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Abstract

The Nystbm method is an efficient technique to generate low-rankirafproximations and is
used in several large-scale learning applications. A k@ee&sof this method is the procedure
according to which columns are sampled from the originalrixain this work, we explore the
efficacy of a variety ofixedandadaptivesampling schemes. We also propose a familgrmem-
ble-based sampling algorithms for the Ny@ir method. We report results of extensive experiments
that provide a detailed comparison of various fixed and agapampling techniques, and demon-
strate the performance improvement associated with thendsle Nystom method when used in
conjunction with either fixed or adaptive sampling schem@srroborating these empirical find-
ings, we present a theoretical analysis of the Nymtmethod, providing novel error bounds guar-
anteeing a better convergence rate of the ensembledyystrethod in comparison to the standard
Nystrom method.

Keywords: low-rank approximation, nystm method, ensemble methods, large-scale learning

1. Introduction

A common problem in many areas of large-scale machine learning involvesndest useful and
efficient approximation of a large matrix. This matrix may be a kernel matrix wstdsupport
vector machines (Cortes and Vapnik, 1995; Boser et al., 1992),lkmineipal component analysis
(Schdlkopf et al., 1998) or manifold learning (Platt, 2004; Talwalkar et al.,80Qarge matrices
also naturally arise in other applications, for example, clustering, collaberitering, matrix
completion, robust PCA, etc. For these large-scale problems, the nuinimatrix entries can be

in the order of tens of thousands to millions, leading to difficulty in operatingooryen storing

the matrix. An attractive solution to this problem involves using the Niystmethod to generate a
low-rank approximation of the original matrix from a subset of its columns (Wiltiaand Seeger,
2000). A key aspect of the Nystm method is the procedure according to which the columns are
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sampled. This paper presents an analysis of different sampling techriagute Nystém method
both empirically and theoretically.

In the first part of this work, we focus on variofisedsampling methods. The Ny#&tn method
was first introduced to the machine learning community (Williams and Seeged) 280hg uni-
form sampling without replacement, and this remains the sampling method most commedly
in practice (Talwalkar et al., 2008; Fowlkes et al., 2004; de Silva aneAeeum, 2003; Platt,
2004). More recently, the Nystm method has been theoretically analyzed assuming sampling
from fixed, non-uniform distributions over the columns (Drineas anddvialy, 2005; Belabbas and
Wolfe, 2009; Mahoney and Drineas, 2009). In this work, we presewt| experiments with several
real-world data sets comparing the performance of the Rgstnethod when used with uniform
versus non-uniform sampling distributions. Although previous studies bampared uniform and
non-uniform distributions in a more restrictive setting (Drineas et al., 200ang et al., 2008), our
results are the first to compare uniform sampling with the sampling techniquéaicin the Nystém
method has theoretical guarantees. Our results suggest that unifowtirgg in addition to being
more efficient both in time and space, produces more effective approximatitfe further show
the benefits of sampling without replacement. These empirical findings helpateosubsequent
theoretical analyses.

The Nystbm method has also been studied empirically and theoretically assuming moie soph
ticated iterative selection techniques (Smola and$aipf, 2000; Fine and Scheinberg, 2002; Bach
and Jordan, 2002). In the second part of this work, we provideweegwf adaptive techniques that
have been suggested for use with the Nystmethod, and present an empirical comparison across
these algorithms. As part of this work, we build upon ideas of Deshpanale 006), in which
an adaptive, error-driven sampling technique with relative error d®was introduced for the re-
lated problem of matrix projection (see Kumar et al. 2009b for details). Mexy¢his technique
requires the full matrix to be available at each step, and is impractical far taggrices. Hence,
we propose a simple and efficient algorithm that extends the ideas of &edet al. (2006) for
adaptive sampling and uses only a small submatrix at each step. Our emasigh$ suggest a
trade-off between time and space requirements, as adaptive technigmesrsore time to find a
concise subset of informative columns but provide improved approximatoaracy.

Next, we show that a new family of algorithms based on mixtures of Ngstpproximations,
ensemble Nysbm algorithms yields more accurate low-rank approximations than the standard
Nystrom method. Moreover, these ensemble algorithms naturally fit within distributegbuat-
ing environments, where their computational costs are roughly the sametax tha standard
Nystrom method. This issue is of great practical significance given the praealef distributed
computing frameworks to handle large-scale learning problems. We desaieral variants of
these algorithms, including one based on simple averagimpgN\yfstrom solutions, an exponential
weighting method, and a regression method which consists of estimating the npiatareeters of
the ensemble using a few columns sampled from the matrix. We also reporsthis i extensive
experiments with these algorithms on several data sets comparing diffarénits of the ensem-
ble Nystbm algorithms and demonstrating the performance improvements gained ostaritard
Nystrom method.

1. Portions of this work have previously appeared in the Conferend&rtificial Intelligence and Statistics (Kumar
et al., 2009a), the International Conference on Machine Learningnéf et al., 2009b) and Advances in Neural
Information Processing Systems (Kumar et al., 2009c).
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Finally, we present a theoretical analysis of the Ntstrmethod, namely bounds on the recon-
struction error for both the Frobenius norm and the spectral norm. ¥fefiesent a novel bound
for the Nystbm method as it is often used in practice, that is, using uniform sampling witheut
placement. We next extend this bound to the ensemble dipsaitgorithms, and show these novel
generalization bounds guarantee a better convergence rate for ldp@stnians in comparison to the
standard Nystrm method.

The remainder of the paper is organized as follows. Section 2 introdwusss tefinitions,
provides a short survey on related work and gives a brief presemtattithe Nystom method. In
Section 3, we study various fixed sampling schemes used with thediystiethod. In Section 4,
we provide a survey of various adaptive techniques used for sampdised low-rank approxima-
tion and introduce a novel adaptive sampling algorithm. Section 5 describbeslg of ensemble
Nystrom algorithms and presents extensive experimental results. We presehttreoretical anal-
ysis in Section 6.

2. Preliminaries

Let T € R®*P be an arbitrary matrix. We defiie)), j = 1...b, as thejth column vector ofT,
Ti),i=1...a as theith row vector ofT and ||-|| thel, norm of a vector. Furthermord, ()
refers to theith throughjth columns ofT and T, refers to theith through jth rows of T. If
rank(T) = r, we can write the thin Singular Value Decomposition (SVD) of this matrix as
UTETVI where Xt is diagonal and contains the singular valued cdorted in decreasing order
andUt € R¥" andVt € RP*" have orthogonal columns that contain the left and right singular
vectors ofT corresponding to its singular values. We denotd pyhe ‘best’ rankk approximation
to T, that is, Tx=argmin, cga< raniv)=kll T — V¢, whereg € {2,F} and||-||> denotes the spectral
norm and||-||r the Frobenius norm of a matrix. We can describe this matrix in terms of its SVD as
Tk = UT,kETJ(VIk whereXTy is a diagonal matrix of the tok singular values ol andUt and
Vt are the matrices formed by the associated left and right singular vectors.

Now let K € R™" be a symmetric positive semidefinite (SPSD) kernel or Gram matrix with
rank K) =r < n, that is, a symmetric matrix for which there existsre RN*" such thatk =

XTX. We will write the SVD ofK asK = UXU', where the columns df} are orthogonal and

> = diag(0y, ..., 0,) is diagonal. The pseudo-inversekfis defined a& * = 5I_; oy TUOU® |

andK * =K 1whenK is full rank. Fork <r, Ky = z{;lotU(Uu(t)T =UZKU, is the ‘best’ rankk
approximation tK, that is,Kx = argming cgnn ran )kl K — K'llec 2.y, With [[K — Kill2 = Oky1

and||K — K|lr = 1/ 3{_k,1 07 (Golub and Loan, 1983).

We will be focusing on generating an approximatiérof K based on a sample bf< n of
its columns. For now, we assume that the sampleaaflumns is given to us, though the focus of
this paper will be on various methods for selecting columns.@.denote then x | matrix formed
by these columns and/ thel x | matrix consisting of the intersection of thdseolumns with the
corresponding rows of K. Note thatw is SPSD sinc& is SPSD. Without loss of generality, the
columns and rows oK can be rearranged based on this sampling sokhand C be written as
follows:

W K. w
K= 21 d C= ) 1
[K21 Kzz} an [KZJ .
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2.1 Nystrom Method

The Nystdm method use®/ andC from (1) to approximaté. Assuming a uniform sampling of
the columns, the Nysim method generates a raklepproximatiork of K for k < n defined by:

KPs=CWwWC" =K,

whereWy is the besk-rank approximation oV with respect to the spectral or Frobenius norm and
W," denotes the pseudo-inversewf,. The Nystdm method thus approximates the togingular
values &) and singular vectordJy) of K as:

~ n ~ I
EEyS:<T)EW7k and OP°= \[nCUw,kX\Tv,k- @)

Whenk=1 (or more generally, whenevér>rank(C)), this approximation perfectly reconstructs
three blocks oK, andK »; is approximated by the Schur Complemenyéin K:

~ w K.

nys +~T _ 21
Kim=Ccwic = [ K1 KaW Kz ] )
Since the running time complexity of SVD &M is in O(kl?) and matrix multiplication witlC takes
O(kln), the total complexity of the Nysbm approximation computation is @(kin).

2.2 Related Work

There has been a wide array of work on low-rank matrix approximation witkemumerical lin-
ear algebra and computer science communities, much of which has beeadrspthe celebrated
result of Johnson and Lindenstrauss (1984), which showed thddmafow-dimensional embed-
dings preserve Euclidean geometry. This result has led to a family of mapdujection algorithms,
which involves projecting the original matrix onto a random low-dimensionlaéggace (Papadim-
itriou et al., 1998; Indyk, 2006; Liberty, 2009). Alternatively, SVD damused to generate ‘optimal’
low-rank matrix approximations, as mentioned earlier. However, both trdonamrojection and
the SVD algorithms involve storage and operating on the entire input matrix. iSviidre com-
putationally expensive than random projection methods, though neithéneae inn in terms of
time and space complexity. When dealing with sparse matrices, there exishihegstationally in-
tensive techniques such as Jacobi, Arnoldi, Hebbian and more recettmized methods (Golub
and Loan, 1983; Gorrell, 2006; Rokhlin et al., 2009; Halko et al., 2000generating low-rank
approximations. These methods require computation of matrix-vector geoaiud thus require op-
erating on every non-zero entry of the matrix, which may not be suitabladge, dense matrices.
Matrix sparsification algorithms (Achlioptas and Mcsherry, 2007; Araral.e 2006), as the name
suggests, attempt to sparsify dense matrices to speed up future stadagmergoutational burdens,
though they too require storage of the input matrix and exhibit superlimeaegsing time.
Alternatively, sampling-based approaches can be used to generatankvapproximations.
Research in this area dates back to classical theoretical results thatfehamy arbitrary matrix,
the existence of a subsetlotolumns for which the error in matrix projection (as defined in Kumar
et al., 2009b) can be bounded relative to the optimal taakproximation of the matrix (Ruston,
1962). Deterministic algorithms such as rank-revealing QR (Gu and Eiseh88%) can achieve
nearly optimal matrix projection errors. More recently, research in the¢tieal computer science
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community has been aimed at deriving bounds on matrix projection error gaimgling-based
approximations, including additive error bounds using sampling distribubassd on the squared
L» norms of the columns (Frieze et al., 1998; Drineas et al., 2006; Rudetsbyvesshynin, 2007);
relative error bounds using adaptive sampling techniques (Deshpaalkle2006; Har-peled, 2006);
and, relative error bounds based on distributions derived from tlgilsinvectors of the input
matrix, in work related to the column-subset selection problem (Drineas €204l8; Boutsidis
et al., 2009). These sampling-based approximations all require visitimg entry of the matrix in
order to get good performance guarantees for any matrix. Howevelisaussed in Kumar et al.
(2009b), the task of matrix projection involves projecting the input matrix oldaaank subspace,
which requires superlinear time and space with respatatal is not always feasible for large-scale
matrices.

There does exist, however, another class of sampling-based apptioxirlgorithms that only
store and operate on a subset of the original matrix. For arbitrary gadearmatrices, these al-
gorithms are known as ‘CUR’ approximations (the name ‘CUR’ corresptmtise three low-rank
matrices whose product is an approximation to the original matrix). The thesineerformance of
CUR approximations has been analyzed using a variety of sampling sctathesgh the column-
selection processes associated with these analyses often requitingp@arahe entire input matrix
(Goreinov et al., 1997; Stewart, 1999; Drineas et al., 2008; Mahomeyaineas, 2009).

In the context of symmetric positive semidefinite matrices, the Mystmethod is a commonly
used algorithm to efficiently generate low-rank approximations. The Blystnethod was initially
introduced as a quadrature method for numerical integration, used toxappte eigenfunction
solutions (Nystom, 1928; Baker, 1977). More recently, it was presented in Williams aedese
(2000) to speed up kernel algorithms and has been studied theoreticatiyaugariety of sampling
schemes (Smola and Sidkopf, 2000; Drineas and Mahoney, 2005; Zhang et al., 2008; ghad
Kwok, 2009; Kumar et al., 2009a,b,c; Belabbas and Wolfe, 2009; Bakhibd Wolfe, 2009; Cortes
et al., 2010; Talwalkar and Rostamizadeh, 2010). It has also beednfarsa variety of machine
learning tasks ranging from manifold learning to image segmentation (Platt; E0G4kes et al.,
2004; Talwalkar et al., 2008). A closely related algorithm, known as tieermplete Cholesky
Decomposition (Fine and Scheinberg, 2002; Bach and Jordan, 200%), Zan also be viewed as a
specific sampling technique associated with the Nystmethod (Bach and Jordan, 2005). As noted
by Canas and Recht (2009) and Talwalkar and Rostamizadeh (2010), thehyapproximation
is related to the problem of matrix completion (Casdand Recht, 2009; Cadsland Tao, 2009),
which attempts to complete a low-rank matrix from a random sample of its entriesieudg
the matrix completion attempts to impute a low-rank matrix from a subset of (posstiiyrped)
matrix entries, rather than a subset of matrix columns. This problem is relatget tistinct from
the Nystom method and sampling-based low-rank approximation algorithms in genexatigél
with full-rank matrices that are amenable to low-rank approximation. Furthernadren we have
access to the underlying kernel function that generates the kernel wiatiterest, we can generate
matrix entries on-the-fly as desired, providing us with more flexibility accggbimoriginal matrix.

3. Fixed Sampling

Since the Nystim method operates on a small subsek pthat is,C, the selection of columns can
significantly influence the accuracy of the approximation. In the remaindinreqpaper, we will
discuss various sampling options that aim to select informative columnsirdivie begin with the

985



KUMAR, MOHRI AND TALWALKAR

most common class of sampling techniques that select columns using a fixebititg distribu-
tion. The most basic sampling technique involuegform sampling of the columns. Alternatively,
theith column can be sampled non-uniformly with weight proportional to either itesponding
diagonal elemenk; (diagonal samplingor theL, norm of the columngolumn-norm samplinjg
(Drineas et al., 2006; Drineas and Mahoney, 2005). There are atditomputational costs as-
sociated with these non-uniform sampling metho@¢n) time and space requirements for diago-
nal sampling and(n?) time and space for column-norm sampling. These non-uniform sampling
techniques are often presented using sampling with replacement to simplifgtibabanalysis.
Column-norm sampling has been used to analyze a general SVD approximlgtoithm. Further,
diagonal sampling with replacement was used by Drineas and Mahon@y)(20d Belabbas and
Wolfe (2009) to bound the reconstruction error of the Ngistmethoc® In Drineas and Mahoney
(2005) however, the authors suggest that column-norm sampling weudddetter sampling as-
sumption for the analysis of the Ny8tn method. We also note that Belabbas and Wolfe (2009)
proposed a family of ‘annealed determinantal’ distributions for which multiplieatiounds on
reconstruction error were derived. However, in practice, thesdhiistns cannot be efficiently
computed except for special cases coinciding with uniform and columm-sampling. Similarly,
although Mahoney and Drineas (2009) present multiplicative boundshéo€CUR decomposition
(which is quite similar to the Nystm method) when sampling from a distribution over the columns
based on ‘leverage scores,’ these scores cannot be efficientiyutednip practice for large-scale
applications.

In the remainder of this section we present novel experimental resultsacmgphe perfor-
mance of these fixed sampling methods on several data sets. Previous bawdieccompared uni-
form and non-uniform in a more restrictive setting, using fewer typesoids and focusing only
on column-norm sampling (Drineas et al., 2001; Zhang et al., 2008). ¥Howia this work, we pro-
vide the first comparison that includes diagonal sampling, which is the niforon distribution that
is most scalable for large-scale applications and which has been usedéntseoretical analyses
of the Nystbm method.

3.1 Data Sets

We used 5 data sets from a variety of applications, for example, compuien @isd biology, as
described in Table 1. SPSD kernel matrices were generated by mearingetite data sets and
applying either a linear kernel or RBF kernel. The diagonals (resghgtbolumn norms) of these
kernel matrices were used to calculate diagonal (respectively colunmm}dgstributions. Note that
the diagonal distribution equals the uniform distribution for RBF kernelsesitiagonal entries of
RBF kernel matrices always equal one.

3.2 Experiments

We used the data sets described in the previous section to test the approxiaeaticacy for each
sampling method. Low-rank approximationskofivere generated using the Ny@tn method along
with these sampling methods, and we measured the accuracy of reconstreietive to the optimal

2. Although Drineas and Mahoney (2005) claim to weight each columpaptionally to Kﬁ they in fact use the
diagonal sampling we present in this work, that is, weights proportiorigj; t(Drineas, 2008).
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Name Type n d Kernel
PIE-2.7K || faces (profile)| 2731 | 2304 | linear
PIE-7K faces (front) | 7412 | 2304 | linear
MNIST digitimages | 4000| 784 | linear
ESS proteins 4728 | 16 RBF
ABN abalones | 4177| 8 RBF

Table 1: Description of the data sets and kernels used in fixed and alaptipling experiments
(Simetal., 2002; LeCun and Cortes, 1998; Gustafson et al., 2006cAsuand Newman,
2007). d’ denotes the number of features in input space.

Uniform vs Non-Uni Sampling: PIE-7K
100—— : ‘ :
2 90f
B
3 8o
o
< 70
2
© 60y —Uni+Rep
0] Diag+Rep
@x 5o - - - Col-Norm+Rep ||
s0l— ‘ ‘ ‘
10 20 30 40 50
% of Columns Sampled (I/n)
(&)

I/n | Data Set|Uniform+Rep Diag+Rep|Col-Norm+Rep
PIE-2.7K|| 388 (+1.5) |383(+£0.9)| 37.0(+£0.9)
PIE-7K || 558 (+1.1) |46.4 (£1.7)| 54.2(+0.9)

5% || MNIST | 47.4(+0.8) |46.9 (£0.7)| 45.6(+1.0)

ESS 451 (+2.3) - 410 (+2.2)
ABN 47.3 (£3.9) - 442 (£1.2)
PIE-2.7K|| 723 (+0.9) |65.0 (+0.9)| 634 (+1.4)
PIE-7K | 835 (£1.1) |69.8(£2.2)| 799 (£1.6)
20%]|| MNIST || 80.8(+0.5) [79.4(+0.5)| 781 (+0.5)
ESS 80.1 (+0.7) - 755 (£1.1)
ABN 77.1(£3.0) - 66.3 (+4.0)

(b)

Figure 1: (a) Nysiim relative accuracy for various sampling techniques on PIE-7K. ysibim
relative accuracy for various sampling methods for two valuégrofvith k= 100. Values
in parentheses show standard deviations for 10 different runs fae@l fi'+Rep’ denotes
sampling with replacement. No error (*-') is reported for diagonal samphith RBF
kernels since diagonal sampling is equivalent to uniform sampling in this case
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rankk approximationKy, as:

relative accuracy= M x 100 4)
K =Kl

Note that the relative accuracy is lower bounded by zero and will approae for good approxi-
mations. We fixedk= 100 for all experiments, a value that captures more than 90% of the dpectra
energy for each data set. We first compared the effectiveness oféeesdimpling techniques using
sampling with replacement. The results for PIE-7K are presented in Figayeadd summarized
for all data sets in Figure 1(b). The results across all data sets shounif@tm sampling outper-
forms all other methods, while being much cheaper computationally and sgseeThus, while
non-uniform sampling techniques may be effective in extreme cases ahere columns oK
dominate in terms off-||2, this situation does not tend to arise with real-world data, where uniform
sampling is most effective.

Effect of Replacement: PIE-7K

2y

@

5

3

<

o

04

£
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(@]

& -1f

c

O_ L L L

10 20 30 40
% of Columns Sampled (I/n)
(a)
| DataSet|] 5% | 10% | 15% | 30% |

PIE-27K[ 0.8(£.6) | 1.7(+£.3) | 23(+.9) | 44(+.4)
PIE-7K || 0.7(£.3) | 1.5(+.3) | 21(+.6) | 3.2(+.3)
MNIST | 10(+5) | 1.9(£.6) | 2.3(+.4) | 3.4(+.4)
ESS | 09(+9) | 18(+.9) | 22(+£.6) | 3.7(+.7)
ABN || 0.7 (£12) | 1.3(+1.8) | 26 (£1.4) | 4.5 (£1.1)

(b)

Figure 2: Comparison of uniform sampling with and without replacement meddy the differ-
ence in relative accuracy. (a) Improvement in relative accuracy lfe47R when sam-
pling without replacement. (b) Improvement in relative accuracy when kagnpithout
replacement across all data sets for variotmspercentages.

Next, we compared the performance of uniform sampling with and witholacement. Fig-
ure 2(a) illustrates the effect of replacement for the PIE-7K data sélifferent| /n ratios. Similar
results for the remaining data sets are summarized in Figure 2(b). The rEsmisthat uniform
sampling without replacement improves the accuracy of the Blystnethod over sampling with re-
placement, even when sampling less than 5% of the total columns. In summaeyettperimental
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show that uniform sampling without replacement is the cheapest and rfiosrgfsampling tech-
nique across several data sets (it is also the most commonly used methocticeprdn Section 6,
we present a theoretical analysis of the Ngstrmethod using precisely this type of sampling.

4. Adaptive Sampling

In Section 3, we focused on fixed sampling schemes to create low-ram&apptions. In this
section, we discuss various sampling options that aim to select more infoenoativnns fronk,
while storing and operating on only @] entries ofK. The Sparse Matrix Greedy Approximation
(SMGA) (Smola and Satikopf, 2000) and the Incomplete Cholesky Decomposition (ICL) (Fine
and Scheinberg, 2002; Bach and Jordan, 2002) were the firstsiaghive schemes suggested for
the Nystdm method. SMGA is a matching-pursuit algorithm that randomly selects a maplesa
at each round from a random subsetef n samples, witts = 59 in practice as per the suggestion
of Smola and Sablkopf (2000). The runtime to selectolumns is O$I°n), which is of the same
order as the Nysiirm method itself whesis a constant ank= | (see Section 2.1 for details).

Whereas SMGA was proposed as a sampling scheme to be used in conjwitttithre Nystbm
method, ICL generates a low-rank factorizationkofon-the-fly as it adaptively selects columns
based on potential pivots of the Incomplete Cholesky Decomposition. ICyrisealy, deterministic
selection process that generates an approximation of thekdtn- XX whereX € R™! is low-
rank. The runtime of ICL is O¢n). Although ICL does not generate an approximate SVIKof
it does yield a low-rank approximation &f that can be used with the Woodbury approximation.
Moreover, wherk = I, the Nystbm approximation generated from theolumns ofK associated
with the pivots selected by ICL is identical Kg®! (Bach and Jordan, 2005). Related greedy adaptive
sampling techniques were proposed by Ouimet and Bengio (2005) and kiu @006) in the
contexts of spectral embedding and spectral mesh processing,tiespec

More recently, Zhang et al. (2008) and Zhang and Kwok (2009)aseg a technique to gen-
erate informative columns using centroids resulting frdameans clustering, witkk = 1. This
algorithm, which uses out-of-sample extensions to generate a $aepfesentative columns of
K, has been shown to give good empirical accuracy (Zhang et al., 2008ally, an adaptive
sampling technique with strong theoretical foundatiadaptive-ful) was proposed in Deshpande
et al. (2006). It requires a full pass throughn each iteration and is thus inefficient for large In
the remainder of this section, we first propose a novel adaptive techthgtiextends the ideas of
Deshpande et al. (2006) and then present empirical results compagipgrfiormance of this new
algorithm with uniform sampling as well as SMGA, ICK;means and thadaptive-fultechniques.

4.1 Adaptive Nystrom Sampling

Instead of sampling all columns from a fixed distribution, adaptive sampling alternates between
selecting a set of columns and updating the distribution over all the colummgn&taith an initial
distribution over the columns,< | columns are chosen to form a submatgix The probabilities

are then updated as a function of previously chosen columns ae@ columns are sampled and
incorporated inC’. This process is repeated urticolumns have been selected. The adaptive
sampling scheme in Deshpande et al. (2006) is detailed in Figure 3. Note d¢hsdrtipling step,
UPDATE-PROBABILITY-FULL, requires a full pass ové¢ at each step, and hencer®y time

and space.
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Input: nx n SPSD matrix K), number columns to be chosd, (initial distribution over columns
(Po), number columns selected at each iterat®n (
Output: | indices corresponding to columnskof

SAMPLE-ADAPTIVE(K,n,I,Py,s)
1 R+ setofsindices sampled according Ry
2 t< L{—1 > number of iterations
3 foriell...tJdo
4 P < UPDATE-PROBABILITY-FULL (R)
5 R + set ofsindices sampled according B
6 R+ RUR
7 return R

UPDATE-PROBABILITY-FULL (R)

1 C’ <+ columns ofK corresponding to indices iR
2 Ug « left singular vectors o€’

3 E+ K—-UgULK

4 for je[l...n]do

5 if j € Rthen

6 Pj+0
7 else Pj « ||Ej||3
8 P« ﬁ
9 return P

Figure 3: The adaptive sampling technique (Deshpande et al., 2006)pdbedtes on the entire
matrix K to compute the probability distribution over columns at each adaptive step.

We propose a simple sampling technigaelgptive-partia) that incorporates the advantages
of adaptive sampling while avoiding the computational and storage burdehg adaptive-full
technique. At each iterative step, we measure the reconstruction errea¢hrow of C' and the
distribution over correspondingplumnsof K is updated proportional to this error. We compute the
error forC’, which is much smaller thaK, thus avoiding the @) computation. As described in
(3), if K" is fixed to be the number of columns @, it will lead to C{, s = C' resulting in perfect
reconstruction ofC’. So, one must choose a smalkéto generate non-zero reconstruction errors
from which probabilities can be updated (we ugée- (# columns inC’)/2 in our experiments).
One artifact of using & smaller than the rank @’ is that all the columns df will have a non-zero
probability of being selected, which could lead to the selection of previoedgted columns in the
next iteration. However, samplingithout replacement strategy alleviates this problem. Working
with C’ instead ofK to iteratively compute errors makes this algorithm significantly more efficient
than that of Deshpande et al. (2006), as each iteration tak@&’'@(°) time and requires at most
the storage of columns ofK. The details of the proposed sampling technique are outlined in Figure
4.
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UPDATE-PROBABILITY-PARTIAL (R)

1 C’+ columns ofK corresponding to indices iR
K « CHOOSERANK() > low-rank ) or &l
2% UpY® < Do-NYSTROM (C',K) 1> see Equation (2)
Chys < Spectral reconstruction usigy’®, U’
E«+ C'—Crys
for j e [1...n] do
if j € Rthen

Pj < 0 > sample without replacement

else Pj « || E Hz

=]

©oo~NOOOUTh WNDN

=
o

P e
return P

=
=

Figure 4: The proposed adaptive sampling technique that uses a snsat stithe original matrix
K to adaptively choose columns. It does not need to store or oper#te on

[/n% || Data Set/| Uniform ICL SMGA | Adapt-Part K-means| Adapt-Full
PIE-2.7K]||39.7 (0.7) | 416 (0.0) | 54.4 (0.6) | 42.6 (0.8) |61.3 (0.5) | 44.2 (0.9)
PIE-7K ||58.6 (1.0) |50.1 (0.0)|68.1(0.9)| 614 (1.1) | 71.0(0.7) -
5% || MNIST ||47.5(0.9)|415(0.0)|59.2(0.5)| 49.7 (0.9) | 729 (0.9) | 50.3 (0.7)
ESS ||457(2.6)|25.2(0.0) (619 (0.5)| 49.3(1.5) [64.2(1.6) -

ABN ||47.4(5.5)|156(0.0)|64.9 (1.8)| 23.0(2.8) |65.7 (5.8)| 50.7 (2.4)

PIE-2.7K||58.2 (1.0) |61.1 (0.0) | 72.7 (0.2) | 60.8 (1.0) | 73.0 (1.1) | 63.0 (0.3)
PIE-7K || 724 (0.7) |60.8 (0.0) | 74.5 (0.6) | 77.0 (0.6) | 82.8 (0.7) -

10% || MNIST |/66.8 (1.4)|58.3(0.0)| 722 (0.8)| 69.3 (0.6) |816 (0.6)| 685 (0.5)
ESS |/66.8(2.0)|39.1(0.0)|74.7(0.5)| 70.0 (1.0) |816 (1.0) -

ABN 61.0(1.1) | 25.8 (0.0) |67.1(0.9)| 33.6 (6.7) | 79.8 (0.9)| 57.9 (3.9)

PIE-2.7K]|| 75.2 (1.0) | 80.5 (0.0) | 86.1 (0.2) | 78.7 (0.5) | 85.5 (0.5) | 80.6 (0.4)
PIE-7K ||85.6 (0.9) |69.5 (0.0)| 79.4 (0.5) | 86.2(0.3) |91.9 (0.3) -

20% || MNIST ||83.6 (0.4)|77.9(0.0)|78.7 (0.2) | 84.0 (0.6) | 884 (0.5) | 80.4 (0.5)
ESS ||814(2.1)|55.3(0.0)|79.4(0.7)| 834 (0.3) [90.0 (0.6) -

ABN 80.8(1.7)|412(0.0) |67.2(2.2)| 44.4(6.7) |85.1(1.6)| 62.4 (3.6)

Table 2: Nystém spectral reconstruction accuracy for various sampling methodk data sets for
k=100 and threé/n percentages. Numbers in parenthesis indicate the standard deviations
for 10 different runs for each Numbers in bold indicate the best performance on each
data set, that is, each row of the table. Dashes (‘-') indicate experimeattsvére too
costly to run on the larger data sets (ESS, PIE-7K).

4.2 Experiments

We used the data sets in Table 1, and compared the effect of differaptisg techniques on the
relative accuracy of Nyshim spectral reconstruction fer= 100. All experiments were conducted
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I/n% || Data Set|| Uniform| ICL | SMGA | Adapt-Part K-means Adapt-Full
PIE-2.7K|| 0.03 | 0.56 | 2.30 0.43 244 2254

PIE-7K 0.63 | 44.04 | 59.02 6.56 1518 -
5% || MNIST 0.04 171 | 757 0.71 1.26 20.56
ESS 0.07 2.87 | 6242 0.85 3.48 -
ABN 006 | 328 | 9.26 0.66 244 28.49

PIE-2.7K]| 0.08 281 | 844 0.97 3.25 2313
PIE-7K 0.63 | 44.04 | 24433 6.56 1518 -
10% || MNIST 0.20 7.38 | 2879 151 1.82 2177
ESS 0.29 | 1101 | 15230 2.04 7.16 -
ABN 0.23 | 1092 | 3330 1.74 4.94 3591

PIE-2.7K|| 0.28 | 836 | 3819 2.63 591 27.72
PIE-7K 081 |14113|110732| 13.80 12.08 -
20% || MNIST 046 | 1699 | 5196 4.03 291 26.53
ESS 0.52 | 3428 | 45823 5.90 14.68 -
ABN 1.01 | 3836 | 19943 8.54 12.56 97.39

Table 3: Run times (in seconds) corresponding to Niystspectral reconstruction results in Table
2. Dashes (*-') indicate experiments that were too costly to run on therlaa&ta sets
(ESS, PIE-7K).

in Matlab on an x86- 64 architecture using a single42Ghz core and 30GB of main memory. We
used an implementation of ICL from Cawley and Talbot (2004) and an impletientzf SMGA
code from Smola (2000), using default parameters as set by these impdioen We wrote

our own implementation of th&-means method using 5 iterationsKkfmeans and employing an
efficient (vectorized) function to compuite distances between points and centroids at each iteration
(Bunschoten, 1999). Moreover, we used a random projection SVD solver to compute truncated
SVD, using code by Tygert (2009).

The relative accuracy results across data sets for varying valuegrefpresented in Table 2,
while the corresponding timing results are detailed in Table 3.Kmeeans algorithm was clearly
the best performing adaptive algorithm, generating the most accuratexapptions in almost all
settings in roughly the same amount of time (or less) as other adaptive algoritioi®over,
the proposed Nysbm adaptive technique, which is a natural extension of an important algorith
introduced in the theory community, has performance similar to this originalitigoat a fraction
of the cost, but it is nonetheless outperformed byKheeans algorithm. We further note that ICL
performs the worst of all the adaptive techniques, and it is often woeserindom sampling (this
observation is also noted by Zhang et al. 2008).

The empirical results also suggest that the performance gain due tovadsatipling is in-
versely proportional to the percentage of sampled columns—random sgnaglinally outper-
forms many of the adaptive approaches when sampling 20% of the colurhese Empirical re-
sults suggest a trade-off between time and space requirements, as y&elblxopf and Smola
(2002)[Chapter 10.2]. Adaptive techniques spend more time to find dssosgbset of informa-
tive columns, but as in the case of tiemeans algorithm, can provide improved approximation
accuracy.

3. Note that Matlab’s built-ilkK-means function is quite inefficient.
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5. Ensemble Sampling

In this section, we slightly shift focus, and discuss a meta algorithm callednsemble Nyshm
algorithm We treat each approximation generated by the Mystmethod for a sample btolumns
as anexpertand combinep > 1 such experts to derive an improved hypothesis, typically more
accurate than any of the original experts.

The learning set-up is defined as follows. We assume a fixed kerngidaoikc. X x X — R that
can be used to generate the entries of a kernel miétrikhe learner receives a s®of | p columns
randomly selected from matriX uniformly without replacementSis decomposed intp subsets
Si,...,Sp. Each subse§, r € [1, p], containsl columns and is used to define a rankystrom
approximatiorizr.4 Dropping the rank subscriftin favor of the sample indeix K, can be written
aer =C,W;C/, whereC, andW, denote the matrices formed from the column§oandWw;" is
the pseudo-inverse of the raklapproximation ofV,. The learner further receives a samylef s
columns used to determine the weigh€& R attributed to each expel?tr. Thus, the general form of
the approximationkK ®"S, generated by the ensemble Nysiralgorithm, withk < rank(K®"S) < pk,
is

~ P
Kens: UI'KI'
2

C1 MW7 C1

= : ()
Cp KW Cp

T

As noted by Li et al. (2010), (5) provides an alternative descriptiothefensemble Nysim
method as a block diagonal approximationWfi,; whereWens is thelp x Ip SPSD matrix as-
sociated with thép sampled columns. Moreover, Li et al. (2010) further argues that cbngpu
W{,s would be preferable to making this block diagonal approximation and subséy uses a
random projection SVD solver to speed up computatiomf, (Halko et al., 2009). However,
this analysis is misleading as these two orthogonal approaches shoulel vieied as competing
methods. Rather, one can always use the ensemble based applmagivithfast SVD solvers.
This approach is most natural to improve performance on large-scdlkeprs, and is precisely the
approach we adopt in our experiments.

The mixture weightgt can be defined in many ways. The most straightforward choice consists
of assigning equal weight to each expegkt=1/p, r €[1, p]. This choice does not require the ad-
ditional samplé/, but it ignores the relative quality of each Ny@im approximation. Nevertheless,
this simpleuniform methodhlready generates a solution superior to any one of the approximations
Rr used in the combination, as we shall see in the experimental section.

Another method, thexponential weight methpdonsists of measuring the reconstruction er-
ror § of each experK, over the validation sampl and defining the mixture weight as =
exp(—né&r)/Z, wheren >0 is a parameter of the algorithm aAé normalization factor ensuring that
the vectom= (Hy, . .., Hp) belongs to the unit simpleX of RP: A={pue RP: p>0A er:lur =1}

The choice of the mixture weights here is similar to those used in the WeighteditMajigiorithm

4. In this study, we focus on the class of base learners generated\fysdm approximation with uniform sampling
of columns or from the adaptiy¢-means method. Alternatively, these base learners could be genesatgdther
(or a combination of) sampling schemes discussed in Sections 3 and 4.
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(Littlestone and Warmuth, 1994). L&ty denote the matrix formed by using the samples from
V as its columns and IeKV denote the submatrix df, containing the columns corresponding to

the columns inV. The reconstruction errdy = |[KY —Ky|| can be directly computed from these

matrices.

A more general class of methods consists of using the savhfgdrain the mixture weightg,
to optimize a regression objective function such as the following:

P
min MIHIZ+1TY wKY =Ky,
r=1

whereA > 0. This can be viewed as a ridge regression objective function and adotitseal form
solution. We will refer to this method as thielge regression method\ote that to ensure that the
resulting matrix is SPSD for use in subsequent kernel-based algorithmsptih@zation problem
must be augmented with standard non-negativity constraints. This is ne$sayg however for
reducing the reconstruction error, as in our experiments. Also, cleaviyiety of other regression
algorithms such as Lasso can be used here instead.

The total complexity of the ensemble Ny&tm algorithm isO(pl®+ plkn+C,), whereC, is
the cost of computing the mixture weighis, used to combine th@ Nysttom approximations.
The mixture weights can be computed in constant time for the uniform meth@{ psn) for the
exponential weight method, or i®(p3+ p?ns) for the ridge regression method whed¢p?ns)
time is required to compute px p matrix andO(p®) time is required for inverting this matrix.
Furthermore, although the ensemble Ngsiralgorithm requireg times more space and CPU
cycles than the standard Ny&tn method, these additional requirements are quite reasonable in
practice. The space requirement is still manageable for even largeapgdilgations given tha is
typically O(1) and is usually a very small percentagero{see Section 5.2 for further details). In
terms of CPU requirements, we note that the algorithm can be easily parallelzatip experts
can be computed simultaneously. Thus, with a clustgr wiachines, the running time complexity
of this algorithm is nearly equal to that of the standard Nystalgorithm withl samples.

5.1 Ensemble Woodbury Approximation

The Woodbury approximation is a useful tool to use alongside low-rankoapations to effi-
ciently (and approximately) invert kernel matrices. We are able to apply twddry approxima-
tion since the Nysttrm method represenﬁs as the product of low-rank matrices. This is clear from
the definition of the Woodbury approximation:

(A+BCD) t=A"1-A-lB(Ct+DA!B) DAL, (6)

whereA = Al andK = BCD in the context of the Nystrm method. In contrast, the ensemble
Nystrom method represenfé as the sum of products of low-rank matrices, where each opthe
terms corresponds to a base learner. Hence, we cannot directly apjotidbury approximation
as presented above. There is however, a natural extension of thdbWegapproximation in this
setting, which at the simplest level involves running the approximgpidimes. Starting withp
base learners with their associated weights, thehTt,iezamdpr forre[1, p|, and definindl o = Al, we
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perform the following series of calculations:

Tl = (To+wmKi) ™S,
Ty = (Ti+ 1K) ™S

To computeT; L, notice that we can use Woodbury approximation as stated in (6) sincerwe ca
expressulﬁl as the product of low-rank matrices and we know beé} = %I . More generally, for

1<i < p, given an expression de as a product of low-rank matrices, we can efficiently compute
Tfl using the Woodbury approximation (we use the low-rank structure to aveirdcemputing or
storing a fulln x n matrix). Hence, after performing this seriesptalculations, we are left with

the inverse ofl ,, which is exactly the quantity of interest sintg = Al + zf:l p,R,. Although this
algorithm requires iterations of the Woodbury approximation, these iterations can be parallelized
in a tree-like fashion. Hence, when working on a cluster, using an ene&igbtiom approximation
along with the Woodbury approximation requires only a,lgm factor more time than using the
standard Nystim methoc®

5.2 Experiments

In this section, we present experimental results that illustrate the perfoenwirtbhe ensemble
Nystrom method. We again work with the data sets listed in Table 1, and compare fbe per
mance of various methods for calculating the mixture weightls (Throughout our experiments,
we measure performance via relative accuracy (defined in (4)). IFexgeriments, we fixed the
reduced rank t&«=100, and set the number of sampled columnist8% x n.8

5.2.1 BENSEMBLE NYSTROM WITH VARIOUS MIXTURE WEIGHTS

We first show results for the ensemble Nystr method using different techniques to choose the
mixture weights, as previously discussed. In these experiments, weetbondase learners gener-
ated via the Nystrm method with uniform sampling of columns. Furthermore, for the exponential
and the ridge regression variants, we sampled a set=#0 columns and used an additional 20
columns §) as a hold-out set for selecting the optimal valuesyadndA. The number of ap-
proximations,p, was varied from 2 to 25. As a baseline, we also measured the maximumeelativ
accuracy across theNystrdm approximations used to constric?™s We also calculated the per-
formance when using the optimalthat is, we used least-square regression to find the best possible
choice of combination weights for a fixed setmapproximations by setting=n. The results of
these experiments are presented in Figuféese results clearly show that the ensemble Nystr
performance is significantly better than any of the individual Nyrstapproximations. We further
note that the ensemble Ny8in method tends to converge very quickly, and the most significant
gain in performance occurs @dncreases from 2 to 10.

5. Note that we can also efficiently obtain singular values and singularrgecfahe low-rank matrixk €S using
coherence-based arguments, as in Talwalkar and Rostamizadéh).(20

6. Similar results (not reported here) were observed for other vafueand! as well.

7. Similar results (not reported here) were observed when measetatiye accuracy using the spectral norm instead
of the Frobenium norm.

995



KUMAR, MOHRI AND TALWALKAR

Base Learnef Method PIE-2.7K| PIE-7K| MNIST | ESS| ABN
Average Base Learner 26.9 46.3 342 |300| 381

Best Base Learner 29.2 483 361 345|436

Uniform Ensemble Uniform 330 575 473 439|498
Ensemble Exponentigl 33.0 575 474 439|498

Ensemble Ridge 35.0 585 540 |44.5|536

Average Base Learney 47.6 62.9 625 [422]|60.6

Best Base Learner 484 66.4 639 |47.1| 720

K-means || Ensemble Uniform 54.9 713 769 |522| 764
Ensemble Exponentigdl 54.9 714 770 |522| 783

Ensemble Ridge 54.9 716 772 |527]79.0

Table 4: Relative accuracy for ensemble Ngstrmethod with Nystim base learners generated
with uniform sampling of columns or via th€-means algorithm.

5.2.2 BFECT OFRANK

As mentioned earlier, the rank of the ensemble approximations cpritmes greater than the rank
of each of the base learners. Hence, to validate the results in Figure penfoemed a simple
experiment in which we compared the performance of the best baserl¢éaithe best rank ap-
proximation of the uniform ensemble approximation (obtained via SVD of themmiEnsemble
approximation). We again used base learners generated via théys&thod with uniform sam-
pling of columns. The results of this experiment, presented in Figure 6estitiiat the performance
gain of the ensemble methods is not due to this increased rank.

5.2.3 BFECT OFRIDGE

Figure 5 also shows that the ridge regression technique is the best abfimspd techniques, and
generates nearly the optimal solution in terms of relative accuracy usingdaberitus norm. We
also observed that whesis increased to approximately 5% to 10%mfinear regression without
any regularization performs about as well as ridge regression forthetRrobenius and spectral
norm. Figure 7 shows this comparison between linear regression andegigssion for varying
values ofs using a fixed number of expertp£ 10). In these experiments, we again used base
learners generated via the Ny®tr method with uniform sampling of columns.

5.2.4 ENSEMBLE K-MEANS NYSTROM

In the previous experiments, we focused on base learners geneiatbe Wystom method with
uniform sampling of columns. In light of the performance of Kxneans algorithm in Section 4,

we next explored the performance of this algorithm when used in conjunafith the ensemble
Nystrom method. We fixed the number of base learneng 010 and when using ridge regression

to learn weights, we set=s = 20. As shown in Table 4, similar performance gains in comparison
to the average or best base learner can be seen when using an ensebasle learners derived
from theK-means algorithm. Consistent with the experimental results of Section 4, theagc
values are higher fd-means relative to uniform sampling, though as noted in the previous section,
this increased performance comes with an added cost, & theans step is more expensive than
random sampling.
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Ensemble Method — PIE-2.7K Ensemble Method — PIE-7K
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Figure 5: Relative accuracy for ensemble Ngsir method using uniform (‘uni’), exponential
(‘exp’), ridge (‘ridge”) and optimal (‘optimal’) mixture weights as well aethest (‘best
b.l") of the p base learners used to create the ensemble approximations.

6. Theoretical Analysis

We now present theoretical results that compare the quality of the dMysipproximation to the
‘best’ low-rank approximation, that is, the approximation constructed tlwmtop singular values
and singular vectors df. This work, related to work by Drineas and Mahoney (2005), provides
performance bounds for the Ny&tn method as it is often used in practice, that is, using uniform
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Figure 6: Relative accuracy for ensemble Ngstrmethod using uniform (‘uni’) mixture weights,
the optimal rankk approximation of the uniform ensemble result (‘uni rddikas well as
the best (‘best b.l.") of thgp base learners used to create the ensemble approximations.

sampling without replacement, and holds for both the standard digstnethod as well as the
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ensemble Nystim method discussed in Section 5.

Our theoretical analysis of the Ny8tm method uses some results previously shown by Drineas
and Mahoney (2005) as well as the following generalization of McDiarnadigcentration bound

to sampling without replacement (Cortes et al., 2008).

Theorem 1 Let Z,...,Z be a sequence of random variables sampled uniformly without replace-
ment from a fixed set oflu elements Z, and lgt: Z' —R be a symmetric function such that for all
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Figure 7: Comparison of relative accuracy for the ensemble Biystnethod withp=10 experts
with weights derived from linear (‘no-ridge’) and ridge (‘ridge’) regsion. The dotted
line indicates the optimal combination. The relative size of the validation seisequa
s/nx100.

ie[LlJandforallz,....zeZand %,....4€Z, |Q(z,...,2)—Wz,...,Z-1,7,Z+1,...,2)| <C.
Then, for alle > 0, the following inequality holds:

Prlo—E[¢ > £] < exp[-7%5],

a(l,u)c?

|
wherea(l,u) = %7 1_1/(2r:rl1ax{l,u})'
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We define theselection matrixcorresponding to a sample btolumns as the matrige R™!
defined byS; =1 if theith column ofK is among those sample§; =0 otherwise. ThusC =KS
is the matrix formed by the columns sampled. SiKces SPSD, there existé € RN*" such that
K = XTX. We shall denote b max the maximum diagonal entry &€, K nax=max K, and by
diax the distance may, /Kii + K jj — 2Kij.

6.1 Standard Nystiom Method

The following theorem gives an upper bound on the norm-2 error of g&din approximation
of the form||K — K ||2/||K||2 < |K — Kk]|2/||K|[2+O(1/v1) and an upper bound on the Frobenius
error of the Nystdm approximation of the forfiK — K| /||K||r < ||[K — Ki||r/|IK]||r +O(1/I %).

Theorem 2 Let K denote the rank-k Ny<im approximation oK based on | columns sampled
uniformly at random without replacement froky and K the best rank-k approximation .
Then, with probability at least — &, the following inequalities hold for any sample of size I:

K = Kll2 < 1K = Killo + 2K max[1+ /555 s 1003 /Ko

IK =K|lr < [IK = Killr +

1 1
(O] K max| 1+ /205 ity 100 3 O/ K]

Nl

wheref(l,n) = 1—Wll,n4}'

Proof To bound the norm-2 error of the Ny8tn method in the scenario of sampling without re-
placement, we start with the following general inequality given by Drined$vahoney (2005)[Proof
of Lemma 4]: N

IK =Kll2 < [[K =Kill2+2[XX " =ZZ |2,
whereZ = \/}TXS. We then apply the McDiarmid-type inequality of Theorem 1pt8) = | XX " —

ZZ"||2. LetS be a sampling matrix selecting the same column$ ascept for one, and let’
denote, /T XS'. Letz andZ' denote the only differing columns @ andz’, then

@S) -~ @) <127 ~z2' |2 = I(Z - 2)Z" +2(Z - 2)" |2

< 2|7~z zmax{]|zl|2, |Z']|2}-

Columns ofZ are those o scaled by,/n/I. The norm of the difference of two columns Xf
can be viewed as the norm of the difference of two feature vectorsiamm1 toK and thus can be
bounded bydk . Similarly, the norm of a single column &f is bounded by 2,ax. This leads to the
following inequality:

2n 1
|(p(S,) —(p(S)| < Tdrrfwax r%ax- (7)
The expectation op can be bounded as follows:
(] = EXXT 22 7z] < EIXXT 22 T] < K (8)

where the last inequality follows Corollary 2 of Kumar et al. (2009a). Tlegiralities (7) and (8)
combined with Theorem 1 give a bound X " — ZZ T ||, and yield the statement of the theorem.
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The following general inequality holds for the Frobenius error of thetfdys method (Drineas
and Mahoney, 2005):

IK =K < [K = Killg + VBak XX T —ZZ T || nKi' (©)

Bounding the term|XX " —ZZ T||Z as in the norm-2 case and using the concentration bound of
Theorem 1 yields the result of the theorem. |

6.2 Ensemble Nystom Method
The following error bounds hold for ensemble Nsir methods based on a convex combination of
Nystrom approximations.

Theorem 3 Let S be a sample of pl columns drawn uniformly at random without repient from
K, decomposed into p subsamples of size(l,.SS,. Forrel,p], let K, denote the rank-k
Nystidm approximation oK based on the sample,&nd letK denote the best rank-k approxima-
tion of K. Then, with probability at least — 9, the foIIowmg  inequalities hold for any sample S of
size pl and for any p in the unit simpl&andK e"s= P WK

IK =Kz < [|K = Kill2+

|
\/Kmax[l‘i‘ HmaxP?2 \/nn 1‘;23 Ln)
1K —KEp < [K = Klle +

b o/ Kb

1
2

1
[64k] nKmaX[l-i- HmaxP? \/nn 172[3 1 )Iog% dr};aX/Kﬁqax} )

wherepB(pl,n) = 1_WW and pnax = max’_, L.

Proof Forr € [1,p|, letZ, = \/n/I XS;, whereS; denotes the selection matrix corresponding to

the sampleS.. By definition ofK ®"Sand the upper bound aiK — K, ||2 already used in the proof of
theorem 2, the following holds:

IK —Ke™2 =

P ~
< ZMIIK —Kill2
r=

P
< ZM(HK —Kill2+2[XX " =Z:Z/ ||2)

p
= [[K =Ki[l2+2 ZHIIXXT ~Z:Z/ |2
r=

We apply Theorem 1tg(S)=5P_, i |XX T —Z,Z||2. LetS be a sample differing frorB by only
one column. Observe that changing one column of the full sa@pleanges only one subsample
S and thus only one termy ||XX T —Z,Z[|l>. Thus, in view of the bound (7) on the change to
XX T —2Z,Z |2, the following holds:

2 1
9S) — 99| < T hnarlial (10
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The expectation of can be straightforwardly bounded by:

n

—K
\/r max

using the bound (8) for a single expert. Plugging in this upper bound andiplschitz bound (10)
in Theorem 1 yields the norm-2 bound for the ensemble Nystmethod.

For the Frobenius error bound, using the convexity of the Frobenius square|-||2 and the
general inequality (9), we can write

p p
E[B(S)] = 3 WEIXXT - 222 < ;w\”ﬁxmaxz

2 p

K — Ke"S|2 = < K —K |2
I G . _glurll rllE

Z b (K —Ky)

r

p
=1
p
< W[ IK — Kul2 + VERIXX - 2,2/ []enk™].
r=1

p
K —Kil|E + V64K Y W [XX T =Z,Z/ || nK ™
r=1

The result follows by the application of Theorem 1@oS) = 5P, | XX T —Z,Z] ||r in a way
similar to the norm-2 case. |

The bounds of Theorem 3 are similar in form to those of Theorem 2. Henvehe bounds for
the ensemble Nysim are tighter than those for any Ny&tn expert based on a single sample of
sizel even for a uniform weighting. In particular, fpr=21/p for all i, the last term of the ensemble
bound for norm-2 is smaller by a factor larger tmmmp% =1/\/p.

7. Conclusion

A key aspect of sampling-based matrix approximations is the method for thatigelef repre-
sentative columns. We discussed both fixed and adaptive methods fdirgathp columns of a
matrix. We saw that the approximation performance is significantly affectetidoghoice of the
sampling algorithm and also that there is a tradeoff between choosing a niamaative set of
columns and the efficiency of the sampling algorithm. Furthermore, we inteadaied discussed
a new meta-algorithm based on an ensemble of several matrix approximatorgetierates fa-
vorable matrix reconstructions using base learners derived from éitkdror adaptive sampling
schemes, and naturally fits within a distributed computing environment, thus miakjoige effi-
cient even in large-scale settings. We concluded with a theoretical analybis Nystdm method
(both the standard approach and the ensemble method) as it is often usacticepnamely using
uniform sampling without replacement.

Acknowledgments

AT was supported by NSF award No. 1122732. We thank the editor ané\lesvers for several
insightful comments that helped improve the original version of this paper.

1002



SAMPLING METHODS FOR THENYSTROM METHOD

References

Dimitris Achlioptas and Frank Mcsherry. Fast computation of low-rank mappreximations.
Journal of the ACM54(2), 2007.

Sanjeev Arora, Elad Hazan, and Satyen Kale. A fast random sampliogthtg for sparsifying
matrices. InPApprox-Random2006.

Arthur  Asuncion and David Newman. UCI machine learning repository.
http://ww.ics.uci.edu/ nlearn/MRepository.htm, 2007.

Francis R. Bach and Michael I. Jordan. Kernel independent coemt@malysisJournal of Machine
Learning ResearctB:1-48, 2002.

Francis R. Bach and Michael I. Jordan. Predictive low-rank decaitipo for kernel methods. In
International Conference on Machine Learnjrp05.

Christopher T. BakerThe Numerical Treatment of Integral EquationSlarendon Press, Oxford,
1977.

Mohamed A. Belabbas and Patrick J. Wolfe. Spectral methods in machininigand new strate-
gies for very large datasetBroceedings of the National Academy of Sciences of the United States
of America 106(2):369-374, January 2009. ISSN 1091-6490.

Mohamed A. Belabbas and Patrick J. Wolfe. On landmark selection and sgniplihigh-
dimensional data analysiar Xi v: 0906. 4582v1 [stat.M], 2009.

Bernhard E. Boser, Isabelle Guyon, and Vladimir N. Vapnik. A training@igm for optimal
margin classifiers. Ii€onference on Learning Theqrd©92.

Christos Boutsidis, Michael W. Mahoney, and Petros Drineas. An imprapgroximation algo-
rithm for the column subset selection problem.Symposium on Discrete Algorithp009.

Roland Bunschoten. http://ww. mat hwor ks. com mat | abcentral /fil eexc
hange/ 71- di st ance-m, 1999.

Emmanuel J. Carid and Benjamin Recht. Exact matrix completion via convex optimizafmm-
dations of Computational Mathematj&(6):717—-772, 2009.

Emmanuel J. Cares and Terence Tao. The power of convex relaxation: near-optimakroatn-
pletion. ar Xi v: 0903. 1476v1 [cs. | T], 2009.

Gavin Cawley and Nicola  Talbot. Miscellaneous  matlab  software.
http://theoval . cnp. uea. ac. uk/ mat | ab/ def aul t. ht m #chol i nc, 2004.

Corinna Cortes and Vladimir N. Vapnik. Support-vector netwoiachine Learning20(3):273—
297, 1995.

Corinna Cortes, Mehryar Mohri, Dmitry Pechyony, and Ashish Rastogibifgy of transductive
regression algorithms. limternational Conference on Machine Learnjr&p08.

1003



KUMAR, MOHRI AND TALWALKAR

Corinna Cortes, Mehryar Mohri, and Ameet Talwalkar. On the impaceaiidl approximation on
learning accuracy. I€@onference on Atrtificial Intelligence and Statisti2910.

Vin de Silva and Joshua Tenenbaum. Global versus local methods in ramndmeensionality
reduction. InNeural Information Processing Syster2803.

Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Watigx &pproximation and
projective clustering via volume sampling. 8ymposium on Discrete AlgorithpZ)06.

Petros Drineas. Personal communication, 2008.

Petros Drineas and Michael W. Mahoney. On the Nyratmethod for approximating a gram matrix
for improved kernel-based learningpurnal of Machine Learning Researd$12153-2175, 2005.

Petros Drineas, Eleni Drinea, and Patrick S. Huggins. An experimearatialagion of a Monte-Carlo
algorithm for svd. InPanhellenic Conference on Informatj@)01.

Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Moautie® @lgorithms for matrices
ii: computing a low-rank approximation to a matri@lAM Journal of Computindg6(1), 2006.

Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Relativg cur matrix decompo-
sitions. SIAM Journal on Matrix Analysis and Applicatiqr0(2):844—-881, 2008.

Shai Fine and Katya Scheinberg. Efficient svm training using low-ramikekeepresentations.
Journal of Machine Learning Researc1243-264, 2002.

Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik.tr&8lpgrouping using the
Nystrom method. Transactions on Pattern Analysis and Machine Intelliger®(2):214-225,
2004.

Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast Monte-Carldthlgs for finding low-rank
approximations. Ifroundation of Computer Scienck998.

Gene Golub and Charles Van Loadatrix Computations Johns Hopkins University Press, Balti-
more, 2nd edition, 1983. ISBN 0-8018-3772-3 (hardcover), B88239-1 (paperback).

Sergei A. Goreinov, Eugene E. Tyrtyshnikov, and Nickolai L. Zarskakan. A theory of pseu-
doskeleton approximationginear Algebra and Its Application261:1-21, 1997.

Genevieve Gorrell. Generalized Hebbian algorithm for incremental singalae decomposition
in natural language processing. Euiropean Chapter of the Association for Computational Lin-
guistics 2006.

Ming Gu and Stanley C. Eisenstat. Efficient algorithms for computing a stramkrnevealing qr
factorization.SIAM Journal of Scientific Computingj7(4):848-869, 1996.

Adam Gustafson, Evan Snitkin, Stephen Parker, Charles DeLisi, anchSfasif. Towards the
identification of essential genes using targeted genome sequencing mpdretive analysis.
BMC:Genomics7:265, 2006.

1004



SAMPLING METHODS FOR THENYSTROM METHOD

Nathan Halko, Per Gunnar Martinsson, and Joel A. Tropp. Findingtsiiel with randomness:
stochastic algorithms for constructing approximate matrix decompositdoRisv: 0909. 4061v1
[ mat h. NA], 2009.

Sariel Har-peled. Low-rank matrix approximation in linear time, manuscrifit620

Piotr Indyk. Stable distributions, pseudorandom generators, embegding data stream compu-
tation. Journal of the ACM53(3):307-323, 2006.

William B. Johnson and Joram Lindenstrauss. Extensions of lipschitz nggipito a hilbert space.
Contemporary Mathematic26:189—-206, 1984.

Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Sampling technidmethe Nystbm method.
In Conference on Artificial Intelligence and Statisti2®09a.

Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. On sampling-basggaloximate spectral
decomposition. Innternational Conference on Machine Learnjr&p09b.

Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Ensemble Nymstmethod. InNeural
Information Processing Systen2909c.

Yann LeCun and Corinna Cortes. The mnist database of handwritten digits.
http://yann. | ecun. com exdb/ mi st/, 1998.

Mu Li, James T. Kwok, and Bao-Liang Lu. Making large-scale Nyistrapproximation possible.
In International Conference on Machine Learnjr2p10.

Edo Liberty. Accelerated Dense Random Projectiof®.D. thesis, computer science department,
Yale University, New Haven, CT, 2009.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithimformation and
Computation108(2):212—-261, 1994.

Rong Liu, Varun Jain, and Hao Zhang. Subsampling for efficient splectesh processing. In
Computer Graphics International Conferen@906.

Michael W Mahoney and Petros Drineas. CUR matrix decompositions for iradrdata analysis.
Proceedings of the National Academy of Scient86(3):697—702, 2009.

Evert J. Nystom. Uber die praktische aufsung von linearen integralgleichungen mit anwendungen
auf randwertaufgaben der potentialtheo@®@mmentationes Physico-Mathematic& 5):1-52,
1928.

Marie Ouimet and Yoshua Bengio. Greedy spectral embeddingytificial Intelligence and Statis-
tics, 2005.

Christos H. Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, ands8avdmpala. Latent se-
mantic indexing: a probabilistic analysis. Brinciples of Database Systeni998.

John C. Platt. Fast embedding of sparse similarity graph#lebral Information Processing Sys-
tems 2004.

1005



KUMAR, MOHRI AND TALWALKAR

Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. A randomized algorithm fdnpipal compo-
nent analysisSIAM Journal on Matrix Analysis and Applicatiqrl(3):1100-1124, 2009.

Mark Rudelson and Roman Vershynin. Sampling from large matrices: aoagpthrough geo-
metric functional analysislournal of the ACM54(4):21, 2007.

Anthony F. Ruston. Auerbach’s theorem and tensor products ofchasaces. Mathematical
Proceedings of the Cambridge Philosophical So¢ie8:476—480, 1962.

Bernhard Scblkopf and Alex SmolaLearning with KernelsMIT Press: Cambridge, MA, 2002.

Bernhard Scblkopf, Alexander Smola, and Klaus-RobertiNér. Nonlinear component analysis as
a kernel eigenvalue problerbleural Computation10(5):1299-1319, 1998.

Terence Sim, Simon Baker, and Maan Bsat. The cmu pose, illumination, aressiqn database.
In Conference on Automatic Face and Gesture Recogni#ioaz.

Alex J. Smola. SVLabhtt p://al ex. snol a. or g/ dat a/ svl ab. t gz, 2000.

Alex J. Smola and Bernhard Salkopf. Sparse greedy matrix approximation for machine learning.
In International Conference on Machine Learnjr&p00.

G. W. Stewart. Four algorithms for the efficient computation of truncateatgd/qr approximations
to a sparse matrixNumerische MathematiB3(2):313-323, 1999.

Ameet Talwalkar and Afshin Rostamizadeh. Matrix coherence and theddysnethod. InCon-
ference on Uncertainty in Artificial Intelligenc2010.

Ameet Talwalkar, Sanjiv Kumar, and Henry Rowley. Large-scale mihiéarning. InConference
on Vision and Pattern RecognitipR008.

Mark Tygert. http: //wm. mat hwor ks. coml nat | abcentral / fil eexchange/
21524- pri nci pal - conponent - anal ysi s, 2009.

Christopher K. I. Williams and Matthias Seeger. Using the Nymtmethod to speed up kernel
machines. INeural Information Processing Systergf00.

Kai Zhang and James T. Kwok. Density-weighted Ngstrmethod for computing large kernel
eigensystemaNeural Computation21(1):121-146, 2009.

Kai Zhang, Ivor Tsang, and James Kwok. Improved Nysilow-rank approximation and error
analysis. Innternational Conference on Machine Learnjrp08.

1006



