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Abstract
We propose a novel algebraic algorithmic framework for dealing with probability distributions rep-
resented by their cumulants such as the mean and covariance matrix. As an example, we consider
the unsupervised learning problem of finding the subspace onwhich several probability distribu-
tions agree. Instead of minimizing an objective function involving the estimated cumulants, we
show that by treating the cumulants as elements of the polynomial ring we can directly solve the
problem, at a lower computational cost and with higher accuracy. Moreover, the algebraic view-
point on probability distributions allows us to invoke the theory of algebraic geometry, which we
demonstrate in a compact proof for an identifiability criterion.

Keywords: computational algebraic geometry, approximate algebra, unsupervised Learning

1. Introduction

Comparing high dimensional probability distributions is a general problem in machine learning,
which occurs in two-sample testing (e.g., Hotelling, 1932; Gretton et al., 2007), projection pursuit
(e.g., Friedman and Tukey, 1974), dimensionality reduction and feature selection (e.g., Torkkola,
2003). Under mild assumptions, probability densities are uniquely determined by their cumulants
which are naturally interpreted as coefficients of homogeneous multivariatepolynomials. Repre-
senting probability densities in terms of cumulants is a standard technique in learning algorithms.
For example, in Fisher Discriminant Analysis (Fisher, 1936), the class conditional distributions are
approximated by their first two cumulants.

In this paper, we take this viewpoint further and work explicitly with polynomials. That is, we
treat estimated cumulants not as constants in an objective function but as objects that we manipulate
algebraically in order to find the optimal solution. As an example, we consider the problem of
finding the linear subspace on which several probability distributions are identical: givenD-variate
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random variablesX1, . . . ,Xm, we want to find the linear mapP ∈ Rd×D such that the projected
random variables have the same probability distribution,

PX1∼ ·· · ∼ PXm.

This amounts to finding the directions on which all projected cumulants agree. For the first cu-
mulant, the mean, the projection is readily available as the solution of a set of linear equations.
For higher order cumulants, we need to solve polynomial equations of higher degree. We present
the first algorithm that solves this problem explicitly for arbitrary degree, and show how algebraic
geometry can be applied to prove properties about it.
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Figure 1: Illustration of the optimization approach. The left panel shows thecontour plots of three
sample covariance matrices. The black line is the true one-dimensional subspace on
which the projected variances are exactly equal, the magenta line corresponds to a local
minimum of the objective function. The right panel shows the value of the objective
function over all possible one-dimensional subspaces, parameterized by the angleα to the
horizontal axis; the angles corresponding to the global minimum and the localminimum
are indicated by black and magenta lines respectively.

To clarify the gist of our approach, let us consider a stylized example. Inorder to solve a learning
problem, the conventional approach in machine learning is to formulate an objective function, for
example, the log likelihood of the data or the empirical risk. Instead of minimizing anobjective
function that involves the polynomials, we consider the polynomials asobjects in their own right
and then solve the problem by algebraic manipulations. The advantage of thealgebraic approach
is that it captures the inherent structure of the problem, which is in generaldifficult to model in an
optimization approach. In other words, the algebraic approach actuallysolvesthe problem, whereas
optimizationsearchesthe space of possible solutions guided by an objective function that is minimal
at the desired solution but can give poor directions outside of the neighborhood around its global
minimum. Let us consider the problem where we would like to find the directionv∈ R

2 on which
several sample covariance matricesΣ1, . . . ,Σm ⊂ R2×2 are equal. The usual ansatz would be to
formulate an optimization problem such as

v∗ = argmin
‖v‖=1

∑
1≤i, j≤m

(

v⊤Σiv−v⊤Σ jv
)2

. (1)
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This objective function measures the deviation from equality for all pairs ofcovariance matrices; it
is zero if and only if all projected covariances are equal and positive otherwise. Figure 1 shows an
example with three covariance matrices (left panel) and the value of the objective function for all

possible projectionsv=
[

cos(α) sin(α)
]⊤

. The solution to this non-convex optimization problem
can be found using a gradient-based search procedure, which may terminate in one of the local
minima (e.g., the magenta line in Figure 1) depending on the initialization.

However, the natural representation of this problem is not in terms of an objective function but
rather a system of equations to be solved forv, namely

v⊤Σ1v= · · ·= v⊤Σmv. (2)

In fact, by going from an algebraic description of the set of solutions to a formulation as an opti-
mization problem in Equation 1, we lose important structure. In the case wherethere is an exact
solution, it can be attained explicitly with algebraic manipulations. However, when we estimate a
covariance matrix from finite or noisy samples, there exists no exact solutionin general. Therefore
we present an algorithm which combines the statistical treatment of uncertaintyin the coefficients
of polynomials with the exactness of algebraic computations to obtain a consistent estimator forv
that is computationally efficient.

Note that this approach is not limited to this particular learning task. In fact, it is applicable
whenever a set of solutions can be described in terms of a set of polynomial equations, which is a
rather general setting. For example, we could use a similar strategy to find a subspace on which the
projected probability distribution has another property that can be described in terms of cumulants,
for example, independence between variables. Moreover, an algebraic approach may also be useful
in solving certain optimization problems, as the set of extrema of a polynomial objective function
can be described by the vanishing set of its gradient. The algebraic viewpoint also allows a novel
interpretation of algorithms operating in the feature space associated with the polynomial kernel.
We would therefore argue that methods from computational algebra and algebraic geometry are
useful for the wider machine learning community.

Figure 2: Representation of the problem: the left panel shows sample covariance matricesΣ1 and
Σ2 with the desired projectionv. In the middle panel, this projection is defined as the
solution to a quadratic polynomial. This polynomial is embedded in the vector space of
coefficients spanned by the monomialsX2,Y2 andXY shown in the right panel.
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Let us first of all explain the representation over which we compute. We willproceed in the
three steps illustrated in Figure 2, from the geometric interpretation of sample covariance matrices
in data space (left panel), to the quadratic equation defining the projectionv (middle panel), to
the representation of the quadratic equation as a coefficient vector (right panel). To start with, we
consider the Equation 2 as a set of homogeneous quadratic equations defined by

v⊤(Σi−Σ j)v= 0 ∀1≤ i, j ≤m, (3)

where we interpret the components ofv as variables,v=
[

X Y
]⊤

. The solution to these equations
is the direction inR2 on which the projected variance is equal over all covariance matrices. Each of
these equations corresponds to a quadratic polynomial in the variablesX andY,

qi j = v⊤(Σi−Σ j)v

= v⊤
[

a11 a12

a21 a22

]

v

= a11X
2+(a12+a21)XY+a22Y

2, (4)

which we embed into the vector space of coefficients. The coordinate axis are the monomials
{X2,XY,Y2}; that is, the three independent entries in the Gram matrix(Σi − Σ j). That is, the
polynomial in Equation 4 becomes the coefficient vector

~qi j =
[

a11 a12+a21 a22
]⊤

.

The motivation for the vector space interpretation is that every linear combination of the Equations 3
is also a characterization of the set of solutions: this will allow us to find a particular set of equations
by linear combination, from which we can directly obtain the solution. Note, however, that the
vector space representation does not give us all equations which can be used to describe the solution:
we can also multiply with arbitrary polynomials. However, for the algorithm that we present here,
linear combinations of polynomials are sufficient.

Figure 3 illustrates how the algebraic algorithm works in the vector space of coefficients. The
polynomialsQ = {qi j}ni, j=1 span a space of constraints which defines the set of solutions. The next
step is to find a polynomial of a certain form that immediately reveals the solution. One of these sets
is the linear subspace spanned by the monomials{XY,Y2}: any polynomial in this span is divisible
byY. Our goal is now to find a polynomial which is contained in both this subspace and the span of
Q . Under mild assumptions, one can always find a polynomial of this form, and itcorresponds to
an equation

Y(αX+βY) = 0. (5)

Since this polynomial is in the span ofQ , our solutionv has to be a zero of this particular poly-
nomial: v2(αv1+βv2) = 0. Moreover, we can assume1 thatv2 6= 0, so that we can divide out the
variableY to get the linear factor(αX+βY),

0= αX+βY =
[

α β
]

v.

1. This is a consequence of the generative model for the observed polynomials which is introduced in Section 2.1. In
essence, we use the fact that our polynomials have no special property (apart from the existence of a solution) with
probability one.
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Figure 3: Illustration of the algebraic algorithm. The left panel shows the vector space of coef-
ficients where the polynomials corresponding to the Equations 3 are considered as ele-
ments of the vector space shown as red points. The middle panel shows the approximate
2-dimensional subspace (blue surface) onto which we project the polynomials. The right
panel shows the one-dimensional intersection (orange line) of the approximate subspace
with the plane spanned by spanned by{XY,Y2}. This subspace is spanned by the poly-
nomialY(αX+βY), so we can divide by the variableY.

Hencev=
[

−β α
]⊤

is the solution up to arbitrary scaling, which corresponds to the one-dimensional
subspace in Figure 3 (orange line, right panel). A more detailed treatment of this example can also
be found in Appendix A.

In the case where there exists a directionv on which the projected covariances are exactly equal,
the linear subspace spanned by the set of polynomialsQ has dimension two, which corresponds to
the degrees of freedom of possible covariance matrices that have fixedprojection on one direction.
However, since in practice covariance matrices are estimated from finite andnoisy samples, the
polynomialsQ usually span the whole space, which means that there exists only a trivial solution
v = 0. This is the case for the polynomials pictured in the left panel of Figure 3. Thus, in order
to obtain an approximate solution, we first determine the approximate two-dimensional span ofQ
using a standard least squares method as illustrated in the middle panel. We canthen find the in-
tersection of the approximate two-dimensional span ofQ with the plane spanned by the monomials
{XY,Y2}. As we have seen in Equation 5, the polynomials in this span provide us with a unique
solution forv up to scaling, corresponding to the fact that the intersection has dimension one (see
the right panel of Figure 3). Alternatively, we could have found the one-dimensional intersection
with the span of{XY,X2} and divided out the variableX. In fact, in the final algorithm we will
find all such intersections and combine the solutions in order to increase the accuracy. Note that we
have found this solution by solving a simple least-squares problem (second step, middle panel of
Figure 3). In contrast, the optimization approach (Figure 1) can require alarge number of iterations
and may converge to a local minimum. A more detailed example of the algebraic algorithm can be
found in Appendix A.

The algebraic framework does not only allow us to construct efficient algorithms for working
with probability distributions, it also offers powerful tools to prove properties of algorithms that
operate with cumulants. For example, we can answer the following central question: how many
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Figure 4: The left panel shows two sample covariance matrices in the plane,along with a direction
on which they are equal. In the right panel, a third (green) covariance matrix does not
have the same projected variance on the black direction.

distinct data sets do we need such that the subspace with identical probabilitydistributions be-
comes uniquely identifiable? This depends on the number of dimensions and thecumulants that
we consider. Figure 4 illustrates the case where we are given only the second order moment in two
dimensions. UnlessΣ1−Σ2 is indefinite, therealwaysexists a direction on which two covariance
matrices in two dimensions are equal (left panel of Figure 4)—irrespective of whether the probabil-
ity distributions are actually equal. We therefore need at least three covariance matrices (see right
panel), or to consider other cumulants as well. We derive a tight criterion onthe necessary number
of data sets depending on the dimension and the cumulants under consideration. The proof hinges
on viewing the cumulants as polynomials in the algebraic geometry framework: thepolynomials
that define the sought-after projection (e.g., Equations 3) generate an ideal in the polynomial ring
which corresponds to an algebraic set that contains all possible solutions. We can then show how
many independent polynomials are necessary so that the dimension of the linear part of the alge-
braic set has smaller dimension in the generic case. We conjecture that theseproof techniques are
also applicable to other scenarios where we aim to identify a property of a probability distribution
from its cumulants using algebraic methods.

Our work is not the first that applies geometric or algebraic methods to Machine Learning or
statistics: for example, methods from group theory have already found their application in machine
learning, for example, Kondor (2007) and Kondor and Borgwardt (2008); there are also algebraic
methods estimating structured manifold models for data points as in Vidal et al. (2005) which are
strongly related to polynomial kernel PCA—a method which can itself be interpreted as a way of
finding an approximate vanishing set.

The field of Information Geometry interprets parameter spaces of probabilitydistributions as
differentiable manifolds and studies them from an information-theoretical point of view (see for
example the standard book by Amari and Nagaoka, 2000), with recent interpretations and improve-
ments stemming from the field of algebraic geometry by Watanabe (2009). There is also the nascent
field of algebraic statistics which studies the parameter spaces of mainly discrete random variables
in terms of commutative algebra and algebraic geometry, see the recent overviews by Sturmfels
(2002, Chapter 8) and Drton et al. (2010) or the book by Gibilisco et al. (2010) which also focuses
on the interplay between information geometry and algebraic statistics. These approaches have in
common that the algebraic and geometric concepts arise naturally when considering distributions in
parameter space.
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Given samples from a probability distribution, we may also consider algebraicstructures in the
data space. Since the data are uncertain, the algebraic objects will also comewith an inherent un-
certainty, unlike the exact manifolds in the case when we have an a-priori family of probability
distributions. Coping with uncertainties is one of the main interests of the emergingfields of ap-
proximative and numerical commutative algebra, see the book by Stetter (2004) for an overview
on numerical methods in algebra, or the treatise by Kreuzer et al. (2009) for recent developments
in approximate techniques on noisy data. There exists a wide range of methods; however, to our
knowledge, the link between approximate algebra and the representation ofprobability distributions
in terms of their cumulants has not been studied yet.

The remainder of this paper is organized as follows: in the next Section 2, we introduce the
algebraic view of probability distribution, rephrase our problem in terms of this framework and
investigate its identifiability. The algorithm for the exact case is presented in Section 3, followed by
the approximate version in Section 4. The results of our numerical simulations and a comparison
against the Stationary Subspace Analysis (SSA) algorithm given in von Bünau et al. (2009), can be
found in Section 5. In the last Section 6, we discuss our findings and point tofuture directions. The
appendix contains an example and proof details.

2. The Algebraic View on Probability Distributions

In this section we introduce the algebraic framework for dealing with probability distributions.
This requires basic concepts from complex algebraic geometry. A comprehensive introduction to
algebraic geometry with a view to computation can be found in the book by Cox etal. (2007). In
particular, we recommend to go through the Chapters 1 and 4.

In this section, we demonstrate the algebraic viewpoint of probability distributions on the appli-
cation that we study in this paper: finding the linear subspace on which probability distributions are
equal.

Problem 1 Let X1, . . . ,Xm be a set of D-variate random variables, having smooth densities. Find
all linear maps P∈Rd×D such that the transformed random variables have the same distribution,

PX1∼ ·· · ∼ PXm.

In the first part of this section, we show how this problem can be formulatedalgebraically. We will
first of all review the relationship between the probability density function and its cumulants, before
we translate the cumulants into algebraic objects. Then we introduce the theoretical underpinnings
for the statistical treatment of polynomials arising from estimated cumulants and prove conditions
on identifiability for the problem addressed in this paper.

2.1 From Probability Distributions to Polynomials

The probability distribution of every smooth real random variableX can be fully characterized
in terms of itscumulants, which are the tensor coefficients of the cumulant generating function.
This representation has the advantage that each cumulant provides a compact description of certain
aspects of the probability density function.

Definition 2 Let X be a D-variate random variable. Then byκn(X) ∈ RD(×n)
we denote the n-th

cumulant, which is a real tensor of degree n.
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Let us introduce a useful shorthand notation for linearly transforming tensors.

Definition 3 Let A∈ C
d×D be a matrix. For a tensor T∈ RD(×n)

(i.e., a real tensor T of degree n
of dimension Dn = D ·D · . . . ·D) we will denote by A◦T the application of A to T along all tensor
dimensions, that is,

(A◦T)i1...in =
D

∑
j1=1

· · ·
D

∑
jn=1

Ai1 j1 · . . . ·Ain jnTj1... jn.

The cumulants of a linearly transformed random variable are the multilinearly transformed cumu-
lants, which is a convenient property when one is looking for a certain linearsubspace.

Proposition 4 Let X be a real D-dimensional random variable and let A∈Rd×D be a matrix. Then
the cumulants of the transformed random variable AX are the transformed cumulants,

κn(AX) = A◦κn(X).

We now want to formulate our problem in terms of cumulants. First of all, note that PXi ∼ PXj

if and only if vXi ∼ vXj for all row vectorsv∈ spanP⊤.

Problem 5 Find all d-dimensional linear subspaces in the set of vectors

S= {v∈R
D
∣

∣

∣
v⊤X1∼ ·· · ∼ v⊤Xm}

= {v∈R
D
∣

∣

∣
v⊤ ◦κn(Xi) = v⊤ ◦κn(Xj), n∈N,1≤ i, j ≤m} .

Note that we are looking for linear subspaces inS; however,S itself is not a vector space in general.
Apart from the fact thatS is homogeneous, that is,λS= S for all λ ∈ R, there is no additional
structure that we make use of.

For the sake of clarity, in the remainder of this paper we restrict ourselvesto the first two cumu-
lants. Note, however, that one of the strengths of the algebraic framework is that the generalization
to arbitrary degree is straightforward; throughout this paper, we indicate the necessary changes and
differences. Thus, from now on, we denote the first two cumulants byµi = κ1(Xi) andΣi = κ2(Xi)
respectively for all 1≤ i ≤m. Moreover, without loss of generality, we can shift the mean vectors
and choose a basis such that the random variableXm has zero mean and unit covariance. Thus we
arrive at the following formulation.

Problem 6 Find all d-dimensional linear subspaces in

S= {v∈R
D | v⊤(Σi− I)v= 0, v⊤µi = 0, 1≤ i ≤ (m−1)}.

Note thatS is the set of solutions tom−1 quadratic andm−1 linear equations inD variables. Now
it is only a formal step to arrive in the framework of algebraic geometry: let us think of the left hand
side of each of the quadratic and linear equations as polynomialsq1, . . . ,qm−1 and f1, . . . , fm−1 in
the variablesT1, . . . ,TD respectively,

qi =
[

T1 · · ·TD
]

◦ (Σi− I) and fi =
[

T1 · · ·TD
]

◦µi ,

which are elements of the polynomial ring over the complex numbers inD variables,C[T1, . . . ,TD].
Note that in the introduction we have usedX andY to denote the variables in the polynomials, we
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will now switch to T1, . . . ,TD in order to avoid confusion with random variables. ThusS can be
rewritten in terms of polynomials,

S=
{

v∈R
D | qi(v) = fi(v) = 0∀1≤ i ≤m−1} ,

which means thatSis an algebraic set. In the following, we will consider the corresponding complex
vanishing set

S= V(q1, . . . ,qm−1, f1, . . . , fm−1)

:=
{

v∈ C
D | qi(v) = fi(v) = 0∀1≤ i ≤m−1} ⊆ C

D

and keep in mind that eventually we will be interested in the real part ofS. Working over the
complex numbers simplifies the theory and creates no algorithmic difficulties: when we start with
real cumulant polynomials, the solution will always be real. Finally, we can translate our problem
into the language of algebraic geometry.

Problem 7 Find all d-dimensional linear subspaces in the algebraic set

S= V(q1, . . . ,qm−1, f1, . . . , fm−1).

So far, this problem formulation does not include the assumption that a solutionexists. In order
to prove properties about the problem and algorithms for solving it we needto assume that there
exist ad-dimensional linear subspaceS′ ⊂ S. That is, we need to formulate agenerative model
for our observed polynomialsq1, . . . ,qm−1, f1, . . . , fm−1. To that end, we introduce the concept of a
genericpolynomial, for a technical definition see Appendix B. Intuitively, a genericpolynomial is
a continuous, polynomial valued random variable which almost surely has no algebraic properties
except for those that are logically implied by the conditions on it. An algebraic property is an
event in the probability space of polynomials which is defined by the common vanishing of a set of
polynomial equations in the coefficients. For example, the property that a quadratic polynomial is
a square of linear polynomial is an algebraic property, since it is described by the vanishing of the
discriminants. In the context of Problem 7, we will consider the observed polynomials as generic
conditioned on the algebraic property that they vanish on a fixedd-dimensional linear subspaceS′.

One way to obtain generic polynomials is to replace coefficients with, for example, Gaussian
random variables. For example, a generic homogeneous quadricq∈ C[T1,T2] is given by

q= Z11T
2
1 +Z12T1T2+Z22T

2
2 ,

where the coefficientsZi j ∼ N (µi j ,σi j ) are independent Gaussian random variables with arbitrary
parameters. Apart from being homogeneous, there is no condition onq. If we want to add the
condition thatq vanishes on the linear space defined byT1 = 0, we would instead consider

q= Z11T
2
1 +Z12T1T2.

A more detailed treatment of the concept of genericity, how it is linked to probabilistic sampling,
and a comparison with the classical definitions of genericity can be found in Appendix B.1.

We are now ready to reformulate the genericity conditions on the random variablesX1, . . . ,Xm

in the above framework. Namely, we have assumed that theXi are general under the condition that
they agree in the first two cumulants when projected onto some linear subspace S′. Rephrased for
the cumulants, Problems 1 and 7 become well-posed and can be formulated as follows.
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Problem 8 Let S′ be an unknown d-dimensional linear subspace inCD. Assume that f1, . . . , fm−1

are generic homogenous linear polynomials, and q1, . . . ,qm−1 are generic homogenous quadratic
polynomials, all vanishing on S′. Find all d-dimensional linear subspaces in the algebraic set

S= V(q1, . . . ,qm−1, f1, . . . , fm−1).

As we have defined “generic” as an implicit “almost sure” statement, we are infact looking for
an algorithm which gives the correct answer with probability one under our model assumptions.
Intuitively, S′ should be also the onlyd-dimensional linear subspace inS, which is not immediately
guaranteed from the problem description. Indeed this is true ifm is large enough, which is the topic
of the next section.

2.2 Identifiability

In the last subsection, we have seen how to reformulate our initial Problem 1about comparison
of cumulants as the completely algebraic Problem 8. We can also reformulate identifiability of
the true solution in the original problem in an algebraic way: identifiability in Problem 1 means
that the projectionP can be uniquely computed from the probability distributions. Following the
same reasoning we used to arrive at the algebraic formulation in Problem 8,one concludes that
identifiability is equivalent to the fact that there exists a unique linear subspace inS.

Since identifiability is now a completely algebraic statement, it can be treated also in algebraic
terms. In Appendix B, we give an algebraic geometric criterion for identifiability of the stationary
subspace; we will sketch its derivation in the following.

The main ingredient is the fact that, intuitively spoken, every generic polynomials carries one
degree of freedom in terms of dimension, as for example the following resulton generic vector
spaces shows:

Proposition 9 Let P be an algebraic property such that the polynomials with propertyP form a
vector space V. Let f1, . . . , fn ∈ C[T1, . . .TD] be generic polynomials satisfyingP . Then

rankspan( f1, . . . , fn) = min(n,dimV).

Proof This is Proposition 42 in the appendix.

On the other hand, if the polynomials act as constraints, one can prove thateach one reduces the
degrees of freedom in the solution by one:

Proposition 10 Let Z be a sub-vector space ofCD. Let f1, . . . , fn be generic homogenous polyno-
mials in D variables (of fixed but arbitrary degree each), vanishing on Z. Then for their common
vanishing setV( f1, . . . , fn) = {x∈ CD | fi(x) = 0 ∀i}, one can write

V( f1, . . . , fn) = Z∪U,

where U is an algebraic set with

dimU ≤max(D−n, 0).
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Proof This follows from Corollary 61 in the appendix.

Proposition 10 can now be directly applied to Problem 8. It implies thatS= S′ if 2(m−1)≥D+1,
and thatS′ is the maximal dimensional component ofS if 2(m−1)≥ D−d+1. That is, if we start
with m random variables, thenS′ can be identified uniquely if

2(m−1)≥ D−d+1

with classical algorithms from computational algebraic geometry in the noiselesscase.

Theorem 11 Let X1, . . . ,Xm be random variables. Assume there exists a projection P∈Rd×D such
that the first two cumulants of all PX1, . . . ,PXm agree and the cumulants are generic under those
conditions. Then the projection P is identifiable from the first two cumulants aloneif

m≥ D−d+1
2

+1.

Proof This is a direct consequence of Proposition 65 in the appendix, applied to the reformulation
given in Problem 8. It is obtained by applying Proposition 10 to the generic forms vanishing on the
fixed linear subspaceS′, and using thatS′ can be identified inS if it is the biggest dimensional part.

We have seen that identifiability means that there is an algorithm to computeP uniquely when the
cumulants are known, resp. to compute a uniqueS from the polynomialsfi ,qi . It is not difficult to
see that an algorithm doing this can be made into a consistent estimator when the cumulants are
sample estimates. We will give an algorithm of this type in the following parts of the paper.

3. An Algorithm for the Exact Case

In this section we present an algorithm for solving Problem 8, under the assumption that the cumu-
lants are known exactly. We will first fix notation and introduce important algebraic concepts. In
the previous section, we derived in Problem 8 an algebraic formulation of our task: given generic
quadratic polynomialsq1, . . . ,qm−1 and linear polynomialsf1, . . . , fm−1, vanishing on a unknown
linear subspaceS′ of CD, find S′ as the uniqued-dimensional linear subspace in the algebraic set
V(q1, . . . ,qm−1, f1, . . . , fm−1). First of all, note that the linear equationsfi can easily be removed
from the problem: instead of looking atCD, we can consider the linear subspace defined by the
fi , and examine the algebraic set V(q′1, . . . ,q

′
m−1), whereq′i are polynomials inD−m+1 variables

which we obtain by substitutingm−1 variables. So the problem we need to examine is in fact
the modified problem where we have only quadratic polynomials. Secondly, we will assume that
m−1≥ D. Then, from Proposition 10, we know thatS= S′ and Problem 8 becomes the following.

Problem 12 Let S be an unknown d-dimensional subspace ofCD. Given m−1≥ D generic ho-
mogenous quadratic polynomials q1, . . . ,qm−1 vanishing on S, find the d-dimensional linear sub-
space

S= V(q1, . . . ,qm−1).

Of course, we have to say what we mean byfinding the solution. By assumption, the quadratic
polynomials already fully describe the linear spaceS. However, sinceS is a linear space, we want
a basis forS, consisting ofd linearly independent vectors inCD. Or, equivalently, we want to find
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linearly independent linear formsℓ1, . . . , ℓD−d such thatℓi(x) = 0 for all x ∈ S. The latter is the
correct description of the solution in algebraic terms. We now show how to reformulate this in the
right language, following the algebra-geometry duality. The algebraic setScorresponds to an ideal
in the polynomial ringC[T1, . . . ,TD].

Notation 13 We denote the polynomial ringC[T1, . . . ,TD] by R. The ideal of S is an ideal in R, and
we denote it by bys= I(S). Since S is a linear space, there exists a linear generating setℓ1, . . . , ℓD−d

of s which we will fix in the following.

We can now relate the Problem 12 to a classical problem in algebraic geometry.

Problem 14 Let m> D and q1, . . . ,qm−1 be generic homogenous quadratic polynomials vanishing
on a linear d-dimensional subspace S⊆ CD. Then find a linear basis for the radical ideal

√

〈q1, . . . ,qm−1〉= I(V(q1, . . . ,qm−1)) = I(S).

The first equality follows from Hilbert’s Nullstellensatz. This also shows thatsolving the problem
is in fact a question of computing a radical of an ideal. Computing the radical of an ideal is a
classical problem in computational algebraic geometry, which is known to be difficult (for a more
detailed discussion see Section 3.3). However, if we assumem−1≥D(D+1)/2−d(d+1)/2, we
can dramatically reduce the computational cost and it is straightforward to derive an approximate
solution. In this case, theqi generate the vector space of homogenous quadratic polynomials which
vanish onS, which we will denote bys2. That this is indeed the case, follows from Proposition 9,
and we have dims2 = D(D+1)/2−d(d+1)/2, as we will calculate in Remark 23.

Before we continue with solving the problem, we will need to introduce several concepts and
abbreviating notations. First we introduce notation to denote sub-vector spaces which contain poly-
nomials of certain degrees.

Notation 15 LetI be a sub-C-vector space of R, that is,I =R, orI is some ideal of R, for example,
I = s. We denote the sub-C-vector space of homogenous polynomials of degree k inI by Ik (in
commutative algebra, this is standard notation for homogenously generatedR-modules).

For example, the homogenous polynomials of degree 2 vanishing onSform exactly the vector space
s2. Moreover, for anyI , the equationIk = I ∩Rk holds. The vector spacesR2 ands2 will be the
central objects in the following chapters. As we have seen, their dimension is given in terms of
triangular numbers, for which we introduce some notation:

Notation 16 We will denote the n-th triangular number by∆(n) = n(n+1)
2 .

The last notational ingredient will capture the structure which is imposed onRk by the orthogo-
nal decompositionCD = S⊕S⊥.

Notation 17 Let S⊥ be the orthogonal complement of S. Denote its ideal byn= I
(

S⊥
)

.

Remark 18 Asn ands are homogenously generated in degree one, we have the calculation rules

sk+1 = sk ·R1 and nk+1 = nk ·R1,

(s1)
k = (sk)k and (n1)

k = (nk)k
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where· is the symmetrized tensor or outer product of vector spaces (these rules are canonically in-
duced by the so-called graded structure of R-modules). In terms of ideals, the above decomposition
translates to

R1 = s1⊕n1.

Using the above rules and the binomial formula for ideals, this induces an orthogonal decomposi-
tion

R2 =R1 ·R1 = (s1⊕n1) · (s1⊕n1) = (s1)
2⊕ (s1 ·n1)⊕ (n1)

2

= s1 · (s1⊕n1)⊕ (n2)2 = s1 ·R1⊕ (n2)2 = s2⊕ (n2)2

(and similar decompositions for the higher degree polynomials Rk).

The tensor products above can be directly translated to products of ideals, as the vector spaces
above are each generated in a single degree (e.g.,sk,nk, are generated homogenously in degreek).
To express this, we will define an ideal which corresponds toR1:

Notation 19 We denote the ideal of R generated by all monomials of degree1 by

m= 〈T1, . . . ,TD〉.

Note that idealm is generated by all elements inR1. Moreover, we havemk =Rk for all k≥ 1. Using
m, one can directly translate products of vector spaces involving someRk into products of ideals:

Remark 20 The equality of vector spaces

sk = s1 · (R1)
k−1

translates to the equality of ideals
s∩mk = s ·mk−1,

since both the left and right sides are homogenously generated in degreek.

3.1 The Algorithm

S⊂ CD d-dimensional projection space
R= C[T1, . . .TD] Polynomial ring overC in D variables
Rk C-vector space of homogenousk-forms inT1, . . . ,TD

∆(n) = n(n+1)
2 n-th triangular number

s= 〈ℓ1, . . . , ℓD−d〉= I(S) The ideal ofS, generated by linear polynomialsℓi

sk = Rk∩ s C-vector space of homogenousk-forms vanishing onS
n= I(S⊥) The ideal ofS⊥

nk = Rk∩n C-vector space of homogenousk-forms vanishing onS⊥

m= 〈T1, . . . ,TD〉 The ideal of the origin inCD

Table 1: Notation and important definitions
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In this section we present an algorithm for solving Problem 14, the computation of the radical
of the ideal〈q1, . . . ,qm−1〉 under the assumption that

m≥ ∆(D)−∆(d)+1.

Under those conditions, as we will prove in Remark 23 (iii), we have that

〈q1, . . . ,qm−1〉= s2.

Using the notations previously defined, one can therefore infer that solving Problem 14 is equiva-
lent to computing the radicals =

√
s ·m in the sense of obtaining a linear generating set fors, or

equivalent to finding a basis fors1 whens2 is given in an arbitrary basis.s2 contains the complete
information given by the covariance matrices ands1 gives an explicit linear description of the space
of projections under which the random variablesX1, . . . ,Xm agree.

Algorithm 1 The input consists of the quadratic formsq1, . . . ,qm−1 ∈ R, generatings2, and the
dimensiond; theoutputis the linear generating setℓ1, . . . , ℓD−d for s1.

1: Let π← (12 · · · D) be a transitive permutation of the variable indices{1, . . . ,D}
2: Let Q←

[

q1 · · · qm−1
]⊤

be the((m−1)×∆(D))-matrix of coefficient vectors, where every
row corresponds to a polynomial and every column to a monomialTiTj .

3: for k= 1, . . . ,D−d do
4: Order the columns ofQ according to the lexicographical ordering of monomialsTiTj with

variable indices permuted byπk, that is, the ordering of the columns is given by the relation
≻ as

T2
πk(1) ≻ Tπk(1)Tπk(2) ≻ Tπk(1)Tπk(3) ≻ ·· · ≻ Tπk(1)Tπk(D) ≻ T2

πk(2)

≻ Tπk(2)Tπk(3) ≻ ·· · ≻ T2
πk(D−1) ≻ Tπk(D−1)Tπk(D) ≻ T2

πk(D)

5: TransformQ into upper triangular formQ′ using Gaussian elimination
6: The last non-zero row ofQ′ is a polynomialTπk(D)ℓ, whereℓ is a linear form ins, and we

setℓk← ℓ
7: end for

Algorithm 1 shows the procedure in pseudo-code; a summary of the notationdefined in the
previous section can be found in Table 1. The algorithm has polynomial complexity in the dimension
d of the linear subspaceS.

Remark 21 Algorithm 1 has average and worst case complexity

O
(

(∆(D)−∆(d))2∆(D)
)

,

In particular, if d is not considered as parameter of the algorithm, the average and the worst case
complexity is O(D6). On the other hand, if∆(D)−∆(d) is considered a fixed parameter, then Algo-
rithm 1 has average and worst case complexity O(D2).

Proof This follows from the complexities of the elementary operations: upper triangularization of
a generic matrix of rankr with m columns matrix needsO(r2m) operations. We first perform trian-
gularization of a rank∆(D)−∆(d) matrix with ∆(D) columns. The permutations can be obtained
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efficiently by bringingQ in row-echelon form and then performing row operations. Operations for
extracting the linear forms and comparisons with respect to the monomial ordering are negligible.
Thus the overall operation complexity to calculates1 is O((∆(D)−∆(d))2∆(D)).

Note that the difference between worst- and average case lies at most in the coefficients, since
the inputs are generic and the complexity only depends on the parameterD and not on theqi . Thus,
with probability 1, exactly the worst-case-complexity is attained.

There are two crucial facts which need to be verified for correctness of this algorithm. Namely,
there are implicit claims made in Line 6 of Algorithm 1: first, it is claimed that the last non-zero
row of Q′ corresponds to a polynomial which factors into certain linear forms. Second, it is claimed
that theℓ obtained in step 6 generates resp.s1. The proofs of these non-trivial claims can be found
in Proposition 22 in the next subsection.

Dealing with additional linear formsf1, . . . , fm−1, is possible by way of a slight modification of
the algorithm. Because thefi are linear forms, they are generators ofs. We may assume that thefi
are linearly independent. By performing Gaussian elimination before the execution of Algorithm 1,
we may reduce the number of variables bym−1, thus having to deal with new quadratic forms
in D−m+ 1 instead ofD variables. Also, the dimension of the space of projections is reduced
to min(d−m+1,−1). SettingD′ = D−m+1 andd′ = min(d−m+1,−1) and considering the
quadratic formsqi with Gaussian eliminated variables, Algorithm 1 can be applied to the quadratic
forms to find the remaining generators fors1. In particular, if m− 1≥ d, then there is no need
for considering the quadratic forms, sinced linearly independent linear forms already suffice to
determine the solution.

We can also incorporate forms of higher degree corresponding to higher order cumulants. For
this, we start withsk, wherek is the degree of the homogenous polynomials we get from the cumu-
lant tensors of higher degree. Supposing we start with enough cumulants, we may assume that we
have a basis ofsk. Performing Gaussian elimination on this basis with respect to the lexicographical
order, we obtain in the last row a form of typeTk−1

πk(D)
ℓ, whereℓ is a linear form. Doing this forD−d

permutations again yields a basis fors1.

Moreover, slight algebraic modifications of this strategy also allow to consider data from cumu-
lants of different degree simultaneously, and to reduce the number of needed polynomials toO(D);
however, due to its technicality, this is beyond the scope of the paper. We sketch the idea: in the
general case, one starts with an ideal

I = 〈 f1, . . . , fm〉,

homogenously generated in arbitrary degrees. such that
√
I = s. Proposition 55 in the appendix

implies that this happens wheneverm≥ D+1. One then proves that due to the genericity of thefi ,
there exists anN such that

IN = sN,

which means thats1 can again be obtained by calculating the saturation of the idealI . When fixing
the degrees of thefi , we will haveN = O(D) with a relatively small constant (for allfi quadratic,
this even becomesN = O(

√
D)). So algorithmically, one would first calculateIN = sN, which then

may be used to computes1 and thuss analogously to the caseN = 2, as described above.
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3.2 Proof of Correctness

In order to prove the correctness of Algorithm 1, we need to prove the following three statements.

Proposition 22 For Algorithm 1 it holds that
(i) Q is of rank∆(D)−∆(d).

(ii) The last column of Q in step 6 is of the claimed form.
(iii) Theℓ1, . . . , ℓD−d generates1.

Proof This proposition will be proved successively in the following: (i) will follow from Remark 23
(iii); (ii) will be proved in Lemma 24; and (iii) will be proved in Proposition 25.

Let us first of all make some observations about the structure of the vector spaces2 in which we
compute. It is the vector space of polynomials of homogenous degree 2 vanishing onS. On the
other hand, we are looking for a basisℓ1, . . . , ℓD−d of s1. The following remark will relate both
vector spaces:

Remark 23 The following statements hold:
(i) s2 is generated by the polynomialsℓiTj ,1≤ i ≤ D−d,1≤ j ≤ D, .

(ii) dimC s2 = ∆(D)−∆(d)
(iii) Let q1, . . . ,qm with m≥ ∆(D)−∆(d) be generic homogenous quadratic polynomials ins.

Then〈q1, . . . ,qm〉= s2.

Proof (i) In Remark 18, we have concluded thats2 = s1 ·R1. Thus the product vector spaces2 is
generated by a product basis ofs1 andR1. SinceTj ,1≤ j ≤D is a basis forR1, andℓi ,1≤ i ≤D−d
is a basis fors1, the statement holds. (ii) In Remark 20, we have seen thatR2 = s2⊕ (n1)

2, thus
dims2=dimR2−dim(n1)

2. The vector spaceR2 is minimally generated by the monomials of degree
2 in T1, . . .TD, whose number is∆(D). Similarly, (n1)

2 is minimally generated by the monomials of
degree 2 in the variablesℓ′1, . . . , ℓ

′
d that form the dual basis to theℓi . Their number is∆(d), so the

statement follows. (iii) As theqi are homogenous of degree two and vanish onS, they are elements
in s2. Due to (ii), we can apply Proposition 9 to conclude that they generates2 as vector space.

Now we continue to prove the remaining claims.

Lemma 24 In Algorithm 1 the(∆(D)−∆(d))-th row of Q′ (the upper triangular form of Q) corre-
sponds to a2-form Tπ(D)ℓ with a linear polynomialℓ ∈ s1.

Proof Note that every homogenous polynomial of degreek is canonically an element of the vector
spaceRk in the monomial basis given by theTi . Thus it makes sense to speak about the coefficients
of Ti for an 1-form resp. the coefficients ofTiTj of a 2-form.

Also, without loss of generality, we can take the trivial permutationπ = id, since the proof will
not depend on the chosen lexicographical ordering and thus will be naturally invariant under per-
mutations of variables. First we remark: sinceS is a genericd-dimensional linear subspace ofCD,
any linear form ins1 will have at leastd+1 non-vanishing coefficients in theTi . On the other hand,
by displaying the generatorsℓi ,1≤ i ≤ D−d in s1 in reduced row echelon form with respect to the
Ti-basis, one sees that one can choose all theℓi in fact with exactlyd+1 non-vanishing coefficients
in theTi such that no nontrivial linear combination of theℓi has less thend+1 non-vanishing coef-
ficients. In particular, one can choose theℓi such that the biggest (w.r.t. the lexicographical order)
monomial with non-vanishing coefficient ofℓi is Ti .
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Remark 23 (i) states thats2 is generated by

ℓiTj ,1≤ i ≤ D−d,1≤ j ≤ D.

Together with our above reasoning, this implies the following.
Fact 1: There exist linear formsℓi ,1≤ i ≤ D−d such that: the 2-formsℓiTj generates2, and

the biggest monomial ofℓiTj with non-vanishing coefficient under the lexicographical ordering is
TiTj . By Remark 23 (ii), the last row of the upper triangular formQ′ is a polynomial which has zero
coefficients for all monomials possibly except the∆(d)+1 smallest,

TD−dTD,T
2
D−d+1,TD−d+1TD−d+2, . . . ,TD−1TD,T

2
D .

On the other hand, it is guaranteed by our genericity assumption that the biggest of those terms is
indeed non-vanishing, which implies the following.

Fact 2: The biggest monomial of the last row with non-vanishing coefficient (w.r.t the lexico-
graphical order) is that ofTD−dTD.

Combining Facts 1 and 2, we can now infer that the last row must be a scalar multiple of
ℓD−dTD: since the last row corresponds to an element ofs2, it must be a linear combination of
the ℓiTj . By Fact 1, every contribution of anℓiTj ,(i, j) 6= (D− d,D) would add a non-vanishing
coefficient lexicographically bigger thanTD−dTD which cannot cancel. So, by Fact 2,TD divides the
last row of the upper triangular form ofQ, which then must beTDℓD−d or a multiple thereof. Also
we have thatℓD−d ∈ s by definition.

It remains to be shown that by permutation of the variables we can find a basisfor s1.

Proposition 25 Theℓ1, . . . , ℓD−d generates1 as vector space and thuss as ideal.

Proof Recall thatπi was the permutation to obtainℓi . As we have seen in the proof of Lemma 24,
ℓi is a linear form which has non-zero coefficients only for thed+1 coefficientsTπi(D−d), . . . ,Tπi(D).
Thusℓi has a non-zero coefficient where all theℓ j , j < i have a zero coefficient, and thusℓi is linearly
independent from theℓ j , j < i. In particular, it follows that theℓi are linearly independent inR1. On
the other hand, they are contained in theD−d-dimensional sub-C-vector spaces1 and are thus a
basis ofs1, and also a generating set for the ideals.

Note that all of these proofs generalize tok-forms. For example, one calculates that

dimC sk =

(

D+k−1
k

)

−
(

d+k−1
k

)

,

and the triangularization strategy yields a last row which corresponds toTk−1
π(D)ℓ with a linear poly-

nomialℓ ∈ s1

3.3 Relation to Previous Work in Computational Algebraic Geometry

In this section, we discuss how the algebraic formulation of the cumulant comparison problem given
in Problem 14 relates to the classical problems in computational algebraic geometry.

Problem 14 confronts us with the following task: given polynomialsq1, . . . ,qm−1 with special
properties, compute a linear generating set for the radical ideal

√

〈q1, . . . ,qm−1〉= I(V(q1, . . . ,qm−1)).
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Computing the radical of an ideal is a classical task in computational algebraicgeometry, so our
problem is a special case of radical computation of ideals, which in turn canbe viewed as an instance
of primary decomposition of ideals, see (Cox et al., 2007, Section 4.7).

While it has been known since the work of Hermann (1926) that there existconstructive algo-
rithms to calculate the radical of a given ideal in polynomial rings, only in the recent decades there
have been algorithms feasible for implementation in modern computer algebra systems. The best
known algorithms are those of Gianni et al. (1988), implemented in AXIOM andREDUCE, the
algorithm of Eisenbud et al. (1992), implemented in Macaulay 2, the algorithm of Caboara et al.
(1997), currently implemented in CoCoA, and the algorithm of Krick and Logar (1991) and its
modification by Laplagne (2006), available in SINGULAR.

All of these algorithms have two points in common. First of all, these algorithms have com-
putational worst case complexities which are doubly exponential in the square of the number of
variables of the given polynomial ring, see (Laplagne, 2006, Section 4). Although the worst case
complexities may not be approached for the problem setting described in the current paper, these
off-the-shelf algorithms do not take into account the specific properties of the ideals in question.

On the other hand, Algorithm 1 can be seen as a homogenous version of thewell-known Buch-
berger algorithm to find a Groebner basis of the dehomogenization ofs with respect to a degree-first
order. Namely, due to our strong assumptions onm, or as is shown in Proposition 55 in the ap-
pendix for a more general case, the homogenous saturations of the ideal〈q1, . . . ,qm−1〉 = m · s and
the ideals coincide. In particular, the dehomogenizations of theqi constitute a generating set for
the dehomogenization ofs. The Buchberger algorithm now finds a reduced Groebner basis ofs

which consists of exactlyD−d linear polynomials. Their homogenizations then constitute a basis
of homogenous linear forms ofs itself. It can be checked that the first elimination steps which the
Buchberger algorithm performs for the dehomogenizations of theqi correspond directly to the elim-
ination steps in Algorithm 1 for their homogenous versions. So our algorithm performs similarly to
the Buchberger algorithm in a noiseless setting, since both algorithms compute areduced Groebner
basis in the chosen coordinate system.

However, in our setting which stems from real data, there is a second pointwhich is more
grave and makes the use of off-the-shelf algorithms impossible: the computabilityof an exact result
completely relies on the assumption that the ideals given as input are exactly known, that is, a
generating set of polynomials is exactly known. This is not a problem in classical computational
algebra; however, when dealing with polynomials obtained from real data,the polynomials come not
only with numerical error but in fact with statistical uncertainty. In general,the classical algorithms
are unable to find any solution when confronted even with minimal noise on the otherwise exact
polynomials. Namely, when we deal with a system of equations for which over-determination is
possible, any perturbed system will be over-determined and thus have nosolution. For example, the
exact intersection ofN > D+1 linear subspaces in complexD-space is always empty when they are
sampled with uncertainty; this is a direct consequence of Proposition 10, when using the assumption
that the noise is generic. However, if all those hyperplanes are nearly the same, then the result of a
meaningful approximate algorithm should be a hyperplane close to all input hyperplanes instead of
the empty set.

Before we continue, we would like to stress a conceptual point in approaching uncertainty. First,
as in classical numerics, one can think of the input as theoretically exact but with fixed errorε and
then derive bounds on the output error in terms of thisε and analyze their asymptotics. We will
refer to this approach asnumerical uncertainty, as opposed tostatistical uncertainty, which is a
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view more common to statistics and machine learning, as it is more natural for noisydata. Here,
the error is considered as inherently probabilistic due to small sample effectsor noise fluctuation,
and algorithms may be analyzed for their statistical properties, independentof whether they are
themselves deterministic or stochastic. The statistical view on uncertainty is the one the reader
should have in mind when reading this paper.

Parts of the algebra community have been committed to the numerical viewpoint on uncertain
polynomials: the problem of numerical uncertainty is for example extensivelyaddressed in Stetter’s
standard book on numerical algebra (Stetter, 2004). The main difficulties and innovations stem from
the fact that standard methods from algebra like the application of Groebner bases are numerically
unstable, see (Stetter, 2004, Chapter 4.1-2).

Recently, the algebraic geometry community has developed an increasing interest in solving
algebraic problems arising from the consideration of real world data. Thealgorithms in this area are
more motivated to perform well on the data, some authors start to adapt a statistical viewpoint on
uncertainty, while the influence of the numerical view is still dominant. As a distinction, the authors
describe the field as approximate algebra instead of numerical algebra. Recent developments in this
sense can be found for example in Heldt et al. (2009) or the book of Kreuzer et al. (2009). We will
refer to this viewpoint as the statistical view in order to avoid confusion with other meanings of
approximate.

Interestingly, there are significant similarities on the methodological side. Namely, in compu-
tational algebra, algorithms often compute primarily over vector spaces, which arise for example
as spaces of polynomials with certain properties. Here, numerical linear algebra can provide many
techniques of enforcing numerical stability, see the pioneering paper of Corless et al. (1995). Since
then, many algorithms in numerical and approximate algebra use linear optimizationto estimate
vector spaces of polynomials. In particular, least-squares-approximations of rank or kernel are
canonical concepts in both numerical and approximate algebra.

However, to the best of our knowledge, there is to date no algorithm which computes an “ap-
proximate” (or “numerical”) radical of an ideal, or an approximate saturation, and also none in our
special case. In the next section, we will use estimation techniques from linear algebra to con-
vert Algorithm 1 into an algorithm which can cope with the inherent statistical uncertainty of the
estimation problem.

4. Approximate Algebraic Geometry on Real Data

In this section we show how algebraic computations can be applied to polynomials with inexact co-
efficients obtained from estimated cumulants on finite samples. Note that our method for computing
the approximate radical is not specific to the problem studied in this paper.

The reason why we cannot directly apply our algorithm for the exact case to estimated polyno-
mials is that it relies on the assumption that there exists an exact solution, such that the projected
cumulants are equal, that is, we can find a projectionP such that the equalities

PΣ1P⊤ = · · ·= PΣmP⊤ and Pµ1 = · · ·= Pµm

hold exactly. However, when the elements ofΣ1, . . . ,Σm andµ1, . . . ,µm are subject to random fluc-
tuations or noise, there exists no projection that yields exactly the same random variables. In al-
gebraic terms, working with inexact polynomials means that the joint vanishing set of q1, . . . ,qm−1
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and f1, . . . , fm−1 consists only of the origin 0∈ CD so that the ideal becomes trivial:

〈q1, . . . ,qm−1, f1, . . . , fm−1〉=m.

Thus, in order to find a meaningful solution, we need to compute the radical approximately.
In the exact algorithm, we are looking for a polynomial of the formTDℓ vanishing onS, which

is also aC-linear combination of the quadratic formsqi . The algorithm is based on an explicit way
to do so which works since theqi are generic and sufficient in number. So one could proceed to
adapt this algorithm to the approximate case by performing the same operationsas in the exact case
and then taking the(∆(D)−∆(d))-th row, setting coefficients not divisible byTD to zero, and then
dividing outTD to get a linear form. This strategy performs fairly well for small dimensionsD and
converges to the correct solution, albeit slowly.

Instead of computing one particular linear generator as in the exact case,it is advisable to use as
much information as possible in order to obtain better accuracy. The least-squares-optimal way to
approximate a linear space of known dimension is to use singular value decomposition (SVD): with
this method, we may directly eliminate the most insignificant directions in coefficientspace which
are due to fluctuations in the input. To that end, we first define an approximation of an arbitrary
matrix by a matrix of fixed rank.

Definition 26 Let A ∈ Cm×n with singular value decomposition A= UDV∗, where D=
diag(σ1, . . . ,σp) ∈ Cp×p is a diagonal matrix with ordered singular values on the diagonal,

|σ1| ≥ |σ2| ≥ · · · ≥ |σp| ≥ 0.

For k≤ p, let D′ = diag(σ1, . . . ,σk,0, . . . ,0). Then the matrix A′ =UD′V∗ is called rank k approx-
imation of A. The null space, left null space, row span, column span of A′ will be called rank k
approximate null space, left null space, row span, column span of A.

For example, ifu1, . . . ,up andv1, . . . ,vp are the columns ofU andV respectively, the rankk approx-
imate left null space ofA is spanned by the rows of the matrix

L =
[

up−k+1 · · · up
]⊤

,

and the rankk approximate row span ofA is spanned by the rows of the matrix

S=
[

v1 · · · vp
]⊤

.

We will call those matrices theapproximate left null space matrixresp. the approximate row span
matrix of rankk associated toA. The approximate matrices are the optimal approximations of rank
k with respect to the least-squares error.

We can now use these concepts to obtain an approximative version of Algorithm 1. Instead of
searching for a single element of the formTDℓ, we estimate the vector space of all such elements
via singular value decomposition—note that this is exactly the vector space(〈TD〉 · s)2, that is, the
vector space of all homogenous polynomials of degree two which are divisible byTD. Also note that
the choice of the linear formTD is irrelevant, that is, we may replaceTD above by any variable or
even linear form. As a trade-off between accuracy and runtime, we additionally estimate the vector
spaces(〈TD〉 · s)2 for all 1≤ i ≤D, and then least-squares average the putative results fors to obtain
a final estimator fors and thus the desired space of projections.
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Algorithm 2 The input consists of noisy quadratic formsq1, . . . ,qm−1 ∈ C[T1, . . . ,TD], and the di-
mensiond; theoutputis an approximate linear generating setℓ1, . . . , ℓD−d for the ideals.

1: Let Q←
[

q1 · · · qm−1
]⊤

be the(m−1×∆(D))-matrix of coefficient vectors, where every
row corresponds to a polynomial and every column to a monomialTiTj in arbitrary order.

2: for i = 1, . . . ,D do
3: Let Qi be the((m− 1)×∆(D)−D)-sub-matrix ofQ obtained by removing all columns

corresponding to monomials divisible byTi
4: Compute the approximate left null space matrixLi of Qi of rank(m−1)−∆(D)+∆(d)+

D−d
5: Compute the approximate row span matrixL′i of LiQ of rankD−d
6: Let L′′i be the(D−d×D)-matrix obtained fromL′i by removing all columns corresponding

to monomials not divisible byTi
7: end for
8: Let L be the(D(D−d)×D)-matrix obtained by vertical concatenation ofL′′1, . . . ,L

′′
D

9: Compute the approximate row span matrixA =
[

a1 · · · aD−d
]⊤

of L of rankD−d and let
ℓi =

[

T1 · · · TD
]

ai for all 1≤ i ≤ D−d.

We explain the logic behind the single steps: in the first step, we start with the same matrix
Q as in Algorithm 1. Instead of bringingQ into triangular form with respect to the term order
T1≺ ·· · ≺ TD, we compute the left kernel space row matrixSi of the monomials not divisible byTi .
Its left imageLi = SiQ is a matrix whose row space generates the space of possible last rows after
bringingQ into triangular form in an arbitrary coordinate system. In the next step, we perform PCA
to estimate a basis for the so-obtained vector space of quadratic forms of type Ti times linear form,
and extract a basis for the vector space of linear forms estimated viaLi . Now we can put together all
Li and again perform PCA to obtain a more exact and numerically more estimate forthe projection
in the last step. The rank of the matrices after PCA is always chosen to match the correct ranks in
the exact case.

Note that Algorithm 2 is a consistent estimator for the correct space of projections if the co-
variances are sample estimates. Let us first clarify in which sense consistent is meant here: if each
covariance matrix is estimated from a sample of sizeN or greater, andN goes to infinity, then the es-
timate of the projection converges in probability to the true projection. The reason why Algorithm 2
gives a consistent estimator in this sense is elementary: covariance matrices can be estimated con-
sistently, and so can their differences, the polynomialsqi . Moreover, the algorithm can be regarded
as an almost continuous function in the polynomialsqi ; so convergence in probability to the true
projection and thus consistency follows from the continuous mapping theorem.

The runtime complexity of Algorithm 2 isO(D6) as for Algorithm 1. For this note that calcu-
lating the singular value decomposition of anm×n-matrix isO(mnmax(m,n)).

If we want to considerk-forms instead of 2-forms, we can use the same strategies as above
to numerically stabilize the exact algorithm. In the second step, one might want toconsider all
sub-matricesQM of Q obtained by removing all columns corresponding to monomials divisible by
some degree(k−1) monomialM and perform the for-loop over all such monomials or a selection
of them. ConsideringD monomials or more gives again a consistent estimator for the projection.
Similarly, these methods allow us to numerically stabilize versions with reduced epoch requirements
and simultaneous consideration of different degrees.
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5. Numerical Evaluation

In this section we evaluate the performance of the algebraic algorithm on synthetic data in various
settings. In order to contrast the algebraic approach with an optimization-based method (cf. Fig-
ure 1), we compare with the Stationary Subspace Analysis (SSA) algorithm (von Bünau et al.,
2009), which solves a similar problem in the context of time series analysis; see Müller et al. (2011)
for an open-source implementation. To date, SSA has been successfully applied in the context of
biomedical data analysis (von Bünau et al., 2010), domain adaptation (Hara et al., 2010), change-
point detection (Blythe et al., 2012) and computer vision (Meinecke et al., 2009).

5.1 Stationary Subspace Analysis

Stationary Subspace Analysis (von Bünau et al., 2009; M̈uller et al., 2011) factorizes an observed
time series according to a linear model into underlying stationary and non-stationary sources. The
observed time seriesx(t) ∈RD is assumed to be generated as a linear mixture of stationary sources
ss(t) ∈Rd and non-stationary sourcessn(t) ∈RD−d,

x(t) = As(t) =
[

As An
]

[

ss(t)
sn(t)

]

,

with a time-constant mixing matrixA. The underlying sourcess(t) are not assumed to be indepen-
dent or uncorrelated.

The aim of SSA is to invert this mixing model given only samples fromx(t). The true mixing
matrixA is not identifiable (von B̈unau et al., 2009); only the projectionP∈Rd×D to the stationary
sources can be estimated from the mixed signalsx(t), up to arbitrary linear transformation of its im-
age. The estimated stationary sources are given by ˆss(t) = Px(t), that is, the projectionP eliminates
all non-stationary contributions:PAn = 0.

The SSA algorithms (von B̈unau et al., 2009; Hara et al., 2010) are based on the following
definition of stationarity: a time seriesXt is considered stationary if its mean and covariance is
constant over time, that is,E[Xt1] = E[Xt2] andE[Xt1X

⊤
t1 ] = E[Xt2X

⊤
t2 ] for all pairs of time points

t1, t2 ∈N. Following this concept of stationarity, the projectionP is found by minimizing the differ-
ence between the first two moments of the estimated stationary sources ˆss(t) across epochs of the
times series. To that end, the samples fromx(t) are divided intomnon-overlapping epochs of equal
size, corresponding to the index setsT1, . . . ,Tm, from which the mean and the covariance matrix is
estimated for all epochs 1≤ i ≤m,

µ̂i =
1
|Ti | ∑t∈Ti

x(t) and Σ̂i =
1

|Ti |−1 ∑
t∈Ti

(x(t)− µ̂i)(x(t)− µ̂i)
⊤ .

Given a projectionP, the mean and the covariance of the estimated stationary sources in thei-th
epoch are given by ˆµsi = Pµ̂i andΣ̂s

i = PΣ̂iP⊤ respectively. Without loss of generality (by centering
and whitening2 the average epoch) we can assume that ˆss(t) has zero mean and unit covariance.

The objective function of the SSA algorithm (von Bünau et al., 2009) minimizes the sum of the
differences between each epoch and the standard normal distribution, measured by the Kullback-

2. A whitening transformation is a basis transformationW that sets the sample covariance matrix to the identity. It can
be obtained from the sample covariance matrixΣ̂ asW = Σ̂−

1
2
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Leibler divergenceDKL between Gaussians: the projectionP∗ is found as the solution to the opti-
mization problem,

P∗ = argmin
PP⊤=I

m

∑
i=1

DKL

[

N (µ̂si , Σ̂
s
i )
∣

∣

∣

∣

∣

∣
N (0, I)

]

= argmin
PP⊤=I

m

∑
i=1

(

− logdetΣ̂s
i +(µ̂si )

⊤µ̂si
)

,

which is non-convex and solved using an iterative gradient-based procedure.
This SSA algorithm considers a problem that is closely related to the one addressed in this paper,

because the underlying definition of stationarity does not consider the time structure. In essence, the
m epochs are modeled asm random variablesX1, . . . ,Xm for which we want to find a projectionP
such that the projected probability distributionsPX1, . . . ,PXm are equal, up to the first two moments.
This problem statement is equivalent to the task that we solve algebraically.

5.2 Results

In our simulations, we investigate the influence of the noise level and the number of dimensions on
the performance and the runtime of our algebraic algorithm and the SSA algorithm. We measure
the performance using the subspace angle between the true and the estimatedspace of projections
S.

The setup of the synthetic data is as follows: we fix the total number of dimensions toD = 10
and vary the dimensiond of the subspace with equal probability distribution from one to nine. We
also fix the number of random variables tom= 110. For each trial of the simulation, we need to
choose a random basis for the two subspacesRD = S⊕S⊥, and for each random variable, we need
to choose a covariance matrix that is identical only onS. Moreover, for each random variable, we
need to choose a positive definite disturbance matrix (with given noise levelσ), which is added to
the covariance matrix to simulate the effect of finite or noisy samples.

The elements of the basis vectors forSandS⊥ are drawn uniformly from the interval(−1,1).
The covariance matrix of each epoch 1≤ i ≤ m is obtained from Cholesky factors with random
entries drawn uniformly from(−1,1), where the firstd rows remain fixed across epochs. This
yields noise-free covariance matricesC1, . . . ,Cm∈RD×D where the first(d×d)-block is identical.
Now for eachCi , we generate a random disturbance matrixEi to obtain the final covariance matrix

C′i =Ci +Ei .

The disturbance matrixEi is determined asEi = ViDiV⊤i whereVi is a random orthogonal matrix,
obtained as the matrix exponential of an antisymmetric matrix with random elements and Di is a
diagonal matrix of eigenvalues. The noise levelσ is the log-determinant of the disturbance matrix
Ei . Thus the eigenvalues ofDi are normalized such that

1
10

10

∑
i=1

logDii = σ.

In the final step of the data generation, we transform the disturbed covariance matricesC′1, . . . ,C
′
m

into the random basis to obtain the cumulantsΣ1, . . . ,Σm which are the input to our algorithm.
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Figure 5: Comparison of the algebraic algorithm and the SSA algorithm. Each panel shows the me-
dian error of the two algorithms (vertical axis) for varying numbers of stationary sources
in ten dimensions (horizontal axis). The noise level increases from the left to the right
panel; the error bars extend from the 25% to the 75% quantile estimated over 2000 ran-
dom realizations of the data set.

The first set of results is shown in Figure 5. With increasing noise levels (from left to right panel)
both algorithms become worse. For low noise levels, the algebraic method yieldssignificantly better
results than the optimization-based approach, over all dimensionalities. For medium and high-noise
levels, this situation is reversed.

−5 −4 −3 −2 −1 −0.1

0.0001

0.001

0.01

0.1

0.5
1

5
10

30

E
rr

or
 in

 d
eg

re
es

Noise level (log10)

 

 

Algebraic
SSA

1 2 3 4 5 6 7 8 9
0.1

0.2

0.3

0.4

0.5

0.6

R
un

tim
e 

(s
ec

on
ds

)

Number of stationary sources

 

 
Algebraic
SSA

Figure 6: The left panel shows a comparison of the algebraic method and the SSA algorithm over
varying noise levels (five stationary sources in ten dimensions), the two curves show the
median log error. The right panel shows a comparison of the runtime for varying numbers
of stationary sources. The error bars extend from the 25% to the 75% quantile estimated
over 2000 random realizations of the data set.

In the left panel of Figure 6, we see that the error level of the algebraicalgorithm decreases
with the noise level, converging to the exact solution when the noise tends to zero. In contrast, the
error of original SSA decreases with noise level, reaching a minimum error baseline which it cannot
fall below. In particular, the algebraic method significantly outperforms SSAfor low noise levels,
whereas SSA is better for high noise. However, when noise is too high, none of the two algorithms
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can find the correct solution. In the right panel of Figure 6, we see thatthe algebraic method is
significantly faster than SSA.

6. Conclusion

In this paper we have shown how a learning problem formulated in terms of cumulants of proba-
bility distributions can be addressed in the framework of computational algebraic geometry. As an
example, we have demonstrated this viewpoint on the problem of finding a linear mapP∈ Rd×D

such that a set of projected random variablesX1, . . . ,Xm∈RD have the same distribution,

PX1∼ ·· · ∼ PXm.

To that end, we have introduced the theoretical groundwork for an algebraic treatment of inexact
cumulants estimated from data: the concept of polynomials that aregenericup to a certain property
which we aim to recover from the data. In particular, we have shown how we can find an approxi-
mate exact solution to this problem using algebraic manipulation of cumulants estimated on samples
drawn fromX1, . . . ,Xm. Therefore we have introduced the notion of computing anapproximate sat-
uration of an ideal that is optimal in a least-squares sense. Moreover, using the algebraic problem
formulation in terms of generic polynomials, we have presented compact proofs for a condition on
the identifiability of the true solution.

In essence, instead of searching the surface of a non-convex objective function involving the cu-
mulants, the algebraic algorithm directly finds the solution by manipulating cumulantpolynomials—
which is the more natural representation of the problem. This viewpoint is not only theoretically
appealing but conveys practical advantages that we demonstrate in a numerical comparison to Sta-
tionary Subspace Analysis (von Bünau et al., 2009): the computational cost is significantly lower
and the error converges to zero as the noise level goes to zero. However, the algebraic algorithm
requiresm≥ ∆(D) random variables with distinct distributions, which is quadratic in the number of
dimensionsD. This is due to the fact that the algebraic algorithm represents the cumulant polynomi-
als in the vector space of coefficients. Consequently, the algorithm is confined to linearly combining
the polynomials which describe the solution. However, the set of solutions is also invariant under
multiplication of polynomials and polynomial division, that is, the algorithm does not use all infor-
mation contained in the polynomial equations. We conjecture that we can construct a more efficient
algorithm, if we also multiply and divide polynomials.

The theoretical and algorithmic techniques introduced in this paper can be applied to other
scenarios in machine learning, including the following examples.

• Finding properties of probability distributions. Any inference problem that can be formu-
lated in terms of polynomials, in principle, is amenable to our algebraic approach; incorpo-
rating polynomial constraints is also straightforward.

• Approximate solutions to polynomial equations.In machine learning, the problem of solv-
ing polynomial equations can, for example, occur in the context of finding the solution to a
constrained nonlinear optimization problem by means of setting the gradient to zero.

• Conditions for identifiability. Whenever a machine learning problem can be formulated in
terms of polynomials, identifiability of its generative model can also be phrasedin terms of
algebraic geometry, where a wealth of proof techniques stands at disposition.
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We argue for a cross-fertilization of approximate computational algebra and machine learning:
the former can benefit from the wealth of techniques for dealing with uncertainty and noisy data;
the machine learning community may find a novel framework for representing learning problems
that can be solved efficiently using symbolic manipulation.
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Appendix A. An Example

In this section, we will show by using a concrete example how the Algorithms 1 and 2 work. The
setup will be the similar to the example presented in the introduction. We will use the notation
introduced in Section 3.

Example 27 In this example, let us consider the simplest non-trivial case: two random variables
X1,X2 in R2 such that there is exactly one directionw∈R2 such thatw⊤X1 =w⊤X2; that is, the total
number of dimensions isD= 2, the dimension of the set of projections isd= 1. As in the beginning
of Section 3, we may assume thatR2 = S⊕S⊥ is an orthogonal sum of a one-dimensional space of
projectionsS and its orthogonal complementS⊥. In particular,S⊥ is given as the linear span of a

single vector, say
[

α β
]⊤

. The spaceS is also the linear span of the vector
[

β −α
]⊤

.
Now we partition the sample intoD(D+1)/2−d(d+1)/2= 2 epochs (this is the lower bound

needed by Proposition 22). From the two epochs we can estimate two covariance matriceŝΣ1, Σ̂2.
Suppose we have

Σ̂1 =

[

a11 a12

a21 a22

]

.

From this matrices, we can now obtain a polynomial

q1 = w⊤(Σ̂1− I)w

= w⊤
[

a11−1 a12

a21 a22−1

]

w

= (a11−1)T2
1 +(a12+a21)T1T2+(a22−1)T2

2 ,

wherew=
[

T1 T2
]⊤

. Similarly, we obtain a polynomialq2 as the Gram polynomial of̂Σ2− I .
First we now illustrate how Algorithm 1, which works with homogenous exact polynomials,

can determine the vector spaceS from these polynomials. For this, we assume that the estimated
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polynomials are exact; we will discuss the approximate case later. We can alsowrite q1 andq2 in
coefficient expansion:

q1 = q11T
2
1 +q12T1T2+q13T

2
2 ,

q2 = q21T
2
1 +q22T1T2+q23T

2
2 .

We can also write this formally in the(2×3) coefficient matrixQ= (qi j )i j , where the polynomials
can be reconstructed as the entries in the vector

Q·
[

T2
1 T1T2 T2

2

]⊤
.

Algorithm 1 now calculates the upper triangular form of this matrix. For polynomials, this is equiv-
alent to calculating the last row

q21q1−q11q2

= [q21q12−q11q22]T1T2+[q21q13−q11q23]T
2
2 .

Then we divide outT2 and obtain

P= [q21q12−q11q22]T1+[q21q13−q11q23]T2.

The algorithm now identifiesS⊥ as the vector space spanned by the vector
[

α β
]⊤

=
[

q21q12−q11q22 q21q13−q11q23
]⊤

.

This already finishes the calculation given by Algorithm 1, as we now explicitlyknow the solution
[

α β
]⊤

.

To understand why this strategy works, we need to have a look at the input.Namely, one has to
note thatq1 andq2 are generic homogenous polynomials of degree 2, vanishing onS. That is, we
will have qi(x) = 0 for i = 1,2 and all pointsx∈ S. It is not difficult to see that every polynomial
fulfilling this condition has to be of the form

(αT1+βT2)(aT1+bT2)

for somea,b ∈ C; that is, a multiple of the equation definingS. However we may not know this
factorization a priori, in particular we are in general agnostic as to the correct values ofα andβ.
They have to be reconstructed from theqi via an algorithm. Nonetheless, a correct solution exists,
so we may write

q1 = (αT1+βT2)(a1X+b1T2),

q2 = (αT1+βT2)(a2X+b2T2),

with ai ,bi generic, without knowing the exact values a priori. If we now compare to the above
expansion in theqi j , we obtain the linear system of equations

qi1 = αai ,

qi2 = αbi +βai ,

qi3 = βbi
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for i = 1,2, from which we may reconstruct theai ,bi and thusα andβ. However, a more elegant and
general way of getting to the solution is to bring the matrixQ as above into triangular form. Namely,
by assumption, the last row of this triangular form corresponds to the polynomial P which vanishes
on S. Using the same reasoning as above, the polynomialP has to be a multiple of(αT1+βT2). To
check the correctness of the solution, we substitute theqi j in the expansion ofP for ai ,bi , and obtain

P=[q21q12−q11q22]T1T2+[q21q13−q11q23]T
2
2

=[αa2(αb1+βa1)−αa1(αb2+βa2)]T1T2+[αa2βb1−αa1βb2]T
2
2

=[α2a2b1−α2a1b2]T1T2+[αβa2b1−αβa1b2]T
2
2

=(αT1+βT2)α[a2b1−a1b2]T2.

This is (αT1+βT2) timesT2 up to a scalar multiple - from the coefficients of the formP, we may
thus directly reconstruct the vector

[

α β
]

up to a common factor and thus obtain a representation
for S, since the calculation of these coefficients did not depend on a priori knowledge aboutS.

If the estimation of thêΣi and thus of theqi is now endowed with noise, and we have more
than two epochs and polynomials, Algorithm 2 provides the possibility to perform this calculation
approximately. Namely, Algorithm 2 finds a linear combination of theqi which is approximately of
the formTDℓ with a linear formℓ in the variablesT1,T2. The Young-Eckart Theorem guarantees that
we obtain a consistent and least-squares-optimal estimator forP, similarly to the exact case. The
reader is invited to check this by hand as an exercise.

Now the observant reader may object that we may have simply obtained the linear form (αT1+
βT2) and thusS directly from factoringq1 and q2 and taking the unique common factor. Note
however that this strategy can only be applied in the very special caseD−d = 1. To illustrate the
additional difficulties in the general case, we repeat the above example for D = 4 andd = 2 for the
exact case:

Example 28 In this example, we need alreadyD(D+1)/2−d(d+1)/2= 7 polynomialsq1, . . . ,q7

to solve the problem with Algorithm 1. As above, we can write

qi =qi1T2
1 +qi2T1T2+qi3T1T3+qi4T1T4+qi5T2

2

+qi6T2T3+qi7T2T4+qi8T2
3 +qi9T3T4+qi,10T

2
4

for i = 1, . . . ,7, and again we can write this in a(7×10) coefficient matrixQ = (qi j )i j . In Algo-
rithm 1, this matrix is brought into triangular form. The last row of this triangularmatrix will thus
correspond to a polynomial of the form

P= p7T2T4+ p8T2
3 + p9T3T4+ p10T

2
4

A polynomial of this form is not divisible byT4 in general. However, Proposition 22 guarantees us
that the coefficientp8 is always zero due to our assumptions. So we can divide outT4 to obtain a
linear form

p7T2+ p9T3+ p10T4.

This is one equation defining the linear spaceS. One obtains another equation in the variables
T1,T2,T3 if one, for example, inverts the numbering of the variables 1−2−3−4 to 4−3−2−1.
Two equations suffice to describeS, and so Algorithm 1 yields the correct solution.
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As in the example before, it can be checked by hand that the coefficientp7 indeed vanishes,
and the obtained linear equations define the linear subspaceS. For this, one has to use the classical
result from algebraic geometry that everyqi can be written as

qi = ℓ1P1+ ℓ2P2,

where theℓi are fixed but arbitrary linear forms definingSas their common zero set, and thePi are
some linear forms determined byqi and theℓi (this is for example a direct consequence of Hilbert’s
Nullstellensatz). Caution is advised as the equations involved become very lengthy - while not too
complex - already in this simple example. So the reader may want to check only that the coefficient
p8 vanishes as claimed.

Appendix B. Algebraic Geometry of Genericity

In the paper, we have reformulated a problem of comparing probability distributions in algebraic
terms. For the problem to be well-defined, we need the concept of genericity for the cumulants.
The solution can then be determined as an ideal generated by generic homogenous polynomials
vanishing on a linear subspace. In this supplement, we will extensively describe this property which
we call genericity and derive some simple consequences.

Since genericity is an algebraic-geometric concept, knowledge about basic algebraic geometry
will be required for an understanding of this section. In particular, the reader should be at least
familiar with the following concepts before reading this section: polynomial rings, ideals, radicals,
factor rings, algebraic sets, algebra-geometry correspondence (including Hilbert’s Nullstellensatz),
primary decomposition, height resp. dimension theory in rings. A good introduction into the neces-
sary framework can be found in the book of Cox et al. (2007).

B.1 Definition of Genericity

In the algebraic setting of the paper, we would like to calculate the radical of an ideal

I = 〈q1, . . . ,qm−1, f1, . . . , fm−1〉.

This idealI is of a special kind: its generators are random, and are only subject to theconstraints
that they vanish on the linear subspaceS to which we project, and that they are homogenous of
fixed degree. In order to derive meaningful results on howI relates toS, or on the solvability of the
problem, we need to model this kind of randomness.

In this section, we introduce a concept called genericity. Informally, a generic situation is a
situation without pathological degeneracies. In our case, it is reasonable to believe that apart from
the conditions of homogeneity and the vanishing onS, there are no additional degeneracies in the
choice of the generators. So, informally spoken, the idealI is generated by generic homogenous
elements vanishing onS. This section is devoted to developing a formal theory in order to address
such generic situations efficiently.

The concept of genericity is already widely used in theoretical computer science, combinatorics
or discrete mathematics; there, it is however often defined inexactly or not at all, or it is only given as
an ad-hoc definition for the particular problem. On the other hand, genericity is a classical concept
in algebraic geometry, in particular in the theory of moduli. The interpretation ofgeneric properties
as probability-one-properties is also a known concept in applied algebraic geometry, for example,
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algebraic statistics. However, the application of probability distributions and genericity to the setting
of generic ideals, in particular in the context of conditional probabilities, are original to the best of
our knowledge, though not being the first one to involve generic resp. general polynomials, see
Iarrobino (1984). Generic polynomials and ideals have been also studiedby Fröberg and Hollman
(1994). A collection of results on generic polynomials and ideals which partlyoverlap with ours
may also be found in the recent paper of Pardue (2010).

Before continuing to the definitions, let us explain what genericity should mean. Intuitively,
generic objects are objects without unexpected pathologies or degeneracies. For example, if one
studies sayn lines in the real plane, one wants to exclude pathological cases where lineslie on each
other or where many lines intersect in one point. Having those cases excluded means examining
the “generic” case, that is, the case where there aren(n+1)/2 intersections,n(n+1) line segments
and so forth. Or when one hasn points in the plane, one wants to exclude the pathological cases
where for example there are three affinely dependent points, or wherethere are more sophisticated
algebraic dependencies between the points which one wants to exclude, depending on the problem.

In the points example, it is straightforward how one can define genericity in terms of sampling
from a probability distribution: one could draw the points under a suitable continuous probability
distribution from real two-space. Then, saying that the points are “generic” just amounts to examine
properties which are true with probability one for then points. Affine dependencies for example
would then occur with probability zero and are automatically excluded from our interest. One can
generalize this idea to the lines example: one can parameterize the lines by a parameter space, which
in this case is two-dimensional (slope and ordinate), and then sample lines uniformly distributed in
this space (one has of course to make clear what this means). For example,lines lying on each other
or more than two lines intersecting at a point would occur with probability zero,since the part of
parameter space for this situation would have measure zero under the given probability distribution.

When we work with polynomials and ideals, the situation gets a bit more complicated but the
idea is the same. Polynomials are uniquely determined by their coefficients, so they can naturally
be considered as objects in the vector space of their coefficients. Similarly,an ideal can be specified
by giving the coefficients of some set of generators. Let us make this more explicit: suppose first
we have given a single polynomialf ∈ C[X1, . . .XD] of degreek.

In multi-index notation, we can write this polynomial as a finite sum

f = ∑
α∈ND

cαXα with cα ∈ C.

This means that the possible choices forf can be parameterized by the
(D+k

k

)

coefficientscI with
‖I‖1≤ k. Thus polynomials of degreek with complex coefficients can be parameterized by complex
(D+k

k

)

-space.
Algebraic sets can be similarly parameterized by parameterizing the generators of the corre-

sponding ideal. However, this correspondence is highly non-unique, as different generators may
give rise to the same zero set. While the parameter space can be made unique by dividing out
redundancies, which gives rise to the Hilbert scheme, we will instead use the redundant, though
pragmatic characterization in terms of a finite dimensional vector space overC of the correct di-
mension.

We will now fix notation for the parameter space of polynomials and endow it withalgebraic
structure. The extension to ideals will then be derived later. Let us writeMk for complex

(D+k
k

)

-
space (we assumeD as fixed), interpreting it as a parameter space for the polynomials of degreek as

884



ALGEBRAIC GEOMETRIC COMPARISON OFPROBABILITY DISTRIBUTIONS

shown above. Since the parameter spaceMk is isomorphic to complex
(D+k

k

)

-space, we may speak
about algebraic sets inMk. Also, Mk carries the complex topology induced by the topology on
R2k and by topological isomorphy the Lebesgue measure; thus it also makes sense to speak about
probability distributions and random variables onMk. This dual interpretation will be the main
ingredient in our definition of genericity, and will allow us to relate algebraic results on genericity
to the probabilistic setting in the applications. AsMk is a topological space, we may view any
algebraic set inMk as an event if we randomly choose a polynomial inMk:

Definition 29 Let X be a random variable with values inMk. Then an event for X is called al-
gebraic event or algebraic property if the corresponding event set inMk is an algebraic set. It is
called irreducible if the corresponding event set inMk is an irreducible algebraic set.

If an eventA is irreducible, this means that if we writeA as the event “A1 andA2”, for algebraic
eventsA1,A2, thenA= A1, or A= A2. We now give some examples for algebraic properties.

Example 30 The following events onMk are algebraic:

1. The sure event.

2. The empty event.

3. The polynomial is of degreen or less.

4. The polynomial vanishes on a prescribed algebraic set.

5. The polynomial is contained in a prescribed ideal.

6. The polynomial is homogenous.

7. The polynomial is a square.

8. The polynomial is reducible.

Properties 1-5 are additionally irreducible.
We now show how to prove these claims: 1-2 are clear, we first prove thatproperties 3-5 are

algebraic and irreducible. By definition, it suffices to prove that the subset of Mk corresponding
to those polynomials is an irreducible algebraic set. We claim: in any of those cases, the subset
in question is moreover a linear subspace, and thus algebraic and irreducible. This can be easily
verified by checking directly that iff1, f2 fulfill the property in question, thenf1+α f2 also fulfills
the property.

Property 6 is algebraic, since it can be described as the disjunction of the properties “The poly-
nomial is homogenous and of degreen” for all n≤ k. Those single properties can be described
by linear subspaces ofMk as above, thus property 6 is parameterized by the union of those linear
subspaces. In general, these are orthogonal, so property 6 is not irreducible.

Property 7 is algebraic, as we can check it through the vanishing of a system of generalized
discriminant polynomials. One can show that it is also irreducible since the subset ofMk in question
corresponds to the image of a Veronese map (homogenization to degreek is a strategy); however,
since we will not need such a result, we do not prove it here.

Property 8 is algebraic, since factorization can also be checked by sets of equations. One has to
be careful here though, since those equations depend on the degreesof the factors. For example, a
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K IRÁLY, VON BÜNAU , MEINECKE, BLYTHE AND M ÜLLER

polynomial of degree 4 may factor into two polynomials of degree 1 and 3, or intwo polynomials
of degree 2 each. Since in general each possible combination defines different sets of equations and
thus different algebraic subsets ofMk, property 8 is in general not irreducible (fork≤ 3 it is).

The idea defining a choice of polynomial as generic follows the intuition of the affirmed non-
sequitur: a generic, resp. generically chosen polynomial should not fulfill any algebraic property.
A generic polynomial, having a particular simple (i.e., irreducible) algebraic property, should not
fulfill any other algebraic property which is not logically implied by the first one. Here, algebraic
properties are regarded as the natural model for restrictive and degenerate conditions, while their
logical negations are consequently interpreted as generic, as we have seen in Example 30. These
considerations naturally lead to the following definition of genericity in a probabilistic context:

Definition 31 Let X be a random variable with values inMk. Then X is called generic, if for any
irreducible algebraic events A,B, the following holds:

The conditional probability PX(A|B) exists and vanishes if and only if B does not imply A.

In particular,B may also be the sure event.
Note that without giving a further explication, the conditional probabilityPX(A|B) is not well-

defined, since we condition on the eventB which has probability zero. There is also no unique way
of remedying this, as for example the Borel-Kolmogorov paradox shows. In Section B.2, we will
discuss the technical notion which we adopt to ensure well-definedness.

Intuitively, our definition means that an event has probability zero to occurunless it is logically
implied by the assumptions. That is, degenerate dependencies between events do not occur.

For example, non-degenerate multivariate Gaussian distributions or Gaussian mixture distribu-
tions onMk are generic distributions. More general, any positive continuous probability distribu-
tion which can be approximated by Gaussian mixtures is generic (see Example 37). Thus we argue
that non-generic random variables are very pathological cases. Notehowever, that our intention
is primarily not to analyze the behavior of particular fixed generic random variables (this is part
of classical statistics). Instead, we want to infer statements which follow notfrom the particular
structure of the probability function but solely from the fact that it is generic, as these statements
are intrinsically implied by the conditional postulate in Definition 31 alone. We will discuss the
definition of genericity and its implications in more detail in Section B.2.

With this definition, we can introduce the terminology of a generic object: it is a generic random
variable which is object-valued.

Definition 32 We call a generic random variable with values inMk a generic polynomial of degree
k. When the degree k is arbitrary but fixed (and still≥ 1), we will say that f is a generic polynomial,
or that f is generic, if it is clear from the context that f is a polynomial. If the degree k is zero, we
will analogously say that f is a generic constant.

We call a set of constants or polynomials f1, . . . , fm generic if they are generic and independent.

We call an ideal generic if it is generated by a set of m generic polynomials.

We call an algebraic set generic if it is the vanishing set of a generic ideal.
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LetP be an algebraic property on a polynomial, a set of polynomials, an ideal, or an algebraic
set (e.g., homogenous, contained in an ideal et.). We will call a polynomial,a set of polynomials,
or an ideal, a genericP polynomial, set, or ideal, if it the conditional of a generic random variable
with respect toP .

If A is a statement about an object (polynomial, ideal etc), andP an algebraic property, we will
say briefly “A genericP object isA” instead of saying “A genericP object isA with probability
one”.

Note that formally, these objects are all polynomial, ideal, algebraic set etc -valued random
variables. By convention, when we state something about a generic object,this will be an implicit
probability-one statement. For example, when we say

“A generic green ideal is blue”,

this is an abbreviation for the by definition equivalent but more lengthy statement

“Let f1, . . . , fm be independent generic random variables with values inMk1, . . . ,Mkm. If the
ideal 〈 f1, . . . , fm〉 is green, then with probability one, it is also blue - this statement is independent
of the choice of theki and the choice of which particular generic random variables we use to sample.

On the other hand, we will use the verb “generic” also as a qualifier for “constituting generic
distribution”. So for example, when we say

“The Z of a generic red polynomial is a generic yellow polynomial”,

this is an abbreviation of the statement

“Let X be a generic random variable onMk, let X′ be the yellow conditional ofX. Then the Z
of X′ is the red conditional of some generic random variable - in particular this statement is inde-
pendent of the choice ofk and the choice ofX.”

It is important to note that the respective random variables will not be made explicit in the fol-
lowing subsections, since the statements will rely only on its property of being generic, and not on
its particular structure which goes beyond being generic.

As an application of these concepts, we may now formulate the problem of comparing cumu-
lants in terms of generic algebra:

Problem 33 Let s= I(S), where S is an unknown d-dimensional subspace ofCD. Let

I = 〈 f1, . . . , fm〉
with fi ∈ s generic of fixed degree each (in our case, one and two), such that

√
I = s.

Then determine a reduced Groebner basis (or another simple generating system) fors.

As we will see, genericity is the right concept to model random sampling of polynomials, as we
will derive special properties of the idealI which follow from the genericity of thefi .
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B.2 Zero-Measure Conditionals, and Relation to Other Types of Genericity

In this section, se will discuss the definition of genericity in Definition 31 and ensure its well-
definedness. Then we will invoke alternative definitions for genericity and show their relation to
our probabilistic intuitive approach from section B.1. As this section containstechnical details and
is not necessary for understanding the rest of the appendix, the reader may opt to skip it.

An important concept in our definition of genericity in Definition 31 is the conditional proba-
bility PX(A|B). As B is an algebraic set, its probabilityPX(B) is zero, so the Bayesian definition
of conditional cannot apply. There are several ways to make it well-defined; in the following, we
explain the Definition of conditional we use in Definition 31. The definition of conditional we use
is one which is also often applied in this context.

Remark 34 Let X be a real random variable (e.g., with values inMk) with probability measure µ.
If µ is absolutely continuous, then by the theorem of Radon-Nikodym, there is a unique continuous
density p such that

µ(U) =
∫

U
pdλ

for any Borel-measurable set U and the Lebesgue measureλ. If we assume that p is a continuous
function, it is unique, so we may define a restricted measure µB on the event set of B by setting

ν(U) =
∫

U
pdH,

for Borel subsets of U and the Hausdorff measure H on B. Ifν(B) is finite and non-zero, that is,ν
is absolutely continuous with respect to H, then it can be renormalized to yielda conditional prob-
ability measure µ(.)|B = ν(.)/ν(B). The conditional probability PX(A|B) has then to be understood
as

PX(A|B) =
∫

B
1(A∩B)dµ |B,

whose existence in particular implies that the Lebesgue integralsν(B) are all finite and non-zero.

As stated, we adopt this as the definition of conditional probability for algebraic setsA andB. It
is important to note that we have made implicit assumptions on the random variableX by using the
conditionalsPX(A|B) in Remark 34 (and especially by assuming that they exist): namely, the exis-
tence of a continuous density function and existence, finiteness, and non-vanishing of the Lebesgue
integrals. Similarly, by stating Definition 31 for genericity, we have made similar assumptions on
the generic random variableX, which can be summarized as follows:

Assumption 35 X is an absolutely continuous random variable with continuous density function
p, and for every algebraic event B, the Lebesgue integrals

∫
B

pdH,

where H is the Hausdorff measure on B, are non-zero and finite.

This assumption implies the existence of all conditional probabilitiesPX(A|B) in Definition 31,
and are also necessary in the sense that they are needed for the conditionals to be well-defined. On
the other hand, if those assumptions are fulfilled for a random variable, it isautomatically generic:
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Remark 36 Let X be aMk-valued random variable, fulfilling the Assumptions in 35. Then, the
probability density function of X is strictly positive. Moreover, X is a generic random variable.

Proof Let X be aMk-valued random variable fulfilling the Assumptions in 35. Letp be its contin-
uous probability density function.

We first show positivity: ifX would not be strictly positive, thenp would have a zero, sayx.
TakingB= {x}, the integral

∫
B pdH vanishes, contradicting the assumption.

Now we prove genericity, that is, that for arbitrary irreducible algebraicpropertiesA,B such
that B does not implyA, the conditional probabilityPX(A|B) vanishes. SinceB does not imply
A, the algebraic set defined byB is not contained inA. Moreover, asB and A are irreducible
and algebraic,A∩B is also of positive codimension inB. Now by assumption,X has a positive
continuous probability density functionf which by assumption restricts to a probability density on
B, being also positive and continuous. Thus the integral

PX(A|B) =
∫

B
1A f (x)dH,

whereH is the Hausdorff measure onB, exists. Moreover, it is zero, as we have derived thatA has
positive codimension inB.

This means that already under mild assumptions, which merely ensure well-definedness of the
statement in the Definition 31 of genericity, random variables are generic. The strongest of the
comparably mild assumptions are the convergence of the conditional integrals, which allow us to
renormalize the conditionals for all algebraic events. In the following example, a generic and a
non-generic probability distribution are presented.

Example 37 Gaussian distributions and Gaussian mixture distributions are generic, sincefor any
algebraic setB, we have ∫

B
1B(t)dH = O(tdimB),

whereB(t) = {x ∈ R
n ; ‖x‖ < t} is the open disc with radiust. Note that this particular bound

is false in general and may grow arbitrarily large when we omitB being algebraic, even ifB is a
smooth manifold. ThusPX(A|B) is bounded from above by an integral (or a sum) of the type

∫ ∞

0
exp(−t2)ta dt with a∈ N

which is known to be finite.
Furthermore, sums of generic distributions are again generic; also, one can infer that any contin-

uous probability density dominated by the distribution of a generic density defines again a generic
distribution.

An example of a non-generic but smooth distribution is given by the density function

p(x,y) =
1
N

e−x4y4

whereN is some normalizing factor. Whilep is integrable onR2, its restriction to the coordinate
axesx= 0 andy= 0 is constant and thus not integrable.
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Now we will examine different known concepts of genericity and relate thembriefly to the one
we have adopted.

A definition of genericity in combinatorics and geometry which can be encountered in different
variations is that there exist no degenerate interpolating functions betweenthe objects:

Definition 38 Let P1, . . . ,Pm be points in the vector spaceCn. Then P1, . . . ,Pm are general position
(or generic, general) if no n+1 points lie on a hyperplane. Or, in a stronger version: for any d∈N,
no (possibly inhomogenous) polynomial of degree d vanishes on

(n+d
d

)

+1 different Pi .

As Mk is a finite dimensionalC-vector space, this definition is in principle applicable to our situa-
tion. However, this definition is deterministic, as thePi are fixed and no random variables, and thus
preferable when making deterministic statements. Note that the stronger definition is equivalent to
postulating general position for the pointsP1, . . . ,Pm in any polynomial kernel feature space.

Since not lying on a hyperplane (or on a hypersurface of degreed) in C
n is a non-trivial algebraic

property for any point which is added beyond then-th (resp. the
(n+d

d

)

-th) pointPi (interpreted as
polynomial inMk), our definition of genericity implies general position. This means that generic
polynomials f1, . . . , fm ∈ Mk (almost surely) have the deterministic property of being in general
position as stated in Definition 38. A converse is not true for two reasons: first, thePi are fixed and
no random variables. Second, even if one would define genericity in termsof random variables such
that the hyperplane (resp. hypersurface) conditions are never fulfilled, there are no statements made
on conditionals or algebraic properties other than containment in a hyperplane, also Lebesgue zero
sets are not excluded from occurring with positive probability.

Another example where genericity classically occurs is algebraic geometry,where it is defined
rather general for moduli spaces. While the exact definition may depend on the situation or the
particular moduli space in question, and is also not completely consistent, in most cases, genericity
is defined as follows: general, or generic, properties are properties which hold on a Zariski-open
subset of an (irreducible) variety, while very generic properties hold on a countable intersection
of Zariski-open subsets (which are thus paradoxically ”less” generic than general resp. generic
properties in the algebraic sense, as any general resp. generic property is very generic, while the
converse is not necessarily true). In our special situation, which is the affine parameter space of
tuples of polynomials, these definitions can be rephrased as follows:

Definition 39 Let B⊆ C
k be an irreducible algebraic set, let P= ( f1, . . . , fm) be a tuple of poly-

nomials, viewed as a point in the parameter space B. Then a statement resp. property A of P is
called very generic if it holds on the complement of some countable union of algebraic sets in B. A
statement resp. property A of P is called general (or generic) if it holdson the complement of some
finite union of algebraic sets in B.

This definition is more or less equivalent to our own; however, our definition adds the practical
interpretation of generic/very generic/general properties being true withprobability one, while their
negations are subsequently true with probability zero. In more detail, the correspondence is as
follows: If we restrict ourselves only to algebraic propertiesA, it is equivalent to say that the property
A is very generic, or general for theP in B, and to say with our original definition that a genericP
fulfilling B is alsoA; since if A is by assumption an algebraic property, it is both an algebraic set
and a complement of a finite (countable) union of algebraic sets in an irreducible algebraic set, so
A must be equal to an irreducible component ofB; sinceB is irreducible, this implies equality of
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A andB. On the other hand, ifA is an algebraic property, it is equivalent to say that the property
not-A is very generic, or general for theP in B, and to say with our original definition that a generic
P fulfilling B is not A - this corresponds intuitively to the probability-zero conditionP(A|B) = 0
which states that non-generic cases do not occur. Note that by assumption, not-A is then always the
complement of a finite union of algebraic sets.

B.3 Arithmetic of Generic Polynomials

In this subsection, we study how generic polynomials behave under classical operations in rings and
ideals. This will become important later when we study generic polynomials and ideals.

To introduce the reader to our notation of genericity, and since we will use the presented facts
and similar notations implicitly later, we prove the following

Lemma 40 Let f ∈ C[X1, . . . ,XD] be generic of degrees k. Then:
(i) The productα f is generic of degree k for any fixedα ∈ C\{0}.

(ii) The sum f+g is generic of degree k for any g∈ C[X1, . . . ,XD] of degree k or smaller.
(iii) The sum f+g is generic of degree k for any generic g∈C[X1, . . . ,XD] of degree k or smaller.

Proof (i) is clear since the coefficients ofg1 are multiplied only by a constant. (ii) follows directly
from the definitions since adding a constantg only shifts the coefficients without changing generic-
ity. (iii) follows since f ,g are independently sampled: if there were algebraic dependencies between
the coefficients off +g, then eitherf or g was not generic, or thef ,g are not independent, which
both would be a contradiction to the assumption.

Recall again what this Lemma means: for example, Lemma 40 (i) does not say, as one could
think:

“Let X be a generic random variable with values in the vector space of degreek polynomials.
ThenX = αX for anyα ∈ C\{0}.”

The correct translation of Lemma 40 (i) is:

“Let X be a generic random variable with values in the vector space of degreek polynomials.
ThenX′ = αX for any fixedα∈C\{0} is a generic random variable with values in the vector space
of degreek polynomials”

The other statements in Lemma 40 have to be interpreted similarly.

The following remark states how genericity translates through dehomogenization:

Lemma 41 Let f ∈ C[X1, . . . ,XD] be a generic homogenous polynomial of degree d.
Then the dehomogenization f(X1, . . . ,XD−1,1) is a generic polynomial of degree d in the polynomial
ring C[X1, . . . ,XD−1].
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Similarly, letsEC[X1, . . . ,XD] be a generic homogenous ideal. Let f∈ s be a generic homoge-
nous polynomial of degree d.
Then the dehomogenization f(X1, . . . ,XD−1,1) is a generic polynomial of degree d in the dehomog-
enization ofs.

Proof For the first statement, it suffices to note that the coefficients of a homogenous polynomial of
degreed in the variablesX1, . . . ,XD are in bijection with the coefficients of a polynomial of degree
d in the variablesX1, . . . ,XD−1 by dehomogenization. For the second part, recall that the dehomog-
enization ofs consists exactly of the dehomogenizations of elements ins. In particular, note that the
homogenous elements ofs of degreed are in bijection to the elements of degreed in the dehomog-
enization ofs. The claims then follows from the definition of genericity.

B.4 Generic Spans and Generic Height Theorem

In this subsection, we will derive the first results on generic ideals. We willderive an statement about
spans of generic polynomials, and generic versions of Krull’s principalideal and height theorems
which will be the main tool in controlling the structure of generic ideals. This hasimmediate
applications for the cumulant comparison problem.

Now we present the first result which can be easily formulated in terms of genericity:

Proposition 42 Let P be an algebraic property such that the polynomials with property P form a
vector space V. Let f1, . . . , fm∈ C[X1, . . .XD] be generic polynomials satisfying P. Then

rankspan( f1, . . . , fm) = min(m,dimV).

Proof It suffices to prove: ifi ≤M, then fi is linearly independent fromf1, . . . fi−1 with probability
one. Assuming the contrary would mean that for somei, we have

fi =
i−1

∑
k=0

fkck for someck ∈ C,

thus giving several equations on the coefficients offi . But these are fulfilled with probability zero
by the genericity assumption, so the claim follows.

This may be seen as a straightforward generalization of the statement: the span of n generic
points inCD has dimension min(n,D).

We now proceed to another nontrivial result which will now allow us to formulate a generic
version of Krull’s principal ideal theorem:

Proposition 43 Let Z⊆ CD be a non-empty algebraic set, let f∈ C[X1, . . .XD] generic. Then f is
no zero divisor inO(Z) = C[X1, . . .XD]/ I(Z).

Proof We claim: being a zero divisor inO(Z) is an irreducible algebraic property. We will prove
that the zero divisors inO(Z) form a linear subspace ofMk, and linear spaces are irreducible.
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For this, one checks that sums and scalar multiples of zero divisors are also zero divisors: if
g1,g2 are zero divisors, there must existh1,h2 such thatg1h1 = g2h2 = 0. Now for anyα ∈ C, we
have that

(g1+αg2)(h1h2) = (g1h1)h2+(g2h2)αh1 = 0.

This proves that(g1+αg2) is also a zero divisor, proving that the zero divisors form a linear sub-
space and thus an irreducible algebraic property.

To apply the genericity assumption to argue that this event occurs with probability zero, we
must exclude the possibility that being a zero divisor is trivial, that is, always the case. This is
equivalent to proving that the linear subspace has positive codimension,which is true if and only if
there exists a non-zero divisor inO(Z). But a non-zero divisor always exists since we have assumed
Z is non-empty: thus I(Z) is a proper ideal, andO(Z) containsC, which contains a non-zero divisor,
for example, the one element.

So by the genericity assumption, the event thatf is a zero divisor occurs with probability zero,
that is, a genericf is not a zero divisor. Note that this does not depend on the degree off .

Note that this result is already known, compare Conjecture B in Pardue (2010).
A straightforward generalization using the same proof technique is given by the following

Corollary 44 Let I EC[X1, . . . ,XD], let P be a non-trivial algebraic property. Let f∈ C[X1, . . .XD]
be a generic polynomial with property P. If one can write f= f ′ + c, where f′ is a generic
polynomial subject to some property P′, and c is a generic constant, then f is no zero divisor in
C[X1, . . . ,XD]/I .

Proof First note thatf is a zero divisor inC[X1, . . . ,XD]/I if and only if f is a zero divisor in
C[X1, . . . ,XD]/

√
I . This allows us to reduce to the case thatI = I(Z) for some algebraic setZ⊆CD.

Now, as in the proof of Proposition 43, we see that being a zero divisor inO(Z) is an irreducible
algebraic property and corresponds to a linear subspace ofMk, wherek = degf . The zero divisors
with propertyP are thus contained in this linear subspace. Now letf be generic with propertyP as
above. By assumption, we may writef = f ′+c. But c is (generically) no zero divisor, sof is also
not a zero divisor, since the zero divisors form a linear subspace ofMk. Thus f is no zero divisor.
This proves the claim.

Note that Proposition 43 is actually a special case of Corollary 44, since wecan write any
generic polynomialf as f ′+c, where f ′ is generic of the same degree, andc is a generic constant.

The major tool to deal with the dimension of generic intersections is Krull’s principal ideal
theorem:

Theorem 45 (Krull’s principal ideal theorem) Let R be a commutative ring with unit, let f∈ R
be non-zero and non-invertible. Then

ht〈 f 〉 ≤ 1,

with equality if and only if f is not a zero divisor in R.

The reader unfamiliar with height theory may take

htI = codimV(I )

as the definition for the height of an ideal (caveat: codimension has to be taken inR).
Reformulated geometrically for our situation, Krull’s principal ideal theoremimplies:
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Corollary 46 Let Z be a non-empty algebraic set inCD.Then

codim(Z∩V( f ))≤ codimZ+1.

Proof Apply Krull’s principal ideal theorem to the ringR= O(Z) = C[X1, . . . ,XD]/ I(Z).

Together with Proposition 43, one gets a generic version of Krull’s principal ideal theorem:

Theorem 47 (Generic principal ideal theorem) Let Z be a non-empty algebraic set inCD, let R=
O(Z), and let f∈ C[X1, . . . ,XD] be generic. Then we have

ht〈 f 〉= 1.

In its geometric formulation, we obtain the following result.

Corollary 48 Consider an algebraic set Z⊆ CD, and the algebraic setV( f ) for some generic
f ∈ C[X1, . . . ,XD]. Then

codim(Z∩V( f )) = min(codimZ+1, D+1).

Proof This is just a direct reformulation of Theorem 47 in the vein of Corollary 46.The only
additional thing that has to be checked is the case where codimZ = D+1, which means thatZ is
the empty set. In this case, the equality is straightforward.

The generic version of the principal ideal theorem straightforwardly generalizes to a generic
version of Krull’s height theorem. We first mention the original version:

Theorem 49 (Krull’s height theorem) Let R be a commutative ring with unit, letI = 〈 f1, . . . , fm〉E
R be an ideal. Then

htI ≤m,

with equality if and only if f1, . . . , fm is an R-regular sequence, that is, fi is not invertible and not a
zero divisor in the ring R/〈 f1, . . . , fi−1〉 for all i.

The generic version can be derived directly from the generic principalideal theorem:

Theorem 50 (Generic height theorem)Let Z be an algebraic set inCD, let I = 〈 f1, . . . , fm〉 be a
generic ideal inC[X1, . . . ,XD]. Then

ht(I(Z)+ I ) = min(codimZ+m, D+1).

Proof We will write R= O(Z) for abbreviation.
First assumem≤ D+ 1− codimZ. It suffices to show thatf1, . . . , fm forms anR-regular se-

quence, then apply Krull’s height theorem. In Proposition 43, we have proved thatfi is not a zero
divisor in the ringO(Z∩V( f1, . . . , fi−1)) (note that the latter ring is nonzero by Krull’s height the-
orem). By Hilbert’s Nullstellensatz, this is the same as the ringR/

√

〈 f1, . . . , fi−1〉. But by the defi-
nition of radical, this implies thatfi is no zero divisor in the ringR/〈 f1, . . . , fi−1〉, since if fi ·h= 0
in the first ring, we have

( fi ·h)N = fi · ( f N−1
i hN) = 0
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in the second. Thus thefi form an R-regular sequence, proving the theorem for the casem≤
D+1−codimZ.

If now m> k :=D+1−codimZ, the above reasoning shows that the radical of I(Z)+〈 f1, . . . , fk〉
is the module〈1〉, which means that those are equal. Thus

I(Z)+ 〈 f1, . . . , fk〉= I(Z)+ 〈 f1, . . . , fm〉= 〈1〉,

proving the theorem.
Note that we could have proved the generic height theorem also directly from the generic prin-

cipal ideal theorem by induction.

Again, we give the geometric interpretation of Krull’s height theorem:

Corollary 51 Let Z1 be an algebraic set inCD, let Z2 be a generic algebraic set inCD. Then one
has

codim(Z1∩Z2) = min(codimZ1+codimZ2, D+1).

Proof This follows directly from two applications of the generic height theorem 50:first for Z=CD

andZ2 = V(I ), showing that codimZ2 is equal to the numbermof generators ofI ; then, forZ = Z1

andZ2 = V(I ), and substitutingm= codimZ2.

We can now immediately formulate a homogenous version of Proposition 51:

Corollary 52 Let Z1 be a homogenous algebraic set inCD, let Z2 be a generic homogenous alge-
braic set inCD. Then one has

codim(Z1∩Z2) = min(codimZ1+codimZ2, D).

Proof Note that homogenization and dehomogenization of a non-empty algebraic setdo not change
its codimension, and homogenous algebraic sets always contain the origin. Also, one has to note
that by Lemma 41, the dehomogenization ofZ2 is a generic algebraic set inCD−1.

Finally, using Corollary 44, we want to give a more technical variant of thegeneric height
theorem, which will be of use in later proofs. First, we introduce some abbreviating notations:

Definition 53 Let f ∈ C[X1, . . .XD] be a generic polynomial with property P. If one can write
f = f ′+c, where f′ is a generic polynomial subject to some property P′, and c is a generic constant,
we say that f has independent constant term. If c is generic and independent with respect to some
collection of generic objects, we say that f has independent constant term with respect to that
collection.

In this terminology, Corollary 44 rephrases as: a generic polynomial with independent constant term
is no zero divisor. Using this, we can now formulate the corresponding variant of the generic height
theorem:
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Lemma 54 Let Z be an algebraic set inCD. Let f1, . . . , fm ∈ C[X1, . . . ,XD] be generic, possibly
subject to some algebraic properties, such that fi has independent constant term with respect to Z
and f1, . . . , fi−1. Then

ht(I(Z)+ I ) = min(codimZ+m, D+1).

Proof Using Corollary 44, one obtains thatfi is no zero divisor modulo I(Z)+ 〈 f1, . . . , fi+1〉. Using
Krull’s height theorem yields the claim.

B.5 Generic Ideals

The generic height theorem 50 has allowed us to make statements about the structure of ideals gener-
ated by generic elements without constraints. However, the idealI in our the cumulant comparison
problem is generic subject to constraints: namely, its generators are contained in a prescribed ideal,
and they are homogenous. In this subsection, we will use the theory developed so far to study
generic ideals and generic ideals subject to some algebraic properties, for example, generic ideals
contained in other ideals. We will use these results to derive an identifiability result on the marginal-
ization problem which has been derived already less rigorously in the supplementary material of von
Bünau et al. (2009) for the special case of Stationary Subspace Analysis.

Proposition 55 Let sEC[X1, . . . ,XD] be an ideal, having an H-basis g1, . . . ,gn. Let

I = 〈 f1, . . . , fm〉, m≥max(D+1,n)

with generic fi ∈ s such that

degfi ≥max
j

(degg j) for all 1≤ i ≤m.

ThenI = s.

Proof First note that since thegi form a degree-first Groebner basis, a genericf ∈ s is of the form

f =
n

∑
k=1

gkhk with generichk,

where the degrees of thehk are appropriately chosen, that is, deghk ≤ degf −deggk.
So we may write

fi =
n

∑
k=1

gkhki with generichki,

where thehki are generic with appropriate degrees, and independently chosen. We may also assume
that thefi are ordered increasingly by degree.

To prove the statement, it suffices to show thatg j ∈ I for all j. Now the height theorem 50
implies that

〈h11, . . .h1m〉= 〈1〉,
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since thehki were independently generic, andm≥ D+ 1. In particular, there exist polynomials
s1, . . . ,sm such that

m

∑
i=1

sih1i = 1.

Thus we have that
m

∑
i=1

si fi =
m

∑
i=1

si

n

∑
k=1

gkhki =
n

∑
k=1

gk

m

∑
i=1

sihki

= g1+
n

∑
k=2

gk

m

∑
i=1

sihki =: g1+
n

∑
k=2

gkh
′
k.

Subtracting a suitable multiple of this element from thef1, . . . , fm, we obtain

f ′i =
n

∑
k=2

gk(hki−h1ih
′
k) =:

n

∑
k=2

gkh
′
ki.

We may now considerh1ih′k as fixed, while thehki are generic. In particular, theh′ki have independent
constant term, and using Lemma 54, we may conclude that

〈h′21, . . . ,h
′
2m〉= 〈1〉,

allowing us to find an element of the form

g2+
n

∑
k=3

gk · . . .

in I . Iterating this strategy by repeatedly applying Lemma 54, we see thatgk is contained inI ,
because the idealsI ands have same height. Since the numbering for theg j was arbitrary, we have
proved thatg j ∈ I , and thus the proposition.

The following example shows that we may not take the degrees of thefi completely arbitrary in the
proposition, that is, the condition on the degrees is necessary:

Example 56 Keep the notations of Proposition 55. Lets = 〈X2−X2
1 ,X3〉, and fi ∈ s generic of

degree one. Then
〈 f1, . . . , fm〉= 〈X3〉.

This example can be generalized to yield arbitrarily bad results if the condition on the degrees is not
fulfilled.

However note that whens is generated by linear forms, as in the marginalization problem, the
condition on the degrees vanishes.

We may use Proposition 55 also in another way to derive a more detailed version of the generic
height theorem for constrained ideals:

Proposition 57 Let V be a fixed complete intersection set inCD, i.e. an algebraic set of codimension
d such that there exist d generators g1, . . . ,gd for I(V). Let f1, . . . , fm be generic forms inI(V) such
that degfi ≥ maxj (degg j) for 1≤ i ≤ m. Then we can writeV( f1, . . . , fm) = V ∪U with U an
algebraic set of

codimU ≥min(m, D+1),

the equality being strict for m< d.
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Proof If m≥ D+1, this is just a direct consequence of Proposition 55.
First assumem= d. Consider the situation moduloXm, . . . ,XD. This corresponds to looking at

the situation
V( f1, . . . , fm)∩H ⊆ H ∼= C

m−1,

whereH is the linear subspace given byXm = · · · = XD = 0. Since the coordinate system was
generic, the elementsfi will be also generic moduloX, . . . ,XD, and we have by Proposition 55
that V( f1, . . . , fm)∩H =V ∩H. Also, theH can be regarded as a generic linear subspace, thus by
Corollary 51, we see that V( f1, . . . , fm) consists ofV and possibly components of equal or higher
codimension. This proves the claim form= codimV.

The casem< d follows from Krull’s principal ideal theorem 45: it states that the codimension
of V( f1, . . . , fi) increases at most by one when increasingi by one; above, we have proved equality
for i = d. Thus, the codimension of V( f1, . . . , fi) must have beeni for everyi ≤ d. This yields the
claim.

Now we prove the remaining casem≥ d. We will assume thatm=D+1 and prove the statement
for the sets V( f1, . . . , fi),d≤ i ≤m. By the Lasker-Noether-Theorem, we may write

V( f1, . . . , fd) =V ∪Z1∪· · ·∪ZN

for finitely many irreducible componentsZ j with codimZ j ≥ d. Proposition 55 states that

V( f1, . . . , fm) =V.

For i ≥ d, write now
Z ji = Z j ∩V( f1, . . . , fi) = Z j ∩V( fd+1, . . . , fi).

With this, we have the equalities

V( f1, . . . , fi) = V( f1, . . . , fd)∩V( fd+1, . . . , fi)

=V ∪ (Z1∩V( fd+1, . . . , fi))∪· · ·∪ (ZN∩V( fd+1, . . . , fi))

=V ∪Z1i ∪· · ·∪ZNi.

for i ≥ d. Thus, reformulated, Proposition 55 states thatZ jm = ∅ for any j. We can now infer by
Krull’s principal ideal theorem 45 that

codimZ ji ≤ codimZ j,i−1+1

for anyi, j. But since codimZ jm =D+1, and codimZ jd ≥ d, this can only happen when codimZ ji ≥
i for anyd≤ i ≤m. Thus we may write

V( f1, . . . , fi) =V ∪U with U = Z1i ∪· · ·∪ZNi

with codimU ≥ i, which proves the claim form≥ codimV.

Note that depending onV and the degrees of thefi , it may happen that even in the generic case,
the equality in Proposition 57 is not strict form≥ codimV:
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Example 58 Let V be a generic linear subspace of dimensiond in CD, let f1, . . . , fm ∈ I(V) be
generic with degree one. Then V( f1, . . . , fm) is a generic linear subspace of dimension max(D−
m,d) containingV. In particular, if m≥ D− d, then V( f1, . . . , fm) = V. In this example,U =
V( f1, . . . , fm), if m< codimV, with codimensionm, andU = ∅, if m≥ codimV, with codimen-
sionD+1.

Similarly, one may construct generic examples with arbitrary behavior for codimU whenm≥
codimV, by choosingV and the degrees offi appropriately.

Algebraic sets which are not complete intersection sets are still contained in a complete inter-
section set of same dimension, so the following similar result holds for arbitrary algebraic sets:

Corollary 59 Let V be a fixed algebraic set inCD, of codimension d; let g1, . . . ,gd be a regular
sequence inI(V), let n be the cardinality of some H-basis ofI(V). Let f1, . . . , fm be generic forms in
I(V) such thatdegfi ≥maxj (degg j) for 1≤ i ≤m. Then we can writeV( f1, . . . , fm) =V ∪U with
an algebraic set U whose codimension satisfies

codimU = m if m≤ d

codimU ≥min(D+1+m−n,m,D+1) if m≥ d.

Proof This follows in analogy to Proposition 57.

Similarly as in the geometric version for the height theorem, we may derive the following geo-
metric interpretation of this result:

Corollary 60 Let V⊆ Z1 be fixed algebraic sets inCD. Let Z2 be a generic algebraic set inCD

containing V. Then

codim(Z1∩Z2\V)≥min(codim(Z1\V)+codim(Z2\V), D+1).

Informally, we have derived a height theorem type result for algebraicsets under the constraint that
they contain another prescribed algebraic setV.

We also give a homogenous version of Proposition 57, since the ideals we will consider are
homogenous complete intersection:

Corollary 61 Let V be a fixed homogenous complete intersection set inCD. Let f1, . . . , fm be
generic homogenous forms inI(V), satisfying the degree condition as in Proposition 57. Then
V( f1, . . . , fm) =V +U with U an algebraic set fulfilling

codimU ≥min(m, D).

In particular, if m> D, thenV( f1, . . . , fm) =V. Also, the maximal dimensional part ofV( f1, . . . , fm)
equals V if and only if m> D−dimV.

Proof This follows immediately by dehomogenizing, applying Proposition 57, and homogenizing
again.
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From this Corollary, we now can directly derive a statement on the necessary number of epochs
for the identifiability of the projection making several random variables appear identical. For the
convenience of the reader, we recall the setting and then explain what identifiability means. The
problem we consider in the main part of the paper can be described as follows:

Problem 62 Let X1, . . . ,Xm be random variables, let

qi = [T1, . . . ,TD]◦ (κ2(Xi)−κ2(Xm)) , 1≤ i ≤m−1

and
fi = [T1, . . . ,TD]◦ (κ1(Xi)−κ1(Xm)) , 1≤ i ≤m−1

be the corresponding cumulant polynomials in the formal variables T1, . . . ,TD. What can one say
about the set

S′ = V(q1, . . . ,qm−1, f1, . . . , fm−1).

If there is a linear subspaceSon which the cumulants agree, then theqi , fi vanish onS. If we assume
that this happens generically, the problem reformulates to

Problem 63 Let S be a d-dimensional linear subspace ofCD, let s = I(S), and let f1, . . . , fN be
generic homogenous quadratic or linear polynomials ins. How does S′ = V( f1, . . . , fN) relate to
S?.

Before giving bounds on the identifiability, we first begin with a direct consequence of Corol-
lary 61:

Remark 64 The highest dimensional part of S′ = V( f1, . . . , fN) is S if and only if

N > D−d.

For this, remark that I(S) is generated in degree one, and thus the degree condition in Corollary 61
becomes empty.

We can now also get an identifiability result forS:

Proposition 65 Let f1, . . . , fN be generic homogenous polynomials of degree one or two, vanishing
on a linear space S of dimension d> 0. Then S is identifiable from the fi alone if

N≥ D−d+1.

Moreover, if all fi are quadrics, then S is identifiable from the fi alone only if

N≥ 2.

Proof Note that thef1, . . . , fN are generic polynomials contained ins := I(S).
First assumeN ≥ D−d+1. We prove thatS is identifiable: using Corollary 61, one sees now

that the common vanishing set of thefi is S up to possible additional components of dimension
d−1 or less; that is, the radical of the ideal generated by thefi has a prime decomposition

√

〈 f1, . . . , fN〉= s∩p1∩· · ·∩pk,
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where thepi are of dimensiond−1 or less, whiles has dimensiond. So one can use one of the
existing algorithms calculating primary decomposition to identifys as the unique component of the
highest dimensional part, which proves identifiability ifN≥ D−d+1.

Now we prove the only if part: assume thatN = 1, that is, we have only a singlef1. Since f1 is
generic with the property of vanishing onS, we have

f1 =
D−d

∑
i=1

gihi ,

whereg1, . . . ,gD−d is some homogenous linear generating set for I(S), andh1, . . . ,hD−d are generic
homogenous linear forms. Thus, the zero set V( f1) also contains the linear spaceS′=V(h1, . . . ,hD−d)
which is a genericd-dimensional linear space inCD and thus different fromS; no algorithm can
decide whetherSor S′ is the correct solution, soS is not identifiable.

Note that there is no obvious reason for the lower boundN≥ D−d+1 given in Proposition 65
to be strict. While it is most probably the best possible bound which is inD andd, in general it may
happen thatScan be reconstructed from the ideal〈 f1, . . . , fN〉 directly. The reason for this is that a
generic homogenous variety of high enough degree and dimension does not need to contain a linear
subspace of fixed dimensiond in general.

References

Shun’ichi Amari and Hiroshi Nagaoka. Methods of Information Geometry, volume 191 of
Translations of mathematical monographs. American Mathematical Society, 2000. ISBN
9780821805312.

Duncan A. J. Blythe, Paul von B̈unau, Frank C. Meinecke, and Klaus-Robert Müller. Feature extrac-
tion for change-point detection using stationary subspace analysis.IEEE Transactions on Neural
Networks and Learning Systems, 23(4):631–643, 2012. doi: 10.1109/TNNLS.2012.2185811.

Massimo Caboara, Pasqualina Conti, and Carlo Traverse. Yet another ideal decomposition algo-
rithm. In Teo Mora and Harold Mattson, editors,Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, volume 1255 ofLecture Notes in Computer Science, pages 39–54.
Springer Berlin / Heidelberg, 1997.

Robert M. Corless, Patrizia M. Gianni, Barry M. Trager, and Steven M.Watt. The singular value
decomposition for polynomial systems.Proc. ISSAC ’95, pages 195–207, 1995.

David A. Cox, John Little, and Donal O’Shea.Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in
Mathematics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007. ISBN0387356509.

Mathias Drton, Bernd Sturmfels, and Seth Sullivant.Lectures on Algebraic Statistics. Oberwolfach
Seminars. Birkhauser Basel, 2010. ISBN 9783764389048.

David Eisenbud, Craig Huneke, and Wolmer Vasconcelos. Direct methodsfor primary decomposi-
tion. Inventiones Mathematicae, 110:207–235, 1992. ISSN 0020-9910.

901
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