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Département d’informatique et de recherche opérationnelle
Universit́e de Montŕeal
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Abstract
Recent developments have demonstrated the capacity of restricted Boltzmann machines (RBM) to
be powerful generative models, able to extract useful features from input data or construct deep arti-
ficial neural networks. In such settings, the RBM only yieldsa preprocessing or an initialization for
some other model, instead of acting as a complete supervisedmodel in its own right. In this paper,
we argue that RBMs can provide a self-contained framework for developing competitive classifiers.
We study the Classification RBM (ClassRBM), a variant on the RBM adapted to the classification
setting. We study different strategies for training the ClassRBM and show that competitive classi-
fication performances can be reached when appropriately combining discriminative and generative
training objectives. Since training according to the generative objective requires the computation of
a generally intractable gradient, we also compare different approaches to estimating this gradient
and address the issue of obtaining such a gradient for problems with very high dimensional inputs.
Finally, we describe how to adapt the ClassRBM to two specialcases of classification problems,
namely semi-supervised and multitask learning.

Keywords: restricted Boltzmann machine, classification, discriminative learning, generative learn-
ing

1. Introduction

The restricted Boltzmann machine (RBM) is a probabilistic model that uses a layer of hidden binary
variables or units to model the distribution of a visible layer of variables. It has been successfully ap-
plied to problems involving high dimensional data such as images (Hinton et al., 2006; Larochelle
et al., 2007) and text (Welling et al., 2005; Salakhutdinov and Hinton, 2007; Mnih and Hinton,
2007). In this context, two approaches are usually followed. First, an RBM is trained in an unsuper-
vised manner to model the distribution of the inputs (possibly more than one RBM could be trained,
stacking them on top of each other (Hinton et al., 2006)). Then, the RBM is used in one of two
ways: either its hidden layer is used to preprocess the input data by replacing it with the represen-
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tation given by the hidden layer, or the parameters of the RBM are used to initialize a feedforward
neural network. In both cases, the RBM is paired with some other learning algorithm (the classifier
using the preprocessed inputs or the neural network) to solve the supervised learning problem at
hand. This approach unfortunately requires one to tune both sets of hyper-parameters (those of the
RBM and of the other learning algorithm) at the same time. Moreover, since the RBM is trained in
an unsupervised manner, it is blind to the nature of the supervised task thatneeds to be solved and
provides no guarantees that the information extracted by its hidden layer willbe useful.

In this paper, we argue that RBMs can provide a self-contained and competitive framework for
solving supervised learning problems. Based on the Classification Restricted Boltzmann Machine
(ClassRBM), the proposed approach and learning algorithms address both aforementioned issues.
Indeed, by relying only on the RBM, the number of hyper-parameters thatone needs to tune will
be relatively smaller, and by modelling thejoint distribution of the input and target, the ClassRBM
will be encouraged to allocate some of its capacity at modelling their relationship as well as the
relationships between the input variables. Using experiments on characterrecognition and text
classification problems, we show that the classification performance that theClassRBM can obtain
is competitive with respect to other “black box” classifiers such as standard neural networks and
Support Vector Machines (SVM). We compare different training strategies for the ClassRBM, which
rely on discriminative and/or generative learning objectives. As we will see, the best approach
tends to be an appropriately tuned combination of both learning objectives. Moreover, since the
generative learning objective doesn’t allow for the exact computation ofthe gradient with respect
to the ClassRBM’s parameters, we compare the use of different approximations of that gradient.
We also address the issue of generative learning on very high dimensional inputs and propose an
approach to reduce the computational cost per example of training. Finally,we describe how the
ClassRBM can be used to tackle semi-supervised and multitask learning problems.

2. Classification Restricted Boltzmann Machines

The Classification Restricted Boltzmann Machine (ClassRBM) (Hinton et al., 2006) models the
joint distribution of an inputx = (x1, . . . ,xD) and target classy∈ {1, . . . ,C} using a hidden layer of
binary stochastic unitsh = (h1, . . . ,hH). This is done by first defining an energy function

E(y,x,h) =−hTWx−bTx−cTh−dTey−hTUey

with parametersΘ = (W,b,c,d,U) and whereey = (1i=y)
C
i=1 is the “one out ofC” representation

of y. From the energy function, we assign probabilities to values ofy, x andh as follows:

p(y,x,h) =
exp(−E(y,x,h))

Z
(1)

whereZ is a normalization constant (also called partition function) which ensures thatEquation 1 is
a valid probability distribution. We will assume that the elements ofx are binary, but extensions to
real-valued units on bounded or unbounded intervals are straightforward (Welling et al., 2005). An
illustration of the ClassRBM is given in Figure 1.

Unfortunately, computingp(y,x,h) or p(y,x) is typically intractable. However, it is possible to
sample from the ClassRBM, using Gibbs sampling, that is, alternating between sampling a value
for the hidden layer given the current value of the visible layer (made of variablesx and theey
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representation ofy), and vice versa. All the required conditional distributions are very simple.
When conditioning on the visible layer, we have

p(h|y,x) = ∏
j

p(h j |y,x), with p(h j = 1|y,x) = sigm(c j +U jy +∑
i

Wji xi)

where sigm(a) = 1/(1+ exp(−a)) is the logistic sigmoid function. When conditioning on the
hidden layer, we have

p(x|h) = ∏
i

p(xi |h), with p(xi = 1|h) = sigm(bi +∑
j

Wji h j) ,

p(y|h) =
exp(dy+∑ j U jyh j)

∑y∗ exp(dy∗+∑ j U jy∗h j)
.

It is also possible to computep(y|x) exactly and hence perform classification. Indeed, noticing that

∑
h1∈{0,1}

· · · ∑
hH∈{0,1}

exp(hTWx +bTx+cTh+dTey+hTUey)

= exp(dy) ∑
h1∈{0,1}

exp(h1(c1+U1y+∑
i

W1ixi)) · · · ∑
hH∈{0,1}

exp(hH(cH +UHy+∑
i

WHixi))

= exp(dy)

(
1+exp(c1+U1y+∑

i

W1ixi)

)
. . .

(
1+exp(cn+UHy+∑

i

Wnixi)

)

= exp(dy+∑
j

log(1+exp(c j +U jy +∑
i

Wji xi)))

= exp(dy+∑
j

softplus(c j +U jy +∑
i

Wji xi))

where softplus(a) = log(1+exp(a)), then we can write

p(y|x) =
∑h1∈{0,1} · · ·∑hH∈{0,1}exp(hTWx +bTx+cTh+dTey+hTUey)

∑y∗∈{1,...,C}∑h1∈{0,1} · · ·∑hH∈{0,1}exp(hTWx +bTx+cTh+dTey∗+hTUey∗)

=
exp(dy+∑ j softplus(c j +U jy +∑i Wji xi))

∑y∗∈{1,...,C}exp(d∗y +∑ j softplus(c j +U jy∗+∑i Wji xi))
(2)

=
exp(−F(y,x))

∑y∗∈{1,...,C}exp(−F(y,x))
.

whereF(y,x) is referred to as the free energy. Precomputing the termsc j +∑i Wji xi and reusing them
when computing softplus(c j +U jy∗ +∑i Wji xi) for all classesy∗ yields a procedure for computing
this conditional distribution in timeO(HD+HC).

One way of interpreting Equation 2 is that, when assigning probabilities to a particular classy
for some inputx, the ClassRBM looks at how well the inputx fits or aligns with the different filters
associated with the rowsW j· of W. These filters are shared across the different classes, but different
classes will make comparisons with different filters by controlling the class-dependent biasesU jy

in the softplus(c j +U jy +∑i Wji xi) terms. Notice also that two similar classes could share some of
the filters inW, that is, both could simultaneously have large positive values ofU jy for some of the
rowsW j·.
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Figure 1: Illustration of a Classification Restricted Boltzmann Machine

3. Training Objectives

In order to train a ClassRBM to solve a particular classification problem, we can simply define
an objective to minimize for all examples in the training setDtrain = {(xt ,yt)}. The next sections
describe the different training objectives which will be considered here, starting with the one most
commonly used, that is, the generative training objective.

3.1 Generative Training Objective

Given that we have a model which defines a value for the joint probabilityp(y,x), a natural choice
for a training objective is the generative training objective

Lgen(Dtrain) =−
|Dtrain|

∑
t=1

logp(yt ,xt) . (3)

This is the most popular training objective for RBMs, for which a lot of effort has been put to obtain
better estimates for its gradient (Hinton, 2002; Tieleman, 2008; Tieleman and Hinton, 2009). In-
deed, as mentioned previously, computingp(yt ,xt) for some example(xt ,yt) is generally intractable,
as is computing logp(yt ,xt) and its gradient with respect to any ClassRBM parameterθ

∂ logp(yt ,xt)

∂θ
=−Eh|yt ,xt

[
∂

∂θ
E(yt ,xt ,h)

]
+Ey,x,h

[
∂

∂θ
E(y,x,h)

]
.

Specifically, though the first expectation is tractable, the second is not. Different approaches have
been proposed to estimate this second expectation. One which is known to work well in practice is
the contrastive divergence estimator (Hinton, 2002). This approximation replaces the expectation
by a point estimate at a sample generated after a limited number of Gibbs sampling steps, with the
sampler’s initial state for the visible variables initialized at the training example(xt ,yt). A single
Gibbs sampling iteration is often used and is usually found to be sufficient to learn a meaningful
representation of the data. Then, this gradient estimate can be used in a stochastic gradient descent
procedure for training. A pseudocode of the procedure is given by Algorithm 1, where the learning
rate is controlled byλ. We will consider this procedure for now and postpone the considerationof
other estimates of the generative gradient to Section 7.3.
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Algorithm 1 Generative training update of the ClassRBM using Contrastive Divergence
Input: training pair(yt ,xt) and learning rateλ
# Notation:a← b meansa is set to valueb
# a∼ p meansa is sampled fromp

# Positive phase
y0← yt , x0← xt , ĥ0← sigm(c+Wx0+Uey0)

# Negative phase
h0∼ p(h|y0,x0), y1∼ p(y|h0), x1∼ p(x|h0)
ĥ1← sigm(c+Wx1+Uey1)

# Update
for θ ∈Θ do

θ← θ−λ
(

∂
∂θE(y0,x0, ĥ0)− ∂

∂θE(y1,x1, ĥ1)
)

end for

4. Discriminative Training Objective

The generative training objective can be decomposed as follows:

Lgen(Dtrain) =−
|Dtrain|

∑
t=1

(logp(yt |xt)+ logp(xt)) =−
|Dtrain|

∑
t=1

logp(yt |xt)−
|Dtrain|

∑
t=1

logp(xt) (4)

hinting that the ClassRBM will dedicate some of its capacity at modelling the marginaldistribution
of the input only. Since we are in a supervised learning setting and are onlyinterested in obtaining
a good prediction of the target given the input, it might be more appropriate toignore this unsuper-
vised part of the generative objective and focus on the supervised part.

Doing so is referred to as discriminative training, where the following trainingobjective is used:

Ldisc(Dtrain) =−
|Dtrain|

∑
t=1

logp(yt |xt) . (5)

This objective is also similar to the one used by feedforward neural networks whose outputs can
be interpreted as an estimate ofp(y|x). Moreover, just like neural networks, ClassRBMs trained
this way are universal approximators for distributionsp(y|x) with binary inputs, since RBMs are
universal approximators of distributions over binary inputs (Le Roux and Bengio, 2010).

An important advantage of the discriminative training objective is that it is possible to compute
its gradient with respect to the ClassRBM’s parameters exactly. The general form of the gradient
for a single example(xt ,yt) is

∂ logp(yt |xt)

∂θ
=−Eh|yt ,xt

[
∂

∂θ
E(yt ,xt ,h)

]
+Ey,h|x

[
∂

∂θ
E(y,x,h)

]

and, more specifically, we obtain

∂ logp(yt |xt)

∂dy
= 1y=yt − p(y|xt), ∀y∈ {1, . . . ,C}
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for the target biasesd and

∂ logp(yt |xt)

∂θ
= ∑

j

sigm(oyt j(xt))
∂oyt j(xt)

∂θ
−∑

j,y∗
sigm(oy∗ j(xt))p(y

∗|xt)
∂oy∗ j(xt)

∂θ

for the other parametersθ∈ {c,U,W}, whereoy j(x) = c j +∑kWjkxk+U jy. Notice that the gradient
with respect tob is 0, since the input biases are not involved in the computation ofp(y|x). This
discriminative approach has been used previously for fine-tuning the topRBM of a Deep Belief
Network (Hinton, 2007).

5. Hybrid Training Objective

In order to get an idea of when and why generative training can be betterthan discriminative training
or vice versa, we can look at some of the known theoretical properties ofboth approaches.

In Ng and Jordan (2002), an analysis of naive Bayes and logistic regression classifiers (which
can be seen as the same parametrization but trained according to a generative or discriminative
objective respectively) indicates that the generative training objective yields models that can reach
more rapidly (with training set size) their best (asymptotic) generalization performance, than mod-
els trained discriminatively. However, when the model is misspecified, the discriminative training
objective allows the model to reach a better performance for sufficiently large training sets (i.e., has
better asymptotic performance). In Liang and Jordan (2008), it is also shown that for models from
the general exponential family, parameter estimates based on the generative training objective have
smaller variance than discriminative estimates. However, if the model is misspecified, generative
estimates will asymptotically yield models with worse performances. These resultssuggest inter-
preting the model trained with the generative training objective as being more regularized than the
model trained with the discriminative objective.

When the ultimate task is classification, adding the generative training objectiveto the discrim-
inative training objective can be seen as a way to regularize the discriminative training objective. It
was already found that unsupervised pre-training of RBMs can be seen as a form of regularization
(Erhan et al., 2010). Since we might want to adapt the amount of regularization to the problem at
hand, we could consider interpolating between the generative and discriminative objectives as in
Bouchard and Triggs (2004) or, similarly, use the following hybrid objective:

Lhybrid(Dtrain) = Ldisc(Dtrain)+αLgen(Dtrain) (6)

where the weightα of the generative criterion can be adjusted based on the performance ofthe
model on a validation set. As in Equation 4, we can separate the logp(yt ,xt) terms in two and
rewrite Equation 6 as

Lhybrid(Dtrain) =−(1+α)
|Dtrain|

∑
t=1

logp(yt |xt)−α
|Dtrain|

∑
t=1

logp(xt) .

This different expression forLhybrid(Dtrain) highlights the nature of the regularization that is im-
posed: among all configurations of the parameters of the ClassRBMs that can solve the supervised
problem well, we will favor those that also assign high probability to the inputs and hence have
extracted some of the structure present in the input’s distribution.
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6. Related Work

As mentioned previously, RBMs—sometimes also referred to as harmoniums (Welling et al., 2005),
usually when the hidden layer’s units are not binary—have been popularfeature extractors in clas-
sification applications. Most of the time however, the features are learned while ignoring the target
label information (Gehler et al., 2006; Xing et al., 2005). This implies that somelabel-related infor-
mation may be thrown away and McCallum et al. (2006) have shown that incorporating labels in a
feature learning procedure can be beneficial, in their work on Multi-Conditional Learning (MCL).1

However, this latter work still required that the relationship between the hidden features and the
target be learned a posteriori, by a separate classifier. One of the main points we wish to make in
this paper is that RBMs provide a self-contained framework for classification, which does not need
to rely on the availability of a separate classifier. This approach has two advantages: model selec-
tion is facilitated since no additional hyper-parameters from the separate classifier must be tuned,
and no additional classifier training phase is required, making it possible to employ the ClassRBM
in an online learning setting or to track the discriminative performance of the latent representation
on a validation set. Another frequent use of RBMs is as an initializing or pretraining algorithm for
deep neural networks (Hinton, 2007), but this approach shares the same disadvantages of having
two training phases.

Schmah et al. (2009) proposed a different approach to discriminative training of RBMs, where
each class is associated with its own individual RBM, as in a Bayes classifier. However, this ap-
proach does not rely on a global hidden representation (with shared parameters) for all classes and
hence cannot model directly the latent similarity between classes, which should be advantageous for
classification problems with large number of classes. From this perspective, the ClassRBM can be
seen as a form ofmulti-tasktraining, since the input to hidden weights are shared across all classes.

Yang et al. (2007) developed variants of harmoniums for video classification that can model
several modalities and class information jointly. One variant uses a separateharmonium for each
class as in Schmah et al. (2009), while a second is based on a shared hidden representation across
classes like in the ClassRBM. However, they proposed training these models generatively, which is
often not the optimal training strategy, as discussed in Section 7.

There are also several similarities between classification RBMs and ordinary multi-layer neural
networks. In particular, the computation ofp(y|x) could be implemented by a single layer neural
network with softplus and softmax activation functions in its hidden and outputlayers respectively,
as well as with a special structure in the output and hidden weights where thevalue of the output
weights is fixed and many of the hidden layer weights are shared. Glorot etal. (2011) highlight that
softplus hidden activation functions tend to yield better performances than logistic-shaped functions
(including the hyperbolic tangent). This might be one explanation behind the slightly superior
performance of discriminatively trained ClassRBMs, compared to neural networks with hyperbolic
tangent hidden units (see Sections 7.1 and 7.2). However, the main advantage of working in the
framework of RBMs is that it provides a natural way to introduce generative learning, which can
provide data set-dependent regularization and, as we will see, can be used to extend learning in
the semi-supervised setting. As mentioned earlier, a form of generative learning can be introduced
in standard neural networks with unsupervised pre-training, simply by using RBMs to initialize
the hidden layer weights. However, the extent to which the final solution forthe parameters of

1. We experimented with a version of MCL for the ClassRBM, however the results did not improve on those of hybrid
training.
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the neural network is influenced by generative learning is not well controlled, while the hybrid
objective provides an explicit handle on the role played by generative learning. One could argue
that the advantage of unsupervised pre-training is that it allows to build deeper models. However,
consider that it is always possible to use the ClassRBM as the top layer of a stack of RBMs, in the
spirit already suggested in Hinton et al. (2006).

7. Evaluation of the Training Objectives

To evaluate the performance of the different training objectives described thus far, we present exper-
iments on two classification problems: character recognition and text classification. Such problems
are particularly interesting as they are known to benefit from the extractionof non-linear features
and hence are well suited for the ClassRBM. In all experiments, for the ClassRBM variants and
for all baselines, we performed model selection based on the validation setperformance. For the
different RBM models, model selection was done with a grid-like search over the learning rateλ
(between 0.0005 and 0.1, on a log scale),H (50 to 6000), the generative learning weightα for hybrid
training (0 to 0.5, on a log scale) and the weightβ for semi-supervised learning (0, 0.01 or 0.1). In
general, bigger values ofH were found to be more appropriate with more generative learning. If no
local minima was apparent, the grid was extended. The biasesb, c andd were initialized to 0 and
the initial values for the elements of the weight matricesU andW were each taken from uniform
samples in

[
−m−0.5,m−0.5

]
, wherem is the maximum between the number of rows and columns

of the matrix. The number of iterations over the training set was determined using early stopping
according to the validation set classification error, with a look ahead of 15 iterations.

7.1 Character Recognition

We first evaluate the different training objectives for the ClassRBM on theproblem of classifying
images of digits. The images were taken from the MNIST data set, where we separated the original
training set into training and validation sets of 50000 and 10000 examples andused the standard
test set of 10000 examples. The results are given in Table 1. The RBM+NNet approach is simply
an unsupervised RBM used to initialize a one-hidden layer supervised neural net (as in Bengio et al.
2007). We give as a comparison the results of a Gaussian kernel SVM, arandom forest classifier2

and of a regular neural network (with random initialization, one hidden layer and hyperbolic tangent
hidden activation functions).

First, we observe that discriminative training of the ClassRBM outperforms generative training.
However, hybrid training appears able to make the best out of both worldsand outperforms the other
approaches.

We also experimented with a sparse version of the hybrid ClassRBM, since sparsity is known
to be a good characteristic for features of images. Sparse RBMs were developed by Lee et al.
(2008) in the context of deep neural networks. They suggest to introduce sparsity in the hidden
layer of an RBM by setting the biasesc in the hidden layer to a value that maintains the average
of the conditional expected value of these neurons to an arbitrarily small value, and so after each
iteration through the whole training set. This procedure tends to make the biases negative and large.
We followed a different approach by simply subtracting a small constantδ value, considered as an
hyper-parameter, from the biases after each update, which is more appropriate in an online setting

2. We used the implementation provided by the TreeLearn library:https://github.com/capitalk/treelearn .
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Figure 2: Filters learned by the ClassRBM on the MNIST data set. The top rowshows filters that
act as spatially localized stroke detectors, and the bottom shows filters more specific to a
particular shape of digit.

or for large data sets. To choseδ, given the selected values forλ andα for the “non sparse” hybrid
ClassRBM, we performed a second grid-search overδ (between 10−5 and 0.1, on a log scale) and
the hidden layer size, testing bigger hidden layer sizes than previously selected.

This sparse version of the hybrid ClassRBM outperforms all the other RBMapproaches, and
yields significantly lower classification error than the SVM, the random forest and the standard
neural network classifiers. The performance achieved by the sparseClassRBM is particularly im-
pressive when compared to reported performances for Deep Belief Networks (1.25% in Hinton et al.
2006) or of a deep neural network initialized using RBMs (around 1.2% in Bengio et al. 2007 and
Hinton 2007) for the MNIST data set with 50000 training examples.

The discriminative power of the hybrid ClassRBM can be better understoodby looking a the
rows of the weight matrixW, which act as filter features. Figure 2 displays some of these learned
filters. Some of them are spatially localized stroke detectors which can possibly be active for a wide
variety of digit images, and others are much more specific to a particular shape of digit.

In practice, we find that the most influential hyper-parameters are the learning rate and the
generative learning weight. Conveniently, we also find that that the best learning rate value is the
same for each values of the generative learning weight we tested. In other words, finding a good
learning rate does not require having found the best value for the generative learning weight. Once
these two hyper-parameters are set to good values, we also find that a wide range of hidden layer
sizes (between 750 to 3000) yield a competitive performance, that is, under 1.4% classification error.

7.2 Document Classification

We also evaluated the RBM models on the problem of classifying documents into their correspond-
ing newsgroup topic. We used a version of the 20 Newsgroups data set3 for which the training and
test sets contain documents collected at different times, a setting that is more reflective of a prac-
tical application. The original training set was divided into a smaller training set and a validation
set, with 9578 and 1691 examples respectively. The test set contains 7505 examples. We used the
5000 most frequent words for the binary input features. The results are given in Table 2. Again, we

3. This data set is available in Matlab format here:
http://people.csail.mit.edu/jrennie/20Newsgroups/20 news-bydate-matlab.tgz .
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Model Objective Error

ClassRBM

Generative (λ = 0.005,H = 6000) 3.39%
Discriminative (λ = 0.05,H = 500) 1.81%
Hybrid (α = 0.01,λ = 0.05,H = 1500 ) 1.28%
Sparse Hybrid (idem +H = 3000,δ = 10−4) 1.16%

SVM

-

1.40%
Random Forest 2.94%
NNet 1.93%
RBM+NNet 1.41%

Table 1: Comparison of the classification performances on the MNIST data set. SVM results for
MNIST were taken fromhttp://yann.lecun.com/exdb/mnist/ . On this data set, dif-
ferences of 0.2% in classification error are statistically significant.

Figure 3: Similarity matrix of the newsgroup weights vectorsU·y.

also provide the results of a Gaussian kernel SVM,4 a random forest classifier and a regular neural
network for comparison.

Once again, hybrid training of the ClassRBM outperforms the other approaches, including the
SVM and neural network classifiers. Notice that here generative training performs better than dis-
criminative training.

4. We usedlibSVM v2.85 to train the SVM model.
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Model Objective Error

ClassRBM
Generative (λ = 0.0005,H = 1000) 24.9%
Discriminative (λ = 0.0005,H = 50) 27.6%
Hybrid (α = 0.005,λ = 0.1, H = 1000 ) 23.8%

SVM

-

32.8%
Random Forest 29.0%
NNet 28.2%
RBM+NNet 26.8%

Table 2: Classification performances on 20 Newsgroups data set for thedifferent models. The error
differences between the hybrid ClassRBM and other approaches is statistically significant.

Much like for the character recognition experiment of the previous section, we find that the
learning rate and generative learning weight are the most crucial hyper-parameters to tune, and that
the performance is quite stable across hidden layer size as long as it is largeenough (500 or greater
for this problem).

In order to get a better understanding of how the hybrid ClassRBM solvesthis classification
problem, we looked at the weights connecting each of the classes to the hidden neurons. This corre-
sponds to the columnsU·y of the weight matrixU. Figure 3 shows a similarity matrixM(U) for the
weights of the different newsgroups, whereM(U)y1y2 = sigm(UT

·y1
U·y2). We see that the ClassRBM

does not use strictly non-overlapping sets of neurons for different newsgroups, but shares some of
those neurons for newsgroups that are semantically related. We see thatthe ClassRBM tends to share
neurons for topics such as computer (comp.* ), science (sci.* ) and politics (talk.politics.* ),
or secondary topics such as sports (rec.sports.* ) and other recreational activities (rec.autos
andrec.motorcycles ).

Table 3 also gives the set of words used by the ClassRBM to recognize some of the newsgroups.
To obtain this table we proceeded as follows: for each newsgroupy, we looked at the 20 neurons
with the largest weight amongU·y, aggregated (by summing) the associated input-to-hidden weight
vectors, sorted the words in decreasing order of their associated aggregated weights and picked
the first few words according to that order. This procedure attempts to approximate the positive
contribution of the words to the conditional probability of each newsgroup.

7.3 Variations on the Generative Learning Gradient Estimator

In the previous sections, we considered contrastive divergence forestimating the generative learning
gradient. However, other alternatives have also been proposed. An interesting question is how
much impact does the choice between these different gradient estimators has on the classification
performance of the ClassRBM?

A first alternative is based on the concept of pseudolikelihood (PL) (Besag, 1975), which aims
at replacing the regular likelihood objective with one more tractable, that is, for which gradients can
be computed exactly. The negative log-likelihood objective on a(x,y) pair is then replaced by

− logp(y|x)−
D

∑
k=1

logp(xk|x\k,y) (7)
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Class Words
alt.atheism bible, atheists, benedikt, atheism, religion, scholars, biblical
comp.graphics tiff, ftp, window, gif, images, pixel, rgb, viewer, image, color
comp.os.ms-windows.misc windows, cica, bmp, window, win,installed, toronto, dos, nt
comp.sys.ibm.pc.hardware dos, ide, adaptec, pc, config, irq, vlb, bios, scsi, esdi, dma
comp.sys.mac.hardware apple, mac, quadra, powerbook, lc,pds, centris, fpu, power, lciii
comp.windows.x xlib, man, motif, widget, openwindows, xterm, colormap, xdm
misc.forsale sell, condition, floppy, week, am, obo, shipping, company, wpi
rec.autos cars, ford, autos, sho, toyota, roads, vw, callison, sc, drive
rec.motorcycles bikes, motorcycle, ride, bike, dod, rider, bmw, honda
rec.sport.baseball pitching, braves, hitter, ryan, pitchers, so, rbi, yankees, teams
rec.sport.hockey playoffs, penguins, didn, playoff, game, out, play, cup, stanley
sci.crypt sternlight, bontchev, nsa, escrow, hamburg, encryption, rm
sci.electronics amp, cco, together, voltage, circuits, detector, connectors
sci.med drug, syndrome, dyer, diet, foods, physician, medicine, disease
sci.space orbit, spacecraft, speed, safety, known, lunar,then, rockets
soc.religion.christian rutgers, athos, jesus, christ, geneva, clh, christians, sin, paul
talk.politics.guns firearms, handgun, firearm, gun, rkba, concealed, second, nra
talk.politics.mideast armenia, serdar, turkish, turks, cs, argic, stated, armenians, uci
talk.politics.misc having, laws, clinton, time, koresh, president, federal, choose
talk.religion.misc christians, christian, bible, weiss,religion, she, latter, dwyer

Table 3: Most influential words in the hybrid ClassRBM for predicting some of the document
classes

wherex\k is a vector made of all elements ofx exceptxk. Hence, the model is trained to maximize
the likelihood of each observed variablegivenall other observed variables. Notice that the first term
corresponds to discriminative training. Hence, to obtain hybrid training we can simply weight the
second summation term byα.

Equation 7 as well as its gradient with respect to the ClassRBM’s parameterscan be computed
exactly by backpropagation. In the ClassRBM, with a development similar to theone for p(y|x),
we can show that:

p(xk|x\k,y) =
p(x|y)

p(x|y)+ p(x̄k|y)

=
exp(xkbk+∑ j softplus(c j +U jy +Wjkxk+∑i 6=kWji xi))

∑x′k∈{0,1}
exp(x′kbk+∑ j softplus(c j +U jy∗+Wjkx′k+∑i 6=kWji xi))

wherex̄k corresponds tox but where the input’skth bit has been flipped. So the terms logp(xk|x\k,y)
can be computed inO(HD). A naive computation of Equation 7, which would compute theH terms
logp(xk|x\k,y) separately, would then scale inO(HD2+HC). However, by computing∑i Wji xi for
all j only once and reusing those terms to obtain the terms∑i 6=kWji xi for any k, we can obtain a
procedure that is still linear inD, as is the CD gradient estimator. In practice, pseudolikelihood
training still has some computational overhead compared to CD. Indeed, pseudolikelihood training
requiresO(HD) computations of the exponential function, whereas CD only requiresO(H +D)
such computations.
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Generative gradient estimator
Error

MNIST 20News
Contrastive Divergence - 1 Gibbs sampling step 1.16% 23.8%
Contrastive Divergence - 10 Gibbs sampling step 1.15% 24.8%
Persistent Contrastive Divergence 1.41% 24.9%
Pseudolikelihood 1.21% 24.7%

Table 4: Comparison of the classification performances using different generative gradient estima-
tors.

To perform stochastic gradient descent, a gradient step update is made according to the objective
of Equation 7 every time a training example is visited. Because of the higher computational cost of
PL, we use a sampling trick to estimate the gradient on the second summation term ofEquation 7.
Indeed, before every update, we randomly select a subset of the input variablesxk and sum only
over those in the second term. This trick was necessary to scale down training to a reasonable time.
We used a subset of size 100 and 500 for the MNIST and 20 Newsgroups data sets respectively.

Another generative gradient estimator for RBMs that has been recently proposed is the Persistent
CD (PCD) estimator (Tieleman, 2008). PCD improves on CD by running a set of Gibbs sampling
chains which persist through training, instead of always being reinitializedat each training example.
Tieleman (2008) has shown that this new estimator can sometimes improve the rate of training as
well as the quality of the solution that is found. As proposed by Tieleman (2008), we used 100
parallel chains for Gibbs sampling. Since we use stochastic gradient descent (instead of mini-batch
gradient descent), only one chain was updated per update. The chainswere updated sequentially by
cycling through the set of chains.

Finally, an even simpler way of improving the gradient estimate that CD computes isto in-
crease the number of Gibbs sampling steps that is used in the negative phase. In their experiments,
Tieleman (2008) have found that CD with 10 Gibbs sampling steps often compares quite well to
PCD.

Is the choice of the generative gradient estimator in the hybrid objective crucial for obtaining
good classification performances? To answer this question, we have trained ClassRBMs using the
hybrid objective on the MNIST and 20 Newsgroup data sets, with the different generative gradient
estimators. Hyper-parameters were tuned separately for each variant, as in the previous sections.
For the MNIST data set, we used the sparse training variant. The results ofthis experiment are
given in Table 4. We see that in general, none of the alternative estimators provided significant
performance improvements. On 20 Newsgroups, the performance even worsened. We notice that
the performance obtained with PCD tends to be the particularly bad. This is explained by the fact
that PCD requires smaller learning rates to work well, so that the model doesn’t change faster than
the rate in which the parallel Gibbs chains mix. However, using a small learningrate does not
correspond to the regime at which the ClassRBM performs best in terms of classification error for
these problems. This is particularly true for MNIST where the optimal learningrate is between 0.05
and 0.1.
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7.4 Scaling Up to Large Input Spaces

Computing the generative gradient is typically much more computationally expensive than the
discriminative gradient. This is particularly true on problems were the input data is very high-
dimensional and sparse, such as the text classification problem. For instance, though we have
restricted its dimensionality to 5000, the 20 Newsgroup data set could be made much more high
dimensional by including more words as input features. While the computations for estimating the
discriminative gradient can take advantage of the sparsity of the input (mainly when multiplying
the input with the filters), estimating the generative gradient for all of the estimators in Section 7.3
requires an explicit loop over all inputs.

It would hence be beneficial to derive a more general generative gradient estimator that would
allow us to control more directly its computational cost, and perhaps let us trade a little bit of ac-
curacy for more computational efficiency. This would particularly be useful in an online learning
setting, where a stream of training examples is available, with examples being presented at some
given rate. In such a setting, we might want to reduce the computational time required by the gen-
erative learning objective so that updating the parameters of the ClassRBMfor a training example
can be done before the next sample is given.

As mentioned, the computational expense of training is closely related to the number of vari-
ables who’s distribution is being modelled. At one extreme, discriminative learning is very efficient
since we are only modelling the (conditional) distribution of the target variable while, at the other
extreme, generative learning is much more expensive because the distribution of the target and all
input variables is being modelled. Hence, a good handle over the computational complexity of an
estimator would be the total number of variables involved in the conditional distribution on which
the training objective is based.

Following this idea, letI = {1, . . . ,D} be the set of input variable indices and letP=L(I ) be
all the subsets ofI of cardinalityL, we could define the following as our new computation-aware
generative training objective

−
|Dtrain|

∑
t=1

ES∈P=L(I )

[
logp(yt ,xS |x\S )

]
=−

|Dtrain|

∑
t=1

∑
S∈P=L(I )

1
|P=L(I )|

logp(yt ,xS |x\S ) (8)

wherexS is the vector of input variables with index inS andx\S is the vector of all other variables.
Put briefly, this objective aims at maximizing the conditional likelihood of the target and all subsets
of input variables of sizeL given the other variables, and with a uniform distribution or weight on all
such possible partitions of the inputs. Since the expectation overS is intractable even for relatively
small values ofL, in practice we approximate it by sampling a single value from the associated
uniform distribution overS , and so for every parameter update.

This training objective actually corresponds to a particular type of compositelikelihood esti-
mator (Lindsay, 1988; Liang and Jordan, 2008). Here, we in addition propose to approximate the
gradients of the logp(yt ,xS |x\S ) terms

∂ logp(yt ,xS |x\S )

∂θ
=−Eh|yt ,xt

[
∂

∂θ
E(yt ,xt ,h)

]
+Ey,xS ,h|x\S

[
∂

∂θ
E(y,x,h)

]

by using contrastive divergence with one step of Gibbs sampling. This approximation requires that
only theL variables inxS be sampled, making this procedure efficient for smallL.
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Model
Hybrid training (for varyingL) Discriminative
250 500 5000 10000 training

Error 22.9% 22.2% 21.9% 21.9% 26.9%

Table 5: Evaluation of the composite likelihood variant of contrastive divergence on the 20 News-
groups data set, with an input dimensionality of 25247.

We experimentally investigated how varyingL impacts the performance of ClassRBMs trained
using a hybrid objective based on the generative objective of Equation 8. We took the 20 News-
groups data set and, instead of only using the 5000 most frequent words as features, we considered
all words appearing at least 5 times, adding up to 25247 words. The results are given in Table 5.
We observe a big improvement on the classification error obtained by restricting the input to only
5000 words, as in Table 2. The performance of purely discriminative training in the large vocabu-
lary setting, which is essentially equivalent to settingL = 0, is also improved on. We see that the
composite likelihood variant still allows for better generalization performanceto be achieved, even
for relatively small values ofL. Interestingly, we also observe a fairly rapid diminishing return in
the improvement of generalization error asL increases.

The idea of combining composite likelihood objectives and contrastive divergence has also been
combined previously by Asuncion et al. (2010), but in a different way.Asuncion et al. (2010)
focused on models for which standard contrastive divergence with Gibbs sampling corresponds to
sampling only a single randomly selected variable at each step. In this case, contrastive divergence
with one sampling step actually corresponds to a stochastic version of pseudolikelihood (Hyv̈arinen,
2006). They propose instead to use block-Gibbs sampling on randomly selected blocks of variables
of limited sizeL at each step.L must be small however since, in general, computing the associated
conditionals is exponential inL. Using a single sampling step then corresponds to a stochastic
version of composite likelihood. They show that increasingL and using a single Gibbs step can be
more advantageous than usingL = 1 and increasing the number of iterations. Their work can be
understood as an investigation of how to improve contrastive divergenceusing ideas from composite
likelihood objectives.

However, for RBMs, block-Gibbs sampling is actually the standard, wherewe first sample all
hidden units and then all input variables in one iteration. Hence, the approach of Asuncion et al.
(2010) is not directly applicable here. What we propose instead, is to apply contrastive divergence
to a composite likelihood objective, such that we approximate the gradients on the logp(yt ,xS |x\S )
terms. Crucially, this approach is linear inL, as opposed to exponential.

8. Semi-supervised Learning

In certain situations, in addition to a (possibly small) set of labeled training examplesDtrain, even
more data can be obtained in the form of an unlabeled training setDunlab= {(xt)}. This is par-
ticularly true for data such as images and text documents, for which the Internet is an almost infi-
nite source. Semi-supervised learning algorithms (Chapelle et al., 2006) address this situation by
leveraging the unlabeled data to bias learning towards solutions that are also“consistent” with the
unlabeled data. Different algorithms can then be seen as defining different notions of consistency.
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Because a ClassRBM is a proper generative model, a very natural notionof consistency in
this context is that unlabeled training data have high likelihood under it. To achieve this, one can
optimize the following negative log-likelihood

Lunsup(Dunlab) =−
|Dunlab|

∑
t=1

logp(xt) (9)

which requires computing the gradients

∂ logp(xt)

∂θ
=−Ey,h|xt

[
∂

∂θ
E(yt ,xt ,h)

]
+Ey,x,h

[
∂

∂θ
E(y,x,h)

]
.

The contrastive divergence approximation proceeds slightly differentlyhere. The first term can be
computed in timeO(HD+HC), by noticing that

Ey,h|xt

[
∂

∂θ
E(yt ,xt ,h)

]
= Ey|xt

[
Eh|y,xt

[
∂

∂θ
E(yt ,xt ,h)

]]

and then either average the usual RBM gradient∂
∂θE(yt ,xt ,h) for each classy (weighted byp(y|xt)),

or sample fromp(y|xt) and only collect the gradient for the sampled value ofy. In the latter sampling
version, the online training update for this objective can be described as replacing the statement
y0← yt with y0∼ p(y|xt) in Algorithm 1. We used this version in our experiments.

In order to perform semi-supervised learning, we can weight and combine the objective of
Equation 9 with those of Equations 3, 5 or 6 as follows:

Lsemi−sup(Dtrain,Dunlab) = LTYPE(Dtrain)+βLunsup(Dunlab) (10)

where TYPE∈ {gen,disc,hybrid}. Online training by stochastic gradient descent then corresponds
to applying two gradients updates: one for the objectiveLTYPE and one for the unlabeled data
objectiveLunsup.

We evaluated our semi-supervised learning algorithm for the hybrid ClassRBM on both previous
digit recognition and document classification problems. We also experimentedwith a version (noted
MNIST-BI) of the MNIST data set proposed by Larochelle et al. (2007) where background images
have been added to MNIST digit images. This version corresponds to a much harder problem and
it will help to illustrate the advantage brought by semi-supervised learning in ClassRBMs. The
ClassRBM trained on this data used truncated exponential input units (see Bengio et al., 2007).

In this semi-supervised setting, we reduced the size of the labeled training set to 800 exam-
ples, and used some of the remaining data to form an unlabeled data setDunlab. The validation
set was also reduced to 200 labeled examples. Model selection covered all the parameters of the
hybrid ClassRBM as well as the unsupervised objective weightβ of Equation 10, withβ = 0.1
for MNIST and 20 Newsgroups, andβ = 0.01 for MNIST-BI performing best. For comparison
purposes, we also provide the performance of a standard non-parametric semi-supervised learning
algorithm based on function induction (Bengio et al., 2006a), which is verysimilar to other non-
parametric semi-supervised learning algorithms such as Zhu et al. (2003).We provide results for the
use of a Gaussian kernel (NP-Gauss) and a data-dependent truncated Gaussian kernel (NP-Trunc-
Gauss) used in Bengio et al. (2006a), which essentially outputs zero forpairs of inputs that are not
near neighbors. The experiments on the MNIST and MNIST-BI (with background images) data
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Model Objective MNIST MNIST-BI 20News

ClassRBM
Hybrid 9.73% 42.4% 40.5%
Semi-supervised + Hybrid 8.04% 37.5% 31.8%

NP-Gauss
-

10.60% 66.5% 85.0%
NP-Trunc-Gauss 7.49% 61.3% 82.6%

Table 6: Comparison of the classification errors in semi-supervised learning setting. The errors in
bold are statistically significantly better.

sets used 5000 unlabeled examples and the experiment on 20 Newsgroupsused 8778. The results
are given in Table 6, where we observe that semi-supervised learning consistently improves the
performance of the ClassRBM trained based on the hybrid objective.

The usefulness of non-parametric semi-supervised learning algorithms has been demonstrated
many times in the past, but usually so on problems where the dimensionality of the inputs is low or
the data lies on a much lower dimensional manifold. This is reflected in the result on MNIST for the
non-parametric methods. However, for high dimensional data with many factors of variation, these
methods can quickly suffer from the curse of dimensionality, as argued byBengio et al. (2006b).
This is also reflected in the results for the MNIST-BI data set which containsmany factors of vari-
ation, and for the 20 Newsgroups data set where the input is very high dimensional. Finally, it is
important to notice that semi-supervised learning in ClassRBMs proceeds in an online fashion and
hence could scale to very large data sets, unlike most non-parametric methods.

We mention that, in the context of log-linear models, Druck et al. (2007) introduced semi-
supervised learning in hybrid generative/discriminative models using a similarapproach to the one
presented in here. While log-linear models depend much more on the discriminative quality of the
features that are fed as input, the ClassRBM can learn useful featuresthrough its hidden layer and
model non-linear decision boundaries.

9. Multitask Learning

The classification problems considered so far had in common that a given input could only belong to
a single class, that is, classes were mutually exclusive. For certain problems, this assumption is too
restrictive and inputs can be simultaneously associated with multiple classes or labels. One example
is online collections of images, documents or music augmented with social tags (see Lamere 2008
for an example), which are short descriptions applied by users to items andcan be used by users to
search and browse through a collection. One approach to this problem would be to train a separate
classifier for each tag. However, a better approach is to perform multitasklearning (Caruana, 1997),
where a single model is trained to perform all tasks simultaneously. This allowsfor the model to
leverage the similarity between certain tasks and improve generalization.

We describe here how multitask learning can also be performed within a ClassRBM. In this
context, the target’s representation in the energy function of the ClassRBMdoes not follow the “one
out ofC” constraint and is an unconstrained binary vectory. The conditional distribution ofy given
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h then becomes:

p(y|h) = ∏
c

p(yc|h), with p(yc = 1|h) = sigm(dc+∑
i

U jch j).

Another important implication of this change is that the predictive posteriorp(y|x) is no longer
tractable, sincey now has 2C possible values. At test time, we are particularly interested in estimat-
ing p(yc = 1|x) for each label, in order to make a prediction of the binary value of each individual
label. Fortunately, there exist several message-passing approximate inference procedures for gen-
eral graphical models that can be employed here. The two most popular are mean field and loopy
belief propagation.

The mean field (MF) approach tries to approximate the joint posteriorp(y,h|x) by a factorial

distributionq(y,h) =∏C
c=1µyc

c (1−µc)
1−yc ∏n

j=1 τh j
j (1−τ j)

1−h j that minimizes the Kullback-Leibler
(KL) divergence with the true posterior. Running the following message passing procedure to con-
vergence

µc ← sigm

(
dc+∑

j

U jcτ j

)
∀ c∈ {1, . . . ,C},

τ j ← sigm

(
c j +∑

c
U jcµc+∑

i

Wji xi

)
∀ j ∈ {1, . . . ,n}

we can reach a saddle point of the KL divergence, at which pointµc serves as the estimate for
p(yc = 1|x) and τ j can be used to estimatep(h j = 1|x). In our experiments, we initialized the
messages to 0. Moreover, we treat the number of message passing iterations as an hyper-parameter,
so as to control the computational cost of inference.

Loopy belief propagation (Pearl, 1988) (LBP) also relies on a message passing procedure be-
tween variables. LBP is more complex than MF in that the number of distinct messages to be main-
tained scales inO(HC), that is, the number of connections betweeny andh, instead of inO(H +C)
as in MF. It also provides a direct estimate of the pair-wise probabilitiesp(yc = 1,h j = 1|x). LBP
tends to give estimates of the true marginals that are more accurate than the iterative MF procedure
(Weiss, 2001). While not guaranteed to converge it frequently does in practice. One method that has
been shown to be useful in aiding convergence is message damped belief propagation (Pretti, 2005).
In this case the normal updates computed by belief propagation are mixed with the previous updates
in order to smooth them, the damping factor being a parameter of the algorithm. Algorithm 2 details
the procedure.

As for learning, the discriminative gradient expression, which is now

∂ logp(yt |xt)

∂θ
=−Eh|yt ,xt

[
∂

∂θ
E(yt ,xt ,h)

]
+Ey,h|x

[
∂

∂θ
E(y,x,h)

]

must also be approximated, specifically the second expectation overy andh. Contrastive divergence
is a natural approach to estimating this expectation, usingK iterations of Gibbs sampling alternating
between samplingh andy.

However, MF or LBP can also be used to approximate the expectation. Because the energy
function decomposes into sums of either unary or pairwise terms, only the marginals p(yc = 1|x),
p(h j = 1|x) andp(yc = 1,h j = 1|x) are required. The assumption of a factorial distribution behind
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Algorithm 2 Loopy Belief Propagation algorithm for inference in the multilabel ClassRBM
Input: training pair(y,x), number of iterationsK and damping factorβ
m↑jc← 0, m↓jc← 0 ∀ c, j

cdata← c+Wx

# Update downwards (towardsy) and upwards (towardsh) messages
for K iterationsdo

m↓jc← βm↓jc +(1−β) log
(

1+(exp(U jc)−1) sigm(cdata
j +∑c∗ 6=cm↑jc∗)

)
, ∀ c, j

m↑jc← βm↑jc +(1−β) log
(

1+(exp(U jc)−1) sigm(dc+∑ j∗ 6= j m
↓
j∗c)
)
, ∀ c, j

end for

# Compute estimated marginals
pLBP(yc = 1|x)← sigm(dc+∑ j m

↓
jc), ∀ c

pLBP(h j = 1|x)← sigm(cdata
j +∑cm↑jc), ∀ j

num01
jc ← dc+∑ j∗ 6= j m

↓
j∗c, num10

jc ← cdata
j +∑c∗ 6=cm↑jc∗ , ∀ c, j

num11
jc ←U jc +num10

jc +num01
jc , ∀ c, j

pLBP(yc = 1,h j = 1|x) = exp(num11
jc )/(exp(num11

jc )+exp(num01
jc )+exp(num10

jc )), ∀ c, j

MF means thatp(yc = 1,h j = 1|x) is simply estimated as the product of its estimates forp(yc = 1|x)
and p(h j = 1|x), while LBP provides a more sophisticated estimate. The MF gradient estimates
can also be improved by initializing theµc message to the value of the associated training target
yk. This approach was first described by Welling and Hinton (2002) and is known as mean field
contrastive divergence. It was also extended to general variationalapproximations in Welling and
Sutton (2005). When making predictions at test time however, we still must initializeµc to 0.

Finally, as in Section 7.3, the intractability of discriminative maximum likelihood trainingcan
be avoided by using a pseudolikelihood objective−∑C

c=1 logp(yc|y\cx) for which exact gradients
can be computed.

Given all of these possible ways of approximating the marginal posteriorsp(yc = 1|x) at test
time and of performing discriminative training, we performed an extensive comparison of all pos-
sible combinations of such choices. We used three different music social tags data sets based on
databases of 10-second song clips. The first data set, was collected from Amazon.com’s Mechanical
Turk service and is described in Mandel et al. (2010). The second data set was collected from the
MajorMiner music labeling game and is described in Mandel and Ellis (2008). The final data set
was collected from Last.fm’s website and is described in Schifanella et al. (2010). We will refer to
these data sets as MTurk, MajMin and Last.fm respectively.

All of these data sets were in the form of (user, item, tag) triples, where the items were either
10-second clips of tracks or whole tracks. These data were condensed into (item, tag, count) triples
by summing across users. Converting (item, tag, count) triples to binary matrices for training and
evaluation purposes required some care. In the MajorMiner and Last.fm data, the counts were high
enough that we could require the verification of an (item, tag) pair by at least two people, meaning
that the count had to be at least 2 to be considered as a positive example. The Mechanical Turk
data set did not have high enough counts to allow this, so we had to count every (item, tag) pair.
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Figure 4: Results of the multilabel ClassRBM (discriminative training) on the Mechanical Turk and
MajorMiner data sets, comparing the performance of different approximation combina-
tions for training and testing. The approximations used during training are represented
on the x-axis, while the approximations used during testing are representedthrough the
color of the bar. The error bars correspond to the standard error across folds.

In the MajorMiner and Last.fm data sets, (item, tag) pairs with only a single count were not used
as negative examples because we assumed that they had higher potential relevance than (item, tag)
pairs that never occurred, which served as stronger negative examples.

The timbral and rhythmic features of Mandel and Ellis (2008) were used to characterize the
audio of 10-second song clips. Each dimension of both sets of features was normalized across
the database to have zero-mean and unit-variance, and then each feature vector was normalized to
be unit norm to reduce the effect of outliers. The timbral features were 189-dimensional and the
rhythmic features were 200-dimensional, making the combined feature vector389-dimensional.

In order to asses the impact of different approximations (of the gradientsor p(y|x)) on the
solution found by the model we only considered discriminative learning. We also augmented the
number of data sets by changing the number of tags, to see how this factor influences the results.
Next to a data set name, the number in parenthesis thus indicates the number oftags considered.
The tags were selected by sorting them by popularity and picking the leading tags. For all data sets
we select the hyper-parameters of the model using a 5-fold cross-validation. In order to increase the
accuracy of our procedure, for each fold we computed the score as an average across 4 sub-folds.
Each run used a different fold (from the remaining 4 folds) as the validation set and the other 3
as the training set. From this validation procedure, 50, 100 and 200 hiddenunits were selected
respectively for the MTurk, MajMin and Last.fm data sets and a learning rate of 0.01 for all data
sets. We also fixed a priori the number of iterations for approximating the gradients (for CD, MF
or LBP) to 10, and the number of MF or LBP iterations for approximatingp(y|x) to 20, to limit
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Figure 5: Comparison of the multilabel ClassRBM and with a multitask neural network (NNet) and
with single task logistic regression classifiers (LOG). Bars show the numberof labels
(tags) on which the ClassRBM is significantly better (>) or worse (<) than the baseline
in a two-sided paired t-test.

the hyper-parameter search space.5 Finally, we set to 0.9 the damping factor for LBP inference, but
other values were found to yield similar performances.

Figure 4 provides the performance of all possible combinations of approximations at training
and test time, on two data sets. The performance is evaluated in terms of retrieval performance using
the area under the ROC curve (AROC) (Cortes and Mohri, 2004).6 We measure the AROC for each
tag separately and use the average across tags and folds as an overallmeasure of performance.
As we see, contrastive divergence tends to outperform other approaches for training the ClassRBM,
either when mean field or loopy belief propagation is used at test time. Using thesame deterministic
inference at training and test time hence appears not to be optimal, with mean field being the worst
option.

We also compared the performance of the ClassRBM with two baselines. The first is a multitask
neural network (Caruana, 1997), which is among the best baselines for multitask learning. More-
over, a neural network makes for an interesting comparison because its prediction for the marginals
p(yc = 1|x) is also non-linear, but feedforward and non-recursive, unlike in theClassRBM. The
second baseline is a set of single task logistic regression classifiers (onefor each task). Though
previous work on these multitask data sets has instead considered single taskSVMs as a baseline
(Mandel et al., 2011a), we have found logistic regression classifiers tooutperform SVMs, hence we
use those here as the single task baseline.

The same model selection procedure was used to select the baselines’ hyper-parameters, namely
the learning rate (both baselines) and hidden layer size (neural networkbaseline only). Contrastive
divergence and loopy belief propagation was used in this comparison, for discriminative training.

5. We validated this choice for these hyper-parameters afterwards, based on the best learning rate and hidden layer
size found, and observed that while the performance increases with thenumber of iterations, the increase is not
considerable, especially when we account for the increase in training time.

6. This metric scores the ability of an algorithm to rank relevant examples in acollection above irrelevant examples. A
random ranking will achieve an AROC of approximately 0.5, while a perfect ranking will achieve an AROC of 1.0.
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Model MTurk (77) MTurk (27) Last.fm (100) Last.fm (70) MajMin (77)
ClassRBM 65.9 68.8 72.4 72.2 76.1
NNet 65.8 65.4 72.4 72.0 75.3
LOG 63.4 65.7 70.2 70.3 70.7

Table 7: Average AROC across labels as a percentage for each model on all multitask data sets.

We compared the ClassRBM in a head to head fashion with each baseline, andcomputed a two-
sided paired t-test across folds, per tag, to count the number of tags forwhich either model performs
significantly better than the other. As illustrated in Figure 5, the ClassRBM is a better classifier for
strictly more tags on all data sets when compared to the logistic regression approach and on 4 out
of 5 data sets when compared to the neural network (with a tie on the remaining data set). Finally,
Table 7 gives the absolute performance of the ClassRBM and the baselines.

10. Conclusion

We argued that RBMs can and should be used as stand-alone non-linearclassifiers alongside other
standard and more popular classifiers, instead of merely being considered as simple feature extrac-
tors. We considered different training strategies for the Classification RBM and evaluated them.
In particular, we highlighted the importance of combining generative and discriminative training
and we explored the impact of using different generative gradient estimators on the classification
performance of the ClassRBM. We also extended the range of situations where the ClassRBM can
be employed, by presenting learning algorithms tailored to settings where unlabeled data are avail-
able, where the input is sparse and very high-dimensional, as well as when multiple classification
problems must be solved.

By describing and establishing the ClassRBM as a “black box” classifier in itsown right, we
hope to make its use more accessible and stimulate research in how to adapt it to even more applica-
tion settings. As an illustration of this potential, we end by mentioning extensions ofthe ClassRBM
that have already been developed, since the first conference publication of this work (Larochelle
and Bengio, 2008). Gelfand et al. (2010) explored a different way of using the ClassRBM energy
function to perform classification, using a conditional herding learning algorithm. Memisevic et al.
(2010) investigated a variant of the ClassRBM with third-order (as opposed to pair-wise) interac-
tions between the input, target and hidden units. van der Maaten et al. (2011) developed an extension
for sequential classification problems with linear-chain interactions betweenthe sequence of targets,
while Mnih et al. (2011) considered other structured output prediction problems such as denoising.
Finally Louradour and Larochelle (2011) adapted the ClassRBM to problems where the inputx is a
set containing an arbitrary number of input vectors.
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