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Abstract

We propose a novel algebraic algorithmic framework for ihgalvith probability distributions rep-
resented by their cumulants such as the mean and covariaattg.m\s an example, we consider
the unsupervised learning problem of finding the subspacghich several probability distribu-
tions agree. Instead of minimizing an objective functiowolming the estimated cumulants, we
show that by treating the cumulants as elements of the poiiaiaing we can directly solve the
problem, at a lower computational cost and with higher aaxyur Moreover, the algebraic view-
point on probability distributions allows us to invoke threebry of algebraic geometry, which we
demonstrate in a compact proof for an identifiability cider

Keywords: computational algebraic geometry, approximate algebrsiipervised Learning

1. Introduction

Comparing high dimensional probability distributions is a general problem irhimadearning,
which occurs in two-sample testing (e.g., Hotelling, 1932; Gretton et al., 2p83jection pursuit
(e.g., Friedman and Tukey, 1974), dimensionality reduction and featleetisa (e.g., Torkkola,
2003). Under mild assumptions, probability densities are uniquely determintebiv cumulants
which are naturally interpreted as coefficients of homogeneous multivaddaomials. Repre-
senting probability densities in terms of cumulants is a standard technique in geatgorithms.
For example, in Fisher Discriminant Analysis (Fisher, 1936), the clasditbtmmal distributions are
approximated by their first two cumulants.

In this paper, we take this viewpoint further and work explicitly with polynomidisat is, we
treat estimated cumulants not as constants in an objective function but essab# we manipulate
algebraically in order to find the optimal solution. As an example, we consigéepribblem of
finding the linear subspace on which several probability distributions argial: givenD-variate
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random variablesy, ..., Xn, we want to find the linear map € R9*P such that the projected
random variables have the same probability distribution,

PXg ~ - ~ PXm.

This amounts to finding the directions on which all projected cumulants agmethé first cu-
mulant, the mean, the projection is readily available as the solution of a set of égeations.
For higher order cumulants, we need to solve polynomial equations ofriiglgeee. We present
the first algorithm that solves this problem explicitly for arbitrary degreed, show how algebraic
geometry can be applied to prove properties about it.

Covariance matrices Objective function over all possible projections

/

Obijective function

True solution (a=50)
Local minimum (a=154)

0 20 40 60 80 100 120 140 160 18
Angle of projection (o)

Figure 1: lllustration of the optimization approach. The left panel showsdh&ur plots of three
sample covariance matrices. The black line is the true one-dimensionalasebsp
which the projected variances are exactly equal, the magenta line cardssjooa local
minimum of the objective function. The right panel shows the value of thectibge
function over all possible one-dimensional subspaces, parameteyitieel dnglex to the
horizontal axis; the angles corresponding to the global minimum and thenfocahum
are indicated by black and magenta lines respectively.

To clarify the gist of our approach, let us consider a stylized examplerdier to solve a learning
problem, the conventional approach in machine learning is to formulate actigbjéunction, for
example, the log likelihood of the data or the empirical risk. Instead of minimizingbgective
function that involves the polynomials, we consider the polynomialsbgects in their own right
and then solve the problem by algebraic manipulations. The advantage alfj#raic approach
is that it captures the inherent structure of the problem, which is in gediéiault to model in an
optimization approach. In other words, the algebraic approach actsdllgshe problem, whereas
optimizationsearcheshe space of possible solutions guided by an objective function that is minimal
at the desired solution but can give poor directions outside of the neighddraround its global
minimum. Let us consider the problem where we would like to find the direstioiR? on which
several sample covariance matrices. ..,~mn C R?*? are equal. The usual ansatz would be to
formulate an optimization problem such as

2
V' =argmin ) VTZiV—VTZjV> . (1)

V=1 1<ij<m
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This objective function measures the deviation from equality for all paice®ediriance matrices; it
is zero if and only if all projected covariances are equal and positivenetee. Figure 1 shows an
example with three covariance matrices (left panel) and the value of thetisbjienction for all
possible projections = [coga) sin(a)]T. The solution to this non-convex optimization problem
can be found using a gradient-based search procedure, which mapdtr in one of the local
minima (e.g., the magenta line in Figure 1) depending on the initialization.

However, the natural representation of this problem is not in terms of jgetole function but
rather a system of equations to be solvediaramely

VIZv=- =V Zyv (2)

In fact, by going from an algebraic description of the set of solutions trmdlation as an opti-
mization problem in Equation 1, we lose important structure. In the case \liemeis an exact
solution, it can be attained explicitly with algebraic manipulations. Howevernwieestimate a
covariance matrix from finite or noisy samples, there exists no exact solatgemeral. Therefore
we present an algorithm which combines the statistical treatment of unceritaihiy coefficients
of polynomials with the exactness of algebraic computations to obtain a congstenator forv
that is computationally efficient.

Note that this approach is not limited to this particular learning task. In fact, ppsicable
whenever a set of solutions can be described in terms of a set of polyreguitions, which is a
rather general setting. For example, we could use a similar strategy to fit$paxe on which the
projected probability distribution has another property that can be deddrnlierms of cumulants,
for example, independence between variables. Moreover, an algappgoach may also be useful
in solving certain optimization problems, as the set of extrema of a polynomiaitsfgjéunction
can be described by the vanishing set of its gradient. The algebraicoiivgiso allows a novel
interpretation of algorithms operating in the feature space associated witllimemial kernel.
We would therefore argue that methods from computational algebra aabraig geometry are
useful for the wider machine learning community.

Projection of covariance matrices Quadratic polynomial Polynomial in coefficient space

UTEW = UTEQ’U
<~ 'L)T(Zl — EQ)U =0
T [(Lu 6112} v =0
a21  A22
— (111X2 + (a12 + (lzl)XY
+ a22Y2 =0

Gi2 = (a11, a12 + a1, aze)

Figure 2: Representation of the problem: the left panel shows sampleaima matriceg; and
>, with the desired projectiom. In the middle panel, this projection is defined as the
solution to a quadratic polynomial. This polynomial is embedded in the vectoe sgac
coefficients spanned by the monomixf Y2 andXY shown in the right panel.
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Let us first of all explain the representation over which we compute. Weprolteed in the
three steps illustrated in Figure 2, from the geometric interpretation of samyaAeiaace matrices
in data space (left panel), to the quadratic equation defining the projectioiddle panel), to
the representation of the quadratic equation as a coefficient vector geagkl). To start with, we
consider the Equation 2 as a set of homogeneous quadratic equatiores dwsfi

VI(E—-Zj)v=0V1<ij<m, (3)

where we interpret the componentsvads variablesy = [X Y] . The solution to these equations
is the direction inR? on which the projected variance is equal over all covariance matriceb. d&a
these equations corresponds to a quadratic polynomial in the varilalegy,

gij =V (% —Zjv

a1 a
_yT |3 &z
a1 a2

= a; X2+ (a124 a21) XY + apoY?, (4)

which we embed into the vector space of coefficients. The coordinate exith@ monomials
{X2,XY,Y2}; that is, the three independent entries in the Gram maHix- £;). That is, the
polynomial in Equation 4 becomes the coefficient vector

Gj = [a11 az+an azz}T.

The motivation for the vector space interpretation is that every linear cotidriraf the Equations 3
is also a characterization of the set of solutions: this will allow us to find a péatiset of equations
by linear combination, from which we can directly obtain the solution. Note,evew that the
vector space representation does not give us all equations whicle ceseth to describe the solution:
we can also multiply with arbitrary polynomials. However, for the algorithm thapwesent here,
linear combinations of polynomials are sufficient.

Figure 3 illustrates how the algebraic algorithm works in the vector spaceefficgents. The
polynomialsQ, = {¢j; {jjzl span a space of constraints which defines the set of solutions. The next
step is to find a polynomial of a certain form that immediately reveals the solutioemo€these sets
is the linear subspace spanned by the mononiélé Y2}: any polynomial in this span is divisible
by Y. Our goal is now to find a polynomial which is contained in both this subspatée span of
Q. Under mild assumptions, one can always find a polynomial of this form, auriésponds to
an equation

Y (aX +BY) = 0. (5)

Since this polynomial is in the span &, our solutionv has to be a zero of this particular poly-
nomial: vo(avy + Bv2) = 0. Moreover, we can assumthat v, = 0, so that we can divide out the
variableY to get the linear factofoX + BY),

O=oaX+BY=[a B]v

1. This is a consequence of the generative model for the obserlgtbpaals which is introduced in Section 2.1. In
essence, we use the fact that our polynomials have no special fyr¢geart from the existence of a solution) with
probability one.
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Step 1: Polynomials in coefficient space Step 2: Approximate linear span Step 3: Intersection with {XY, Y2}

_ TXY

XY

X2 X2

X'l

Figure 3: lllustration of the algebraic algorithm. The left panel shows tletovespace of coef-
ficients where the polynomials corresponding to the Equations 3 are cratside ele-
ments of the vector space shown as red points. The middle panel shovpptb&imate
2-dimensional subspace (blue surface) onto which we project theqralgis. The right
panel shows the one-dimensional intersection (orange line) of thexamaie subspace
with the plane spanned by spanned{d§Y,Y?}. This subspace is spanned by the poly-
nomialY (aX + BY), so we can divide by the variable

Hencev= [—B 0(] " is the solution up to arbitrary scaling, which corresponds to the one-dimehsion
subspace in Figure 3 (orange line, right panel). A more detailed treatrhtms @xample can also
be found in Appendix A.

In the case where there exists a directiam which the projected covariances are exactly equal,
the linear subspace spanned by the set of polynomjdtas dimension two, which corresponds to
the degrees of freedom of possible covariance matrices that havepfiojedtion on one direction.
However, since in practice covariance matrices are estimated from finitaasyl samples, the
polynomialsQ usually span the whole space, which means that there exists only a triiabso
v=0. This is the case for the polynomials pictured in the left panel of Figureh®is,Tin order
to obtain an approximate solution, we first determine the approximate two-dimehsjgan ofQ
using a standard least squares method as illustrated in the middle panel. Yemrdimd the in-
tersection of the approximate two-dimensional spaqQ afith the plane spanned by the monomials
{XY,Y2}. As we have seen in Equation 5, the polynomials in this span provide us witlyjaeun
solution forv up to scaling, corresponding to the fact that the intersection has dimemstofsee
the right panel of Figure 3). Alternatively, we could have found the-dingensional intersection
with the span of XY, X2} and divided out the variabl¥. In fact, in the final algorithm we will
find all such intersections and combine the solutions in order to increasedhaey. Note that we
have found this solution by solving a simple least-squares problem (setamddddle panel of
Figure 3). In contrast, the optimization approach (Figure 1) can reqlarg@number of iterations
and may converge to a local minimum. A more detailed example of the algebraidtaigoan be
found in Appendix A.

The algebraic framework does not only allow us to construct efficiemriéigms for working
with probability distributions, it also offers powerful tools to prove prdjgesr of algorithms that
operate with cumulants. For example, we can answer the following centatign: how many
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Figure 4: The left panel shows two sample covariance matrices in the jplang, with a direction
on which they are equal. In the right panel, a third (green) covariantexna@es not
have the same projected variance on the black direction.

distinct data sets do we need such that the subspace with identical probdisilitiputions be-
comes uniquely identifiable? This depends on the number of dimensions aodntiidants that
we consider. Figure 4 illustrates the case where we are given only thedsemder moment in two
dimensions. UnlesE; — 3, is indefinite, therealwaysexists a direction on which two covariance
matrices in two dimensions are equal (left panel of Figure 4)—irrespectiwhether the probabil-
ity distributions are actually equal. We therefore need at least threei@ogamatrices (see right
panel), or to consider other cumulants as well. We derive a tight criteridgheonecessary number
of data sets depending on the dimension and the cumulants under consideraggroof hinges
on viewing the cumulants as polynomials in the algebraic geometry frameworkiotir@omials
that define the sought-after projection (e.g., Equations 3) generateanridbe polynomial ring
which corresponds to an algebraic set that contains all possible solutmsan then show how
many independent polynomials are necessary so that the dimension of doeplareof the alge-
braic set has smaller dimension in the generic case. We conjecture thaptbestechniques are
also applicable to other scenarios where we aim to identify a property aftapility distribution
from its cumulants using algebraic methods.

Our work is not the first that applies geometric or algebraic methods to Madkgarning or
statistics: for example, methods from group theory have already fouirdaghi@ication in machine
learning, for example, Kondor (2007) and Kondor and Borgwar@d0®?; there are also algebraic
methods estimating structured manifold models for data points as in Vidal et @b)(2bich are
strongly related to polynomial kernel PCA—a method which can itself be irgtrgras a way of
finding an approximate vanishing set.

The field of Information Geometry interprets parameter spaces of probatisitiybutions as
differentiable manifolds and studies them from an information-theoretidat pé view (see for
example the standard book by Amari and Nagaoka, 2000), with recerrgi&tions and improve-
ments stemming from the field of algebraic geometry by Watanabe (2009% iBradso the nascent
field of algebraic statistics which studies the parameter spaces of mainlytdisammeom variables
in terms of commutative algebra and algebraic geometry, see the recenieaxeby Sturmfels
(2002, Chapter 8) and Drton et al. (2010) or the book by Gibilisco e28LF) which also focuses
on the interplay between information geometry and algebraic statistics. Tppsmahes have in
common that the algebraic and geometric concepts arise naturally wheneramgistributions in
parameter space.
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Given samples from a probability distribution, we may also consider algestraictures in the
data space. Since the data are uncertain, the algebraic objects will alsavithna@ inherent un-
certainty, unlike the exact manifolds in the case when we have an a-pamiiyf of probability
distributions. Coping with uncertainties is one of the main interests of the emdigidg of ap-
proximative and numerical commutative algebra, see the book by Stettet) (200an overview
on numerical methods in algebra, or the treatise by Kreuzer et al. (20089dent developments
in approximate techniques on noisy data. There exists a wide range of mehmuaever, to our
knowledge, the link between approximate algebra and the representagimbability distributions
in terms of their cumulants has not been studied yet.

The remainder of this paper is organized as follows: in the next Sectiore 2ntwoduce the
algebraic view of probability distribution, rephrase our problem in terms isfflamework and
investigate its identifiability. The algorithm for the exact case is presentec:iio8e, followed by
the approximate version in Section 4. The results of our numerical simulaticha esmparison
against the Stationary Subspace Analysis (SSA) algorithm given in uoauet al. (2009), can be
found in Section 5. In the last Section 6, we discuss our findings and pdinute directions. The
appendix contains an example and proof details.

2. The Algebraic View on Probability Distributions

In this section we introduce the algebraic framework for dealing with prihadistributions.
This requires basic concepts from complex algebraic geometry. A coems®e introduction to
algebraic geometry with a view to computation can be found in the book by Calx @007). In
particular, we recommend to go through the Chapters 1 and 4.

In this section, we demonstrate the algebraic viewpoint of probability distritmita the appli-
cation that we study in this paper: finding the linear subspace on whiclalpitity distributions are
equal.

Problem 1 Let X,...,Xm be a set of D-variate random variables, having smooth densities. Find
all linear maps Pe R9%D such that the transformed random variables have the same distribution,

PXg ~ -+ ~ PXm.

In the first part of this section, we show how this problem can be formukdtezbraically. We will

first of all review the relationship between the probability density functiahissrcumulants, before
we translate the cumulants into algebraic objects. Then we introduce thetitelaraderpinnings
for the statistical treatment of polynomials arising from estimated cumulants amd ponditions

on identifiability for the problem addressed in this paper.

2.1 From Probability Distributions to Polynomials

The probability distribution of every smooth real random variaklean be fully characterized

in terms of itscumulants which are the tensor coefficients of the cumulant generating function.
This representation has the advantage that each cumulant provides actdegription of certain
aspects of the probability density function.

Definition 2 Let X be a D-variate random variable. Then ky(X) € RP"" we denote the n-th
cumulant, which is a real tensor of degree n.
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Let us introduce a useful shorthand notation for linearly transformingpisn

Definition 3 Let Ac C9*P be a matrix. For a tensor E RP""” (i.e., a real tensor T of degree n
of dimension D=D-D-...-D) we will denote by AT the application of A to T along all tensor
dimensions, that is,
D D
(AOT)il...in = z T z Ailjl Tt A'anTllln
=1 jn=1
The cumulants of a linearly transformed random variable are the multilineangftianed cumu-
lants, which is a convenient property when one is looking for a certain lmdaspace.

Proposition 4 Let X be a real D-dimensional random variable and let 84*P be a matrix. Then
the cumulants of the transformed random variable AX are the transforomadlants,

Kn(AX) = AoKn(X).

We now want to formulate our problem in terms of cumulants. First of all, notePKa~ PX;
if and only if vX ~ vX; for all row vectorsv € sparP’.

Problem 5 Find all d-dimensional linear subspaces in the set of vectors
S={veRP ‘vTxlw.-'NvTxm}
={veRP ‘ v okn(X) =V okn(Xj), neN,1<i,j < m}.

Note that we are looking for linear subspaceS§;ihoweverSitself is not a vector space in general.
Apart from the fact that is homogeneous, that i3S= Sfor all A € R, there is no additional
structure that we make use of.

For the sake of clarity, in the remainder of this paper we restrict oursthtag first two cumu-
lants. Note, however, that one of the strengths of the algebraic frarkésvibrat the generalization
to arbitrary degree is straightforward; throughout this paper, we iteltbe necessary changes and
differences. Thus, from now on, we denote the first two cumulan{s byk;(X) andZ; = k2(X;)
respectively for all I<i < m. Moreover, without loss of generality, we can shift the mean vectors
and choose a basis such that the random varighleas zero mean and unit covariance. Thus we
arrive at the following formulation.

Problem 6 Find all d-dimensional linear subspaces in
S={veRP |V (Z—-1)v=0,v I =0,1<i<(m-1)}.

Note thatSis the set of solutions tm— 1 quadratic andn— 1 linear equations i variables. Now
it is only a formal step to arrive in the framework of algebraic geometry:déhink of the left hand
side of each of the quadratic and linear equations as polynomials ,gm_1 and fq,..., fy_1 in
the variableds, ..., Tp respectively,

G=[Ti--To]o(Zi—1) and fi=[T1--To]o,

which are elements of the polynomial ring over the complex numbebsviariables C[Tx, ..., Tp].
Note that in the introduction we have us¥dandY to denote the variables in the polynomials, we
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will now switch to Ty,...,Tp in order to avoid confusion with random variables. Tl8isan be
rewritten in terms of polynomials,

S={veRP |qg(v) = fi(v)=0V1<i<m-1},

which means thabis an algebraic set. In the following, we will consider the correspondingpbex
vanishing set

S= V(ql,...,qul, f]_,..., fmfl)
={veCP|qg(v)=fi(v)=0vV1<i<m-1}CCP

and keep in mind that eventually we will be interested in the real pa8 o#Working over the
complex numbers simplifies the theory and creates no algorithmic difficultiesn whestart with
real cumulant polynomials, the solution will always be real. Finally, we carstase our problem
into the language of algebraic geometry.

Problem 7 Find all d-dimensional linear subspaces in the algebraic set
S= V(ql, -y Om-1, fl, R fm,]_).

So far, this problem formulation does not include the assumption that a sokxists. In order
to prove properties about the problem and algorithms for solving it we tteadsume that there
exist ad-dimensional linear subspa®& C S. That is, we need to formulate generative model
for our observed polynomials, ..., qm_1, f1,..., fm_1. To that end, we introduce the concept of a
genericpolynomial, for a technical definition see Appendix B. Intuitively, a genpdlynomial is
a continuous, polynomial valued random variable which almost surely hvasgebraic properties
except for those that are logically implied by the conditions on it. An algebnaipgsty is an
event in the probability space of polynomials which is defined by the commashiag of a set of
polynomial equations in the coefficients. For example, the property thaadragic polynomial is
a square of linear polynomial is an algebraic property, since it is desicfpéhe vanishing of the
discriminants. In the context of Problem 7, we will consider the obserefghpmials as generic
conditioned on the algebraic property that they vanish on a fixduinensional linear subspa&e

One way to obtain generic polynomials is to replace coefficients with, for ebear@aussian
random variables. For example, a generic homogeneous queddT1, T,] is given by

q=Z11T2 + Z1oT To + Zo5TZ,

where the coefficient®;; ~ A[(lj,0i;) are independent Gaussian random variables with arbitrary
parameters. Apart from being homogeneous, there is no conditiap dhwe want to add the
condition thatg vanishes on the linear space definedlpy= 0, we would instead consider

q=ZuTE+Z1oThTo.

A more detailed treatment of the concept of genericity, how it is linked to fmibsiac sampling,
and a comparison with the classical definitions of genericity can be foungperdix B.1.

We are now ready to reformulate the genericity conditions on the randdablesX, ..., Xn
in the above framework. Namely, we have assumed thaXithee general under the condition that
they agree in the first two cumulants when projected onto some linear set8p&ephrased for
the cumulants, Problems 1 and 7 become well-posed and can be formulabddwas. f
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Problem 8 Let S be an unknown d-dimensional linear subspac€th Assume that:f..., fn_1
are generic homogenous linear polynomials, and. g,qm_1 are generic homogenous quadratic
polynomials, all vanishing on’ SFind all d-dimensional linear subspaces in the algebraic set

S= V(ql7' -3 0m-1, fl7' Er fm—l)-

As we have defined “generic” as an implicit “almost sure” statement, we af&ctriooking for
an algorithm which gives the correct answer with probability one undemnmdel assumptions.
Intuitively, S should be also the onlg-dimensional linear subspace$nhwhich is not immediately
guaranteed from the problem description. Indeed this is troEsflarge enough, which is the topic
of the next section.

2.2 ldentifiability

In the last subsection, we have seen how to reformulate our initial Problabodt comparison
of cumulants as the completely algebraic Problem 8. We can also reformulatdiathdity of
the true solution in the original problem in an algebraic way: identifiability in bl means
that the projectiorP? can be uniquely computed from the probability distributions. Following the
same reasoning we used to arrive at the algebraic formulation in Probleme8&oncludes that
identifiability is equivalent to the fact that there exists a unique linear sabdp&.

Since identifiability is now a completely algebraic statement, it can be treated algebraic
terms. In Appendix B, we give an algebraic geometric criterion for identiiialof the stationary
subspace; we will sketch its derivation in the following.

The main ingredient is the fact that, intuitively spoken, every generic polyals carries one
degree of freedom in terms of dimension, as for example the following resulfeneric vector
spaces shows:

Proposition 9 Let 2 be an algebraic property such that the polynomials with propéttiorm a
vector space V. Letf..., f, € C[Ty,...Tp| be generic polynomials satisfyir® Then

rank spaffy,..., fn) = min(n,dimV).

Proof This is Proposition 42 in the appendix. |

On the other hand, if the polynomials act as constraints, one can proveatitabne reduces the
degrees of freedom in the solution by one:

Proposition 10 Let Z be a sub-vector space ©P. Let f;,..., f, be generic homogenous polyno-
mials in D variables (of fixed but arbitrary degree each), vanishing ormen for their common
vanishing seV (fy,..., fn) = {x € CP | fi(x) = 0Vi}, one can write

V(fy,...,fn) =2ZUU,
where U is an algebraic set with

dimU <max(D —n, 0).
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Proof This follows from Corollary 61 in the appendix. [ |

Proposition 10 can now be directly applied to Problem 8. It implies$haS if 2(m—1) > D+1,
and thatS is the maximal dimensional component®if 2(m— 1) > D —d+ 1. That is, if we start
with mrandom variables, the® can be identified uniquely if

2(lm—1)>D—-d+1
with classical algorithms from computational algebraic geometry in the noisedess

Theorem 11 Let X, ..., Xm be random variables. Assume there exists a projectien®*P such
that the first two cumulants of all RX..,PX,, agree and the cumulants are generic under those
conditions. Then the projection P is identifiable from the first two cumulants @lone

S D-d+1

m 1.
= 5 +

Proof This is a direct consequence of Proposition 65 in the appendix, applied teftrmulation
given in Problem 8. It is obtained by applying Proposition 10 to the genamnind vanishing on the
fixed linear subspac®, and using tha8 can be identified irSif it is the biggest dimensional part.
[ |

We have seen that identifiability means that there is an algorithm to corRpui@uely when the
cumulants are known, resp. to compute a unigfiem the polynomialsfi, g;. It is not difficult to
see that an algorithm doing this can be made into a consistent estimator whemthiarts are
sample estimates. We will give an algorithm of this type in the following parts of dipemp

3. An Algorithm for the Exact Case

In this section we present an algorithm for solving Problem 8, under thexgsion that the cumu-
lants are known exactly. We will first fix notation and introduce importantkatgie concepts. In
the previous section, we derived in Problem 8 an algebraic formulationrask: given generic
guadratic polynomialsgy,...,qm_1 and linear polynomialdy,..., f,,_1, vanishing on a unknown
linear subspac& of CP, find S as the uniqual-dimensional linear subspace in the algebraic set
V(aq,...,0m-1, f1,..., fm—1). First of all, note that the linear equatiofiscan easily be removed
from the problem: instead of looking &t°, we can consider the linear subspace defined by the
fi, and examine the algebraic sefd/, ..., q,, ;), whereq/ are polynomials irb — m+ 1 variables
which we obtain by substitutingh— 1 variables. So the problem we need to examine is in fact
the modified problem where we have only quadratic polynomials. Secondlyillvassume that
m— 1> D. Then, from Proposition 10, we know th&t= S and Problem 8 becomes the following.

Problem 12 Let S be an unknown d-dimensional subspac€f Given m-1 > D generic ho-
mogenous quadratic polynomialg,q..,qm-1 vanishing on S, find the d-dimensional linear sub-
space

S=V(a,---,0qm-1)-

Of course, we have to say what we meanfiogling the solution. By assumption, the quadratic
polynomials already fully describe the linear sp&dHowever, since&is a linear space, we want
a basis forS, consisting ofd linearly independent vectors ©i°. Or, equivalently, we want to find
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linearly independent linear form4,...,¢p_qg such that/;(x) = 0 for all x € S The latter is the
correct description of the solution in algebraic terms. We now show howfaomelate this in the
right language, following the algebra-geometry duality. The algebrai setresponds to an ideal
in the polynomial ringC[Ts, ..., Tp].

Notation 13 We denote the polynomial rifQ[ Ty, ..., Tp] by R. The ideal of S is an ideal in R, and
we denote it by by = I(S). Since S is a linear space, there exists a linear generatingset , /p_q
of s which we will fix in the following.

We can now relate the Problem 12 to a classical problem in algebraic geometry

Problem 14 Letm> D and q,...,dm_1 be generic homogenous quadratic polynomials vanishing
on a linear d-dimensional subspacecSCP. Then find a linear basis for the radical ideal

VAL, Gm-1) = 1V (A, -, Om-1)) = 1(S).

The first equality follows from Hilbert’s Nullstellensatz. This also shows #gudting the problem
is in fact a question of computing a radical of an ideal. Computing the radicah éadeal is a
classical problem in computational algebraic geometry, which is known tdffieull (for a more
detailed discussion see Section 3.3). However, if we assnmé > D(D+1)/2—d(d+1)/2, we
can dramatically reduce the computational cost and it is straightforwardritee dge approximate
solution. In this case, thg generate the vector space of homogenous quadratic polynomials which
vanish onS, which we will denote by,. That this is indeed the case, follows from Proposition 9,
and we have din, =D(D+1)/2—d(d+1)/2, as we will calculate in Remark 23.

Before we continue with solving the problem, we will need to introduce skeerecepts and
abbreviating notations. First we introduce notation to denote sub-ve@oespvhich contain poly-
nomials of certain degrees.

Notation 15 Let I be a subE-vector space of R, that i$,= R, or I is some ideal of R, for example,
I = s. We denote the suB-vector space of homogenous polynomials of degree kbg Ik (in
commutative algebra, this is standard notation for homogenously gendRateddules).

For example, the homogenous polynomials of degree 2 vanishiBdaym exactly the vector space
s2. Moreover, for anyl, the equationly = I N Ry holds. The vector spacé® ands, will be the
central objects in the following chapters. As we have seen, their dimensidveis ig terms of
triangular numbers, for which we introduce some notation:

Notation 16 We will denote the n-th triangular number Byn) = ”(”—2*1)

The last notational ingredient will capture the structure which is imposédR| twy the orthogo-
nal decompositiolt® = S@ S*.

Notation 17 Let S- be the orthogonal complement of S. Denote its ideal byl (S").
Remark 18 Asn ands are homogenously generated in degree one, we have the calculatien rule

skr1=5k-Re and ngy1=ng- Ry,
(s1)"= (s and (n1)*= (")
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where- is the symmetrized tensor or outer product of vector spaces (thesearge€anonically in-
duced by the so-called graded structure of R-modules). In termsalsidae above decomposition
translates to

R1i=51%n1.

Using the above rules and the binomial formula for ideals, this induces angotiel decomposi-
tion

Ry =Ri-Ri = (s1®n1)- (51D n1) = (51)2® (s1-11) ® (n1)?
=51-(51Bn1) B (n2)2 =51-Ri® (1‘12)2 =52PD (112)2

(and similar decompositions for the higher degree polynomig)s R

The tensor products above can be directly translated to products of,idedle vector spaces
above are each generated in a single degree £,g¥, are generated homogenously in dedtee
To express this, we will define an ideal which correspondg;to

Notation 19 We denote the ideal of R generated by all monomials of degye
m= <T1, Ce ,TD>.

Note that ideain is generated by all elementsii. Moreover, we havey = R for all k > 1. Using
m, one can directly translate products of vector spaces involving $arimto products of ideals:

Remark 20 The equality of vector spaces
si=s1-(Ry)*?

translates to the equality of ideals

5ﬂmk:5-mk_l,

since both the left and right sides are homogenously generated in degree

3.1 The Algorithm

SccP d-dimensional projection space

R=C[Ty,...Tp] Polynomial ring ovelC in D variables

Rk C-vector space of homogenoksorms inTy,..., Tp
A(n) = MY n-th triangular number

s=(l1,...,¢p_q) = 1(S) | The ideal ofS, generated by linear polynomials
sk=RkNs C-vector space of homogenolkgorms vanishing ors
n=I(S") The ideal ofS"

nw=RNn C-vector space of homogenokgorms vanishing ors"
m=(Ty,...,Tp) The ideal of the origin irCP

Table 1: Notation and important definitions
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In this section we present an algorithm for solving Problem 14, the computatithe radical
of the ideal(q, . ..,0m-1) under the assumption that

m> A(D) — A(d) + 1.
Under those conditions, as we will prove in Remark 23 (iii), we have that

<Q17 R CIm71> =62.

Using the notations previously defined, one can therefore infer thahgdRroblem 14 is equiva-
lent to computing the radical= /s -m in the sense of obtaining a linear generating setfar
equivalent to finding a basis feg whens; is given in an arbitrary basis;, contains the complete
information given by the covariance matrices andives an explicit linear description of the space
of projections under which the random variabigs. . ., X, agree.

Algorithm 1 The input consists of the quadratic formg,...,qn-1 € R, generatings,, and the
dimensiond; the outputis the linear generating sét,...,¢p_4 for s1.
1: Lettt+— (12--- D) be a transitive permutation of the variable indi¢és...,D}
2. LetQ«[q1 -+ Om-1] " be the((m— 1) x A(D))-matrix of coefficient vectors, where every
row corresponds to a polynomial and every column to a monofiial
3: fork=1,...,D—-ddo
4: Order the columns o according to the lexicographical ordering of monomiglg with
variable indices permuted by, that is, the ordering of the columns is given by the relation
>~ as

2 2
Tk = T T = Ty Trd) 7= -+ 7 Ty Trio) = T

= T T = - = Tko_1) = To-1 To) > Trko)
5: TransformQ into upper triangular forn@’ using Gaussian elimination
6: The last non-zero row d@ is a polynomialT,«py¢, wherel is a linear form ins, and we

setly < ¢
7: end for

Algorithm 1 shows the procedure in pseudo-code; a summary of the notifored in the
previous section can be found in Table 1. The algorithm has polynomiallegitydn the dimension
d of the linear subspacg

Remark 21 Algorithm 1 has average and worst case complexity
O((A(D) —A(d))*A(D))

In particular, if d is not considered as parameter of the algorithm, theaye and the worst case
complexity is @D®). On the other hand, iA(D) — A(d) is considered a fixed parameter, then Algo-
rithm 1 has average and worst case complexitipd).

Proof This follows from the complexities of the elementary operations: upper trlarigation of
a generic matrix of rank with m columns matrix need®(r2m) operations. We first perform trian-
gularization of a ranld(D) — A(d) matrix with A(D) columns. The permutations can be obtained
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efficiently by bringingQ in row-echelon form and then performing row operations. Operatians fo
extracting the linear forms and comparisons with respect to the monomialrayéee negligible.
Thus the overall operation complexity to calculaigs O((A(D) — A(d))?A(D)).

Note that the difference between worst- and average case lies at mostdodfficients, since
the inputs are generic and the complexity only depends on the pardinaiel not on they. Thus,
with probability 1 exactly the worst-case-complexity is attained. |

There are two crucial facts which need to be verified for correctrigbéscalgorithm. Namely,
there are implicit claims made in Line 6 of Algorithm 1. first, it is claimed that the laptzeyo
row of Q' corresponds to a polynomial which factors into certain linear forms. Skdds claimed
that thel obtained in step 6 generateesp.s1. The proofs of these non-trivial claims can be found
in Proposition 22 in the next subsection.

Dealing with additional linear form§, ..., f_1, is possible by way of a slight modification of
the algorithm. Because thigare linear forms, they are generatorsso¥Ve may assume that the
are linearly independent. By performing Gaussian elimination before tloeigae of Algorithm 1,
we may reduce the number of variablesroy- 1, thus having to deal with new quadratic forms
in D—m+ 1 instead ofD variables. Also, the dimension of the space of projections is reduced
to min(d — m+ 1, —1). SettingD’ = D —m+ 1 andd’ = min(d — m+ 1, —1) and considering the
quadratic formsy; with Gaussian eliminated variables, Algorithm 1 can be applied to the quadratic
forms to find the remaining generators fgr. In particular, ifm— 1 > d, then there is no need
for considering the quadratic forms, sinddinearly independent linear forms already suffice to
determine the solution.

We can also incorporate forms of higher degree corresponding tortogther cumulants. For
this, we start withs,, wherek is the degree of the homogenous polynomials we get from the cumu-
lant tensors of higher degree. Supposing we start with enough cumulanisay assume that we
have a basis afi. Performing Gaussian elimination on this basis with respect to the lexicogréphica
order, we obtain in the last row a form of tyﬁ%%%, wherel is a linear form. Doing this foD —d
permutations again yields a basis far

Moreover, slight algebraic modifications of this strategy also allow to condate from cumu-
lants of different degree simultaneously, and to reduce the number dédg@elynomials t@®(D);
however, due to its technicality, this is beyond the scope of the paper. &tkhgke idea: in the
general case, one starts with an ideal

I:<f17,fm>,

homogenously generated in arbitrary degrees. suchwiiat s. Proposition 55 in the appendix
implies that this happens whenewvar> D 4 1. One then proves that due to the genericity of the
there exists ai such that

IN = 5N,
which means that; can again be obtained by calculating the saturation of the idéalhen fixing
the degrees of th§, we will haveN = O(D) with a relatively small constant (for aff quadratic,

this even becomes = O(v/D)). So algorithmically, one would first calculafg = sy, which then
may be used to compute and thuss analogously to the ca$é= 2, as described above.
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3.2 Proof of Correctness
In order to prove the correctness of Algorithm 1, we need to prove tleniog three statements.

Proposition 22 For Algorithm 1 it holds that
(i) QisofrankA(D)—A(d).
(i) The last column of Q in step 6 is of the claimed form.
(i) Thefy,...,lp_q generatess.

Proof This proposition will be proved successively in the following: (i) will follovoin Remark 23
(iii); (ii) will be proved in Lemma 24; and (iii) will be proved in Proposition 25. |

Let us first of all make some observations about the structure of therageoes, in which we
compute. It is the vector space of polynomials of homogenous degreeishvanonS. On the
other hand, we are looking for a bagis...,/p_¢ of s1. The following remark will relate both
vector spaces:

Remark 23 The following statements hold:
(i) s2is generated by the polynomigddj,1<i<D-d,1<j<D,.
(i) dimgsz, =A(D) —A(d)
(i) Let qp,...,qm with m> A(D) — A(d) be generic homogenous quadratic polynomials.in
Then(qs,...,qm) = s2.

Proof (i) In Remark 18, we have concluded that= s1 - R;. Thus the product vector spasgis
generated by a product basissefandR;. SinceT;,1 < j <D s a basis foRy, and/;j,1<i<D-d

is a basis for;, the statement holds. (i) In Remark 20, we have seenRhat s, @ (n1)?, thus
dims, = dimR, —dim(ny)2. The vector spaci; is minimally generated by the monomials of degree
2inTy,...Tp, whose number iA(D). Similarly, (n1)? is minimally generated by the monomials of
degree 2 in the variabley, . . ., ¢ that form the dual basis to thle. Their number ig\(d), so the
statement follows. (iii) As thg; are homogenous of degree two and vanistsahey are elements
in s2. Due to (ii), we can apply Proposition 9 to conclude that they genegads vector space. i

Now we continue to prove the remaining claims.

Lemma 24 In Algorithm 1 the(A(D) — A(d))-th row of @ (the upper triangular form of Q) corre-
sponds to &@-form Ty p)¢ with a linear polynomial € s;.

Proof Note that every homogenous polynomial of dedrégcanonically an element of the vector
spaceRy in the monomial basis given by tfig Thus it makes sense to speak about the coefficients
of T for an 1-form resp. the coefficients fT; of a 2-form.

Also, without loss of generality, we can take the trivial permutatieaid, since the proof will
not depend on the chosen lexicographical ordering and thus will beatigtinvariant under per-
mutations of variables. First we remark: sir8&s a generial-dimensional linear subspace GP,
any linear form ins; will have at least + 1 non-vanishing coefficients in thig. On the other hand,
by displaying the generatofs 1 <i <D —d in s1 in reduced row echelon form with respect to the
Ti-basis, one sees that one can choose alfjtimefact with exactlyd + 1 non-vanishing coefficients
in theT; such that no nontrivial linear combination of theéhas less thed + 1 non-vanishing coef-
ficients. In particular, one can choose theuch that the biggest (w.r.t. the lexicographical order)
monomial with non-vanishing coefficient gfis T,.
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Remark 23 (i) states thag is generated by
ﬁiTj,lS i<D-d,1<j<D.

Together with our above reasoning, this implies the following.

Fact 1: There exist linear formg;,1 <i < D —d such that: the 2-form§T; generates,, and
the biggest monomial ofiT; with non-vanishing coefficient under the lexicographical ordering is
TiT;. By Remark 23 (ii), the last row of the upper triangular fo@his a polynomial which has zero
coefficients for all monomials possibly except th@) + 1 smallest,

2 2
To-dTo, T5_g+1, To-d+1To-d+2,---, To-1Tp, T9.

On the other hand, it is guaranteed by our genericity assumption that thesbigfghose terms is
indeed non-vanishing, which implies the following.

Fact 2. The biggest monomial of the last row with non-vanishing coefficient (w.eteiico-
graphical order) is that dfp_¢Tp.

Combining Facts 1 and 2, we can now infer that the last row must be a scaltplenaf
pb_qTp: since the last row corresponds to an elemens»0fit must be a linear combination of
the 4 Tj. By Fact 1, every contribution of afTj, (i, j) # (D —d,D) would add a non-vanishing
coefficient lexicographically bigger tha_4Tp which cannot cancel. So, by Fact, divides the
last row of the upper triangular form @, which then must b@p/p_g4 or a multiple thereof. Also
we have thatp_q4 € s by definition. |

It remains to be shown that by permutation of the variables we can find afbasis
Proposition 25 The/s,...,¢p_q generates; as vector space and thusas ideal.

Proof Recall thatrt was the permutation to obtaifi As we have seen in the proof of Lemma 24,
¢i is alinear form which has non-zero coefficients only fordhel coefficientsTyi p_q), - - -, Tri(p)-
Thus/; has a non-zero coefficient where all thej < i have a zero coefficient, and théjss linearly
independent from thg;, j <. In particular, it follows that thé; are linearly independent iR;. On
the other hand, they are contained in the- d-dimensional sul§3-vector space; and are thus a
basis ofs;, and also a generating set for the ideal |

Note that all of these proofs generalizekiforms. For example, one calculates that

dime-s (D+k—1> <d+k—1>
CSk — - 5
k k

and the triangularization strategy yields a last row which corresponﬂ%gjg with a linear poly-
nomial? € s,

3.3 Relation to Previous Work in Computational Algebraic Geometry

In this section, we discuss how the algebraic formulation of the cumulant ecsoparoblem given
in Problem 14 relates to the classical problems in computational algebraic tjgome

Problem 14 confronts us with the following task: given polynom@ls..,gm_1 with special
properties, compute a linear generating set for the radical ideal

\/ (ql, - ,qm_1> = I(V(ql, . ,qm_l)).
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Computing the radical of an ideal is a classical task in computational alged@aioetry, so our
problem is a special case of radical computation of ideals, which in turbegiewed as an instance
of primary decomposition of ideals, see (Cox et al., 2007, Section 4.7).

While it has been known since the work of Hermann (1926) that there existtructive algo-
rithms to calculate the radical of a given ideal in polynomial rings, only in tbenedecades there
have been algorithms feasible for implementation in modern computer algelbeansysThe best
known algorithms are those of Gianni et al. (1988), implemented in AXIOMRE®DUCE, the
algorithm of Eisenbud et al. (1992), implemented in Macaulay 2, the algoriftnGaboara et al.
(1997), currently implemented in CoCoA, and the algorithm of Krick and tq@891) and its
modification by Laplagne (2006), available in SINGULAR.

All of these algorithms have two points in common. First of all, these algorithms bam-
putational worst case complexities which are doubly exponential in theresqpidhe number of
variables of the given polynomial ring, see (Laplagne, 2006, Sectiodlhough the worst case
complexities may not be approached for the problem setting described inrtteatcpaper, these
off-the-shelf algorithms do not take into account the specific propertideadeals in question.

On the other hand, Algorithm 1 can be seen as a homogenous versionltieown Buch-
berger algorithm to find a Groebner basis of the dehomogenizatiowith respect to a degree-first
order. Namely, due to our strong assumptionsngror as is shown in Proposition 55 in the ap-
pendix for a more general case, the homogenous saturations of théqggeal,gm-1) = m-s and
the ideals coincide. In particular, the dehomogenizations of gheonstitute a generating set for
the dehomogenization af The Buchberger algorithm now finds a reduced Groebner basis of
which consists of exactlip — d linear polynomials. Their homogenizations then constitute a basis
of homogenous linear forms efitself. It can be checked that the first elimination steps which the
Buchberger algorithm performs for the dehomogenizations ajitberrespond directly to the elim-
ination steps in Algorithm 1 for their homogenous versions. So our algori#mfopns similarly to
the Buchberger algorithm in a noiseless setting, since both algorithms comeateced Groebner
basis in the chosen coordinate system.

However, in our setting which stems from real data, there is a second whioh is more
grave and makes the use of off-the-shelf algorithms impossible: the computabdityexact result
completely relies on the assumption that the ideals given as input are exaotiykthat is, a
generating set of polynomials is exactly known. This is not a problem inicissomputational
algebra; however, when dealing with polynomials obtained from real tfet@olynomials come not
only with numerical error but in fact with statistical uncertainty. In geneha classical algorithms
are unable to find any solution when confronted even with minimal noise ontlieewise exact
polynomials. Namely, when we deal with a system of equations for whichdetermination is
possible, any perturbed system will be over-determined and thus haautmn. For example, the
exact intersection dfl > D+ 1 linear subspaces in complBxspace is always empty when they are
sampled with uncertainty; this is a direct consequence of Proposition &, uging the assumption
that the noise is generic. However, if all those hyperplanes are nearsathe, then the result of a
meaningful approximate algorithm should be a hyperplane close to all igpetianes instead of
the empty set.

Before we continue, we would like to stress a conceptual point in aplpirpancertainty. First,
as in classical numerics, one can think of the input as theoretically exawafitbufixed errore and
then derive bounds on the output error in terms of ¢hasmd analyze their asymptotics. We will
refer to this approach asumerical uncertaintyas opposed tstatistical uncertaintywhich is a
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view more common to statistics and machine learning, as it is more natural fordetisy Here,
the error is considered as inherently probabilistic due to small sample afifestsse fluctuation,
and algorithms may be analyzed for their statistical properties, indepentiartether they are
themselves deterministic or stochastic. The statistical view on uncertainty is ¢hthenmeader
should have in mind when reading this paper.

Parts of the algebra community have been committed to the numerical viewpointertain
polynomials: the problem of numerical uncertainty is for example extensadelyessed in Stetter's
standard book on numerical algebra (Stetter, 2004). The main difficuttteiaovations stem from
the fact that standard methods from algebra like the application of Grobhees are numerically
unstable, see (Stetter, 2004, Chapter 4.1-2).

Recently, the algebraic geometry community has developed an increasirgsiritesolving
algebraic problems arising from the consideration of real world dataalfjueithms in this area are
more motivated to perform well on the data, some authors start to adapt dcsthtiewpoint on
uncertainty, while the influence of the numerical view is still dominant. As a distimcthe authors
describe the field as approximate algebra instead of numerical algelmentRievelopments in this
sense can be found for example in Heldt et al. (2009) or the book afz¢reet al. (2009). We will
refer to this viewpoint as the statistical view in order to avoid confusion witlerotheanings of
approximate.

Interestingly, there are significant similarities on the methodological side. Name&ompu-
tational algebra, algorithms often compute primarily over vector spaceshwahige for example
as spaces of polynomials with certain properties. Here, numerical linegbralgan provide many
techniques of enforcing numerical stability, see the pioneering papesrtéss et al. (1995). Since
then, many algorithms in numerical and approximate algebra use linear optimizatgstimate
vector spaces of polynomials. In particular, least-squares-approximatiorank or kernel are
canonical concepts in both numerical and approximate algebra.

However, to the best of our knowledge, there is to date no algorithm wiictpates an “ap-
proximate” (or “numerical”) radical of an ideal, or an approximate satunatod also none in our
special case. In the next section, we will use estimation techniques froar hgebra to con-
vert Algorithm 1 into an algorithm which can cope with the inherent statisticeétainty of the
estimation problem.

4. Approximate Algebraic Geometry on Real Data

In this section we show how algebraic computations can be applied to polynonitiais@xact co-
efficients obtained from estimated cumulants on finite samples. Note that ourdvietltomputing
the approximate radical is not specific to the problem studied in this paper.

The reason why we cannot directly apply our algorithm for the exa& wasstimated polyno-
mials is that it relies on the assumption that there exists an exact solution, stithelprojected
cumulants are equal, that is, we can find a projedd@uch that the equalities

P,P' =...=PZ,P" and Py =---=Pun
hold exactly. However, when the elementgf...,2, andpy, ..., Uy are subject to random fluc-

tuations or noise, there exists no projection that yields exactly the samemarad@bles. In al-
gebraic terms, working with inexact polynomials means that the joint vaniskingf g1, ...,qm-1
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andfy,..., fm_1 consists only of the origin @ CP so that the ideal becomes trivial:

<q17 <oy O0m-1, fl, ceey fm_1> =m.

Thus, in order to find a meaningful solution, we need to compute the ragipeb@mately.

In the exact algorithm, we are looking for a polynomial of the folgd vanishing onS, which
is also aC-linear combination of the quadratic forrgs The algorithm is based on an explicit way
to do so which works since thg are generic and sufficient in number. So one could proceed to
adapt this algorithm to the approximate case by performing the same opeetionfie exact case
and then taking théA(D) — A(d))-th row, setting coefficients not divisible By, to zero, and then
dividing outTp to get a linear form. This strategy performs fairly well for small dimensiorend
converges to the correct solution, albeit slowly.

Instead of computing one particular linear generator as in the exacitdasajvisable to use as
much information as possible in order to obtain better accuracy. The lazetesgoptimal way to
approximate a linear space of known dimension is to use singular value desibiom (SVD): with
this method, we may directly eliminate the most insignificant directions in coeffispate which
are due to fluctuations in the input. To that end, we first define an appremaf an arbitrary
matrix by a matrix of fixed rank.

Definition 26 Let A € C™" with singular value decomposition A UDV*, where D=
diag(oy,...,0p) € CP*Pis a diagonal matrix with ordered singular values on the diagonal,

01| > |o2| > --- > |op| > 0.

For k < p, let D = diag(0y, .. .,0k,0,...,0). Then the matrix A=UD’V* is called rank k approx-
imation of A The null space, left null space, row span, column span’afil\ be called rank k
approximate null space, left null space, row span, column span of A

For example, i, ..., up andvy,..., v, are the columns df andV respectively, the rank approx-
imate left null space oA is spanned by the rows of the matrix

L=[Upiccs - U .
and the rankk approximate row span & is spanned by the rows of the matrix
S=v - Vp]T.
We will call those matrices thapproximate left null space matriesp. the approximate row span
matrix of rankk associated té. The approximate matrices are the optimal approximations of rank
k with respect to the least-squares error.

We can now use these concepts to obtain an approximative version oftAlgdr. Instead of
searching for a single element of the fofig¢, we estimate the vector space of all such elements
via singular value decomposition—note that this is exactly the vector sgase- s),, that is, the
vector space of all homogenous polynomials of degree two which aréudiévisy Tp. Also note that
the choice of the linear forrfp is irrelevant, that is, we may repladg above by any variable or
even linear form. As a trade-off between accuracy and runtime, we aslijjeestimate the vector
spaces(Tp) -s), for all 1 <i <D, and then least-squares average the putative resultsdabtain
a final estimator fos and thus the desired space of projections.
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Algorithm 2 Theinput consists of noisy quadratic formg, ...,0qm-1 € C[T1,..., Tp], and the di-
mensiond; the outputis an approximate linear generating égt .., /p_q for the ideals.

L LetQ« [op - qm,l]T be the(m— 1 x A(D))-matrix of coefficient vectors, where every
row corresponds to a polynomial and every column to a monofiigin arbitrary order.
2. fori=1,....Ddo
; Let Qi be the((m— 1) x A(D) — D)-sub-matrix ofQ obtained by removing all columns

corresponding to monomials divisible By

4 Compute the approximate left null space matrpof Q; of rank(m— 1) — A(D) +A(d) +
D—-d

5: Compute the approximate row span matrof L;Q of rankD —d

6: LetL{" be the(D —d x D)-matrix obtained froni.{ by removing all columns corresponding
to monomials not divisible by;

7: end for

8: LetL be the(D(D —d) x D)-matrix obtained by vertical concatenationldf ..., L

9: Compute the approximate row span matix [a; - aD,d]T of L of rankD —d and let
li=[Ty -~ Tplaforalll<i<D-d.

We explain the logic behind the single steps: in the first step, we start with the swatrix
Q as in Algorithm 1. Instead of bringin@® into triangular form with respect to the term order
T1 < --- < Tp, we compute the left kernel space row magof the monomials not divisible by;.

Its left imagelL; = SQ is a matrix whose row space generates the space of possible last rows afte
bringingQ into triangular form in an arbitrary coordinate system. In the next step grferon PCA

to estimate a basis for the so-obtained vector space of quadratic formsdf types linear form,

and extract a basis for the vector space of linear forms estimatégl Waw we can put together all

L; and again perform PCA to obtain a more exact and numerically more estimaite fiorojection

in the last step. The rank of the matrices after PCA is always chosen to matcbrtiect ranks in

the exact case.

Note that Algorithm 2 is a consistent estimator for the correct space ofgbimjs if the co-
variances are sample estimates. Let us first clarify in which sense consssteeant here: if each
covariance matrix is estimated from a sample of 8iz& greater, antll goes to infinity, then the es-
timate of the projection converges in probability to the true projection. Thenaaby Algorithm 2
gives a consistent estimator in this sense is elementary: covariance madrides estimated con-
sistently, and so can their differences, the polynondal#loreover, the algorithm can be regarded
as an almost continuous function in the polynomilsso convergence in probability to the true
projection and thus consistency follows from the continuous mapping timeore

The runtime complexity of Algorithm 2 i©(D8) as for Algorithm 1. For this note that calcu-
lating the singular value decomposition of @ n-matrix isO(mnmax(m,n)).

If we want to considek-forms instead of 2-forms, we can use the same strategies as above
to numerically stabilize the exact algorithm. In the second step, one might waontder all
sub-matrice®)y of Q obtained by removing all columns corresponding to monomials divisible by
some degre¢k — 1) monomialM and perform the for-loop over all such monomials or a selection
of them. Considerind® monomials or more gives again a consistent estimator for the projection.
Similarly, these methods allow us to numerically stabilize versions with reduceth epguirements
and simultaneous consideration of different degrees.
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5. Numerical Evaluation

In this section we evaluate the performance of the algebraic algorithm dmetigndata in various
settings. In order to contrast the algebraic approach with an optimizatsedbaethod (cf. Fig-

ure 1), we compare with the Stationary Subspace Analysis (SSA) algonitbmRBinau et al.,
2009), which solves a similar problem in the context of time series analysis/i$ker et al. (2011)

for an open-source implementation. To date, SSA has been succespflldan the context of
biomedical data analysis (voniBau et al., 2010), domain adaptation (Hara et al., 2010), change-
point detection (Blythe et al., 2012) and computer vision (Meinecke et #9)20

5.1 Stationary Subspace Analysis

Stationary Subspace Analysis (voiiifBau et al., 2009; Miler et al., 2011) factorizes an observed
time series according to a linear model into underlying stationary and nonrnstgtisources. The
observed time seriegt) € RP is assumed to be generated as a linear mixture of stationary sources
§'(t) € RY and non-stationary sourceit) € RP~9,

_ _as a1 SO
X(t) =Agt) = [A* A" [s“(t)] :
with a time-constant mixing matriA. The underlying sourcest) are not assumed to be indepen-
dent or uncorrelated.

The aim of SSA is to invert this mixing model given only samples fodi). The true mixing
matrix A is not identifiable (von Bnau et al., 2009); only the projectiéhe R9*P to the stationary
sources can be estimated from the mixed sigr@ls up to arbitrary linear transformation of its im-
age. The estimated stationary sources are givesi(by= Px(t), that is, the projectioR eliminates
all non-stationary contribution®A" = 0.

The SSA algorithms (von @hau et al., 2009; Hara et al., 2010) are based on the following
definition of stationarity: a time serie§ is considered stationary if its mean and covariance is
constant over time, that i[X,] = E[X,] andE[X, X, ] = E[X,X, ] for all pairs of time points
t1,t> € IN. Following this concept of stationarity, the projectiBiis found by minimizing the differ-
ence between the first two moments of the estimated stationary s&fifteacioss epochs of the
times series. To that end, the samples fedt are divided intan non-overlapping epochs of equal
size, corresponding to the index séis. . ., 7n, from which the mean and the covariance matrix is
estimated for all epochsdi <m,

1 ~
=—"3 x(t and 2=
‘q”tezzr () 1

1 - AT
(X(t) = ) (x(t) — ) " -
-1
Given a projectiorP, the meanAand tt]e covariance of the estimated stationary sourcesiiththe
epoch are given by"= P and>? = PZP' respectively. Without loss of generality (by centering
and whitening the average epoch) we can assume $hj has zero mean and unit covariance.
The objective function of the SSA algorithm (voriiBau et al., 2009) minimizes the sum of the

differences between each epoch and the standard normal distributiaaureé by the Kullback-

2. A whitening transformation is a basis transformatidrihat sets the sample covariance matrix to the identity. It can
be obtained from the sample covariance mafrasW = 53
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Leibler divergencdy between Gaussians: the projectihis found as the solution to the opti-
mization problem,

— argmin ZLDKL { N([F,55)

PP =I |

| Ao

— argmin ZI (— logdets? + (W)Tﬁf) ,
PPT=I =
which is non-convex and solved using an iterative gradient-baseéguoe.

This SSA algorithm considers a problem that is closely related to the onessgdrin this paper,
because the underlying definition of stationarity does not consider the tinoést. In essence, the
m epochs are modeled asrandom variableXy, . .., Xy, for which we want to find a projectioR
such that the projected probability distributid®X;, . .., PX,, are equal, up to the first two moments.
This problem statement is equivalent to the task that we solve algebraically.

5.2 Results

In our simulations, we investigate the influence of the noise level and the mah@enensions on
the performance and the runtime of our algebraic algorithm and the SSAthigoMWe measure
the performance using the subspace angle between the true and the estpaaidf projections
S

The setup of the synthetic data is as follows: we fix the total number of dimentgdh= 10
and vary the dimensiod of the subspace with equal probability distribution from one to nine. We
also fix the number of random variablesrnto= 110. For each trial of the simulation, we need to
choose a random basis for the two subspd’es- S® S*, and for each random variable, we need
to choose a covariance matrix that is identical onlySrMoreover, for each random variable, we
need to choose a positive definite disturbance matrix (with given noisedgvedich is added to
the covariance matrix to simulate the effect of finite or noisy samples.

The elements of the basis vectors ®andS" are drawn uniformly from the intervak-1,1).
The covariance matrix of each epochl < m s obtained from Cholesky factors with random
entries drawn uniformly fron{—1,1), where the firsd rows remain fixed across epochs. This
yields noise-free covariance matrig@s .. .,Cn € RP*P where the firs{d x d)-block is identical.
Now for eachC;, we generate a random disturbance mdgiio obtain the final covariance matrix

C =C+E.

The disturbance matrik; is determined ag; :ViDi\/iT whereV, is a random orthogonal matrix,
obtained as the matrix exponential of an antisymmetric matrix with random elemehi3; &a
diagonal matrix of eigenvalues. The noise lewét the log-determinant of the disturbance matrix
E;. Thus the eigenvalues & are normalized such that

1 10
E;IOQDH =0.

In the final step of the data generation, we transform the disturbediangarmatrice€’,...,C/,
into the random basis to obtain the cumulanis. .., 2, which are the input to our algorithm.
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Figure 5: Comparison of the algebraic algorithm and the SSA algorithm. Eami ghows the me-
dian error of the two algorithms (vertical axis) for varying numbers of statip sources
in ten dimensions (horizontal axis). The noise level increases from thléie right
panel; the error bars extend from the 25% to the 75% quantile estimated@d@ran-
dom realizations of the data set.

The first set of results is shown in Figure 5. With increasing noise levels(eft to right panel)
both algorithms become worse. For low noise levels, the algebraic methodsigphifecantly better
results than the optimization-based approach, over all dimensionalities. Barrmand high-noise
levels, this situation is reversed.
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—4—— SSA
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Figure 6: The left panel shows a comparison of the algebraic method ar@h algorithm over
varying noise levels (five stationary sources in ten dimensions), the twesghow the
median log error. The right panel shows a comparison of the runtime fginggnumbers
of stationary sources. The error bars extend from the 25% to the 7&a%ilguestimated
over 2000 random realizations of the data set.

In the left panel of Figure 6, we see that the error level of the algelatgmrithm decreases
with the noise level, converging to the exact solution when the noise tendsotolaecontrast, the
error of original SSA decreases with noise level, reaching a minimum eas&libe which it cannot
fall below. In particular, the algebraic method significantly outperforms &B8Aow noise levels,
whereas SSA is better for high noise. However, when noise is too higle, eicthe two algorithms
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can find the correct solution. In the right panel of Figure 6, we seetligadlgebraic method is
significantly faster than SSA.

6. Conclusion

In this paper we have shown how a learning problem formulated in termsnadilants of proba-
bility distributions can be addressed in the framework of computational apefpeometry. As an
example, we have demonstrated this viewpoint on the problem of finding a lmegaP ¢ R9*P
such that a set of projected random variabes . ., Xm € RP have the same distribution,

PXq ~ -+ ~ PXn.

To that end, we have introduced the theoretical groundwork for arigetreatment of inexact
cumulants estimated from data: the concept of polynomials thajesrericup to a certain property
which we aim to recover from the data. In particular, we have shown hewam find an approxi-
mate exact solution to this problem using algebraic manipulation of cumulants estiomegamples
drawn fromXj, ..., Xn. Therefore we have introduced the notion of computinggproximate sat-
uration of an ideal that is optimal in a least-squares sense. Moreover, usintgdieaic problem

formulation in terms of generic polynomials, we have presented compadsgor@ condition on

the identifiability of the true solution.

In essence, instead of searching the surface of a non-convestiebjenction involving the cu-
mulants, the algebraic algorithm directly finds the solution by manipulating cunpdémomials—
which is the more natural representation of the problem. This viewpoint ismigttieeoretically
appealing but conveys practical advantages that we demonstrate in @galrmemparison to Sta-
tionary Subspace Analysis (voriiBau et al., 2009). the computational cost is significantly lower
and the error converges to zero as the noise level goes to zero. Elpwley algebraic algorithm
requiresm > A(D) random variables with distinct distributions, which is quadratic in the number of
dimension®. This is due to the fact that the algebraic algorithm represents the cumalgnomi-
als in the vector space of coefficients. Consequently, the algorithm isedrth linearly combining
the polynomials which describe the solution. However, the set of solutiodsasrwariant under
multiplication of polynomials and polynomial division, that is, the algorithm dodsise all infor-
mation contained in the polynomial equations. We conjecture that we canwttrestnore efficient
algorithm, if we also multiply and divide polynomials.

The theoretical and algorithmic techniques introduced in this paper cangiiedapo other
scenarios in machine learning, including the following examples.

¢ Finding properties of probability distributions. Any inference problem that can be formu-
lated in terms of polynomials, in principle, is amenable to our algebraic approadrpo-
rating polynomial constraints is also straightforward.

e Approximate solutions to polynomial equations.In machine learning, the problem of solv-
ing polynomial equations can, for example, occur in the context of findiagditution to a
constrained nonlinear optimization problem by means of setting the gradiesitoto z

e Conditions for identifiability. Whenever a machine learning problem can be formulated in
terms of polynomials, identifiability of its generative model can also be phrasedms of
algebraic geometry, where a wealth of proof techniques stands at itlispos
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We argue for a cross-fertilization of approximate computational algelatarachine learning:
the former can benefit from the wealth of techniques for dealing with teiogy and noisy data;
the machine learning community may find a novel framework for representimgitey problems
that can be solved efficiently using symbolic manipulation.
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Appendix A. An Example

In this section, we will show by using a concrete example how the AlgorithmslRamork. The
setup will be the similar to the example presented in the introduction. We will useotihgian
introduced in Section 3.

Example 27 In this example, let us consider the simplest non-trivial case: two randoiables
X1, X0 in R? such that there is exactly one directiore R? such thatv' X; = w' Xy; that is, the total
number of dimensions B = 2, the dimension of the set of projectionglis- 1. As in the beginning
of Section 3, we may assume tiat = S® S* is an orthogonal sum of a one-dimensional space of
projectionsS and its orthogonal complemes8t. In particular,S" is given as the linear span of a
single vector, sayo ] . The spacé&is also the linear span of the vecl@ — !

Now we partition the sample inio(D+1)/2—d(d+1)/2 = 2 epochs (this is the lower bound
needed by Proposition 22). From the two epochs we can estimate two coeanetrices s, 3.
Suppose we have

$. — ai1r a2
1= .
do1 Az

From this matrices, we can now obtain a polynomial
p=w'(E—w

a1—1 a
_ W A 12 |
a1 axp-—-1

= (a1~ DT+ (Ao + @) ThTo + (82— 1)TZ,

wherew = [Tl TZ]T. Similarly, we obtain a polynomiai, as the Gram polynomial &, — 1.
First we now illustrate how Algorithm 1, which works with homogenous exatyrpmials,
can determine the vector spasérom these polynomials. For this, we assume that the estimated
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polynomials are exact; we will discuss the approximate case later. We cawrdtis@; andds in
coefficient expansion:

01 = quT? + o Ti T2 + qusTs,
02 = Qoa T + Qo1 To 4 s TS

We can also write this formally in th@ x 3) coefficient matrixQ = (q;j )ij, where the polynomials
can be reconstructed as the entries in the vector

Q-[12 T T4 .

Algorithm 1 now calculates the upper triangular form of this matrix. For patyiads, this is equiv-
alent to calculating the last row

02101 — 01102
= [021012 — O110022) Ta T2 + [G21G13 — G11G23] TZ.

Then we divide ouf, and obtain

P = [0210112 — Q11022 T1 + [021013 — O11023] To.

The algorithm now identifieS" as the vector space spanned by the vector

(@ B]" = [0p1012— G110z G103 — Caacls] -

This already finishes the calculation given by Algorithm 1, as we now expliitbw the solution
T
a B] .

To understand why this strategy works, we need to have a look at the iNmely, one has to
note thatg; andg, are generic homogenous polynomials of degree 2, vanishirg) dinat is, we
will have gij(x) = 0 fori = 1,2 and all pointsx € S. It is not difficult to see that every polynomial
fulfilling this condition has to be of the form

(GT]_ + BTz) (aTl + sz)

for somea,b € C; that is, a multiple of the equation definir® However we may not know this
factorization a priori, in particular we are in general agnostic as to thecovalues ofx andf3.
They have to be reconstructed from tjevia an algorithm. Nonetheless, a correct solution exists,
SO we may write

g1 = (aT1+BT2)(arX + b1 To),
o = (aTy 4+ BTo) (82X + boT),

with g, b; generic, without knowing the exact values a priori. If we now compare ¢oattove
expansion in thej;j, we obtain the linear system of equations

qil — aaiv
iz = ab; + Ba;,
Giz = Bby
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fori=1,2, from which we may reconstruct tlag by and thusx andp. However, a more elegant and
general way of getting to the solution is to bring the ma@ias above into triangular form. Namely,
by assumption, the last row of this triangular form corresponds to the poiah® which vanishes
on S. Using the same reasoning as above, the polynomirels to be a multiple ofaT; + 3T2). To
check the correctness of the solution, we substitutghia the expansion dP for a;, b, and obtain

P =[021012 — 011022) i T2 + [021013 — Ol11023] TF

[aaz(aby + Bay) — aay (aby + Baz)| Tr T2 + [aazBby — aay Bb,] TS
[a2agby — aayby)| T Tz + [aBagby — aparby] T2

(aT1 4+ BT2)a[azbs — agby] To.

This is (aT; + BT2) timesT, up to a scalar multiple - from the coefficients of the foRnmwe may
thus directly reconstruct the vect{m B] up to a common factor and thus obtain a representation
for S, since the calculation of these coefficients did not depend on a priorilkdge abous.

If the estimation of the&; and thus of they is now endowed with noise, and we have more
than two epochs and polynomials, Algorithm 2 provides the possibility to partbis calculation
approximately. Namely, Algorithm 2 finds a linear combination ofghehich is approximately of
the formTp £ with a linear form? in the variabled, T>. The Young-Eckart Theorem guarantees that
we obtain a consistent and least-squares-optimal estimat®, fimilarly to the exact case. The
reader is invited to check this by hand as an exercise.

Now the observant reader may object that we may have simply obtained theftimaga T, +
BT,) and thusS directly from factoringg; and gy and taking the unique common factor. Note
however that this strategy can only be applied in the very speciallzase = 1. To illustrate the
additional difficulties in the general case, we repeat the above examile$fat andd = 2 for the
exact case:

Example 28 In this example, we need alreaByD +1)/2—d(d+1)/2=7 polynomialss, . .., 07
to solve the problem with Algorithm 1. As above, we can write

O =01 T2+ G2Ti o+ GaTiTa + GiaTa Ta + Qs T2
+GieToTa + Q7 T2Ts + Qg T + GioTs Ta + G 10T/

fori=1,...,7, and again we can write this in(& x 10) coefficient matrixQ = (g;j)ij. In Algo-
rithm 1, this matrix is brought into triangular form. The last row of this triangafatrix will thus
correspond to a polynomial of the form

P = p;ToTa+ psTZ + poTaTa+ p1oT?

A polynomial of this form is not divisible by, in general. However, Proposition 22 guarantees us
that the coefficienpg is always zero due to our assumptions. So we can dividdptd obtain a
linear form

P7T2+ PaTa+ pioTa.

This is one equation defining the linear sp&eOne obtains another equation in the variables
T1, T2, T3 if one, for example, inverts the numbering of the variables2-3—-4to 4—3—-2—1.
Two equations suffice to descrilseand so Algorithm 1 yields the correct solution.
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As in the example before, it can be checked by hand that the coeffisieindeed vanishes,
and the obtained linear equations define the linear subspaaar this, one has to use the classical
result from algebraic geometry that evepycan be written as

g = 1P+ 0oPs,

where the/; are fixed but arbitrary linear forms definif®as their common zero set, and theare
some linear forms determined lyand the?; (this is for example a direct consequence of Hilbert's
Nullstellensatz). Caution is advised as the equations involved become vgtinterwhile not too
complex - already in this simple example. So the reader may want to check onilyeteefficient

ps vanishes as claimed.

Appendix B. Algebraic Geometry of Genericity

In the paper, we have reformulated a problem of comparing probabilityldisons in algebraic
terms. For the problem to be well-defined, we need the concept of géypéoicthe cumulants.
The solution can then be determined as an ideal generated by genericdraasgolynomials
vanishing on a linear subspace. In this supplement, we will extensivetyildeshis property which
we call genericity and derive some simple consequences.

Since genericity is an algebraic-geometric concept, knowledge abdatdbgsbraic geometry
will be required for an understanding of this section. In particular, tagleeshould be at least
familiar with the following concepts before reading this section: polynomiaktiidgals, radicals,
factor rings, algebraic sets, algebra-geometry correspondentgd{img Hilbert's Nullstellensatz),
primary decomposition, height resp. dimension theory in rings. A good inttazh into the neces-
sary framework can be found in the book of Cox et al. (2007).

B.1 Definition of Genericity

In the algebraic setting of the paper, we would like to calculate the radical ioeal

I = (ql,...,qm,l, f]_,..., fm,]_).

This idealT is of a special kind: its generators are random, and are only subject totiséraints
that they vanish on the linear subsp&® which we project, and that they are homogenous of
fixed degree. In order to derive meaningful results on liawlates tdS, or on the solvability of the
problem, we need to model this kind of randomness.

In this section, we introduce a concept called genericity. Informally, &mgesituation is a
situation without pathological degeneracies. In our case, it is reakotmabelieve that apart from
the conditions of homogeneity and the vanishingSpthere are no additional degeneracies in the
choice of the generators. So, informally spoken, the ideialgenerated by generic homogenous
elements vanishing o8 This section is devoted to developing a formal theory in order to address
such generic situations efficiently.

The concept of genericity is already widely used in theoretical computsreE combinatorics
or discrete mathematics; there, it is however often defined inexactly ot albter it is only given as
an ad-hoc definition for the particular problem. On the other hand, géyasi@ classical concept
in algebraic geometry, in particular in the theory of moduli. The interpretatigenéric properties
as probability-one-properties is also a known concept in applied aigaijprametry, for example,
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algebraic statistics. However, the application of probability distributions andrigity to the setting
of generic ideals, in particular in the context of conditional probabilities oaiginal to the best of
our knowledge, though not being the first one to involve generic respergl polynomials, see
larrobino (1984). Generic polynomials and ideals have been also stioglieberg and Hollman

(1994). A collection of results on generic polynomials and ideals which pavitylap with ours

may also be found in the recent paper of Pardue (2010).

Before continuing to the definitions, let us explain what genericity shoulchméauitively,
generic objects are objects without unexpected pathologies or degieser&or example, if one
studies say lines in the real plane, one wants to exclude pathological cases wheridinasach
other or where many lines intersect in one point. Having those cases edaieans examining
the “generic” case, that is, the case where theraare- 1) /2 intersectionsn(n+ 1) line segments
and so forth. Or when one haspoints in the plane, one wants to exclude the pathological cases
where for example there are three affinely dependent points, or wheneare more sophisticated
algebraic dependencies between the points which one wants to exclpdaddey on the problem.

In the points example, it is straightforward how one can define genericitynmstef sampling
from a probability distribution: one could draw the points under a suitabléregus probability
distribution from real two-space. Then, saying that the points are fggest amounts to examine
properties which are true with probability one for thgoints. Affine dependencies for example
would then occur with probability zero and are automatically excluded froninberest. One can
generalize this ideato the lines example: one can parameterize the lines byreefmrspace, which
in this case is two-dimensional (slope and ordinate), and then sample linesnigitlistributed in
this space (one has of course to make clear what this means). For exiémeglgjing on each other
or more than two lines intersecting at a point would occur with probability z@nze the part of
parameter space for this situation would have measure zero under theogimbility distribution.

When we work with polynomials and ideals, the situation gets a bit more complicatedeb
idea is the same. Polynomials are uniquely determined by their coefficientgysoah naturally
be considered as objects in the vector space of their coefficients. Sirmalaitjeal can be specified
by giving the coefficients of some set of generators. Let us make this mplieie suppose first
we have given a single polynomiéle C[Xy, ... Xp] of degreek.

In multi-index notation, we can write this polynomial as a finite sum

f= Z CcaX®  withcy € C.

acND

This means that the possible choices faran be parameterized by t{B*) coefficientsc; with
Il]l1 < k. Thus polynomials of degrdewith complex coefficients can be parameterized by complex
(°%)-space.

Algebraic sets can be similarly parameterized by parameterizing the gesevétibie corre-
sponding ideal. However, this correspondence is highly non-unigudifferent generators may
give rise to the same zero set. While the parameter space can be made ynidjuielihg out
redundancies, which gives rise to the Hilbert scheme, we will instead eseettundant, though
pragmatic characterization in terms of a finite dimensional vector spaceCbwéthe correct di-
mension.

We will now fix notation for the parameter space of polynomials and endow it alglbraic
structure. The extension to ideals will then be derived later. Let us wfitéor complex (°;)-
space (we assuni2as fixed), interpreting it as a parameter space for the polynomials ofelegse
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shown above. Since the parameter spaf@as isomorphic to comple(D:k)-space, we may speak
about algebraic sets ifMy. Also, My carries the complex topology induced by the topology on
R% and by topological isomorphy the Lebesgue measure; thus it also maleesteespeak about
probability distributions and random variables 8#. This dual interpretation will be the main
ingredient in our definition of genericity, and will allow us to relate algebragutts on genericity
to the probabilistic setting in the applications. A% is a topological space, we may view any
algebraic set ifMy as an event if we randomly choose a polynomiaMg

Definition 29 Let X be a random variable with values i#,. Then an event for X is called al-
gebraic event or algebraic property if the corresponding event sétjjris an algebraic set. It is
called irreducible if the corresponding event setiy is an irreducible algebraic set.

If an eventA is irreducible, this means that if we wrifeas the eventA; andAy”, for algebraic
eventsAy, Ay, thenA = Aq, or A= A,. We now give some examples for algebraic properties.

Example 30 The following events o are algebraic:
1. The sure event.
2. The empty event.
The polynomial is of degreror less.
The polynomial vanishes on a prescribed algebraic set.
The polynomial is contained in a prescribed ideal.

The polynomial is homogenous.

N o o & W

The polynomial is a square.
8. The polynomial is reducible.

Properties 1-5 are additionally irreducible.

We now show how to prove these claims: 1-2 are clear, we first provetbperties 3-5 are
algebraic and irreducible. By definition, it suffices to prove that the etubs? corresponding
to those polynomials is an irreducible algebraic set. We claim: in any of thoss,dé® subset
in question is moreover a linear subspace, and thus algebraic and ibleduthis can be easily
verified by checking directly that ify, f» fulfill the property in question, thef, + a f, also fulfills
the property.

Property 6 is algebraic, since it can be described as the disjunction afdperpes “The poly-
nomial is homogenous and of degneefor all n < k. Those single properties can be described
by linear subspaces dffx as above, thus property 6 is parameterized by the union of those linear
subspaces. In general, these are orthogonal, so property 6 isauitdiile.

Property 7 is algebraic, as we can check it through the vanishing oftensys generalized
discriminant polynomials. One can show that it is also irreducible since thsesafil in question
corresponds to the image of a Veronese map (homogenization to deigraestrategy); however,
since we will not need such a result, we do not prove it here.

Property 8 is algebraic, since factorization can also be checked byfsgfsations. One has to
be careful here though, since those equations depend on the defjlees$actors. For example, a
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polynomial of degree 4 may factor into two polynomials of degree 1 and 3, twdrpolynomials
of degree 2 each. Since in general each possible combination defifeesrditets of equations and
thus different algebraic subsets®f, property 8 is in general not irreducible (fo 3 it is).

The idea defining a choice of polynomial as generic follows the intuition of tierad non-
sequitur: a generic, resp. generically chosen polynomial should iditday algebraic property.
A generic polynomial, having a particular simple (i.e., irreducible) algebraipenty, should not
fulfill any other algebraic property which is not logically implied by the firseotdere, algebraic
properties are regarded as the natural model for restrictive anahelege conditions, while their
logical negations are consequently interpreted as generic, as wedwvénsExample 30. These
considerations naturally lead to the following definition of genericity in a pgooiséic context:

Definition 31 Let X be a random variable with values #y. Then X is called generic, if for any
irreducible algebraic events B8, the following holds:
The conditional probability (A|B) exists and vanishes if and only if B does not imply A.

In particular,B may also be the sure event.

Note that without giving a further explication, the conditional probabHgyA|B) is not well-
defined, since we condition on the ev@vhich has probability zero. There is also no unique way
of remedying this, as for example the Borel-Kolmogorov paradox show&ettion B.2, we will
discuss the technical notion which we adopt to ensure well-definedness.

Intuitively, our definition means that an event has probability zero to agal@ss it is logically
implied by the assumptions. That is, degenerate dependencies betwatndevaeot occur.

For example, non-degenerate multivariate Gaussian distributions ori@ausgture distribu-
tions on9 are generic distributions. More general, any positive continuous pildpatistribu-
tion which can be approximated by Gaussian mixtures is generic (see Exampleh@s we argue
that non-generic random variables are very pathological cases. hdatever, that our intention
is primarily not to analyze the behavior of particular fixed generic randariables (this is part
of classical statistics). Instead, we want to infer statements which follovirowwt the particular
structure of the probability function but solely from the fact that it is genexs these statements
are intrinsically implied by the conditional postulate in Definition 31 alone. We wikkulis the
definition of genericity and its implications in more detail in Section B.2.

With this definition, we can introduce the terminology of a generic object: it imamgerandom
variable which is object-valued.

Definition 32 We call a generic random variable with valuesi a generic polynomial of degree
k. When the degree k is arbitrary but fixed (and stillL), we will say that f is a generic polynomial,
or that f is generic, if it is clear from the context that f is a polynomial. If tegrée k is zero, we
will analogously say that f is a generic constant.

We call a set of constants or polynomials.f., f, generic if they are generic and independent.

We call an ideal generic if it is generated by a set of m generic polynomials.

We call an algebraic set generic if it is the vanishing set of a generic ideal.
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Let? be an algebraic property on a polynomial, a set of polynomials, an idean@lgebraic
set (e.g., homogenous, contained in an ideal et.). We will call a polynoangadt of polynomials,
or an ideal, a generie? polynomial, set, or ideal, if it the conditional of a generic random variable
with respect taP.

If 4 is a statement about an object (polynomial, ideal etc), @rah algebraic property, we will
say briefly “A generic? object is2” instead of saying “A genericP object is4 with probability
one”.

Note that formally, these objects are all polynomial, ideal, algebraic set aleeel random
variables. By convention, when we state something about a generic dhjsat;ill be an implicit
probability-one statement. For example, when we say

“A generic green ideal is blue”,
this is an abbreviation for the by definition equivalent but more lengthy statieme

“Let f1,..., fm be independent generic random variables with value®fi ..., M. If the
ideal (f1,..., fm) is green, then with probability one, it is also blue - this statement is independent
of the choice of thd; and the choice of which particular generic random variables we use tdesamp

On the other hand, we will use the verb “generic” also as a qualifier fonsttuting generic
distribution”. So for example, when we say

“The Z of a generic red polynomial is a generic yellow polynomial”,
this is an abbreviation of the statement

“Let X be a generic random variable @i, let X’ be the yellow conditional oX. Then the Z
of X" is the red conditional of some generic random variable - in particular thisvstates inde-
pendent of the choice d&fand the choice oX.”

It is important to note that the respective random variables will not be maadeiein the fol-
lowing subsections, since the statements will rely only on its property of b&ngrg, and not on
its particular structure which goes beyond being generic.

As an application of these concepts, we may now formulate the problem ofactmgrumu-
lants in terms of generic algebra:
Problem 33 Lets = I(S), where S is an unknown d-dimensional subspad&PofLet

with f; € s generic of fixed degree each (in our case, one and two), such/Ahat s.
Then determine a reduced Groebner basis (or another simple gergstatem) fos.

As we will see, genericity is the right concept to model random samplinglghpmials, as we
will derive special properties of the ideaWhich follow from the genericity of the;.
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B.2 Zero-Measure Conditionals, and Relation to Other Types of Generity

In this section, se will discuss the definition of genericity in Definition 31 arslenits well-
definedness. Then we will invoke alternative definitions for genericity trow their relation to
our probabilistic intuitive approach from section B.1. As this section contatimical details and
is not necessary for understanding the rest of the appendix, therneay opt to skip it.

An important concept in our definition of genericity in Definition 31 is the conddigroba-
bility Px(A|B). As B is an algebraic set, its probabili (B) is zero, so the Bayesian definition
of conditional cannot apply. There are several ways to make it welelfiin the following, we
explain the Definition of conditional we use in Definition 31. The definition afdibonal we use
is one which is also often applied in this context.

Remark 34 Let X be a real random variable (e.g., with valuesify) with probability measure .
If uis absolutely continuous, then by the theorem of Radon-Nikodyne, igharunique continuous
density p such that

u(U)=/Upd>\

for any Borel-measurable set U and the Lebesgue measulfeve assume that p is a continuous
function, it is unique, so we may define a restricted measgi@the event set of B by setting

vU) = [ paH,

for Borel subsets of U and the Hausdorff measure H on B(B is finite and non-zero, that is,

is absolutely continuous with respect to H, then it can be renormalized togiebehditional prob-
ability measure (1)|g = v(.)/v(B). The conditional probability (A|B) has then to be understood
as

P(AB) = [ 1(ANB)dple,
whose existence in particular implies that the Lebesgue integf@sare all finite and non-zero.

As stated, we adopt this as the definition of conditional probability for algelsetsA andB. It
is important to note that we have made implicit assumptions on the random vafiaglesing the
conditionalsPx (A|B) in Remark 34 (and especially by assuming that they exist): namely, the exis-
tence of a continuous density function and existence, finiteness, andan@hing of the Lebesgue
integrals. Similarly, by stating Definition 31 for genericity, we have made similsuraptions on
the generic random variab}, which can be summarized as follows:

Assumption 35 X is an absolutely continuous random variable with continuous density function
p, and for every algebraic event B, the Lebesgue integrals

/de,
B

where H is the Hausdorff measure on B, are non-zero and finite.

This assumption implies the existence of all conditional probabilRg#\B) in Definition 31,
and are also necessary in the sense that they are needed for the palglttidoe well-defined. On
the other hand, if those assumptions are fulfilled for a random variablegutanatically generic:
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Remark 36 Let X be aMi-valued random variable, fulfilling the Assumptions in 35. Then, the
probability density function of X is strictly positive. Moreover, X is a genenan variable.

Proof Let X be aMy-valued random variable fulfilling the Assumptions in 35. Ipdte its contin-
uous probability density function.

We first show positivity: ifX would not be strictly positive, thep would have a zero, say.
TakingB = {x}, the integral(; pdH vanishes, contradicting the assumption.

Now we prove genericity, that is, that for arbitrary irreducible algebpaapertiesA,B such
that B does not implyA, the conditional probability (A|B) vanishes. Sinc® does not imply
A, the algebraic set defined B is not contained imPA. Moreover, asB and A are irreducible
and algebraicAN B is also of positive codimension iB. Now by assumptionX has a positive
continuous probability density functiohwhich by assumption restricts to a probability density on
B, being also positive and continuous. Thus the integral

Pe(AIB) = [ 1aT(9dH,

whereH is the Hausdorff measure d) exists. Moreover, it is zero, as we have derived thhas
positive codimension iB. |

This means that already under mild assumptions, which merely ensure wakdiediss of the
statement in the Definition 31 of genericity, random variables are genetie. sffongest of the
comparably mild assumptions are the convergence of the conditional integhath allow us to
renormalize the conditionals for all algebraic events. In the following exanaptgeneric and a
non-generic probability distribution are presented.

Example 37 Gaussian distributions and Gaussian mixture distributions are generic,feiraey
algebraic seB, we have

/B 150 dH = O(t4™8),

whereB(t) = {x € R"; ||x|| < t} is the open disc with radius Note that this particular bound
is false in general and may grow arbitrarily large when we d@nliteing algebraic, even B is a
smooth manifold. ThuBx (A|B) is bounded from above by an integral (or a sum) of the type

/ exp(—t?)t2dt withaec N
0

which is known to be finite.

Furthermore, sums of generic distributions are again generic; alsoaariefer that any contin-
uous probability density dominated by the distribution of a generic densityededigain a generic
distribution.

An example of a non-generic but smooth distribution is given by the densittitin

p(X,y) = _,;[e‘x“ v

where/\( is some normalizing factor. Whilp is integrable orR?, its restriction to the coordinate
axesx = 0 andy = 0 is constant and thus not integrable.
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Now we will examine different known concepts of genericity and relate thaefly to the one
we have adopted.

A definition of genericity in combinatorics and geometry which can be encorohie different
variations is that there exist no degenerate interpolating functions betheebjects:

Definition 38 Let R, ..., Py be points in the vector spad&'. Then R, ..., P, are general position
(or generic, general) if no # 1 points lie on a hyperplane. Or, in a stronger version: for ang i,
no (possibly inhomogenous) polynomial of degree d vanish¢3@h + 1 different F.

As My is a finite dimensionaC-vector space, this definition is in principle applicable to our situa-
tion. However, this definition is deterministic, as fAeare fixed and no random variables, and thus
preferable when making deterministic statements. Note that the stronger defimigiquivalent to
postulating general position for the poifs .. ., Py, in any polynomial kernel feature space.

Since not lying on a hyperplane (or on a hypersurface of det)rieeC" is a non-trivial algebraic
property for any point which is added beyond tiéh (resp. the(”gd)-th) pointR, (interpreted as
polynomial in M), our definition of genericity implies general position. This means that gener
polynomialsfy,..., fn € My (almost surely) have the deterministic property of being in general
position as stated in Definition 38. A converse is not true for two reasass:tfieR are fixed and
no random variables. Second, even if one would define genericity in tfmaadom variables such
that the hyperplane (resp. hypersurface) conditions are nevélefijithere are no statements made
on conditionals or algebraic properties other than containment in a hyperp@lso Lebesgue zero
sets are not excluded from occurring with positive probability.

Another example where genericity classically occurs is algebraic geoméiteye it is defined
rather general for moduli spaces. While the exact definition may depenieosituation or the
particular moduli space in question, and is also not completely consistent, trcases, genericity
is defined as follows: general, or generic, properties are propertiehvkold on a Zariski-open
subset of an (irreducible) variety, while very generic properties hal@ @ountable intersection
of Zariski-open subsets (which are thus paradoxically "less” genesin teneral resp. generic
properties in the algebraic sense, as any general resp. generertprispvery generic, while the
converse is not necessarily true). In our special situation, which isftine @arameter space of
tuples of polynomials, these definitions can be rephrased as follows:

Definition 39 Let BC CK be an irreducible algebraic set, let P (f1,..., fy) be a tuple of poly-
nomials, viewed as a point in the parameter spacdBen a statement resp. property A of P is
called very generic if it holds on the complement of some countable uhalgebraic sets in BA
statement resp. property A of P is called general (or generic) if it holdthe complement of some
finite union of algebraic sets in.B

This definition is more or less equivalent to our own; however, our defingidds the practical
interpretation of generic/very generic/general properties being trugowathability one, while their
negations are subsequently true with probability zero. In more detalil, thespandence is as
follows: If we restrict ourselves only to algebraic properfied is equivalent to say that the property
A'is very generic, or general for tHein B, and to say with our original definition that a gendpic
fulfilling B is alsoA; since ifA is by assumption an algebraic property, it is both an algebraic set
and a complement of a finite (countable) union of algebraic sets in an ifbdeladgebraic set, so

A must be equal to an irreducible componenBpfsinceB is irreducible, this implies equality of
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A andB. On the other hand, i\ is an algebraic property, it is equivalent to say that the property
not-A is very generic, or general for thein B, and to say with our original definition that a generic
P fulfilling B is notA - this corresponds intuitively to the probability-zero conditi®fA|B) = 0
which states that non-generic cases do not occur. Note that by assoymatié is then always the
complement of a finite union of algebraic sets.

B.3 Arithmetic of Generic Polynomials

In this subsection, we study how generic polynomials behave under elbggarations in rings and
ideals. This will become important later when we study generic polynomials aatsid

To introduce the reader to our notation of genericity, and since we will usprisented facts
and similar notations implicitly later, we prove the following

Lemma 40 Let f € C[Xy,...,Xp] be generic of degrees Khen:
(i) The productif is generic of degree k for any fixede C\ {0}.
(i) The sum f+ g is generic of degree k for anygC[Xy, ..., Xp] of degree k or smaller.
(i) The sum f+g is generic of degree k for any generied’[Xy, ..., Xp] of degree k or smaller.

Proof (i) is clear since the coefficients gf are multiplied only by a constant. (ii) follows directly
from the definitions since adding a constgminly shifts the coefficients without changing generic-
ity. (iii) follows since f, g are independently sampled: if there were algebraic dependencies hetwee
the coefficients off + g, then eitherf or g was not generic, or thé, g are not independent, which
both would be a contradiction to the assumption. |

Recall again what this Lemma means: for example, Lemma 40 (i) does notssageaould
think:

“Let X be a generic random variable with values in the vector space of degralgnomials.
ThenX = aX for anya € C\ {0}.”

The correct translation of Lemma 40 (i) is:

“Let X be a generic random variable with values in the vector space of degralgnomials.
ThenX’ = aX for any fixeda € C\ {0} is a generic random variable with values in the vector space
of degreek polynomials”

The other statements in Lemma 40 have to be interpreted similarly.

The following remark states how genericity translates through dehomotjeniza

Lemma 41 Let f € C[Xy,...,Xp] be a generic homogenous polynomial of degree d
Then the dehomogenizatiof, ..., Xp_1,1) is a generic polynomial of degree d in the polynomial

ring C[Xq,...,Xp_1].
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Similarly, lets A C[Xy,...,Xp] be a generic homogenous ideal. Let § be a generic homoge-
nous polynomial of degree d
Then the dehomogenizatioX, ..., Xp_1,1) is a generic polynomial of degree d in the dehomog-
enization ofs.

Proof For the first statement, it suffices to note that the coefficients of a homogg@atynomial of
degreed in the variables{y, ..., Xp are in bijection with the coefficients of a polynomial of degree

d in the variables{y, ..., Xp_1 by dehomogenization. For the second part, recall that the dehomog-
enization ofs consists exactly of the dehomogenizations of elementslimparticular, note that the
homogenous elements ©bf degread are in bijection to the elements of degke the dehomog-
enization ofs. The claims then follows from the definition of genericity. |

B.4 Generic Spans and Generic Height Theorem

In this subsection, we will derive the first results on generic ideals. Weleiille an statement about
spans of generic polynomials, and generic versions of Krull's prindéges! and height theorems
which will be the main tool in controlling the structure of generic ideals. Thisitramediate
applications for the cumulant comparison problem.

Now we present the first result which can be easily formulated in termsnefrigpdty:

Proposition 42 Let P be an algebraic property such that the polynomials with property @ for
vector space V. Letf..., f € C[Xy,...Xp] be generic polynomials satisfying Fhen

rank spafify,..., f) = min(m,dimV).
Proof It suffices to prove: if <M, thenf; is linearly independent fronfy,, . .. fi_1 with probability
one. Assuming the contrary would mean that for soywee have
i—1

fi = z fxox  for somegy € C,
K=o

thus giving several equations on the coefficients;oBut these are fulfilled with probability zero
by the genericity assumption, so the claim follows. |

This may be seen as a straightforward generalization of the statement: thefspgeneric
points inCP has dimension mim, D).

We now proceed to another nontrivial result which will now allow us to fdateia generic
version of Krull’s principal ideal theorem:

Proposition 43 Let ZC CP be a non-empty algebraic set, letsfC[Xy, ... Xp] generic. Then f is
no zero divisor in0(Z) = C[Xy,...Xp]/1(2).

Proof We claim: being a zero divisor i®(Z) is an irreducible algebraic property. We will prove
that the zero divisors i®(Z) form a linear subspace df, and linear spaces are irreducible.
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For this, one checks that sums and scalar multiples of zero divisors areeats divisors: if
01,02 are zero divisors, there must exigt h, such thaig:h; = g2h, = 0. Now for anya € C, we
have that

(91 +agz)(hihz) = (g1h1)h2 4 (g2h2)ahy = 0.

This proves thatg; + agy) is also a zero divisor, proving that the zero divisors form a linear sub-
space and thus an irreducible algebraic property.

To apply the genericity assumption to argue that this event occurs with lglibpaero, we
must exclude the possibility that being a zero divisor is trivial, that is, alwhg case. This is
equivalent to proving that the linear subspace has positive codimemdiat is true if and only if
there exists a non-zero divisor (Z). But a non-zero divisor always exists since we have assumed
Zis non-empty: thus(E) is a proper ideal, an@(Z) containsC, which contains a non-zero divisor,
for example, the one element.

So by the genericity assumption, the event thit a zero divisor occurs with probability zero,
that is, a generid is not a zero divisor. Note that this does not depend on the degree of M

Note that this result is already known, compare Conjecture B in Pardd€)20
A straightforward generalization using the same proof technique is givémetfollowing

Corollary 44 LetI <CJ[Xy,...,Xp], let P be a non-trivial algebraic property. Letd C[X,...Xp]

be a generic polynomial with property P. If one can write=ff’ + ¢, where f is a generic
polynomial subject to some property, Rnd c is a generic constant, then f is no zero divisor in
C[X4g,...,%p]/1.

Proof First note thatf is a zero divisor inC[Xy,...,Xp]/I if and only if f is a zero divisor in
C[X1,...,Xp]/V/I. This allows us to reduce to the case tfiat | (Z) for some algebraic s@&C CP.
Now, as in the proof of Proposition 43, we see that being a zero divisofZn is an irreducible
algebraic property and corresponds to a linear subspa@é oivherek = degf. The zero divisors
with propertyP are thus contained in this linear subspace. Now leé generic with propertl as
above. By assumption, we may wrife= f’ 4 c. But c is (generically) no zero divisor, sbis also
not a zero divisor, since the zero divisors form a linear subspa@éofhus f is no zero divisor.
This proves the claim. |

Note that Proposition 43 is actually a special case of Corollary 44, sinceawenrite any
generic polynomiaf as f’ + ¢, wheref’ is generic of the same degree, anid a generic constant.

The major tool to deal with the dimension of generic intersections is Krull's jpahdédeal
theorem:

Theorem 45 (Krull's principal ideal theorem) Let R be a commutative ring with unit, letefR
be non-zero and non-invertible. Then
ht(f) <1,

with equality if and only if f is not a zero divisor in R.
The reader unfamiliar with height theory may take
ht7 = codimV(TI)

as the definition for the height of an ideal (caveat: codimension has to &e itak).
Reformulated geometrically for our situation, Krull's principal ideal theomeplies:
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Corollary 46 Let Z be a non-empty algebraic set@?.Then
codimZnV(f)) < codimZ+ 1.

Proof Apply Krull’s principal ideal theorem to the rinB= O(Z) = C[Xy,...,Xp]/1(2). [

Together with Proposition 43, one gets a generic version of Krull's pradéijeal theorem:

Theorem 47 (Generic principal ideal theorem) Let Z be a non-empty algebraic setGf, let R=
0(Z), and let fe C[Xy,...,Xp] be generic. Then we have

ht(f) = 1.
In its geometric formulation, we obtain the following result.

Corollary 48 Consider an algebraic set Z CP, and the algebraic se¥(f) for some generic
f € C[Xq,...,Xp]. Then

codimZNV(f)) =min(codimZ+1, D+1).

Proof This is just a direct reformulation of Theorem 47 in the vein of Corollary Z6e only
additional thing that has to be checked is the case where abei® + 1, which means thak is
the empty set. In this case, the equality is straightforward. [ |

The generic version of the principal ideal theorem straightforwardhegmizes to a generic
version of Krull's height theorem. We first mention the original version:

Theorem 49 (Krull's height theorem) Let R be a commutative ring with unit, Iet= (fq,..., f;) <
R be anideal. Then
htr <m,

with equality if and only if {, ..., fm is an R-regular sequence, that is,i$ not invertible and not a
zero divisor in the ring R(f4,..., fi_1) for all i.

The generic version can be derived directly from the generic prinipal theorem:

Theorem 50 (Generic height theorem)Let Z be an algebraic set i°, let I = (fy,..., f)) be a
generic ideal inC[Xy,...,Xp]. Then

ht(1(Z) + I) = min(codimZ+m, D+1).

Proof We will write R= O(Z) for abbreviation.

First assumen < D + 1 — codimZ. It suffices to show thafy, ..., f,, forms anR-regular se-
guence, then apply Krull’s height theorem. In Proposition 43, we haweegrthatf; is not a zero
divisor in the ringO(ZNV (fy,..., fi_1)) (note that the latter ring is nonzero by Krull's height the-
orem). By Hilbert’s Nullstellensatz, this is the same as the RAg/(f1,. .., fi_1). But by the defi-
nition of radical, this implies that; is no zero divisor in the rin@R/(f1,..., fi_1), since iffi-h=0
in the first ring, we have

(fi-hN = f;- (V1Y) =0
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in the second. Thus th§ form an R-regular sequence, proving the theorem for the case
D-+1-codimZ.

If now m> k:= D+ 1—codimZ, the above reasoning shows that the radica{df - ( f1, ..., fx)
is the modulg1), which means that those are equal. Thus

(Z)+ (1., fi) = 1(Z) + (f1,..., ) = (1),

proving the theorem.
Note that we could have proved the generic height theorem also diremtiytfre generic prin-
cipal ideal theorem by induction. |

Again, we give the geometric interpretation of Krull's height theorem:

Corollary 51 Let Z; be an algebraic set iltP, let Z, be a generic algebraic set i6°. Then one
has

codim(Z; NZy) = min(codimZ; + codimZ,, D+ 1).

Proof This follows directly from two applications of the generic height theorenfi€tfor Z = CP
andZ, = V(I), showing that codir#; is equal to the numben of generators of ; then, forZ = 7;
andZ; = V(I), and substitutingn = codimZy. [ |

We can now immediately formulate a homogenous version of Proposition 51.:

Corollary 52 Let Z; be a homogenous algebraic set@®, let Z, be a generic homogenous alge-
braic set inCP. Then one has

codim(Z; N Zz) = min(codimZ; + codimZy, D).

Proof Note that homogenization and dehomogenization of a non-empty algebrd@rsetchange
its codimension, and homogenous algebraic sets always contain the orlgm.ofie has to note
that by Lemma 41, the dehomogenizatiorZefis a generic algebraic set P 1. |

Finally, using Corollary 44, we want to give a more technical variant ofglmeeric height
theorem, which will be of use in later proofs. First, we introduce some alatirgy notations:

Definition 53 Let f € C[Xy,...Xp] be a generic polynomial with property P. If one can write
f = f’+c, where fis a generic polynomial subject to some propertydd c is a generic constant,
we say that f has independent constant term. If ¢ is generic and indepewith respect to some
collection of generic objects, we say that f has independent constantwith respect to that
collection.

In this terminology, Corollary 44 rephrases as: a generic polynomial witgp@ddent constant term
is no zero divisor. Using this, we can now formulate the correspondingntaof the generic height
theorem:
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Lemma 54 Let Z be an algebraic set itP. Let f;,..., fn € C[X1,...,Xp] be generic, possibly
subject to some algebraic properties, such thatas independent constant term with respect to Z
and f,..., fi_1. Then

ht(1(Z) + I) = min(codimZ+m, D+ 1).

Proof Using Corollary 44, one obtains thatis no zero divisor moduloE) + (f1,..., fit1). Using
Krull's height theorem yields the claim. |

B.5 Generic Ideals

The generic height theorem 50 has allowed us to make statements abouitchesiof ideals gener-
ated by generic elements without constraints. However, the idigabur the cumulant comparison
problem is generic subject to constraints: namely, its generators arénamhiaa prescribed ideal,
and they are homogenous. In this subsection, we will use the theory dedesm far to study

generic ideals and generic ideals subject to some algebraic propertiegafaple, generic ideals
contained in other ideals. We will use these results to derive an identifiabgiijt @ the marginal-

ization problem which has been derived already less rigorously in thiE@esupntary material of von
Bunau et al. (2009) for the special case of Stationary Subspace Amalys

Proposition 55 Lets < C[X,...,Xp] be an ideal, having an H-basis g..,gn. Let
I={(f1,....,fm), m>maxD-+1,n)
with generic {f € s such that
degf; > mjax(deggj) forall 1<i<m.
Then!l =s.

Proof First note that since thg form a degree-first Groebner basis, a genérics is of the form
n
f= z okhk  with generichy,
K=1

where the degrees of tg are appropriately chosen, that is, teg< degf — deggk.
So we may write

n
fi = Z okhki  with generichy;,
K=1

where thehy; are generic with appropriate degrees, and independently chosen. Yddsoassume
that thef; are ordered increasingly by degree.

To prove the statement, it suffices to show that I for all j. Now the height theorem 50
implies that
(h11,...ham) = (1),
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since thehy; were independently generic, and> D + 1. In particular, there exist polynomials

S1,...,Sn such that
m
shy =1
2

le fi = ZlS Z okhwi = z Ok leihki

=0+ ) Zshki =101+ Z A
= i= k=2

Thus we have that

Subtracting a suitable multiple of this element from fhe . ., f,, we obtain
z Ok (ki — hy hk Z gkhk|

We may now considdmn;h, as fixed, while théy; are generic. In particular, thg; have independent
constant term, and using Lemma 54, we may conclude that

< /217"‘7 /2m> = <1>7
allowing us to find an element of the form

92+kigk----

in I. lterating this strategy by repeatedly applying Lemma 54, we seethiatcontained in/,
because the idealsands have same height. Since the numbering forghaas arbitrary, we have
proved thag; € I, and thus the proposition. |

The following example shows that we may not take the degrees df ttanpletely arbitrary in the
proposition, that is, the condition on the degrees is necessary:

Example 56 Keep the notations of Proposition 55. Let= (X — X2, X3), and f; € s generic of
degree one. Then
(f1,..., Tm) = (X3).
This example can be generalized to yield arbitrarily bad results if the condititimeadegrees is not
fulfilled.
However note that whesis generated by linear forms, as in the marginalization problem, the
condition on the degrees vanishes.

We may use Proposition 55 also in another way to derive a more detailedrvefdle generic
height theorem for constrained ideals:

Proposition 57 LetV be afixed complete intersection seth i.e. an algebraic set of codimension
d such that there exist d generators g.,gq for (V). Let fi, ..., fm be generic forms im(V) such
that degfi > max; (degg;) for 1 <i <m. Then we can writd/(fy,..., fn) =V UU with U an
algebraic set of

codimU > min(m, D+1),

the equality being strict for i d.
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Proof If m> D+ 1, this is just a direct consequence of Proposition 55.
First assumen = d. Consider the situation modubgy,, ..., Xp. This corresponds to looking at
the situation

V(fy,...,fm)NHCH= Q™

whereH is the linear subspace given b, = --- = Xp = 0. Since the coordinate system was
generic, the element§ will be also generic modulX ..., Xp, and we have by Proposition 55
that V(f4,..., fm) "H =V NH. Also, theH can be regarded as a generic linear subspace, thus by
Corollary 51, we see that(M,..., f,,) consists o and possibly components of equal or higher
codimension. This proves the claim for= codimV.

The casan < d follows from Krull's principal ideal theorem 45: it states that the codimemsio
of V(fy,..., fi) increases at most by one when increasibyg one; above, we have proved equality
for i = d. Thus, the codimension of (\y, ..., f;) must have beenfor everyi < d. This yields the
claim.

Now we prove the remaining case> d. We will assume thain= D + 1 and prove the statement
for the sets Vfy,..., fi),d <i < m. By the Lasker-Noether-Theorem, we may write

V(fl,..., fd) =VUZiU---UZyN
for finitely many irreducible componeng with codimZ; > d. Proposition 55 states that

Fori > d, write now
Zji :Zj ﬂV(fl,...,fi) :Zj ﬁV(fd+1,..., fi).

With this, we have the equalities

V(o ) = V(e () AV (T, )
:VU(ZlmV(fd-l-la"'afi))U“'U(ZNﬂV(fd—i-lv"'vfi))
=VUZjU---UZni.

for i > d. Thus, reformulated, Proposition 55 states that = @ for any j. We can now infer by
Krull’s principal ideal theorem 45 that

codimZ; < codimZji_1+1

foranyi, j. Butsince codinZj, = D+ 1, and codinZjq > d, this can only happen when codiy >
i for anyd <i <m. Thus we may write

V(fy,...,fi)=VUU withU =2Z;;U---UZy;

with codimU > i, which proves the claim fom > codimV. [ |

Note that depending ovi and the degrees of thig it may happen that even in the generic case,
the equality in Proposition 57 is not strict for> codimV:
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Example 58 Let V be a generic linear subspace of dimensibm CP, let fy,..., fn, € I(V) be
generic with degree one. Then(¥,..., fn) is a generic linear subspace of dimension (ax
m,d) containingV. In particular, if m> D —d, then (fy,..., fn) = V. In this exampleU =
V(fy,..., fm), if m< codimV, with codimensiorm, andU = &, if m > codimV, with codimen-
sionD + 1.

Similarly, one may construct generic examples with arbitrary behavior fdimdd whenm >
codimV, by choosing/ and the degrees df appropriately.

Algebraic sets which are not complete intersection sets are still containemleate inter-
section set of same dimension, so the following similar result holds for agpétgebraic sets:

Corollary 59 Let V be a fixed algebraic set i@®, of codimension d; letg...,gq be a regular
sequence ih(V), let n be the cardinality of some H-basisl¢¥ ). Let f, ..., f, be generic forms in
[(V) such thatdegf; > max; (degg;) for 1 <i <m. Then we can writ¥ (fy,..., fm) =V UU with
an algebraic set U whose codimension satisfies

codmU =m if m<d
codimU >min(D+14+m—nmD+1) if m>d.

Proof This follows in analogy to Proposition 57. |
Similarly as in the geometric version for the height theorem, we may derive libeviog geo-
metric interpretation of this result:

Corollary 60 LetV C Z; be fixed algebraic sets ii°®. Let % be a generic algebraic set P
containing V Then

codim(ZyNZz\V) > min(codim(Z; \ V) +codim(Z;\ V), D+1).

Informally, we have derived a height theorem type result for algelticunder the constraint that
they contain another prescribed algebraic\set

We also give a homogenous version of Proposition 57, since the idealslieomsider are
homogenous complete intersection:

Corollary 61 Let V be a fixed homogenous complete intersection s€Pin Let f;,..., f, be
generic homogenous forms V), satisfying the degree condition as in Proposition 57. Then
V(f1,..., fm) =V +U with U an algebraic set fulfilling

codimU > min(m, D).

In particular, if m> D, thenV/(f4,..., fm) = V. Also, the maximal dimensional part¥éf f1,..., fm)
equals V if and only if m> D —dimV.

Proof This follows immediately by dehomogenizing, applying Proposition 57, and heninigg
again. |
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From this Corollary, we now can directly derive a statement on the negeassmber of epochs
for the identifiability of the projection making several random variables apjgentical. For the
convenience of the reader, we recall the setting and then explain windifielglity means. The
problem we consider in the main part of the paper can be described agdollo

Problem 62 Let Xi,...,Xm be random variables, let
G = [T1,..., Tp] o (K2(Xi) —K2(Xm)), 1 <i<m-—-1

and
fi = [Tl,...,TD} O(Kl(xi) —K1<Xn~0>, 1<i<m-1

be the corresponding cumulant polynomials in the formal variables T Tp. What can one say
about the set
S = V(ql, ey Om-1, fi,..., fm—l)-

If there is a linear subspa&won which the cumulants agree, then thef; vanish orS. If we assume
that this happens generically, the problem reformulates to

Problem 63 Let S be a d-dimensional linear subspace(®}, lets = I(S), and let f,..., fy be
generic homogenous quadratic or linear polynomialsirHow does S= V(fy,..., fy) relate to
S?.

Before giving bounds on the identifiability, we first begin with a direct esugnce of Corol-
lary 61:

Remark 64 The highest dimensional part of SV (fy,..., fy) is S if and only if
N>D-d.

For this, remark that(B) is generated in degree one, and thus the degree condition in Corollary 61
becomes empty.
We can now also get an identifiability result far

Proposition 65 Let fi,..., fy be generic homogenous polynomials of degree one or two, vanishing
on a linear space S of dimension=d0. Then S is identifiable from the d&lone if

N>D-d+ 1
Moreover, if all § are quadrics, then S is identifiable from thealfone only if
N> 2.

Proof Note that thefq, ..., fy are generic polynomials containedsin= I(S).

First assumé\N > D —d + 1. We prove thaSSis identifiable: using Corollary 61, one sees now
that the common vanishing set of thigis S up to possible additional components of dimension
d— 1 or less; that is, the radical of the ideal generated byfithas a prime decomposition

<f1,...,fN):50p1ﬁ"'ﬂPka
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where thep; are of dimensiord — 1 or less, whiles has dimensiom. So one can use one of the
existing algorithms calculating primary decomposition to identifs the unique component of the
highest dimensional part, which proves identifiabilitjNit> D —d + 1.

Now we prove the only if part: assume thdit= 1, that is, we have only a single. Sincef; is
generic with the property of vanishing &we have

D—d
fl = Oi hia
2

whereq;, ...,gp_q is Some homogenous linear generating set(®y,landhg, ..., hp_q are generic
homogenous linear forms. Thus, the zero sghYalso contains the linear spa8e=V (hy,...,hp_q)
which is a generid-dimensional linear space i@i® and thus different fron®, no algorithm can
decide whetheBor S is the correct solution, sBis not identifiable. [ |

Note that there is no obvious reason for the lower baurre D — d + 1 given in Proposition 65
to be strict. While it is most probably the best possible bound whichlsandd, in general it may
happen thas can be reconstructed from the idé&, ..., fn) directly. The reason for this is that a
generic homogenous variety of high enough degree and dimensionatossan to contain a linear
subspace of fixed dimensiahin general.
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