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Abstract

Iterative methods that calculate their steps from approximate subgradient directions have proved to

be useful for stochastic learning problems over large and streaming data sets. When the objective

consists of a loss function plus a nonsmooth regularization term, the solution often lies on a low-

dimensional manifold of parameter space along which the regularizer is smooth. (When an ℓ1

regularizer is used to induce sparsity in the solution, for example, this manifold is defined by the

set of nonzero components of the parameter vector.) This paper shows that a regularized dual

averaging algorithm can identify this manifold, with high probability, before reaching the solution.

This observation motivates an algorithmic strategy in which, once an iterate is suspected of lying

on an optimal or near-optimal manifold, we switch to a “local phase” that searches in this manifold,

thus converging rapidly to a near-optimal point. Computational results are presented to verify the

identification property and to illustrate the effectiveness of this approach.

Keywords: regularization, dual averaging, partly smooth manifold, manifold identification

1. Introduction

Online learning algorithms based on stochastic approximation often are effective for solving large

machine learning problems. Each step of these methods evaluates an approximate subgradient of

the objective at the current iterate, based on a small subset (perhaps a single item) of the data. The

amount of computation and data manipulation required per iteration is therefore small. Although

many iterations are needed to converge to high-accuracy solutions, the tradeoffs between optimiza-

tion errors and the other errors that arise in machine learning problems suggest that solutions of

moderate accuracy often suffice. However, most existing stochastic algorithms do not produce ap-

proximate solutions that have the desirable structure (such as sparsity) that motivate the use of a

regularization term in the objective.

We focus on the regularized dual averaging (RDA) approach developed by Nesterov (2009) and

extended by Xiao (2010) to regularized problems. We show that, under appropriate assumptions,

iterates generated by this method have a structure similar to the solution (with high probability) after
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a sufficiently large number of iterations. This structure is characterized by a manifold, and identifi-

cation of structure corresponds to identifying the manifold on which the solution lies. We sketch an

algorithmic strategy that exploits this property by switching to a “local phase” that searches on the

identified manifold, which often has much lower dimension than the full space.

1.1 Problem Setting and Regularized Dual Averaging

In regularized stochastic learning, we consider the following problem:

min
w∈Rn

φ(w) := f (w)+Ψ(w), (1)

where

f (w) := Eξ[F(w;ξ)] =
∫

Ξ
F(w;ξ)dP(ξ), (2)

and ξ is a random vector whose probability distribution P is supported on the set Ξ ⊂ R
d . The

regularization function Ψ :Rn→R∪{+∞} is assumed to be a closed proper convex function whose

effective domain (denoted by domΨ) is closed, and there is an open neighborhoodO of domΨ that

is contained in the domain of F(·,ξ), for all ξ ∈ Ξ. We assume that the expectation in (2) is well

defined and finite-valued for all w∈O and that for every ξ∈ Ξ, F(w,ξ) is a smooth convex function

of w ∈ O. (An elementary argument shows that f is therefore convex.) We use w∗ to denote a

minimizer of (1).

The purpose of the regularizer Ψ is to promote certain desirable types of structure in the solution

of (1). A common desirable property is sparsity (that is, w∗ has few nonzero elements), which can

be promoted by setting Ψ(·) = λ‖ · ‖1 for some parameter λ > 0.

One method for finding an (approximate) solution to (1) is to draw random variables ξ j for all

j ∈ N independently from the space Ξ, where N is an index set of finite cardinality, and solve a

sample average approximation (SAA) problem

min
w∈Rn

φ̃N (w) := f̃N (w)+Ψ(w) (3)

where f̃N (w) := 1
card(N ) ∑ j∈N F(w;ξ j). This approach requires batch optimization, which does not

scale well as card(N ) grows.

Iteration t of a stochastic online learning approach examines a cost function F(·;ξt) : Rn→ R

for some ξt ∈ Ξ, drawn randomly according to the distribution P, where {ξt}t≥1 forms an i.i.d.

sequence of samples. The next iterate wt+1 is obtained from information gathered up to the time t,

the aim being to generate a sequence {wt} such that

lim
t→∞

E[F(wt ;ξ)]+Ψ(wt) = f (w∗)+Ψ(w∗). (4)

We focus on objectives that consist of a smooth loss function F in conjunction with a nonsmooth

regularizer Ψ. Xiao (2010) recently developed the regularized dual averaging (RDA) method, in

which the smooth term is approximated by an averaged gradient in the subproblem at each iteration,

while the regularization term appears explicitly. Xiao’s approach extends the method of Nesterov

(2009) in the sense that the regularization term is not handled explicitly in Nesterov’s paper. Specif-

ically, the RDA subproblem is

wt+1 = argmin
w∈Rn

{

〈ḡt ,w〉+Ψ(w)+
βt

t
h(w)

}

, (5)
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where ḡt =
1
t ∑t

j=1 g j and g j ∈ ∂F(w j;ξ j). The prox-function h(·) is a proper strongly convex func-

tion whose minimizers are also minimizers of Ψ, and for which the starting point w1 of the algorithm

is a minimizer of h. (The function h(·) = ‖ ·−w1‖2 is a case of particular interest.) The sequence

{βt}t≥1 is nonnegative.

A characteristic of problems with nonsmooth regularizers is that the solution often lies on a

manifold of low dimension. In ℓ1-regularized problems, for instance, the number of nonzero com-

ponents at the solution is often a small fraction of the dimension of the full space. When a reliable

method for identifying an optimal (or near-optimal) manifold is available, we have the possibility

of invoking an algorithm that searches just in the low-dimensional space defined by this manifold—

possibly a very different algorithm from the one used on the full space. One local-phase algorithm

that is well suited to the ℓ1 regularizer is the LASSO-patternsearch (LPS) (Shi et al., 2008; Wright,

2012), a batch optimization method for ℓ1-regularized logistic regression, which takes gradient steps

in the space of nonzero variables, enhanced by Newton-like scaling. In logistic regression, as in

other applications, it can be much less expensive to compute first- and second-order information on

a restricted subspace than on the full space.

A second motivation for aiming to identify the optimal manifold is that for problems of large

dimension, it may be quite expensive even to store a single iterate wt , whereas an iterate whose

structure is similar to that of the solution w∗ may be stored economically. (To take the case of ℓ1

regularization again, we would need to store only the nonzero elements of wt and their locations.)

In this paper, we investigate the ability of the RDA algorithm to identify the optimal manifold.

We also describe an enhanced, two-phase version of this algorithm, which we call RDA+. We test

this approach on ℓ1-regularized logistic regression problems, in which an LPS-based algorithm is

used to explore the near-optimal manifold identified by RDA.

1.2 Optimal Manifolds and the Identification

Identification of optimal manifolds has been studied in the context of constrained convex opti-

mization (Wright, 1993; Burke and Moré, 1994) and nonsmooth nonconvex optimization (Hare

and Lewis, 2004). In constrained optimization, the optimal manifold is typically a face or edge of

the feasible set that contains the solution. In nonsmooth optimization, the optimal manifold is a

smooth surface passing through the optimum, parameterizable by relatively few variables, such that

the restriction of the objective function to the manifold is smooth. In either case, when a certain

nondegeneracy condition is satisfied, this manifold may be identified without knowing the solution,

usually as a by-product of an algorithm for solving the problem. Lewis and Wright (2008) analyze

a framework for composite minimization (which uses a subproblem in which f is replaced by an

exact linearization around wt) and prove identification results. Part of the motivation for the current

paper is to obtain similar results as in Lewis and Wright (2008) in the stochastic gradient setting.

1.3 Alternative Stochastic Approximation Approaches

Stochastic approximation algorithms have a rich history and are currently the focus of intense re-

search in the machine learning and optimization communities. We mention a few relevant develop-

ments here, and discuss their manifold identification properties.

Stochastic approximation methods often solve formulations in which an explicit constraint w ∈
W (for a compact convex setW) is present. These can be incorporated into the framework (1) by
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defining the regularization function Ψ as follows:

Ψ(w) := δW(w)+ψ(w),

where δW(w) is the indicator function (zero onW and +∞ elsewhere) and ψ is a convex function

whose domain includes W . (In this setting, O is taken to be an open neighborhood of W .) The

classical approaches to solve such problems can be traced back to Robbins and Monro (1951) and

Kiefer and Wolfowitz (1952). The stochastic gradient descent (SGD) method generates its iterates

by stepping in the direction of a subgradient estimate and then projecting ontoW , as follows:

wt+1 = ΠW (wt −αt(gt +κt)) , t = 1,2, . . .

where gt ∈ ∂F(wt ;ξt) for some sampled random variable ξt , κt ∈ ∂ψ(wt), and ΠW(·) denotes the

Euclidean projection onto the setW . With steplength choice of the form αt = θ/t (for a well-chosen

constant θ), the SGD method exhibits O(1/t) convergence rate in the quantity (4) for strongly

convex functions f (Chung, 1954; Sacks, 1958). For general convex functions, a step length of

the form αt = θ′/
√

t (for some θ′ > 0) yields an O(1/
√

t) rate of convergence in the function

value (Nemirovski and Yudin, 1978; Polyak, 1990; Polyak and Juditsky, 1992). Simplified proofs

of these rates are given by Nemirovski et al. (2009). These rates are known to be optimal for

subgradient schemes in “black-box” algorithmic models (Nemirovski and Yudin, 1983). Although

batch optimization methods based on an approximate objective, such as (3), may provide better

convergence rates, SGD has been widely used in machine learning because it scales well to large

data sets and provides good generalization performance in practice (Zinkevich, 2003; Bottou, 2004;

Zhang, 2004; Shalev-Shwartz et al., 2007).

As discussed by Xiao (2010), the SGD method does not exploit the problem structure that

is present in the regularizer ψ, and there is no reason to believe that these algorithms have good

manifold identification properties. When ψ(·) = ‖ ·‖1, for instance, there is no particular reason for

the iterates wt to be sparse. Though equal in expectation, gt and ∇ f (xt) may be far apart, so that

even if a careful choice of κt is made at each iteration, the updates may have the cumulative effect

of destroying sparsity in the iterates wt .

Variants of SGD for the general convex case often work with averaged primal iterates, of the

form

w̄t :=
∑t

j=1 ν jw j

∑t
j=1 ν j

, (6)

where the ν j are nonnegative weights (see, for example, Nemirovski et al., 2009). Averaging does

not improve identification properties. For ℓ1 regularization, we can still expect the averaged iterates

w̄t to be at least as dense as the “raw” iterates wt .

Recently, various authors have proposed modifications of SGD that account for the regulariza-

tion structure. Some representative examples include composite objective mirror descent (COMID)

(Duchi et al., 2010), forward-backward splitting (FOBOS) (Duchi and Singer, 2009), truncated

gradient (TG) (Langford et al., 2009), and sparsity-preserving stochastic gradient (SSG) (Lin et al.,

2011). The basic FOBOS subproblem is similar to that of the prox-descent algorithm of Lewis and

Wright (2008) and the SpaRSA framework of Wright et al. (2009), which generate their iterates by

setting gt = ∇ f (wt) and solving

wt+1 = argmin
w∈Rn

{

〈gt ,w〉+Ψ(w)+
1

2αt

‖w−wt‖2
2

}

, (7)
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for some parameter αt > 0 (which plays a step-length-like role). Duchi and Singer (2009) suggest

an extension to an online setting, in which gt is replaced by an approximate gradient. SSG (Lin

et al., 2011) also has the subproblem (7) at its core, but embeds it in a strategy for generating

three sequences of iterates (rather than the single sequence {wt}), extending an idea of Nesterov

(2004). The TG method (Langford et al., 2009) solves a subproblem like (7) on some iterations;

on other iterations it simply steps in the direction gt of the latest gradient estimate for f , ignoring

the regularization term. COMID (Duchi et al., 2010) is also based on a subproblem of the form

(7), but with a Bregman divergence replacing the final quadratic term, thus yielding a more general

framework.

Since all these methods make explicit use of the regularization term Ψ in the subproblem, they

are more likely to generate iteration sequences that share the structure of the solution w∗, that is, to

identify a near-optimal manifold. Such behavior is far from guaranteed, however, because gt may

be only a rough approximation to ∇ f (wt). The inaccuracy of this gradient estimate may cause the

iterates to step away from the optimal manifold, even from an iterate wt that is close to the solution

w∗. (In Example 1 at the end of Section 4, we discuss a function satisfying all the assumptions

of this paper, in which the subproblem (7) steps away from the optimal point and off the optimal

manifold.) In contrast, the dual average ḡt used by the RDA subproblem stabilizes around ∇ f (w∗)
as the iterates converge to w∗, allowing identification results to be derived from analysis like that of

Hare and Lewis (2004) and Lewis and Wright (2008), suitably generalized to the stochastic setting.

Averaging of the primal iterates (6) does not improve the identification properties of the meth-

ods above, and will usually make them worse. Considering again ℓ1 regularization, we observe that

if component i of any iterate wt is nonzero, then component i of all averaged iterates at subsequent

iterations will also be nonzero (unless some fortuitous cancellation occurs). RDA itself, in the ver-

sion recommended by the analysis of Xiao (2010), has the same deficiency, as the main convergence

results in that paper are for averaged iterates (6). In the current paper, we facilitate the use of the

raw iterates wt by RDA by adding two assumptions. First, w∗ is assumed to be a strong minimizer

of the restriction of φ to the optimal manifold. Second, a nondegeneracy condition ensures that φ

increases sharply as we move off the manifold. Together, these conditions ensure that w∗ is a strong

minimizer of φ, so convergence of φ(wt) to φ(w∗) forces convergence of wt to w∗.

Convergence analysis of stochastic approximation algorithms focuses largely on the regret,

which is defined as follows, for any instantiation of the random sequence {wt}t≥1 with respect

to any fixed decision w ∈ domΨ:

Rt(w) :=
t

∑
j=1

[F(w j;ξ j)+Ψ(w j)]−
t

∑
j=1

[F(w;ξ j)+Ψ(w)]. (8)

As we discuss later, the RDA algorithm has O(
√

t) regret bounds when βt = O(
√

t) for general

convex cases, and O(ln t) bounds with βt = O(ln t) for strongly convex cases. These bounds are

comparable to those of the SGD method. For general convex cases, when we use αt = O(1/
√

t),
SGD achieves an O(

√
t) regret bound (see, for example, Zinkevich, 2003; Nemirovski et al., 2009),

which cannot be improved in general. For the strongly convex case, SGD has an O(ln t) regret

bound (see, for example, Hazan et al., 2006; Bartlett et al., 2008) with αt = O(1/t).
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1.4 Notation and Terminology

Throughout the paper, we use ‖ · ‖ (without a subscript) to denote the Euclidean norm ‖ · ‖2, and

card(M) to denote the cardinality of a finite set M. The distance function dist(w,C) for w ∈ R
n and

a convex set C ⊂ R
n is defined by dist(w,C) := infc∈C ‖w− c‖. The effective domain of Ψ : Rn→

R∪{+∞} is defined by domΨ := {w ∈ R
n |Ψ(w) < +∞}. ri C denotes the relative interior of a

convex set C, that is, the interior relative to the affine span of C (the smallest affine set which can be

expressed as the intersection of hyperplanes containing C).

We call a function ϕ : Rn→R∪{+∞} strongly convex if there exists a constant σ > 0 such that

∀w,w′ ∈ domϕ and ∀α ∈ [0,1],

ϕ(αw+(1−α)w′)≤ αϕ(w)+(1−α)ϕ(w′)− σ

2
α(1−α)‖w−w′‖2.

(σ is known as the modulus of convexity.) Strong convexity implies that for any w ∈ domϕ and

w′ ∈ ri domϕ, we have

ϕ(w)≥ ϕ(w′)+ 〈s,w−w′〉+ σ

2
‖w−w′‖2, ∀s ∈ ∂ϕ(w′). (9)

We say that a function ϕ has a locally strong minimizer at w∗ if there exist positive constants c

and r̄ such that

ϕ(w)−ϕ(w∗)≥ c‖w−w∗‖2, for all w ∈ O with ‖w−w∗‖ ≤ r̄.

w∗ is a globally strong minimizer if this expression is true with r̄ = ∞.

The algorithm we consider in this paper makes use of an i.i.d. sequence {ξ j} j≥1 of random

variables drawn from Ξ according to the distribution P. We denote the history of random variables

up to time t by

ξ[t] := {ξ1,ξ2, . . . ,ξt}.
The iterate wt produced by the algorithm depends on ξ1,ξ2, . . . ,ξt−1 but not on ξt ,ξt+1, · · · ; we

sometimes emphasize this fact by writing wt = wt(ξ[t−1]).

2. Assumptions and Basic Results

We summarize here our fundamental assumptions about the problem and its solution, together with

some basic observations and results that will be used in later sections.

2.1 Unbiasedness

As in Nemirovski et al. (2009), we assume the following unbiasedness property:

∇ f (w) = ∇wE[F(w;ξ)] = E[∇wF(w;ξ)] (10)

for any w independent of ξ. (As the differentiation of F is taken only for its first argument, we omit

the subscript “w” in subsequent discussions.) Given that wt = wt(ξ[t−1]), this implies

E[∇F(wt ;ξt)] = E
[

E[∇F(wt ;ξt)|ξ[t−1]]
]

= E [∇ f (wt)] .
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2.2 Uniform Lipschitz Continuity

We assume that each F(w;ξ) is a smooth convex function of w∈O for every ξ∈Ξ, and in particular

that ∇F(·;ξ) is uniformly Lipschitz continuous with respect to its first argument, over all ξ. That is,

there exists a constant L > 0 such that

‖∇F(w;ξ)−∇F(w′;ξ)‖ ≤ L‖w−w′‖, ∀w,w′ ∈ O, ∀ξ ∈ Ξ. (11)

We further assume that there exists a uniform bound G for which

‖∇F(w;ξ)‖ ≤ G, ∀w ∈ O, ∀ξ ∈ Ξ. (12)

These assumptions immediately lead to similar properties on ∇ f . We prove this claim after noting

a simple consequence of Jensen’s inequality, whose proof is omitted.

Lemma 1 For a vector-valued function v : Ξ→ R
n which is integrable with respect to P, we have

‖Ev‖2 ≤ E‖v‖2.

Lemma 2 If ∇F(w;ξ) satisfies the uniform Lipschitz continuity assumption (11), then ∇ f (w) is

also uniformly Lipschitz continuous onO with the same constant L. If ∇F(w;ξ) satisfies the uniform

bound (12), then ∇ f satisfies the same bound, that is, ‖∇ f (x)‖ ≤ G for all w ∈ O.

Proof From unbiasedness, we have for w,w′ ∈ O independent of ξ that

∇ f (w) = ∇E[F(w;ξ)] = E[∇F(w;ξ)] from (10)

= E[∇F(w′;ξ)+uξ] for uξ := ∇F(w;ξ)−∇F(w′;ξ)

= ∇ f (w′)+E[uξ] from (10) again.

Since ‖uξ‖ ≤ L‖w−w′‖, we have

‖∇ f (w)−∇ f (w′)‖= ‖Euξ‖ ≤ E‖uξ‖ ≤ L‖w−w′‖,
where the first inequality is due to Lemma 1. This proves the first claim.

For the second claim, we have

‖∇ f (w)‖= ‖E[∇F(w;ξ)]‖ ≤ E‖∇F(w;ξ)‖ ≤ G,

as required.

2.3 Optimality and Nondegeneracy

We specify several optimality conditions that are assumed to hold throughout the paper. The opti-

mality of w∗ for the problem (1) can be characterized as follows:

0 ∈ ∇ f (w∗)+∂Ψ(w∗).

We assume that w∗ is a nondegenerate solution—one that satisfies the stronger condition

0 ∈ ri [∇ f (w∗)+∂Ψ(w∗)] . (13)

The nondegeneracy assumption is common in manifold identification analyses. It can be replaced

with weaker assumptions to prove weaker results (see, for instance, Oberlin and Wright, 2006),

though the analysis is somewhat more complicated.
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2.4 Manifolds and Partial Smoothness

In this section we discuss properties of differential manifolds and partial smoothness by repeating

some definitions from Hare and Lewis (2004).

Definition 3 (Manifold) A setM⊂R
n is a manifold about z̄ ∈M if it can be described locally by

a collection of C p functions (p≥ 2) with linearly independent gradients. That is, there exists a map

H : Rn→R
k that is C p around z̄ with ∇H(z̄)T ∈R

k×n, surjective, such that points z near z̄ lie inM
if and only if H(z) = 0.

The normal space toM at z̄, denoted by NM(z̄), is the range space of ∇H(z̄), while the tangent

space toM at z̄ is the null space of ∇H(z̄)T . We assume without loss of generality that ∇H(z̄) has

orthonormal columns.

We define partial smoothness as follows (Lewis, 2003, Section 2).

Definition 4 (Partial Smoothness) A function ϕ : Rn→R∪{+∞} is (C2-) partly smooth at a point

z̄∈Rn relative to a setM⊂R
n containing z̄ ifM is a manifold about z̄ and the following properties

hold:

(i) (Smoothness) The function ϕ restricted toM, denoted by ϕ|M, is C2 near z̄,

(ii) (Regularity) ϕ is subdifferentially regular at all points z ∈M near z̄, with ∂ϕ(z) 6= /0,

(iii) (Sharpness) The affine span of ∂ϕ(z̄) is a translate of NM(z̄), and

(iv) (Sub-continuity) The set-valued mapping ∂ϕ :M⇉ R
n is continuous at z̄.

We refer toM as the active manifold at the point z̄, and as the optimal manifold when z̄ = w∗, where

w∗ is a solution of (1).

The regularity condition (ii) is discussed by Lewis (2003, p. 706); for our purposes it suffices to

note that this condition holds for closed convex functions and continuously differentiable functions,

and hence for our objective φ. Henceforth, we assume that Ψ is partly smooth at w∗ relative to the

optimal manifold, which implies partial smoothness of φ (by an argument like that of Lemma 2).

We discuss the concepts outlined in the definitions above for the specific case of Ψ(·) = ‖ · ‖1.

Given z̄ ∈ R
n, we define the following partition of the indices {1,2, . . . ,n}:

{1,2, . . . ,n}= P ∪N ∪Z,

where z̄i = 0 for all i ∈ Z , z̄i > 0 for all i ∈ P , and z̄i < 0 for all i ∈ N . A natural definition of the

active manifoldM is thus

M= {z ∈ R
n |zi = 0 for all i ∈ Z}.

Note that z̄ ∈M, and that the mapping H of Definition 3 can be defined as H(z) = [zi]i∈Z , with

k = card(Z) in that definition. The restriction of Ψ to this manifold thus has the following form for

all z ∈M near z̄:

− ∑
i∈N

zi + ∑
i∈P

zi,
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so that (i) of Definition 4 is satisfied. For z ∈M near z̄, we have

[∂φ(z)]i = [∇ f (z)]i +











[−1,1] for i ∈ Z,
−1 for i ∈N ,

+1 for i ∈ P.
Clearly, condition (ii) of Definition 4 holds. The affine span of ∂φ(z̄) is

{∇ f (z̄)+g |gi =−1 for i ∈N , gi =+1 for i ∈ P , and gi ∈ R for i ∈ Z},
whereas NM(z̄) = {g |gi = 0 for i ∈ P ∪N , gi ∈ R for i ∈ Z}. Comparison of the last two expres-

sions shows that (iii) of Definition 4 is satisfied. Finally, the set-valued map ∂Ψ is in fact constant

alongM near z̄, so because f is smooth, Definition 4 (iv) also holds.

2.5 Strong Minimizer Properties

We assume that w∗ is a locally strong minimizer of φ relative to the optimal manifold M with

modulus cM, that is, there exists cM > 0 and rM > 0 such that {w ∈Rn |‖w−w∗‖ ≤ rM} ⊂O and

φ|M(w)≥ φ|M(w∗)+ cM‖w−w∗‖2, for all w ∈M with ‖w−w∗‖ ≤ rM. (14)

Together with a nondegeneracy assumption (13), these conditions imply that w∗ is a locally strong

minimizer of φ(w) (without restriction to the optimal manifold), as we now prove.

Theorem 5 (Strong Minimizer for General Convex Case) Suppose that φ is partly smooth at w∗

relative to the optimal manifoldM, that w∗ is a locally strong minimizer of φ|M with the modulus

cM > 0 and radius rM > 0 defined in (14), and that the nondegeneracy condition (13) holds at w∗.
Then there exist c ∈ (0,cM] and r̄ ∈ (0,rM] such that

φ(w)−φ(w∗)≥ c‖w−w∗‖2, for all w with ‖w−w∗‖ ≤ r̄, (15)

that is, w∗ is a locally strong minimizer of φ, without restriction to the manifoldM.

Proof The proof is a simplification of the proof of Wright (2012, Theorem 2.5), which considers

the more general case in which f is prox-regular rather than convex. For completeness, we present

the proof in Appendix A.

Henceforth, we assume without loss of generality that r̄ ∈ (0,1].
The condition (15) is similar to the quadratic growth condition proposed by Anitescu (2000) in

the context of nonlinear programming. It was shown by Anitescu that this fundamental condition is

weaker than many other second-order conditions that are widely used in nonlinear programming.

Two corollaries follow in a straightforward fashion from the theorem above. We state these

results here and give their proofs in Appendix A.

Corollary 6 Suppose that w∗ is a locally strong minimizer of (1) that satisfies (15). For all w ∈ O
with ‖w−w∗‖> r̄, we have

φ(w)−φ(w∗)> cr̄‖w−w∗‖.
Corollary 7 (Globally Strong Minimizer for Strongly Convex Case) Suppose that w∗ is a locally

strong minimizer of (1) satisfying (15). If φ is strongly convex on domΨ with modulus σ > 0, then

w∗ is a globally strong minimizer of (1) with modulus min(c,σ/2), that is,

φ(w)≥ φ(w∗)+min(c,σ/2)‖w−w∗‖2, for all w ∈ O. (16)
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2.6 Summary of Assumptions

We summarize here the assumptions introduced in this section, for reference in the remainder of the

paper.

The first assumption summarizes basic properties of the functions and the minimizer.

Assumption 1 The unbiasedness property (10), uniform Lipschitz continuity of ∇F(·;ξ) for all

ξ ∈ Ξ (11), uniform boundedness of ‖∇F(·,ξ)‖ (12), and nondegeneracy at the optimum w∗ (13)

are satisfied.

The second assumption provides sufficient conditions for w∗ to be a locally strong minimizer.

Assumption 2 The function φ is partly smooth at its minimizer w∗ relative to the optimal manifold

M and w∗ is a locally strong minimizer of φ|M as defined in (14).

3. Regularized Dual Averaging Algorithm

We start this section by describing regret bounds for the regularized dual averaging (RDA) algorithm

of Xiao (2010) (following Nesterov, 2009), focusing on its stochastic variant. We also describe the

consequences for the analysis of the condition that the minimum is strong locally (15) or glob-

ally (16). We then analyze the properties of the averaged gradient; this analysis forms the basis of

the manifold identification result in Section 4.

3.1 The RDA Algorithm

We start by specifying the RDA algorithm from Xiao (2010), noting that our assumptions on the

functions F , f , and Ψ from Section 1 are stronger than the corresponding conditions in Xiao (2010),

which require only subdifferentiability of F(w;ξt) on domΨ.

As introduced in (5), the prox-function h :Rn→R∪{+∞} is proper, strongly convex on domΨ,

and subdifferentiable on ri domΨ. In addition, we require h to satisfy

argmin
w

h(w) ∈ argmin
w

Ψ(w).

The prox-center w1 of domΨ with respect to h, which is used as the starting point of the RDA

method, is defined as follows:

w1 := argmin
w∈domΨ

h(w).

The terms “prox-function” and “prox-center” are borrowed from Nesterov (2009). Following Xiao

(2010), we assume without loss of generality that the strong convexity modulus of h(w) is one,

and that minw h(w) = minw Ψ(w) = 0. This implies h(w1) = 0 and Ψ(w1) = 0. The most obvious

prox-function is h(·) = 1
2
‖ ·−w1‖2, where w1 ∈ argminw Ψ(w).

We now define a constant D that reappears throughout the analysis. For any D > 0, we consider

a level set of the prox-function h defined as follows:

FD := {w ∈ domΨ | h(w)≤ D2}.
We assume in the analysis that points of interest (specifically, w∗) lie in FD. Because of (9) and our

assumptions on h (in particular, h(w1) = 0, 0 ∈ ∂h(w1), and h has modulus of convexity 1), we have

that

w ∈ FD ⇒ D2 ≥ h(w)≥ 1

2
‖w−w1‖2 ⇒ ‖w−w1‖ ≤

√
2D. (17)
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Algorithm 1: The RDA Algorithm.

Input:

• a prox-function h(w) that is strongly convex on domΨ and also satisfies

argmin
w∈Rn

h(w) ∈ argmin
w∈Rn

Ψ(w).

• a nonnegative and nondecreasing sequence {βt}t≥1.

Initialize: set w1 = argmin h(w) and ḡ0 = 0

for t = 1,2, . . . do

Sample ξt from Ξ and compute a gradient gt = ∇F(wt ;ξt);
Update the average gradient:

ḡt =
t−1

t
ḡt−1 +

1

t
gt .

Compute the next iterate:

wt+1 = argmin
w∈Rn

{

〈ḡt ,w〉+Ψ(w)+
βt

t
h(w)

}

. (18)

end

At iteration t, the stochastic RDA algorithm samples a vector ξt ∈ Ξ, according to the distribu-

tion P, and evaluates an approximate gradient as follows:

gt := ∇F(wt ;ξt).

We assume that the random variables ξt are i.i.d. The dual average—an averaged approximation to

the gradient of f —is defined as follows:

ḡt :=
1

t

t

∑
j=1

g j =
1

t

t

∑
j=1

∇F(w j;ξ j). (19)

The RDA algorithm is specified in Algorithm 1. As the objective function in the subproblem

(18) is strongly convex when βt > 0 or when Ψ(·) is strongly convex (at least one of which we

assume for the analysis below), wt+1 is uniquely defined by (18). Note that wt+1 depends on the

history of random variables ξ[t] up to iteration t, and is independent of later samples ξt+1,ξt+2, . . . .
We consider two choices of parameter sequences {βt} in the remainder of the paper, depending

on whether the regularization function Ψ is strongly convex or not. The first choice holds for general

convex regularizers Ψ:

βt = γ
√

t, ∀t ≥ 1, for some constant γ > 0. (20)

The second choice, βt =O(1+ ln t), can be used when Ψ is a strongly convex function, with modulus

σ> 0. Among the three choices discussed in Xiao (2010), that is, βt =σ, βt =σ(1+ ln t), and βt = 0,

we focus on the zero sequence, which gives the simplest bounds:

βt = 0, ∀t ≥ 1. (21)
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In this case, the subproblem (18) in Algorithm RDA has no damping term; we rely instead on the

damping effect supplied by the strong convexity of Ψ to stabilize the iterates.

3.2 Bounds on Regret and Expected Errors in the Iterations

Our first key result concerns bounds on the regret function defined in (8).

Theorem 8 Suppose that the unbiasedness and uniform boundedness properties in Assumption 1

are satisfied. When {βt} is chosen according to (20), we have for any w ∈ FD that

Rt(w)≤
(

γD2 +
G2

γ

)√
t, t ≥ 1. (22)

Moreover, when Ψ(w) is strongly convex with the modulus σ > 0, then the choice (21) for {βt}
results in the following bound for w ∈ FD:

Rt(w)≤
G2

2σ
(6+ ln t), t ≥ 1. (23)

Proof See Xiao (2010, Corollary 2) for the general convex case, and Xiao (2010, Theorem 1 and

Section 3.2) for the strongly convex case.

The next result obtains bounds on the expected errors in the iterates generated by Algorithm 1.

For the purpose of this and future results, we define the indicator function I(A) for the event A as

follows

I(A) =

{

1 if event A is true,

0 if event A is false.

For a random event A, I(A) is a random variable.

Lemma 9 (Expected Error Bounds of Iterates) Suppose that Assumptions 1 and 2 are satisfied,

and that w∗ ∈ FD. Then for the iterates w1,w2, . . . ,wt generated by the stochastic RDA algorithm

with {βt} chosen by (20), we have

1

t

t

∑
j=1

E

[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖2
]

≤ 1

c

(

γD2 +
G2

γ

)

t−1/2, (24)

1

t

t

∑
j=1

E

[

I(‖w j−w∗‖>r̄)‖w j−w∗‖
]

≤ 1

cr̄

(

γD2 +
G2

γ

)

t−1/2. (25)

When Ψ(w) is strongly convex with the modulus σ > 0, then with {βt} chosen by (21) we have

1

t

t

∑
j=1

E
[

‖w j−w∗‖2
]

≤ G2

2σmin(c,σ/2)

6+ ln t

t
. (26)

Proof See Appendix B.

Note the differences between (24) and (25): the norms in the summation are squared in the first

expression but not in the second, which includes an extra factor of 1/r̄. The next result combines

these bounds into a more useful form for the results that follow.
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Theorem 10 Suppose the assumptions of Lemma 9 are satisfied. Then for the iterates w1,w2, . . . ,wt

generated by the stochastic RDA algorithm with the choice (20) for {βt}, we have

1

t

t

∑
j=1

E‖w j−w∗‖ ≤ µt−1/4, (27)

for all t ≥ t̂ , where the constants t̂ and µ are defined as follows:

µ :=
2√
cr̄

(

γD2 +
G2

γ

)1/2

, t̂ :=

⌈

1

r̄2c2

(

γD2 +
G2

γ

)2
⌉

. (28)

When Ψ(w) is strongly convex with the modulus σ > 0, then with the choice (21) for {βt} we have

1

t

t

∑
j=1

E‖w j−w∗‖ ≤ µ′
(

6+ ln t

t

)1/2

(29)

for the constant µ′ defined by

µ′ :=
G

√

2σmin(c,σ/2)
. (30)

Proof See Appendix B.

3.3 Stochastic Behavior of the Dual Average

We now study the convergence properties of the dual average ḡt , showing that the probability that

ḡt lies outside any given ball around ∇ f (w∗) goes to zero as t increases.

Theorem 11 Suppose that Assumptions 1 and 2 are satisfied and that w∗ ∈ FD, and let ε > 0 be

any chosen positive constant. When {βt} is chosen from (20), we have

P(‖ḡt −∇ f (w∗)‖ ≥ ε)≤ 2nexp

(

− ε2t

32n2G2

)

+2µε−1Lt−1/4, ∀t ≥ t̂, (31)

where µ and t̂ are defined in (28). When Ψ is strongly convex and the choice (21) is used for {βt},
we have

P(‖ḡt −∇ f (w∗)‖ ≥ ε)≤ 2nexp

(

− ε2t

32n2G2

)

+2µ′ε−1L

(

6+ ln t

t

)1/2

, ∀t ≥ 1, (32)

where µ′ is defined in (30).

Proof Using the definition (19) of ḡt and the unbiasedness property (10) that E[∇F(w j;ξ j) |
ξ[ j−1]] = ∇ f (w j), we can write

t[ḡt −∇ f (w∗)] =
t

∑
j=1

{

∇F(w j;ξ j)−E[∇F(w j;ξ j) | ξ[ j−1]]
}

+
t

∑
j=1

{

∇ f (w j)−∇ f (w∗)
}

.
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Considering the norms of the vectors in both sides and using the Lipschitz property of ∇ f (·) in

Lemma 2, we get

t‖ḡt −∇ f (w∗)‖ ≤
∥

∥

∥

∥

∥

t

∑
j=1

z j

∥

∥

∥

∥

∥

+L
t

∑
j=1

‖w j−w∗‖, (33)

where we define z j := ∇F(w j;ξ j)−E[∇F(w j;ξ j) | ξ[ j−1]].
For the ith component [z j]i of the vector z j ∈ R

n, ∑t
j=1[z j]i forms a martingale with bounded

differences since |[z j]i| ≤ 2G from (12) and E[z j | ξ[ j−1]] = 0. Therefore by Hoeffding-Azuma

inequality (Azuma, 1967) we obtain for any θ > 0,

P

(∣

∣

∣

∣

∣

t

∑
j=1

[z j]i

∣

∣

∣

∣

∣

≥ θ

)

≤ 2exp

(

− θ2

8tG2

)

, i = 1,2, . . . ,n.

Therefore, using the equivalence relation ‖v‖2 ≤ ‖v‖1 of norms for a vector v ∈ R
n, we have

P

(∥

∥

∥

∥

∥

t

∑
j=1

z j

∥

∥

∥

∥

∥

2

≥ θ

)

≤ P

(∥

∥

∥

∥

∥

t

∑
j=1

z j

∥

∥

∥

∥

∥

1

≥ θ

)

= P

(

n

∑
i=1

∣

∣

∣

∣

∣

t

∑
j=1

[z j]i

∣

∣

∣

∣

∣

≥ θ

)

≤ P

(

n⋃
i=1

{∣

∣

∣

∣

∣

t

∑
j=1

[z j]i

∣

∣

∣

∣

∣

≥ θ

n

})

≤ 2nexp

(

− θ2

8tn2G2

)

. (34)

Here the second inequality uses the implication that at least one ai ∈R should satisfy ai ≥ b/n when

∑n
i=1 ai ≥ b, and the last inequality is from the union bound of probabilities.

Also, from Markov’s inequality and the bound (27) in Theorem 10 we get for any θ′ > 0 and

t ≥ t̂ that

P

(

1

t

t

∑
j=1

‖w j−w∗‖ ≥ θ′
)

≤ µt−1/4

θ′
. (35)

Together with (33), the bounds in (34) and (35) imply that

P(t‖ḡt −∇ f (w∗)‖ ≥ δ)≤ P

(∥

∥

∥

∥

∥

t

∑
j=1

zi

∥

∥

∥

∥

∥

+L
t

∑
j=1

‖w j−w∗‖ ≥ δ

)

≤ P

(∥

∥

∥

∥

∥

t

∑
j=1

zi

∥

∥

∥

∥

∥

≥ δ

2

)

+P

(

1

t

t

∑
j=1

‖w j−w∗‖ ≥ δ

2tL

)

≤ 2nexp

(

− δ2

32tn2G2

)

+
2µLt3/4

δ
.

The first claim follows when we define δ := εt:

P(‖ḡt −∇ f (w∗)‖ ≥ ε)≤ 2nexp

(

− ε2t

32n2G2

)

+
2µLt−1/4

ε
.

The claim for the strongly convex case is proved similarly, using the bound (29) in Theorem 10

instead of (27) when we apply Markov inequality in (35).

The next result shows formally that for all t sufficiently large, the second term dominates in the

bounds (31) and (32).
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Corollary 12 Suppose the assumptions of Theorem 11 hold and let µ and t̂ be defined as in (28).

Then for ε ∈ (0,4nG/
√

e ] and t ≥max(t̂, t̄), with

t̄ :=

⌈

16n2G2ε−2 max

(

−W

( −ε2

16n2G2

)

,−4ln

(

µL

nε

))⌉

, (36)

(where W (·) denotes the branch of the Lambert function with W <−1), the bound (31) simplifies to

P(‖ḡt −∇ f (w∗)‖ ≥ ε)≤ 4µε−1Lt−1/4. (37)

When Ψ is strongly convex and the choice (21) is used for {βt}, and provided that ε∈
(

0,4nG/
√

2/e
]

and t ≥ t̄ ′ with

t̄ ′ :=

⌈

32n2G2ε−2 max

(

−W

( −ε2

32n2G2

)

,−2ln

(

µ′L
√

6

nε

))⌉

, (38)

the bound (32) simplifies to

P(‖ḡt −∇ f (w∗)‖ ≥ ε)≤ 4µ′ε−1L

(

6+ ln t

t

)1/2

, t ≥ 1. (39)

Proof Note first that the ratio (ln t)/t is decreasing for t ≥ e, so for t1 defined by

ln t1 =
ε2

16n2G2
t1, (40)

we have for t ≥ t1 and for sufficiently small ε ensuring ε2/(16n2G2)≤ 1/e (which is guaranteed by

our assumption on ε) that

ln t

t
≤ ln t1

t1
≤ ε2

16n2G2
. (41)

Note that (40) has the form ln t1 = αt1, for α = ε2/(16n2G2), for which the solution is

t1 = −W (−α)/α. Thus, for any t ≥ t̄, the condition (41) holds. We continue to assume that t ≥ t̄,

and note that

− ε2t

32n2G2
+

1

4
ln t

(41)

≤ − ε2t

32n2G2
+

ε2t

64n2G2
=− ε2t

64n2G2

(36)

≤ ln

(

µL

nε

)

.

By rearranging this expression and taking the exponential of both sides, we obtain

− ε2t

32n2G2
≤ ln

(

µL

nε

)

− 1

4
ln t ⇔ exp

(

− ε2t

32n2G2

)

≤
(

µL

nε

)

t−1/4,

which implies that the first term on the right-hand side of the bound (31) is dominated by the second.

We obtain the result (37) by substituting into (31).

The strongly convex case is similar. By solving ln t2 = αt2, for α = ε2/(32n2G2), we have for

t ≥ t2 and sufficiently small ε that

ln t

t
≤ ln t2

t2
≤ ε2

32n2G2
. (42)
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Thus for t ≥ t̄ ′, we have

− ε2t

32n2G2
+

1

2
ln t

(42)

≤ − ε2t

64n2G2

(38)

≤ ln

(

µ′L
√

6

εn

)

≤ ln

(

µ′L
√

6+ ln t

εn

)

.

By rearranging the outermost expressions in this bound, and taking the exponents of both sides, we

obtain

exp

(

− ε2t

32n2G2

)

≤ µ′L
εn

(

6+ ln t

t

)1/2

,

from which the result (39) follows.

The max-terms in (36) and (38) grow only slowly with the dimension n. Hence, we can base

our estimate of the required size of t on the factor in front of the max terms in (36) and (38), and on

the right-hand sides of (37) and (39). In particular, for the general case, we need t to be at least a

modest multiple of (4nG/ε)2
(for t ≥ t̄) and also t ≥ (4µL/ε)4 (for the right-hand side of (37) to be

useful).

4. Manifold Identification

In this section we show that most sufficiently advanced iterates of the RDA algorithm lie on the

optimal manifold. Our analysis is based upon the properties of the dual average discussed in the

previous section and on basic results for manifold identification. Specifically, we make use of

a result of Hare and Lewis (2004), which states that when a sequence of points approaches a limit

lying on an optimal nondegenerate manifold and the subgradients at these points approach zero, then

all sufficiently advanced members of the sequence lie on the manifold. We identify subsequences

of the RDA sequence that lie on the optimal manifold with increasing likelihood as the iteration

counter grows. We further show that these subsequences form a dense subset of the full sequence.

Separate but similar results are proved for the general convex case and the strongly convex case.

4.1 Convergent Sequences

We start with two results that estimate the likelihood of w j lying within a given radius of w∗. The

first of these results is for general convex objectives.

Lemma 13 (Convergent Sequences for General Convex Case) Suppose that Assumptions 1 and

2 hold, that w∗ ∈ FD, and that {β j} is chosen according to (20). Define the subsequence S by

S :=
{

j ∈ {1,2, . . .} | E
[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖2
]

≤ j−1/4, and

E

[

I(‖w j−w∗‖>r̄)‖w j−w∗‖
]

≤ (1/r̄) j−1/4
}

. (43)

For any ε > 0, we then have

P(‖w j−w∗‖ ≥ ε)≤ 1

ε

(

1

ε
+

1

r̄

)

j−1/4, ∀ j ∈ S. (44)

Defining

St := S ∩{1,2, . . . , t},

1720



MANIFOLD IDENTIFICATION FOR REGULARIZED STOCHASTIC ONLINE LEARNING

we have
1

t
card(St)≥ 1− 2

c

(

γD2 +
G2

γ

)

t−1/4, (45)

that is, the density of St in {1,2, . . . , t} is 1−O(t−1/4).

Proof To measure the cardinality of the complement of St , that is, Sc
t := {1,2, . . . , t}\St , we first

define indicator variables χ
j
− and χ

j
+ for j ≥ 1 as follows:

χ
j
− :=

{

1 if E
[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖2
]

> j−1/4,

0 otherwise.

χ
j
+ :=

{

1 if E
[

I(‖w j−w∗‖>r̄)‖w j−w∗‖
]

> (1/r̄) j−1/4,

0 otherwise.

As the set Sc
t contains all indices j ∈ {1,2, . . . , t} that satisfy χ

j
− = 1 or χ

j
+ = 1, the cardinality of

Sc
t is bounded above by ∑t

j=1(χ
j
−+χ

j
+). For ∑t

j=1 χ
j
−, we note that

t

∑
j=1

E

[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖2
]

≥
t

∑
j=1

χ
j
−E
[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖2
]

≥
t

∑
j=1

χ
j
− j−1/4 (from the definition of χ

j
−)

≥ t−1/4
t

∑
j=1

χ
j
−.

Using (24), we deduce that

1

t

t

∑
j=1

χ
j
− ≤

1

c

(

γD2 +
G2

γ

)

t−1/4.

Similar arguments for ∑t
j=1 χ

j
+ with E

[

I(‖w j−w∗‖>r̄)‖w j−w∗‖
]

, j = 1,2, . . . , t and (25) lead to

1

t

t

∑
j=1

χ
j
+ ≤

1

c

(

γD2 +
G2

γ

)

t−1/4.

Therefore, the fraction of the cardinality of St to {1,2, . . . , t} is

1

t
card(St) = 1− 1

t
card(Sc

t )

≥ 1− 1

t

t

∑
j=1

(χ
j
−+χ

j
+)

≥ 1− 2

c

(

γD2 +
G2

γ

)

t−1/4,

thus proving (45).
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To show (44), we first observe that for any ε > 0,

P(‖w j−w∗‖ ≥ ε) = P(‖w j−w∗‖ ≥ ε, ‖w j−w∗‖ ≤ r̄)

+P(‖w j−w∗‖ ≥ ε, ‖w j−w∗‖> r̄). (46)

Focusing on the first term, we have for all j ∈ S that

P(‖w j−w∗‖ ≥ ε, ‖w j−w∗‖ ≤ r̄) = P(I(‖w j−w∗‖≤r̄)‖w j−w∗‖ ≥ ε)

≤ ε−2
E

[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖2
]

≤ ε−2 j−1/4, (47)

where the first inequality is due to Markov and the second inequality is from the definition of S in

(43). Similarly for the second term in (46), we have for all j ∈ S that

P(‖w j−w∗‖ ≥ ε, ‖w j−w∗‖> r̄) = P(I(‖w j−w∗‖>r̄)‖w j−w∗‖ ≥ ε)

≤ ε−1
E

[

I(‖w j−w∗‖>r̄)‖w j−w∗‖
]

≤ ε−1r̄−1 j−1/4. (48)

Applying (47) and (48) to (46) leads to the claim,

P(‖w j−w∗‖ ≥ ε)≤ ε−1(ε−1 + r̄−1) j−1/4, ∀ j ∈ S.

This result implies that for sufficiently large j, the majority of iterates w j converges to w∗, in prob-

ability. Similar results can be derived for the convergence of E[φ(w j)] to φ(w∗). The next theorem

is the corresponding result for the strongly convex case.

Lemma 14 (Convergent Sequences for Strongly Convex Case) Suppose that Assumptions 1 and

2 hold, that w∗ ∈ FD, and that the regularizer Ψ is strongly convex with modulus σ > 0. Suppose

that {β j} is defined by (21). For any ε > 0, we have

P(‖w j−w∗‖ ≥ ε)≤ G2

ε2σ2

(

6+ ln j

j

)

, j ≥ 1.

Proof From the proof of Xiao (2010, Corollary 4), we have

E
[

‖w j−w∗‖2
]

≤ G2

σ2

(

6+ ln j

j

)

, j ≥ 1.

The claim follows from the Markov inequality.
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4.2 Identification

In this subsection, we state the main identification results. We start with a result from Hare and

Lewis (2004), stating it in a modified form that is useful for our analysis below.

Theorem 15 Suppose that φ is partly smooth at the minimizer w∗ relative to the optimal manifold

M and that the nondegeneracy condition (13) holds. Then there exists a threshold ε̄ > 0 such that

for all w ∈ O with ‖w−w∗‖< ε̄ and dist(0,∂φ(w))< ε̄, we have w ∈M.

Proof Suppose for contradiction that no such ε̄ exists. Let {ε j} j≥1 be any sequence of positive num-

bers such that ε j ↓ 0. Then for each j≥ 1 we have w j such that ‖w j−w∗‖< ε j, dist(0,∂φ(w j))< ε j

but w j /∈M. Considering the sequence {w j} j≥1, we have that w j → w∗, and dist(0,∂φ(w j))→ 0.

With convexity, these imply φ(w j)→ φ(w∗), since for all a j ∈ ∂φ(w j) we have φ(w j)− φ(w∗) ≤
aT

j (w j−w∗)≤‖a j‖‖w j−w∗‖. (Because of our assumptions, we can choose a j such that ‖a j‖≤ ε j.)

Convexity implies prox-regularity, so by applying Theorem 5.3 of Hare and Lewis (2004), we have

that w j ∈M for all j sufficiently large. This contradicts our choice of w j, so we conclude that ε̄ > 0

with the claimed properties exists.

The next theorem is our main result, showing that the RDA algorithm identifies the optimal

manifold with increasing probability as iterations proceed. This result requires a condition (49) on

h that is trivially satisfied by the usual prox-function h(w) = 1
2
‖w−w1‖2, with constant η = 1.

Theorem 16 (Identification for General Convex Case) Suppose that Assumptions 1 and 2 hold,

that w∗ ∈ FD, that

sup
b j∈∂h(w j)

‖b j‖ ≤ η‖w j−w1‖, j = 1,2, . . . (49)

for some η > 0, and that {β j} is defined as in (20). Given the set of indices S defined in (43), we

have

P(w j ∈M)≥ 1− (ζ1 +ζ2) j−1/4

for all j ∈ S sufficiently large, where

ζ1 :=
3max(1,L)

ε̄

(

3max(1,L)

ε̄
+

1

r̄

)

, and ζ2 :=
15µL

ε̄
.

Here ε̄ > 0 has the value defined in Theorem 15, L is the Lipschitz constant of (11), r̄ is the radius

of strong local minimization from (15), and µ is defined in (28).

Proof We focus on the iterate w j and the random events associated with it. First we denote the

following event as E1:

E1 : ‖w j−w∗‖ ≤ ε̄

3max(L,1)
.

Note that E1 depends on the history ξ[ j−1] of random variables prior to iteration j. If E1 is true, it

trivially implies the condition ‖w j−w∗‖ ≤ ε̄ of Theorem 15. From Lemma 13, with ε = ε̄
3max(L,1) ,

we have that

P(‖w j−w∗‖ ≤ ε̄)≥ P(E1)≥ 1−ζ1 j−1/4, for all j ∈ S . (50)
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We now examine the other condition in Theorem 15, namely

dist
(

0,∇ f (w j)+∂Ψ(w j)
)

≤ ε̄.

By adding and subtracting terms, we obtain

∇ f (w j)+a j = (∇ f (w j)−∇ f (w∗))+(∇ f (w∗)− ḡ j−1)−
β j−1

j−1
b j

+

(

ḡ j−1 +a j +
β j−1

j−1
b j

)

. (51)

for any a j ∈ ∂Ψ(w j) and b j ∈ ∂h(w j). We choose the specific a j and b j that satisfy the optimality

of the subproblem (18), that is,

0 = ḡ j−1 +a j +
β j−1

j−1
b j.

This choice eliminates the last term in (51). For the other three terms, we have the following

observations.

(i) For those w j satisfying E1, the Lipschitz property of ∇ f (Lemma 2) implies that

‖∇ f (w j)−∇ f (w∗)‖ ≤ L‖w j−w∗‖ ≤ ε̄L

3max(L,1)
≤ ε̄

3
.

Hence, E1 implies the following event:

E2 : ‖∇ f (w j)−∇ f (w∗)‖ ≤ ε̄/3.

(ii) From Corollary 12, we have by setting ε = ε̄/3 and t = j−1 that

P(‖∇ f (w∗)− ḡ j−1‖ ≥ ε̄/3)≤ 4µL

(

3

ε̄

)

( j−1)−1/4 < ζ2 j−1/4,

for j−1≥max(t̂, t̄), where t̂ is defined in (28) and t̄, which depends on ε̄, is defined in (36).

Hence, denoting by E3 the event

E3 : ‖∇ f (w∗)− ḡ j−1‖ ≤ ε̄/3,

we have that

P(¬E3)< ζ2 j−1/4, j ≥max(t̂, t̄)+1. (52)

(iii) Since β j−1 = γ( j−1)1/2, we have for w j satisfying E1 that

β j−1

j−1
‖b j‖= γ( j−1)−1/2‖b j‖

≤ γη( j−1)−1/2‖w j−w1‖ from (49)

≤ γη( j−1)−1/2(‖w j−w∗‖+‖w1−w∗‖)

≤ γη( j−1)−1/2

(

ε̄

3max(L,1)
+
√

2D

)

from w∗ ∈ FD and (17).
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Therefore, E1 implies the event

E4 :
β j−1

j−1
‖b j‖ ≤

ε̄

3
, j ≥ t0 +1,

where we define t0 by

t0 :=

⌈

9γ2η2

ε̄2

(

ε̄

3max(L,1)
+
√

2D

)2
⌉

.

Therefore for j ∈ S with j ≥max{t̂, t̄, t0}+1, by definition of the events E1, E2, E3, and E4 above,

the probability that the conditions of Theorem 15 hold is bounded as follows:

P

(

‖w j−w∗‖ ≤ ε̄ ∧ dist(0,∂φ(w j))≤ ε̄
)

≥ P

(

E1∧E2∧E3∧E4

)

= P(E1∧E3)

≥ 1−P(¬E1)−P(¬E3)≥ 1− (ζ1 +ζ2) j−1/4,

where the last inequality is due to (50) and (52). Our claim follows.

Theorem 17 (Identification for Strongly Convex Case) Suppose that Assumptions 1 and 2 hold,

that Ψ is strongly convex with modulus σ > 0, that w∗ ∈ FD, that h(·) satisfies (49), and that β j = 0

for all j ≥ 1, as defined in (21). Then we have

P(w j ∈M)≥ 1− (ζ′1 +ζ′2)
(

6+ ln j

j

)1/2

.

for all j sufficiently large, where

ζ′1 :=
G2

σ2

(

3max(1,L)

ε̄

)2

, and ζ′2 :=
17µ′L

ε̄
.

Here ε̄ > 0 has the value defined in Theorem 15, L is the Lipschitz constant of (11), G is the uniform

bound on gradient norms in (12), and µ′ is defined in (30).

Proof This proof is almost identical to that of Theorem 16; here we briefly mention the required

changes for the strongly convex case. Consider ε̄ > 0 and the event E1 defined in the proof of

Theorem 16. From Lemma 14 with ε = ε̄
3max(L,1) , we have

P(‖w j−w∗‖ ≤ ε̄)≥ P(E1)≥ 1−ζ′1(6+ ln j)/ j, j ≥ 1.

Instead of (ii) and (iii) in the proof of Theorem 16, we use the following:

(ii’) From Corollary 12, we have by setting ε = ε̄/3 and t = j−1 that

P(‖∇ f (w∗)− ḡ j−1‖ ≥ ε̄/3)≤ 4µ′
3

ε̄
L

(

6+ ln( j−1)

j−1

)1/2

<
17µ′L

ε̄

(

6+ ln j

j

)1/2

,
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for all j > max(t̄ ′ + 1,2), where t̄ ′ is defined in (38). Hence, denoting by E3 the event

‖∇ f (w∗)− ḡ j−1‖ ≤ ε̄/3, we have that

P(¬E3)< ζ′2

(

6+ ln j

j

)1/2

,

for all j sufficiently large.

(iii’) With β j−1 = 0 and the given conditions, the event E4 holds for all j ≥ 2.

Using the modified probability bounds for E1 and E3, we have

P
(

‖w j−w∗‖ ≤ ε̄ ∧ dist(0,∂φ(w j))≤ ε̄
)

≥ P
(

E1∧E3

)

≥ 1−ζ′1

(

6+ ln j

j

)

−ζ′2

(

6+ ln j

j

)1/2

≥ 1− (ζ′1 +ζ′2)
(

6+ ln j

j

)1/2

,

for all j ≥max(t̄ ′+1,9), using the fact that (6+ ln j)/ j ≤ 1 for j ≥ 9. Our claim follows.

Lemma 13 tells us that the sequence S is “dense” in {1,2, . . .}, while Theorem 16 states that

for all sufficiently large j ∈ S , w j lies on the optimal manifold with probability approaching one as

j increases. When the regularizer Ψ is strongly convex, Theorem 17 tells that similar results hold

earlier in the sequence {w j}.
We conclude this section with a simple example to show that algorithms based on subproblem

(7) that were discussed in Section 1.3 do not have reliable identification properties. The major

reason is that each iteration uses a “raw” sampled gradient gt of f , rather than the averaged (and

thus smoothed) approximate gradient ḡt of RDA. Thus, as we see now, even when the current iterate

wt is optimal, the subproblem may step away from this point, and away from the optimal manifold.

Example 1 Consider the following definitions for the problem (1):

• n = 1 (a scalar problem)

• Ξ = [−2,2] with ξ uniformly distributed on this interval.

• F(w;ξ) = ξw. Thus ∇F(w;ξ) = ξ and f (w)≡ 0.

• Ψ(w) = |w|.

With these definitions, the solution is w∗ = 0 and the optimal manifold is zero-dimensional: M =
{0}. Thus Assumption 2 is trivially satisfied. Regarding Assumption 1, the nondegeneracy condi-

tion is satisfied, since ∂Ψ(0) = [−1,1] while ∇ f (0) = 0. It is easy to verify too that F satisfies the

unbiasedness, uniform Lipschitz, and uniform boundedness properties of Assumption 1.

Setting wt = w∗ = 0, the subproblem (7) is

wt+1 = argmin
w

ξtw+ |w|+ 1

2αt

w2,
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where ξt is selected uniformly at random from [−2,2]. For ξt ∈ [−1,1], we have wt+1 = 0, so the

next iterate remains at the optimal point. However, if ξt ∈ [−2,−1), we have wt+1 =−αt(ξt +1)>
0, while if ξt ∈ (1,2], we have wt+1 = −αt(ξt − 1) < 0. In both cases, the next iterate steps away

from the solution w∗ = 0 and from the optimal manifold. Because ξt is uniformly distributed in

[−2,2], this event happens with probability 1/2 in this example. (The probability of this behavior

can be made arbitrarily close to 1 by suitable extension of the interval Ξ.)

5. Enhancing the Regularized Dual Averaging Algorithm

Here we present a simple optimization strategy motivated by our analysis above, in which the RDA

method gives way to a local phase after a near-optimal manifold is identified.

Algorithm 2 summarizes our algorithm RDA+. This algorithm starts with RDA steps until it

identifies a near-optimal manifold, then searches this manifold using a different optimization strat-

egy, possibly better suited to lower-dimensional spaces and possibly with better local convergence

properties. If an explicit parametrization ofM is available, the “local phase” could take the form

of a Newton-like method applied to the composition of the objective with this parametrization. In

the important special case of Ψ(·) = λ‖ · ‖1,M can be represented simply by its nonzero variables,

and LPS (Shi et al., 2008; Wright, 2012) can be applied on the space of just these variables.

To decide when to make the switch to the local phase, we use a simple heuristic inspired by

Theorem 16 and 17 that if the past τ consecutive iterates have been on the same manifold M,

we takeM to be approximately optimal. However, we “safeguard” by expandingM to incorporate

additional dimensions that may yet contain the minimizer. This simple approach will work provided

that the M so constructed is a superset of the optimal manifold, since our implementation of the

local phase is able to move to more restricted submanifolds ofM but does not expand its search to

include dimensions not originally included in the manifold. When sufficient progress is not attained

in the local phase, we can resume the paused dual-averaging phase.

We describe the details of Algorithm 2 for ℓ1 regularization, where Ψ(w) = λ‖w‖1 for some

λ > 0. (Thus, the starting point will be w1 = 0.) The optimal manifold corresponds (near w∗) to the

points in R
n that have the same nonzero patterns as w∗. We use the simple quadratic prox-function

h(w) = 1
2
‖w−w1‖2. Since Ψ is not strongly convex, we use the sequence {βt} defined in (20).

We now describe various specifics of the implementation of Algorithm 2 for this case.

5.1 Computation of w j+1

The closed-form solution for the subproblem (18) with t = j is

[w j+1]i =

√
j

γ
soft(−[ḡ j]i, λ), i = 1,2, . . . ,n,

where soft(u,a) := sgn(u)max{|u|−a,0} is the well-known soft-threshold function.

5.2 Surrogate Objective

To apply the batch optimization method LPS in the local phase of Algorithm 2, we use an empirical

estimate φ̃N in (3) as a surrogate objective function (where ξ j, j∈N is a sample of random variables

from the space Ξ according to the distribution P), and then solve

min
w∈M

φ̃N (w) = f̃N (w)+λ‖w‖1. (53)
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Algorithm 2: RDA+ Algorithm.

Input:

• a prox-function h(w) that is strongly convex on domΨ and also satisfies

argmin
w∈Rn

h(w) ∈ argmin
w∈Rn

Ψ(w),

sup
b∈∂h(w)

‖b‖ ≤ η‖w−w1‖, ∀w ∈ domΨ, where w1 ∈ argmin
w

Ψ(w).

• a nonnegative and nondecreasing sequence {β j}, j ≥ 1.

• a positive integer τ.

Initialize: Set ḡ0 = 0;

for j = 1,2, . . . do (Dual Averaging)

Choose a random vector ξ j ∈ Ξ;

Compute a gradient g j = ∇F(w j;ξ j);
Update the average gradient:

ḡ j =
j−1

j
ḡ j−1 +

1

j
g j.

Compute the next iterate by solving the subproblem (18), which is

w j+1 = argmin
w∈Rn

{

〈ḡ j,w〉+Ψ(w)+
β j

j
h(w)

}

.

if there isM such that w j+2−i ∈M for i = 1,2, . . . ,τ then (Local Phase)

SafeguardM by adding dimensionality as appropriate to encompass w∗;
Use a technique for low-dimensional optimization to search for a solution on

manifoldM, starting at w j+1;

end

end

LPS calculates first- and second-order information for φ̃N on the subset of components defined by

M. Since the intrinsic dimension ofM is usually much smaller than the dimension n of the full

space, these restricted gradients and Hessians are much cheaper to compute than their full-space

counterparts.

5.3 Local Phase: LPS

We give further information on the LPS approach, following Wright (2012) but specializing the

description to the problem (53). Many details are omitted; we refer the reader to Wright (2012) for

a complete description and analysis of the approach, and to Shi et al. (2008) for an earlier version

together with an application to ℓ1-regularized logistic regression.
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Algorithm 3: LPS Approach in Local Phase

Input: νmax > νmin > 0, K > 1, s > 1, w j+1;

Initialize: z0← w j+1;

for k = 0,1,2, . . . do
ChooseMk ⊂M such that each nonzero component inM appears in at least one of the

manifoldsMk,Mk−1, . . . ,Mk−K+1, for k ≥ K;

Choose νk ∈ [νmin,νmax];
Solve (54) for dk;

while φ̃N (zk +dk)> φ̃N (zk)−|dk|3 do

Set νk← sνk;

Solve (54) for dk;

end

RN Find d̃k with φ̃N (zk + d̃k)≤ φ̃N (zk +dk) and φ̃N (zk + d̃k)≤ φ̃N (zk)− .01|d̃k|3;

Set zk+1← zk + d̃k;

end

The scheme is outlined as Algorithm 3. We useMk to denote a subset of the restricted manifold

M, again defined by the indices of the components in which we consider a move at iteration k. We

require that each nonzero component inM be considered for a possible step at least once every K

iterations, where K is a defined parameter. The basic step at each iteration, given an LPS iterate zk,

is obtained by solving the following subproblem:

min
d∈Mk

∇ f̃N (zk)
T d +

νk

2
dT d +λ‖zk +d‖1, (54)

where νk is manipulated by the algorithm to produce a decrease in the objective at each iteration.

Formulation of this subproblem requires evaluation only of those elements of the gradient ∇ f̃N
corresponding to the nonzero setMk. Since it is separable in the components of d, it can be solved

in closed form in a number of operations proportional to the number of nonzero components inMk.

The enhancement in the line marked as RN of Algorithm 3 can be carried out by a reduced

Newton-type method, applied to the current set of nonzero components of zk +dk. Here, we obtain

an estimate of the restriction of the Hessian ∇2 f̃N to the nonzero set, possibly by taking a random

sub-batch of N .

5.4 Checking Optimality

From the optimality condition for (3), we define the optimality measure δ(w j) as follows,

δ(w j) :=
1√
n

inf
a j∈∂‖w j‖1

‖∇ f̃N (w j)+λa j‖. (55)

Since δ(w∗)≈ 0 for a sufficiently large sample setN because of the law of large numbers, it makes

sense to terminate when δ(w j) drops below a certain threshold.
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5.5 Safeguarding

At the start of the local phase, we augmentM by adding components i for which [w j+1]i = 0 but

[ḡ j]i is close to one of the endpoints of its allowable range; that is,

[w j+1]i = 0 and |[ḡ j]i|> ρλ (56)

for some ρ between 0 and 1 (but closer to 1). This conservative strategy allows for the possibility

that |[ḡ j]i| will exceed λ on a later iteration, causing [w j+1]i to move away from zero.

6. Computational Experiments

We report here on computational experiments involving binary classification tasks via ℓ1-regularized

logistic regression. Given a set of m training examples, we select one at time t—indexed by ξt—and

use its feature vector xξt
∈ R

n−1 and label yξt
∈ {−1,1} to define the corresponding loss function

for w̃ ∈ R
n−1, b ∈ R and w = (w̃,b):

F (w;ξt) = ln
(

1+ exp
(

−yξt
(w̃T xξt

+b)
))

.

We choose Ψ(w) = λ‖w̃‖1 as the regularizer for some λ > 0, and set w1 = 0, as required in Algo-

rithm 2.

For the second phase of Algorithm 2, we set N = {1,2, . . . ,m} to obtain the empirical estimate

φ̃N from the full training set.

6.1 Manifold Identification

To investigate the identification behavior of the RDA algorithm in practical circumstances, we use

five data sets from the UCI Machine Learning Repository, which have the sizes / dimensions shown

in Table 1. We apply the original LPS to acquire the reference solution w∗N of (3), with the tight

optimality threshold of 10−6. We then tabulate how many iterations of RDA are required before it

generates a point in the optimal manifoldM containing w∗N . We also check when the iterates of

RDA reach a modest superset of the optimal manifold—a “2×” superset composed of the points in

R
n having the same sign pattern for the active components inM, and up to twice as many nonzeros

as the points inM. For each data set we use three values of λ equally spaced in the log-scale range

of [0.3,0.9]λmax, where λmax, computed accordingly to Koh et al. (2007), is the value beyond which

the solution w∗N has all zero components, except for the intercept term.

Table 1 shows performance of the RDA algorithm, over 100 repeated runs for each data set

(using random permutations of training data for each run and for each sweep through the data), as

measured by the number of iterations required for the algorithm to identify the optimal manifold

and its 2× superset. Since the empirical distributions of the iteration counts are skewed, we show

the median (rather than the mean) and the standard deviation. The table also shows the values

of the optimality measure δ defined in (55) for the iterate at the moment we identify the optimal

manifold. These results demonstrate that a huge number of iterations may be required to identify

the optimal manifold, whereas identifying the superset is often much easier. In cases in which only a

few components of w∗N are nonzero, just a small fraction of the training examples usually suffice to

identify the 2× superset. We note too that even when optimal identification is achieved, the iterate

is still far from being optimal, by the criterion (55), suggesting the need for a local phase to achieve

tighter optimality.
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Data set λ 2× Superset OptimalM Optimality δ NNZs w∗N

Glass

(m = 214,n = 10)

0.29 14 (25) 20 (27) 0.068 1

0.17 13 (10) 116 (428) 0.063 2

0.10 13 (11) 28392 (6907) 0.016 3

Iono

(m = 351,n = 35)

0.22 38 (84) 122 (95) 0.015 2

0.13 44 (28) 30812 (15575) 0.008 3

0.07 86 (41) 404 (150) 0.019 5

Arrhythmia

(m = 452,n = 280)

0.15 192 (110) 304 (141) 0.001 2

0.09 272 (88) 2036 (1076) 0.002 8

0.05 447 (195) 27750 (4590) 0.001 13

Spambase

(m = 4601,n = 58)

0.17 137 (219) 357 (325) 0.006 1

0.10 722 (2495) 4340 (3097) 0.004 8

0.06 812 (1247) 4680 (2209) 0.004 17

Pageblock

(m = 5473,n = 11)

0.11 26 (326) 58 (395) 0.063 1

0.07 182 (941) 524 (1233) 0.038 3

0.04 103 (913) 461 (1232) 0.040 4

Table 1: Manifold identification properties of the RDA algorithm over 100 runs for each data set.

The median number of iterations required to identify the optimal manifold M, and the

number required to identify a 2× superset, are presented, along with the standard devia-

tions over the 100 tests (in parentheses). δ represents the optimality measure at the moment

of identifyingM, while the last column shows the number of nonzeros (excluding inter-

cepts) in the reference solution obtained by LPS.

6.2 Performance on the MNIST Data Set

We now focus on the effects of the local phase on the performance of RDA+. For this purpose, we

use the MNIST data set which consists of gray-scale images of digits represented by 28×28 pixels.

We choose the binary classification problem of distinguishing between the digits 6 and 7, for which

the data set has 12183 training and 1986 test examples. Although the “6 vs 7” task is relatively easy,

we choose this setting so that we can compare our results to those reported by Xiao (2010) for the

original RDA algorithm.

We compare RDA+ to several other algorithms: SGD, TG, RDA, and LPS. The SGD method

(see, for instance, Nemirovski et al., 2009) for ℓ1 regularization consists of the iterations

[wt+1]i = [wt ]i−αt

(

[gt ]i +λsgn([wt ]i)
)

, i = 1,2, . . . ,n,

where gt is a sampled approximation to the gradient of f at wt , obtained from a single training

example. The TG method (Langford et al., 2009) truncates the iterates obtained by the standard

SGD at every Kth step (where K is a user-defined constant). That is,

[wt+1]i =

{

trnc
(

[wt ]i−αt [gt ]i, λTG
t , θ

)

if mod(t,K) = 0,

[wt ]i−αt [gt ]i otherwise,
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where λTG
t := αtλK, mod(t,K) is the remainder on division of t by K, θ is a user-defined constant,

and

trnc(ω, λTG
t , θ) =











0 if |ω| ≤ λTG
t ,

ω−λTG
t sgn(ω) if λTG

t < |ω| ≤ θ,

ω otherwise.

We follow Xiao (2010) in using θ = ∞ and K = 10.

For the stepsize αt in SGD and TG, we adopt a variable stepsize scheme (Zinkevich, 2003;

Nemirovski et al., 2009), choosing αt to be a multiple of 1/
√

t so that the methods can achieve

regret bounds of O(
√

t) similar to that of RDA.

In our implementations of RDA+ and RDA, we set γ = 5000 in (20). (This value is determined

by cross validation with RDA, using a single scan through the data set.) For LPS and the local phase

of RDA+, we compute a reduced Newton step on the current active manifold only when the number

of nonzeros falls below 200. We also use the full set of training examples to compute the reduced

gradient and reduced Hessian of the surrogate function fN .

For SGD, TG, and RDA, we keep track not only of the primal iteration sequence {wt}, but

also the primal averages w̄T := 1
T ∑T

t=1 wt , where T for each algorithm denotes the iteration number

where the algorithm is stopped. We include these in the comparison because the convergence of

the stochastic subgradient algorithms is often described in terms of the primal averages. Note that

RDA+ and LPS do not make use of primal averages.

We first run the RDA+ algorithm with random permutations of the training samples, stopping

when τ = 100 consecutive iterates have the same sparsity pattern, after seeing all samples at least

once. (All repeated runs required at most 19327 iterations to stop, which is less than two complete

sweeps through the data set.) In the safeguarding test (56), we use ρ = 0.85. We run the local phase

of RDA+ until the optimality measure in (55) falls below 10−4. We record the total runtime of the

RDA+ algorithm, then run other algorithms SGD, TG, RDA, and LPS up to the runtime of RDA+,

stopping them earlier if they achieve the desired optimality before that point.

6.2.1 PROGRESS IN TIME

We compare the convergence of the algorithms in terms of the optimality measure and the number

of nonzero components. Figure 1 presents the plots for the iterates without averaging, for three

different values of λ: 10, 1, and 0.1. The optimality plots (on the left) show that RDA+ achieves

the target optimality much faster than other algorithms, including LPS. RDA behaves better than

SGD and TG, but still does not come close to the target value of optimality. There is only a modest

decrease in the optimality measure for SGD, TG, and RDA over the time frame of this experiment.

The plots on the right of Figure 1 show the number of nonzeros (excluding intercepts hereafter)

in the iterates. RDA tends to produce much sparser iterates with less fluctuation than SGD and TG,

but it fails to reduce the number of nonzeros to the smallest number identified by RDA+ in the given

time, for the values λ = 1.0 and λ = 0.1.

In its local phase, RDA+ behaves very similarly to LPS, sharing the typical behavior of non-

monotonic decrease in the optimality measure (55). However, the local phase often converges faster

than LPS, because it starts with the reduced space chosen by the dual-averaging phase of RDA+.

The number of nonzeros often increases at the point of switching between phases, as the safeguard-

ing strategy adds more elements to the nonzero set.
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Figure 2 shows similar plots but for the primal averaged iterates w̄t . We duplicate the plots

of RDA+ and LPS (which do not use iterate averaging) from Figure 1 for easy comparison. The

number of nonzero components is clearly higher for averaged iterates.

6.2.2 QUALITY OF SOLUTIONS

In Figure 3, we compare the quality of the solutions in terms of optimality, the number of nonzeros,

and test error rate. We present the results for the iterates without averaging in the three plots on the

left, and those for the primal-averaged iterates (for algorithms SGD, TG, and RDA) in the plots on

the right. (The plots of RDA+ and LPS on the left are duplicated in the right-hand plots for easy

comparison.) We run the algorithms with the same setting used in the previous experiments, except

for LPS, which we run to optimality (10−4, without time limit) to provide a baseline for comparison.

(The runtime of LPS was about four times longer than that of RDA+ on average.) The experiments

are repeated for 100 runs of the data (using random permutations of training data for each run and

for each sweep through the data), for each of seven λ values in the interval [.01,10]. (The value of

λmax for this data set is 45.8.)

In Figure 3, only the solutions from RDA+ achieve the desired optimality and the smallest

number of nonzeros, with almost identical quality to the solutions from LPS. The solutions (both

with and without averaging) from SGD, TG, and RDA are suboptimal, leaving much scope for

zeroing out many more components of the iterates. RDA achieves a similar number of nonzeros to

RDA+ for large λ values, but more nonzeros for smaller values of λ. In terms of the test error

rate, RDA+ produces slightly better solutions than SGD, TG, and RDA overall. Although the

improvement is marginal, we note that high accuracy is difficult to achieve solely with the stochastic

online learning algorithms in limited time. The averaged iterates of SGD and TG show smaller test

error for λ ≥ 1 than others, but they require a large number of nonzero components, despite the

strong regularization imposed.

In Figure 4, we show typical solutions obtained from the various algorithms for different values

of λ. The first three rows present the solutions acquired without averaging, and the last three rows

present those obtained with primal averaging. The solutions from RDA+ reveal almost identical

sparsity pattern to those from the baseline algorithm LPS, achieving smallest nonzero patterns.

RDA produces solutions of similar sparsity to RDA+ for large λ values, but much denser solutions

for smaller λ values. Again, we see that primal-averaged solutions are denser than those without

averaging.

7. Conclusion

We have shown that under assumptions of nondegeneracy and strong local minimization at the

optimum, the (non-averaged) iterates generated by the RDA algorithm identify the optimal manifold

with probability approaching one as iterations proceed. This observation enables us to develop a new

algorithmic framework that enjoys the low computational footprint of stochastic gradient methods

as well as the rapid local convergence of Newton-type optimization techniques, which can be used

to search for solutions on near-optimal manifolds that often have much lower intrinsic dimension

than the full space.

We believe that our analysis can be extended in several directions. First, the use of ℓp norms

in definition of the prox-function h can lead to faster convergence of RDA, but the interaction

with the strong minimizer assumption and the manifold identification results that we use here is
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Figure 1: Convergence of iterates for various algorithms applied to an ℓ1-regularized logistic regres-

sion function constructed from the digits 6 and 7 in the MNIST data set. Convergence

is measured in terms of the optimality measure (left) and the number of nonzero compo-

nents (excluding intercepts) in the iterates (right). SGD, TG, RDA, and LPS are run up to

the time taken for RDA+ to achieve 10−4 optimality value. The vertical lines indicate the

event of phase switching in RDA+. The vertical axes on the left are in logarithmic scale.
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Figure 2: Convergence of averaged iterates (for SGD, TG, and RDA) and original iterates (for

RDA+ and LPS) on the ℓ1-regularized logistic regression function constructed from the

digits 6 and 7 in the MNIST data set. Convergence is measured in terms of the optimality

measure (left) and the number of nonzero components (excluding intercepts) in the iter-

ates (right). SGD, TG, RDA, and LPS are run up to the time taken for RDA+ to achieve

10−4 optimality value. The vertical lines indicate the event of phase switching in RDA+.

The vertical axes on the left are in logarithmic scale.
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Left: iterates without averaging Right: primal averages
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Figure 3: Quality of solutions (MNIST 6 vs. 7) in terms of the optimality, the number of nonzero

components (without intercepts), and the test error rate, measured for 100 different ran-

dom permutations of the training set. The plots on the left show the results for the iterates

without averaging, and those on the right show averaged primal iterates for algorithms

SGD, TG, and RDA, and non-averaged iterates for RDA+ and LPS. The SGD, TG, and

RDA algorithms are run up to the time taken for RDA+ to achieve a 10−4 threshold in the

measure (55), whereas LPS is run to convergence. Axes in the first and third rows are in

logarithmic scale.
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Figure 4: Sparsity patterns of the solutions for classification of the digits 6 and 7 in the MNIST

data set. The regularization parameter λ is varied in the range of [0.01,10]. The spots

represent the positive (bright) and negative (dark) values, whereas the gray background

represents zero. The top three rows show the solutions acquired without averaging, and

the bottom three rows show those obtained with primal averaging. The two rows in the

middle presents the solutions from RDA+ and LPS. The algorithms SGD, TG, and RDA

are run up to the time taken for RDA+ to achieve a solution with 10−4 optimality value;

the batch algorithm LPS is run without time limit. Note that for each value of λ, the

sparsest solutions are obtained by RDA+ and LPS.
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complicated. Second, multiple samples could be used as in Dekel et al. (2012) to construct an

approximate subgradient with reduced variance, which may thus lead to faster identification. Third,

it is likely that the nondegeneracy assumption can be weakened, in which case a “super-manifold”

of the optimal manifold would be identifiable. We leave such investigations to future work.
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Appendix A. Strong Minimizer Property

In this section we prove Theorem 5 and its corollaries stated in Section 2.5, based on results from

manifold analysis and other elementary arguments. Our proof is similar to that of Wright (2012,

Theorem 2.5), but simpler.

We first state an elementary result on manifold characterization, which is proved by Vaisman

(1984, Sections 1.4-1.5) and Wright (2012, Appendix A).

Lemma 18 Let the manifoldM⊂ R
n containing z̄ be characterized by a C p (p ≥ 2) function H :

R
n→ R

k. Then there is ȳ ∈ R
n−k and a C p function G mapping some neighborhood of ȳ to R

n such

that G(y) ∈M for all y near ȳ. Moreover, G(y)− z̄ = Y (y− ȳ)+O(‖y− ȳ‖2), where Y ∈ R
n×(n−k)

is an orthonormal matrix whose columns span the tangent space toM at z̄.

The next result, from Wright (2012, Lemma 2.2), shows how perturbations from a point at which the

objective function is partly smooth can be decomposed according to the manifold characterization

above.

Lemma 19 Let the manifoldM⊂ R
n be characterized in a neighborhood of z̄ ∈M by C p map-

pings H : Rn → R
k and G : Rn−k → R

n and the point ȳ described in Lemma 18. Then for all z

near z̄, there are unique vectors y ∈ R
n−k and v ∈ R

k with ‖(yT − ȳT ,vT )‖ = O(‖z− z̄‖) such that

z = G(y)+∇H(z̄)v.

We also make use of a result from Wright (2012, Lemma A.1).

Lemma 20 Consider a function ϕ : Rn→R∪{+∞}, a point z̄ ∈Rn, and a manifoldM containing

z̄ such that ϕ is partly smooth at z̄ with respect toM. If the nondegeneracy condition 0 ∈ ri ∂ϕ(z̄)
holds, then there exists ε > 0 such that

sup
g∈∂ϕ(z̄)

〈g,d〉 ≥ ε‖d‖, ∀d ∈ NM(z̄).

Proof (Theorem 5) We now proceed with the proof of the main result of Section 2.5. Recall the

following assumptions:
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(i) φ is partly smooth at w∗ relative to the optimal manifoldM.

(ii) w∗ is a locally strong minimizer of φ|M with modulus cM > 0 and radius rM > 0, and

(iii) the nondegeneracy condition (13) holds at w∗.

For the minimizer w∗ of (1) and the optimal manifoldM containing w∗, we consider the map-

pings H and G, the matrix Y , and the point ȳ ∈ R
n−k satisfying Lemma 18 and Lemma 19, associ-

ated with z̄ = w∗ ∈Rn. From Lemma 19, for all w satisfying ‖w−w∗‖ ≤ r̄≤ rM with small enough

r̄ > 0, we can find unique vectors y ∈ R
n−k and v ∈ R

k with ‖(yT − ȳT ,vT )‖ = O(‖w−w∗‖) such

that w = G(y)+∇H(w∗)v. Therefore we have

φ(w)−φ(w∗) = [φ(G(y)+∇H(w∗)v)−φ(G(y))]+ [φ(G(y))−φ(w∗)] . (57)

From the locally strong minimizer property relative toM and the facts that w∗ ∈M and G(y) ∈M
for all y near ȳ, we have for the second bracketed term that

φ(G(y))−φ(w∗) = φ|M(G(y))−φ|M(w∗)≥ cM‖G(y)−w∗‖2 (58)

for all y near ȳ. Consider next the first bracketed term of (57). From Lemma 20, we have ε > 0

such that supg∈∂φ(w∗)〈g,d〉 ≥ ε‖d‖ for all d ∈ NM(w∗). From the subcontinuity property (iv) of

∂φ(w∗) in Definition 4, we can choose a neighborhood of w∗ sufficiently small that for all G(y) in

this neighborhood and g ∈ ∂φ(w∗), there exists ĝ ∈ ∂φ(G(y)) such that ‖ĝ−g‖ ≤ ε/2. These facts,

together with convexity of φ, imply that for all y near ȳ and v near 0 we have

φ(G(y)+∇H(w∗)v)−φ(G(y))≥ sup
ĝ∈∂φ(G(y))

〈ĝ,∇H(w∗)v〉

≥ sup
g∈∂φ(w∗)

〈g,∇H(w∗)v〉− (ε/2)‖∇H(w∗)v‖

≥ (ε/2)‖∇H(w∗)v‖.

By substituting this inequality and (58) into (57), we obtain

φ(w)−φ(w∗)≥ (ε/2)‖∇H(w∗)v‖+ cM‖G(y)−w∗‖2.

By further reducing r̄ if necessary, we can choose the neighborhood of w∗ small enough to ensure

that ‖∇H(w∗)v‖ ≤ 1, and therefore

φ(w)−φ(w∗)≥ (ε/2)‖∇H(w∗)v‖2 + cM‖G(y)−w∗‖2

≥min(ε/2,cM)
[

‖∇H(w∗)v‖2 +‖G(y)−w∗‖2
]

≥ 1

2
min(ε/2,cM)

[

‖∇H(w∗)v‖+‖G(y)−w∗‖
]2

≥ 1

2
min(ε/2,cM)‖w−w∗‖2.

(The third inequality follows from the elementary bound (a2 + b2) ≥ 1
2
(a+ b)2, for any scalars a

and b.) We have thus shown that w∗ indeed is a local strong minimizer of φ, without the restriction

to the manifoldM, with modulus c := 1
2

min(ε/2,cM) and radius r̄.
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We follow with the proofs of the remaining results of Section 2.5.

Proof (Corollary 6) Given w ∈ O with ‖w−w∗‖> r̄, we have from the convexity of φ that

φ

(

w∗+ r̄
w−w∗

‖w−w∗‖

)

≤ φ(w∗)+
r̄

‖w−w∗‖(φ(w)−φ(w∗)).

From the locally strong minimizer property (Theorem 5), we also have

φ

(

w∗+ r̄
w−w∗

‖w−w∗‖

)

−φ(w∗)≥ c

∥

∥

∥

∥

(

w∗+ r̄
w−w∗

‖w−w∗‖

)

−w∗
∥

∥

∥

∥

2

= cr̄2.

Collecting the above two inequalities leads to the claim.

Proof (Corollary 7) Given w∈O, if ‖w−w∗‖≤ r̄, then the claim follows from (15). If ‖w−w∗‖>
r̄, then we have from strong convexity of φ that

φ

(

w∗+ r̄
w−w∗

‖w−w∗‖

)

≤ φ(w∗)+
r̄

‖w−w∗‖(φ(w)−φ(w∗))

− σ

2

r̄

‖w−w∗‖

(

1− r̄

‖w−w∗‖

)

‖w−w∗‖2.

From the locally strong minimizer property (Theorem 5), we also have

φ

(

w∗+ r̄
w−w∗

‖w−w∗‖

)

−φ(w∗)≥ cr̄2.

Combining the above two inequalities results in

φ(w)−φ(w∗)≥
[

σ/2+
r̄

‖w−w∗‖(c−σ/2)

]

‖w−w∗‖2 ≥min(c,σ/2)‖w−w∗‖2.

Appendix B. Expected Error Bounds for Iterates of RDA

In this section we provide the background for the results of Section 3, regarding the iterates gener-

ated by the RDA algorithm.
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Proof (Lemma 9) For the general convex case, with {βt} chosen by (20), we consider the expected

regret up to time t with respect to w∗, and obtain

E[Rt(w
∗)] = E

[

t

∑
j=1

(F(w j;ξ j)+Ψ(w j))−
t

∑
j=1

(F(w∗;ξ j)+Ψ(w∗))

]

=
t

∑
j=1

E
[

E
{

(F(w j;ξ j)+Ψ(w j)−F(w∗;ξ j)−Ψ(w∗)) |ξ[ j−1]

}]

=
t

∑
j=1

E [ f (w j)+Ψ(w j)− f (w∗)−Ψ(w∗)]

=
t

∑
j=1

E [φ(w j)−φ(w∗)] . (59)

Under Assumptions 1 and 2, there exists c > 0 and r̄ > 0 that satisfy (15), which is

φ(w)−φ(w∗)≥ c‖w−w∗‖2, for all w with ‖w−w∗‖ ≤ r̄,

as proved in Theorem 5. Noting that I(‖w j−w∗‖≤r̄)+ I(‖w j−w∗|>r̄) = 1, we can split the right-hand side

of (59) into two sums and obtain

E[Rt(w
∗)] =

t

∑
j=1

E

[

I(‖w j−w∗‖≤r̄){φ(w j)−φ(w∗)}
]

+
t

∑
j=1

E

[

I(‖w j−w∗‖>r̄){φ(w j)−φ(w∗)}
]

. (60)

Note that both terms on the right-hand side of (60) are nonnegative. For the first term, we have by

using the regret bound (22) and the locally strong minimizer property (15) that

(

γD2 +
G2

γ

)

t1/2 ≥
t

∑
j=1

E

[

I(‖w j−w∗‖≤r̄){φ(w j)−φ(w∗)}
]

≥ c
t

∑
j=1

E

[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖2
]

,

proving the first inequality (24). For the second inequality, we have from (60), the regret bound

(22), and Corollary 6 that

(

γD2 +
G2

γ

)

t1/2 ≥
t

∑
j=1

E

[

I(‖w j−w∗‖>r̄){φ(w j)−φ(w∗)}
]

≥ cr̄
t

∑
j=1

E

[

I(‖w j−w∗‖>r̄)‖w j−w∗‖
]

,

thus proving (25).

When Ψ is strongly convex with the modulus σ > 0 and {βt} chosen by (21), we apply the other

regret bound (23) to (59), resulting in

G2

2σ
(6+ ln t)≥ ERt(w

∗)≥
t

∑
j=1

E{φ(w j)−φ(w∗)} ≥min(c,σ/2)
t

∑
j=1

E
[

‖w j−w∗‖2
]

,
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where for the last inequality we use the fact that w∗ is a (global) strong minimizer with the modulus

min(c,σ/2), as shown in Corollary 7. This proves (26).

Proof (Theorem 10) We start with the general convex case. From the Cauchy-Schwartz inequality

‖z‖1 ≤
√

m‖z‖2 for a vector z ∈ R
m and Jensen’s inequality, we have

1

t

t

∑
j=1

E

[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖
]

≤
√

t

t

[

t

∑
j=1

{

E

[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖
]}2

]1/2

≤
[

1

t

t

∑
j=1

E

[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖2
]

]1/2

≤ 1√
c

(

γD2 +
G2

γ

)1/2

t−1/4,

where the last inequality is from (24). By combining this result with (25) and the definition of t̂ in

(28), and using our standing assumption that r̄ ∈ (0,1], we have for t ≥ t̂ that

1

t

t

∑
j=1

E‖w j−w∗‖= 1

t

t

∑
j=1

E

[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖
]

+
1

t

t

∑
j=1

E

[

I(‖w j−w∗‖>r̄)‖w j−w∗‖
]

≤ 1√
c

(

γD2 +
G2

γ

)1/2

t−1/4 +
1

r̄c

(

γD2 +
G2

γ

)

t−1/2

≤ 1√
c

(

γD2 +
G2

γ

)1/2

t−1/4 +
1√
r̄c

(

γD2 +
G2

γ

)1/2

t−1/4

≤ µt−1/4.

for µ defined in (28).

For the strongly convex case, we have from Cauchy-Schwarz and Jensen’s inequalities that

1

t

t

∑
j=1

E‖w j−w∗‖ ≤
[

1

t

t

∑
j=1

{

E‖w j−w∗‖
}2

]1/2

≤
[

1

t

t

∑
j=1

E‖w j−w∗‖2

]1/2

.

Applying the bound in (26) to the last line leads to (29).
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