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Abstract

Identifying cause-effect relationships between variglolinterest is a central problem in science.
Given a set of experiments we describe a procedure thatfiésriinear models that may contain
cycles and latent variables. We provide a detailed degonif the model family, full proofs of
the necessary and sufficient conditions for identifiahiitgearch algorithm that is complete, and a
discussion of what can be done when the identifiability coonis are not satisfied. The algorithm
is comprehensively tested in simulations, comparing itdmpeting algorithms in the literature.
Furthermore, we adapt the procedure to the problem of eelhétwork inference, applying it to
the biologically realistic data of the DREAM challenges eTgaper provides a full theoretical foun-
dation for the causal discovery procedure first presenteBldmrhardt et al. (2010) and Hyttinen
et al. (2010).

Keywords: causality, graphical models, randomized experimentsictiral equation models,
latent variables, latent confounders, cycles

1. Introduction

Inferring causal relationships from data is of fundamental importance iy mi@as of science. One

cannot claim to have fully grasped a complex system unless one has adletaitystanding of how
the different components of the system affect each other, and onetgaredict how the system will
respond to some targeted intervention without such an understandingell isnown that a statis-
tical dependence between two measured quantities leaves the causal retaeodetermined—in
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addition to a causal effect from one variable to another (in either or higbtwns), the dependence
might be due to a common cause (a confounder) of the two.

In light of this underdeterminatiorandomized experimentsave become the gold standard
of causal discovery. In a randomized experiment, the values of soriableax; are assigned at
random by the experimenter and, consequently, in such an experimeobmalation between;
and another measured variakjecan uniquely be attributed to a causal effeckadn x;, since any
incoming causal effect or (from x;, a common cause, or otherwise) would be ‘broken’ by the
randomization. Since their introduction by Fisher (1935), randomizediexests now constitute
an important cornerstone of experimental design.

Since the 1980s causal graphical models based on directed grajghsdeavdeveloped to sys-
tematically represent causal systems (Glymour et al., 1987; Verma anid F388). In this ap-
proach, causal relations among a set of varialileare represented by a set of directed edges
D C (¥ x V) connecting nodes in a directed gragh= (7, D), where a directed edge from node
X; to nodex; in the graph represents tidirect causal effect ok on x; (relative to the set of vari-
ables?’). The causal relationships in such a model are defined in terms of sticchaxtional
relationships (or alternatively conditional probability distributions) thacgpénow the value of
each variable is influenced by the values of its direct causes in the dragich a model, random-
izing a variablex; is tantamount to removing all arrows pointiimgo that variable, and replacing
the functional relationship (or conditional probability distribution) with the disttion specified in
the experiment. The resulting truncated model captures the fact that thee ofatlne variable in
guestion is no longer influenced by its normal causes but instead is detdraxpkcitly by the
experimenter. Together, the graph structure and the parameters défi@ispchastic functional
relationships thus determine the joint probability distribution over the full vigiabt under any
experimental conditions.

The question that interests us here is how, and under what conditiorcgnuearn (i.e., infer
from data) the structure and parameters of such causal models. Weraoshis question depends
largely on what assumptions we are willing to make about the underlying mattkistaat tools of
investigation we consider. For instance, some causal discovery metgguiserassuming that the
causal structure iacyclic (has no directed cycles), while others requieaisal sufficiengythat is,
that there are no unmeasured common causes affecting the measurbibsamisdany algorithms
provide provably consistent estimates only under the assumptidaitbfulness which requires
that the structure of the graph uniquely determines the set of (conditiodaPp@mdencies that hold
between the variables. For some methods the functional form of the relaperisas to take a
certain predetermined form (e.g., linearity). Under various combinatiotieeaibove assumptions,
it is possible to consistently infer (at least partial information concernirgyrttusal relationships
underlying the observed data from non-experimental (‘passiveradiganal’) data (Richardson,
1996; Spirtes et al., 2000; Pearl, 2000; Chickering, 2002a,b; Shimely 2006).

In many cases, researchers may not be willing to make some of the assummpéntisned
above, or they may want to guarantee that the full structure of the moddkised (as opposed
to only inferring an equivalence class of possible models, a common rdsoitumy discovery
methods). A natural step is thus to use the power of randomized experinfésjuestion then
becomes: Under what assumptions on the model and for what sets ohespts can one guarantee
consistent learning of the underlying causal structure. Here, almost #ie existing literature
has focused on the acyclic case (Cooper and Yoo, 1999; Tong aliet,K2001; Murphy, 2001;
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Figure 1: Classic supply-demand model.

Eberhardt et al., 2005; Meganck et al., 2005; Nyberg and Korb6;2B0erhardt and Scheines,
2007; Eaton and Murphy, 2007).

The acyclicity assumption, common to most discovery algorithms, permits a stomigaiél
interpretation of the causal model and is appropriate in some circumstaBoes many cases
the assumption is clearly ill-suited. For example, in the classic demand-suppb/ (fkoglure 1)
demand has an effect on supply and vice versa. Intuitively, the trusaktatucture is acyclic over
time since a cause always precedes its effect: Demand of the previous {nadfstes supply of the
next time step. However, while the causally relevant time steps occur atdeeaifrdays or weeks,
the measures of demand and supply are typically cumulative averageso#iionger intervals,
obscuring the faster interactions. A similar situation occurs in many biologistétms, where the
interactions occur on a much faster time-scale than the measurements. loatsesa cyclic model
provides the natural representation, and one needs to make use alfdiaasvery procedures that
do not rely on acyclicity (Richardson, 1996; Schmidt and Murphy, 20@8i et al., 2008).

In this contribution we consider the problem of learning the structure araingers of linear
cyclic causal models from equilibrium data. We derive a necessary w@fidient condition for
identifiability based on second-order statistics, and present a condestieming algorithm. Our
results and learning methabb notrely on causal sufficiency (the absence of hidden confounding),
nor do they require faithfulness, that is, that the independencies in the aafallgrdetermined
by the graph structure. To our knowledge these results are the first aasumptions that are this
weak. Given that the model space is very general (essentially onlyrireglinearity), randomized
experiments are needed to obtain identification. While for certain kinds @remental data it is
easy to identify the full causal structure, we show that significant saditlger in the number of
experiments or in the number of randomized variables per experiment aohieved. All-in-all,
the present paper provides the full theoretical backbone and thomupirical investigation of the
inference method that we presented in preliminary and abbreviated forireim&rdt et al. (2010)
and Hyttinen et al. (2010). It establishes a concise theory for learniegrlicyclic models with
latent variables.

We start in Section 2 by introducing the model and its assumptions, how the isadebe
interpreted, and how experimental interventions are represented. ctiors8 we derive condi-
tions (on the set of randomized experiments to be performed) that aresaegand sufficient for
model identification. These results provide the foundation for the coamttcomplete learning
method presented in Section 4. This section also discusses the underdatiermirhich results
if the identifiability conditions are not met. Section 5 presents empirical resudedi@n thorough
simulations, comparing the performance of our procedure to existing metkaaksly, we adapt
the procedure to the problem of cellular network inference, and applyhetbiologically realistic
in silico data of the DREAM challenges in Section 6. Some extensions and conclasegs/en
in Sections 7 and 8.
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Figure 2: An example of a linear cyclic model with latent variables. A now-zeefficientb,; is
represented in the graph by the aic— x,. Similarly, the non-zero covariance between
disturbance®; ande; is represented by the arg ++ . In the graph the disturbance
term for each individual variable has been omitted for clarity. Note thatrapapposing
directed edges, such as— x4 andxz < X4, represents reciprocal causation (feedback
relationship) between the variables, whereas a double-headed atrdwasxs <+ Xa,
represents confounding.

2. Model

We start by presenting the basic interpretation of the cyclic model in thevpagbservational
(Section 2.1) and experimental settings (Section 2.2). We establish canfonina for both the

model and the experiments to simplify the presentation of the subsequent tiiémthen discuss
different stability assumptions to ensure the presence of model equilibdahew how they relate
to the model interpretation and model marginalization (Section 2.3).

2.1 Linear Cyclic Model with Latent Variables

Following the framework presented in Bollen (1989), we consider a gélieear structural equa-
tion model (SEM) with correlated errors as our underlying data genenatotgl. In such a model
the value of each observed variables V' (j = 1,...,n) is determined by a linear combination of
the values of its causal parenis= pa(x;) and an additive disturbance (‘noise’) tean

Xj = z bijix + €;.
X epaxj)

Representing all the observed variables as a vecaod the corresponding disturbances as a vector
e, these structural equations can be represented by a single matrix equation

X = Bx-+e (1)

whereB is the(n x n)-matrix of coefficientd;. A graphical representation of such a causal model
is given by representing any non-zero causal efigcby an edgex — X; in the corresponding
graph. An example graph and matBxare shown in Figure 2.

The set of equations is said to teeursiveor acyclicif the graph describing the causal relations
has no directed cycles, or (equivalently) if there exists a causal ofdée variables for which
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the corresponding matri® is lower triangular. When the graph contains directed cycles (feedback
loops), such as for the model of Figure 2, then the model is said twheecursiveor cyclic. In

this paper we dootassume a priori that the underlying model is acyclic. In other words, odemo
family allows forbothcyclic and acyclic cases.

While in a ‘fully observed’ SEM the disturbance termgswould be assumed to be indepen-
dent of each other, we allow for unobserved confounding by modelliggary correlations among
the disturbances;, ...,e,. Specifically, denote by and 3¢ the mean vector and the variance-
covariance matrix (respectively) of the disturbance veetdte diagonal elements & represent
the variances of the disturbances, while the off-diagonal entriesseprthe covariances. In the cor-
responding graph a non-zero covariance betvegande; is represented by the double-headed arc
X; <+ Xj. Notice that in this implicit representation, a latent variable that confounds thivserved
variables is represented by three (pairwise) covariances. To keeptti&on as simple as possible,
we will adopt the assumption standard in the literature that the disturbancegdra mean, that is,
e = 0. In Appendix A we show that it is usually possible to transform the obskdeta to a form
consistent with this assumption. We are thus ready to define the underlymgelzerating model:

Definition 1 (Linear Cyclic Model with Latent Variables) A linear cyclic model with latent vari-
ablesM = (B, X,), is a structural equation model over a set of observed variablesx x, € V¥
of the form of Equation 1, where the disturbance veetbas mearue = 0 and an arbitrary sym-
metric positive-definite variance-covariance mafey.

In order to give a fully generative explanation of the relationship betwleemodel parameters
and the data, additional constraints®are needed. Typically, a cyclic model is used to represent a
causal process that is collapsed over the time dimension and where itiseaksthat the data sample
is taken after the causal process has ‘settled down’. The traditiongbietation of non-recursive
SEMs assumes that the disturbances represent background contttiibds not change until the
system has reached equilibrium and measurements are taken. So fen aefiof initial values for
the variablex(0), a data vector is generated by drawing one vector of disturbafoes the error
distribution and iterating the system

X(t) = Bx(t—1)+e 2)

by adding in the constant (with respect to tinegjt every time step until convergence. At titniae
vectorx thus has the value

x(t) = (B)tx(0)+fZ;(B)ie.

For x(t) to converge to an equilibrium, the geometric seque(lﬂ*,ﬁ:o,_t and the geometric series
Z};é B' must converge as— . For arbitraryx(0) and arbitrarye, a necessary and sufficient
condition for this is that the eigenvaluag of B satisfyVk : |A¢| < 1 (Fisher, 1970). In that case
(B)! — 0andy!Z3B' — (I —B) ! ast — w, sox(t) converges to

x = (1-B) e

where(l — B) is guaranteed to be invertible given the above restriction on the eigenviloése
that the observed valueat equilibrium is independent of the starting pak0), and completely
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determined byB ande. Multiple samples ok are obtained by repeating this equilibrating process
for different samples of. Hence, forM = (B, X¢) the variance-covariance matrix over the observed
variables is

Cx=E{xx"} =(1-B) E{e€' }(I-B) T=(1-B) 131 -B) " ". (3)

The equilibrium we describe here corresponds to what Lauritzen arthiRigon (2002) called a
deterministicequilibrium, since the equilibrium value aft) is fully determined given a sample
of the disturbances. Such an equilibrium stands in contrast tetachasticequilibrium, resulting
from a model in which the disturbance term is sampled anew at each time stepeiquilibrating
process. We briefly return to consider such models in Section 7. We noiéttirmmodel happens
to be acyclic (i.e., has no feedback loops), the interpretation in terms of meitdic equilibrium
coincides with the standard recursive SEM interpretation, with no adjustmeatked.

Itis to be expected that in many systems the value of a given varightdimet has a non-zero
effect on the value of the same variable at timel. (For instance, such systems are obtained
when approximating a linear differential equation with a difference equationsuch a case the
coefficientb; (a diagonal element @) is by definition non-zero, and the model is said to exhibit
a ‘self-loop’ (a directed edge from a node to itself in the graph corredipgrto the model). As
will be discussed in Section 2.3, such self-loops are inherently unidetgifraion equilibrium data,
so there is a need to define a standardized model which abstracts awaentfiable parameters.
For this purpose we introduce the following definition.

Definition 2 (Canonical Model) A linear cyclic model with latent variablg®, X.) is said to be a
canonical modeif it does not contain self-loops (i.e., the diagonaBois zero).

We will show in Section 2.3 how one can obtain the canonical model that yiellsemperiments
the same observations at equilibrium as an arbitrary (i.e., including sel§)diopar cyclic model
with latent variables.

2.2 Experiments

As noted in the introduction, one of the aims of inferring causal models is flity &b predict how
a system will react when it is subject to intervention. One key feature adriogclic models with
latent variables is that they naturally integrate the representation of exp¢almeanipulations, as
discussed in this subsection.

We characterize an experimeBt = (%, Ux) as a partition of the observed variables(i.e.,
KU U=V and N Uk = 0) into a setj of intervened variables and a s@t of passively observed
variables. Note that in this representation, a passive observationaedasea ‘null-experiment’ in
which % = 0 and Ux = V. Following the standard view (Spirtes et al., 2000; Pearl, 2000), we
consider in this paper randomized “surgical” interventions that breakadhiing causal influences
to the intervened variables by setting the intervened variables to valuesidetdiby an exogenous
intervention distribution with meap¥ and covariance cde) = XX. In the graph of the underlying
model, this corresponds to cutting all edges into the intervened nodedgsee & for an example.

To simplify notation, we denote bjx andUy two (n x n) diagonal ‘indicator matrices’, where
(Jy)ii = 1 if and only if X € Y%, all other entries oflx are zero, andJx = | — Jx. The vectorc
represents the values of the intervened variables determined by the mti@nveistribution, and
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Figure 3: Manipulated model corresponding to an intervention on variabksdx, in the model
of Figure 2, that is, the result of an experimefit = (J, Ux) with % = {x1,x2} and

Uy = {X37X4}

is zero otherwise. The behavior of the model in an experinigrs then given by the structural
equations

X := UgBx+ Uge+c. (4)

For an intervened variablg € J, the manipulated model in Equation 4 replaces the original equa-
tion Xj 1= Yicpaj) bjiX + € with the equatiorx; := cj, while the equations for passively observed
variablesx, € Uk remain unchanged.

Here the intervention vectaris constant throughout the equilibrating process, holding the inter-
vened variables fixed at the values sampled from the intervention distribiétidifferent approach
could consider interventions that only “shock” the system initially, and thiemvahe intervened
variables to fluctuate. This would require a different representatioranatysis from the one we
provide here.

As in the passive observational setting discussed in Section 2.1, we hewsuie@ that the time
series representation of te&perimentaketting

X(t) := UxBx(t —1) + Uye+c

is guaranteed to converge to an equilibriunt as «, where bottc ande are time-invariant. We do
so by extending the assumption that guarantees convergence in thes dis®rvational setting to
all experimental settings.

Definition 3 (Asymptotic Stability) A linear cyclic model with latent variablg®, 3¢) is asymp-
totically stableif and only if for every possible experimeBt = (%, Ux), the eigenvalues; of the
matrix UxB satisfyVi : |Aj| < 1.

Asymptotic stability implies that in an experimeBg = (%, Ux) the samples we obtain at equilib-

rium are given by = (I — UxB)~1(Uxe+c). Note that the passive observational case is included in
terms of the null-experiment wherg is empty. In practice, the assumption of asymptotic stability
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implies that the system under investigation will not break down or exploderamy intervention,

so the equilibrium distributions are well defined for all circumstances. QisWothis will not be
true for many real feedback systems, and in fact the assumption carakenegl for our purposes.
However, as we discuss in more detail in Section 2.3, the assumption of anying generating
model that satisfies asymptotic stability simplifies the interpretation of our resutsarFacyclic
model(B, X¢) all eigenvalues of all matricdgyB are zero, so the stability condition is in this case
trivially fulfilled.

In general, experiments can take many forms: Apart from varying aexegher than just one
variable at the same time, the interventions on the variables can be indep&odenne another,
or correlated, with different means and variances for each interwear@ble. To simplify notation
for the remainder of this paper, we will adopt a standardized notion otperenent:

Definition 4 (Canonical Experiment) An experimentE, = (%, Ux) is said to be acanonical ex-
perimentif the intervened variables if are randomized surgically and uncorrelated with the
disturbances and with each other, with zero mean and unit variance.

This notational simplification makes the partition into intervened and passivebredd variables
the only parameter specifying an experiment, and allows us to derive thy {he®ly in terms of

the covariance matriceSX of an experiment. The following lemma shows that we can make the
assumption of uncorrelated componentsafithout loss of generality. First, however, we need
one additional piece of notation: For aftyx n)-matrix A, we denote byAs s. the block ofA that
remains after deleting the rows corresponding to variablgg inS; and columns corresponding to
variables in?/\ S, keeping the order of the remaining rows and columns unchanged.

Lemma 5 (Correlated Experiment) If in an experimentgx = (%, Ux), where intervention vari-
ablesc are randomizetlindependently of the disturbancesuch that Ec) = X and coyc) = X,

a linear cyclic model with latent variable®, ) produces meayiX and covariance matric¥,

then in a canonical experiment where intervention variald@se randomized independently ®f
with E(c) = 0 and coyc) = Ji, the model produces observations with mean and covariance given

by
py = 0, (5)

Ck = CX-TECE g (TOT+THTHT, (6)
whereTX = (CK)y, (CK) )%

Proof To improve readability, proofs for all lemmas and theorems in this paper fegelto the
appendix.

The lemma shows that whenever in an actual experiment the values givea itatehvened
variables are not mutually uncorrelated, we can easily convert the estimateuand covariance
matrix to a standardized form that would have been found, had the intemseen uncorrelated
with zero mean and unit varianéeThe substantive assumption is that the values of the intervened

1. Randomization implies here that the covariance matrix of the interveraitabies coycy, ) = (K) 4.4, is symmetric
positive-definite.

2. The lemma should come as no surprise to readers familiar with multiple liegeession: Thés, j]-entries of the
matrix T)'§ are the regression coefficients whegnis regressed over the intervened variables. The regressors do not
have to be uncorrelated to obtain unbiased estimates of the coefficients.
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variables (the components ofare uncorrelated with the disturbances (the componerds dhis
excludes so-called ‘conditional interventions’ where the values of thevarned variables depend
on particular observations of other (passively observed) variabliae igystem. We take this to be
an acceptably weak restriction.

Mirroring the derivation in Section 2.1, in@nonicalexperimentEy the mean and covariance
are given by:

pk = o, (7)
CK = (1 —UB) Ik + UkZeUW) (I — UkB) . (8)

We can now focus on analyzing the covariance matrix obtained fraamanicalexperiment
E« = (Jk, Ux) on acanonicalmodel (B,3X¢). For notational simplicity we assume without loss
of generality that variablegy,---,x; € % are intervened on and variablgs, 1,--- , X, € Uk are
passively observed. The covariance matrix for this experiment theth@ddock form

| (Tk)T
Ck — X , 9
X TI)E (Ci)’akﬂk ( )
where
T>i§ - (I - B‘Uk‘Uk)ilB’Uka?
(C)iE)fuk‘uk - (I - B‘Uk‘llk)il( B‘Uk]k(B‘Ukﬂk)T + (Ee)ﬂkﬂk) (I - B(uk‘uk>7T'

The upper left hand block is the identity mattipsince in a canonical experiment the intervened
variables are randomized independently with unit variance. We will conidanore complicated
lower right hand block of covariances between the passively oldearéables in Section 3.2. The
lower left hand blockTX consists of covariances that represent the so-calpérimental effectsf
the intervened; € % on the passively observed € Ux. An experimental effedt(x~~X,|| %) is the
overall causal effect of a variabkeon a variable, in the experimenty = (%, Ux); it corresponds
to the coefficient ok; whenx, is regressed on the set of intervened variables in this experiment. If
only variablex; is intervened on in the experiment, then the experimental effget-x,|[{xi}) is
standardly called thiotal effectand denoted simply as$x;~~x,). If all observed variables except
for x, are intervened on, then an experimental effect is calldidemt effect t(xi~xu|| V' \ {x}) =
b(Xi — Xu) = (B)ui = bui-

The covariance between two variables can be computed by so calledutesk- Some form
of these rules dates back to the method of path analysis in Wright (1938)r lcase, these trek-
rules imply that the experimental effetgi;~~x,|| %) can be expressed as the sum of contributions
by all directed paths starting &t and ending inx, in the manipulated graph, denoted by the set
P(xi~>Xu||%). The contribution of each path € P(x~xy||J) is determined by the product of
the coefficientd,, associated with the edg&s— xy, on the path, as formalized by the following
formula

tXixl %) = > [T b
PEP(Xi~Xu|| %K) (X —Xm)EP

where the product is taken over all edges—+ Xy, on the pathp. The full derivation of this formula
is presented in Appendix C (see also Equation 12a in Mason, 1956).
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Figure 4: Left: The original asymptotically stable model. Center: The margathlizodel that is
only weakly stable. Right: A marginalized model with self cycles that is asympligtica
stable.

If the model includes cycles, there will be an infinite number of directed edhsone variable
to the other. In the example model of Figure 3, the experimental effectsecealtulated using the
trek-rules as follows:

b31+ baib
t(xXa|[{X1, Xo}) = (Da1+ba1bss)(1+ baabas+ (bagbag)®+---) = = 34 (1)

1—bygsbzs

b1+ bzib.
t0axall{xa,3}) = (Da1+baibus) (1-+baabaa-+ (Bagha)®+ ) = =P 5. (1)

The convergence of the geometric series is guaranteed by the assunfipisymptotic stability for
the experimenti = {X1, %}, which ensures that the (only) non-zero eigenvalueb,3bs, satisfies
Al < 1.

Note that the experimental effects are unaffected by the latent confaun&ince the inter-
ventions break any incoming arrows on the intervened variables, thiséndepce also follows
directly from the graphical d-separation criterion extended to cycliclggd$pirtes, 1995): In Fig-
ure 3, variablex; andxz are not d-connected by any of the undirected paths through the double
headed arrows.

2.3 Marginalization

One of the key features of linear structural equation models with corredaters is that the model
family is closed under marginalization. That s, if instead of the original viisét1’ we only have
access to a subsét C v of variables, then if the original modéB, 3¢) is in the model family,
then the marginalized modéé,f]e) over V is in the family, too. Any directed paths through
marginalized variables are transformed into directed edgBs amd any confounding effect of the
marginalized variables is integrated into the covariance maiginf the disturbances.

For example, in Figure 4 on the left we show the graph structure and tleeceddficients of
an asymptotically stable mod@B, 3¢) over the variabled’ = {x,%2,x3}. For the purpose of ar-
gument, assume that variablgis not observed. We thus want to describe a marginalized model
(B, 3¢) over just the variable$’ = {x;,x,}. Critically, the two models should produce the same ob-
servations with respect to the variablgsandx; in both the passive observational setting and in any
experiment intervening ofx. }, {x2}, or {X1,%2}. In other words, the marginalized model should be
such that any observations @ncoincides with those obtained from the original model in all exper-
iments that can be performed in both. Thus, in the experiment intervenirg tme experimental
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effectt(x~xz|[{x1}) = —0.7 - 0.8-0.8 = —1.34 of the original model should equal the corre-
sponding experimental effect of the marginalized model. If we do not teaatld any additional
self-cycles, the only possibility is to skt; = —1.34. Similarly, we sebys = t(xo~xy||{x2}) = 0.9.
This gives the model of Figure 4 (center).

Note, however, that while the original model was asymptotically stable (asasily be seen by
computing the eigenvalues B, the marginalized canonical modelrist asymptotically stable, as
B has an eigenvalue that is larger than 1 in absolute value. We thus see émataldvant variables
are not included in the analysis, asymptotic stability may not hold under margitiatiz Fortu-
nately, it turns out that for our purposes of identification a much weak®rraption is sufficient.
We term this assumptioneak stability

Definition 6 (Weak Stability) A linear cyclic causal model with latent variabléB, 3.) is weakly
stableif and only if for every experimerty = (%, Ux), the matrixl — UyB is invertible.

Note that the invertibility of matrix — UyB is equivalent to matrixJxB not having any eigenvalues
equal to exactly 1. (Complex-valued eigenvalues with modulus 1 are allosvieth@ as the eigen-
value in question is not exactly-10i.) Any asymptotically stable model is therefore by definition
also weakly stable.

We noted earlier that asymptotic stability is an unnecessarily strong assunggtimur tontext.

In fact, weak stability is all that isnathematicallyrequired for all the theory presented in this
article. However, while mathematically expedient, weak stability alone can leatetpiiatational
ambiguities: Under the time series interpretation of a cyclic model that we peesi@rEquation 2,

a weakly stable model that is not asymptotically stable will fail to have an equitibdistribution
for one or more experiments. While Figure 4 illustrates that asymptotic stability sm&nsbwhen
marginalizing hidden variables, one cannot in general know whetherekkanodel that is not
asymptotically stable for some experiments corresponds to such an umpaticlease, or whether
the underlying system truly is unstable under those experiments.

For the remainder of this article, to ensure a consistent interpretation deamyed model,
we assume that there is a truaderlyingasymptotically stable data generating model, possibly
including hidden variables—thereby guaranteeing well-defined equilibdistributions for all ex-
periments. The interpretation of any learned weakly stable m@leL,) is then only that the
distributionover the observed variablggoduced at equilibrium by the true underlying asymptot-
ically stable model has mean and covariance as described by Equatiods8? afll equations
derived for asymptotically stable models carry over to weakly stable médelthe following two
Lemmas, we give the details of how the canonical model over the obseaviedbes is related to
the original linear cyclic model in the case of hidden variables and selésyespectively).

The marginalized model of any given linear structural equation model withtlaégiables can
be obtained with the help of the following Lemma.

Lemma 7 (Marginalization) Let(B,3.) be a weakly stable linear cyclic model over the variables
7V, with latent variables. LefM C 9’ denote the set of marginalized variables. Then the marginal-

3. Alternatively, one could avoid making this assumption of asymptotic stabilithie underlying model, but in that
case the predictions of the outcomes of experiments must be conditiotia @xperiments in question resulting in
equilibrium distributions.

4. The sums of divergent geometric series can be evaluated byiefgenxtending the summing formulg? , bl = lflb
to apply also wheib > 1 (Hardy, 1949).
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ized mode(B, $¢) over variablesl’ = ¥\ M defined by

B = By +Binl —Baar) By
e = (I-B)[(1-B) 'Se(l =B) "] (1-B)T

is also a weakly stable linear cyclic causal model with latent variables. Tdrgimalized covari-
ance matrix of the original model and the covariance matrix of the malge@model are equal in
any experiments where any subset of the variableg are intervened on.

The expressions faB and $¢ have simple intuitive explanations. First, the coefficient mairix
of the marginalized model is given by the existing coefficients between thables in?’ in the
original model plus any paths in the original model from variableg/ithrough variables i
and back to variables ifi’. Second, the disturbance covariance makixfor the marginalized
model is obtained by taking the observed covariances over the variablésaird accounting for
the causal effects among the variableslin so as to ensure that the resulting covariances in the
marginal model equal those of the original model in any experiment.

In addition to marginalizing unobserved variables, we may be interestedivindethe canon-
ical model (i.e., without self-loops) from an arbitrary linear cyclic model veigf-loops. This is
possible with the following lemma.

Lemma 8 (Self Cycles)LetU; be an(nx n)-matrix that is all zero except for the elemébk );; = 1.

For a weakly stable modé€B, 3¢) containing a self-loop for variable; xvith coefficient p, we can

define a model without that self-loop given by

_ b
1—bj

. bi bi T
Se = (+ 75 WSl +op )"

B = B Ui(l — B),

The resulting mode(B, 3¢) is also weakly stable and yields the same observations at equilibrium
in all experiments.

Figure 5 shows explicitly the relation of edge strengths in the two models of the leRimze we
are only rescaling some of the coefficients, the graph structure of the stagislintact, except for
the deleted self-loop. The structure of the covariance maigialso remains unchanged, with only
theith row and thath column rescaled. For a modd@, 3¢) with several self-loops we can apply
Lemma 8 repeatedly to obtain a model without any self-loops, which is eqoniviae¢he original
model in the sense that it yields the same equilibrium data as the original mod#ldrperiments.

Note that, as with marginalization, the standardization by removal of self<ytdy produce a
canonical model that is only weakly stable, and not asymptotically stable jfeve original model
was asymptotically stable.

Ultimately, self-loops affect the speed and path to convergence to the eiguiljtout not the
equilibrium itself. Our approach will not yield any insight on self-loops;diese we do not address
the causal process in a time series. However, the indeterminacy regsetfihgpps also means that
any predictions at equilibrium are not affected by the learned model beprgsented in canonical
form, that is, without the possibly existing self-loops. So, although sefidare not strictly for-
bidden for the data generating model, we can present the theory in theifgleections entirely in
terms of models without them.
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Figure 5: Perturbation of coefficients from a model with self-loops (onfigto a model without
self-loops (on the right). The two models are indistinguishable from equitibdata.

3. Identifiability

The full characterization of the model under passive observatioiadgperimental circumstances
now allows us to specify conditions (on the set of experiments) that dieisnf (Section 3.1) and
necessary (Section 3.2) to identify the model parameters. Throughoptrimoses of full identi-
fication (uniqueness of the solution) and notational simplicity, we assume thatmexperiment
we observe the covariance matrix in the infinite sample limit as described byi&g8aand that
both the underlying model and all experiments are canonical. For redsmussed in the previous
section we also assume that there is an underlying generating model thathistatscally stable,
even though the marginalized parts of the model we observe may only béyvetatle. Readers
who are primarily interested in the learning algorithm we have developedkgatosSection 4 and
return to the identifiability conditions of this section when required.

3.1 Sufficiency

Going back to our four variable example in Figure 3, in whighandx, are subject to interven-
tion, we already derived in Equations 10 and 11 the experimental effegts x3||{x1,x2}) and
t(x1~Xa||{X1,%2}) using the trek-rules. Taken together, these equations imply the following

t(X1WX3||{X1,X2}) = b31+t(X1M->X4||{X1,X2})b34 (12)
= t(xaXa[{X1, X2, Xa}) +t(Xa~Xa|[{X1, X2}t (Xa~~X5|[{X1, X2, Xa } ).

Note that Equation 12 relates the experimental effects of intervenifg;ory } to the experimental
effects of intervening ofxi,x2,Xa}. It shows that the experimental effe¢k; ~x3||{x1,X2}) can
be calculated by separating the single padthgoing throughx, (with contributionbs;) from the
remaining paths that all go through. The last edge on these paths is alwgys+ x3. The total
contribution of the paths through is therefore the produ¢{xi~Xa||{X1,%2})b3a.

Equation 12 illustrates two separate but related approaches to identifyifgltmodel param-
eters from a set of measured experimental effects: On the one harnokidgs an example of how
experimental effects from one set of experiments can be used to idexypiéyimental effects of a
novel experiment (not in the existing set). Thus, if we had a set of erpats that allowed us to
infer all the experimental effects of all the experiments that intervene douathine variable, then
we would have determined all the direct effects and would thereby hantfidd theB-matrix. On
the other hand, Equation 12 shows how the measured experimental eéfiedis used to construct

3399



HYTTINEN, EBERHARDT AND HOYER

linear constraints on the (unknown) direct effebs Thus, if we had a set of experiments that sup-
plies constraints that would be sufficient for us to solve for all the dirféetes, then we would again
be able to identify th&-matrix. In either case, the question crucial for identifiability is: Which sets
of experiments produce experimental effects that are sufficient to igghéfmodel? Unsurpris-
ingly, the answer is the same for both cases. For reasons of simplicityeserithe identifiability
proof in this section in terms of the first approach. We use the secondagbpiinvolving a system
of linear constraints, for the learning algorithm in Section 4.

The example in Equation 12 can be generalized in the following way: As statéidrefor
an asymptotically stable model, the experimental effegt~x,||%) of Xi € % onx, € Uk in ex-
perimentZy, = (Jk, Ux) is the sum-product of coefficients on all directed paths frerio x,. We
can calculate the sum-product in two parts with respect to an obsernvedileas; € . First we
consider all the paths thalo notgo throughx;. The sum-product of all those paths is equal to
the experimental effed{x~xy|| % U {X;}), since all paths througk; are intercepted by addition-
ally intervening orx;. Second, the remaining paths are all of the fog Xj~~xy, wherexj is the
last occurrence of; on the path (recall that paths may contain cycles, so there may be multiple
occurrences ok; on the path). The sum-product of coefficients on all subpaths; is given
by t(x~+Xj|| J) and the sum-product of coefficients on all subpaghs X is t(Xj~>Xu|| KU {Xj}).
Taking all combinations of subpatlxs-~X; andXj~-xy, we obtain the contribution of all the paths
throughx; as the produdt(X~X;|| %)t (Xj~Xu|| U {x;}). We thus obtain

tixul[ ) = Xl U {X 1) + 106X || )t (Xj~Xul| U {Xj})- (13)

This equation is derived formally in Appendix F, where it is also shown thadlds for all weakly
stable models (not only asymptotically stable models).

We now show that equations of the above type from two different expatswan be combined
to determine the experimental effects of a novel third experiment. Considexdmple the model in
Figure 2 over variable$’ = {x1,X%2,%3,X4}. Say, we have conducted two single-intervention exper-
imentsEy = (%1, h) = ({Xau}, {X2,X3,X4}) and £, = ({X2},{X1,%3,X¢}). By making the following
substitutions in Equation 13 for each experiment, respectively,

Ji=91={x} Ji= T = {X}
X = X1 Xi 1= Xo
Xj =Xz Xj =Xy
Xy i= X3 Xy 1= X3

we get two equations relating the experimental effects in the original tworiexg@ets to some
experimental effects of thenionexperimentZz = ({x1,%2},{Xs,X4}) (we denote it as the “union”
experiment becausg = %1 U %):

1 t(xaxaf[{x1}) ] [t(xlwxsll{xlaxz}) } _ [t(xlwxs\l{xl}) ]

t(x2~xX1)|[{*2}) 1 t (X X[ [{X1, %2}) t(x2~Xs[[{%2})

In the above equation, the quantities in the matrix on the left, and the elementsa@cioe on
the right-hand-side, are experimental effects that are available froexgiegimental data. The un-
known quantities are in the vector on the left-hand-side. Now, if the matrixetethis invertible,
we can directly solve for the experimental effects of the third experimentriu® the experimen-
tal effects in the first two. (Similar equations hold for other experiment&ictffas well). The
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following lemma shows that the matrix is invertible when the weak stability conditionshaied
that in general, from experimental effects observed in two experimeatsawalways estimate the
experimental effects in their union and in their intersection experiments.

Lemma 9 (Union/Intersection Experiment) For a weakly stable canonical model the experimen-
tal effects in two experiments = (%, Uk) andE = (4%, U;) determine the experimental effects in

e theunionexperimentt ) = (&U 4%, UN ), and
e theintersectiorexperimentE = (KN4, UcU U).

Since there are no experimental effects in experiments intervenirfyasn?/, the experimental
effects are considered to be determined trivially in those cases. In thefoasion experiments, also
the full covariance matrick! of the experiment can be determined. For intersection experiments,
CX' can be fully determined if passive observational data is available (seentppd).

In a canonical model the coefficierttée — x,) on the arcs into variablg, (the direct effects
of the other variables on that variable) are equal to the experimentateffden intervening on
everything excepx,, that is,b(e — X;) = t(e~Xy|| Y\ {Xu}). S0 in order to determine particular
direct effects, it is sufficient to ensure that a given set of experimaotades the basis to apply
Lemma 9 repeatedly so as to obtain the experimental effects of the experimaritgehvene on
all but one variable. In our example with four variables, we can firstugsema 9 to calculate the
experimental effects when intervening ¢xy} U {x2} = {X1,%2} (as suggested above), and given
a further experiment that intervenes only x; we can then determine the experimental effects
of an experiment intervening ofxi, X2} U {xa} = {X1,%2,Xa}. The experimental effects we obtain
constitute the direct effectse — x3). Hence, if single-intervention experiments are available for
each variable it is easy to see that all direct effects of the model are iddniging the lemma.

What then is the general condition on the set of experiments such thatvadedee all possible
direct effects by iteratively applying Lemma 97 It turns out that we carrahie all direct effects
if the following pair conditionis satisfied for all ordered pairs of variables.

Definition 10 (Pair Condition) A set of experiment§Zy }k—1,.. k satisfies the pair condition for
an ordered pair of variable$x;,x,) € ¥ x ¥ (with x # x,) whenever there is an experimefit =

vy

It is not difficult to see that the pair condition holding for all ordered pafrgariables is suffi-
cient to identifyB. Consider one variabbe,. From a set of experiments satisfying the pair condition
for all ordered pairs, we can find for adl # x, an experiment satisfying the pair condition for the
pair (x;,X,). We refer to such an experiment As— (%, ili) in the following. Now, by iteratively
using Lemma 9, we can determine the experimental effects in the union eXpEﬁmeﬂ(ju, ‘ilu)
of experiments{%i}i?éu, where variables in set, = Ui%uﬁi are intervened on. Eact was inter-
vened on at least in one experiment, thisz u: x € 4,. Variablex, was passively observed in
each experiment, thug, ¢ 7,. The experimental effects of this union experiment intervening on
9= V\ {x,} are thus the direct effect§s — X,). Repeating the same procedure for each v
allows us to identify all direct effects.
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Thus, if the pair condition is satisfied for all ordered pairs, we can deteralirelements of
B, and only the covariance matr, of the disturbances remains to be determined. The passive
observational data covariance mat@{ can be estimated from a null-experimef = (0, V).
GivenB andC? we can solve foE, using Equation 3:

e = (I1-B)C%1-B)T, (14)

If there is no null-experiment, then the blo¢Ke)q, ¢, Of the covariance matrix can instead be
determined from the covariance matrix in any experimgnt (%, Ux) using Equation 8:

(Be)ua, = [(1—UB)CK(I — UkB) s, (15)
Consequently, giveB, we can determingXe);; = 0j; if the following covariance condition is met.

77777

yoee

Similarly to the pair condition, if we knov8, and if the covariance condition is satisfied for all
pairs of variables, we can identify all covariances3ia. Notice that the variancgs,);i can be
determined since the assumption includes that each varabiast be passively observed at least
in one experiment.

Putting the results together we get a sufficient identifiability condition for amiaal model:

Theorem 12 (Identifiability—Sufficiency) Given canonical experimenf€ }k—1,..k a weakly sta-
ble canonical mod€lB, 3¢) over the variabled’ is identifiable if the set of experiments satisfies the
pair condition for each ordered pair of variablés;, xj) € 7 x V' (with % # x;) and the covariance
condition for each unordered pair of variabl¢s;, x;} C V.

The identifiability condition is satisfied for our four-variable case in Figutey2for exam-
ple, a set of experiments intervening oxu, X2}, {X2,Xa}, {x1,Xa} and{xz}. Obviously, a full set
of single-intervention experiments or a full set of all-but-one experimegstier with a passive
observational data set would also do. We return to this issue in Section 4.2.

3.2 Necessity

To show that the conditions of Theorem 12 are not only sufficient buadh d&lso necessary for
identifiability, we consider what happens when the pair condition or theriemee condition is not
satisfied for some variable pair. Since the covariance condition only enthe identifiability of
Y whenB is already identified, we start with the more fundameptal condition

Consider the two models in Figure 6. The models differ in their parameters\emdin their
structure, yet produce the same observations in all experiments that slatiséy the pair condition
for the (ordered) paifxz,x4). That is, for any experiment (including a passive observation), for
which it is not the casehatx, € J% andxs € Uy, the two models are indistinguishable, despite the
fact that for an experiment thaatisfieghe pair condition fofx, x4), the two models will in general
have different experimental effects (due to the difference in the diféettb,,). Since the effect
due tobg, cannot be isolated in the left model without satisfying the pair condition foptie
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L~

Figure 6: Underdetermination of the model. On the left: the data generating i&d;). On the
right: a model(B, ¥¢) producing the same observations in all experiments not satisfying
the pair condition for the ordered pdix, X4).

(x2,X4), its effect can be accounted for elsewhere in the right model, for exathgleffect of the
missing pathx; — X2 — X4 is accounted for in the model on the right by the perturbed coefficient
b41+ baoboq on the arcy — Xa.

The B-matrix for the model on the right was constructed from the one on the lgfeltyrbing
the coefficientos, corresponding to the paix,xs), for which the pair condition is not satisfied.
The perturbation corresponds to settdhg= —by, in the following lemma.

Lemma 13 (Perturbation of B) LetB be the coefficient matrix of a weakly stable canonical model
over? and let{ E}k-1.. k be a set of experiments @that does not satisfy the pair condition for
some pain(x;, Xj). Denote the set&’ = 7\ {x;,X;} and L = {x;, xj }. Then a model with coefficient
matrix B defined by

. . 0 b ~ ~ -
Bgxy =Bgw, Brr= [ b+ (')J ] Bra=(1—Brr)(l —Brr) "By

will produce thesame experimental effectés B for any experiment that does not satisfy the pair
condition for the pair(x;, x;j). The free paramete¥ must be chosen such thats weakly stable.

Lemma 13 shows that if the pair condition is not satisfied for the p&ik;), thenb; cannot be
identified on the basis of the measured experimental effects. As in our &xamgp generally the
case that fod + 0 the model$® andB will produce different experimental effects in any experiment
that satisfies the pair condition for the péir,x;). The choice obis not crucial, since most choices
will produce a weakly stable perturbed model.

To see the effect of the perturbation more clearly, we can write it explicitfglasvs:

vl £ j, Vk: b = by, (no changes to any edges that do not enxi)jn
Bji = bji +9, (perturb the direct effect of onx; by d)

bjj =0, (no self-loop ak;)
bik + bijbjk

vk {i,j}: by = by — d—— 1K,
¢Ai,j} jk ik 1_b”m

(needed adjustments to incoming arcstp

The above form makes it clear that if the pair condition is not satisfied fopéie(x;,x;), in
general all coefficients on thgh row of B may be unidentified as well. Hence, to guarantee the
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identifiability of coefficientb;; we must have the pair condition satisfied for all pawsx;). In
Figure 6 the coefficienbs, is unidentified because the pair condition for the gai;x4) is not
satisfied. But as a resulb,; is also unidentified. Nevertheless, in this particular example, the
coefficientbss happens to be identified, because of the structure of the graph.

If the pair condition is not satisfied for several pairs, then Lemma 13 cappked iteratively
for each missing pair to arrive at a model with different coefficients,ghaduces the same experi-
mental effects as the original for all experiments not satisfying the painsgstopn. Each missing
pair adds an additional degree of freedom to the system.

We emphasize that Lemma 13 only ensures thatettpeerimental effectsf the original and
perturbed model are the same. However, the following lemma shows thatviearwe matrix of
disturbances can always be perturbed such that the two models becmpletsdy indistinguishable
for any experiment that does not satisfy the pair condition for some(gpaik; ), as was the case in
Figure 6.

Lemma 14 (Perturbation of ¥¢) Let the true model generating the data [, X¢). For each
of the experiment$Z}«—1.. k, let the obtained data covariance matrix b?é If there exists a
coefficient matrix8@ # B such that for all{ £ }«—1.. k and all x € % and x € U it produces the
same experimental effec(sit-x; || %), then the mode(B, Se) with $e = (I — B)(I — B) " 12¢(1 —
B)~T(I —B)T produces data covariance matric€§ = CX forall k =1, ...,K.

Lemma 14, in combination with Lemma 13, shows that for identifiability the pair conditiost
be satisfied for all pairs. If the pair condition is not satisfied for some pan an alternative
model (distinct from the true underlying model) can be constructed (usetybn lemmas) which
produces the exact same covariance mati@gfor all the available experiments. In Figure 6, the
effect of the missing link, — X4 is imitated by the additional covarianbezog betweerse, andey
and by the covariandey,01, betweere; ande;.

The result implies that identifying the coefficient matBxexclusively on the basis of constraints
based oexperimental effectdready fully exploits the information summarized by the second order
statistics. The covariances between the passively observed varieblessponding to the lower
right hand block in Equation 9) do not provide any further information.thiVs obtain the result:

Theorem 15 (Completeness)Given the covariance matrices in a set of experimégh—1 . k
over the variables i/, all coefficients [ — X;) of a weakly stable canonical model are identified
if and only if the pair condition is satisfied for all ordered pairs of variablethwespect to these
experiments.

Intuitively, the covariances between the passively observed varidblast help in identifying the
coefficientsB because they also depend on the unknolgsand the additional unknowns swamp
the gains of the additional covariance measures.

If B is known or the pair condition is satisfied for all pairs, but tovariance conditioris
not satisfied for a pai{x,x;}, then in general the covarianog cannot be identified: In all the
manipulated graphs of the experiments thexake X; is cut, and thugj; does not affect the data in
any way. It follows that the covariance condition is necessary as wellieMer, unlike for the pair
condition, not satisfying the covariance condition for some pair doesfieat ¢he identifiability of
any of the other covariances.

We can now summarize the previous results in the form of a sufficient ards@ry identifiabil-
ity condition for the full model. Theorem 12 states that satisfying the pairitonégind covariance
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condition for all pairs is sufficient for model identifiability. Theorem 15whkdhat the coefficients
cannot be identified if the pair condition is not satisfied for all pairs of & and in the previous
paragraph we showed that satisfying the covariance condition foriadl iganecessary to identify
all covariances and variances of the disturbances. This yields the ilofjonain result.

Corollary 16 (Model Identifiability) The parameters of a weakly stable canonical mg&ebe)
over the variables irl/ can be identified if and only if the set of experimefi k-1 k satisfies
the pair condition for all ordered pairgx,xj) € 1V x ¥ (such that x# x;) and the covariance
condition for all unordered pairgx;,x;} € .

Finally, note that all of our identifiability results and our learning algorithnc{®a 4) are solely
based on second-order statistics of the data and the stated model spanptass. No additional
background knowledge is included. When the data are multivariate Gapibsae statistics exhaust
the information available, and hence our identifiability conditions are (at leetsiy case necessary.

4. Learning Method

In this section, we present an algorithm, termed LLC, for inferring a lingeliccmodel with latent
variables, provided finite sample data from a set of experiments ovenerevariable set. Although
Lemma 9 (Union/Intersection Experiment) naturally suggests a procedureitel discovery given

a set of canonical experiments that satisfy the conditions of Corollariib@é€l Identifiability), we

will pursue a slightly different route in this section. It allows us to not onlyniifg the model
when possible, but can also provide a more intuitive representation afdh@fon) situation when

the true model is either over- or underdetermined by the given set ofimargs. As before, we

will continue to assume that we are considering a set of canonical expesime a weakly stable
canonical model (Definitions 2, 4 and 6). From the discussion in Sectiostdiild now be clear
that this assumption can be made essentially without loss of generality: Ampastycally stable
model can be converted into a weakly stable canonical model and anyregpéecan be redescribed

as a canonical experiment, as long as the interventions in the originalreepémwere independent

of the disturbances. As presented here, the basic LLC algorithm peovidy estimates of the
values of all the edge coefficientsi) as well as estimates of the variances and covariances among
the disturbances iie. We later discuss how to obtain error estimates for the parameters and how
to adapt the basic algorithm to different learning tasks such as strucsemdry.

4.1 LLC Algorithm
To illustrate the derivation of the algorithm, we again start with Equation 12, hwivies derived
from the experiment that intervenes xnandx; in Figure 3,

t(xi~Xs|[{X1,%2}) = bar+t(xi~Xal[{X1,X2})D3a.

This provides a linear constraint of the measured experimental effegtsx;||{x1,x>}) on the
unknown direct effectd®s; andbzs into X3. In general, the experimental effects observed in an
experimentE, = (%, Ux) can be used to provide linear constraints on the unknown direct effects
that, like Equation 12, have the form

t(xi“’“’XuH]k) = bui+ Z t(XiWXjH]k)buja (16)
Xj € U\ {Xu}
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wherex; € % andxj,x, € Ux. Analogously to the equations in Section 3.1, for asymptotically
stable models Equation 16 is also naturally interpretable in terms of the sum sfopathecting the
variables: The experimental effectxpfon x, is a sum of the direct effect af onx, and the effect of
each path fronx; to any othei; € U\ {x,}, multiplied by the direct connection from th&tto x,.
(Alternatively, one can also see how Equation 16 is reached by iteraéipplying Equation 13.)
Since the covariance matri@¥ of an experimentt contains the experimental effects for all
pairs(x;, Xj) with x; € j andx; € Uy, each experiment generateg= | | x | Ux| constraints of the
form of Equation 16. For a set of experimeqtgi}x-1,. k We can represent the constraints as a
system of equations linear in tfig® — n) unknown coefficient®;i in B. (Recall thatoj = O for all
i in canonical models.) We thus have a matrix equation

Th = t, a7)

whereT is a((3§_;mk) x (n? —n))-matrix of (measured) experimental effedtsis the (n? — n)-
vector of unknowrbj andt is a(y_, my)-ary vector corresponding to the (measured) experimental
effects on the left-hand side of Equation 16.

Provided that matrixi has full column rank, we can solve this system of equation$ fand
rearrangeb into B (including the diagonal of zeros). Since any one constraint (e.g.,tlBQuE6)
only includes unknowns of the tyg®,., corresponding to edge-coefficients for edges into some
nodex, € Ux, we can rearrange the equations such that the system of equatiors maasénted in
the following form

T11 by t1
T2 b to
Tnn bn tn

whereT is a block diagonal matrix with all entries outside the blocks equal to zerdeddsof
solving the equation system in Equation 17 witif —n) unknowns, Equation 18 allows us to
separate the system intoblocks each constraining direct effedtg into a differentx,. We can
thus separately solweequation systems, b, = t, with (n— 1) unknowns in each. The matrik
has full column rank if and only if all', have full column rank as well.

For example, in the case of the experiment interveningkea {xa, X2} of the 4-variable model
in Figure 3, we obtain the following experimental covariance matrix:

1 0 t(xa-xal[{x1,%2})  t(x1~-Xal[{X1,X2})
cl_ 0 1 txeal[{x %)) t0eal| {0, %))
(XX [{X, X2})  t(Xe~Xa|[{X1,X2}) vali(x3) COVk(X3,X4)

txa-xal[{x1,%2})  t0evxXal[{x1,%2})  COW(X3,%a) var(Xa)

This covariance matrix allows us to construct the following four linear cairgs on the unknown
b's:

t(x~=xg|[{x1,%2}) = ba1+t(X~Xa|[{x1,X2})Dga, (19)
tx=xa|[{x1,%2}) = Dar+t(x~Xg|[{x1,X2})Das, (20)
t(Xo~Xa|[{X1,X2}) = bza+t(Xo~xa||{X1,X2})b34, (22)
tOXal[{X1,X2}) = baz+t(Xo~X3||{X1,X2})Daz. (22)
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If we have a further experimery = (4, W) with % = {xa} then we obtain the following three
additional constraints:

t(xaxa|[{xa}) = bratt(xa~xa|[{Xs})b12+t(Xa~>X3|[{Xs})b13, (23)
toaxel{xa}) = baa+t(xa~xa|[{Xa})ba1+t(Xs~>X3[|{Xa})b23, (24)
t(Xaxsl[{Xa}) = baa+t(Xxe~Xa|[{Xa})b31+t(Xa~~X2|[{Xa})D32. (25)

Converting the Equations 19-25 to the form of the Equation 18, we seedhatiBns 19, 21 and 25

become part of 33, while Equations 20 and 22 become parfaf, and the remaining Equations 23
and 24 become part df1; and Top, respectively. We will focus off 33 consisting of Equations

19, 21 and 25:

1 0 t(Xa~>Xa|[{X1,%2}) b3y
T33b3 = 0 1 t(XzWX4||{X]_,X2}) b32
Lt [{Xa})  t(a~xal[{x4}) 1 bsa
[ t(xa~xa|[{X1, %2 })
= t(XZWX3| |{X1,X2}) =1s3.
t(Xa~>Xa|[{Xa})

Given Lemma 9 (Union/Intersection Experiment) it should now be clear thaxperimental
effects of experiment&y and Z; are sufficient to determine the experimental effects of an exper-
iment intervening ory = '\ {x3}, which would directly specify the values fdg, bz, andbs,.
Unsurprisingly, the matriX 33 is invertible and the coefficients1, bs> andbs, can be solved also
from the above equation system. In Appendix K we show formally that whepair condition is
satisfied forall ordered pairs, thef has full column rank.

Once we have obtaindgl using the above method, the covariance matiixcan be obtained
easily using Equation 14 if a null-experimef§ = (0, ) is available, or else using Equation 15 in
the more general case where only the covariance condition is satisfialll pairs.

Until now, we have described the algorithm in terms of the covariances anexgrerimental
effects ‘observed’ in a given experiment. In practice, of coursepmlg have finite sample data,
and the above quantities must bstimatedirom the data, and the estimated covariances and ex-
perimental effects do not precisely equal their true underlying valubis rlaturally has practical
ramifications that we describe in the context of the algorithm below.

The LLC algorithm (Algorithm 1), for models that al@ear, may havelatent variables and
may contaircycles gathers the ideas described so far in this section. It omits all but the nabst ru
mentary handling of the inevitable sampling variability in the estimates. The algorithiminés
the sum of squared errors in the available linear constraints by solvingtlagien system using the
Moore-Penrose pseudo-inverse. Thus, whenever the linear amtstlerived from different exper-
iments are partly conflicting, the algorithm will find a compromise that comes as aopossible
to satisfying all the available constraints. Similarly, to improve the statistical estimafti®g, we
average over all the instances when a patrticular pair of variables waiw@lg observed. When the
covariance condition is not satisfied for a particular pair, then the coxaiaf the disturbances for
that pair remains undefined.

There are several standard modifications that can be made to this basithaiga light of
statistical variability of the finite sample data. Whenever the sample size ditfbssamtially be-
tween experiments, a re-weighting of the constraint equations accordihg sample size of the
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experiment they were obtained from, favors the more precise constr8iniple bootstrapping of
the observed samples in each experiment separately, can be used taalghirestimates of er-

ror for theidentifiedparameters. In Section 6.2 we calculate a Z-score from these error estimate
which in turn is used for structure discovery. Finally, some form of regadtion can help to avoid
overfitting (see Sections 6.2 and 6.3). Although we have presented thelgo@ithm here in its
stripped down form to illustrate its main contribution, the code implementapeoovides various
options for using these additional features.

When the pair condition is not satisfied for all ordered pairs, theoes not provide a sufficient
set of constraints and the model is underdetermthedevertheless, some inferences about the
model are still possible. We discuss the details in the following section on detgemination. For
now, note that the algorithm also outputs a list of pairs that satisfy the paiiitemm and a list of
pairs that satisfy the covariance condition. We will show that these casdzkta characterize the
underdetermination.

We thus have an algorithm that fully exploits the set of available experimeriten\he model
identifiability conditions are satisfied it returns an estimate of the true model, thieesystem is
overdetermined it finds a compromise to the available constraints, and wherotie is underde-
termined we show in the next section what can and cannot be recoaedttpw one may proceed
in such circumstances.

4.2 Underdetermination

Even when the set of experiments does not satisfy the pair condition fordaied pairs of vari-
ables, the LLC algorithm will nevertheless return a model with estimates foreaidbfficients. If
there were no sampling errors, one could then check the null-spacelofttatrix to identify which
entries ofB are actually underdetermined: An elemenBdb determined if and only if it is orthog-
onal to the null-space of. In some cases one may find that specific coefficients are determined
due to particular values of other coefficients even though that was rastfoten the satisfied pair
conditions. The coefficierys in the example in Figure 6 (see the discussion following Lemma 13)
is a case in point.

In practice, however, using the null-space to identify the remaining uetirdination can be
misleading. The constraints ih are based on estimates and so its null-space may not correctly
identify which coefficients are determined. One can take a more conseregiproach and treat
any bjk as undetermined for ak whenever there exists ansuch that the pair condition is not
fulfilled for the ordered paifx;,x;). This follows from the fact that perturbing the model accord-
ing to Lemma 13 (Perturbation &) with respect to paifx;,x;j), may change all coefficients of
the formbj,, while leaving the observed experimental effects unchanged. Similarlyiftthatep
of the algorithm implements a conservative condition for the identifiability of therance ma-
trix: covarianceoj; can be treated as determined if the covariance condition is satisfied forithe pa
{xi,x;} andthe direct effect ,,  are determined. Depending on which parameters are iden-
tified, Lemma 9 (Union/Intersection Experiment) can be used to make congsgelittions of the

5. Code implementing the learning algorithm is availabletap: / / wwv. ¢s. hel si nki. fi/u/ajhyttin/exp/.
6. Because of statistical variability, may well have full rank even in this case, but some of the dimensionsitssp
only represent errors in the estimates rather than information aboubéiffecents. See Section 4.2 for details.
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Algorithm 1 LLC algorithm
1. Input data from a set of experimedt&y }k—1._ k. Initialize matrixT and vectott as empty.

2. Using{E}k-1... k., determine which ordered pairs of variables satisfy the pair condition and
which pairs of variables satisfy the covariance condition.

3. For each experimeriy = (%, Ux):

(a) Estimate the covariance mat@X.

(b) From the estimated covariance matrix, extract the experimental effects
'[(XinuH]k) for all (Xi,Xu) € Jk x U.

(c) Foreach paifx,x,) € % x Ux add an equation

b+ Y tixjl[Adbu = x| %)
X € U {xu}

into the systenTb =t.

4. Solve the equations Hy= TTt, whereT" is the Moore-Penrose pseudo-inverseTofand
rearrange to getB.

5. For any pai{x;,Xj} C ¥/ calculate the covariance of the disturbances as a mean of the co-

variances estimated in those experimehts= ( J, Ux) where{x;,x;} C Uy, by
(Se)ij = mean{((I —UkB)CK(I — UkB))ij [ {x:, X} C Ti}),

including variances whex = x;. (The mean is undefined for a particular pair if the covari-
ance condition is not satisfied for that pair.)

6. Output the estimated mod@B, 3¢), a list of ordered pairs of variables for which the pair
condition is not satisfied, and a list of pairs of variables for which theri@wee condition is
not satisfied.

experimental effects or the entire covariance matrix for union- or intéeséexperiments of the
available experiments even if the set of experiments does not satisfy thiadelity conditions.
Instead of characterizing the underdetermination, one may consider heatiséy the model
identifiability conditions. There are two general approaches one cousdipuOne approach is to
strengthen the underlying assumptions, the other to perform additioretiegnts. Taking the first
approach, the additional assumptions may be domain specific or domaimlgeénerconometrics
it is common to include background knowledge of the domain that excludesdkenze of certain
edges, that is, certain edge coefficients are known to be Eariinfulnesson the other hand, is an
assumption we did not make, but that is widely used in causal discovemthigs (Spirtes et al.,
2000). For the linear models we consider here, the assumption of faitedulaquires that a zero-

7. We note that to fully determine the covariance maﬁiﬁ' in anintersectionexperiment, one may require additional
passive observational data. See the discussion following Lemma 9.
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covariance between two variables entails the absence of a causattiontetween the variables.
While reasonable for many circumstances, there are well-known cases flithfulness is not sat-
isfied. For example, if two or more paths between two variables canceb#laehout exactly, then

one would find a zero-covariance between the variables despite thkdatite variables are (multi-

ply!) causally connected. Moreover, if the data is noisy, a close to ufifaihusal relation may not

be distinguishable from an unfaithful one unless a large amount of dptaticular experiments are
available. Nevertheless, if faithfulness is judged to be a reasonablmpissn, then it can provide

additional constraints. We have discussed the integration of faithfulnddssekground knowledge
into the current framework in Hyttinen et al. (2010). It remains, howea@open task to develop a
procedure for linear cyclic models with latent variables thabisipletevith regard to the additional

inferences one can draw on the basis of faithfulness.

If one is able to perform additional experiments, an obvious strategy idetct ke next exper-
iment such that it maximizes the number of additional pair conditions that aréexhti experi-
ments that intervene on multiple variables simultaneously are taken into comisidgasbrute force
search for such a best experiment will be exponential in the numberiables. In that case one
may consider more efficient selection strategies or heuristics. In most aagedditional experi-
ment will also repeat tests for pairs for which the pair condition is alreatigfieal. When included
in Equation 18, constraints derived from such tests can make the infemreereliable, so one
may deliberately select experiments to include particular repeats.

A selection of experiments that is greedy with respect to the satisfactiordiifaaml pair con-
ditions will not necessarily result in the minimum number of experiments overaflekample, if
one has six variables, ..., X, and no pair condition has been satisfied so far, that is, no experiment
has been performed, then a greedy strategy may recommend a sequdreatervention sets to
fulfill the pair condition for all pairs:

5= {X1,%2, X3}, o = {Xa,X5,%X6 }, I3 = {X1,%a}, Ja = {X2,Xs5}, J5 = {X3, %6}

However, the following four intervention sets are sufficient to satisfy #gieqondition for all pairs,
but would not be selected by any procedure that is greedy in this tespec

J1 = {X1, %2, X3}, Jo = {X3,%X4,X5}, I3 = {X5,Xe, X1}, Ja = {X2,%X4, X6 }.

The optimal selection of experiments (given possible background kngejed closely related
to the theory in combinatorics of finding so-called ‘minimal completely separagiatgs’ for
directed graphs (see Hyttinen et al., 2012 and Spencer, 1970 for stevant results). A full
discussion here is beyond the scope of this paper.

From a statistical perspective we have found that intervening on mdebles simultaneously
leads to a higher accuracy of the estimates even if the total sample size atmgseriments is
maintained constant (Eberhardt et al., 2010). That is, for two setspefriexents that each satisfy
the pair condition for all pairs of variables (e.g., the set of four experisnen six variables above
versus a set of six experiments each intervening on a single variablsgdhience of experiments
intervening on multiple variables simultaneously will provide a better estimate ofritierlying
model even if the total sample size is the same.

5. Simulations

We compared the performance of the LLC-algorithm against well-knownilegalgorithms able
to exploit experimental data. Since there is no competing procedure thasagppectly to the
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search space including cyclind latent variable models, we chose for our comparison two proce-
dures that could easily be adapted to the experimental setting and that wanitiea good contrast
to illustrate the performance of LLC under different model space assunspiis baseline we used
the learning procedure by Geiger and Heckerman (1994) for acycjiedan networks with linear
Gaussian conditional probability distributions, referred to as GH. Expetahdata is incorporated
into the calculation of the local scores in GH using the technique describ&bbger and Yoo
(1999). Given that GH assumes acyclicity and causal sufficiency ftbenae of latent confound-
ing), it provides a useful basis to assess the increased difficulty ofshevtaen these assumptions
are dropped. We also compare to an algorithm for learning Directed Cy@jghizal models (DCG,
Schmidt and Murphy, 2009), designed for discrete cyclic causal madiglsut latent confounding.
In this model, the passively observed distribution is represented as dlglodyenalized product of
potentials

1 n
P(X1,..., %)) = > _rl(P(Xi;Xpa(i))7
i—=

whereZ is a global normalizing constant. By using unnormalized potentials instead mftized
conditional probability distributions, cycles are allowed in the graph strectixperimental data
is then modeled by simply dropping the potentials corresponding to manipulatedlearfrom the
expression, resulting in a manipulated distribution, such as, for example,

l n
P(X2, ..., Xnl[X1) = i _|1<p(xi;xpa<i)),

with a new normalizing constari¥’. Schmidt and Murphy (2009) use potentials of the form
O(Xi5 Xpa(iy) = €XP(bi (X)) + 3 jepai) Wij (X, Xj)) to model discrete data and learn the model by max-
imizing the penalized likelihood function using numerical optimization techniquedit This ap-
proach we discretized the continuous data (at the very end of the daaatjag process) to binary
data using 0 as threshold value. While the DCG model may be useful in artalyaitic systems
under intervention, one should note that the underlying causal gesgepaticess is not very clear.
Certainly, our data generating processes do not in general yield digiribthat fit the model family

of DCG.

At first glance, it would appear natural to consider two further praoesifor comparison: the
Cyclic Causal Discovery algorithm (CCD, Richardson, 1996) that all@vsycles but not latent
variables, and the Fast Causal Inference algorithm (FCI, Spirtés 2080) that allows for latents
but not for cycles. Both are based on conditional independence testet@rn equivalence classes
of causal models. However, while background knowledge can be atezhinto both procedures
to learn from a single experimental data set, it is not clear how (possibRiatony) results from
different experiments should be combined. Identifying the appropriatébicong procedure for
these algorithms would thus require a separate analysis. The appro&ladssen and Heskes
(2010) provides some steps in this direction with regard to FCI, but theireinark does not quite
fit our context since in their framework the interventions are not targetedrticular variables. We
considered a comparison with the recent proposal by Itani et al. J2B08as of this writing no
fully automated procedure was available to the present authors.

To compare the LLC- with the GH- and DCG-algorithms we considered modelsr dive
different conditions:
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linear acyclic models without latent variables,
linear cyclic models without latent variables,
linear acyclic models with latent variables,

linear cyclic models with latent variables, and
non-linear acyclic models without latent variables.

akrwbdE

For each condition we randomly generated 20 causal models with 10 edsetiables each. In
the underlying graphs each node had 0-3 parents. In models with latesiblea, there were 5
additional latent variables, exogenous to the 10 observed variablesstiittural equations were
of the form

Xj = Z (bjix; +ajixi2)+ej,
iepalj)

wheré ej ~ N(0,0%), bji ~ +Unif(0.2,0.8) anda; = 0 except for the fifth condition with non-
linear models whera;; ~ Unif(—0.2,0.2). For the second and fourth condition we sampled until
we obtained models that contained at least one cycle. From each modellester samples in the
passive observational setting (null experiment) and in ten additionatiexgas, each intervening
on a single (but different) variable. The intervened variables werayswandomized to a normal
distribution with zero mean and unit variance. The total number of sample30(100100,000)
were divided evenly among the 11 different experiments, so that adjutstioesiccount for the fact
that one experiment may provide more accurate estimates than anothernmecessary. Note
that the described set of experiments satisfies the identifiability conditionddrliE-method in
Theorem 12 (Identifiability—Sufficiency).

There are a variety of ways to assess the output of the algorithms. Gatszvtry test condition
violates at least one of the assumptions of one of the algorithms being testeécided against a
direct comparison of the quantitative output of each procedure. thateaised the same qualitative
measure that is applied in the cellular network inference challenge thaths&leoas a case study in
Section 6. Following Stolovitzky et al. (2009), the simulations were designgdthat each method
was required to output a list of all possible edges among the obseniablear sorted in decreasing
order of confidence that an edge is in the true graph. To this end, wéeadhe three algorithms in
the following way. For LLC, the edges were simply ranked from highestt@$b according to the
absolute value of their learned coefficientBin Although the magnitude of a coefficient does not
directly represent the confidence in the presence of the edge, we &vaopirically that it worked
quite well in the simulations. (See Section 6 for an alternative approacld loeseesampling.)
For GH, we calculated the marginal edge probabilities over all DAG strige{with an in-degree
bound of 3) using the dynamic programming algorithm of Koivisto and Soo@4R@hus obtaining
a score for the confidence in each possible edge. Given that DCGinseyg variables, each edge
is associated with four weightsy; (0,0), wij (0,1), wij (1,0) andw;j(1,1). Since the weights were
penalized (with regularization parameldgr an edges; — x; is absent whenever the four associated
weights are zero. Following Schmidt and Murphy (2009), we used.th@orm of the weights for
each edge to determine its strength and hence its rank. As with LLC, this s¢éemvedk well to
generate the order.

8. Although the disturbances are uncorrelated in the data generating model, the disturbances of thedeaodel are
in fact correlated when some of the original variables are consideratserved.
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Figure 7: Examples of ROC- (left) and PR-curves (right) of the output.&f run on 1,000 samples
evenly divided over 11 experiments on a linear acyclic model without lateotsl{tion
1).

Given the ordered lists of all possible edges, we can obtain a binargfioedor the presence or
absence of an individual edge by simply defining a threshold above wehigés would be predicted
to be present. These binary predictions can then be compared with timelgrotin of the underlying
model. However, since the selection of the threshold is to some extent arifrad requires
domain specific knowledge of the general sparsity of the generating model®llow the common
approach of reporting Receiver Operating Characteristic (ROCesuamd Precision Recall (PR)
curves, and areas under these curves, as explained below. Thigteraof the simulations is also
consistent with the evaluation of the case study in Section 6.

A ROC-curve (Figure 7, left) is drawn by plotting the true positive rate (T&finst the false
positive rate (FPR) for different values of the threshold score, &her

# edges correctly predicted to be present
# edges in generating model ’
# edges incorrectly predicted to be present
# edges not in generating model

TPR =

FPR =

The ROC-curve for a powerful classification method should reach tdbe top left corner (perfect
classification) for some threshold value of the score, while classifyirenalom would result in the

dashed curve in Figure 7. The area under the ROC-curve (AURO®Eis ased as a simple one-
figure score to assess the power of a classification algorithm. When digwpeausal edges in our
setting, the AUROC-value specifies the probability that a random edgentrigsthe true model

will obtain a higher score than a random absent edge. The AUROC-ualaly ranges from 0.5

(random classification) to 1.0 (perfect classification).
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Another measure of the quality of search algorithms examines the tradeta#én Precision
and Recall on a PR-curve (Figure 7, right), where

# edges correctly predicted to be present
# edges predicted to be present ’
# edges correctly predicted to be present
# edges in generating model

Precision =

Recall =

A perfect classification algorithm should have a precision of 1 for alllfe@lues. The area under
the PR-curve (AUPR) specifies the average precision over difféneeshold values of the score,
and can range from 0.0 to 1.0 (perfect classification).

Figure 8 shows the results of our simulations. For DCG we ran the algorithmseitéral
regularization parameter valugs 28,27, ...,277,278), and always report the best AUROC- and
AUPR-score. LLC and GH are run without any further tuning. In the @iesdition (linear acyclic
models without latents), all methods seem to learn the correct causal strastthe sample size
increases. For small sample sizes the GH approach benefits from theResgesian priors. Such
priors could also be added to the LLC-algorithm, if better performance idetkéor very low
sample sizes. In the other conditions GH does not achieve good resultsvételarge sample
sizes. The performance of GH actually tends to get worse with increasingls size because the
method starts adding incorrect edges to account for measured conelditad cannot be fit other-
wise, since the generating model is not included in the restricted model dthssés. In contrast,
LLC suffers at low sample sizes at least in part because of the larger iclads it considers. In
the second (cyclic models without latents), third (acyclic models with latentshoamth condition
(cyclic models with latent variables), both LLC and DCG find quite good estintdtédse causal
structure, when sufficient samples are available. Some inaccuracies biQG-method are due
to the discretization of the data. The performance of DCG in the preseriagent confounding
is surprisingly good given that the DCG model does not represent haeiables explicitly. The
result may also suggest that the dependencies among the observetesahat were due to latent
confounding may have been weak compared to the dependencies duectugiad relationships
among the observed variables. For the non-linear data condition, the isnhete (and therefore
non-linear) method DCG achieves the best results.

Without further adjustments GH and DCG cannot be scaled to larger sameteaia large
number of variablesn]. The super-exponential growth of the number of DAGs currently limits the
GH approach to not more than 30-50 variables. Additionally, the calculafitocal scores can
be time consuming. On the other hand, DCG requires a numerical optimization ¢vn(n— 1)
parameters, which is also infeasible for large

In its most basic form (i.e., Algorithm 1), the LLC algorithm only requires theightforward
estimation of the covariance matrices and a calculation of a pseudo-ineensenfatrices with a
dimensionality of(n— 1) x (n— 1) each. Such a procedure, as used in our simulations, can thus
scale to a relatively high (e.gn = 100) number of variables. However, as we see in the next
section, it may be useful to add regularization to the basic procedurerenchay have to resort
to resampling approaches to obtain estimates of the errors in the coefficieadgd to infer which
edges are present and which are absent. Such adaptations antastefithe basic method can, of
course, add significantly to the complexity of the method, but may also pay &ffnms of a higher
accuracy on small sample sizes.
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Figure 8: Simulation results: AUROC (top) and AUPR (bottom) values for th€- IGH- and
DCG-algorithms in the five model conditions (columns, see main text for details) f
total sample size of 1,000-100,000 (x-axis) evenly divided over aymebservation and
10 single intervention experiments. Each point on the solid lines is an avevag@®
models with 10 observed variables each, the dashed lines indicate therdtdedation
of this average. The light gray shading in this and subsequent figuusgdssolely for
visual distinction.

6. Case Study: DREAM Challenge Data

DREAM (Dialogue for Reverse Engineering Assessments and Methods)aarly held challenge
for the fair evaluation of strengths and weaknesses of cellular netwierleirce procedures. In this
section, we describe how we applied an adapted version of the LLC-metkiogincsilico network
challenges of DREAM 3 and DREAM 4, conducted in 2008 and 2009 ectsfely. The network
sizes of the 25 individual models, divided into 5 sub-challenges, rainged10 to 100 nodes.

The participants were asked to learn the directed graph structure okaeguiatory network
in different types of cells, from experimental data. Data wasilico, or simulated, in order to
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Figure 9: An example of the data provided for one of the 10 variable DRE#&Mork inference

challenge. Each row shows the steady state expression levels for fetheh1® genes
when the gene indicated on the columns is knocked deyor(knocked out ). For
each gene, the dashed line indicates the passively observed valugarklgray shading
highlights the diagonal elements, marking the measured levels when interventhg
respective gene. From the 10th row we see that the expression letled @Dth gene
responds strongly only to the manipulation of the 9th gene or the 10th gene itself

have access to the ground truth network structures. The data genenatile¢s were designed to be
biologically plausible (Marbach et al., 2009) in order to achieve a realistfomeance assessment
of the network learning algorithms. The networks were based on modulested from known
biological interaction networks, preserving functional and structu@grties of the original net-
works. Data was then generated simulating a biologically plausible dynama@égs and adding
noise (Prill et al., 2010).

The data provided to the participants included two measures of the steady dftgiene ex-

pression

levels (the levels converge to these values over time) as mRNant@imns, in several
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different conditions. One data set is visualized in Figure 9. Given tHgttaro data vectors were
provided for each condition, GH and DCG, tested in Section 5, are nattlgirgpplicable. The
challenges also provided several time series of how the modeled celeredoem a perturbation
back to its equilibrium state. We do not include the time series data in our anaysis, LLC
(or the other procedures we considered) cannot straightforwaxglgiethis data. Each team was
supposed to output a confidence measure or a score for their belieferighence of each possible
edge in the model. The performance of the learning algorithms was compeEingdAUROC and
AUPR scores for a single data set (Stolovitzky et al., 2009), in the sameamaarexplained in
Section 5. Finally, in each sub-challenge of 5 models, the competing teamsewepared using a
total score averaging the individual network scores over all 5 nevork

Below, we discuss how we adapted LLC so that we could apply it to thedkerpes, and
compare the results we obtained with the scores achieved by the teams ticpaied in the
original challenge.

6.1 Estimating the Total Effects

When gene is knocked down or knocked out, we can treat the result in our frameasan out-
come of an experiment where variabdeis intervened on. However, the DREAM data provides
only the steady state values of the expression levels, and not the fufiaoos@ matrices. We can
still find the total effects in the experiments by the following approach. Firstireat the steady
state values as the expected values of the variables under the difféegmeintions (or passive ob-
servation), rather than as individual samples. Second, the passigevational steady state values
are deducted from all the interventional steady state values such thainassumé&(x) = 0 and
thusE(e) = 0. Recall that the total effed¢{x~+x;) is just the regression coefficient afwhenx;

is regressed over the only manipulated variafleThus, the expected or steady state valug;of
whenx; is manipulated to a valu;&{"‘0 (knocked out) is simply(xi~X;) -x}’ko. Similar reasoning
applies wherx; is manipulated to a valué’kd, and so we can estimagx~X;) by the least squares
solution of the equation system:

ijko i.ko

i = X
i kd

t(Xi~=Xj) - X’ = X

t(X~=Xj) - X

Given that the data set satisfies the pair condition for all ordered parREAM experiments
fulfill the requirements given in Section 3 for model identifiability and all toté &bt (x~~X;) can
be estimated for all pairs, x;).

6.2 Network Inference

Given the estimated total effects, we could directly apply the LLC algorithmtimate the direct
effects matrixB. However, we found that to obtain strong results we had to adapt thdatalgan
the following way.

First, unlike in the simulations in Section 5, we found that here the absoluteafadLmefficient
bji does not provide a good confidence measure for the existence ofgbg; ed x;, since it does
not consider the possibly large variance of the estimatdjfon any way. As direct re-sampling
approaches are not possible with the available data, we cratedsy data sets by adding noise
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from a normal distribution with varianoe® = 0.1 to each raw data point. We then estimated the
total effects as explained above.

Second, to estimate the direct effe@sve solved the LLC equation system in Equation 17
using anL'-norm penalization with weight = 0.1. An estimate of the direct effecBs(vectorized
asb) from the noisy data set is thus calculated by

ming || Th —t]|Z; -+ Al|b]| 1.

As explained in Section 4 the estimation can be done bgparate minimization problems. Note
that theL'-norm penalization can be thought of as a prior for sparse structorasyay somewhat
similar to the use of a faithfulness assumption.

Finally, we calculate the Z-scores for each limk by

Zji = mear{{bf{ }i_y)/std {b}i o).

The higher the Z-score the more confident we are of the existence ofltjee éJsing Z-scores
allows for a high score for a small coefficient as long as its estimated variaismall as well.

Figure 10 summarizes the results. The first observation is that the DREAMIkges were
more competitive than the DREAM 3 challenges as the variation of the resultbdot0 best
teams is lower. Our overall ranks in the five challenges are 3rd, 9th,28diand 10th among
the approximately 30 teams that participated in the actual challenges. Therelesan difference
in evaluation with either score metric. We take these results to be encouragpegially since—
unlike many other candidates—we did not use the available time series datao erploit the time
series data remains an open question. The noise in the data, not ha@eg tca sufficient number
of samples and the possible non-linearity of the causal relations constitliteoadl sources of
errors.

6.3 Prediction Accuracy

In addition to structure discovery, another important aspect of causdgling is prediction under
previously unseen experimental conditions. Thus, DREAM 4 featureshasoround for predicting
the steady state values of the gene expression levels in novel experissititajs. The data were
the same as for the structure discovery challenges. For the five 1®leamadels, the teams were
asked to predict all steady state expression levels in 5 situations wheagsatwpair of genes is
knocked out. For the five 100-variable models predictions were requfst@0 double knockout
settings each. _ .

The knocked out values of variablgsandx; are defined by the data 81!§<0 andx}’ko. We can
estimate the values of the variablgssuch thau # i, j using the interpretation of the experimental
effects as regression coefficients:

X = 04Xl 151 X0l D)
Since we can estimatéx~x||{x}) andt(x;~x||{X;}) as described in the previous section, we
can also estimate the quantitig$x~xc||{x,Xj}) and t(xj~xc|[{x,x;}) using Lemma 9
(Union/Intersection). We solve the linear equation group (Equation 35 peAgix G) for the
experimental effects using dan prior with regularization parametér In other words, we assume
that the data generating model is a linear cyclic model with latent variableseptadict the steady
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Figure 10: Summary of the results for the DREAMSsilico network inference challenges: The
AUROC- and AUPR-scores (first and third row) and the correspandink among the
competitors, for each of the DREAM 3 and DREAM 4 challenges. The topeofititk
gray area shows the best results among the competing teams for eachuialdilatka
set, while the bottom always shows the 10th best result. Overall therealerg 30
competitors in each of the challenges.

state values of the specific combined (double) knockout experiment drasiieof the relevant sin-
gle knockout experimental data provided. (The double knockouttsfae identified based on the
single knockout experimental data by Lemma 9.) In this way, in each indivadiction task we
disregard the data that is irrelevant to this specific prediction, and onlthastata that is actually
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Figure 11: Predictive performance: Mean squared errors of giealicin double intervention ex-
periments on five 10-variable models (top) and 100-variable models (bottotégdg
as a function of the regularization parameter. The red line shows the {iwadécrors
for our procedure. The bottom of the dark gray area shows the éssit mamong the
competing teams for each individual data set, while the top always showsrihédist

result.

relevant. In practice, this means that the predictions are more robust ®&igimyviolations of the
modeling assumptions not crucial to the prediction task at hand.

Figure 11 assesses the quality of the predictions. The predictions areianysing the mean

squared error from the ground truth, that is, the average sum ofestjgerors over the variables and
over the different predictions requested. For the 10-variable modetesb#s of our procedure are
competitive with those of the seven participating teams. For the 100-variablel$rad procedure
achieves in aggregate the best predictions among the five participating teamsainge of the
regularization parameter values.
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7. Extensions

We have presented and developed the theory in this paper in terms of tdarsgtamerpretation
of linear non-recursive structural equation models, in which the vedtdisturbances is held
constant throughout the equilibrating process. Following Lauritzen &ithRIson (2002) we refer
to this most common interpretation of cyclic models as die&rministic equilibriuminterpreta-
tion, since the value of the observed variabtest equilibrium is a deterministic function of the
disturbance®. In this model, as defined in Section 2.1, different observed vegtarsse solely
from different outside influences yielding a covariance matrigX for each experimeng. In this
section we discuss some preliminary ideas for extending the theory to otatxdréinear cyclic
models.

In Section 6 we have already seen an application of the method to data in whietigtonly a
single passive-observational data vectpand two experimental data vecto«{S’, XEO (correspond-
ing to gene knockdown and knockout experiments, respectively)afch experimenintervening
on a single variable at a timeln this case, to make the LLC method applicable, one essentially
must assume that there is a single (constant) disturbance edb@mirdoes not change between the
different experimental conditions, so that the experimental effects\an gy the change in values
(from the passive observational to the experimental data) of the nanened variables divided
by the corresponding change in value of the intervened variable. Whnideassumption, the theory
presented in this paper is directly applicable to estimate the direct effects dahmovariables from
the experimental effects.

If, however, one wants to apply the full machinery provided in this papeéata of the above
kind, but in which each experiment intervenesroultiple variables simultaneously, it is not suffi-
cient to obtain just one or two experimental data vectprfkather, in general multiple data vectors
may be needed to be able to disentangle the effects of each of the interysmestariables on the
non-intervened ones. The details of the required experimental protesolgell as sufficient and
necessary identifiability conditions, are however left for future work.

A different extension considers models in which the observed data setise from an equi-
librium reached by a process wisthiochastiadynamics. Specifically, consider a time-series process

X(t) = Bx(t—1)+e(t),

wheree(t) is sampled anew at each time steplways from the same distribution with meap= 0
and variance-covariance mati®.. All the variables inx are updated simultaneously given their
values of the previous time step and the new disturbance ¢@ni Obviously, this system no
longer has a deterministic equilibrium, but for an asymptotically stable m@&]&l.) the process
converges to an equilibrium in which a sample veat@r= ) is drawn from

Hx = 07
t
_ i ti Tyt
Cx = tImol:B (B )

As in the deterministic model, the observed vectatrawn at equilibrium is independent of the
initial values at the start of the process. Different observed datargecteould be obtained by run-
ning multiple parallel chains. Interventions could be modeled as setting a aviable to a value

9. We note that this model differs from Lauritzen and Richardson (P98 chastic equilibrium model, discussed in
Sections 6 and 7 of their paper. They consider a sequential updatewafrthbles in a particular order.
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drawn from some distribution, and then keeping that variable constanigthoot the equilibrating
process.

In such a model the covariances between the intervened and non-i@érvariables corre-
spond to experimental effects, mirroring the deterministic case. Hence thry thresented in this
paper could be used to estimate the direct effects mBtrigiven the direct effects, and given a
passive-observational covariance magix one could estimat®, using the relation

Y. = Cy—BC,B'.

Note, however, that the expression for the covariance among the teomeaned variables isot
directly parallel to the deterministic case, so some of the theory presented jpag@swould need
to be adapted if this particular model were of primary interest.

In all the models discussed so far, we have been assuming that intergetati@nfull control
of the intervened variable by making it independent of its normal causes.r@presentation of an
intervention is consistent with interventions in randomized controlled trials @sagwhere a vari-
able is “clamped” to a particular value. However, interventions needri’slogical” in this sense,
but could instead only add an additional influence to the intervened variatbleut breaking the
relations between the intervened variable and its causal parents. Sugkrititms are sometimes
referred to as “soft” interventions. In linear models they are formally\edeint to instrumental
variables, which are known to be useful for causal discovery. mnoodel a soft intervention
is simply represented by an added influence that does not affect tficieoé matrix B, nor the
disturbance terne. That is, the matriXJy is deleted in both instances from Equation 4, but the
influencec is still added. Assuming that the influence of the soft interventions on thevamed
variables is known, that is, thatis measured, and that multiple simultaneous soft interventions are
performed independently, it can be shown that one can still determine pleeirental effects of
the intervened variables. The entire machinery described here thuietsawith only some very
minor adjustments. Given that soft interventions can be combined indetgndéone another,
very efficient experimental protocols can be developed. In Eberlearal. (2010) we found that
even from a statistical perspective, soft interventions appear to estipgroverall least number of
samples for causal discovery.

Lastly, it is worth noting that the LLC-Algorithm presented here uses the umedsxperi-
mental effectd(xj~>xy||7) to linearly constrain the unknowdirect effectsb; of B. There may
be circumstances in which it might be beneficial to instead use the experireéiatds to linearly
constrain theotal effectst(x~x,).1° In fact, such a representation was originally developed in
Eberhardt et al. (2010). Given an experiméqt= (J, Ux), the linear constraint of the measured
experimental effects on the unknown total effd¢ig~~x,) is then given by

tXa) = 06Xl )+ Y X (XX ).
X €\ {xi}

The constraint has a similar form to the constraint on direct effects intlequb6, but combines a
different set of experimental effects. Such a representation of tieraints in terms of total effects
forms the basis for an algorithm analogous to LLC to identify the total effé@tsce all the total
effects are determined, one can, if needed, easily infer the directefee Eberhardt et al., 2010).

10. Recall that the total effect corresponds to the experimental éffelee single-intervention experiment where only
the cause is subject to intervention, that {;~xy) = t(Xi~Xu|[{Xi }).
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8. Conclusion

We have described a procedure that uses data from a set of expwsritmegentify linear causal
models that may contain cycles and latent variables. While assuming linearity isificaigt re-
striction, we are not aware of any other procedure that works withmgssons that are as weak in
all other regards. Given this model space, we have shown how impthnasatisfaction of the pair
condition and the covariance condition is for identifiability. Additionally, weeéhawted that when
the identifiability conditions are not satisfied, the underdetermination of thelnsagenerally fairly
local.

Despite our analysis in terms o&nonicalmodels and sets @anonicalexperiments, we have
indicated that these are in fact only very weak conditions: Any data frownaconditional surgi-
cal experiment can be turned into data from a corresponding canamiedif the experiment was
not canonical to start with), and almost any linear cyclic model with latenabls can be rep-
resented by a canonical model that is completely equivalent with resptet tvailable data and
any novel predictions produced. Thus, our procedure can harmgllgeageneral model family and
experimental setup.

We have shown that the LLC algorithm performs quite well in comparison witbrighgms
designed for solving similar inference problems. Moreover, within the DREAallenges, we have
a good comparison of how our algorithm (suitably adapted to the problerforper for realistic
data. It is competitive across all challenges despite the linearity assumption.

In Section 7 we have suggested how our model and search proceatuiteze gyeneralized to
models with stochastic dynamics; in Eberhardt et al. (2010) we also coadidgperiments with
so-called “soft” interventions. An open question remains: What are the miisionditions a model
must satisfy such that a search procedure based on experimentgigtigtisa pair condition for all
ordered pairs of variables is sufficient for model identifiability? In Hyttieeal. (2011) we showed
that this condition is necessary and sufficient for identifiability in discreyelamcmodels with a
noisy-or parametrization. It is not known to what extent the condition igdizes to other model
families.
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Appendix A. Centering the Data

Here we show how to center the data, so that it can be modeled with a lindar ropclel with
latent variables that assumes a zero mean for the disturbances. Weragtectow to translate
the predictions of the model to predictions for the actual data generaticggsoThroughout, we
assume that in each experiment we observe the mean and covariance mihgixninite sample
limit.

Let the true data generating model be a linear cyclic model with latent variéBl&3, pe)
where e # 0. Say, we have observed passive observational data with pagain an arbitrary
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experimentE, = (%, Ux) the data generating model produces data with the following mean and
covariance matrix:

pé = (1= UB) H(Upe+ dipsl), (26)
CK = (I1-UB) AZE+UZeU) (I —UB) T

If we first center all data vectors by
X = x—pg, (27)

then the centered data has mgah= pX — u0 and unaltered covariance mat® = CX. The
centering of Equation 27 implies that instead of randomizing the intervenéables in J with
mean(uc) 4. and covananceE ) 4.4 the centered variables are considered to be randomized with
mean(fz¥) s = (X — p9) 4, and covariancéxk), , = (=K )5 The subsequent equations show
that the corresponding model with zero mean dlsturbaBg:Ee, fie), whereB = B, Ee =Y and

fte = On, generates the centered data when the intervened variables are regdtioitizmear i2X) 5.

and covarianc€X:

Ck = (1-UB) 1=K+ UBeU) (1 —UB) T
= (1-UB) A=K+ UZeU) (1 —UB) T =Ck = Ck,
i (I = UkB)~H(Ukfie + Juae)
= (1= UB) Nk(psk — ) g = (1 —B) "pe
= (1-UB) " Jkps— (1 = UkB) k(1 =B) “pte+ (I = B) e — 3
= (1 =UkB) Mkpe+ (1 = UkB) H(—Jk+1 — UkB) (1 = B) " pte — pag
= (1= UkB) Mg + (1 —UkB)fl( (I —Uk)+| UkB)(l —B) pe— g
= (I = UB) H(Urpte+ Jusf) — pg = pafs — pu = k.

Thus, the centering is innocuous with regardtandXe. The identities show also how to translate
the predictions of the zero-mean disturbance model in some novel expedinenthe predictions
of the actual data generating modgk = p + X andCK =

In the unlikely case that passive observational data |s not availableamsimply center the
data vectors observed in experimertiy:

X = x—pk

This essentially corresponds to just ignoring the observed mean in epehiregnt. The theory
in the paper can be used to estimate the direct effects ntaimd covariance matri¥e, as the
data covariance matrices are independent of the mean of the disturbartisss sufficient for
structure discovery, but if we want to achieve consistent predictiottseeabbserved mean in novel
experimental setupge also needs to be estimated. In experinBpt (%, Ux), the data has mean
1k, s0(pe) ¢, can be estimated bl — UgB) k) ¢;,, since

(1 -UB))u, = (1 —UkB)(I — UkB) L (Ukpte + Ipek))
= (Ukﬂe"‘Jkl‘c)ﬂk (NE)'UK
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Thus, if each variablg is observed unmanipulated in some experinzgmB is identified, then the
whole vectorue can be estimated. The predicted meérfor an arbitrary novel experimerf, can
then be obtained using Equation 26. See Appendices B and J for additiscizgsion on predicting
means.

Appendix B. Proof of Lemma 5 (Correlated Experiment)

In a correlated experimerf, wherec is randomized with mean¥ and covariance matrix¥ such
that(XX) 4, 4 is symmetric positive-definite, the mod@, ) produces the following observations:

fx = (1—-UB)puk,
Ck = (1-UB) 1 (ZX4+UkZeUW) (I —UkB) T
_ (Elé)]k]k ‘ (Elé)jkjkBLk]k(l - B‘Uk‘llk);r :|
(I = Bueu) "By (B8) 5 * ’
x = (I -Bya) ((Ze)uot + Bua (28 1B hs) (| = Baea) "

Then, matrixTX, defined in the lemma in terms of the observed covariance méffixcan be
expressed solely in terms of the model parame@ers

T _ ~ -1_ (Elé) kJk -1
TI; - (C)li)’l/]k((c)li)]kf]k) L= [ (| _B‘Uk‘llk)ilBj‘Zjlk]k(zlé)ﬂka :| [ (EIé)Jk]k }

(- Bukz!k)—lsﬂk]k } = ((1=UkB) Dy,

where matrix(CX) ;4 = (2X) 5. is invertible, since it is a positive-definite matrix. The following
identities apply:

AT = (('—UkB) D (1 =UkB) )y
= (1 —=UB) (1 —UuB) T
:I;)lé(é)lé)]k]k(-fl;)-r = ((I UkB )’ij(zc)]k]k((( _UkB)_l)’I/jk)T

= (I—UB) X1 —uB) T

Now from Equations 5 and 6 we can calculate the statistics of the experimeret ifitdrvened
variables had been randomized with zero mean and unit variance (eygp@aEquations 7 and 8):

py = 0,
Cx = Ci-TXCOaa(TOT +TX(TT

(I —UB) 1=K+ Uk Z Uk — =K+ 3 (1 —uB) T
= (1 —UB) H(UxZeUk 4+ Ji) (I — UB) T

Notice that the formulas in the lemma can also be used to transform the predigtamCX
in a canonical experiment to predictiop& &nd CX in a non-canonical experiment, wheteis
randomized with meapX and covarianc&k:

ﬁ>|§ = Tx/”m

CX = CiHTX(EDaaTOT -TX(TOT,
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whereTk = (C) .

Appendix C. Derivation of the Trek Rule for Asymptotically Stable Models

From the definition of asymptotic stability it follows that the eigenvalueb)@ are all less than
one in absolute value. As the eigenvalues of mabix, are equal to those B, matrix (I —
Ba, )t can be written as the following geometric series:

(I-Byw) b = 1+Byay +BuuBua+- -

Now, the experimental effettx;~X,||%) can be expressed as the sum-product implied by the trek
rules:

(%l ) = (TE) i)
((1— B‘Ukﬂk)ilBuk]k){Xu}{xi}
= (1 +Buu +BuauBua + - )Budg) o) x)
= bui+ ) bubji+ > S byjbyby+--
JETU JE Ul € Uk

- bm| .
PEP(Xi~Xul[ k) (X —Xm)EP

Appendix D. Proof of Lemma 7 (Marginalization)

In the following, note that the experiment of the marginalized mcﬂe:k (3k, ‘Zlk) and the corre-
sponding experiment of the full mod&k = (%, Ux) satisfy i = Jeand Uy = UU M. Without loss
of generality the variables are labeled such hat. . . x; € T, Xit1,.-.,Xj € T andxj;1,...,Xn € M
to allow for easy block matrix manipulation.

D.1 Weak Stability

We show that if the full mode(B, 3¢) is weakly stable then the marginalized mo(#|3,) is also
weakly stable. Make the counter-assumption {l&ate) is weakly unstable, thus there exists an
experimentZ; such that(l — UyB) is singular, or equivalently matri,B has a unit eigenvalue:
37 £ 0 such thatJ,BY = ¥. The following shows that thebyB also has a unit eigenvalue corre-
sponding to the eigenvectordefined belowt!

11. Invertibility of (I —B4,4,) follows from the weak stability ofB, X¢) in experiment v, M).
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Uk

UBv = |

B3/ Bm}v |\,_[ v ]
By Barar (I =Barar) "BV
UkBys UkBiy, [ v ]
1By 1Barar || (1 =Bagar) 1BV
UkB:Vr;/\:/—l—UkB,;/M(I - BMM)l_lBMj/v
BM,"I'/V—F BMM(I — BMM>7 BM‘;/V

Uk(B)5)+Biar (I —Bagar) Bysi))¥ ] ~

= _ ~ _ - Def. of B

| (1 =Bagar) (1 =Barar) "By V+Barar (I —=Bagar) 1By i I

T UkBY ] B v ] _y
| (1 =Bagar +Barar) (| —Bagar) By sV (I =Barar) BV '

Thus, (I — UiB) is singular and the full mod€B, %) is not weakly stable. Because this is contra-
dictory to the assumption§B, 3¢) must be weakly stable.

D.2 Equal Covariance Matrices

We need to show that in experimeft the covariance matriéclﬁ)r;/q; produced byB, X¢) is equal
to the covariance matri€X produced by(B,3). This requires us first to derive the following
identities:

(1-Bga) ' = (1-Bgi —Baar(l —Barar) Barg) (28)
Bai = B+ Baar(l —Barar) Bagi, (29)

(1-Bga) Bag = (1-Buu) Bus)yi, (30)
(1 -0B) Y55 = (1-UB) a5 (31)

The goal is to derive Equation 31, which means that both models produsartie experimental
effects fromx; € % to x, € Uk.

Equations 28 and 29 follow directly from the marginalized model definition in Lerim&o
show Equation 30, we invert the matiik— B¢, ¢, ) in blocks (the unneeded blocks on rows corre-
sponding to the marginalized variables are replaced withsymbol):

1
(I —Byq) ' = { ! _BB“kN'”k I_BBukM ||block matrix inversion & Eq. 28
—Bardy, 1= Barar

_ [(I—é@k@k)l (I =B z,) "Bgar(l —Bagar)
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Then, we can verify Equation 30:

(I - B‘uk‘llk) B‘Zlkjk)‘ilﬁ

— <|: B‘Zlk‘ilk - (I _BNk‘Zlk)ilB‘Zlka(l _B.‘M.‘M)il ] [ E‘zlkjk :|>
’ M Uk
_ [ —Baii) (B +Baar (! —Barar) "Bagj) ] |Eq. 29
’ Tk
8, N
= [ gl =(0-Bga) B
U Ik

Equation 31 follows quite directly from Equation 30:

(1=UB) g5 = (1 =UB) Nwy) i, = { (I = Buau) "Bus |5

|
_ - Eq. 30
|: ((1 _B‘Uk‘llk) 1B‘Uk]k)’21k3k :| H |

Next, we use matriX = [l 0j.n—j)] to avoid the complicated block matrix notation. Mul-

tiplication from the left byV just selects the rows corresponding to~variable§/lrmuItipIication
from the right byv" selects the columns corresponding to variable®’inWe prove the following
identities.:

(1=0B) M, = ¥ —UB) 13T, (32)
(1—=0B) 201 —B)¥ = ¥(I —UxB) tUk(1 —B). (33)

Equation 32 just restates Equation 31 using malrixEquation 33 is verified by the following
derivation:

(1 —UkB) 10k (1 = B)V — (1 — UkB) LU (1 —=B)  [|Uk =1 — i, U = | — Jy.
= (| UkB) 71 (1 — OB — 3i)¥ — (1 — UxB) L (1 — UyB — Jy)
= U—(1—0B) 13 — 4+ 9(1 — UB) 13k ||Eq. 32
= V(1 —UB) L FTV+T(1 —UB) 13 [|90TT = Ik
= 0
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Finally, we can show that the covariance matfl¥ of the marginalized model matches the
marginalized covariance matr(i:)'ﬁ)r;/r;/ of the original model:

ck = U (1 — 0B)~T || definition of £
k(I =B)W(1 —B) 12e(1 —=B) T (1 = B)TUy) (1 — UB) T

B) 101 —B)V(1 —B) " 1Ze(1 —B) 0" (1 —B)TUx(1 — UxB) T ||Eq. 33

<

(I —UkB) " 1Uk(1 =B)(1 =B) 136(1 = B) T (1 —B)TUk(I — UxB)T¥" ||Eq. 32
= (1 —UB) 11 = UkB) T + 0 (1 — UkB) U ZeUk (1 — UB) T3
= (1 —UkB) (I + UZeUk) (I = UkB) 0T = (CK)5,0.

Appendix E. Proof of Lemma 8 (Self Cycles)

Again, we first show weak stability and then confirm that the covariancaaesatare equal.

E.1 Weak Stability

First, we show that the modéB, 3) without the self-loop is weakly stable, if the mod@, )
with the self-loop is weakly stable. Notice that the weak stabilityBfX,) in experiment(?/\
{xi},{x}) implies thatbj # 1. So, assume thaB,X) is weakly stable. Make the counter-
assumption thatl — UkB) is not invertible in some experimefy, thendv # 0 such thatUBv = v.
Matrix B can be written as a function of matrikby inverting the definition oB in the lemma:

B = (| — biiUi)é—l—biiUi.
If X € % we have thatgU; = Onyn, then
UB = Uy(l —DbjU;)B+biUkU; = UcB
andUyBv = UBv = v. Alternatively if x; € Uy, we have thauyU; = U;, then
UBv = U(l - biiUi)I§V+ bi UxUiv  ||Multiplication of diagonal matrices commutes
= (I —bjU;)UgBv 4 b UUiv

(I = b Uj)v+bjUiv = v.

In both cases matridyB has a unit eigenvalue, and thus UyB is singular. This is contradictory

to the assumption that the mod@&, 3¢) is weakly stable, and so the mod#l, 32¢) must be weakly
stable.

E.2 Equal Covariance Matrices

Then we show that in an arbitrary experimefiitthe two models produce data with the same co-
variance matrices. First, if variable € %, thenUU; = On«n, UxkB = UyB (as shown above) and

bii bii

UEeUk = Up(l+——
kXeUk k(+l_bii 1_b;

Ui)Xe(l + Ui)TUk = Uy SeUx.
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The covariance matrices are trivially equal:

CK = (1=UB) Y+ UEU) (I —UB) T
= (I —UB) (I + UkZeU) (I — UB) T = Ck.

Alternatively, if variablex; € Uy, thenUU; = U;, and because

(1-UB)1-UB) ™t = (I1-UB+ 1E”b_' UUi(1 —B))(I — UyB) L
bij
1—bj
bij
1— Dby

= 1+ Ui(l = UB = 3B)(1 —UB) 1 [|UiJk = Onsn

= I+ Ui,

the covariance matrices are also equal:
CK = (1 —UB) Y(Ik+UkZeUk) (I —UkB) T ||definition of ¢

= (I—UB) 1+ Ul + U Se(l + bi U)TU) (= UeB) T

bii
1Dy

1— b
= (1-UB) Y +%Ui)Jk(l +7 b"b U)" ||Multip. of diag. mat. commutes
— bij — bij
bi . bi T BT
+Uk(| + 71_ by U.)Ee“ + 1Dy U,) Uk)(| UkB>
» b " . )
= (I-UB) 1+ 1_“b“ Ui) (Jk+ Uk ZeU) (1 + 1_7“b“ui)T(| —UxB) T ||id. above

= (I —UB) (I —UB) (I — UxB) "1 (Jk + Uk ZeUy)
(1 =UB) (1 —UB)T (1 —UB) T
= (I —UB) (I + UkZeU) (I — UB) T = Ck.

Appendix F. Derivation of Equation 13

Lemma 7 (Marginalization) showed that weak stability and experimental effectsan intervened
variablex; € J to an observed variabbg, € Uy are preserved (as part of the covariance matrix)
when some variables ifix are marginalized. Then, it is sufficient to show that Equation 13 applies
in a weakly stable model where variablek \ {xj,x,} are marginalized. Lemma 8 (Self cycles)
allows us to assume without loss of generality that there are no self-loogs imalel.

Examine experimenty = (%, Ux) where U = {Xj,x} in the marginalized modg(B, X¢).
The experimental effects in the experiment interveningjew {x;} are just the direct effects
t(Xi~xu|| & U {Xj}) = bui and t(xj~xu||J U {Xj}) = byj. The remaining experimental effects
t(xi~xXul| %) andt(xi~X;|| %) appear in the matrig(l — UkB) 1) ¢ 4,

B B 1 —b; Lo bi .-
(1=UB) Yoy = (1—Baa) 1Bukyk={buj 1‘“} { by ]

bji +bjubui
_ 1 { 1 bjuH... bj ]: S
1—byjbjy | buj 1 co by e bfiﬁ?é?u” L
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Now Equation 13 can be verified:
bji + bjubui
06Xl |9 {1 1) +£0 |08l U {1 ) = bui -5 2
— BujVju

bui — bujbjubui + byjbji +bujbjubui  bui + byjbji
N = =t(Xj~ .

buj

Appendix G. Proof of Lemma 9 (Union/Intersection Experiment)

In this proof, we first derive a linear equation system on the unknoweraxental effects and then
show that it has a unique solution under weak stability.

G.1 Generalizations of Equation 13

Equation 13 can be generalized to relate some experimental effegtsr J, Ux) to some exper-
imental effects inE = (KU %, UcN U;) by applying Equation 13 iteratively:

LGl A) = tOe=xal[AUI) + Yt It Ol [ U 5)- (34)
Xj €\ Jk
HereX € %, Xu € UcN U;. Another way of writing the generalization relates some experimental
effects inEx = (Jk, Uk) to experimental effects it~ = (N4, WU U)):
t=Xl [N A) = tOxul[J)+ Y 06X AN AKXl [ T)-
X €5\
Herex € kN4, Xy € Uk

G.2 Equations for the Experimental Effects in the Union Experiment

First, partition’ into the following disjoint sets:I = % N 4 (intervened in both experiments),
K = K&\ 4 (intervened only irEy), L = 4 \ % (intervened only inE) andO = UxN U (passively
observed in both experiments). For each gai;x,) with xc € X andx, € O we can form an
equation of the form of Equation 34 using experimental effects fromraxpat Zy:

EXeXl [ UA) + Y XAt (XXl [ UA) = tOXul | %)-

Xj€L
Equations for all such pairs can be represented neatly by block matrices:
(TN ox + (MM oc(Mx = (THox-

Similarly, equations can be formed for all pafsg,X,) with X € £ andx, € O using experimental

effects from experiment;. For pairs(xq,x,) with x € I andx, € O, equations could be formed
using the experimental effects from either experiments, but it turns dubtaequations using the
experimental effects of experimenf are needed. The equations form the following system:

1

(TN or (T¥Mox (T>I§U|)OL} lag (Txc |= [(T5)01 (T¥)ox (Tlx)OL} . (39
(TOr Tz g
Q
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G.3 Invertibility

Now, we know the matrix on the right and mat@x and we would like to solve for the matrix on

the left by multiplying from the right byQ—*. Thus, we need to show th& is invertible. Since

the variables inO do not appear in matriQ in any way, consider a marginalized mocaél, ie)
over¥ = ¥\ O, where variable® are marginalized. The marginalized experiments corresponding
to experimentst, and & are %k =([UX,L) and ﬁ = (IU L, K) respectively. If(B,X¢) is
weakly stable as we assume, a{éq f]e) is weakly stable by Lemma 7 (Marginalization). All the
experimental effects iQ are preserved in the marginalization. The blocks can be now expressed
using Equation 9:

(TbLI = (TX)LI = ((I - éLL)iléL,IUK)L[ = (| — ELL)fléLI,
(T ex = (T ea = (1 =Brr) Briug)ex = (1 —Brr) 'Bex,
| 'l

(T xz = (Ti) e = (1 —Bxx) Bacruc) e = (1 —Bxx) Bace.

The matrices inverted in the expressions are invertible, because the niaegimaodel is weakly
stable. NowQ can be written as a product of 3 simple square matrices:

v

Q= ) ) g (1 =Bxx) Bxe | =
(1=Brr) Brr (1-Brr) Brx Iz
L) . . IUI‘ I
_(I _BKK)_ N i . | *'vBy(g( *B'_KL _I\jﬂ
(I=Bcr) Brr| —Brg 1—-Brg lic)

The matrices on the left and on the right are invertible as block diagonal estniith invertible
blocks. Consider the middle matrix in the blocks indicated by the lines. Becaesgrer right-
hand block is just zeros, the matrix is invertible if the two diagonal blocks asertible. The
lower right-hand block is invertible since the marginalized model is weakly siakie experiment
(I, KU L). As a product of 3 invertible matrices matkXis invertible. Note that the factorization
is valid also in the case whete= 0.

G.4 Matrix Equations for the Experimental Effects

The derivation of the equations and proof of invertibility for the intersectigperiment proceeds
very similarly. Here the formulas for solving the experimental effects in theruand intersection
experiment are presented for completeness:

I -1
[(T>|fu')01 (T|;U|)07C(T>IEUI)OLi| = [(T!f)m (T¥)ox (T )OL} [ [ (Th)xc ] ;
(Tk)u (T¥) |
(T k1 | —(T) %z (T %1
(MM | = | —(THex | (T8) s
(T¥M)or —(T¥)ox | (Tor

See Appendix J on how to determine the full covariance matrices in the untbimgamnsection
experiments.
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Appendix H. Proof of Lemma 13 (Perturbation of B)

ExperimentsE, = (Jk, Ux) with x € %, X; € Uk do not have to be considered as the pair condition
is not satisfied for the paifx;,x;). Consider then experimen®, = (J, Ux) with X; € %. As
explained in the text after Lemma lB,andL5> differ only on thej:th row. Then, ifx; € %, we have
thatUB = UyB and the experimental effects must be equal.

That leaves us with experimentk = (%, Ux) with x; € Uk andx; € Ux. In the special case
of experimentEy = (K, L) = (V' \ {X,Xj},{X,%;}), the experimental effects are the same by the
definition of the alternative coefficient matrik

T = (1=B.r) Bra=01-Br) (1 —=B)(1 —=B.r) By = (1—Brr) *Bg =TK.

Otherwise the intervention sek has a presentatiofk = XN (% U L). We just noted that the
experimental effects are the same in experiniéatL ). Earlier we showed that experimental effects
are equal whe; is intervened on, this holds in particular for experiméfitu L, U\ L). By
Lemma 9 (Union/Intersection Experiment) the effects of an intersection iexpetrZy are defined
by the experimental effects of the two original experiments, so the expaaheffects must be
equal in experimenty.

Appendix I. Proof of Lemma 14 (Perturbation of X¢)

Take any experimeri = (%, U). The two model§B, =) and(B, ) produce the same experi-
mental effects. Then, we can prove the following identities:

Uk(l —UB) 13 = Uk(l —UB) 1y, (36)
(1—UB) 3 = (1 —UB) 1y, (37)

(1=UB) 131 —UB) T = (1—UB) 1(1 —UB) T, (38)
(I —UB) U (1 —B) = (I—UB) tUk(1 —B). (39)

Equation 36 follows directly from the fact that the experimental effects @two models are the
same in experimeriky. Equation 37 is proven by the following:

(I —UB) 13 [|Uk+ k=1

= Uk(l —UB) 13+ J(1 —UkB) 10k [|Ik(1 — UkB) = Jk
= Uk(l = UB) 13k + k(1 — UB) (I — UkB) 13,
= U(l —UB) 13+ ||Eq. 36

( )"

= Uk(l = UB) 13+ Ik = (I — UgB) k.

Equation 38 follows from Equation 37:
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Equation 39 is proven by the following:
(I1—=UB) U1 —B) = (I1—UB) (1 —UB—Jy)
| — (I —UB)"1J ||Eq. 37
= 1 —(1—=UB) 13 = (I —UB)tuy(1 — B).
Finally, the covariance matrices produced by the two models can be showretphl:
CKk = (1—-UB)*(Jk+ ukfzeuk)(l —UB)™T  ||Definition of ¢
= (I —UB)1ak(1 - UkB) + ||Eq. 38 and 39

(I —UB) U (1 = B) (I — B)’lz)e(l —B) (1 —B) U1 —UB) T
= (1 —=UB) (1 —UuB) T

(I —UxB) " tUk(1 = B) (1 — B) 1¥e(1 =B) " T(1 =B)TUk(1 —UB) T

(I — UB) (I + UkZeU) (I —UB) T = CK.

Appendix J. Covariance Matrices of Union and Intersection Exgriments

Even if the set of experiments does not allow for the identification of the futleh@onsistent pre-
dictions are still possible in some unseen experimental settings assuming tigemiatating model
is a linear cyclic model with latent variables. Lemma 9 already showed that plegieental effects
can be predicted in the union and intersection experiments of any two alceadycted experi-
ments. In the following we extend this result to the prediction of the entire @mwae matrices.

Let the data generating model B, 3¢). Say we have conducted experimefiy observing
covariance matrixCk and experiment; observing covariance matri®,. By solving Equation 17
using the pseudoinverse we can find a maiithat produces the same experimental effects in the
two experiments. Now define

My = (I —UB) du(l —UuB) T,

My = (I—UwB) U (l —B).
using the estimat&. Now, we can show that matrid; +M,CkM] is equal to the covariance
matrix C>'§U' that the true data generating model would produce in experidignt= (%o, Uku) =

(AKUJ, N U):

M1+M,CkMT
= (I =UuB) 3 (l —UwB)™ T ||Eg. 38 and 39
+(1 = Ui B) Uk (1 =B)CK(1 —=B)TUkui (1 = Uk B) T
= (I-UuB) Wl —UwB) T ||Eq.8
+(1 = U B) Ui (1 = B)CE(1 = B)TUgu (1 = UguB) T
= (I1-UuB) —UMB)—T + (1= UuB) U (1 =B)(1 - UB)
<(Jk+ UkSeUi) (1 = UkB) T (1 = B) "Uui (1 = UkuiB) T[] Uk = Uy UgUg
= (I —UuB) 13 (I — Uy B) + (I — Ui B) "I Uk Uk (1 = B) (I — UB) 2
(Jk+ UkZeU) (I = UkB) T (1 = B) TUKUKU (I = Ui B) T Uk =1 — Jk
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= (I =UuB) ki (1 = Uk B) T+ (I = Uy B) TU Uk (1 — UB) — ) (I — UkB) 2
(Jk+ UkZeU) (1 = UkB) T (I = UkB) — k) TURU (I = Ui B) T ||UkJk = Oncn
= (I1=UuB) (1 =UuB) T
+(1 = Ui B) MU Uk (e + Uk BeUi) UkUi (1 = Ui B) T [|UjUkUi = Upy
= (I = UuB) " (dku + Uk ZeUiun) (I = U B) T = C¥.

To predict the whole covariance matrix in the intersection experiment, we theepassive
observational data covariance matﬂg in addition to the observations in experimettisand ;.
Now, define matrices

Mz = (I —UB) i (1 = Ui B) T,
Ms = (I —UB) Uk (1 - B).

Then, we can show th&l 3+ M4CIM] is equal to the covariance mat@®! that the data gener-
ating model would produce in experimeBi = (Jni, Uknt) = (kN A, UU U)):

M3+ M4CIM}
= (1 —=UB) (I = U B)" T ||Eq. 38 and 39
—I—(| — Uk é)_lUkN (| — E)CSU — é)TUkm (| — Uk é)_T
= (I =UxB) 1 (I —UgB)" T ||EQ. 3
+(1I = Uy B) "2 (1 = B)CO(1 = B) TUge (I = Uy B) T
= (I=UiB) (1 —UiiB) "
+(1 = Ui B) Uk (I =B) (I = B) 131 =B) T (I = B) Uy (I — Uy B) T
= (I =UkiB) ™ Ik + Uk Zelir ) (I = Ugni B) T = C

The above formulas for the prediction of covariance matrices can beitgsatively to find
consistent estimates for the covariance matrices in different experimsrtsgas the interven-
tion set of the experiment can be reached by taking successive umdristarsections from the
intervention sets of the actually conducted experiméhts.

Appendix K. LLC Algorithm

We show here that matrik of the LLC learning method is full column rank if the pair condition is
satisfied for all pairs. This implies that the coefficients or direct effeedidly identified.

First we show that the equations of the type of Equation 16 obtained in tha arperiment
T are merely linear combinations of equations obtained in experimigrand . This is a
rather direct consequence of Lemma 9 and its proof in Appendix G. Inbdinaay experimenty,
equations for all pairéx;, x,) with x; € j% andx, € Uy, can be represented neatly in matrix notation:

Boxub i + Bt @ o) M@ e = (Tpas <
Bexga) " + (T @ tena) Bowaaed) = (Tpaa)

12. Note that ifue # 0, |\7|2/L§ andl\7|4p§2 provide estimates for the observed means in the union and intersectien exp
iments.
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Now, partition 7’ similarly as in Appendix G. Consider an arbitraxy € O (observed in both
experiments). Defing® = O\ {x,}. Equations corresponding to paifs,x,) with x; € T U X

obtained in experiment, and equations corresponding to paixs,x,) with x; € L obtained in
experimentE; can be collected into a single system constraining coefficlggts

Ky AT Ky, \T (Byx1)T k T
{I (b <(<<TT§>)§;)>T] G | - ! (e ] (40)
(Moxa)™ 1 [ (Ma)" 1| (g {X““)T (Ttx)c)

Notice, that the left-hand block of the matrix on the left is just the transposieed matrix in-
troduced in Appendix G. A€) was shown to be invertible under the assumption that the data
generating model is weakly stable, we can multiply the equation grou@dyfrom the left. As
blocks of Equation 35 in Appendix G we get the following identities:

(T )" ] (M) ey )|
(T 5){xu}7()T = ((T>|§UI){XU}L7C)T )
(M)’ L (M) )|
(Mo ] [ (T¥ )T
T (Me)T | = | (MM a7
(Mo | L (Me)T

T -

e 1] g (T g )"
kUl . (B{%}K) _ kuly -
{ | ((T)Iiul)?x): ] (Bixy)T B ((T)ﬁul)m}x)TT
I ((Tx )OL) (B{n&b)T ((Tx ){nJL) J
B )T+ (T30 T Bpy0)" | [ (T )" ]
& Bpx)  + (TiMNox) "Byd) | = | (TN pyx)”
(Bpyo) T+ (T¥M)5.)T (Bey0)T (Tx o)™

For the union experimerk,; = (Jui, Uku) We have thatl U KU L = %y and O = Uy \ {Xu}-
The equation system can be written in in the following simple form:

(Bixays) T + (T (e pabg) T Boahanie)” = (M5 pxapaa) ™

These are all of the equations from experimégt constraining coefficients,,. As we considered
arbitraryx, € O, the same procedure can be repeated for &aehO. This exhausts all equations
obtained in the union experiment. All of the equations obtained in experifgntare thus linear
combinations of some of the equations obtained in the original two experirdgaisd %; .

Finally, matrixT can be verified to have full column rank as follows. MatfFikeing full column
rank is equivalent to systefib =t having at most a unique solution. The original equation system
Tb =t consists of all the equations (like Equation 16) gathered in experini@&pis—1_. . We can
always add equations that would be obtained in the union experifiignof two experimentsy
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and‘E whose equations are already in the system, without further restricting fsébf@solutions
of the system. This is because the added equations are merely linear comisicfttome of the
equations already in the system. If the pair condition is satisfied for all gairadding always
equations from the union experiments of two experiments, whose equat®abkeady in the sys-
tem, we are eventually able to add equations for experiments interveningso# §€x,}, for all
variablesx, € V (this follows the rationale discussed after Definition 10). These equati@tifiy
the direct effectd® directly and uniquely. Since the solution space was not restricted thratititeo
procedure of adding new equations, we can deduce that the origstahsyiad at most a unique
solution, which implies that the original matrixhas full column rank.
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