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Abstract

Asymptotic properties of model selection criteria for hidimensional regression models are stud-
ied where the dimension of covariates is much larger thardh®ple size. Several sufficient condi-

tions for model selection consistency are provided. NonsgSen error distributions are considered
and it is shown that the maximal number of covariates for reelection consistency depends on
the tail behavior of the error distribution. Also, suffici@enditions for model selection consistency
are given when the variance of the noise is neither known stimated consistently. Results of

simulation studies as well as real data analysis are givillustrate that finite sample performances
of consistent model selection criteria can be quite difiere

Keywords: model selection consistency, general information catgrigh dimension, regression

1. Introduction

Model selection is a fundamental task for high-dimensional statistical modeliegenhe number
of covariates can be much larger than the sample size. In such casegatlasodel selection
criteria such as the Akaike information criterion or AIC (Akaike, 1973), Blagresian information
criterion or BIC (Schwarz, 1978) and cross validations or generatimesk validation (Craven and
Wahba, 1979; Stone, 1974) tend to select more variables than ngc&esarfor example, Broman
and Speed (2002) and Casella et al. (2009). Also, Yang and Bdr®88) discussed severe selection
bias of AIC which damages predictive performance for high-dimensimoaels.

Recently, various model selection criteria for high-dimensional models les®e introduced.
Wang et al. (2009) proposed a modified BIC which is consistent whenitiendion of covariates
is diverging slower than the sample size. Here, the consistency of a nedeletisn criterion means
that the probability of the selected model being equal to the true model gas4erl. See Section 2
for a rigorous definition. The extended BIC by Chen and Chen (20@8}arrected RIC by Zhang
and Shen (2010) are shown to be consistent even when the dimensmrmaacates is larger than the
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sample size. Some sparse penalized approaches including the LASSD Absalute Shrinkage
and Selection Operator) (Tibshirani, 1996) and SCAD (Smoothly Clippesshibe Deviation) (Fan
and Li, 2001) are proven to be consistent for high-dimensional mode¢sZBao and Yu (2006) for
the LASSO and Kim et al. (2008) for the SCAD.

In this paper, we study asymptotic properties of a large class of model saledtieria based
on the generalized information criterion (GIC) considered by Shao §19Bf7e class of GICs is
large enough to include many well known model selection criteria such asl@eBAC, modified
BIC by Wang et al. (2009), risk inflation criterion (RIC) by Foster anafge (1994), modified risk
inflation criterion (MRIC) by Foster and George (1994), corrected RlZhang and Shen (2010).
Also, as we will show, the extended BIC by Chen and Chen (2008) is dsyicglly equivalent to
a GIC.

We give sufficient conditions for a given GIC to be consistent. Ourdafit conditions are
general enough to include cases where the error distribution can betlotimeGaussian and the
variance of the error distribution is not consistently estimated. For a caide dbaussian error
distribution with consistent estimator of the variance, our sufficient condifiociude most of the
previously proposed consistent model selection criteria such as the md8lifie{Wang et al.,
2009), extended BIC (Chen and Chen, 2008) and corrected Rl&h{zand Shen, 2010).

For high-dimensional models, it is not practically feasible to find the best hamdeng all pos-
sible submodels since the number of submodels are too large. A simple remetigdsstsequence
of submodels with increasing complexities (e.g., increasing number of cegrand find the best
model among them using a given model selection criterion. Examples of gotiisyy a sequence
of submodels are the forward selection procedure and solution pathenafized regression ap-
proaches. Our sufficient conditions are still valid as long as the sequéstbmodels includes the
true model with probability converging to 1. We discuss more on these iss&exfion 4.1.

The paper is organized as follows. In Section 2, the GIC is introduce8ed¢tion 3, sufficient
conditions for the consistency of GICs are given. Various remarkstadgaplication of GICs to
real data analysis are given in Section 4. In Section 5, results of simulationegll as a real data
analysis are presented, and concluding remarks follow in Section 6.

2. Generalized I nformation Criterion

Let L = {(y1,X1),-.-.,(Y¥n,Xn)} be a given data set of independent pairs of response and covariates
wherey; € Randx; € R™. Suppose the true regression model(fpx) is given as

y=xp" +¢,

whereB* € RP E(€) = 0 and Vate) = 2. For simplicity, we assume that is known. For unknown
02, see Section 4.2.

~LetY, = (yl,...,yn)' and X, be then x p, dimensional design matrix whoggh column is
Xd = (Xaj,---,%j) - For givenB € RP, let

Ra(B) = |[Ya — XnB|I%,

where|| - || is the Euclidean norm. For a given subset {1,..., pn}, let
Br= argming.g. o jereRn(B)-

1038



CONSISTENTMODEL SELECTION CRITERIA ON HIGH DIMENSIONS

For a given sequence of positive numbéig }, the GIC indexed by{A,}, denoted by GI§; ,
gives a sequence of random subsgfsof {1, ..., p,} defined as

fo,, = argmin. (1 oy Ra(Bro) + An[T00?,

where|11 is the cardinality ofit. The AIC corresponds th, = 2, the BIC toA,, = logn, the RIC of

Foster and George (1994) Ay = 2logpy, the RIC of Zhang and Shen (2010) X = 2(log pn +

loglogpn). Shao (1997) studied the asymptotic properties of the GIC focusing on thawd BIC.
Whenp, is large, it would not be wise to search all possible subsefd.0f., p,}. Instead, we

set an upper bound on the cardinalityrofsays, and search the optimal model among submodels

whose cardinalities are smaller thgya Chen and Chen (2008) considered a similar model selection

procedure. LeM> = {1tC {1,...,pn} : [T < sn}. We define the restricted GjCas

Ty, = argMinc e Ra(Bro) + An|i0?. (1)
The restricted GIC is the same as the GIG,if= p,. In the following, we will only consider the
restricted GIC and suppress the term “restricted” unless there is afiystmm

3. Consistency of GIC on High Dimensions

Lett, = {] : [Bj| # O}. We say that the GIf; is consistent if

Pr(fy, = T5) =+ 1

asn — . In this section, we prove the consistency of the GlGnder regularity conditions.
For a given subsat of {1,...,pn}, let X = (X4, j € ™) be then x |1 matrix whose columns
consist ofXd, j € L For a given symmetric matri&, let £(A) be the smallest eigenvalue Af

3.1 Regularity Conditions

We assume the following regularity conditions.

e Al : There exists a positive constavlf such thab(r‘;lxn"/n <Mjforall j=1,...,p,andall
n.

A2 : There is a positive constaht, such thaﬁ(x/mxm/n) > M for all n.

A3 : There exist positive constartsandM; such that 6< ¢; < 1/2 andp, > M3n~ %, where

pn=_inf E(X;Xn/N).

TT|m <%

A4 : There exist positive constants andM,4 such that 2, < ¢, < 1 and

=%/ min|B:] > Mj.
lety

A5 : g, = O(n%) for some 0< c3 < Cp, andgyp < Sy, whereq, = |TT;|.
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Condition A1 assumes that the covariates are bounded. Condition A2 mexdrikeldesign
matrix of the true model is well posed. Condition A3 is called the sparse Rieslitiamn and used
in Chen and Chen (2008), Zhang (2010) and Kim and Kwon (2012jhd{@ion A4 and A5 allow
the nonzero regression coefficients to converge to 0 and the numbgnaf gariables to diverge,
respectively.

Remark 1 Condition A3 implies thats< n.

3.2 TheMain Theorem

The following theorem proves consistency of the ¢10’he proofs are deferred to Appendix.

Theorem 2 SupposeE(e%) < o for some integer k> 0. If A, = o(n®~%) and @/ (Anpn) — O,
then the GIG, is consistent.

In Theorem 2,p, can diverge only polynomially fast in sincep, = o(AK) = o(nk%). Sincek
can be considered as a degree of tail lightness of the error distributeoaw conclude that the
lighter the tail of the error distribution is, the more covariates the,GI€consistent with. When
¢ is Gaussian, the following theorem proves that the ,GI€an be consistent whepy, diverges
exponentially fast.

Theorem 3 Suppose € ~ N(0,6%). If Ay = o(n% %) slogp, = o(n%? %) and
An — 2logpn —loglogp, — o, then the GIG, is consistent.

In the following, we give three examples for (i) fixgs, (ii) polynomially diverging p, and
(iii) exponentially divergingp,. For simplicity, we letc; = 0 (i.e., ph > M3 > 0), c; = 1 (i.e.,
Minjer |Bj| > 0) andcz = O (i.e.,qn is fixed). In addition, we les, be fixed.

Example 1l Consider a standard case wherg ig fixed and n goes to infinity. Theorem 2 implies
that the GIG,, is consistent i\,/n — 0 and A, — o regardless of the tail lightness (i.e., k) of
the error distribution, provided the variance exists. The BIC, which is the @ith A, = logn,
satisfies these conditions and hence is consistent. Note that the AIC deadisfy the conditions

in Theorem 2. Any GIC withh, = n®,0 < ¢ < 1 is consistent, which suggests that the class of
consistent model selection criteria is quite large. See Shao (1997) fa disgussions.

Example2 Consider a case of p=nY,y > 0. The GIC withA, =nf,0< & <1 andy < k& is
consistent. That is, for largerppwe need largei\,, for consistency, which is reasonable because
we need to be more careful not to overfit whgrigdarge. When the error distribution is Gaussian,
Theorem 3 can be compared with other previous results of consistérsly.the BIC (i.e., the GIC
with A, = logn) is consistent whep < 1/2. For 0 < y < 1, Theorem 3 implies that the modified
BIC of Wang et al. (2009), which is a GIC wiNa = loglogpnlogn, is consistent. Chen and Chen
(2008) proposed a model selection criterion called the extended Bl@ biye

fEBIC — argmir;TC{l_yu__’pn}MgKRn(ﬁn) + |mMo?logn+ 2ka?log (ﬁ%)
for some K> 0and0 < k < 1, and proved that the extended BIC is consistent wherl —1/(2y).

Sincelog(";’g) = |mlog pn for | < K, we have

Pn

’”\) = (logn+ 2k log p) |02

|Mo?logn+ 2ya?log <
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Hence, Theorem 3 confirms the result of Chen and Chen (2008).

Example 3 When the error distribution is Gaussian, the GIC can be consistent fomexyially
increasing p (i.e., ultra-high dimensional cases). The GIC with=nf,0 < & < 1 is consistent
when p = O(exp(anY)) for 0 <y < & anda > 0. Also, it can be shown by Theorem 3 that the
extended BIC witly = 1 is consistent with p= O(exp(anY)) for 0 <y < 1/2. The consistency of
the corrected RIC of Zhang and Shen (2010) can be confirmed lyrdhe3, but the regularity
conditions for Theorem 3 are more general than those of Zhang anu(@06&0).

4. Remarks

Remarks regarding to applications of the GIC to real data analysis ame give

4.1 Construction of Sub-M odels

For high-dimensional models, it is computationally infeasible to search the optiod®l among all
possible submodels. A simple remedy is to construct a sequence of subanudisdect the optimal
model among the sequence of submodels. Examples of constructing asegfisubmodels are
the forward selection (Wang, 2009) and the solution path of a sparsdizehestimator obtained
by, for example, the Lars algorithm (Efron et al., 2004) or the PLUS &lgar(Zhang, 2010). The
following algorithm exemplifies the model selection procedure with the GIC apdiese penalized
regression approach.

e For a givep sparse penalty(t) indexed byn > 0, find the solution path of a penalized
estimator{3(n) : n > 0}, where

~ p
B(n) = argmirg (Rn(B) + ZlJn(|BJ !)) :

J

The LASSO corresponds tly(t) = nt and the SCAD penalty corresponds to

Jh(t) = ntl(0<0<n)
_n)_(t2_n2
_ 2
+ {(azl)nJrf]z}l(tZaﬂ)

for somea > 2.

e LetS(n) = {j:B(n); # 0} andY'= {n: S(n) # S(N-),|S(N)| < sn}.
e Apply the GIG to §(n),n € Yto select the optimal model. That is, gt = S(n*) where

n* = argmir}]ev(Rn(f:”n) +)\n\5(n)|>

and R
By = argming _o jesin)cRn(B)-
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Itis easy to see that a consistent GIC is still consistent with a sequengk-aiadels as long as
the sequence of submodels includes the true model with probability congéodin For the LASSO
solution path, Zhao and Yu (2006) proved the selection consistency tharepresentable con-
dition, which is almost necessary (Zou, 2006). However, the irreptable condition is hardly
satisfied for high-dimensional models. The consistency of the solution pathanconvex penal-
ized estimator with either the SCAD penalty or minimax concave penalty is provéddng (2010)
and Kim and Kwon (2012). By combining Theorem 4 of Kim and Kwon (2042d Theorem 2
of the current paper, we can prove the consistency of the GIC with thé@opath of the SCAD
penalty or minimax concave penalty, which is formally stated in the following tmeore

Theorem 4 Condition A3 is replaced by A3’, where
e A3': There exist positive constants and M; such thal0 < ¢; < 1/2 andp,, > M3nCt/2.

Suppos&(e%) < o for some integer k- 0. If p, = o(nk(®2/2-%)) the under the regularity conditions
Al to A5 with A3 being replaced by A3’, the solution path of the SCAD or minimasave penalty
included the true model with probability converging to 1, and hence thg Gi@th A, = o(n%~“)

is consistent with the solution path of the SCAD or minimax concave penalty.

Remark 5 Condition A3’ is a technical modification needed for Theorem 4 of Kim andrkKw
(2012). Note that A3 is weaker than A3’, which is an advantage of usimdythenalty rather
than nonconvex penalties which are linear around O.

Remark 6 Theorem 3 can be modified similarly for the GIC with the solution path of the S&EAD
minimax concave penalty, since Theorem 4 of Kim and Kwon (2012)eamoldified accordingly
for the Gaussian error distribution.

4.2 Estimation of the Variance

To use the GIC in practice, we need to know If 62 is unknown, we can replace it by its estimate.
Theorems 2 and 3 are still valid as longasis estimated consistently. Whem is fixed, we can
estimates? consistently by the mean squared error of the full model. For high-dimeaisiata, it
is not obvious how to estimat. However, a weaker condition can be put on an estimataof
o? for the GIC to be consistent. Suppose that
.. 6% 62
0 < rinf = liminf o2 < I|msup? =Tsup< ® (2)

with probability 1. This condition essentially assumes thfats neither too small nor too large. It
is not difficult to show that Theorem 2 is still valid with? satisfying (2). This, however, is not
true for Theorem 3. A slightly weak version of Theorem 3 which only nexgu(2) is given in the
following theorem.

Theorem 7 Suppose ~ N(0,0?). Let % be an estimator 062 satisfying (2). IfA, = o(n%~%)
andA, —2Mz1log pn/pnrint — 0, then the GIG with the estimated variance is consistent.

The corrected RIC, the GIC with, = 2(log p, + loglogpn), does not satisfy the condition in
Theorem 7, and hence may not be consistent with an estimated variandée Other hand, the
GIC with Ay = anlog p, is consistent as long &g, — .
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4.3 TheSzeof s,

For condition A5,s, should be large enough so thigt< s,. In many casess, can be sufficiently
large for practical purposes. For example, suppgosg < n} are independent and identically dis-
tributed p, dimensional random vectors such thgkg = 0 and Va(x1) = > = [0k]. For a given

p > 0, lets* be the largest integer such that the smallest eigenvalbig ef [0, j,k € n] is greater
thanp for anyn C {1,..., pn} with |n| < s*. For example, wheix is compound symmetry, that
is 0j; =1 andoj = v for j # k andv € [0,1), the smallest eigenvalue &, is 1—v for all
nc{l,...,pn} and hences" = ppif 1 —v > p. Let A = 3, —X'an/n. By the inequality (2) in
Greenshtein and Ritov (2004), we have

logn
()

and hence syp|ajk| = Op(+/logn/n), whereaj is the (j,k) entry of A. Since the largest eigen-
value of A is bounded byin|Op(4/logn/n), the smallest eigenvalue &,'X,,/n is greater than
p—In|Op(y/logn/ny if |n| < s*. So, we can les, = min{n®,s"} forc < 1/2.

n

_zlxijxik/n—cjk

sup
ik

5. Numerical Analysis

In this section, we investigate finite sample performance of various GlGsiyation experiments
as well as real data analysis. We consider the five GICs whose condisgAns are given as

o GIC,(=BIC) : AY = logn,

o GIC,: )\512) = pﬁ/g,

GICs: AY = 2logpn,

GICs : Ay = 2(log pn+ loglogpn),

e GICs: )\5,5) = loglognlog pn,
e GICs: )\E,@ = lognlog pn.

The GIG is the BIC. By Theorem 2, the GiCcan be consistent when(é) < oo, That is, the
GIC, can be consistent when the tail of the error distribution is heavier than thia¢ @Gaussian
distribution. The GIG and GIG are the RIC of Foster and George (1994) and the corrected RIC of
Zhang and Shen (2010). The Gl@nd GIG are consistent when the error distribution is Gaussian.

5.1 Simulation 1
The first simulation model is
y=xp"+e
wherex = (xq,... ,xp)/ is a multivariate Gaussian random vector with mean 0 and covarianggs of

andx being 05!l Thee is a random variable with mean 0 aofl= 4. For3* = (3,1.5,0,0,2, 0},75)'
with Ok denoting &k—dimensional vector of zeros. This simulation setup was considered in Ban an
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Li (2001). We consider two distributions fer. the Gaussian distribution and the t-distribution with
3 degrees of freedom multiplied by a positive constant to make the variante b

First, we compare performances of the GICs applied to all possible sulsneitle those ap-
plied to submodels constructed by the solution path of a sparse penalizedeppFor a sparse
penalized approach, we use the SCAD penalty with the PLUS algorithm ¢Z2&10). Table 1
summarizes the results when= 10 andn = 100 based on 300 repetitions of the simulation. In the
table, ‘Signal’, ‘Noise’, ‘PTM’ and ‘Error (s.e.)’ represent the aage number of variables included
in the selected model among the signal variables, the average numbeiablesincluded in the
selected model among noisy variables, the proportion of the true model &eangy identified,
and the average of the squared Euclidean distang®,ofform * with the standard error in the
parenthesis, respectively. From Table 1, we can see that the ressdid ba the SCAD solution
path are almost identical to those based on the all possible search, whgdstithat the model
selection with the SCAD solution path is a promising alternative to all possibletsear

Submodels Criterion Signal Noise PTM Error(s.e.)
All GIC, 3 0.22 0.80 0.22(.013)

GIC; 3 0.92 0.39 0.37.018)
GICs 3 0.22 0.80 0.22(.013)
GICy 3 0.09 0.91 0.19(@.016)
GICs 3 0.39 0.67 0.260.016)
GICs 3 0.02 0.98 0.158.015)
SCAD GIG 3 0.21 0.80 0.218.013)
GIC, 3 0.93 0.40 0.360.018)
GICs 3 0.21 0.80 0.218.013)
GICy 3 0.10 0.90 0.19%.016)
GICs 3 0.39 0.67 0.266.016)
GICs 3 0.03 0.97 0.16®.015)

Table 1: Comparison of the 6 GICs with the all possible search and SCARm@olath when
p =10 andn = 100.

For simulation with high-dimensional models, we considet 500 andp = 300Q The results
of prediction accuracy and variable selectivity fo= 100 andn = 300 with the error distribution
being the Gaussian and t-distributions are presented in Tables 2 ang&cthesly. We use the
SCAD solution path to construct a sequence of submodels. The valutdteaaeerages based on
300 repetitions of the simulation.

First of all, the GIG (the BIC) is the worst in terms of prediction accuracy foe 500 and
p = 3000. This is mainly because the Gl€elects too many noisy variables compared to the other
selection criteria even though it detects signal variables well. The Glthe best in terms of both
the prediction accuracy and variable selectivity fice 100, and the GIG is the best fon = 300
The GIG, GIC; and GIG perform reasonably well but tend to select variables more necessary.
By comparing the results of the Gaussian and t distributions, we have tbahdess signal and
more noisy variables are selected when the tail of the error distribution selnedlowever, the
relative performances of the model selection criteria are similar. That i§Beis the worst, the
GIC4 and GIG are the best and so on. Based on these observations, we conclui® riinadel
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n p  Criterion Signal Noise PTM Error(s.e.)
100 500 GIG 299 435 0.00 1.36@.039)
GIC; 298 125 0.26 0.706.037)

GIC; 296 0.20 0.80 0.350.036)

GICy 295 0.05 0.90 0.28@.036)

GICs 298 0.67 0.52 0.508.035)

GICs 281 0.00 0.81 0.62@.061)

3000 GIG 299 569 0.00 1.66(.036)
GIC, 294 0.26 0.76 0.44é.047)

GIC3 292 0.14 0.82 0.430b.049)

GICy 289 0.05 0.87 0.44B.053)

GICs 295 058 0.55 0.56@.046)

GICs 263 0.00 0.63 1.09@.075)

300 500 GIG 3 489 0.00 0.56%.015)
GIC, 3 1.69 0.15 0.28@.010)

GICs 3 0.17 0.84 0.088.005)

GICy 3 0.03 0.97 0.050.004)

GICs 3 040 0.66 0.119.007)

GICs 3 0.00 1.00 0.049.002)

3000 GIG 3 9.80 0.00 1.04%.018)
GIC, 3 0.38 0.67 0.13@.008)

GICs3 3 0.20 0.83 0.099.007)

GIC4 3 0.02 0.98 0.057.004)

GICs 3 0.47 0.60 0.154.009)

GICs 3 0.00 1.00 0.05(.002)

Table 2: Comparison of the 6 GICs with Simulation 1 when the error follows thes§&an distri-
bution.

selection criteria specialized for high-dimensional models are necessargtfmal prediction and
variable selection, (ii) finite sample performances of consistent GICsudre djfferent, and (iii)
the tail lightness of the error distribution does not affect seriously to velggrformances of model
selection criteria.

5.2 Simulation 2

We consider a more challenging case by modifying the model for Simulation 1divide the p
components off* into continuous blocks of size 20. We randomly select 5 blocks and assgn th
value(3,1.5,0,0,2, 0'15)/1.5 to each block. The entries in other blocks are set to be zero.

The results are summarized in Tables 4 and 5. We observe similar phenosrarimulation
1: the GIQG is the worst, the Glgand GIG are the best and etc. However, whea 100, the GIG
is better in terms of prediction accuracy than some other GICs which aréigelegnsistent, which
is an example of the conflict between selection consistency and predictiomabty.
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n p  Criterion Signal Noise PTM Error(s.e.)
100 500 GIG 298 427 0.09 2.236.702)
GIC; 297 124 051 1.478.69%%)

GIC; 296 048 0.81 1.22¢.69%)

GICy 294 035 0.86 1.198.69)

GICs 297 0.82 0.68 1.34B.6%)

GICs 284 012 0.83 1.27b692)

3000 GIG 296 545 0.01 1.68@.106)
GIC, 292 051 0.74 0.700.094)

GIC3 291 040 0.78 0.67@.08s)

GICy 288 0.22 0.82 0.61@.086)

GICs 294 0.69 0.68 0.720.093)

GICs 259 0.03 0.59 1.27@.086)

300 500 GIG 3 426 0.06 0.50%0.034)
GIC, 3 1.52 0.38 0.2610.022)

GIC3 3 0.28 0.84 0.10(@.013)

GICy 3 0.08 0.95 0.06®.008)

GICs 3 0.49 0.75 0.13®.016)

GICq 3 0.00 1.00 0.044.003)

3000 GIG 3 958 0.00 1.05%.061)
GIC, 3 0.83 0.71 0.248.043)

GIC3 3 0.59 0.81 0.20%.042

GICy 3 0.24 091 0.13%.029)

GICy 3 0.90 0.68 0.262.049)

GICq 3 0.02 0.99 0.06®.019)

Table 3: Comparison of the 6 GICs with Simulation 1 when the error follows thrialtion.

5.3 Real Data Analysis

We analyze the data set used in Scheetz et al. (2006), which consisgretgpression levels of
18,975 genes obtained from 120 rats. The main objective of the analysisinisl tpenes that are
correlated with gene TRIM32 known to cause Bardet-Biedl syndromgsvas done by Huang et al.
(2008), we first select 3000 genes with the largest variance in esiprelgvel, and then choose the
top p genes that have the largest absolute correlation with gene TRIM32 amesgldtted 3000
genes.

We compare prediction accuracies of the 6 GICs with the submodels obtaimedhe SCAD
solution path. Each data set was divided into two parts, training and tessetataby randomly
selecting 2/3 observations and 1/3 observations, respectively. Weausaitling data set to select
the model and estimate the regression coefficients, and use the test tavaktate the prediction
performance.

For estimation of the error variance, Zou et al. (2007) used the meanesgeaor of the full
model wherp < n. This approach, however, is not applicable to our data set ginca. A heuristic
method is to sepmax first, and to select a model among the SCAD solution path whose number of
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n p  Criterion Signal Noise PTM Error (s.e.)
100 500 GIG 1482 5.11 0.00 3.558.225)
GIC, 14.67 239 014 3.21h.242)

GIC3 1440 147 0.24  3.654.285)

GICy 1417 116 0.25 4.21@302)

GICs 1457 1.86 0.21  3.24@.254)

GICs 13.04 0.72 0.16  7.758.398)

3000 GIG 12.08 12.19 0.00 20.192186)
GIC, 1151 578 0.01 19.783061)

GIC3 11.36 5.34 0.01 20.051.055)

GICy 11.06 4.37 0.01 20.64Q@.021)

GICs 11.68 6.62 0.01 19.61®.103)

GICs 10.11 2.47 0.01 22.756.894)

300 500 GIG 15 456 0.00 0.798.015)
GIC, 15 1.63 0.17 0.516.013)

GIC3 15 0.19 0.82 0.311.009)

GICy 15 0.03 0.97 0.27®.007)

GICs 15 0.39 0.68 0.34®.011)

GICs 15 0.00 1.00 0.27(.006)

3000 GIG 15 9.60 0.00 1.32®.020)
GIC, 15 0.32 0.72  0.34(.010)

GIC3 15 0.14 0.88  0.30(.008)

GICy 15 0.01 0.99 0.26%.006)

GICs 15 0.40 0.66  0.358.010)

GICs 15 0.00 1.00 0.266.006)

Table 4: Comparison of the 6 GICs with Simulation 2 when the error follows thes§&an distri-
bution.

nonzero coefficients is equal hax and to estimate the error variance by the mean squared error
of the selected model. Following the results of Scheetz et al. (2006), Chtaalg(2006), Huang
et al. (2008), and Kim et al. (2008), we guess that a reasonable rsiadelould be in between 20
and 40. Table 6 compares the 6 GICs with the number of pre-screened geimgp = 500 and
p = 3000, when the error variance is estimated with being 20, 30 and 40, respectively. All
values are the arithmetic means of the results from 100 replicated randttiopsar In the table,
‘Nonzero’ denotes the number of nonzero coefficients in the selecteélraad ‘Error (s.e.)’ is
the prediction error on the test data set and the standard error in thehzsie obtained on the test
data. Fop =500, the lowest prediction error is achieved by the GHdd the GIG, GIC4 and GIG
perform reasonably well witlpmax = 20. For p = 300Q the lowest prediction error is achieved by
the GIG with pmax= 20. So, we choos@nax = 20 for estimation of the error variance.

As argued by Yang (2005), the standard error obtained by randditiggacould be misleading.
As a supplement, we draw the box plots of the 100 prediction errors of tHES With pnax= 20
obtained from 100 random partitions in Figure 1. The relative perfornzsaofthe GICs with the
real data are different from those of the simulation studies in the previdosestions. The Glg
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n p  Criterion Signal Noise PTM Error (s.e.)
100 500 GIG 1465 3.89 0.07 3.974.401)
GIC, 1455 2.07 0.35 3.686.411)

GIC3 1440 145 041  3.870Q.421)

GICy 1417 1.10 0.41 4.378.424)

GICs 1453 1.85 0.38 3.640.412)

GICs 13.00 059 0.25 7.848.471)

3000 GIG 1199 941 0.02 19.768.154)
GIC, 1153 5.23 0.08 19.80@.066)

GIC3 11.47 478 0.08 19.641.029)

GICy 11.19 3.89 0.08 19.968.959)

GICs 11.61 592 0.08 19.96.101)

GICs 10.35 2.28 0.03 21.96.899)

300 500 GIG 1499 481 0.05 0.990.098)
GIC, 1499 233 0.32 0.748.098)

GIC3 1499 0.75 0.78 0.510.094)

GICy 1499 0.40 0.89  0.450.090)

GICs 1499 1.00 0.66 0.56(6.094)

GICs 1499 0.06 0.98 0.339.053)

3000 GIG 15 8.18 0.00 1.22@.051)
GIC, 15 0.58 0.73  0.42(.040)

GIC3 15 0.31 0.86 0.358.037)

GICy 15 0.12 0.95 0.314.032)

GICs 15 0.63 0.70  0.43(.041)

GICs 15 0.01 0.99 0.27®.015)

Table 5: Comparison of the 6 GICs with Simulation 2 when the error follows thirialtion.

GIC3 and GIG have lower prediction errors than the Gl@nd GIG while the formers tend to
select more variables than necessary in the simulation studies. This dlmgesaygests that there
might be many signal genes whose impacts on the response variable twelyetanall.

6. Concluding Remarks

The range of consistent model selection criteria is rather large, and it é¢aao which one is better
with finite samples. It would be interesting to rewrite the class of GICE\as= anlogp, : ap >

0}. The GIG, GICs and GIG correspond tax, = 2, o, = loglogn anday, = logn, respectively.
When the rue model is expected to be very sparse, it would be bettertg lbet rather large (e.g.,
on = logn), while a smallerx, (e.g.,a, = 2 or ap = loglogn) would be better when many signal
covariates with small regression coefficients are expected to exist. Ei®meof the GICs with
largeray, with those with smallea;, would be similar to the relation between the AIC and BIC for
standard fixed dimensional models.
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Pmax= 20
p
500 3000
Error (s.e.) Nonzero Error(s.e.) Nonzero
GIC; 0.742©.038) 15.91 0.76G0.036) 18.62
GIC, 0.6490.028y 10.95 0.6860.035) 3.91
GIC3 0.656(0.031) 6.99 0.6970.035) 3.69
GIC; 0.6770.034) 5.57 0.7190.037) 2.78
GICs 0.664(0.030) 9.76 0.667 (0.032) 4.92
GICg 0.732(0.038) 3.03 0.7920.039) 1.82
Pmax= 30
p
500 3000
Error (s.e.) Nonzero Error(s.e.) Nonzero
GIC; 0.890(0.035) 27.26  0.8680.039) 26.07
GIC, 0.825(0.038) 21.77 0.6980.031) 14.04
GIC3 0.752(0.029) 17.53 0.6960.031) 13.25
GICs 0.722 ©0.0290 15.19 0.69%0.039) 10.76
GICs 0.800(0.030) 20.29 0.7290.032) 15.99
GICs 0.688(0.030) 11.31 0.683 (0.034) 5.53
Pmax= 40
p
500 3000
Error (s.e.) Nonzero Error(s.e.) Nonzero
GIC; 1.040(.077y 34.54 0.93G0.041y 33.80
GIC, 0.916(0.036) 29.59 0.8920.041) 27.27
GIC3; 0.859(0.035y 25.10 0.8780.040y 26.37
GICs 0.846(0.039) 23.02 0.84G0.038) 25.00
GICs 0.890(0.0355 28.20 0.91Qo.040y 28.60
GICs 0.763(0.0290 18.69 0.800(0.037) 21.02

Table 6: Comparison of the 6 GICs with the gene expression data. Thedoeldiimbers represent
the lowest prediction errors among the 6GICs.

Estimation ofco? is an open question. We may use the BIC-like criterion by assuming the

Gaussian distribution:

o, = argminyc (1 5 109(Ra(Br) /1) + An|Td.

If Rn(Bn)/n is bounded above frome and below from 0 in probability (uniformly int and n),
we could derive similar asymptotic properties for the BIC-like criteria as tl@sGWe leave this

problem as future work.
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Figure 1: The boxplot of the prediction errors when fay 500 and (b)p = 3000 with pmax= 20.

For consistency, the smallest eigenvalue of the design matrix of the true imm@dslumed to be
sufficiently large (i.e., condition A2). However, it is frequently obserfi@darge dimensional data
that some covariates are highly correlated and they affect the output $mitethis case, selecting
some covariates and ignoring the others, which is done by a standard setaf#ion method, is not
optimal. See Zou and Hastie (2005) for an example. It would be interestingvap consistent
model selection methods for such cases.

Acknowledgments

This research was supported by the National Research Foundationez grant number 20100012671
funded by the Korea government.

Appendix A. Proof of Theorem 2

Without loss of generality, we lgt; = {1,...,qn}. Let B* = Br.. Let Yu = XnBr and¥y = X_nfirlﬁ.
We let B* = (BV*,B(@), whereB®)* € R and B@* € R~ Let C = X,Xn/n and cll) =
X,({) Xﬁ’)/n fori, j = 1,2. We need the following two lemmas.

Lemma8
A% ®| —(1— 2
max|B; - Bj| = op(n (-e)/2)

Proof. Letz; = \m(ﬁ]‘ —Bj). For proving Lemma 8, we will show

max|zi| = 0, (n°%/?).
qun’ j| = op(n*/9)
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Write Y
Xn' € /
z=(Ci) ! =R
wherez = (z1,...,23,) & = (€1,...,&) andH® = (h{Y . hP) = ¢ -1xP'//n. Since
HO'H® = (cY)-1, A2 of the regularity conditions implid#hgl) 13 < 1/M;forall j < g,. Hence,
E(z))* < oo for all j < gy since Eg)% < «. Thus

Pr(jz| >t) = O(t%).

For anyn > 0, we can write

On
Pr(|z| > nn/2 for somej =1,...,q,) < ZPr(|zj| > nn%/?)
i=

21n—02k
&N

— r]]'qnn—CZK S r]]'n—(Cz—Cg,)k N O,

IN

which completes the proofll

Lemma9 o
max | < Yn—Yy,Xd > | = 0p(/Mnpn).

On<j<pn

Proof. Note that

Hence, we have

<Yn_?l’;k7xrj;>/\/ﬁ:h§2)l€n forj:qn+17"'7pn7 (3)
wherehgz) is the j — g, column vector oH® and
/ 1 / 1 /
H = e (en )t oxi — Zoxe?
Note that
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Since the all eigenvalues bf- Xﬁl)(xﬁl)/xﬁl))*lxﬁly are between 0 and 1, we haN/Iegz)Hg <My

forall j =gn+1,..., pn. Hence, E&;)? < o, whereg; =< Yn—\?;,x,’; > /4/n, and so
Pr(jgj| > ) =O(t2).

Finally, for anyn > 0O,

Pr(\ <Yn—\?;,x,4' > | > n+/NA\npn for somej :qn+l,...,pn)

= Pr(\Ej] > N/ Anpn for somej = qn+1,...,pn)
Pn

S Pr(1&]>nvAupn)

j=0n+1

= o919 (ae) =0 () 0

which completes the proofll

IN

Proof of Theorem 2. For anytt, we can write

R(Bro) +An|T]0? — Ry (B*) — An|TE; 02

=25 1By < Yo=Y X >+ (Br— B7) (XpXn) (Bri— B*) + An(|T0 — |02

By Condition A3,

(Br—B) (XXn)(Br—B) > Y npa(Brj—B))>
jemurt
Hence, we have for amge M,
Ra(Br) +AnlTI0? = Re(B") —AnlT[0” > 5w,

JemJrg

where

Wi = —2Brj < Yo~V X3 > 1(j € 76) +npn(Brej — B2+ a1 (j € T—T5) —1(j € T, — 1)) 0%

For j € T, — T, we havew; = npn[f%]f2 —An02. Let

An:{npnﬁjjﬁz_)\n0'2>oaj :17'-‘aQn}-

Then, PtA,) — 1 by Lemma 8 and Conditions A3 and A4.
Forj e m—1m,

Wi = —2Brj <Ya—Yi,X] > +npaBZ; +An0?
> = <Yo—Y3, X4 >2 /(npn) +An0?.

Let
Bn={— <Ya—YZ, X! >2 /(npn) +An0? > 0,] = gn+1,...,pn}-
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Then, P(B,) — 1 by Lemma 9.
Forj e mN T,

W; = npn(Brej — B})* > 0.
To sum up, oA, N By,

Rn(Bro) -+ An|T00% — Ry(B*) — An|TC| 0% > 0

for all Tt 11, Since P(A,N By) — 1, the proof is done.l

Appendix B. Proof of Theorem 3

For givenrtc {1,..., pn}, let M be the projection operator onto the space spanngdy, j € ).
That is,M ; = Xn(X;:Xr) " 1X}, providedX is of full rank. LetX,B; = p, andl be then x nidentity
matrix. Without loss of generality, we assure= 1.

Lemma 10 There exists) > 0 such that for anyte M with 1, € 1,

(1 =Mty > e |n% %,

wherert =11, — Tt
Proof. For giventte M with 15, ¢ 1T, we have

Hn (I = M),
= inf (X By — Xt

acR™

inf (B2, o) (Xne, Xr0) (X, X o) (B, ')’

acRIM

nl[Bre [1%n
M3M4|T[_ |ncZ_Cl,

AVANY

whereB;. = (Bj, ] € ) and the last inequality is due to Condition Al

Lemma 1l For giventtC {1,...,pn}, let

a— ui/"l(I_MT[)en
n— "
VHa(l =Mm)u,
Then

max |Zn| = Op(y/snlogpn).

TeM s
Proof. Note thatZ; ~ N(0,1) for all te M. Since
Pr(|Zy > 1) < Cexp(—t?/2) (6)
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for someC > 0, we have

Pr(max|Zn\>t> < Y Cexp—t?/2)

Sn
TeEM’ e

Cprexp(—t2/2).

IN

Hence, if we let = \/Ws,10g pn,

Pr( max |Zyq| > t) < Cexp((—w/2+1)sylogpn) — 0

e M

asw—co. H

Lemma 12

max £-M € = Op(S,10g Pr).
e EnVintn p(Snlogpn)

Proof. For giventtC {1,...,pn}, letr(p) be the rank o,. Note thate, Mg, ~ X2(r (1)) where
x2(K) is the chi-square distribution with degree of freedkrtt is easy to see that (see, for example,

Yang 1999)
) t—r(m) t O\ "(m/2
Pr(enMnsnzwsexp(— ! )(r(m> | @)

Hence

Sh
Pr( max s'nMnsn > t> < z <iﬂ) Pr(W <),

TeMsn K=

whereW ~ x2(k). Since P(W > t) < Pr(Ws, > t), we have

S
! pn
> < >
Pr<nr€ng‘22<n e,Mqe, > t) < Pr(Wg, >t) k; ( k>
< Pr(Wg, >t)py (8)

The proof is done by applying (7) to (8)8

Proof of Theorem 3. First, we will show that Rir; ¢ T, ) — 0. For giventtC {1,..., pn}, let

Rn(T0) = Ry(Br). Note thatRy(T1) = Ya(l — My)Ya. Form 2 1, Lemmas 10, 11 and 12 imply

Rn(T0) — Ra(T5;) + An(|T0 — 5] )0
= ol = My + 200 (1 = M)en +€,(Mye —Mp)en +An(|T0 — |15 )02
N[t [n% % — 2/n|1T [n% =10 (/1109 pn) — Op(Snlog pn) — |10 [An,

Y

wherert = 11, — Tt Sincesylog py, < o(n%2~ %) andA, = o(n®%? ), the proof is done.
It remains to show that the probability of

inf  Ra(T0) — Ry (T5,) + An(|T0 — |T53|)0? > 0 9)
TEM ™ T,
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converges to 1. By Theorem 1 of Zhang and Shen (2010), the ptitypab(9) is larger than

_ Pn—0n
2 <l+e1/2exp<—}\n I20g)\n)> ,

which converges to 1 when 2lg@g — Ay + logA,, — —o. The equivalent condition with 2lgg, —
An+logAy — —w is Ay — 2logpn —loglogpy — . B

Appendix C. Proof of Theorem 4

By Theorem 4 of Kim and Kwon (2012), the solution path of the SCAD or miniroamcave
penalty include the true model with probability converging to 1. Since conditi@®nisAstronger
than condition A3, the GI with A, = o(n®~%) is consistent, and so is with the solution path of
the SCAD or minimax concave penalty.

Appendix D. Proof of Theorem 7

LetA, a~nd B, be the sets defined in (4) and (5) except thrats replaced byd?. It suffices to show
that P{A, N Bpy) — 1. Itis not difficult to prove PfA,) — 1 by Lemma 8 and (2).
For By, sinceg; ~ N(0,0?), (3) implies

<Yn—Yi,Xd > /v/n~N(0,0%)
whereo? < 0®M;. By (6), we have

Pr(< Yn— Y, X) >2> nppA,62 for somej = gn+1,..., pn)

<

Hence, as long as\®; 109 pn/(Pnfint) —An — —0o, Pr(éﬁ) — 0 and the proof is donell
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