 29 41Be

- - = 1
[Fo—F P P /-1
1+ e+ o+ 217 IBA [l

1/p

IN
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The firstinequality is due to the first claim in this lemma; the second inequality iding £ ||p <
|he+, || p @and (10). We complete the proof for the second claim.

Theorem 12 Under Assumption 1, takinggfe- F andA = o /2Iog<mn—*ls) into the optimization
problem(2), for any given index set;Fsatisfying o € F, C F , if there exists some | such that

SR\ 1L/ . -
TN/ ('FOTF“) > 0 holds where g= |F1|, then with probability larger thal —n’,

the /p, norm (1 < p < ) of the difference between the optimizer of the prob|2pand the oracle
solution is bounded as

_ _111/p _
_FI\P 1 — — g
o ()] (R 2n 4 280 19 1B )
= =\1-1/p
Fo—F
00 (55
2P Bg s

IB—Bllp <

and with probability larger tharl —nj —n5, the £, norm (L < p < ) of the difference between the
optimizer of the probler{2) and the true solution is bounded as

= = p—1 1/p o _ _
2 ()] (0Ro- Al 2ven 208 1711 )

|F‘0—F‘1|)1—1/ P

IB—B"p <
p) (p)
Uﬁ\,sm —Opg 11, ( I

i st/p
+2AYP B ||+ (p)iox/ZIog(s/nz).

u(xi‘:rx‘:)l/zs

Proof First, we assume Assumption 2 and the inequality (9) hold. DiFidato a group of subsets
Tj's (j = 1,2,...) without intersection such th&l; T; = Fi, max [Tj| <1 and maxr;,, hr,[i] <
[|hr;[]2/1 hold. Note that such a partition always exists. SimplyTiebe the index set of the largest

| elements irh, T, be the index set of the largdsélements among the remaining elements, and so
on (the size of the last set may be less thart is easy to verify that this group of sets satisfy all
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conditions above. For convenience of presentation, we ddpetdy — F, andToy = To+ T1. Since

T
HXT01+F0XhH p
:||X'|T01+F0XT01+FohT01+Fo + ZZX';I'(—M-&-FOXTJ' th H p

>HA51+|HhTol+Fo||p 229A51+||||hT,||p

—UAsl+| [hTos+Rollp — Asl+l | ;Hhﬂ lIp

P 1/p—1 _
>UP Ik llp— 88 . 1P Ihg 11 (due to lemma 1D

>0 i I oo — 8900 1117 (Il |1+ 2|Bg 1) (due to lemma 9

| \ VPl =
Z“,(A‘,);1+I‘|hT01+F0HP B(Apéﬁll (]T0|> ||hT0||p—26(A%+UI1/p 1||[3>F—1||1

> <u§-\?;1+| _e;(ﬁfgl-i-l,l <’TO|> HhT01+F0HP_ A;ﬁ-l lll/p 1||I3F Hl

and
Xy X IR
=X, X 1B + X, X DI B 41X, X il B
<|TotNFAP+[To1NF|(2A)P  (due to lemma 9
<|ToNFAP+[TeNFAP +[ToNF[(2A)P + [TLNF|(2A)P  (due toF; C F)
<|ToAP+1(20\)P,  (due toToNF = @)

we have

([Tol +2°1)Y/PA + 260\ 1Y/ 1Bg |1

(p) (p) /p-1
UAF-,)31+| o eAra)SEL-H.,l <\TIT,\)

(Fo—Fal +2°1) /P + 260 1VP 1B 1y

HhF1+T1||p :||hT01+Fo||p <

Asi+ |

- =1\ 1-1/p
H(A?ilJrl - eﬁ&ﬁu (@I Fl')

Due to the second inequality in Lemma 11, we have

— =, p-11Yp
Fo—F 15
Il < 2+ (125 2) ] Il + 277 B

e, _  _ _
[1+<F° F”) } ((IFo—Fuf+28)/Pn 4262, 1VP-3|B5 1)
- +
= 1-1/p
“ﬂﬁl *6/(\?;1+|,| (‘FO| 1‘)

2177 |B .
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Thus, we can bounhﬁ— B*|lp as
IB—Bllp <IB—Bllp+IIB—B"llp

= = \p-1 1/p _ _ B
[1+('F°|F1') ] (IR0~ Rl +2°1)MPA+ 207 | 1P Bg )

<
— == 1-1/p
U(A%H —ei&m (@I 1')
Up-15 sl/p
+27P 1B |1+ ————0+/2log(s/n2).
u(ngF)l/{S

Finally, takingA = o /2Iog<mn—‘ls), Lemma 8 withn = n1 implies that Assumption 2 holds with

probability larger than + nj and Lemma 7 witlm = n, implies that (9) holds with probability
larger than :n?. Thus, these two bounds above hold with probabilities larger thamfland
1—nj —n5, respectively. [ |

Remark 13 Cancks and Tao (2007) provided a more general upper bound for the Rpsétec-
tor solution in the order ofO(kl/zox/longr rff)(B*)\/logm), wherel < k <'s and ;ﬁm(B) =

(zieLk|Bi|P)l/p (L is the index set of the k largest entriesBihn We argue that the result in
Theorem 12 potentially implies a tighter bound for Dantzig selector. Setting B (equiva-
lent to the standard Dantzig selector) ane-lk with k= |F;| in Theorem 12, it is easy to verify

that the order of the bound fdp — B|| is determined by <k1/P0\/Iogm+ kl/pflrl((l)([g)), or

0 (kl/Pox/Iongr kl/pflrl((l)(B*)> due to Lemma 7. This bound achieves the same order as the

bound of the LASSO solution given by Zhang (2009a), which is the stdypend for LASSO to
our knowledge.

We are now ready to prove Theorem 1. B
Proof of Theorem 1: TakingF;, = F in theorem 12 which indicates thgt, = 0, we conclude that

{“(F"F ')p_l]l/p<|ﬁo—f|+lzp>l/p

Hasi — A&LIC%FE>1_Up

A

1B —Bllp <

holds with probability larger than-2n’ and
1B=B*lp <lIB—Bllp+IB—Blp

Fo-FI\P* YP= = 1
[H(l) } (IR—Fl+120tP
‘ A+ © o+/2log(s/n2)

<
— = \1-1/p
“5\2“ - eix%u (|F0| ) Hixxeyv2s
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holds with probability larger than-4n; —ns. [ |

Proof of Theorem 3: From the proof in Theorem 12, the bounds (3) and (4) in Theorem 1 hold
with probability 1 if Assumption 2 and the inequality (9) hold. It is easy to verifyTheorem 1
that for anyj € J, the following holds:|Bj| > ao > [|B — ||« + [[B— B [|». For anyj € J, we have

1Bi] > 1B} — 1B — B:| > B~ Blleo + 1B~ B*leo — [Bj — B = 1B~ Blleo > ||B e

Thus, there exist at leagl| elements ofe larger tharﬂﬁg”m. If we pick up the largegtl| elements
in B, then all of them correspond to the location of nonzero entries in the ttugosof3*. Since
Assumption 2 and the inequality (9) hold, the bounds (3) and (4) in Thebdsoid with probability
larger than 1-n’ —n5. Thus the claim above holds with probability larger than1}; —n5. Note
that the probability will not accumulate, as we only need the holding probabfliyssumption 2
and the inequality (9). The proofs below follow the same principle. [

Proof of Theorem 4. From the proof in Theorem 12, the bounds (3) and (4) in Theorem 1 hold
with probability 1 if assumption 2 and the inequality (9) hold. In the multi-stage alkgor the
problem in (2) is solvedN times. It is easy to verify that the following holds:

do > B9 = Blleo + B — B*|eo

Since|supp,(Bj)| > 0, there exists at least 1 elemeniﬁiﬁq) larger than\|[§(F5))\\m. Thus,FO(l) must
be a subset df. Then, we can verify that

a1 > [BY = Blleo + |BY — B le,

and|supp, (Bj)| > 1 guarantee that there exist at least 2 elemerﬁg?darger thad]fi(F—l) ||lo. Thus,
FO(2> must be a subset ¢f. Similarly, we can show thaEO(N) is guaranteed to be a subsetfof
Since the bounds (3) and (4) in Theorem 1 hold with probability larger thanl—n?, the claim
FO(N) C F holds with probability larger than-2n’ —nj. [ |

Proof of Theorem 5: From Theorem 1, the first conclusion holds with probability larger than
1—nj —n5 by choosing = @ andl =s.

Assuming Assumption 2 and the inequality (9) hold, the bounds (3) and (4)éorém 1 hold
with probability 1. Since the conditions in Theorem 4 are satisfied|Xheorrect features can be
selected from the feature set, thalﬁé'f‘) C F. Using the conclusion in (4) of Theorem 1, the bound
of the multi-stage method can be estimated by takiagFy — F| as follows:

N i 2P+l L 2)1/p(s_ N)L/P sl/p
[[Bmul — B Hpé( o ) FE) ) M5 0v/2log(s/n2).

(
A 2s N~ Oa2s Ns N Hoxrxe yv2.s

Note that since

u,(AF,)%s—N - e,(Ar,gs—N,s—N > u,(AF,)%s - e(Ar,gs,s’

the following always holdspis y — 8% s n > 0. Since Assumption 2 and the inequality (9)

hold, the bounds (3) and (4) in Theorem 1 hold with probability larger thaml—n5. Thus the
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claim above holds with probability larger thar-I)}; — n>. |

Proof of Theorem 6: First, we assume that Assumption 2 and the inequality (9) hold. In this case,
the claim in Theorem 4 holds with probability 1. Since all conditions in Theoraaressatisfied,
after s iterations,s correct features will be selected (i.§éN) = F) with probability 1. Since all
correct features are obtained, the optimization problem in the last iteratidmecirmulated as:

min : [|Be]l1
t [XEXB=Y) [0 <A (11)
IXF (XB—Y)|lw = 0.

The oracle solution minimizes the objective function to 0. Since Assumption 2 indgxiés that
the oracle is a feasible solution, the oracle solution is one optimizer. We cashalacthat it is the
unique optimizer. If there is another optimiz&e B, thenfg = 0 andBr = (X X)Xy, which

is identical to the definition of the oracle solution. Thus, we conclude thatrémeeois the unique
optimizer for the optimization problem (11) with probability 1. Since the holdingability of
Assumption 2 and the inequality (9) is larger than 4] —n, the oracle solution can be achieved
with the same probability. |

Appendix B.

In this section, we expound the properties of the multi-stage LASSO whicheayesimilar to the
multi-stage Dantzig selector. The complete proof is given below. B

In the following discussion, we usﬁé to denote the solution in Equation (7) andhét B’ B.
We first consider the simple caBg C F as in Section 3.1; we have the following theorem.

Theorem 14 Assume Assumption 1 holds. Taked+ and

N =20, /2Iog<m_s>
N1

into the optimization probler(v). If there exists some | such that

FO F 1-1/p
“H 39§A;+||<| | |> >0

holds, then with probability larger thah—n?, the/, norm (1 < p < ) of the difference between
B’ the optimizer of the problel{T) and the oracle solutiof is bounded as

= p—1 /p _
(B R Az
||B/_B”p§ = =\ 1-1
_ -1/p
U( ¢ 36£\g+|| (“FO| F')

!/
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and with probability larger tharl —n’ —n5, the £, norm (L < p < ) of the difference betwed,
the optimizer of the problelfr) and the true solutiofs* is bounded as

I
(5 R A,
N+ 0 o+/2log(s/n2).

1-1/p
u(p) 36AS—H | <“:0| F|) u(X;'XF)l/z_’S

1B —B*lp <

This theorem is similar to Theorem 1 for the multi-stage Dantzig selector. Likatims (3)
and (4), the two bounds in the above theorem are strictly decreasing in oénfis— F|. Thus,
feature selection and signal recovery can benefit from each otbethis reason, the multi-stage
LASSO has similar properties as the multi-stage Dantzig selector. We expamdthfollows.

(a) First, like Theorem 4, in the LASSO case the multi-stage procedure can laaddaker require-
ment to choosél| correct features than the standard LASSO as shown in the followingetmeor

Theorem 15 Under Assumption 1, if there exist a nonempty set
s\ 1-1/p
Q= {I|u, - 395Ag+||<|) > 0}

and a set J such thasupp, (B3)| > i holds for all i< {0,1,...,|J| — 1}, where

max(1, 3
aj = 3 min X ) — N+ ! o+/2log(s/n2),
210 39(“’) (E) ()
U Asl T HixTye )12

then taking éo) =, A=0, /2Iog<mn—‘ls) and N= |J| — 1 into the multi-stage algorithm 1, the

result after N iterations satisfieso(w C F (i.e., |J| correct features are chosen) with probability
larger thanl—nj —n5.

It is easy to see thato > a3 > ... > a3_1 holds strictly. Referring to the analysis for Theorem 4,
we know that the multi-stage method for LASSO requires weaker conditionst&indJ| correct
features than the standard LASSO.

(b) Second, like Theorem 5 the following theorem shows that with a high piittigahe multi-
stage procedure can improve the upper bound of the standard LA®SCCEP,/logm+ A to
C(s— N)¥/P,/logm+ A, whereC is a constant and is a small number independent fram

Theorem 16 Under Assumption 1, if there exist | such th%\ip1 360,11 (2) >0, W) 3610 >
0, and a set J such thaguppy, (B3)| > iholdsforallic {0,1,...,|J| — 1}, whereq;'s follow the def-

inition in Theorem 15, then takinggE= @, N = |J] andA’ = 20, /2Iog<m 5) into the multi-stage
LASSO algorithm, the soluti(mnul of the multi-stage LASSO obeys

4 3 p+1 1/p(S—N)1/p /
((> ) v o ot

- .
”BmuI_B HpS l,l( p) 3e(p)
A,25— A2s—N,s—N H(XEXF)l/ZS

with probability larger thanl —n’ —n5.

1211



Liu, WONKA AND YE

(c) Finally, the proposed method can obtain the oracle solution with high probabilityricertain
conditions:

Theorem 17 Under Assumption 1, if there exists | such thgﬁH - 395x°2+|.| (57) > 0, and the
supporting set F of* satisfies/supp, (Bt)| > i for all i € {0,1,...,s— 1}, wherea; follows the

definition in theorem 15, then taking E @, N =s and\’ = 20, /2Iog<mn—‘ls) into the multi-

stage LASSO algorithm, the oracle solution can be achieved, thaﬁ%,:FF and ﬁ’(N) = Ewith
probability larger thanl —n’ —nJ.

In the following, we provide the complete proof for the theorems above.
Lemma 18 Let [3’ be defined above. We have
IXE(XB =)l < N.

Proof The subdifferential of the objective function in Equation (7) at the optirnalt®n [AB’ is
given by: A A
X" (XB'—y) +N'sgnB))

1, x> 0;
sgnx) =< —1, x<0;

wherei € Ry and

[[1,1], x=0.
Since 0 must belong to the subdifferential at the optimal solution, we have
XT(XB =)l <N,
which implies the claim. |

Let us assume that the oracle solution satisfies the following assumption.

Assumption 3

IXE(XB —y)||es < N'/2.

This assumption actually plays the same role as Assumption 2 in the Dantzig selector
In the following, we introduce an additional d&tsatisfyingFy C F1 (Zhang, 2009a).
Similar to Lemma 9, we have the following results for the LASSO case:

Lemma 19 Let iy C F. Assume that Assumption 3 holds. Given any index;s&i¢h that i C Fy,
we have the following conclusions:

3lhe el + 4Bl > I 12
IXEXH [ = 0
IXEXH]0 < N

XXl <N
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Proof We only show the proof for the first inequality and the rest can be easilyeprby following
the proof in Lemma 9.

Lete = XB—yand f(.) be the objective function in Equation (7) with respecftoOne can
verify thate" Xg = 0. Sincefd’ is the optimal solution of Equation (7), we have

~ —

0=>f(B)—f(B)

1 ~ — n _
== (IXB Y3~ IXB-yI3) + N (IB5 . - IB& 1)

2

1 ~ ~ —
=5 (XI)T(XB' —y-+&) + N (IB5 |1~ 1B 1D
>e" XH + N (B [l — 1B& 1)
>e" (Xeh: +Xehi) + N (1B [l — [1Bg 1)
>~ N/2|hel|ls+ N (IBE g 12+ 1B . — IBs g lli— B 1) (due to Assumption 3)
>—N/2|helli+N (=[N g2+ 10 [l — 2]18g 1)

3 _

=N /2| 1= SN I g 11— 2V 1B 1.

which implies the first inequality. |

Similar to Lemma 11, the following result holds in the LASSO case:

Lemma 20 Assume FC F and Fy C F; and the index sdf is divided into a group of subsets's
such that they satisfy all conditions in Lemma 10 with k. Then the following holds:

I 1o <1777 (31Fo— Rl PN, ¢ 1o+ 41185 1)
= = -111/p “1n
10 [lp < [143P(IFo— Ful/D)P 7 P I,y llp + 41 P Be 1,
where g = |F|.
Proof Using the claim in Lemma 10 with= h’, we have

Ihg . llp
1/p-1
<IPH g |l

<|¥/p-1 <3|]h’F—07F—1||1 +4||[§§1\\1> (due to the first inequality in Lemma 19)
<1V (3R~ Rl YPING g llp -+ 4lIB5 1)
This proves the first inequality. Using this equality, we can obtain the sdoendality as follows:

Il
(I 17,18+ I, D)

- o1 p
F—F 1-1/p 4 —
<[uh’mm$+<3<' D) I ot i plBa:

- = —_111/p 1R
< (143 (R~ AP P ey iy o+ 41 B

1/p
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The last inequality is due to Equation (10). |

Similar to the Lemma 12, the following result holds in the LASSO case:

Theorem 21 Under Assumption 1, takingyE- F and\’ = 20, /2Iog<mn—*ls) into the optimization

problem(7), if for any index set Fsatisfying s C F1 C F there exists some | such thaﬁfiil+I —

= =\ 1-1
36& gﬁl | ('FO,_F1|) P > 0 holds where = |Fy|, then with probability larger thard —n?, the £,

norm (1 < p < o) of the difference between the optimizer of the prolfénand the oracle solution
is bounded as

1B —Bllp
p |EO—';1| p-1 YP P| 1/p)\/ Asl+ll
1+ (IopR) (IFo—Fal +(3/2)7) 1B
<
- = _E\1-1/p
WP o — 30100 1 (o)
+AYPY g |y

and with probability larger tharl —nj —n5, the £, norm (L < p < ) of the difference between the
optimizer of the probler() and the true solution is bounded as

1B — Bl
- — . p_111/p _
[l+3p (B7R)" 1] ((\Fo—Flr+<3/2>pl>1/pN+ i‘?f;'\lﬁaHl)

H—F\ /P
FoF
Ui\?gﬁl 36,(6\;+I|<‘I71‘>

= st/p
+41P 1\\5@\\1‘1‘@70\/2'09(5/”2)-

u(X,IXF)l/Z,S

<

Proof The proof follows the same strategy as in Theorem 12. First, we assumisthanption 3
and the inequality (9) hold. Dividg; into a group of subseff’s (j = 1,2, ...) without intersection
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such thatJ; Tj = Fy, max [ Tj| < | and maxr,, hr,,, [i] < [|hr;[|1/1 hold. Since

T
||XT01+F0XHHp
T T
:||XT01+F0XT01+FOh£|-01+Fo + ;XT();L-&-FOXT] Il'j || p

>U'A51+|Hh£r01+|:o||p ;eAsl-H I||h£r]||p

>HAsl+|Hh/T01+FO||p Asl+l | ZZHhT,Hp

p) 1/p-1
>“A81+|Hh01+FoHp As1+|||/|O Hh’

20 11 ol — B30, 1P (3l 12+ 4B 1)

(due to the first inequality of Lemma 19

1

P el 39&";+.|<w) 26, 194 s
To 1-1/p L=
>[u5£;+| 000 () | IPhsrlo— 2615 Bl

and

X X
_HXFOXHHp""HXTomFXH”p‘FH TomFXHHp
<[To1NFNP+[TosNF|(3N'/2)P  (due to Lemma 1P
< ToNFINP+ | TuNFINP + [ToNF| (3N /2)P + [TLNF|(3X/2)P  (due toFy C F)
<|ToNP+1(3\"/2)P, (due toToNF = )

thus we have

(IFo— Fal -+ (3/2)P)Y/PN + 48 | 17/P~3|Bg |11

= _F 1-1/p
WPy -6, ()

IMe 1 llp = Mg llp <
Asi+l|

It follows that

— 1/p
h/ 1 3p |FO Fl‘ p-1 h/ 4I l/pfl n_
[hlp < |1+ | e, 7, Ip + 1Bg [12

1+ 3P [Fo—F4| p-1 YP |: —F 3/2)P| l/p)\/ As1+||
+ | (IFo—Fal +(3/2)P1) T IBg 11

p‘/(AI,)gl +l 36( P

R-F\ 1P
B Asi+l ( | )
+AYPYIB 1,
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and .
1B =Bl
- = p—1 1/p _ _ 4e(p; —
R Gera)  I ( R ARRE L R Iy
>~ == 1-1/p
U(Argﬁl _36&%+I,| (JFO| l‘)
i sl/p
+4l HB|:_1||1+(F,)70 2log(s/n2).
Hoxxev.s
Finally, taking
N =20 2Iog<m_s>,
N1

Lemma 8 (letting) = n1) implies that Assumption 3 holds with probability larger than @) and
Lemma 7 (letting) = n2) implies that Equation (9) holds with probability larger than f5,. Thus,
these two bounds above hold with probability larger than respectivelgjland 1-n; —n5. H

Proof to Theorem 14: By takingF; = F in Theorem 21, the claims above can be obtained imme-

diately. ]
Proof to Theorem 15: Please refer to the proof for Theorem 4. |
Proof to Theorem 16: Please refer to the proof for Theorem 5. |

Proof to Theorem 17: First, we assume that Assumption 3 and the inequality (9) holds. Then,
the claim in Theorem 15 holds with probability 1. Since all conditions in Thedr&mare satisfied,

aftersiterationss correct features can be chosen (il-‘fé!\,') =F) with probability 1. Since all correct
features are obtained, the optimization problem in the last iteration can bel&bechas

1
min -2 [[XB— yI3+ N [|Bell:. (12)
A minimizer should satisfy the following conditions:

0 eXE(XB—y) +\'sgr(Be)
0=Xg (XB-Y),

where the first formula is based on the subdifferential set. Becausssafrdption 3, the oracle
solution satisfies these two conditions. Since the objective function is ndtystrarivex, we need
to show that the oracle solution is the unique minimizer.

From the second equality in Equation (13), we h@we= —(Xg Xg ) ~2XJ (XgBg —y). It follows
that the objective function in Equation (12) can be expressed as

f(Be) = %II(I =X (XEXE) ™) (% B — Y)II3 +A'[1Be] 1.

Because the oracle solution is a minimizer of the Equation (12), “0” should®eithe minimizers
of f(Bg). Next we show that “0” is the unique minimizer, which implies that the oracle salutio

(13)
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is the unique minimizer for Equation (12). We can compute the directionaladievalong any
directionA at the point “0” for the functiorf (Bg) as follows:

O o=y X (%) XX+
X8~ 180157 (1 — X (%) XX
81X = X (XB-Y)]-)

>0. (due to Assumption 3)

Thus, the directional derivative at “0” is always strictly greater thah&lbitrary directions, which
shows that “0” should be the unique minimizer fiig).

Finally, because the probability of Assumption 3 and the inequality (9) holditeyger than
1—nj —n5, the oracle solution is achieved with the same probability. |
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