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Recent developments have demonstrated the capacity o€tedtBoltzmann machines (RBM) to
be powerful generative models, able to extract useful featfiom input data or construct deep arti-
ficial neural networks. In such settings, the RBM only yieddsreprocessing or an initialization for
some other model, instead of acting as a complete supenvieddl in its own right. In this paper,
we argue that RBMs can provide a self-contained framewardeeloping competitive classifiers.
We study the Classification RBM (ClassRBM), a variant on tiBvRadapted to the classification
setting. We study different strategies for training thesSRBM and show that competitive classi-
fication performances can be reached when appropriatelpioimg discriminative and generative
training objectives. Since training according to the gatiee objective requires the computation of
a generally intractable gradient, we also compare diffeapproaches to estimating this gradient
and address the issue of obtaining such a gradient for przbbéth very high dimensional inputs.
Finally, we describe how to adapt the ClassRBM to two spaxaaks of classification problems,

namely semi-supervised and multitask learning.

Keywords: restricted Boltzmann machine, classification, discrirtitedearning, generative learn-

ing

1. Introduction

The restricted Boltzmann machine (RBM) is a probabilistic model that usesreoflyielden binary
variables or units to model the distribution of a visible layer of variables.dtieen successfully ap-
plied to problems involving high dimensional data such as images (Hinton et @6; R@rochelle
et al., 2007) and text (Welling et al., 2005; Salakhutdinov and Hinton, 20Bith and Hinton,
2007). In this context, two approaches are usually followed. First, avl RBrained in an unsuper-
vised manner to model the distribution of the inputs (possibly more than one RBM be trained,
stacking them on top of each other (Hinton et al., 2006)). Then, the RBMa&d in one of two
ways: either its hidden layer is used to preprocess the input data byirgpiawith the represen-
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tation given by the hidden layer, or the parameters of the RBM are used tdiipitefeedforward
neural network. In both cases, the RBM is paired with some other learlgogthm (the classifier
using the preprocessed inputs or the neural network) to solve thevagzbtearning problem at
hand. This approach unfortunately requires one to tune both sets ef-pgpameters (those of the
RBM and of the other learning algorithm) at the same time. Moreover, sinceBMiRtrained in
an unsupervised manner, it is blind to the nature of the supervised tasiedds to be solved and
provides no guarantees that the information extracted by its hidden laydrenibeful.

In this paper, we argue that RBMs can provide a self-contained andetitivgy framework for
solving supervised learning problems. Based on the Classification Res®ictzmann Machine
(ClassRBM), the proposed approach and learning algorithms addrtsaforementioned issues.
Indeed, by relying only on the RBM, the number of hyper-parametersoti@aneeds to tune will
be relatively smaller, and by modelling tf@nt distribution of the input and target, the ClassRBM
will be encouraged to allocate some of its capacity at modelling their relationshiet as the
relationships between the input variables. Using experiments on charactgmition and text
classification problems, we show that the classification performance th@takeRBM can obtain
is competitive with respect to other “black box” classifiers such as stdnuaural networks and
Support Vector Machines (SVM). We compare different training stragdgr the ClassRBM, which
rely on discriminative and/or generative learning objectives. As we wdl| siee best approach
tends to be an appropriately tuned combination of both learning objectivesedvker, since the
generative learning objective doesn’t allow for the exact computatigheogradient with respect
to the ClassRBM'’s parameters, we compare the use of different apprixmaf that gradient.
We also address the issue of generative learning on very high dimehsipots and propose an
approach to reduce the computational cost per example of training. Fiwallgescribe how the
ClassRBM can be used to tackle semi-supervised and multitask learningmsoble

2. Classification Restricted Boltzmann Machines

The Classification Restricted Boltzmann Machine (ClassRBM) (Hinton et ab§)2todels the
joint distribution of an inpuk = (x1,...,Xp) and target clasg < {1,...,C} using a hidden layer of
binary stochastic units = (hy,...,hy). This is done by first defining an energy function

E(y,x,h) = —hTWx —b"x—c'h—d"g,—h"Ug,

with parameter® = (W, b, c,d,U) and wheres, = (1i:y)iC:1 is the “one out ofC” representation
of y. From the energy function, we assign probabilities to valugs wfandh as follows:

oy, x,h) = exp(—EZ(y,x,h))

(1)

whereZ is a normalization constant (also called partition function) which ensurekthedttion 1 is
a valid probability distribution. We will assume that the elements afe binary, but extensions to
real-valued units on bounded or unbounded intervals are straightfb(Wéelling et al., 2005). An
illustration of the ClassRBM is given in Figure 1.

Unfortunately, computing(y,x,h) or p(y,x) is typically intractable. However, it is possible to
sample from the ClassRBM, using Gibbs sampling, that is, alternating betwegplisg a value
for the hidden layer given the current value of the visible layer (madeanablesx and thee,
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representation of), and vice versa. All the required conditional distributions are very simple
When conditioning on the visible layer, we have

p(hly,x) |'|p hjly,x), with p(hj = 1]y,x) = sigm(c; +Ujy + H Wjix)
|

where signta) = 1/(1+ exp(—a)) is the logistic sigmoid function. When conditioning on the
hidden layer, we have

p(x|h) = |_| p(xi[h), with p(x = 1]h) = sigm(bi + } Wih;)
]

exp(dy + 3 jUjyh;j)
>y expdy + 3 jUjy-hy) -

It is also possible to compuigy|x) exactly and hence perform classification. Indeed, noticing that

; ; exp(h"Wx +b"x+c"h+d e +h"Usg)
hye 01} hye 01}

p(ylh) =

=exp(dy) > exp(hy(cy+Uy+ ) Waix)) -+ Z exp(hu (Ch + Uny + ) Whix))
h1€{0,1} [ hy €{0,1} I

= exp(dy) (1+ exp(cy + Uy + Z\Nlixi)> o <1+ exp(Cn + Uny + ZWM))
= exp(dy+ ) log(1+exp(cj +Ujy + H WiiX)))
J |

= exp(dy + 3 softplugc; +Ujy + 3 Wiixi)
] |

where softplug) = log(1+ exp(a)), then we can write

o(y1x) Shie(o1} " Shuefo1) EXhTWx +bTx+cTh+dTe +hTUe))
Sye(l..Cl Yhmefo1}  Yhyefo,1} EXPhTWX +bTx+cTh+-dTey +hTUey)
exp(dy + ¥ ; softplugc +Ujy + 3 Wiix))
dye(l,.., }exp(d* + 3 jsoftplugcj + Ujy- + 3 WiiXi))

(2)

whereF (y, x) is referred to as the free energy. Precomputing the teymg ; Wi x; and reusing them
when computing softplys; +Ujy- + 5 Wiix) for all classes/* yields a procedure for computing
this conditional distribution in tim&(HD +HC).

One way of interpreting Equation 2 is that, when assigning probabilities toti@aydar classy
for some inpuik, the ClassRBM looks at how well the inpxfits or aligns with the different filters
associated with the row&;. of W. These filters are shared across the different classes, but differe
classes will make comparisons with different filters by controlling the clageadent biasdd;y
in the softplugc; +Ujy + 5 Wiix) terms. Notice also that two similar classes could share some of
the filters inW, that is, both could simultaneously have large positive valuésyofor some of the
rowsWj..
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Figure 1: lllustration of a Classification Restricted Boltzmann Machine

3. Training Objectives

In order to train a ClassRBM to solve a particular classification problem, wesitaply define
an objective to minimize for all examples in the training $&Lin = {(X;,y:)}. The next sections
describe the different training objectives which will be considered, lstagting with the one most
commonly used, that is, the generative training objective.

3.1 Generative Training Objective

Given that we have a model which defines a value for the joint probalpility«), a natural choice
for a training objective is the generative training objective

|@traln|
Lgen(Drrain) = Z log p(yt, Xt) - 3

This is the most popular training objective for RBMs, for which a lot of gffas been put to obtain
better estimates for its gradient (Hinton, 2002; Tieleman, 2008; Tieleman axton2009). In-
deed, as mentioned previously, computpig, ;) for some exampléx;, y;) is generally intractable,
as is computing log(y:,X;) and its gradient with respect to any ClassRBM paranteter

dlog p(yt, x:) 0 0
a0~ Enwx [5E0X0N) |+ Eyxn | 5BV X D)

Specifically, though the first expectation is tractable, the second is noer&iff approaches have
been proposed to estimate this second expectation. One which is knowrktevelbin practice is
the contrastive divergence estimator (Hinton, 2002). This approximatjglages the expectation
by a point estimate at a sample generated after a limited number of Gibbs sampdsgnsth the
sampler’s initial state for the visible variables initialized at the training exarfple:). A single
Gibbs sampling iteration is often used and is usually found to be sufficient o é&emeaningful
representation of the data. Then, this gradient estimate can be used ihastitogradient descent
procedure for training. A pseudocode of the procedure is givenlggrahm 1, where the learning
rate is controlled by\. We will consider this procedure for now and postpone the consideration
other estimates of the generative gradient to Section 7.3.
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Algorithm 1 Generative training update of the ClassRBM using Contrastive Diveegen
Input: training pair(y, x;) and learning rata
# Notation:a + b meansais set to valud
# a~ p meansis sampled fronp

# Positive phase
Y0 < Wi, X0 ¢ X¢, hO < sigm(c+Wx® + Ueyo)

# Negative phase
h? ~ p(hly®,x%), y* ~ p(y[h°), x* ~ p(x|h°)
ht« S|gm(c+Wx1 +Ue,)

# Update
for 8 € © do

B—0-A\ (a%E(yo,xo,ﬁo) — %E(yﬂxﬂﬁﬂ)
end for

4. Discriminative Training Objective
The generative training objective can be decomposed as follows:

| Dirain| | Dirain | Drain
in) = — lo Xt) +10g p(Xt) lo Xt) logp(x;) (4
Lyer( Drain) t;( gp(ye/x) +1og p(xt) 21 ap(yelx) — Z gp(x)  (4)
hinting that the ClassRBM will dedicate some of its capacity at modelling the maujstgbution
of the input only. Since we are in a supervised learning setting and arendetgsted in obtaining
a good prediction of the target given the input, it might be more appropriag@ooe this unsuper-
vised part of the generative objective and focus on the supervised pa
Doing so is referred to as discriminative training, where the following trainlrjgctive is used:

‘@traln‘
Liise{ Drrain) = Zl log p(ye|Xt) - (5)

This objective is also similar to the one used by feedforward neural nketweainose outputs can
be interpreted as an estimate u(fy|x). Moreover, just like neural networks, ClassRBMs trained
this way are universal approximators for distributige(y|x) with binary inputs, since RBMs are
universal approximators of distributions over binary inputs (Le RoukBengio, 2010).

An important advantage of the discriminative training objective is that it isiplesto compute
its gradient with respect to the ClassRBM'’s parameters exactly. Theajdoen of the gradient
for a single exampléx;, y) is

dlogp(y/x) 0 9
T:_Eh\yhxt ae (Yt,Xt,h) +Ey,h\x %E(y’x’h)

and, more specifically, we obtain

dlogp(y:|xt)

=1y—y — P(yx), vye{l,....C}
ady
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for the target biased and
ol 0
0og p(yt|xt _ ZSIQW(OMJ Xt)) OYI ZSIQn.(OW Xt)) (y*|xt) Oy*l(xt)

for the other parametesc {c,U, W}, whereoy(x) = ¢; + 3 Wjkx+Ujy. Notice that the gradient
with respect tdb is 0, since the input biases are not involved in the computatign(yk). This
discriminative approach has been used previously for fine-tuning th&Bd of a Deep Belief
Network (Hinton, 2007).

5. Hybrid Training Objective

In order to get an idea of when and why generative training can be bedtediscriminative training
or vice versa, we can look at some of the known theoretical propertiestbfapproaches.

In Ng and Jordan (2002), an analysis of naive Bayes and logistiessigin classifiers (which
can be seen as the same parametrization but trained according to a genaratiscriminative
objective respectively) indicates that the generative training objecildsymodels that can reach
more rapidly (with training set size) their best (asymptotic) generalizatidonpeance, than mod-
els trained discriminatively. However, when the model is misspecified, thardisative training
objective allows the model to reach a better performance for sufficiengg taaining sets (i.e., has
better asymptotic performance). In Liang and Jordan (2008), it is asersthat for models from
the general exponential family, parameter estimates based on the genteatiing objective have
smaller variance than discriminative estimates. However, if the model is missgegjénerative
estimates will asymptotically yield models with worse performances. These resgliest inter-
preting the model trained with the generative training objective as being reguéarized than the
model trained with the discriminative objective.

When the ultimate task is classification, adding the generative training objeztive discrim-
inative training objective can be seen as a way to regularize the discrinaiigtining objective. It
was already found that unsupervised pre-training of RBMs can beasea form of regularization
(Erhan et al., 2010). Since we might want to adapt the amount of regatianzo the problem at
hand, we could consider interpolating between the generative and disativaimbjectives as in
Bouchard and Triggs (2004) or, similarly, use the following hybrid objecti

Lfnybrid(a)train) = Ldisc( Q)train> + aLgen( Q)train) (6)

where the weighti of the generative criterion can be adjusted based on the performartice of
model on a validation set. As in Equation 4, we can separate thg(ypg:) terms in two and
rewrite Equation 6 as

| Drrain \ Dhrain|
Lhybrid(Drrain) = —(1+ ) Zl log p(yt|xt) — Z log p(xt)

This different expression foLnybrid(Drain) highlights the nature of the regularization that is im-
posed: among all configurations of the parameters of the ClassRBMsathabtve the supervised
problem well, we will favor those that also assign high probability to the inpatshence have
extracted some of the structure present in the input’s distribution.
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6. Related Work

As mentioned previously, RBMs—sometimes also referred to as harmoniums @\élah, 2005),
usually when the hidden layer’s units are not binary—have been pojeatare extractors in clas-
sification applications. Most of the time however, the features are learhiéel ignoring the target
label information (Gehler et al., 2006; Xing et al., 2005). This implies that dabed-related infor-
mation may be thrown away and McCallum et al. (2006) have shown thapioicding labels in a
feature learning procedure can be beneficial, in their work on Multi-@onal Learning (MCL)!
However, this latter work still required that the relationship between the hiflestures and the
target be learned a posteriori, by a separate classifier. One of the niaigs we wish to make in
this paper is that RBMs provide a self-contained framework for classditavhich does not need
to rely on the availability of a separate classifier. This approach has tvantaes: model selec-
tion is facilitated since no additional hyper-parameters from the separafidamust be tuned,
and no additional classifier training phase is required, making it possibleptog the ClassRBM
in an online learning setting or to track the discriminative performance of thet legpresentation
on a validation set. Another frequent use of RBMs is as an initializing orginétig algorithm for
deep neural networks (Hinton, 2007), but this approach sharesithe disadvantages of having
two training phases.

Schmabh et al. (2009) proposed a different approach to discriminadiveniy of RBMs, where
each class is associated with its own individual RBM, as in a Bayes classifievever, this ap-
proach does not rely on a global hidden representation (with sharathpters) for all classes and
hence cannot model directly the latent similarity between classes, whiclisieadvantageous for
classification problems with large number of classes. From this perspabtiv€lassRBM can be
seen as a form ahulti-tasktraining, since the input to hidden weights are shared across all classes.

Yang et al. (2007) developed variants of harmoniums for video clagsincthat can model
several modalities and class information jointly. One variant uses a separatenium for each
class as in Schmah et al. (2009), while a second is based on a shared tegdesentation across
classes like in the ClassRBM. However, they proposed training these masesagjvely, which is
often not the optimal training strategy, as discussed in Section 7.

There are also several similarities between classification RBMs and oraimdii-layer neural
networks. In particular, the computation pfy|x) could be implemented by a single layer neural
network with softplus and softmax activation functions in its hidden and oldagats respectively,
as well as with a special structure in the output and hidden weights whevaltie of the output
weights is fixed and many of the hidden layer weights are shared. Glabt(2011) highlight that
softplus hidden activation functions tend to yield better performances thatiteshaped functions
(including the hyperbolic tangent). This might be one explanation behindlitiglg superior
performance of discriminatively trained ClassRBMs, compared to neatadanks with hyperbolic
tangent hidden units (see Sections 7.1 and 7.2). However, the main agvaftaorking in the
framework of RBMs is that it provides a natural way to introduce generddiarning, which can
provide data set-dependent regularization and, as we will see, casebeta extend learning in
the semi-supervised setting. As mentioned earlier, a form of generativerigaan be introduced
in standard neural networks with unsupervised pre-training, simply mgRBMs to initialize
the hidden layer weights. However, the extent to which the final solutiothBparameters of

1. We experimented with a version of MCL for the ClassRBM, howeverélalts did not improve on those of hybrid
training.
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the neural network is influenced by generative learning is not well clied;, while the hybrid
objective provides an explicit handle on the role played by generativeitegg One could argue
that the advantage of unsupervised pre-training is that it allows to builgedesodels. However,
consider that it is always possible to use the ClassRBM as the top layetasfkacs RBMs, in the
spirit already suggested in Hinton et al. (2006).

7. Evaluation of the Training Objectives

To evaluate the performance of the different training objectives desttitus far, we present exper-
iments on two classification problems: character recognition and text clasisificSuch problems
are particularly interesting as they are known to benefit from the extrasfioon-linear features
and hence are well suited for the ClassRBM. In all experiments, for thesRBM variants and
for all baselines, we performed model selection based on the validatipmedetmance. For the
different RBM models, model selection was done with a grid-like searchtbeelearning rate\
(between 0.0005 and 0.1, on a log scate]50 to 6000), the generative learning weighor hybrid
training (0 to 0.5, on a log scale) and the wei@tfor semi-supervised learning (0, 0.01 or 0.1). In
general, bigger values &f were found to be more appropriate with more generative learning. If no
local minima was apparent, the grid was extended. The blaseandd were initialized to 0 and
the initial values for the elements of the weight matrickandW were each taken from uniform
samples i[—m~%%,m~%%], wherem is the maximum between the number of rows and columns
of the matrix. The number of iterations over the training set was determineg eaity stopping
according to the validation set classification error, with a look ahead of fidas.

7.1 Character Recognition

We first evaluate the different training objectives for the ClassRBM orpthblem of classifying
images of digits. The images were taken from the MNIST data set, wherepaeased the original
training set into training and validation sets of 50000 and 10000 examplegsauaidthe standard
test set of 10000 examples. The results are given in Table 1. The RBMt-&pproach is simply
an unsupervised RBM used to initialize a one-hidden layer supervised met (as in Bengio et al.
2007). We give as a comparison the results of a Gaussian kernel Sxavidam forest classifiér
and of a regular neural network (with random initialization, one hidderr layé hyperbolic tangent
hidden activation functions).

First, we observe that discriminative training of the ClassRBM outperfoensigtive training.
However, hybrid training appears able to make the best out of both wamttieutperforms the other
approaches.

We also experimented with a sparse version of the hybrid ClassRBM, giacsity is known
to be a good characteristic for features of images. Sparse RBMs westoped by Lee et al.
(2008) in the context of deep neural networks. They suggest to inteodparsity in the hidden
layer of an RBM by setting the biasesdn the hidden layer to a value that maintains the average
of the conditional expected value of these neurons to an arbitrarily smaé,vand so after each
iteration through the whole training set. This procedure tends to make ths biegative and large.
We followed a different approach by simply subtracting a small constaatue, considered as an
hyper-parameter, from the biases after each update, which is mompaippe in an online setting

2. We used the implementation provided by the TreeLearn libraips:/github.com/capitalk/treelearn
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Figure 2: Filters learned by the ClassRBM on the MNIST data set. The toghows filters that
act as spatially localized stroke detectors, and the bottom shows filters pemiécsto a
particular shape of digit.

or for large data sets. To chodggiven the selected values fdranda for the “non sparse” hybrid
ClassRBM, we performed a second grid-search dvgetween 10° and 0.1, on a log scale) and
the hidden layer size, testing bigger hidden layer sizes than previoustyeskle

This sparse version of the hybrid ClassRBM outperforms all the other RBpoaches, and
yields significantly lower classification error than the SVM, the randomsfoaed the standard
neural network classifiers. The performance achieved by the sgé&assRBM is particularly im-
pressive when compared to reported performances for Deep BetiebNes (1.25% in Hinton et al.
2006) or of a deep neural network initialized using RBMs (around 1.2%emgi® et al. 2007 and
Hinton 2007) for the MNIST data set with 50000 training examples.

The discriminative power of the hybrid ClassRBM can be better underdipddoking a the
rows of the weight matrixV, which act as filter features. Figure 2 displays some of these learned
filters. Some of them are spatially localized stroke detectors which can ydssiactive for a wide
variety of digit images, and others are much more specific to a particulae sitalyit.

In practice, we find that the most influential hyper-parameters are theingarate and the
generative learning weight. Conveniently, we also find that that the basling rate value is the
same for each values of the generative learning weight we tested. Invashds, finding a good
learning rate does not require having found the best value for theaamdearning weight. Once
these two hyper-parameters are set to good values, we also find that aangk of hidden layer
sizes (between 750 to 3000) yield a competitive performance, that is; Lrddé classification error.

7.2 Document Classification

We also evaluated the RBM models on the problem of classifying documents éitacohrespond-
ing newsgroup topic. We used a version of the 20 Newsgroups datisethich the training and
test sets contain documents collected at different times, a setting that is rflective of a prac-
tical application. The original training set was divided into a smaller traininguse a validation
set, with 9578 and 1691 examples respectively. The test set contaibexXaMples. We used the
5000 most frequent words for the binary input features. The res@tgigen in Table 2. Again, we

3. This data set is available in Matlab format here:
http://people.csail. mit.edu/jrennie/20Newsgroups/20 news-bydate-matlab.tgz
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Model Objective Error
GenerativeX = 0.005,H = 6000) 3.39%
Discriminative f = 0.05,H = 500) 1.81%
ClassRBM 4 brid (@ = 0.01,A = 0,05, H — 1500 ) 1.28%
Sparse Hybrid (idem H = 3000,6 =10"%) 1.16%
SVM 1.40%
Random Forest 2.94%
NNet ) 1.93%
RBM+NNet 1.41%

Table 1. Comparison of the classification performances on the MNIST daté&&¥M results for
MNIST were taken fronmhttp://yann.lecun.com/exdb/mnist/ . On this data set, dif-
ferences of 0.2% in classification error are statistically significant.
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sci.crepk
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talk religion.misc

Figure 3: Similarity matrix of the newsgroup weights vectdrs

also provide the results of a Gaussian kernel St/aMrandom forest classifier and a regular neural
network for comparison.

Once again, hybrid training of the ClassRBM outperforms the other aplpesaincluding the
SVM and neural network classifiers. Notice that here generative tgppeénforms better than dis-
criminative training.

4. We usedibSVM v2.85 to train the SVM model.
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Model Objective Error
GenerativeX = 0.0005,H = 1000) 24.9%
ClassRBM Discriminative § = 0.0005,H = 50) 27.6%
Hybrid (a = 0.005,A =0.1,H =1000) 23.8%

SVM 32.8%
Random Forest 29.0%
NNet ) 28.2%
RBM+NNet 26.8%

Table 2: Classification performances on 20 Newsgroups data set fdifférent models. The error
differences between the hybrid ClassRBM and other approaches isic#llisignificant.

Much like for the character recognition experiment of the previous sectvenfind that the
learning rate and generative learning weight are the most crucial4mgprameters to tune, and that
the performance is quite stable across hidden layer size as long as it ishenggh (500 or greater
for this problem).

In order to get a better understanding of how the hybrid ClassRBM sthieglassification
problem, we looked at the weights connecting each of the classes to the higlg®ns. This corre-
sponds to the columnid., of the weight matriXxJ. Figure 3 shows a similarity matriM (U) for the
weights of the different newsgroups, whéfigU)y,y, = sigm(UI,lU.yz). We see that the ClassRBM
does not use strictly non-overlapping sets of neurons for differensgroups, but shares some of
those neurons for newsgroups that are semantically related. We stetGiassRBM tends to share
neurons for topics such as computesnip.* ), science gci.* ) and politics {alk.politics.* ),
or secondary topics such as sporec.éports.* ) and other recreational activitiese¢.autos
andrec.motorcycles ).

Table 3 also gives the set of words used by the ClassRBM to recogmeeaidhe newsgroups.
To obtain this table we proceeded as follows: for each newsgypwe looked at the 20 neurons
with the largest weight amorigd.y, aggregated (by summing) the associated input-to-hidden weight
vectors, sorted the words in decreasing order of their associatedgaged weights and picked
the first few words according to that order. This procedure attemptspimedmate the positive
contribution of the words to the conditional probability of each newsgroup.

7.3 Variations on the Generative Learning Gradient Estimator

In the previous sections, we considered contrastive divergenestiorating the generative learning
gradient. However, other alternatives have also been proposed. ténesting question is how
much impact does the choice between these different gradient estimasoos ktae classification
performance of the ClassRBM?

A first alternative is based on the concept of pseudolikelihood (PL348€1975), which aims
at replacing the regular likelihood objective with one more tractable, thatrigyHich gradients can
be computed exactly. The negative log-likelihood objective ¢x ) pair is then replaced by

—logp(y|x) — zlogp XX \k:Y) )
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Class Words

alt.atheism bible, atheists, benedikt, atheism, religimholars, biblical
comp.graphics tiff, ftp, window, gif, images, pixel, rgbewer, image, color
comp.os.ms-windows.misc  windows, cica, bmp, window, wistalled, toronto, dos, nt
comp.sys.ibm.pc.hardware  dos, ide, adaptec, pc, cordigylly, bios, scsi, esdi, dma
comp.sys.mac.hardware apple, mac, quadra, powerbogdddccentris, fpu, power, Iciii

comp.windows.x
misc.forsale
rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey
sci.crypt
sci.electronics
sci.med

sci.space
soc.religion.christian
talk.politics.guns
talk.politics.mideast
talk.politics.misc
talk.religion.misc

xlib, man, motif, widget, openwindows,mte colormap, xdm
sell, condition, floppy, week, am, obo, shigpcompany, wpi
cars, ford, autos, sho, toyota, roads, vw, oallisc, drive
bikes, motorcycle, ride, bike, dod, ritbenw, honda
pitching, braves, hitter, ryan, jgitshso, rbi, yankees, teams
playoffs, penguins, didn, playoff, gam#, play, cup, stanley
sternlight, bontchev, nsa, escrow, hamburgyygtion, rm
amp, cco, together, voltage, circuitieater, connectors
drug, syndrome, dyer, diet, foods, physician, nie€j disease
orbit, spacecraft, speed, safety, known, Ithmem, rockets
rutgers, athos, jesus, christege, clh, christians, sin, paul
firearms, handgun, firearm, gun, rkioacealed, second, nra
armenia, serdar, turkish, turlssacgic, stated, armenians, uci
having, laws, clinton, time, koreshegident, federal, choose
christians, christian, bible, weissjgion, she, latter, dwyer

Table 3: Most influential words in the hybrid ClassRBM for predicting sorh¢he document
classes

wherex, is a vector made of all elementsoexceptx. Hence, the model is trained to maximize
the likelihood of each observed varialgiwenall other observed variables. Notice that the first term
corresponds to discriminative training. Hence, to obtain hybrid trainingamesamply weight the
second summation term loy.

Equation 7 as well as its gradient with respect to the ClassRBM’s paranceteise computed
exactly by backpropagation. In the ClassRBM, with a development similar tortedor p(y|x),
we can show that:

pP(x[y)
X|y) + p(Xk|y)
B exp(xbx + ¥ j softplugcj +Ujy +Wikxk + FiaWjixi))
= Sxeon) exp(x.bx + 3 j softplugcj + Ujy +WikX, + 3 WiiXi))

P(Xk[X\k, Y) = ol

wherex corresponds ta but where the input’®™ bit has been flipped. So the terms (0 PPN

can be computed i®(HD). A naive computation of Equation 7, which would computekhierms

log p(X«|X\k,y) separately, would then scale@(H D2+ HC). However, by computing; Wjix; for

all j only once and reusing those terms to obtain the tefmgW;ix for anyk, we can obtain a
procedure that is still linear iD, as is the CD gradient estimator. In practice, pseudolikelihood
training still has some computational overhead compared to CD. Indeagigkelinood training
requiresO(HD) computations of the exponential function, whereas CD only reqxés—+ D)
such computations.
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Error
MNIST 20News
Contrastive Divergence - 1 Gibbs sampling step 1.16%  23.8%
Contrastive Divergence - 10 Gibbs sampling step  1.15%  24.8%
Persistent Contrastive Divergence 1.41% 24.9%
Pseudolikelihood 1.21% 24.7%

Generative gradient estimator

Table 4. Comparison of the classification performances using diffessmrgtive gradient estima-
tors.

To perform stochastic gradient descent, a gradient step update is otaddiag to the objective
of Equation 7 every time a training example is visited. Because of the highentatigmal cost of
PL, we use a sampling trick to estimate the gradient on the second summation tequadion 7.
Indeed, before every update, we randomly select a subset of theviapablesxx and sum only
over those in the second term. This trick was necessary to scale downdrairdmeasonable time.
We used a subset of size 100 and 500 for the MNIST and 20 Newsgoaia sets respectively.

Another generative gradient estimator for RBMs that has been receaflgged is the Persistent
CD (PCD) estimator (Tieleman, 2008). PCD improves on CD by running af $gibds sampling
chains which persist through training, instead of always being reinitiatizedch training example.
Tieleman (2008) has shown that this new estimator can sometimes improve thétrateing as
well as the quality of the solution that is found. As proposed by Tieleman8j2@% used 100
parallel chains for Gibbs sampling. Since we use stochastic gradiemrd€ststead of mini-batch
gradient descent), only one chain was updated per update. The vleamsapdated sequentially by
cycling through the set of chains.

Finally, an even simpler way of improving the gradient estimate that CD computesiris
crease the number of Gibbs sampling steps that is used in the negative Iphthsé experiments,
Tieleman (2008) have found that CD with 10 Gibbs sampling steps often cempaite well to
PCD.

Is the choice of the generative gradient estimator in the hybrid objecti@atifor obtaining
good classification performances? To answer this question, we havedtii@iassRBMs using the
hybrid objective on the MNIST and 20 Newsgroup data sets, with the diftegenerative gradient
estimators. Hyper-parameters were tuned separately for each vasantihe previous sections.
For the MNIST data set, we used the sparse training variant. The resuhs axperiment are
given in Table 4. We see that in general, none of the alternative estimativisigud significant
performance improvements. On 20 Newsgroups, the performance @reangd. We notice that
the performance obtained with PCD tends to be the particularly bad. Thislareeg by the fact
that PCD requires smaller learning rates to work well, so that the model’tlokange faster than
the rate in which the parallel Gibbs chains mix. However, using a small learategdoes not
correspond to the regime at which the ClassRBM performs best in termsssffidation error for
these problems. This is particularly true for MNIST where the optimal leamaitegis between 0.05
and 0.1.
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7.4 Scaling Up to Large Input Spaces

Computing the generative gradient is typically much more computationally eixpetign the
discriminative gradient. This is particularly true on problems were the inpuat davery high-
dimensional and sparse, such as the text classification problem. Forcmstaough we have
restricted its dimensionality to 5000, the 20 Newsgroup data set could be maxemaue high
dimensional by including more words as input features. While the computatioestimating the
discriminative gradient can take advantage of the sparsity of the input lgnvaiiren multiplying
the input with the filters), estimating the generative gradient for all of the estisian Section 7.3
requires an explicit loop over all inputs.

It would hence be beneficial to derive a more general generatiegiteestimator that would
allow us to control more directly its computational cost, and perhaps let us #réittle bit of ac-
curacy for more computational efficiency. This would particularly be wlsafan online learning
setting, where a stream of training examples is available, with examples beisgnped at some
given rate. In such a setting, we might want to reduce the computational tquizee by the gen-
erative learning objective so that updating the parameters of the Clas$s&BiMraining example
can be done before the next sample is given.

As mentioned, the computational expense of training is closely related to theenafbari-
ables who's distribution is being modelled. At one extreme, discriminativeilepimvery efficient
since we are only modelling the (conditional) distribution of the target variabiteyat the other
extreme, generative learning is much more expensive because the ttribfuthe target and all
input variables is being modelled. Hence, a good handle over the computaiomalexity of an
estimator would be the total number of variables involved in the conditional diftsibon which
the training objective is based.

Following this idea, letl = {1,...,D} be the set of input variable indices and #t, (1) be
all the subsets of of cardinalityL, we could define the following as our new computation-aware
generative training objective

‘ Dtrain‘ ‘ Dtrain‘

1
- Eser (1) [109P(V, Xs[X\s)| = — =109 P(¥t, X5 X\ 5) (8)
3 Eseruu) [ )] 2, s o (D) \

wherex; is the vector of input variables with index fhandx s is the vector of all other variables.
Put briefly, this objective aims at maximizing the conditional likelihood of the taagd all subsets
of input variables of size given the other variables, and with a uniform distribution or weight on all
such possible partitions of the inputs. Since the expectationbigeintractable even for relatively
small values ol, in practice we approximate it by sampling a single value from the associated
uniform distribution ovets, and so for every parameter update.

This training objective actually corresponds to a particular type of complis#iéhood esti-
mator (Lindsay, 1988; Liang and Jordan, 2008). Here, we in additiopgse to approximate the
gradients of the log(y:, Xs(x\ ) terms

olog p(yt, Xs|X\s) 0 0
PP — g | 08X |+ B, [ SE )]

by using contrastive divergence with one step of Gibbs sampling. Threxipgation requires that
only thelL variables inxs be sampled, making this procedure efficient for srhall
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Hybrid training (for varyingL) Discriminative
250 500 5000 10000 training
Error 22.9% 222% 21.9% 21.9% 26.9%

Model

Table 5: Evaluation of the composite likelihood variant of contrastive desece on the 20 News-
groups data set, with an input dimensionality of 25247.

We experimentally investigated how varyibgmpacts the performance of ClassRBMs trained
using a hybrid objective based on the generative objective of EquatidfieStook the 20 News-
groups data set and, instead of only using the 5000 most frequens wsf@atures, we considered
all words appearing at least 5 times, adding up to 25247 words. Thksrasa given in Table 5.
We observe a big improvement on the classification error obtained by tesjribe input to only
5000 words, as in Table 2. The performance of purely discriminativeitiain the large vocabu-
lary setting, which is essentially equivalent to setting 0, is also improved on. We see that the
composite likelihood variant still allows for better generalization performémée achieved, even
for relatively small values of. Interestingly, we also observe a fairly rapid diminishing return in
the improvement of generalization errorlasicreases.

The idea of combining composite likelihood objectives and contrastivegiinee has also been
combined previously by Asuncion et al. (2010), but in a different wAguncion et al. (2010)
focused on models for which standard contrastive divergence withsGidampling corresponds to
sampling only a single randomly selected variable at each step. In this casestive divergence
with one sampling step actually corresponds to a stochastic version ofgtikelidood (Hyvarinen,
2006). They propose instead to use block-Gibbs sampling on randomtyeskldocks of variables
of limited sizeL at each stepl. must be small however since, in general, computing the associated
conditionals is exponential ih. Using a single sampling step then corresponds to a stochastic
version of composite likelihood. They show that increadirand using a single Gibbs step can be
more advantageous than usibg= 1 and increasing the number of iterations. Their work can be
understood as an investigation of how to improve contrastive divergesicg ideas from composite
likelihood objectives.

However, for RBMs, block-Gibbs sampling is actually the standard, wiveréirst sample all
hidden units and then all input variables in one iteration. Hence, the agipodaAsuncion et al.
(2010) is not directly applicable here. What we propose instead, is tg epptrastive divergence
to a composite likelihood objective, such that we approximate the gradients aogh(y;, Xs |X\ s)
terms. Crucially, this approach is linearlinas opposed to exponential.

8. Semi-supervised Learning

In certain situations, in addition to a (possibly small) set of labeled training eearfil.in, even
more data can be obtained in the form of an unlabeled trainin@sei, = {(X¢)}. This is par-
ticularly true for data such as images and text documents, for which theétieran almost infi-
nite source. Semi-supervised learning algorithms (Chapelle et al., 2008)saahis situation by
leveraging the unlabeled data to bias learning towards solutions that are@sistent” with the
unlabeled data. Different algorithms can then be seen as defining diffevBons of consistency.
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Because a ClassRBM is a proper generative model, a very natural rafticonsistency in
this context is that unlabeled training data have high likelihood under it. Tiewsekhis, one can
optimize the following negative log-likelihood

|@unlab‘
Lunsud Dunlab) = — Zi log p(xt) 9
t=
which requires computing the gradients
dlog p(x 0 0
T = By | SO |+ B | EGOX )]

The contrastive divergence approximation proceeds slightly differéetlg. The first term can be
computed in timéO(HD + HC), by noticing that

0 0
IEy,h\xt [aeE(thXtah)] :Ey\xt [Emy,xt [%E(Yt,xtph)”

and then either average the usual RBM gradg%Et(yt,xt, h) for each clasg (weighted byp(y|xt)),
or sample fronp(y|x;) and only collect the gradient for the sampled valug. dh the latter sampling
version, the online training update for this objective can be describeepdscing the statement
y° <yt with y° ~ p(y|x;) in Algorithm 1. We used this version in our experiments.

In order to perform semi-supervised learning, we can weight and centhim objective of
Equation 9 with those of Equations 3, 5 or 6 as follows:

Lsem'ksup( Drrain, @unlab) = LTYPE( @train) + BLunsu;{@unlab) (10)

where TYPEc {gendisc hybrid}. Online training by stochastic gradient descent then corresponds
to applying two gradients updates: one for the objectiyg,pg and one for the unlabeled data
objective Lynsup

We evaluated our semi-supervised learning algorithm for the hybrid Cldsid both previous
digit recognition and document classification problems. We also experimeitted version (noted
MNIST-BI) of the MNIST data set proposed by Larochelle et al. (200fFere background images
have been added to MNIST digit images. This version corresponds to la mander problem and
it will help to illustrate the advantage brought by semi-supervised learnindassRBMs. The
ClassRBM trained on this data used truncated exponential input units ésggoBet al., 2007).

In this semi-supervised setting, we reduced the size of the labeled trainitgy 880 exam-
ples, and used some of the remaining data to form an unlabeled dafz gt The validation
set was also reduced to 200 labeled examples. Model selection coViettesl garameters of the
hybrid ClassRBM as well as the unsupervised objective wegbt Equation 10, with3 = 0.1
for MNIST and 20 Newsgroups, arfél= 0.01 for MNIST-BI performing best. For comparison
purposes, we also provide the performance of a standard non-pecaseei-supervised learning
algorithm based on function induction (Bengio et al., 2006a), which is sienjlar to other non-
parametric semi-supervised learning algorithms such as Zhu et al. (2083).ovide results for the
use of a Gaussian kernel (NP-Gauss) and a data-dependentadizussian kernel (NP-Trunc-
Gauss) used in Bengio et al. (2006a), which essentially outputs zepaifsrof inputs that are not
near neighbors. The experiments on the MNIST and MNIST-BI (with gemlnd images) data
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Model Objective MNIST MNIST-BI 20News
Hybrid 973%  424%  405%
ClassRBM Semi-supervised + Hybrid ~ 8.04% 37.5%  31.8%
NP-Gauss ] 1060%  665%  85.0%
NP-Trunc-Gauss 7.49% 61.3% 82.6%

Table 6: Comparison of the classification errors in semi-supervised lgesatting. The errors in
bold are statistically significantly better.

sets used 5000 unlabeled examples and the experiment on 20 Newsgsed778. The results
are given in Table 6, where we observe that semi-supervised learairgistently improves the
performance of the ClassRBM trained based on the hybrid objective.

The usefulness of non-parametric semi-supervised learning algorithsrisekba demonstrated
many times in the past, but usually so on problems where the dimensionality of tts isjow or
the data lies on a much lower dimensional manifold. This is reflected in the resMINeST for the
non-parametric methods. However, for high dimensional data with manydazfteariation, these
methods can quickly suffer from the curse of dimensionality, as argudgehgio et al. (2006b).
This is also reflected in the results for the MNIST-BI data set which contaarsy factors of vari-
ation, and for the 20 Newsgroups data set where the input is very higmsliomal. Finally, it is
important to notice that semi-supervised learning in ClassRBMs proceedsiniae fashion and
hence could scale to very large data sets, unlike most non-parametric methods

We mention that, in the context of log-linear models, Druck et al. (2007) inted semi-
supervised learning in hybrid generative/discriminative models using a siapitapach to the one
presented in here. While log-linear models depend much more on the discrimigatlity of the
features that are fed as input, the ClassRBM can learn useful fe#twoesgh its hidden layer and
model non-linear decision boundaries.

9. Multitask Learning

The classification problems considered so far had in common that a givercioydd only belong to
a single class, that is, classes were mutually exclusive. For certain preklgs assumption is too
restrictive and inputs can be simultaneously associated with multiple classbslsr @ne example
is online collections of images, documents or music augmented with social tegsajsere 2008
for an example), which are short descriptions applied by users to itemsaartak used by users to
search and browse through a collection. One approach to this probleatd b@to train a separate
classifier for each tag. However, a better approach is to perform mulitaskng (Caruana, 1997),
where a single model is trained to perform all tasks simultaneously. This ditovise model to
leverage the similarity between certain tasks and improve generalization.

We describe here how multitask learning can also be performed within a @G&ksR this
context, the target’s representation in the energy function of the ClassiR@snot follow the “one
out of C” constraint and is an unconstrained binary vegtofhe conditional distribution of given
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h then becomes:
p(yIh) =[] p(yclh), with p(yc = 1]h) = sigm(dc + § Ujchy).
C |

Another important implication of this change is that the predictive postexigix) is no longer
tractable, sincg now has £ possible values. At test time, we are particularly interested in estimat-
ing p(yec = 1|x) for each label, in order to make a prediction of the binary value of eachidhuil
label. Fortunately, there exist several message-passing approxinexence procedures for gen-
eral graphical models that can be employed here. The two most popelarean field and loopy
belief propagation.

The mean field (MF) approach tries to approximate the joint poste(iprh|x) by a factorial
distributionq(y, h) = 15 (1 — pe) 1 ¥ n?zlrrj” (1—1;)*M that minimizes the Kullback-Leibler
(KL) divergence with the true posterior. Running the following messagsipg procedure to con-
vergence

e < sigm(dc+Zchtj> Vcedl,...,C},
]

T Sigm(Cj+ZchUc+Z\A/jiXi> Vie{l,...,n}
C 1

we can reach a saddle point of the KL divergence, at which pgirgerves as the estimate for
p(ye = 1|x) andT; can be used to estimafgh; = 1|x). In our experiments, we initialized the
messages to 0. Moreover, we treat the number of message passing isesiateonhyper-parameter,
S0 as to control the computational cost of inference.

Loopy belief propagation (Pearl, 1988) (LBP) also relies on a messaggng procedure be-
tween variables. LBP is more complex than MF in that the number of distinct gessabe main-
tained scales i@(HC), that is, the number of connections betwgeandh, instead of inO(H +C)
as in MF. It also provides a direct estimate of the pair-wise probabilitigs= 1,h; = 1|x). LBP
tends to give estimates of the true marginals that are more accurate than tiveitdFaprocedure
(Weiss, 2001). While not guaranteed to converge it frequently doesatipe. One method that has
been shown to be useful in aiding convergence is message damped tugegggtion (Pretti, 2005).
In this case the normal updates computed by belief propagation are mixed evirethious updates
in order to smooth them, the damping factor being a parameter of the algorithnritiig@ details
the procedure.

As for learning, the discriminative gradient expression, which is now

dlog p(yt[x) 9 9
T:_Ehwt,m %E<yt7xt7h) +Eyﬁh|x %E(y’x’h)

must also be approximated, specifically the second expectationy aneth. Contrastive divergence
is a natural approach to estimating this expectation, usiitgrations of Gibbs sampling alternating
between sampling andy.

However, MF or LBP can also be used to approximate the expectation.ugetiae energy
function decomposes into sums of either unary or pairwise terms, only thenalarmg(y. = 1/x),
p(hj = 1|x) andp(yc = 1,h; = 1|x) are required. The assumption of a factorial distribution behind
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Algorithm 2 Loopy Belief Propagation algorithm for inference in the multilabel ClassRBM
Input: training pair(y,x), number of iteration& and damping factop

m.+<0 m.+0 V]
cdata,_ ¢4 Wx

JC Jc

# Update downwards (towarg} and upwards (towards) messages
for K iterationsdo

my, < Bmi.+ (1—PB)log (1+ (exp(Ujc) — 1) sigm(cdat 5o, mJTC*)) , Ve, j

mJTC — BmJTC +(1-p)log <1+ (exp(Ujc) — 1) sigm(de + 3 j- 4] mjic)> , V]
end for

# Compute estimated marginals
PP (Ye = Lix) = sigm(de+ 3 myc), V¢
prEP(hy = 1[x) - sigm(c@+ 5 oml), V|

1 I+ |
numPt « de+ 3 jo 2y Mg, nUMD s omi.,
numis < Uje + numd+nund?, v, j

P-E(ye = L,hj = 1x) = exp(numj) / (exp(numig) + exp(nunfy) + exp(numi)), V¢, |

Ve, j

MF means thap(y. = 1, h; = 1|x) is simply estimated as the product of its estimategpfgr = 1|x)
and p(h; = 1|x), while LBP provides a more sophisticated estimate. The MF gradient estimates
can also be improved by initializing the message to the value of the associated training target
Yk. This approach was first described by Welling and Hinton (2002) andasvk as mean field
contrastive divergence. It was also extended to general variatpabximations in Welling and
Sutton (2005). When making predictions at test time however, we still must initjalie0.

Finally, as in Section 7.3, the intractability of discriminative maximum likelihood traicizg
be avoided by using a pseudolikelihood objectivgff:llog P(Yely\cX) for which exact gradients
can be computed.

Given all of these possible ways of approximating the marginal postepigrs= 1/x) at test
time and of performing discriminative training, we performed an extensiugpenison of all pos-
sible combinations of such choices. We used three different music sogéatiéda sets based on
databases of 10-second song clips. The first data set, was collestedfnazon.com’s Mechanical
Turk service and is described in Mandel et al. (2010). The secatadséawas collected from the
MajorMiner music labeling game and is described in Mandel and Ellis (2008¢. fihal data set
was collected from Last.fm’s website and is described in Schifanella ettdl0}2We will refer to
these data sets as MTurk, MajMin and Last.fm respectively.

All of these data sets were in the form of (user, item, tag) triples, where tims iteere either
10-second clips of tracks or whole tracks. These data were cordlemnsditem, tag, count) triples
by summing across users. Converting (item, tag, count) triples to binary nsaffliceraining and
evaluation purposes required some care. In the MajorMiner and LasatBmttie counts were high
enough that we could require the verification of an (item, tag) pair by attewaspeople, meaning
that the count had to be at least 2 to be considered as a positive exanmgldMethanical Turk
data set did not have high enough counts to allow this, so we had to caenyt (@em, tag) pair.
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Performance on MTurk (77) Performance on MajMin (77)
vs. training/testing approximations vs. training/testing approximations
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Figure 4: Results of the multilabel ClassRBM (discriminative training) on thehdeical Turk and
MajorMiner data sets, comparing the performance of different appraximaombina-
tions for training and testing. The approximations used during training aresented
on the x-axis, while the approximations used during testing are represbnbegh the
color of the bar. The error bars correspond to the standard emmssafolds.

In the MajorMiner and Last.fm data sets, (item, tag) pairs with only a singletaoere not used
as negative examples because we assumed that they had higher patavizelae than (item, tag)
pairs that never occurred, which served as stronger negative &samp

The timbral and rhythmic features of Mandel and Ellis (2008) were usethdoacterize the
audio of 10-second song clips. Each dimension of both sets of feat@esnermalized across
the database to have zero-mean and unit-variance, and then each feator was normalized to
be unit norm to reduce the effect of outliers. The timbral features w&®edimensional and the
rhythmic features were 200-dimensional, making the combined feature B89atimensional.

In order to asses the impact of different approximations (of the gradanpgy|x)) on the
solution found by the model we only considered discriminative learning. [@¢eaugmented the
number of data sets by changing the number of tags, to see how this faatenc¥k the results.
Next to a data set name, the number in parenthesis thus indicates the nurtdgs obnsidered.
The tags were selected by sorting them by popularity and picking the leadiaigRar all data sets
we select the hyper-parameters of the model using a 5-fold crossti@tidm order to increase the
accuracy of our procedure, for each fold we computed the score agesiage across 4 sub-folds.
Each run used a different fold (from the remaining 4 folds) as the valida& and the other 3
as the training set. From this validation procedure, 50, 100 and 200 hiddenwere selected
respectively for the MTurk, MajMin and Last.fm data sets and a learnitegaf0.01 for all data
sets. We also fixed a priori the number of iterations for approximating theéegrs (for CD, MF
or LBP) to 10, and the number of MF or LBP iterations for approximafig/x) to 20, to limit
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Figure 5: Comparison of the multilabel ClassRBM and with a multitask neural me{iMiNet) and
with single task logistic regression classifiers (LOG). Bars show the nuofblabels
(tags) on which the ClassRBM is significantly better) Or worse &) than the baseline
in a two-sided paired t-test.

the hyper-parameter search spadenally, we set to 0.9 the damping factor for LBP inference, but
other values were found to yield similar performances.

Figure 4 provides the performance of all possible combinations of appations at training
and test time, on two data sets. The performance is evaluated in terms ofalgtegfermance using
the area under the ROC curve (AROC) (Cortes and Mohri, 20@¥. measure the AROC for each
tag separately and use the average across tags and folds as anrmoealre of performance.
As we see, contrastive divergence tends to outperform other agpge#or training the ClassRBM,
either when mean field or loopy belief propagation is used at test time. Usisgntedeterministic
inference at training and test time hence appears not to be optimal, with miedvefiey the worst
option.

We also compared the performance of the ClassRBM with two baselines.r3tie & multitask
neural network (Caruana, 1997), which is among the best baselinesuftitask learning. More-
over, a neural network makes for an interesting comparison becausedtstn for the marginals
p(yc = 1|x) is also non-linear, but feedforward and non-recursive, unlike inClassRBM. The
second baseline is a set of single task logistic regression classifier$ofoeach task). Though
previous work on these multitask data sets has instead considered singB/tdskas a baseline
(Mandel et al., 2011a), we have found logistic regression classifiengtperform SVMs, hence we
use those here as the single task baseline.

The same model selection procedure was used to select the baseliresphaygameters, namely
the learning rate (both baselines) and hidden layer size (neural netasekine only). Contrastive
divergence and loopy belief propagation was used in this comparisodistriminative training.

5. We validated this choice for these hyper-parameters afterwarded lwm the best learning rate and hidden layer
size found, and observed that while the performance increases withuthber of iterations, the increase is not
considerable, especially when we account for the increase in training time

6. This metric scores the ability of an algorithm to rank relevant examplesatiection above irrelevant examples. A
random ranking will achieve an AROC of approximately 0.5, while a mér@nking will achieve an AROC of 1.0.
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Model MTurk (77) MTurk (27) Last.fm (100) Last.fm (70) MajMin (77)
ClassRBM 65.9 68.8 72.4 72.2 76.1
NNet 65.8 65.4 72.4 72.0 75.3
LOG 63.4 65.7 70.2 70.3 70.7

Table 7: Average AROC across labels as a percentage for each nmoalehaultitask data sets.

We compared the ClassRBM in a head to head fashion with each baselineprapdted a two-

sided paired t-test across folds, per tag, to count the number of taghifdr either model performs
significantly better than the other. As illustrated in Figure 5, the ClassRBM iter lmtassifier for

strictly more tags on all data sets when compared to the logistic regressiaraap@nd on 4 out
of 5 data sets when compared to the neural network (with a tie on the remaatmget). Finally,

Table 7 gives the absolute performance of the ClassRBM and the baselines

10. Conclusion

We argued that RBMs can and should be used as stand-alone norclassifiers alongside other
standard and more popular classifiers, instead of merely being comsakesimple feature extrac-
tors. We considered different training strategies for the Classificatio RBd evaluated them.
In particular, we highlighted the importance of combining generative andimlig@ative training
and we explored the impact of using different generative gradient dstisnan the classification
performance of the ClassRBM. We also extended the range of situaticare We ClassRBM can
be employed, by presenting learning algorithms tailored to settings whereeiedatata are avail-
able, where the input is sparse and very high-dimensional, as well aswhiéiple classification
problems must be solved.

By describing and establishing the ClassRBM as a “black box” classifier owitsright, we
hope to make its use more accessible and stimulate research in how to adayiit hoage applica-
tion settings. As an illustration of this potential, we end by mentioning extensiadhe @lassRBM
that have already been developed, since the first conference piablicé this work (Larochelle
and Bengio, 2008). Gelfand et al. (2010) explored a different Wwaysimg the ClassRBM energy
function to perform classification, using a conditional herding learningralgn. Memisevic et al.
(2010) investigated a variant of the ClassRBM with third-order (as ogptmspair-wise) interac-
tions between the input, target and hidden units. van der Maaten et dl) @®4loped an extension
for sequential classification problems with linear-chain interactions bettheesequence of targets,
while Mnih et al. (2011) considered other structured output predictioblpms such as denoising.
Finally Louradour and Larochelle (2011) adapted the ClassRBM to prelehere the input is a
set containing an arbitrary number of input vectors.
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