
Journal of Machine Learning Research 13 (2012) 3725-3768 Submitted 12/10; Revised 12/11; Published 12/12

Exploration in Relational Domains

for Model-based Reinforcement Learning

Tobias Lang TOBIAS.LANG@FU-BERLIN.DE

Marc Toussaint MARC.TOUSSAINT@FU-BERLIN.DE

Freie Universität Berlin

Machine Learning and Robotics Group

Arnimallee 7, 14195 Berlin, Germany

Kristian Kersting KRISTIAN.KERSTING@IAIS.FRAUNHOFER.DE

Fraunhofer Institute for Intelligent Analysis and Information Systems

Knowledge Discovery Department

Schloss Birlinghoven, 53754 Sankt Augustin, Germany

Editor: Satinder Baveja

Abstract

A fundamental problem in reinforcement learning is balancing exploration and exploitation. We

address this problem in the context of model-based reinforcement learning in large stochastic re-

lational domains by developing relational extensions of the concepts of the E3 and R-MAX algo-

rithms. Efficient exploration in exponentially large state spaces needs to exploit the generalization

of the learned model: what in a propositional setting would be considered a novel situation and

worth exploration may in the relational setting be a well-known context in which exploitation is

promising. To address this we introduce relational count functions which generalize the classical

notion of state and action visitation counts. We provide guarantees on the exploration efficiency of

our framework using count functions under the assumption that we had a relational KWIK learner

and a near-optimal planner. We propose a concrete exploration algorithm which integrates a practi-

cally efficient probabilistic rule learner and a relational planner (for which there are no guarantees,

however) and employs the contexts of learned relational rules as features to model the novelty of

states and actions. Our results in noisy 3D simulated robot manipulation problems and in domains

of the international planning competition demonstrate that our approach is more effective than ex-

isting propositional and factored exploration techniques.

Keywords: reinforcement learning, statistical relational learning, exploration, relational transition

models, robotics

1. Introduction

Acting optimally under uncertainty is a central problem of artificial intelligence. In reinforcement

learning (RL), an agent’s learning task is to find a policy for action selection that maximizes its re-

ward over the long run. Model-based approaches learn models of the underlying transition process,

usually formalized as Markov decision processes, from the agent’s interactions with the environ-

ment. These models are then analyzed to compute optimal plans.

Generally, an agent has limited data from its interaction with an environment and its model only

approximates the true dynamics therein. One of the key challenges in reinforcement learning is thus

the exploration-exploitation tradeoff, which strives to balance two competing types of behavior of an

c©2012 Tobias Lang, Marc Toussaint and Kristian Kersting.

LANG, TOUSSAINT AND KERSTING

autonomous agent in an unknown environment: the agent can either make use of its current model

of the environment to maximize its cumulative reward (that is, to exploit), or sacrifice short-term

rewards to gather information about the environment (that is, to explore) in the hope of increasing

future long-term return by improving its model. This exploration-exploitation tradeoff has received

considerable attention in unstructured, non-relational domains. There exist algorithms which define

unique optimal solutions (such as Bayesian reinforcement learning, Poupart et al., 2006) or provably

polynomial time solutions (E3, Kearns and Singh, 2002, and R-MAX, Brafman and Tennenholtz,

2002; Strehl et al., 2009) to the exploration-exploitation trade-off problem. However, while they

give a clear idea of how in principle exploration and exploitation can be organized, the basic algo-

rithms in their original formulation only work on discrete enumerated state spaces. Therefore, we

believe that the core scientific problem is not to find new exploration-exploitation theories, but how

these principles can be realized on non-trivial representations (representations other than enumer-

ated state spaces), and how the generalization and abstraction implicit in non-trivial representations

interferes with these exploration-exploitation principles.

The environment of the agent typically contains varying numbers of objects with relations

among them. Learning and acting in such large relational domains is a second key challenge in re-

inforcement learning. Relational approaches (Getoor and Taskar, 2007) can generalize information

about one object to reach conclusions about other objects and thereby exploit the relational structure

of natural environments. Such domains are hard—or even impossible—to represent meaningfully

using an enumerated or a propositional state space. As an example, consider a hypothetical house-

hold robot which, after taken out of the shipping box and turned on, explores autonomously the

environment in order to learn how to perform its cleaning chores. Without a compact knowledge

representation that supports abstraction and generalization of previous experiences to the current

state and potential future states, it seems to be hopeless for such a “robot-out-of-the-box” to ex-

plore one’s home in reasonable time. For instance, after having opened one or two water-taps in

bathrooms, the priority for exploring further water-taps in bathrooms, and also in other rooms such

as the kitchen, should be reduced. Generalization over object types is crucial for any autonomous

agent in realistic environments, but cannot be expressed in a propositional setting where every new

object implies a new and therefore non-modeled situation.

The problem of exploration in stochastic relational worlds has so far received little attention.

State-of-the-art relational reinforcement learning approaches (Džeroski et al., 2001; Driessens et al.,

2006) are mostly model-free and use ε-greedy exploration which does not make use of relational

knowledge. Exploiting the relational knowledge for exploration is the problem we address in the

current paper. Applying existing, propositional exploration techniques is likely to fail: what in a

propositional setting would be considered a novel situation and worth exploration may in the rela-

tional setting be an instance of a well-known abstract context in which exploitation is promising. In

other terms, the key idea underlying our approach is: The inherent generalization of learned knowl-

edge in the relational representation has profound implications also on the exploration strategy.

1.1 Our Approach

We first outline our approach so that we can better discuss related work afterwards. We present

a general framework for model-based RL in relational domains. As is typical in model-based RL

approaches like E3 and R-MAX, our system will be composed of a model learner, a planner and

a relational exploration-exploitation strategy that integrates both. We introduce a concrete instan-

3726

EXPLORATION IN RELATIONAL DOMAINS

tiation in this setting where the learner and planner components are based on previous work: The

learner is a relational learning algorithm of noisy indeterministic deictic (NID) rules (Pasula et al.,

2007) which extracts a compact stochastic relational rule-based model from experience. As a plan-

ner we employ PRADA (Lang and Toussaint, 2010) which translates the learned relational model to

a grounded dynamic Bayesian network (DBN) and uses approximate inference (a factored frontier)

to estimate the expected return of sampled action sequences. Given a learner and a planner, the re-

lational exploration-exploitation strategy needs to realize an estimation of novelty in the relational

setting. The classical way to estimate state novelty is based on state (and action) visitation counts

which, in an enumerated representation, directly reflect model certainty. We generalize the notion of

state counts to relational count functions such that visitation of a single state increases this measure

of knownness also for “related” states. What is considered related depends on the choice of features

used to model these count functions: similar to density estimation with mixtures we assume count

functions to be a mixture of basic (relational) features. The inherent generalization in these count

functions thus depends on the choice of features. We propose several possible choices of such fea-

tures in a relational setting, including one that exploits the specific relational context features that

are implicitly learned by the relational rule learner.

Ideally, we would like the learner to fulfill guarantees in the KWIK (knows what it knows)

framework (Li et al., 2011) and the planner to guarantee near-optimality (in our case, exact in-

ference in the corresponding DBN). Clearly, our specific choices for the learner and planner do

not fulfill these guarantees but target at being efficient in challenging applications as we demon-

strate in the experimental section. Nevertheless, we will establish theoretical guarantees of our

relational exploration-exploitation strategy under the assumption that we had a KWIK learner and

near-optimal planning. This will allow us to draw clear connections (i) to the basic R-MAX and

E3 framework for exploration in reinforcement learning and (ii) to the pioneering work of Walsh

(2010) on KWIK learning in a relational reinforcement learning setting.

Walsh’s work proved the existence of a KWIK learning algorithm in a relational RL setting

by nesting several KWIK algorithms for learning different parts of relational transition models.

As Walsh points out himself, however, such an integrated KWIK learner, allowing provably effi-

cient exploration, has never been realized or tested and would be “clearly approaching the edge of

tractability” (Walsh, 2010). Further, his conceptual algorithm makes limiting assumptions on the

model representation which are violated by the more general relational rule framework of Pasula

et al. (2007). This is the reason why we choose a practically efficient but heuristic learner which

has not been proven to be a KWIK learner. Similarly, it is clear that the computational complexity

of optimal planning or exact inference in our corresponding DBN is exponential in the number of

objects. Therefore, we choose a practically efficient approximate inference technique for planning

in relational domains, as given by PRADA.

1.2 Related Work

The first studies on effective exploration in multi-state control problems developed a number of

concepts for describing explorative behavior, including curiosity (Schmidhuber, 1991), seeking to

minimize the variance of action value estimates (Kaelbling et al., 1996) and counters on the oc-

currences of states and actions (Thrun, 1992). Thereafter, efficient exploration solutions have been

developed for propositional and continuous domains where the environment is represented as an

enumerated or vector space. Bayesian reinforcement learning (Poupart et al., 2006) provides an

3727

LANG, TOUSSAINT AND KERSTING

optimal solution in a Bayesian framework by taking all potential models weighted by their poste-

riors into account at once. This solution is intractable in all but small problem settings, although

there have been advances recently such as the near-Bayesian approach by Kolter and Ng (2009).

An alternative approach to optimal exploration are algorithms studied in the probabilistically ap-

proximately correct (PAC) framework applied to Markov decision processes (MDPs) (so called

PAC-MDP approaches). The seminal algorithms E3 (Kearns and Singh, 2002) and R-MAX (Braf-

man and Tennenholtz, 2002; Strehl et al., 2009) execute near-optimal actions in all but a polynomial

number of steps (or, in alternative problem formulations, only require a polynomial number of steps

before they return a near-optimal policy for the current state). Despite the theoretical guarantees

of these algorithms, in practice the required exploration steps are often unrealistically large. More

importantly, these approaches are designed for enumerated representations of finite domains and

thus difficult to apply in domains of everyday life involving many objects.

E3 has been extended to parameter learning in factored propositional MDPs with a known struc-

ture (Kearns and Koller, 1999) and to Metric E3 (Kakade et al., 2003) for state spaces where a metric

allows to construct accurate local models. Both approaches assume the existence of efficient near-

optimal planning algorithms. However, general algorithms with the required guarantees are not

known. Supposedly, this is among the reasons why both approaches have not been empirically

demonstrated: “it is thus unlikely that the Factored E3 [for parameter learning] can ever be feasibly

implemented” (Guestrin et al., 2002); similar statements can be made for Metric E3. Therefore,

Guestrin et al. (2002) propose an exploration strategy for factored propositional MDPs which is

tailored towards a specific planning algorithm based on linear programming. The idea of character-

izing relevant subspaces for exploration has been pursued in continuous domains using dimension-

ality reduction methods (Nouri and Littman, 2010). R-MAX has been extended to continuous MDPs

with linearly parameterized dynamics (Strehl and Littman, 2007). All approaches discussed so far

as well as other function approximation methods are propositional, that is, they do not generalize

over object types. This can only be achieved by incorporating relational features (which subsume

attributes of individual objects), which has not been pursued in the mentioned methods.

In recent years, there has been a growing interest in using expressive representations such as re-

lational languages for reinforcement learning (RL) (Džeroski et al., 2001). While typical traditional

RL approaches require explicit state and action enumeration, symbolic approaches seek to avoid

explicit state and action enumeration through a symbolic representation of states and actions. Most

work in this context has focused on model-free approaches (estimating a value function) and has

not developed relational exploration strategies. Essentially, a number of relational regression algo-

rithms have been developed for use in these relational RL systems such as relational regression trees

(Džeroski et al., 2001) and Gaussian processes with graph kernels (Driessens et al., 2006). Kersting

and Driessens (2008) introduce relational policy gradients. All of these approaches use some form

of ε-greedy strategy to handle exploration; no special attention has been paid to the exploration-

exploitation problem as done in the current paper. Driessens and Džeroski (2004) propose the use

of “reasonable policies” in model-free relational RL to provide guidance, that is, to increase the

chance to discover sparse rewards in large relational state spaces, also known as reward shaping.

Sanner (2005, 2006) combines feature discovery with model-free relational reinforcement learn-

ing but does not discuss count function estimation for known states in the exploration-exploitation

problem in general terms. Ramon et al. (2007) present an incremental relational regression tree al-

gorithm that is capable of dealing with concept drift and showed that it enables a relational Q-learner

to transfer knowledge from one task to another. They do not learn a model of the domain and again,

3728

EXPLORATION IN RELATIONAL DOMAINS

relational exploration strategies were not developed. Generally, model-free RL approaches are not

suited to realize the type of planned exploration as exemplified in R-MAX, E3 or Bayesian RL.

Croonenborghs et al. (2007) learn a relational world model online and additionally use lookahead

trees to give the agent more informed Q-values by looking some steps into the future when select-

ing an action. Exploration is based on sampling random actions instead of informed exploration.

Diuk (Diuk, 2010; Diuk et al., 2008) presents an algorithm for efficient exploration under certain

assumptions in an alternative object-oriented representation of MDPs focused on object attributes.

This representation does not account for noisy dynamics in realistic domains where actions may

have a large number of low-probability effects. Efficient planning algorithms for this representation

still need to be developed.

The pioneering work of Walsh (Walsh, 2010; Walsh et al., 2009; Walsh and Littman, 2008)

provides the first principled investigation into the exploration-exploitation tradeoff in relational do-

mains. His work lifts ideas from R-MAX and efficient RL algorithms for feature selection (such as

the algorithms by Diuk et al., 2009) to relational domains. Walsh establishes sample complexity

bounds for specific relational MDP learning problems which scale polynomially in the relational

action operator descriptions and the number of objects—in contrast to the original R-MAX and E3

which scale exponentially in the number of objects in relational domains due to the corresponding

exponential state and action spaces. Walsh provides an evaluation for some of his algorithms in

settings with 2-3 objects; however, his approaches for learning the effects of actions and, more im-

portantly, for learning full action operators have not been demonstrated in practice. Despite their

theoretical significance, it is uncertain whether an implementation of these algorithms is feasible;

this might show an “inherent limitation of the KWIK-learning paradigm [Walsh’s learning frame-

work, discussed below] and likely of online learning itself” (Walsh, 2010). Furthermore, to derive

theoretical guarantees Walsh assumes a limited language to represent the learned model. Our ap-

proach will use the more expressive language of relational NID rules (Pasula et al., 2007), which

are necessary to capture the dynamics in realistic domains, for which Walsh’s algorithms would not

be applicable. We will detail the differences in representations in Section 3.4.

There is also an increasing number of (approximate) dynamic programming approaches for

solving relational MDPs, see for example Boutilier et al. (2001), Kersting et al. (2004), Hölldobler

et al. (2006), Wang et al. (2008) and Sanner and Boutilier (2009). In contrast to the current paper,

however, their work assumes a given model of the world. Recently, Lang and Toussaint (2009)

and Joshi et al. (2010) have shown that successful planning typically involves only a small subset

of relevant objects or states. This can speed up symbolic dynamic programming significantly. A

principled approach to exploration, however, has not been developed. Guestrin et al. (2003) calcu-

late approximate value functions for relational MDPs from sampled (grounded) environments and

provide guarantees for accurate planning in terms of the number of samples; they do not consider

an agent which explores its environment step by step to learn a transition model.

The question of optimal exploration in model-based RL where we learn a transition model has

similarities to the problem of active learning (Cohn et al., 1996). Epshteyn et al. (2008) investigate

active RL in enumerated domains to focus the exploration on the regions of the state space to which

the optimal policy is most sensitive. In statistical relational learning (Getoor and Taskar, 2007; de

Raedt et al., 2008), which combines expressive knowledge representation formalisms with statistical

approaches to perform probabilistic inference and learning in relational domains, active learning has

only recently started to attract attention (Bilgic et al., 2010; Xu et al., 2010).

3729

LANG, TOUSSAINT AND KERSTING

1.3 Contributions

The previous section outlined previous work on (mostly model-free) relational RL, which neglected

explicit exploration, and the fundamental work by Walsh et al., which proved existence of KWIK

learning in a model-based relational RL setting but falls short of practical applicability. The goal

of this work is to propose a practically feasible online relational RL system that integrates efficient

exploration in relational domains with fully unknown transition dynamics and learning complete

action operators (including contexts, effects, and effect distributions).

Our approach extends Kearns and Singh’s theoretically justified exploration technique E3 and its

successor R-MAX and outperforms existing non-relational techniques in a large number of relevant

and challenging problems. More precisely, our contributions are the following:

• We introduce the problem of learning relational count functions which generalize the classical

notion of state (action) visitation counts.

• We develop a general relational model-based reinforcement learning framework called REX

(short for relational explorer), which lifts the concepts of E3 and R-MAX to relational repre-

sentations and uses learned relational count functions to estimate empirical model confidence

in the relational RL setting.

• We provide guarantees on the exploration efficiency of the general REX framework under the

assumption that we had a relational KWIK learner and were capable of near-optimal planning

in our domain.

• As a concrete instance of our REX framework, we integrate the state-of-the-art relational

planner PRADA (Lang and Toussaint, 2010) and a learner for probabilistic relational rules

(Pasula et al., 2007) into our framework. The resulting system is the first practically feasible

efficient solution for relational domains with fully unknown transition dynamics.

Our extensive experimental evaluation in a 3D simulated complex robot manipulation environment

with an articulated manipulator and realistic physics and in domains of the international planning

competition (IPPC) shows that our methods can solve tasks in complex worlds where existing

propositional methods fail. With these evaluations we also show that relational representations

are a promising technique to formalize the idea of curriculum learning (Bengio et al., 2009). Our

work has interesting parallels in cognitive science: Windridge and Kittler (2010) employ ideas of

relational exploration for cognitive bootstrapping, that is, to progressively learn more abstract rep-

resentations of an agent’s environment on the basis of its action capabilities.

1.4 Outline

In the following section, we introduce previous work and background on which our methods build.

In Section 3, we develop our general REX framework, including our model of relational count

functions, and derive theoretical guarantees of this framework under the assumption that we had an

ideal KWIK learner and near-exact inference. We then assume relational rule learning and PRADA

as concrete learner and planner components for REX. In Section 4, we present the experimental

evaluation of this overall system. Finally, we conclude in Section 5.

3730

EXPLORATION IN RELATIONAL DOMAINS

(a)

State Enumerated Factored Relational

1 s1
on o1 o2, on o2 t,

on o3 t, inhand o4

on(o1,o2), on(o2, t), on(o3, t), inhand(o4),
ball(o1), cube(o2), cube(o3), cube(o4), table(t)

2 s2
on o3 t, on o4 t,

on o5 o4, inhand o2

on(o3, t), on(o4, t), on(o5,o4), inhand(o2), cube(o2),
cube(o3), cube(o4), ball(o5), table(t)

3 s3
on o1 t, on o2 t,

on o3 o2, on o6 o3

on(o1, t), on(o2, t), on(o3,o2), on(o6,o3),
cube(o2), cube(o3), cube(o6), ball(o1), table(t)

(b)

Table 1: Illustration of three world representation types in a robot manipulation domain

2. Background on MDPs, Representations, Exploration and Transition Models

In this section, we set up the theoretical background for the relational exploration framework and

algorithms presented later. First, we review briefly Markov decision processes (MDPs). Then,

we describe different methods to represent states and actions in MDPs. Thereafter, we discuss

exploration in MDPs including the algorithms E3 and R-MAX. Finally, we discuss in detail compact

relational transition models.

2.1 Markov Decision Processes

A Markov decision process (MDP) is a discrete-time stochastic control process used to model the

interaction of an agent with its environment. At each time-step, the process is in one of a fixed set of

discrete states S and the agent can choose an action from a set A. The transition model T specifies

the conditional transition distribution P(s′ |s,a) over successor states s′ when executing an action

a in a given state s. The agent receives rewards in states according to a function R : S→ R≥0 (we

assume non-negative rewards in this paper without loss of generality). The goal of planning in an

MDP is to find a policy π : S→ A, specifying for each state the action to take, which maximizes

the expected future rewards. For a discount factor 0 < γ < 1, the value of a policy π for a state

s is defined as the expected sum of discounted rewards V π(s) = E[∑t γtR(st) |s0 = s,π]. In our

context, we face the problem of reinforcement learning (RL): we do not know the transition model

T . Without loss of generality, we assume in this paper that the reward function R is given. We

pursue a model-based approach and estimate T from our experiences. Based on our estimate T̂ we

compute (approximately) optimal policies.

2.2 State and Action Representations

The choice of representation for states S and actions A has important consequences for reinforce-

ment learning techniques on the conceptual and the algorithmic level. Three different representation

3731

LANG, TOUSSAINT AND KERSTING

types dominate AI research on discrete representations: (i) unstructured enumerated representations,

(ii) factored propositional representations, and (iii) relational representations. Table 1 presents three

states in a robot manipulation domain together with their translations to the respective representa-

tions.

The simplest representation of states and actions is the enumerated (or flat) representation.

States and actions are represented by single distinct symbols. Hence, the state and action spaces

S and A are simply enumerated lists. In Table 1, the three states are represented by s1, s2 and s3.

This representation cannot capture the structure of states and does not provide a concept of objects.

Therefore, it is impossible to express commonalities among states and actions. In the example, all

three states appear equally different in this representation.

A factored propositional representation represents a state as a list of attributes. These attributes

capture the state structure and hence commonalities among states. MDPs based on factored repre-

sentations, called factored MDPs, have been investigated extensively in RL and planning research.

The disadvantage of factored representations is their lack of a notion of objects. This makes it im-

possible to express commonalities among attributes. For instance, in Table 1 the attributes on o1 o2

and on o5 o4 are treated as completely different and therefore State 1 is perceived as equally differ-

ent from State 2 as from State 3. Similar arguments hold for actions which are also represented by

individual symbols.

Relational representations account for state structure and objects explicitly. The state space S

is described by means of a relational vocabulary consisting of predicates P and functions F , which

yield the set of ground atoms with arguments taken from the set of domain objects O. A state is

defined by a list of true ground literals. The action space A is defined by atoms A with arguments

from O. In MDPs based on relational representations, called relational MDPs, the commonalities

of state structures, actions and objects can be expressed. They enable compact representations since

atoms containing logical variables allow for abstraction from concrete objects and situations. We

will speak of grounding an abstract formula ψ if we apply a substitution σ that maps all of the

variables appearing in ψ to objects in O. In Table 1, abstract atoms capture the greater similarity of

State 1 and State 2 in contrast to the one of State 1 and State 3: we can generalize State 1 and State

2 to the (semi-) abstract state on(A,B),on(B, table),on(o3, table), inhand(C), which is impossible

for State 3.

The choice of representation determines the expressivity of models and functions in reinforce-

ment learning. In particular, it influences the compactness and generalization of models and the

efficiency of learning and exploration as we discuss next.

2.3 Exploration

A central challenge in reinforcement learning is the exploration-exploitation tradeoff. We need to

ensure that we learn enough about the environment to accurately understand the domain and to

be able to plan for high-value states (explore). At the same time, we have to ensure not to spend

too much time in low-value parts of the state space (exploit). The discount factor γ of the MDP

influences this tradeoff: if states are too far from the agent, the agent does not need to explore them

as their potential rewards are strongly discounted; large values for γ necessitate more exploration.

The exploration efficiency of a RL algorithm can be measured in terms of its sample com-

plexity: this is the number of time-steps it acts non-optimally, that is, without achieving near-

optimal rewards. More formally, let Rmax > 0 denote the maximal reward and m the number of

3732

EXPLORATION IN RELATIONAL DOMAINS

unknown parameters of the MDP. m captures the complexity of the learning problem and cor-

responds to the number of parameters of the transition model T in our context. Let Vt(st) =
E[∑∞

k=0 γkrt+k |s0,a0,r0 . . . ,st] be the value function of the algorithm’s policy (which is non-stationary

and depends on its history), and V ∗ of the optimal policy. We define the sample complexity along

the lines of Kakade (2003):

Definition 1 Let ε > 0 be a prescribed accuracy and δ > 0 be an allowed probability of failure. The

expression η(ε,δ,m,γ,Rmax) is a sample complexity bound for the algorithm if independently of the

choice of s0, with probability at least 1−δ, the number of timesteps such that Vt(st)<V ∗(st)− ε is

at most η(ε,δ,m,γ,Rmax).

An algorithm with a sample complexity polynomial in 1/ε, log(1/δ), m, 1/(1−γ) and Rmax is called

probably approximately correct in MDPs, PAC-MDP (Strehl et al., 2009).

The seminal approach R-MAX (Brafman and Tennenholtz, 2002) provides a PAC-MDP solution

to the exploration-exploitation problem in unstructured enumerated state spaces: its sample com-

plexity is polynomial in the number of states and actions (Strehl et al., 2009). R-MAX generalizes

the fundamental approach E3 (Explicit Explore or Exploit) (Kearns and Singh, 2002) for which a

similar result has been established in a slightly different formulation: E3 finds a near-optimal policy

after a number of steps which is polynomial in the number of states and actions. Both E3 and R-

MAX focus on the concept of known states where all actions have been observed sufficiently often,

defined in terms of a threshold ζ. For this purpose, they maintain state-action counts κ(s,a) for all

state-action pairs. E3 (Algorithm 1) distinguishes explicitly between exploitation and exploration

phases. If E3 enters an unknown state, it takes the action it has tried the fewest times there (direct ex-

ploration). If it enters a known state, it tries to calculate a high-value policy within a model Mexploit

including all known states with their sufficiently accurate model estimates and a special self-looping

state s̃ with zero reward which absorbs unknown state-action pairs (assuming non-negative rewards

in the MDP). If it finds a near-optimal policy in Mexploit this policy is executed (exploitation). Oth-

erwise, E3 plans in a different model Mexplore which is equal to Mexploit except that all known states

achieve zero reward and s̃ achieves maximal reward. This “optimism in the face of uncertainty”

ensures that the agent explores unknown states efficiently (planned exploration). The value of the

known-state threshold ζ depends on several factors: the discount factor γ, the maximum reward

Rmax and the complexity m of the MDP defined by the number of states and actions as well as the

desired accuracy ε and confidence δ for the RL algorithm. The original formulation of E3 assumes

knowledge of the optimal value function V ∗ to decide for exploitation. Kearns and Singh discuss,

however, how this decision can be made without that knowledge. In contrast to E3, R-MAX decides

implicitly for exploration or exploitation and maintains only one model MR-MAX: it uses its model

estimates for the known states, while unknown state-action transitions lead to the absorbing state s̃

with maximum reward Rmax.

The theoretical guarantees of E3 and R-MAX are strong. In practice, however, the number of

exploratory actions becomes huge so that in case of the large state spaces of relational worlds, it

is unrealistic to meet the theoretical thresholds of state visits. To address this drawback, variants

of E3 for factored but propositional MDP representations have been explored (Kearns and Koller,

1999; Guestrin et al., 2002). Our evaluations will include variants of factored exploration strategies

where the factorization is based on grounded relational formulas. However, factored MDPs still do

not enable generalization over objects. In this paper, we are investigating exploration strategies for

relational representations and lift E3 and R-MAX to relational domains. This may strongly improve

3733

LANG, TOUSSAINT AND KERSTING

Algorithm 1 Sketch of E3

Input: State s

Output: Action a

1: if ∀a : κ(s,a)≥ ζ then ⊲ State is known

2: Plan in Mexploit with zero-reward for s̃

3: if resulting plan has value above some threshold then

4: return first action of plan ⊲ Exploitation

5: else

6: Plan in Mexplore with maximum reward for s̃ and zero-reward for known states

7: return first action of plan ⊲ Planned exploration

8: end if

9: else ⊲ State is unknown

10: return action a = argmina κ(s,a) ⊲ Direct exploration

11: end if

the exploration efficiency and the performance of a reinforcement learning agent. The key idea is

to generalize the state-action counts κ(s,a) of the original E3 algorithm over states, actions and

objects.

Sample complexity guarantees for more general MDPs can be developed within the KWIK

(knows what it knows) framework (Li et al., 2011). In a model-based RL context, a KWIK learning

algorithm can be used to estimate the unknown parts of the MDP. This learner accounts for its

uncertainty explicitly: instead of being forced to make a prediction (for instance, of the probability

of a successor state for a given state-action pair), it can instead signal its uncertainty about the

prediction and return a unique symbol ⊥. In this case, the (potentially noisy) outcome is provided

to the learner which it can use for further learning to increase its certainty. For required model

accuracy ε and confidence δ, a model class is called KWIK-learnable if there is a learner satisfying

the following conditions: (1) if the learner does not predict⊥, its prediction is ε-accurate, and (2) the

number of⊥-predictions is bounded by a polynomial function of the problem description (here, this

is m in addition to ε and δ). The KWIK-R-MAX algorithm (Li, 2009) uses a KWIK learner L to learn

the transition model T . The predictions of L define the known states in the sense of E3 and R-MAX:

a state is known if for all actions L makes ε-accurate predictions (with some failure probability) and

unknown otherwise (where L predicts ⊥). Where the learner is uncertain and predicts ⊥, KWIK-

R-MAX assumes a transition to s̃ with reward Rmax. Li (2009) shows that if T can be efficiently

KWIK-learned by L , then KWIK-R-MAX using L is PAC-MDP. The overall accuracy ε for the

sample complexity determines the required individual accuracies εT for the KWIK model learner

and εP for the planner. Hence, one can derive an efficient RL exploration algorithm by developing

an efficient KWIK learner L for the associated model learning problem.

2.4 Learning Generalizing Transition Models

The central learning task in model-based reinforcement learning is to estimate a transition model

T̂ from a set of experiences E = {(st ,at ,st+1)}
T−1
t=0 which can be used for decision-making and

planning. (We assume the reward function is provided to the agent.) An example of E is given in

Table 2. The learned model T̂ defines a conditional distribution P(s′ |s,a). Generally, our view is

that T̂ does not have to be a precise map of the truth—the point of a model is to abstract and partition

the space in such a way that this model is a good basis for accurate and efficient decision making.

3734

EXPLORATION IN RELATIONAL DOMAINS

E = {
grab(d): cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t),on(c,a), on(d,b) . . .

→ cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t),on(c,a), inhand(d) . . .

puton(t): cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t),on(c,a), inhand(d) . . .

→ cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t),on(c,a),on(d, t) . . .

grab(c): cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t), on(c,a), on(d, t) . . .

→ cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t), on(d, t), inhand(c) . . .
...

...

}

Table 2: The reinforcement learning agent collects a series E of relational state transitions consist-

ing of an action (on the left), a predecessor state (first line) and a successor state (second

line after the arrow). The changing state features are underlined. The agent uses such

experiences to learn a transition model resulting in a compression of the state transitions.

This can be achieved by compressing the experiences E in a compact model T̂ . Before describing

a specific learning algorithm, we discuss conceptual points of learning generalizing models from

experience. Compression of the experiences can exploit three opportunities:

• The frame assumption states that all state features which are not explicitly changed by an

action persist over time. This simplifies the learning problem by deliberately ignoring large

parts of the world.

• Abstraction allows to exploit the set of experiences efficiently by means of generalization. It

can be achieved with relational representations.

• Assuming uncertainty in the observations is essential to fit a generalizing and regularized

function. It allows to tradeoff the exact modeling of every observation (model likelihood)

with generalization capabilities and to find low-complexity explanations of our experience:

singleton events can be “explained away” as noise. In our point of view, the assumption of

uncertainty is crucial to get relational representations working; it “unleashes” the model and

opens the door for simplification, abstraction and compactification. Note that even in deter-

ministic domains, it may be advantageous to learn a probabilistic model because it can be

more abstract, more compact and neglect irrelevant details. In this sense, modeling uncer-

tainty can also be understood as regularization.

The generalization capability of T̂ and in turn the efficiency to learn it depend on the chosen

representation. In an enumerated representation, we need to collect experiences for each relevant

state-action pair (s,a) separately. In a factored propositional representation, one can—to some

degree—generalize over states and actions by means of the structure imposed by the state attributes,

but not over objects. For instance in Table 2, in a factored representation we need to learn the effects

for grab(d) and grab(c) independently. In contrast, a relational representation enables compact

transition models P(s′ |s,a) by using abstract formulas to generalize from concrete situations and

object identities. From a statistical learning point of view, the purpose of such relational logic

3735

LANG, TOUSSAINT AND KERSTING

grab(X) : on(X ,Y), ball(X), cube(Y), table(Z)

→







0.7 : inhand(X), ¬on(X ,Y)
0.2 : on(X ,Z), ¬on(X ,Y)
0.1 : noise

Table 3: Example NID rule for a robot manipulation scenario, which models to try to grab a ball X .

The cube Y is implicitly defined as the one below X (deictic referencing). X ends up in the

robot’s hand with high probability, but might also fall on the table. With a small probability

something unpredictable happens. Refer to Figure 1 for an example application.

Figure 1: The NID rule defined in Table 3 can be used to predict the effects of action

grab(speci f ic ball) in the situation on the left side. The right side shows the possible

successor states as predicted by the rule. The noise outcome is indicated by a question

mark and does not define a unique successor state.

descriptions is simply to provide complex feature descriptors. For instance in Table 2, both grab(d)
and grab(c) are used to learn one general model for the abstract action grab(X). In turn, the learned

model also models situations with previously unseen objects (which is impossible in enumerated

and factored propositional representations). In this sense, we view a relational transition model T̂

as a (noisy) compressor of the experiences E whose compactness enables generalization.

Transition models which generalize over objects and states play a crucial role in our relational

exploration algorithms. While our ideas work with any type of relational model that can be learned

from experience, for illustration and to empirically evaluate our ideas we employ noisy indetermin-

istic deictic (NID) rules which we present next.

2.4.1 NOISY INDETERMINISTIC DEICTIC RULES

An example of noisy indeterministic deictic (NID) rules (Pasula et al., 2007) is shown in Table 3

for our robot manipulation domain. Figure 1 depicts a situation where this rule can be used for

3736

EXPLORATION IN RELATIONAL DOMAINS

prediction. Formally, a NID rule r is given as

ar(X) : φr(X) →



















pr,1 : Ωr,1(X)
...

pr,mr
: Ωr,mr

(X)
pr,0 : Ωr,0

,

where X is a set of logic variables in the rule (which represents a (sub-)set of abstract objects). The

rule r consists of preconditions, namely that action ar is applied on X and that the abstract state

context φr is fulfilled, and mr+1 different abstract outcomes with associated probabilities pr,i > 0,

∑i=0 pr,i = 1. Each outcome Ωr,i(X) describes which literals are predicted to change when the

rule is applied. The context φr(X) and outcomes Ωr,i(X) are conjunctions of literals constructed

from the predicates in P as well as equality statements comparing functions from F to constant

values. The so-called noise outcome Ωr,0 subsumes all possible action outcomes which are not

explicitly specified by one of the other Ωr,i. This includes rare and overly complex outcomes which

are typical for noisy domains and which we do not want to cover explicitly for compactness and

generalization reasons. For instance, in the context of the rule depicted in Figure 1 a potential, but

highly improbable outcome is to grab the blue cube while pushing all other objects off the table:

the noise outcome accounts for this without the burden of explicitly stating it. The arguments of the

action a(Xa) may be a proper subset Xa⊂X of the variables X of the rule. The remaining variables

are called deictic references DR = X \Xa and denote objects relative to the agent or action being

performed.

So, how do we apply NID rules? Let σ denote a substitution that maps variables to constant

objects, σ : X → O. Applying σ to an abstract rule r(X) yields a grounded rule r(σ(X)). We say

a grounded rule r covers a state s and a ground action a if s |= φr and a = ar. Let Γ be our set

of ground rules and Γ(s,a) ⊂ Γ the set of rules covering (s,a). If there is a unique covering rule

rs,a ∈ Γ(s,a) with |Γ(s,a)| = 1, we use it to model the effects of action a in state s. We calculate

P(s′ |s,a) by taking all outcomes of rs,a (omitting subscripts in the following) into account weighted

by their respective probabilities,

P(s′ |s,a) = P(s′ |s,r) =
mr

∑
i=1

pr,i P(s′|Ωr,i,s)+ pr,0 P(s′ |Ωr,0,s),

where, for i > 0, P(s′ |Ωr,i,s) = I(s∧Ωr,i |= s′) is a deterministic distribution that is one for the

unique state constructed from s taking the changes of Ωr,i into account. (The function I(·) maps

logical truth values to 0 or 1.) The distribution given the noise outcome, P(s′ |Ωr,0,s), is unknown

and needs to be estimated. Pasula et al. use a worst-case constant bound pmin ≤ P(s′|Ωr,0,s) to lower

bound P(s′|s,a). If a state-action pair (s,a) does not have a unique covering rule r (including the

case that more than one rule covers the state-action pair, resulting in potentially conflicting predic-

tions), we use a noisy default rule rν which predicts all effects as noise: P(s′|s,rν) = P(s′ |Ωrν,0,s).
The ability to learn models of the environment from experience is a crucial requirement for au-

tonomous agents. The problem of learning rule-sets is in general NP-hard, but with suitable assump-

tions and restrictions efficiency guarantees on the sample complexity can be given for many learning

subtasks (Walsh, 2010). Pasula et al. (2007) have proposed a supervised batch learning algorithm

for complete NID rules based on ideas developed in inductive logic programming (Nienhuys-Cheng

and de Wolf, 1997). This algorithm learns the structure of rules (contexts and outcomes) as well as

3737

LANG, TOUSSAINT AND KERSTING

their parameters from experience triples E = {(st ,at ,st+1)
T−1
t=0 }, relying on the frame assumption.

Efficient exploration strategies to collect useful data E for learning, however, were not investigated

by Pasula et al.—this will be achieved with our proposed methods. The learning algorithm performs

a greedy search through the space of rule-sets, maintaining the thus far best performing rule-set. It

optimizes the tradeoff between maximizing the likelihood of the experience triples and minimizing

the complexity of the current hypothesis rule-set Γ by optimizing the scoring metric (Pasula et al.,

2007)

S(Γ) = ∑
(s,a,s′)

logP(s′ |s,rs,a)−α ∑
r∈Γ

PEN(r) , (1)

where rs,a is either the unique covering rule for (s,a) or the noisy default rule rν. α is a scaling

parameter that controls the influence of regularization. PEN(r) penalizes the complexity of a rule

and is defined as the total number of literals in r. The larger α is set, the more compact are the

learned rule-sets—and thus, the more general, but potentially also more uncertain and inaccurate.

For instance, if we set α = ∞, the resulting model will consist of only the default rule, explaining all

state transitions as noise. In contrast, if we set α = 0, the resulting model explains each experience

as accurately as possible, potentially overfitting and not generalizing the data. The learning algo-

rithm is initialized with a rule-set comprising only the noisy default rule rν and then iteratively adds

new rules or modifies existing ones using a set of search operators. More precisely, these search

operators take the current rule-set and the set of experiences as input, repeatedly select individual

rules, modify them with respect to the experiences, and thereby produce new rule-sets. If the best

new rule-set scores better than the current rule-set according to Equation (1), it becomes the new

rule-set maintained by the algorithm. For instance, the most complex search operator, called Ex-

plainExamples, creates new rules from experiences which are modeled by the default rule thus far.

First, it builds a complex specific rule for an experience; then, it tries to trim this rule to generalize

it to other experiences. Other search operators work directly on existing rules: they add new literals

to rule contexts or delete them from contexts, add new deictic references to rules in form of literal

sets or delete them, delete complete rules from rule-sets, or generalize comparison literals involving

function values in rule contexts.

The noise outcome of NID rules is crucial for learning: it permits the iterative formulation

of the learning algorithm as the corresponding noisy default rule covers all experiences without

unique covering rule so far; and more importantly, it avoids overfitting by refusing to model rare

and overly complex experiences. This advantage has been demonstrated empirically by Pasula et al.

(2007). Its drawback is that the successor state distribution P(s′ |Ωr,0,s) is unknown. To deal with

this problem, the learning algorithm uses a lower bound pmin to approximate this distribution, as

described above. In our experience, while the resulting rule-sets are robust to minor changes in the

two parameters pmin and α, the concrete choice for their values is important for learning expressive

rule-sets, and their mutual influence needs to be taken into account. These parameters, however,

cannot be optimized by the rule-learning algorithm itself: the required degree of rule compactness

is not only determined by the complexity of the modeled domain (in terms of the vocabulary size,

stochasticity and context sensitivity of actions), but also by the purpose the rules have to serve (for

example, the required accuracy for planning). Nonetheless, in our experiments no significant efforts

were necessary to find appropriate values for pmin and α: preliminary testings of a small number

of typical value-combinations were sufficient to set the parameters effectively for each domain. All

3738

EXPLORATION IN RELATIONAL DOMAINS

other choices in the learning algorithm (in particular, the choice of search operators and their order)

were the same across all reported experiments.

The rule learning algorithm of Pasula et al. uses greedy heuristics in its attempt to learn complete

rules. Hence, one cannot give guarantees on its efficiency, correctness or convergence. It has been

shown empirically, however, that learned NID rules provide accurate transition models in noisy

robot manipulation domains (Pasula et al., 2007; Lang and Toussaint, 2010). In this paper, we show

further that the transition dynamics of many domains of the international planning competition can

be learned reliably with NID rules. In all our investigated domains, independent learning runs

converged to the same or very similar rule-sets; in particular, the learned rule contexts are usually

the same.

2.5 Planning with Probabilistic Relational Rules

Model-based RL requires efficient planning for exploitation and planned (directed) exploration. The

semantics of NID rules allow one to find a “satisficing” action sequence in relational domains that

will lead with high probability to states with large rewards. In this paper, we use the PRADA al-

gorithm (Lang and Toussaint, 2010) for planning in grounded relational domains. Empirical results

have shown that PRADA finds effective and reliable plans in difficult scenarios. PRADA grounds a

given set of abstract NID rules with respect to the objects in the domain and converts the grounded

rules to factored dynamic Bayesian networks (DBNs). The random variables (nodes) of the DBNs

represent the state literals, actions, rules, rule contexts and outcomes and rewards at different time-

steps; factors on these variables define the stochastic transition dynamics according to the NID

rules. For planning, PRADA samples sequences of actions in an informed way taking into account

the effects of previous actions. To evaluate an action sequence, it uses fast approximate inference

to calculate posterior beliefs over states and rewards. If exact instead of approximate inference is

used, PRADA is guaranteed to find the optimal plan with high probability given a sufficient number

of samples (Lang, 2011). PRADA can plan for different types of rewards, including conjunctions

of abstract and grounded literals. Thus, it can be used in model-based RL for both exploiting the

learned model to plan for high-reward states as well as for exploring unknown states and actions

using the Rmax reward. The number of sampled action sequences trades off computation time and

plan quality: the more samples are taken, the higher are the chances to find a good plan. In our

experiments, we set this number sufficiently high to ensure that good plans are found with high

probability. If we know the maximum reward, we can determine PRADA’s planning horizon for

a desired level of accuracy from the discount factor γ of the MDP: we can calculate after which

time-step the remaining maximally possible rewards can be ignored.

3. Exploration in Relational Domains

Relational representations enable generalization of experiences over states, actions and objects. Our

contribution in this paper are strategies to exploit this for exploration in model-based reinforcement

learning. First, we discuss the implications of a relational knowledge representation for exploration

on a conceptual level (Section 3.1). We show how to quantify the knowledge of states and actions by

means of a generalized, relational notion of state-action counts, namely a relational count function.

This opens the door to a large variety of possible exploration strategies. Thereafter, we propose

a relational model-based reinforcement learning framework lifting the ideas of the algorithms E3

and R-MAX to symbolic representations (Section 3.2). Then, we discuss theoretical guarantees

3739

LANG, TOUSSAINT AND KERSTING

concerning the exploration efficiency in our framework (Section 3.3). Finally, we present a concrete

algorithm in this framework which uses some of the previously introduced exploration strategies

(Section 3.4), including an illustrative example (Section 3.5).

3.1 Relational Count Functions for Known States and Actions

The theoretical derivations of the efficient non-relational exploration algorithms E3 and R-MAX

show that the concept of known states is crucial. On the one hand, the confidence in estimates in

known states drives exploitation. On the other hand, exploration is guided by seeking for novel (yet

unknown) states and actions. For instance, the direct exploration phase in E3 chooses novel actions,

which have been tried the fewest; the planned exploration phase seeks to visit novel states, which

are labeled as yet unknown.

In the original E3 and R-MAX algorithms operating in an enumerated state space, states and

actions are considered known based directly on their counts: the number of times they have been

visited. In relational domains, we should go beyond simply counting state-action visits to estimate

the novelty of states and actions:

• The size of the state space is exponential in the number of objects. If we base our notion of

known states directly on visitation counts, then the overwhelming majority of all states will be

labeled yet-unknown and the exploration time required to meet the criteria for known states

of E3 and R-MAX even for a small relevant fraction of the state space becomes exponential

in the number of objects.

• The key benefit of relational learning is the ability to generalize over yet unobserved in-

stances of the world based on relational abstractions. This implies a fundamentally different

perspective on what is novel and what is known and permits qualitatively different exploration

strategies compared to the propositional view.

We propose to generalize the notion of counts to a relational count function that quantifies

the degree to which states and actions are known. Similar to using mixtures (e.g., of Gaussians) for

density modeling, we model a count function over the state space as a linear superposition of features

fk (“mixture components”) such that visitation of a single state generalizes to “neighboring” states—

where “neighboring” is defined by the structure of the features fk. The only technical difference

between count functions and mixture density models is that our count functions are not normalized.

Theoretical guarantees on the convergence and accuracy for this model are discussed in Sec-

tion 3.3. Given sets of features fk and mixture weights wk, a count function over states s can be

written as

κ(s) = ∑
k

wk fk(s) .

The state features fk can be arbitrary. An example for a relational feature are binary tests that

have value 1 if some relational query is true for s; otherwise they have value 0. Estimating such

mixture models is a type of unsupervised learning or clustering and involves two problems: finding

the features fk themselves (structure learning) and estimating the feature weights wk (parameter

learning).

While the use of relational features offers a great compactness and generalization it complicates

the feature selection (structure learning) problem: there are no prior restrictions on the length and

3740

EXPLORATION IN RELATIONAL DOMAINS

complexity of features and hence, we have essentially infinitely many features to choose from. The

longer a relational feature is (e.g., a long conjunction of abstract literals) and the more variables it

contains, the larger is the number of possible ways to bind the variables and the larger is the set

of refined features that we potentially have to consider when evaluating a feature. In addition, the

space of the instances s is very large in our case. Recall that even very small relational models

can have hundreds of ground atoms and it would be impossible to represent all possible states. For

instance, for just a single binary relation and 10 objects there would be 100 ground atoms and hence

2100 distinct states, which is clearly intractable. Thus, we need to focus on a compact, structured

representation of the count functions. Furthermore, we only have a finite set of positive (that is,

experienced) states from which we have to generalize to other states, while taking care not to over-

generalize wrongly. Note that in contrast the original E3 and R-MAX algorithms for unstructured

domains do not face this problem as they do not generalize experiences to other states. Thus, we

essentially face the problem of structure learning from positive examples only (Muggleton, 1997).

This is more difficult than the traditional setting considered in relational learning that additionally

assumes that negative (impossible) examples are given.

If the features are given, however, the estimation of the count function becomes simpler: only

the weights need to be learned. For instance, in 1-class SVMs for density estimation assumptions

about the feature structure are embedded in the kernel function; in the mixture of Gaussians model,

the functional form of Gaussians is given a-priori and provides the structure. We propose a “patch

up” approach in this paper. We examine different choices of features in the relational setting whose

weights can be estimated based on empirical counts. While they are only approximations, we then

show that we can “patch up” and improve some of these approximations, namely the context-based

features (see below) through learning NID rules. In our relational model-based RL algorithms as

well as in our evaluation, we focus on context-based features. In other words, our methods implicitly

solve both structure and parameter learning from positive examples only.

Let us now introduce different choices of features for the estimation of relational count func-

tions. These imply different approaches to quantify known states and actions in a relational RL

setting. We focus on a specific type of features, namely queries q∈Q. Queries are simply relational

formulas, for instance conjunctions of ground or abstract literals, which evaluate to 0 or 1 for a given

state s. We discuss different choices of Q in detail below including examples. Our count functions

use queries q in combination with the set of experiences E of the agent and the estimated transition

model T̂ . Given a set Q of queries we model the state count function as

κQ(s) = ∑q∈Q cE (q) I(∃σ : s |= σ(q)) (2)

with cE (q) = ∑(se,ae,s′e)∈E I(∃σ : se |= σ(q)) . (3)

This function combines the confidences of all queries q∈Q which are fulfilled in state s. The second

term in Equation (2) examines whether query q is fulfilled in s: the substitution σ is used to ground

potentially abstract queries; the function I(·) maps logical statements to 1 if they are satisfied and

to 0 otherwise. cE (q), the first term in Equation (2), is an experience-count of query q: it quantifies

the number of times query q held in previously experienced predecessor states in the agent’s set

of observed state transitions E = {(st ,at ,st+1)}
T−1
t=1 . Overall, a state s has a high count κQ(s) if

it satisfies queries q ∈ Q with large experience-counts cE (q). This implies that all states with low

κQ(s) are considered novel and should be explored, as in E3 and R-MAX. The model for state-action

count functions is analogous. In the following, we discuss different choices for queries q and the

accompanying count estimates which emphasize different aspects of relational data. We use the

3741

LANG, TOUSSAINT AND KERSTING

three states shown in Table 1 as our running example: we assume that our experiences consist of

exactly State 1, that is E = {(s1,a1,s
′
1)} (the action a1 and the successor state s′1 are ignored by

κQ(s)), while State 2 and State 3 have not been experienced.

Enumerated: Let us first consider briefly the propositional enumerated setting. We have a

finite enumerated state space S and action space A. The set of queries,

Qenum = {s |∃(se,ae,s
′
e) ∈ E : se = s} ,

corresponds to predecessor states s∈ S which have been visited in E . Thus, queries are conjunctions

of positive and negated ground atoms which fully describe a state. This translates directly to the

count function

κenum(s) = cE (s) , with cE (s) = ∑(se,ae,s′e)∈E
I(se = s) .

The experience-count cE (q) in the previous equation counts the number of occasions state s has been

visited in E (in the spirit of Thrun, 1992). There is no generalization in this notion of known states.

Similar arguments can be applied on the level of state-action counts κ(s,a). As an illustration, in

our running example of Table 1 both State 2 and State 3 are equally unknown and novel: both are

not the experienced State 1.

Literal-based: Given a relational structure with the set of logical predicates P , an alternative

approach to describe what are known states is based on counting how often a (ground) literal (a po-

tentially negated atom) has been observed true or false in the experiences E (all statements equally

apply to functions F , but we neglect this case here). A literal l for a predicate P ∈ P containing

variables is abstract in that it represents the set of all corresponding ground, that is variable-free,

literals for P. Ground literals then play the role of the traditional factors used in mixture models.

First, we consider ground literals l ∈ LG with arguments taken from the domain objects O. This

leads to the set of queries Qlit = LG and in turn to the count function

κlit(s) = ∑l∈LG cE (l) I(s |= l)

with cE (l) := ∑(se,ae,s′e)∈E I(se |= l).

Each query l ∈ LG examines whether l has the same truth values in s as in experienced states. This

implies that a state is considered familiar (with κlit(s) > 0) if a ground literal that is true (false)

in this state has been observed true (false) before. Thus abstraction over states can be achieved by

means of ground literals. We can follow the same approach for abstract literals LA and set Qlit =LA.

For l ∈ LA and a state s, we examine whether there are groundings of the logical variables in l such

that s covers l. More formally, we replace s |= l by ∃σ : s |= σ(l). For instance, we may count how

often a specific blue ball was on top of some other object. If this was rarely the case this implies

a notion of novelty which guides exploration. For example, in Table 1 State 1 and State 3 share

the ground literal on(o2, t) while this literal does not hold in State 2. Thus, if Qlit = {on(o2, t)}
and State 1 is the sole experienced state, then State 3 is perceived as better known than State 2. In

contrast, if we use the abstract query inhand(X) (expressing there was something held inhand) and

set Qlit = {inhand(X)}, then State 3 is perceived as more novel, since in both State 1 and State 2

some object was held inhand. Note that this second query abstracts from the identities of the inhand

held objects.

Context-based: Assume that we are given a finite set Φ of contexts, which are queries con-

sisting of formulas over predicates and functions. While many relational knowledge representations

3742

EXPLORATION IN RELATIONAL DOMAINS

have some notion of context or rule precondition, in our running example of NID rules these may

correspond to the set of NID rule contexts {φr}. These are learned from the experiences E and have

specifically been optimized to be a compact context representation (cf. Section 2). Given a set Φ of

such queries, setting QΦ = Φ results in the count function

κΦ(s) = ∑φ∈Φ cE (φ) I(∃σ : s |= σ(φ))

with cE (φ) = ∑(se,ae,s′e)∈E I(∃σ : se |= σ(φ)).

cE (φ) counts in how many experiences E the context respectively query φ was covered with ar-

bitrary groundings. Intuitively, contexts may be understood as describing situation classes based

on whether the same abstract prediction models can be applied. Taking this approach, states are

considered novel if they are not covered by any existing context (κΦ(s) = 0) or covered by a context

that has rarely occurred in E (κΦ(s) is low). That is, the description of novelty which drives explo-

ration is lifted to the level of abstraction of these relational contexts. Similarly, we estimate a count

function for known state-action pairs based on state-action contexts. For instance, in the case of a

set Γ of NID rules, each rule defines a state-action context, resulting in the count

κΦ(s,a) = ∑r∈Γ cE (r) I(r = rs,a), with cE (r) := |E(r)|,

which is based on counting how many experiences are covered by the unique covering rule rs,a for

a in s. E(r) are the experiences in E covered by r, E(r) = {(s,a,s′) ∈ E |r = rs,a}. Thus, the

number of experiences covered by the rule rs,a modeling (s,a) can be understood as a measure of

confidence in rs,a and determines κΦ(s,a). We will use κΦ(s,a) in our proposed algorithm below.

In the example of Table 1, assume in State 1 we perform puton(o3) successfully, that is, we put

the inhand cube o4 on o3. From this experience, we learn a rule for the action puton(X) with the

context φ = clear(X)∧ inhand(Y). Thereafter, State 3 is perceived as more novel than State 2: the

effects of puton(o3) can be predicted in State 2, but not in State 3.

Similarity-based: Different methods to estimate the similarity of relational states exist. For

instance, Driessens et al. (2006) and Halbritter and Geibel (2007) present relational reinforcement

learning approaches which use relational graph kernels to estimate the similarity of relational states.

These can be used to estimate relational counts which, when applied in our context, would readily

lead to alternative notions of novelty and thereby exploration strategies. This count estimation

technique bears similarities to Metric E3 (Kakade et al., 2003). Applying such a method to model

κ(s) from E implies that states are considered novel (with low κ(s)) if they have a low kernel value

(high “distance”) to previous explored states. Let k(·, ·) ∈ [0,1] denote an appropriate kernel for the

queries q∈Q, for instance based on relational graph kernels. We replace the hard indicator function

I(∃σ : s |= σ(q)) in Equation (2) by the kernel function, resulting in the more general kernel-based

count function

κk,Q(s) = ∑q∈Q cE (q) k(s,q) .

If one sets Q = {s |s ∈ S} to the set of all states, the previous count function measures the distance

to all observed predecessor states multiplied by experience-counts. In the example of Table 1 with

E = {(s1,a1,s
′
1)}, if we use relational graph kernels, the isomorphism of the graph representations

of State 1 and State 2 leads to a large kernel estimate k(s1,s2), while the different graph structure of

State 3 causes k(s1,s3) to be small, therefore κk,Q(s2)> κk,Q(s3).

3743

LANG, TOUSSAINT AND KERSTING

The above approaches are based on counts over the set of experiences E . As a simple extension,

we propose using the variability within E . Consider two different series of experiences E1 and E2

both of size n. Imagine that E1 consists of n times the same experience, while the experiences in E2

differ. For instance, E1 might list repeatedly grabbing the same object in the same context, while

E2 might list grabbing different objects in varying conditions. E2 has a higher variability. Although

the experience-counts cE1
(q) and cE2

(q) as defined in Equation (3) are the same, one might be

tempted to say that E2 confirms q better as the query q succeeded in more heterogeneous situations,

supporting the claim of generalization. We formalize this by redefining the experience-counts in

Equation (3) using a distance estimate d(s,s′) ∈ [0,1] for two states s and s′ as

cV
E (q) = ∑

(st ,at ,s
′
t)∈E

I(∃σ : st |= σ(q)) ·δ(st ,E
(q,t)) ,

with E
(q,t) = {(se,ae,s

′
e) ∈ E |∃σ : se |= σ(q)∧ e < t}

and δ(s,E) = min
(se,ae,s′e)∈E

d(s,se) .

The experience-count cV
E
(q) weights each experience based on its distance δ(st ,E

(q,t)) to prior ex-

periences (while the original cE (q) assigns all experiences the same weight irrespective of other

experiences). Here, the measure d(s,s′) computes the distance between two ground states, but

calculations on partial or (partially) lifted states are likewise conceivable. To compute d(s,s′),
a kernel k(s,s′) ∈ [0,1] as above might be employed, d(s,s′) ∝ 1− k(s,s′), for instance using a

simple distance estimate based on least general unifiers (Ramon, 2002). For illustration, consider

again the states in Table 1. Assume two series of experiences E1 = {(s1,a1,s
′
1),(s2,a2,s

′
2)} and

E2 = {(s1,a1,s
′
1),(s3,a3,s

′
3)} and the query q = on(X ,Y)∧ ball(X) (that there is a ball on-top of

some other object). All State 1, State 2 and State 3 cover this query, therefore the standard counts

for E1 and E2 according to Equation (3) are the same, cE1
(q) = cE2

(q). As State 1 and State 2 share

the same structure, however, the variability within E1 is smaller than within E2. Thus, E2 provides

more heterogeneous evidence for q and therefore cV
E2
(q)> cV

E1
(q).

3.2 Relational Exploration Framework

The approaches to estimate relational state and action counts which have been discussed above open

a large variety of possibilities for concrete exploration strategies. In the following, we derive a re-

lational model-based reinforcement learning framework we call REX (short for relational explorer)

in which these strategies can be applied. This framework is presented in Algorithm 2. REX lifts E3

and R-MAX to relational exploration.

At each time-step, the relational explorer performs the following general steps:

1. It adapts its estimated relational transition model T̂ with the set of experiences E .

2. Based on E and T̂ , it estimates the count function for known states and actions, κ(s) and

κ(s,a). For instance, T̂ might be used to provide formulas and contexts to estimate a specific

relational count function.

3. The estimated count function is used to decide for the next action at based on the strategy of

either E3 or R-MAX.

In the case of relational E3, the phase-ordering is exactly the same as in the original E3: if the

current state st is known, exploitation is tried and if exploitation fails (the planner does not find

3744

EXPLORATION IN RELATIONAL DOMAINS

Algorithm 2 Relational Exploration (REX)

Input: Start state s0, reward function R, confidence threshold ζ

1: Set of experiences E = /0

2: for t=0,1,2 . . . do

3: Update transition model T̂ according to E

4: Estimate κ(s) and κ(s,a) from E and T̂ ⊲ Relational representation enables generalization

5: if E3-exploration then ⊲ E3-exploration

6: if ∀a ∈ A : κ(st ,a)≥ ζ then ⊲ State is known→ uses relational generalization

7: Plan in Mexploit with zero reward for s̃ ⊲ uses relational generalization

8: if resulting plan has value above some threshold then

9: at = first action of plan ⊲ Exploitation

10: else

11: Plan in Mexplore with maximum reward for s̃ and zero-reward for known states

12: ⊲ uses relational generalization

13: at = first action of plan ⊲ Planned exploration

14: end if

15: else ⊲ State is unknown

16: at = argmina κ(st ,a) ⊲ Direct exploration→ uses relational generalization

17: end if

18: else ⊲ R-MAX-exploration

19: Plan in MR-MAX with maximum reward for s̃ and given reward R for all known states

20: ⊲ uses relational generalization

21: at = first action of plan

22: end if

23: Execute at

24: Observe new state st+1

25: Update set of experiences E ← E ∪{(st ,at ,st+1)}
26: end for

a policy with a sufficiently high value), planned exploration to unknown states is undertaken;

otherwise (if the current state st is not known), direct exploration is performed. Like in the

original non-relational E3, the decision for exploitation in relational E3 assumes knowledge

of the optimal values. To remove this assumption, the relational explorer can instead attempt

planned exploration first along the lines described by Kearns and Singh for the original E3.

In the case of relational R-MAX, a single model is built in which all unknown states according

to the estimated counts lead to the absorbing special state s̃ with reward Rmax.

4. Finally, the action at is executed, the resulting state st+1 observed and added to the experiences

E , and the process repeated.

The estimation of relational count functions for known states and actions, κ(s) and κ(s,a), and the

resulting generalization over states, actions and objects play a crucial role at several places in the

algorithm; for instance, in the case of relational E3,

• to decide whether the current state is considered known or novel;

• to determine the set of known states where to try to exploit;

• to determine the set of both novel and known states in planned exploration to decide for target

states and plan-through states;

3745

LANG, TOUSSAINT AND KERSTING

• and to determine which action to execute in direct exploration where the least known action

with the lowest κ(s,a) is chosen; this combines the original E3 (choosing the action with the

fewest “visits”) with relational generalization (defining “visits” by means of state abstraction).

The parameter ζ in our relational exploration framework REX defines the threshold to decide whether

states and actions are known or unknown. For the original E3 and R-MAX algorithms for enumer-

ated state and action spaces, a value for ζ can be derived such that efficient exploration in polynomial

time can be guaranteed. This derivation is closely tied to the enumerated representation of state and

action spaces, not straightforward to apply in practice and will lead to overly large thresholds (see

Section 2.3). In the next subsection, we discuss how to develop theoretical guarantees on the sample

complexity for relational domains within our REX framework.

3.3 Theoretical Guarantees on the Sample Complexity

The original R-MAX algorithm operating in enumerated state and action spaces is PAC-MDP: its

sample complexity is polynomial in the number of states and actions (Strehl et al., 2009). A similar

result for E3 has been established in a slightly different formulation: E3 finds a near-optimal policy

after a number of steps which is polynomial in the number of states and actions. In the following, we

briefly establish conditions for which similar guarantees can be made in our relational exploration

framework REX using count functions: we state simple conditions for a KWIK learner to “match”

with the used count function such that REX using this learner is PAC-MDP. This clarifies also a

relation to Walsh’s assumptions about mutually exclusive contexts in his KWIK learning setup.

Let Eκ(s,a)⊆E be the subset of experiences such that any experience (st ,at ,st+1)∈Eκ(s,a) would

lead to κ(s,a) > 0 given κ(s,a) = 0 before. Recall that m is the number of unknown parameters

of the (relational) transition model T . As described in Section 2.3, we distinguish two different

accuracy levels εP and εT which both influence the overall accuracy ε in the sample complexity of

a PAC-MDP reinforcement learning algorithm (Definition 1). An εP -accurate planner finds plans

a whose value differs by at most εP from the value of the optimal plan a∗: Q(s,a) > Q(s,a∗)− εP.

An εT -accurate model learner L makes predictions ŷ = L(x) for input x which differ by at most εT

from the true value y: | ŷ− y | < εT . We get the following lemma on the exploration efficiency of

REX:

Lemma 2 Assume REX uses an εP-accurate planner and a KWIK learner L to learn the transition

model T̂ . If for a given probability of failure δ ∈ (0,1) REX employs a count function κ(s,a) such

that it holds with confidence at least 1−δ that

∀s,a : κ(s,a)≥ ζ ⇒ L(s,a) is εT -accurate and L(s,a) 6=⊥ and (4)

|Eκ(s,a)| ≥ polynomial(m) ⇒ κ(s,a)≥ ζ , (5)

then REX in the R-MAX variant is PAC-MDP.

Proof First assume we had equivalence ⇐⇒ in Equation (4). Then, for the R-MAX option in

Algorithm 2, this corollary is a direct implication of the original results for KWIK-R-MAX (Li,

2009): in line 19 of Algorithm 2 the condition κ(s,a) ≥ ζ, using the count function to decide

knownness of states and actions, is identical to using the KWIK learner condition L(s,a) 6= ⊥. To

show the lemma with one-sided implication in Equation (4), we define a second learner L ′ with

κ(s,a)< ζ⇒ L ′(s,a) =⊥ and L ′(s,a) 6=⊥⇒ L ′(s,a) = L(s,a) for all s,a. L ′ is a KWIK learner

3746

EXPLORATION IN RELATIONAL DOMAINS

due to the condition in Equation (5) and for L ′ equivalence in Equation (4) holds.

The condition κ(s,a) ≥ ζ ⇒ L(s,a) 6= ⊥ describes a “matching” between the KWIK learner

and the definition of the count function. Motivated by Walsh’s concrete relational KWIK learner

and our concrete REX instance described below, we mention another, more special case condition

for a KWIK learner to match with a count function.

Corollary 3 Assume REX uses an εP-accurate planner and a KWIK learner L to learn the tran-

sition model T̂ . If it employs a count function κQ(s,a) defined as in Equation (2) indirectly via a

set Q = {q1, ..,qn} of queries where the queries are mutually exclusive (qi(s,a) = true→ ∀k 6= i :

qk(s,a) = false) and with confidence at least 1−δ

∀q ∈ Q : cE (q)≥ ζ ⇒ ∀s,a with q(s,a) = true :

L(s,a) is εT -accurate and L(s,a) 6=⊥

and cE (q)≥ polynomial(m) ⇒ cE (q)≥ ζ ,

then REX in the R-MAX variant is PAC-MDP.

The corollary follows directly from the previous lemma since if κQ(s,a)≥ ζ, then there is a q ∈ Q

with ∃σ : s∧a |= σ(q) and cE (q)≥ ζ.

This special case is interesting since Walsh assumes such mutually exclusive contexts in his

learning algorithms. Similarly, the learning algorithm of Pasula et al. tries to ensure that experienced

states map to unique contexts (thus, heuristic disjoint queries). Therefore, in those special cases of

mutually exclusive queries, a KWIK learner that matches a count function has to ensure to respond

only a polynomial number of times with ⊥ for each abstract context.

The above results are limited to REX in the R-MAX variant. Analogous to KWIK-R-MAX, one

may conceive KWIK-E3 which uses a KWIK learner L to estimate a transition model T̂ , relating

to REX in the E3 variant. This generalizes the original E3 by replacing the counts on states and

actions with the certainty estimate of L : if L(s,a) = ⊥, then this state-action pair is considered

unknown with a transition to the special state s̃ (which has reward 0 in Mexploit and reward Rmax

in Mexplore). While in our experiments we investigate both REX in the R-MAX and E3 variant, a

proof that KWIK-E3 is PAC-MDP is beyond the scope of this paper. To our knowledge, plain E3

has not been shown to be strictly PAC-MDP in the sense of Definition 1, either. It is informative

to see why we cannot make a proof analogous to the one of Li (2009) for KWIK-R-MAX. Li’s

proof is based on a theorem of Strehl et al. (2009) tailored to R-MAX-style exploration. For a

given exploration algorithm, this theorem defines sufficient conditions on the value function of the

algorithm’s policy which ensure that the algorithm is PAC-MDP: the “optimism” condition states

that this value function is lower bounded by the optimal value function in the true MDP—hence, the

algorithm never misses the opportunity to harvest large rewards; the “accuracy” condition states that

the value function is upper bounded by the value in a model with the true transitions for the known

states—hence, the transitions need to be well estimated by the algorithm. These sufficient conditions

cannot be transferred directly to E3 since in E3 there is not a single value function consistent with

the policy that would fulfill these upper and lower bounds. In the exploration mode, E3 plans more

aggressively than R-MAX for unknown states from a known state and ignores rewards in the known

states, thus potentially underestimating the expected value instead of overestimating it as R-MAX

3747

LANG, TOUSSAINT AND KERSTING

does. Nonetheless, it appears likely that KWIK-E3 is PAC-MDP, but a proof has to be made along

different lines than for KWIK-R-MAX.

In this subsection, we have established general conditions under which REX is a PAC-MDP

reinforcement learning algorithm. In the next subsection, we use these conditions to take a closer

look at the exploration efficiency of the concrete REX instance we investigate in our experiments.

3.4 A Model-Based Reinforcement Learner for Relational Domains with Fully Unknown

Transition Dynamics

Our relational exploration framework REX is independent of the concrete choices for the transition

model representation and learner, the planning algorithm and the relational count function. Here,

we propose a concrete instance which we will use in our evaluation. To our knowledge, this instance

of REX is the first empirically evaluated relational model-based reinforcement learning algorithm

which learns and exploits full-fledged models of transition dynamics. It uses NID rules to learn a

transition model T̂ , plans with the PRADA algorithm and uses the contexts of learned NID rules to

estimate the count functions κΦ(s) and κΦ(s,a). The rule contexts are learned from experience and

provide compact descriptions of situation classes. Thus, a state is known if all actions in this state

are known. An action is known if there is sufficient confidence in its covering rule. The confidence

of a rule depends on the number of experiences in E it explains, as described above. Our context-

based approach to estimate the count function is simple, but empirically effective. We are certain

that more elaborate and efficient exploration strategies can be derived from the above principles in

the future.

Given these concrete instantiations of the learner, planner and count function components we re-

consider briefly the theoretical guarantees. The following corollary shows under which assumptions

this REX instance is PAC-MDP.

Corollary 4 If PRADA uses exact inference and the unknown true transition model T can be mod-

eled by means of NID rules with mutually exclusive contexts, without deictic references and without

the special noise outcomes, then there exists a learner L for such NID rules such that REX in the

R-MAX variant with PRADA, L and a context-based count function κΦ(s,a) is PAC-MDP.

Proof To learn such NID rules, REX can use a KWIK learner built from a combination of the

KWIK learners for the individual rule components proposed by Walsh (2010). If we assume exact

inference, PRADA can be adapted to produce εP-accurate plans. Then, the corollary follows di-

rectly from Corollary 3.

Corollary 4 assures us that the exploration strategy of our REX instance is theoretically justified.

However, the practicability of our REX instance relies on properties of the planner and learner com-

ponents which violate the assumptions of the corollary. In relational domains, we easily have to

deal with thousands if not millions of random variables. Unfortunately, exact propositional infer-

ence has exponential cost in the treewidth of the ground model, making it infeasible for most real-

world applications. Even recent advances in lifted exact inference approaches—handling whole

sets of indistinguishable variables and factors together—are still extremely complex, generally do

not scale to realistic domains, and have only been applied to very small artificial problems. Thus,

using approximate inference in PRADA is crucial for the efficiency of planning. While this makes

it difficult to provide optimality guarantees, in practice PRADA produces reliably effective plans

in difficult noisy settings if its number of action-sequence samples is sufficiently high (Lang and

3748

EXPLORATION IN RELATIONAL DOMAINS

Toussaint, 2010). Using approximate inference also implies that our REX instance plans through

partially unknown states. In general, it is unclear how to efficiently build and exclusively use an

MDP of known relational states. However, in each state PRADA, and thus REX, only takes known

actions for planning into account: PRADA only considers those actions in a state for which it has a

confident unique covering rule.

Furthermore, concerning the learning component of REX, deictic references and noise outcomes

are expressive language constructs which are essential for learning and modeling the dynamics in

practical applications (Pasula et al., 2007). There are, however, no KWIK-learners or other algo-

rithms with theoretical guarantees for learning full NID rules. As noted by Walsh (2010) (p. 64),

aside from not covering deictic references, his learning algorithms “would be inappropriate in a

schema that allowed for ‘noise’ or ‘miscellaneous’ outcomes. [...] In such a situation, a heuristic

scoring function that tries to minimize the weights on the noise term is likely a better solution.” The

heuristic learning algorithm for NID rules by Pasula et al. (2007) which we use in our evaluation

cannot guarantee that the learned rules, and thus our learned count functions of known states and ac-

tions, converge to near-optimal models. As only contexts of rules with sufficient empirical evidence

are used to estimate the count functions, however, the decisions for knowing states and actions are

stable in practice. In our investigated domains, independent learning runs always converged to the

same or very similar rule-sets and hence to the same learned count functions.

3.5 Illustrative Example

In Table 4, we present an example of an agent using the instance of our REX framework de-

scribed in Section 3.4 with the E3 strategy in a robot manipulation domain. In the beginning, the

robot is given a relational vocabulary to describe the world on a symbolic level. It has the ability to

convert its perceptions into the corresponding symbolic representation. Furthermore, it can execute

two different types of motor primitives for grabbing objects and putting them on other objects. It

can trigger these motor primitives by the symbolic actions grab(X) and puton(X). These actions

are always executed and their effects depend on the context. Thus, in the example scenario with

objects O = {o1,o2,o3,o4,o5, t} the action space of the robot consists of the actions A = { puton(t),
puton(o1), puton(o2), puton(o3), puton(o4), puton(o5), grab(o1), grab(o2), grab(o3), grab(o4),
grab(o5) }. See Toussaint et al. (2010) for a corresponding real-world robotic setup.

The robot is told to build a tower from the objects on the table. The robot does not know,

however, how its actions change the state of the world. It has to learn this from experience and use

its insights to achieve its goal—a prototypical model-based reinforcement learning situation. The

robot will apply relational exploration to learn as much as possible about the dynamics of its world

in as little time as possible. It uses NID rules to learn and represent the transition dynamics. Based

on the contexts of these NID rules Q= {Φi}i and its experiences E , it estimates the counts of known

states and actions as described above. Here, we assume the robot is confident about a rule if this

rule explains at least two of its experiences and hence set ζ = 2.

At t=0, the robot starts with zero knowledge about the transition dynamics. As s0 is unknown,

it performs a direct exploration action. All actions are equally unknown so it chooses randomly

to grab cube o1 and learns rule r1 from the experience (s0,a0,s1). At t = 1, although all actions

in s1 and thus s1 itself are unknown, the robot is less uncertain about the grab(·) actions for the

objects lying on the table: these are covered by the rule r1 which explains its single experience. It

3749

LANG, TOUSSAINT AND KERSTING

t=0

No rule learned yet.

Direct exploration

Next action: a0 = grab(o1)

t=1

Learned rule r1

grab(X) : on(X ,Y)

→

{

1.0 : inhand(X), ¬on(X ,Y)
0.0 : noise

Direct exploration

Next action: a1 = puton(o4)

t=2

Learned rule r2

puton(X) : inhand(Y), table(Z)

→

{

1.0 : on(Y,Z), ¬inhand(Y)
0.0 : noise

Direct exploration

Next action: a2 = puton(o3)

t=3

Learned rule r3

puton(X) : inhandNil()

→

{

1.0 : −
0.0 : noise

Direct exploration

Next action: a3 = grab(o3)

t=4

Confirmed rule r1

grab(X) : on(X ,Y)

→

{

1.0 : inhand(X), ¬on(X ,Y)
0.0 : noise

Direct exploration

Next action: a4 = grab(o3)

t=5

Learned rule r4

grab(X) : inhand(X)

→

{

1.0 : −
0.0 : noise

Direct exploration

Next action: a5 = puton(o1)

t=6

Learned rules r5 and r6

puton(X) : ¬ball(X), inhand(Y)

→

{

1.0 : on(Y,X), ¬inhand(Y)
0.0 : noise

puton(X) : ball(X), inhand(Y),

platzal table(Z)

→

{

1.0 : on(Y,Z), ¬inhand(Y)
0.0 : noise

Direct exploration

Next action: a6 = puton(o2)

t=7

Confirmed rule r3

puton(X) : inhandNil()

→

{

1.0 : −
0.0 : noise

Planned exploration

Next action: a7 = grab(o5)

t=8

Confirmed rule r1

grab(X) : on(X ,Y)

→

{

1.0 : inhand(X), ¬on(X ,Y)
0.0 : noise

Planned exploration

Next action: a8 = puton(o2)

t=9

Confirmed rule r6

puton(X) : ball(X), inhand(Y), table(Z)

→

{

1.0 : on(Y,Z), ¬inhand(Y)
0.0 : noise

Planned exploration

Next action: a9 = grab(o4)

t=10

Confirmed rule r1

grab(X) : on(X ,Y)

→

{

1.0 : inhand(X), ¬on(X ,Y)
0.0 : noise

Planned exploration

Next action: a10 = grab(o4)

t=11

Confirmed rule r4

grab(X) : inhand(X)

→

{

1.0 : −
0.0 : noise

Planned exploration

Next action: a10 = puton(o3)

t=12

Confirmed rule r5

puton(X) : ¬ball(X), inhand(Y)

→

{

1.0 : on(Y,X), ¬inhand(Y)
0.0 : noise

Done.

Table 4: Example of Relational E3. A robot manipulates objects scattered on a table by means of

motor primitives triggered by symbolic actions puton(·) and grab(·). The robot is told

to build a tower. It starts with zero knowledge (E = /0) and learns from experience how

its actions change the state of the world. The arrows at t = 2 and t = 9 indicate that the

manipulated objects have fallen off balls.

3750

EXPLORATION IN RELATIONAL DOMAINS

is most uncertain about grabbing the inhand object (which is not covered by r1) and all puton(·)
actions which are not covered by any rule. The robot chooses puton(o4) randomly among these

most unknown actions. As o4 is a ball, the inhand-held cube o1 falls from o4 on the table t, resulting

in state s2. The robot generalizes this experience in form of the rule r2 that puton(X) will lead to

putting the inhand-object on the table. This false generalization is uncertain, however, as it is only

covered by one experience.

At t= 2, the robot is most uncertain about the puton(·) actions which are not covered by any

of its learned rules (the previously learned rule r2 requires inhand(Y) in its context which is not

fulfilled in s2). Therefore, the robot chooses randomly among them and performs puton(o3). It

observes no effects and learns the rule r3, predicting puton actions in contexts where nothing is held

inhand. At t= 3, the robot is equally uncertain about all actions (all actions are covered by rules

which explain exactly one experience). It chooses randomly grab(o3). The experience (s3,a3,s4)
confirms the rule r1 about which it is certain by now as r1 explains two experiences. At t = 4,

grab(o3) is the only action which is not covered by any rule and therefore performed. The resulting

state s5 is not different from s4, resulting in the learned rule r4.

At t= 5, the most uncertain actions, grab(o3) and all puton-actions, are covered by rules with

confidence one (that is, explaining one experience). The robot chooses randomly puton(o1). This

provides an insightful experience: by comparing the experiences (s1,a1,s2) and (s5,a5,s6), the robot

“understands” that rule r2 is a false generalization and instead learns r5 for putting on cubes and the

table and r6 putting on balls. At t= 6, all grab-actions are known due to the confidence in rule r1:

the robot can predict their effects with confidence. In contrast, it is uncertain about all puton-actions

as rule r3 explains only one experience, so it randomly chooses puton(o2). The resulting experience

confirms r3 about which it is certain then.

At t = 7, the robot can predict the effects of all actions with certainty. Therefore, it tries to

exploit its knowledge about known states to plan for its goal to build a tower. The rule r5 (mod-

eling puton-actions for cubes) required for tower building, however, is still uncertain and thus the

corresponding actions and states are unknown and cannot be considered in planning. Therefore,

exploitation fails and the robot performs planned exploration instead: it plans for unknown states

in which its rules r4, r5 and r6 can be tested. Such states are reached by grab-actions and the robot

chooses randomly to perform grab(o5). At t = 8, the planned exploration of the last time-step

allows to confirm several rules by performing one of the unknown puton actions or the likewise un-

known grab(o5). The robot chooses randomly puton(o2). The resulting state s9 confirms r6 about

which it is certain by now. At t= 9, like in s7 the robot performs planned exploration and grabs a

random object, namely grab(o4).

At t= 10, the unknown actions are grab(o4), puton(o1), puton(o3) and puton(t) whose cov-

ering rules explain only one experience. The robot chooses randomly grab(o4) whose outcome in

s11 confirms the rule r4. At t=11, from the remaining three unknown actions, it chooses randomly

puton(o3), confirming the rule r5. At t= 12, the highest possible tower has been built. Hence, the

robot cannot exploit its knowledge to build an even higher tower. Similarly, planned exploration for

unknown states fails and the robot concludes that it is done.

In this example, there have been no exploitation steps as in the last time-step achieved by direct

and planned exploration, the highest possible reward has already been achieved. If there were more

cubes, however, the robot could successfully exploit its knowledge to achieve even more rewarding

states from s12.

3751

LANG, TOUSSAINT AND KERSTING

To keep this illustrative example short, we simplified in some respects: First, the robot makes

most often the correct generalizations, even if competing false generalizations have the same statisti-

cal evidence. For instance, from experience (s2,a2,s3) the robot could also generalize that puton(X)
does not have effects if X is a cube (instead of if its hand is empty). A second simplification in our

example is our neglect of noise in the actions of the robot. Note however that our algorithms account

for stochastic actions and our experimental evaluation is performed in intrinsically noisy domains.

The third simplification is that we determined the “random” choices of the robot to be informative

actions. For instance, if the robot had chosen puton(o1) in s11, it might have had to revise its rule

r5 to incorporate clear(X) and to come up with a rule for putting on objects which are not clear,

leading to a more accurate model requiring more exploration steps.

4. Evaluation

We demonstrate that integrating our approach REX with NID rules and the planner PRADA as

described in Section 3.4 leads to a practical exploration system for relational RL which outperforms

established non-relational techniques on a large number of relevant problems. Our results show

that REX explores efficiently worlds with many objects and transfers learned knowledge to new

situations, objects and, in contrast to model-free relational RL techniques, even to new tasks. To our

knowledge, this is the first evaluation of a model-based reinforcement learning agent which learns

both the complete structure as well as the parameters of relational transition models.

We compare five methods inspired by E3 and R-MAX based on different state and action repre-

sentations:

• flat E3: learning and exploration on an enumerated representation;

• factored E3: learning and exploration on a factored propositional representation;

• relational ε-greedy: learning on a relational representation, ε-greedy exploration;

• relational E3: learning and exploration on a relational representation; and

• relational R-MAX: learning and exploration on a relational representation.

It is not our goal to explicitly compare E3 and R-MAX. We present results for both, relational E3 and

relational R-MAX, to demonstrate that REX is a practical, effective approach with either strategy.

For the non-relational baselines, we have arbitrarily chosen E3, but we might have likewise used

R-MAX with similar results to expect.

We use NID rules to learn and represent transition models T in all investigated methods for

two reasons: (i) there is an effective learning algorithm for NID rules, and (ii) we can express and

learn transition models on all representation levels with NID rules which allows for a consistent

comparison. Relational E3, R-MAX and ε-greedy learn full-fledged abstract NID rules as described

in Section 2.4.1. Our factored E3 learns propositional (that is, grounded) NID rules using a slightly

modified learning algorithm; ground literals imitate the propositional state attributes. (The factored

E3 algorithm of Kearns and Koller (1999) cannot learn the model structure and thus cannot be used

as an alternative baseline.) Flat E3 uses pseudo propositional NID rules where the rule context

describes a complete ground relational state; hence, a rule is only applicable in a specific state and

this approach corresponds to the original E3. Exemplary rules for all representations are shown in

3752

EXPLORATION IN RELATIONAL DOMAINS

grab(X) : on(X ,Y), ball(X), cube(Y), table(Z)

→







0.7 : inhand(X), ¬on(X ,Y)
0.2 : on(X ,Z), ¬on(X ,Y)
0.1 : noise

(a) Abstract NID rule

grab(d) : on(d,b)

→







0.7 : inhand(d), ¬on(d,b)
0.2 : on(d, t), ¬on(d,b)
0.1 : noise

(b) Factored propositional NID rule

grab(d) : on(a, t),on(b, t),on(c,a),on(d,b),¬on(a,b),¬on(a,c) . . . ,¬inhand(a), . . .

→







0.7 : inhand(d), ¬on(d,b)
0.2 : on(d, t), ¬on(d,b)
0.1 : noise

(c) Flat “NID rule”

Table 5: Illustration of NID rules on different representation levels. (a) The abstract rule uses vari-

ables to generalize over objects (same as in Table 3). (b) The factored propositional rule

imitates propositional state attributes by using only ground literals. (c) The flat rule spec-

ifies a complete state in its context. Note that the propositional rules (b) and (c) can re-

nounce on typing predicates such as cube(·) as they do not abstract from object identities.

The presented rules might have been learned from the grab experiences shown in Table 2.

Table 5. In each domain, the parameters for the rule learning algorithm, α and pmin, were chosen

by a preliminary coarse heuristic search; the rule mutation operators and their order were the same

across all experiments and exploration algorithms.

We use our novel exploration approach REX introduced in Section 3.2 and Section 3.4 as a con-

crete instance of relational E3 and R-MAX and a factored propositional variant of REX as factored

propositional E3. Thus, we learn (abstract or propositional) NID rules for the last action after each

new observation from scratch using the algorithm of Pasula et al. (2007) (appropriately modified for

the propositional representations) and employ PRADA (Lang and Toussaint, 2010) for exploitation

or planned exploration. The reward function is not learned, but provided to the agent. PRADA plans

in the grounded relational representation and therefore can deal with rules on all abstraction levels.

PRADA’s planning horizon and its number of plan samples were both set to large values across

all experiments to ensure that the planning performance of PRADA is reliable and has negligible

influence on the reported results. To estimate a count function for known states and actions, REX

and similarly its propositional counterparts use the contexts of rules Q = {φr}. Similarly as done

in the evaluation of KWIK-R-MAX (Li, 2009), we set the threshold ζ for known states and actions

3753

LANG, TOUSSAINT AND KERSTING

(Section 2.3) heuristically as we cannot derive it from theory due to the heuristic nature of the learn-

ing algorithm for NID rules. For all investigated E3 and R-MAX algorithms, we set ζ = 2; hence,

an action is considered known in a state if its covering rule explains two experiences in E . Since

our investigated domains have mostly comparable levels of stochasticity, we did not optimize ζ for

the individual domains. Although ζ = 2 may not be optimal in each scenario, it allows the agent

to explore the environments of our experiments within a reasonable number of actions (< 100),

while providing some confidence in the estimate. We have implemented REX and its propositional

counterparts, the learning algorithm for NID rules and the planning algorithm PRADA in C++.1

We compare our approach REX to relational ε-greedy which is the established exploration tech-

nique in relational RL approaches (see the discussion in Section 1.2). Relational ε-greedy is not a

simple baseline, but an effective technique which learns abstract relational transition models (in our

case NID rules) and uses them for exploitation—thereby employing the same set of known states as

REX (relational E3 and R-MAX). In contrast to REX, it performs a random action for exploration.

Relational ε-greedy often profits from its optimism to try to exploit: in contrast to REX, it does

not require to fully know a state before it can start exploitation there. In our experiments, we used

decaying schemes to set ε dynamically, enabling a high exploration rate in the beginning and more

exploitation with an increasing number of time-steps.

We emphasize that we are not aware of any other relational exploration approach for learning

full transition models apart from ε-greedy which we could use as a baseline in our evaluation. As

discussed in detail in Section 1.2, the conceptual approach of Walsh (2010) based on a relational

R-MAX framework has not been demonstrated in practice and is supposedly intractable in large

domains like ours. More importantly, it is limited to a relational language which is less expressive

than the one required for a large fraction of our investigated scenarios.

Our first test domain, called Robot manipulation domain, is a simulated complex 3D desktop

environment where a robot manipulates cubes, balls and boxes scattered on a table (Table 6). (In

the following, we refer to this simulated robot when speaking of “the robot”.) This is a relevant

scenario in robotics: “competent pick and place operations may provide a sufficient functional basis

for the manipulation requirements of a many of the targeted applications [of modern robotics]”

(Christensen, 2009, p. 56). Any autonomous system which wants to deliberately manipulate objects

has to master some sort of abstract reasoning at a symbolic level. In current state-of-the-art robotics,

however, this problem is largely unresolved and perceived as a bottleneck. Likewise, the ability to

generalize from experiences is viewed as a key desired capability of robots: “It is largely perception

and machine learning that distinguish a robot from an ordinary machine” (Christensen, 2009, p. 78).

We will see that our approach REX provides a practical solution to these problems. We use a 3D

rigid-body dynamics simulator (ODE) that enables a realistic behavior of the manipulated objects.

For instance, piles of objects may topple over or objects may even fall off the table (in which

case they become out of reach for the robot). Depending on their type, objects show different

characteristics. For example, it is almost impossible to successfully put an object on top of a ball,

and building piles with small objects is more difficult. The robot can grab objects, try to put them

on top of other objects, in a box or on the table. Boxes have a lid; special actions may open or close

the lid; taking an object out of a box or putting it into it is possible only when the box is opened. The

actions of the robot are affected by noise so that resulting object piles are not straight-aligned. We

1. The website http://userpage.fu-berlin.de/tlang/explore/ provides our code of PRADA, the learning al-

gorithm of NID rules and the robot manipulation simulator as well as videos of exemplary rounds in the robot

manipulation domain.

3754

EXPLORATION IN RELATIONAL DOMAINS

Given to the robot:

• Symbolic vocabulary to describe states

(on(X ,Y), inhand(X), clear(X), . . .)

• Ability to convert continuous perceptions into a

symbolic representation

• Symbolic actions triggering noisy motor primi-

tives (always executed, effects depend on con-

texts) (grab(X), puton(X) . . .)

• Reward function

Not given to the robot:

• Transition model for symbolic actions

“In which contexts do the motor primitives have

which effects?”

Table 6: In our robot manipulation domain, a simulated robot has to explore a 3D desktop environ-

ment with cubes, balls and boxes of different sizes and colors to master various tasks.

assume full observability of triples (s,a,s′) that specify how the world changed when an action was

executed in a certain state. We represent states with predicates cube(X), ball(X), box(X), table(X),
on(X ,Y), contains(X ,Y), out(X), inhand(X), upright(X), closed(X), clear(X) ≡ ∀Y.¬on(Y,X),
inhandNil() ≡ ¬∃X .inhand(X) and functions size(X), color(X). These symbols are obtained by

querying the state of the simulator and translating it according to simple hand-made guidelines,

thereby sidestepping the difficult problem of converting the agent’s observations into an internal

representation. For instance, on(a,b) holds if a and b exert friction forces on each other and a’s

z-coordinate is greater than the one of b, while their x- and y-coordinates are similar. If there are

o objects and f different object sizes and colors in a world, the state space is huge with f 2o22o2+8o

different states (not excluding states one would classify as “impossible” given some intuition about

real world physics); in our scenarios, we usually have much more than 1050 states. This points at

the potential of using abstract relational knowledge for exploration. We define five different types

of actions, denoted by different predicate symbols. These actions correspond to motor primitives

whose effects and contexts we want to explore, learn and exploit. The grab(X) action triggers the

robot to open its hand, move its hand next to X , let it grab X and raise the robot arm again. The

execution of this action is not influenced by any further factors. For example, if a different object Y

has been held in the hand before, it will fall down on either the table or a third object just below Y ;

if there are objects on top of X , these are very likely to fall down. The puton(X) action centers the

robot’s hand at a certain distance above X , opens it and raises the hand again. For instance, if there

is an object Z on X , the object Y that was potentially inhand may end up on Z or Z might fall off

X . The openBox(X) and closeBox(X) actions only apply to boxes. openBox(X) triggers the robot

to move its arm next to a box X and try to open its lid; this is only successful if there is no object

on top of this box. If the box is already open, the position of the lid does not change. Similarly,

closeBox(X) triggers the robot to move its arm next to the lid of the box X and close it; if the box is

already closed, the lid is not moved. The doNothing() action triggers no movement of the robot’s

arm. The robot might choose this action if it thinks that any other action could be harmful with

3755

LANG, TOUSSAINT AND KERSTING

respect to its expected reward. We emphasize again that actions always execute, regardless of the

state of the world. Also, actions which are rather unintuitive for humans such as trying to grab the

table or to put an object on top of itself are carried out. The robot has to learn by itself the effects

and contexts of such motor primitives.

Our second set of test domains, called IPPC in the following, are domains taken from the in-

ternational planning competition in 2008 (IPPC, 2008). While these domains are defined in the

probabilistic planning domain definition language (PPDDL), the transition dynamics of many do-

mains can be represented by NID rules (Lang and Toussaint, 2010). In our experiments, we show

that these representations can be explored and learned efficiently. These experiments also demon-

strate that our exploration approaches perform equally well when using a restricted representation

language, namely without deictic references and noise outcomes which are not allowed by PPDDL.

We perform multiple experiments in our test domains where we pursue the same, similar or

different tasks over several rounds:

• Series 1 – Robot Manipulation Domain:

– Experiment 1: Simple task in unchanging worlds (Figure 2, p. 3757)

– Experiment 2: Generalization to new worlds (Figure 3, p. 3758)

– Experiment 3: Advanced task in unchanging worlds (Figure 4, p. 3759)

– Experiment 4: Generalization to new tasks (Figure 5, p. 3760)

• Series 2 – IPPC Domains:

– Experiment 5: Exploding Blocksworld (Figure 6, p. 3761)

– Experiment 6: Triangle-tireworld (Figure 7, p. 3762)

– Experiment 7: Search-and-rescue (Figure 8, p. 3763)

In all experiments the robot starts from zero knowledge (E = /0) in the first round and carries over

experiences to the next rounds. Each round is limited by a maximum number of actions (100 in

the robot manipulation domain, varying numbers in the IPPC domains). If the task is not solved by

then, the round fails.

We report the success rates and the action numbers (failed trials contribute to the action num-

ber with the maximum number of actions). Both are direct measures of the goal-directedness and

acting performance of an autonomous agent. Likewise these measures also evaluate the learning

performance of the agent: the goal-directed performance depends on the learned rules and the ac-

tive exploration on the learned count functions. Thus, high success rates and low action numbers

indicate a good performance in learning rules and count functions—“good” in the sense of enabling

goal-directed behavior.

4.1 Series 1 – Robot Manipulation Domain

In this first series of experiments, we compare our relational exploration approach REX in both vari-

ants (E3 and R-MAX) to relational ε-greedy and to flat and factored E3 approaches in successively

more complex problem settings.

3756

EXPLORATION IN RELATIONAL DOMAINS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Round

8+1 Objects

S
uc

ce
ss

 0

 50

 100

 1 2 3 4 5

Round

8+1 Objects

A
ct

io
ns

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Round

10+1 Objects

S
uc

ce
ss

 0

 50

 100

 1 2 3 4 5

Round

10+1 Objects

A
ct

io
ns

Figure 2: Experiment 1 (Robot manipulation domain): Simple task in unchanging worlds. A run

consists of 5 subsequent rounds with the same start situations and goal objects. The robot

starts with no knowledge in the first round. The success rate and the mean number of

actions with standard deviations over 50 runs are shown (5 start situations, 10 seeds).

4.1.1 EXPERIMENT 1: SIMPLE TASK IN UNCHANGING WORLDS

The goal in each round is to stack two specific objects, on(o1,o2). To collect statistics we investigate

worlds of varying numbers of objects (cubes, balls, boxes and table): for each object number, we

create five worlds with different objects. For each such world, we perform 10 independent runs with

different random seeds. Each run consists of 5 rounds with the same goal instance and the same start

situation. In some worlds, goal objects are put inside boxes in the beginning, necessitating more

intense exploration to learn how to deal with boxes. Figure 2 shows that the relational explorers

have superior success rates, require significantly fewer actions and reuse their learned knowledge

effectively in subsequent rounds. The propositional explorers are overburdened with large numbers

of objects—their learned count functions of known states and actions fail to recognize similar sit-

uations. In contrast, the relational explorers scale well with increasing numbers of objects. In the

larger worlds, our REX approaches, that is relational E3 and R-MAX, require less rounds than ε-

greedy to solve the tasks with few actions: the learned count functions permit effective exploration.

4.1.2 EXPERIMENT 2: GENERALIZATION TO NEW WORLDS

In this series of experiments, the objects, their total numbers and the specific goal instances are

different in each round (worlds of 7, 9 and 11 objects). We create 10 problem sequences (each with

5 rounds) and perform 10 trials for each sequence with different random seeds. As Figure 3 shows

3757

LANG, TOUSSAINT AND KERSTING

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Round

S
uc

ce
ss

 0

 50

 100

 1 2 3 4 5

Round

A
ct

io
ns

Figure 3: Experiment 2 (Robot manipulation domain): Generalization to new worlds. A run con-

sists of a sequence of 5 subsequent problems (corresponding to rounds) with different

objects, numbers of objects (6 - 10 cubes/balls/boxes + table) and start situations in each

problem. The robot starts with no knowledge in the first round. The success rate and the

mean number of actions with standard deviations over 100 runs are shown (10 sequences,

10 seeds).

the performance of the relational explorers is good from the beginning. Their learned rules and

count functions for known states and actions enable a stable performance of relational E3 and R-

MAX at a near-optimal level after already 2 rounds, while relational ε-greedy requires 3-4 rounds.

This experiment shows that the relational explorers can transfer their learned knowledge to new

situations and objects. In contrast, the propositional explorers cannot transfer their knowledge to

different worlds due to the limits of their learned rules and count functions and thus neither their

success rates nor their action numbers improve in subsequent rounds.

4.1.3 EXPERIMENT 3: ADVANCED TASK IN UNCHANGING WORLDS

The goal in each round is to “clear” the table. 5 movable objects (balls and cubes) of different

colors are distributed over the table. To clear up such a movable object, it needs to be put into a

box of the same color. We perform 10 independent runs with different random seeds in 5 different

start situations. Each run consists of 5 rounds with the same start situation. In start situations, balls

and cubes may form piles, lie on top of closed boxes or be contained in boxes of a different color.

Figure 4 presents our results. The non-relational exploration approaches fail to solve this task and

are omitted in the figure. Relational E3 and R-MAX outperform relational ε-greedy .

4.1.4 EXPERIMENT 4: GENERALIZATION TO NEW TASKS

Finally, we perform three tasks of increasing difficulty in succession: (i) piling two specific objects

in simple worlds with cubes and balls, (ii) in worlds extended by boxes (as in Exp. 1 and 2), and

(iii) clearing up the desktop by putting all movable objects into boxes of the same color where

the required objects may be partially contained in wrong boxes in the beginning (as in Exp. 3).

Each task is performed for three rounds in changing worlds with different goal objects. The results

are presented in Figure 5. Non-relational explorers cannot generalize over objects and fail in such

3758

EXPLORATION IN RELATIONAL DOMAINS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Round

S
uc

ce
ss

 0

 50

 100

 1 2 3 4 5

Round

A
ct

io
ns

Figure 4: Experiment 3 (Robot manipulation domain): Advanced task in unchanging worlds. The

goal is to put colored balls and cubes into boxes of the same color. A run consists of 5

subsequent rounds with the same start situation. The robot starts with zero knowledge in

the first round. The success rate and the mean estimators of action numbers with standard

deviations over 50 runs are shown (5 start situations, 10 seeds).

tasks (see Exp. 2 and 3) so we omit their results here. The results demonstrate that the relational

explorers are not only able to generalize over different situations and objects, but transfer the learned

knowledge from simple to difficult tasks in the sense of curriculum learning (Bengio et al., 2009).

This is shown in the bottom row of Figure 5 where the results of relational E3 are compared to

restarting the learning procedure at the beginning of each new task (that is, in rounds 4 and 7)

(the corresponding graphs for relational R-MAX and relational ε-greedy are similar). Furthermore,

both relational E3 and R-MAX benefit from their learned count functions for active exploration and

outperform relational ε-greedy clearly.

4.1.5 SUMMARY

The experiments in the robot manipulation domain show that our relational exploration approach

REX is a practical and effective full-system approach for exploration in challenging realistic problem

settings. Our results confirm the intuitive expectation that relational knowledge improves learning

transition models and learning count functions for known states and actions and thus exploration.

Experiment 1 shows that relational explorers scale better with the number of objects than propo-

sitional explorers. The more challenging Experiments 2 and 3 demonstrate that the principled re-

lational E3 and R-MAX exploration of REX outperforms the established ε-greedy exploration: the

learned count functions permit effective active exploration. Furthermore, these experiments show

that REX transfers its knowledge efficiently to new situations and objects—while propositional ex-

plorers fail to do so. Finally, Experiment 4 demonstrates that REX is able to transfer its learned

knowledge even to new tasks—in contrast to model-free relational approaches.

4.2 Series 2 – IPPC

In the second series of experiments, we demonstrate the effectiveness of REX in domains of the

international planning competition. We choose three domains whose transition dynamics can be

3759

LANG, TOUSSAINT AND KERSTING

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

Round

S
uc

ce
ss

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

Round

S
uc

ce
ss

 0

 20

 40

 60

 1 2 3 4 5 6 7 8 9

Round

A
ct

io
ns

 0

 20

 40

 60

 1 2 3 4 5 6 7 8 9

Round

A
ct

io
ns

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

Round

S
uc

ce
ss

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

Round

S
uc

ce
ss

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9

Round

A
ct

io
ns

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9

Round

A
ct

io
ns

Figure 5: Experiment 4 (Robot manipulation domain): Generalization to new tasks. A run consists

of a sequence of 9 problems (corresponding to rounds) with different objects, numbers of

objects (6 - 10 cubes/balls/boxes + table) and start situations in each problem. The tasks

are changed between rounds 3 and 4 and rounds 6 and 7 to more difficult tasks. The robot

starts with no knowledge in the first round. The success rate and the mean number of

actions with standard deviations over 50 runs are shown (10 sequences, 5 seeds). The top

row presents the results of different relational exploration approaches. The bottom row

compares the full curriculum relational E3 which transfers learned knowledge to new

tasks (same as in the top row) with restarting relational E3 with each new task.

modeled by NID rules. We convert the PPDDL definitions of these domains manually into sets of

NID rules and use these as the model of the true world dynamics. The agent tries to estimate the

rules from its experiences. As PPDDL does not allow for deictic references and noise outcomes, this

series of experiments demonstrates that REX performs also well with restricted relational languages.

For each domain, we present results on representative problem instances. To collect statistics,

we perform 50 trials on the same problem instance with different random seeds. Each trial consists

of 5 or 10 subsequent rounds (worlds do not change). In the IPPC domains, most actions do not

have effects in a given state: in addition to specifying contexts to distinguish different effect sets,

the PPDDL action operators define also restrictive action preconditions in the IPPC domains. This

is in contrast to the intrinsically noisy robot manipulation domain where actions almost always have

an effect. For instance, in the latter domain it is always possible to try to grab an object, be it clear,

at the bottom of a pile or in a box. NID rules don’t distinguish between contexts and preconditions.

To focus on the context learning part, we introduce a restriction for exploration in all (relational and

3760

EXPLORATION IN RELATIONAL DOMAINS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

Round
S

uc
ce

ss

 0

 50

 100

 1 2 3 4 5 6 7 8 9 10

Round

A
ct

io
ns

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

Round

S
uc

ce
ss

 0

 50

 100

 1 2 3 4 5 6 7 8 9 10

Round

A
ct

io
ns

Figure 6: Experiment 5 (IPPC): Exploding Blocksworld (problem instance 5). A run consists of 10

subsequent rounds with the same start situation and goal objects. The agent starts with

no knowledge in the first round. The success rate and the mean number of actions with

standard deviations over 50 runs based on different random seeds are shown. The top

row presents the results for learning the full transition models. The bottom row compares

learning the full transition models (same as in the top row) with learning the outcomes

and their distributions only when rule contexts are provided a-priori.

non-relational) investigated approaches: actions which have been executed without effects (so that

supposedly their preconditions were violated) are forbidden until the next state change.

4.2.1 EXPERIMENT 5: EXPLODING BLOCKSWORLD

The results for problem instance 5 of this domain are displayed in the top row of Figure 6. They

show that the propositional explorers almost always fail. Their performance is hampered in particu-

lar by the fact that most actions do not have effects in a given state. This is hazardous if one cannot

generalize one’s experiences over objects, resulting in barely useful estimated count functions for

known states and actions: the propositional explorers spend too much time in each state exploring

actions without effects. In contrast, the relational explorers learn quickly to solve the task. Both

relational E3 and R-MAX clearly outperform relational ε-greedy in both the success rate as well as

the number of required actions, indicating the usefulness of the learned count functions for active

exploration.

In the bottom row of Figure 6, the results of the relational approaches are compared to the

scenario where the contexts of rules are known a-priori and only the outcomes of rules and their

3761

LANG, TOUSSAINT AND KERSTING

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

Round

S
uc

ce
ss

 0

 50

 100

 1 2 3 4 5 6 7 8 9 10

Round

A
ct

io
ns

Figure 7: Experiment 6 (IPPC): Triangle Tireworld (problem instance 1). A run consists of 10

subsequent rounds with the same start situation and goal specification. The agent starts

with no knowledge in the first round. The success rate and the mean estimators of the

action numbers with standard deviations over 50 runs based on different random seeds

are shown.

probabilities need to be learned. As expected, all relational approaches learn to solve the tasks

much faster in this simpler scenario. Relational ε-greedy is still clearly inferior to the principled

REX approaches.

4.2.2 EXPERIMENT 6: TRIANGLE TIREWORLD

The results presented in Figure 7 for problem instance 1 show that the success rates of all methods

fluctuate in similar value ranges with factored E3 performing best. In contrast, the smaller action

numbers of relational E3 and R-MAX indicate the advantage of learning and using expressive count

functions for active exploration. The difficulty of this domain lies in dead-lock situations (where

the agent has a flat tire, but no spare tire is available). The specific contexts for landing in such

dead-locks are hard to learn given the limited number of available relevant experiences. Here, our

general choice of the threshold for knowing states and actions, ζ = 2, (which we did not optimize

for individual domains) is too small: the explorers are too early confident about their learned model.

This hurts the relational explorers in particular as their models generalize the most and hence their

potentially still inaccurate predictions get applied wrongly more often.

4.2.3 EXPERIMENT 7: SEARCH AND RESCUE

In this domain, the agent can collect intermediate and final rewards in addition to solving the task.

We present the total rewards with the success rates and the action numbers for problem instance 8

in Figure 8. Overall, relational R-MAX performs best with respect to all measures; relational E3 has

similar success rates and action numbers, but collects less rewards. While flat E3 performs worst,

here factored E3 most often outperforms relational ε-greedy. This shows the benefit of a principled

exploration strategy based on learned count functions of known states and actions.

3762

EXPLORATION IN RELATIONAL DOMAINS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Round

S
uc

ce
ss

 100

 200

 300

 400

 500

 1 2 3 4 5

Round

A
ct

io
ns

-500

 0

 500

 1000

 1 2 3 4 5

Round

R
ew

ar
ds

Figure 8: Experiment 7 (IPPC): Search and Rescue (problem instance 8). A run consists of 5

subsequent rounds with the same start situation and goal specification. The agent starts

with no knowledge in the first round. The success rate and the mean estimators of the

action numbers and the rewards with standard deviations over 50 runs based on different

random seeds are shown.

4.2.4 SUMMARY

The results in the IPPC domains confirm our experimental findings in the robot manipulation do-

main: using either E3 or R-MAX action selection strategies, our exploration approach REX is able

to efficiently explore relational domains with fully unknown transition dynamics and different char-

acteristics. All our experiments show that learning relational count functions of known states and

actions and exploiting them in a principled exploration strategy outperforms both principled propo-

sitional exploration methods as well as the established technique for relational domains, relational

ε-greedy.

5. Conclusion

Efficient exploration in relational worlds is an interesting problem that is fundamental to many

real-life decision-theoretic planning problems, but has received little attention so far. We have ap-

proached this problem by proposing relational exploration strategies that borrow ideas from efficient

techniques for propositional representations. The key step in going from propositional to relational

representations is a new definition of the concept of the novelty of states and actions. We have

introduced a framework of relational count functions to estimate empirical counts of relational data.

In general this is a difficult problem since it requires learning from positive data only: the agent

wants to generalize the experienced state transitions to other states, but has no negative examples

and thus runs the risk of overgeneralization. We have introduced a relational exploration framework

called REX where such count functions are learned from experience and drive exploration in rela-

tional domains. We have provided guarantees on the exploration efficiency of REX under certain

assumptions on the model learner and planner.

We have proposed an instantiation of the REX framework by integrating the relational planner

PRADA and a NID rule learner. This combination results in the first relational model-based rein-

forcement learner with a principled exploration strategy for domains with fully unknown transition

3763

LANG, TOUSSAINT AND KERSTING

dynamics whose effectiveness has been empirically demonstrated on a large number of difficult

tasks in complex environments with many objects. Our experimental results show a significant

improvement over established non-relational techniques for solving relevant, difficult and highly

stochastic planning tasks in a 3D simulated robot environment and in domains of the international

planning competition. Our results demonstrate that relational exploration, driven by estimated re-

lational count functions, does not only improve the exploration performance, but also enables the

transfer of learned knowledge to new situations and objects and even in a curriculum learning setting

where different tasks have to be solved one after the other.

On a more general level, our work shows that it is promising to investigate the combination

of statistical machine learning methods with expressive symbolic representations for developing

intelligent agents. On the one hand, the symbolic representation provides abstract relational features

which are key for generalization. On the other hand, an autonomous agent needs to adapt to its

environment from experience and thus statistical techniques are required to actively learn compact

symbolic representations.

5.1 Future Work

There are several interesting avenues for future work. One should start to explore statistical rela-

tional reasoning and learning techniques for the relational count function estimation problem im-

plicit in exploring relational worlds. Interesting candidates include relational variants of kernel-

based methods (Driessens et al., 2006), regression and cluster trees (Blockeel and de Raedt, 1998)

as well as boosted relational dependency networks (Neville and Jensen, 2007; Natarajan et al., 2010)

and their extension to the online learning setting. We believe our framework opens the door to a large

variety of possible exploration strategies—our specific choices have only served as a first proof of

concept. Another avenue of future work is to investigate incremental learning of transition models.

For instance, how can a set of probabilistic relational rules be modified efficiently with additional

experiences? The resulting algorithms might in turn provide new relational exploration strategies.

Future work should also explore the connection between relational exploration and transfer learn-

ing. As it is hopeless to explore the whole state of a non-trivial world, investigating the relevance of

objects or object classes for the task at hand is a further challenge for future research. Finally, exam-

ining our approach in other problem scenarios is appealing, for instance, applying it to large-scale

applications such as the web or to geometrical reasoning of robots.

Acknowledgments

We thank the anonymous reviewers whose careful and thorough comments have helped greatly to

improve the paper. TL, MT and KK were supported by the German Research Foundation (DFG, TO

409/1-3 and SPP 1527-5). KK was supported by the European Commission under contract number

FP7-248258-First-MM and the Fraunhofer ATTRACT Fellowship STREAM.

References

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In

Proc. of the Int. Conf. on Machine Learning (ICML), pages 41–48, 2009.

3764

EXPLORATION IN RELATIONAL DOMAINS

Mustafa Bilgic, Lilyana Mihalkova, and Lise Getoor. Active learning for networked data. In Proc. of

the Int. Conf. on Machine Learning (ICML), 2010.

Hendrik Blockeel and Luc de Raedt. Top-down induction of first order local decision trees. Artificial

Intelligence Journal, 101:185–297, 1998.

Craig Boutilier, Ray Reiter, and Bob Price. Symbolic dynamic programming for first-order MDPs.

In Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), pages 690–700, 2001.

Ronen I. Brafman and Moshe Tennenholtz. R-max - a general polynomial time algorithm for near-

optimal reinforcement learning. Journal of Machine Learning Research (JMLR), 3:213–231,

2002.

Henrik Christensen. From internet to robotics – a roadmap for US robotics, May 2009. http:

//www.us-robotics.us/reports/CCC\%20Report.pdf.

David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning with statistical models.

Journal of Artificial Intelligence Research (JAIR), 4(1):129–145, 1996.

Tom Croonenborghs, Jan Ramon, Hendrik Blockeel, and Maurice Bruynooghe. Online learning

and exploiting relational models in reinforcement learning. In Proc. of the Int. Conf. on Artificial

Intelligence (IJCAI), pages 726–731, 2007.

Luc de Raedt, P. Frasconi, Kristian Kersting, and S.H. Muggleton, editors. Probabilistic Inductive

Logic Programming, volume 4911 of Lecture Notes in Computer Science. Springer, 2008.

Carlos Diuk. An Object-Oriented Representation for Efficient Reinforcement Learning. PhD thesis,

Rutgers, The State University of New Jersey, New Brunswick, NJ, 2010.

Carlos Diuk, Andre Cohen, and Michael Littman. An object-oriented representation for efficient

reinforcement learning. In Proc. of the Int. Conf. on Machine Learning (ICML), 2008.

Carlos Diuk, Lihong Li, and Bethany R. Leffler. The adaptive k-meteorologists problem and its

application to structure learning and feature selection in reinforcement learning. In Proc. of the

Int. Conf. on Machine Learning (ICML), 2009.

Kurt Driessens and Sašo Džeroski. Integrating guidance into relational reinforcement learning.

Machine Learning Journal, 57(3):271–304, 2004.

Kurt Driessens, Jan Ramon, and Thomas Gärtner. Graph kernels and Gaussian processes for rela-

tional reinforcement learning. Machine Learning Journal, 64(1-3):91–119, 2006.

Sašo Džeroski, L. de Raedt, and Kurt Driessens. Relational reinforcement learning. Machine

Learning Journal, 43:7–52, 2001.

Arkady Epshteyn, Adam Vogel, and Gerald DeJong. Active reinforcement learning. In Proc. of the

Int. Conf. on Machine Learning (ICML), pages 296–303, 2008.

Lise Getoor and Ben Taskar, editors. Introduction to Statistical Relational Learning. MIT Press,

2007.

3765

LANG, TOUSSAINT AND KERSTING

Carlos Guestrin, Relu Patrascu, and Dale Schuurmans. Algorithm-directed exploration for model-

based reinforcement learning in factored MDPs. In Proc. of the Int. Conf. on Machine Learning

(ICML), pages 235–242, 2002.

Carlos Guestrin, Daphne Koller, Chris Gearhart, and Neal Kanodia. Generalizing plans to new

environments in relational MDPs. In Proc. of the Int. Conf. on Artificial Intelligence (IJCAI),

pages 1003–1010, 2003.

Florian Halbritter and Peter Geibel. Learning models of relational MDPs using graph kernels. In

Proc. of the Mexican Conf. on AI (MICAI), pages 409–419, 2007.

Steffen Hölldobler, Eldar Karabaev, and Olga Skvortsova. FluCaP: a heuristic search planner for

first-order MDPs. Journal of Artificial Intelligence Research (JAIR), 27:419–439, 2006.

IPPC. Sixth International Planning Competition, Uncertainty Part, 2008. URL http://

ippc-2008.loria.fr/wiki/index.php/Main_Page.

Saket Joshi, Kristian Kersting, and Roni Khardon. Self-taught decision theoretic planning with

first order decision diagrams. In Proc. of the Int. Conf. on Automated Planning and Scheduling

(ICAPS), 2010.

Leslie Pack Kaelbling, Michael Littman, and Andrew Moore. Reinforcement learning: a survey.

Journal of Artificial Intelligence Research (JAIR), 4:237–285, 1996.

Sham Kakade. On the Sample Complexity of Reinforcement Learning. PhD thesis, Gatsby Compu-

tational Neuroscience Unit, University College London, 2003.

Sham Kakade, Michael Kearns, and John Langford. Exploration in metric state spaces. In Proc. of

the Int. Conf. on Machine Learning (ICML), 2003.

Michael Kearns and Daphne Koller. Efficient reinforcement learning in factored MDPs. In Proc. of

the Int. Conf. on Artificial Intelligence (IJCAI), pages 740–747, 1999.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. Ma-

chine Learning Journal, 49(2-3):209–232, 2002.

Kristian Kersting and Kurt Driessens. Non–parametric policy gradients: A unified treatment of

propositional and relational domains. In Proc. of the Int. Conf. on Machine Learning (ICML),

2008.

Kristian Kersting, Martijn van Otterlo, and Luc de Raedt. Bellman goes relational. In Proc. of the

Int. Conf. on Machine Learning (ICML), pages 465–472, 2004.

J. Zico Kolter and Andrew Ng. Near-Bayesian exploration in polynomial time. In Proc. of the

Int. Conf. on Machine Learning (ICML), pages 513–520, 2009.

Tobias Lang. Planning and Exploration in Stochastic Relational Worlds. PhD thesis, Fachbereich

Mathematik und Informatik, Freie Universität Berlin, 2011.

Tobias Lang and Marc Toussaint. Relevance grounding for planning in relational domains. In

Proc. of the European Conf. on Machine Learning (ECML), 2009.

3766

EXPLORATION IN RELATIONAL DOMAINS

Tobias Lang and Marc Toussaint. Planning with noisy probabilistic relational rules. Journal of

Artificial Intelligence Research (JAIR), 39:1–49, 2010.

Lihong Li. A Unifying Framework for Computational Reinforcement Learning Theory. PhD thesis,

Department of Computer Science, Rutgers University, New Brunswick, NJ, USA, 2009.

Lihong Li, Michael Littman, Thomas Walsh, and Alexander Strehl. Knows what it knows: a frame-

work for self-aware learning. Machine Learning Journal, 82(3):568–575, 2011.

Stephen Muggleton. Learning from positive data. In Selected Papers from the 6th International

Workshop on Inductive Logic Programming, pages 358–376, London, UK, 1997. Springer-

Verlag.

Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, and Jude Shavlik. Boosting

relational dependency networks. In Proc. of the Int. Conf. on Inductive Logic Programming (ILP),

2010.

Jennifer Neville and David Jensen. Relational dependency networks. Journal of Machine Learning

Research (JMLR), 8:653–692, 2007.

Shan-Hwei Nienhuys-Cheng and Ronald de Wolf, editors. Foundations of Inductive Logic Pro-

gramming, volume 1228 of Lecture Notes in Computer Science. Springer, 1997.

Ali Nouri and Michael L. Littman. Dimension reduction and its application to model-based explo-

ration in continuous spaces. Machine Learning Journal, 81:85–98, October 2010.

Hanna M. Pasula, Luke S. Zettlemoyer, and Leslie Pack Kaelbling. Learning symbolic models of

stochastic domains. Journal of Artificial Intelligence Research (JAIR), 29:309–352, 2007.

Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. An analytic solution to discrete

Bayesian reinforcement learning. In Proc. of the Int. Conf. on Machine Learning (ICML), pages

697–704, 2006.

Jan Ramon. Clustering and Instance-Based Learning in First Order Logic. PhD thesis, Department

of Computer Science, K.U.Leuven, Leuven, Belgium, 2002.

Jan Ramon, Kurt Driessens, and T. Croonenborghs. Transfer learning in reinforcement learning

problems through partial policy recycling. In Proc. of the European Conf. on Machine Learning

(ECML), pages 699–707, 2007.

Scott Sanner. Simultaneous learning of structure and value in relational reinforcement learning. In

Proc. of the ICML-05 Workshop on ”Rich Representations for Relational Reinforcement Learn-

ing”, 2005.

Scott Sanner. Online feature discovery in relational reinforcement learning. In Proc. of the ICML-06

Workshop on ”Open Problems in Statistical Relational Learning”, 2006.

Scott Sanner and Craig Boutilier. Practical solution techniques for first-order MDPs. Artificial

Intelligence Journal, 173(5-6):748–788, 2009.

3767

LANG, TOUSSAINT AND KERSTING

Jürgen Schmidhuber. Curious model-building control systems. In Proc. of Int. Joint Conf. on Neural

Networks, volume 2, pages 1458–1463, 1991.

Alexander L. Strehl and Michael L. Littman. Online linear regression and its application to model-

based reinforcement learning. In Proc. of the Conf. on Neural Information Processing Systems

(NIPS), pages 737–744, 2007.

Alexander L. Strehl, Lihong Li, and Michael Littman. Reinforcement learning in finite MDPs: PAC

analysis. Journal of Machine Learning Research (JMLR), 2009.

Sebastian Thrun. The role of exploration in learning control. In Handbook for Intelligent Control:

Neural, Fuzzy and Adaptive Approaches. Van Nostrand Reinhold, 1992.

Marc Toussaint, Nils Plath, Tobias Lang, and Nikolay Jetchev. Integrated motor control, planning,

grasping and high-level reasoning in a blocks world using probabilistic inference. In Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), 2010.

Thomas J. Walsh. Efficient Learning of Relational Models for Sequential Decision Making. PhD

thesis, Rutgers, The State University of New Jersey, New Brunswick, NJ, 2010.

Thomas J. Walsh and Michael L. Littman. Efficient learning of action schemas and web-service

descriptions. In Proc. of the Nat. Conf. on Artificial Intelligence (AAAI), pages 714–719, 2008.

Thomas J. Walsh, Istvan Szita, Carlos Diuk, and Michael L. Littman. Exploring compact

reinforcement-learning representations with linear regression. In Proc. of the Conf. on Uncer-

tainty in Artificial Intelligence (UAI), 2009.

Chenggang Wang, Saket Joshi, and Roni Khardon. First order decision diagrams for relational

MDPs. Journal of Artificial Intelligence Research (JAIR), 31:431–472, 2008.

David Windridge and Josef Kittler. Perception-action learning as an epistemologically-consistent

model for self-updating cognitive representation. Brain Inspired Cognitive Systems (special is-

sue), Advances in Experimental Medicine and Biology, 657, 2010.

Zhao Xu, Kristian Kersting, and Thorsten Joachims. Fast active exploration for link–based prefer-

ence learning using Gaussian processes. In Proc. of the European Conf. on Machine Learning

(ECML), 2010.

3768

